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Abstract

This paper models collective decision-making scenarios by using a
priority-based aggregation procedure, the so-called lexicographic method,
in order to represent a form of reliability-based ‘deliberation’. More pre-
cisely, it considers agents with a preference ordering over a set of objects
and a reliability ordering over the agents themselves, providing a logical
framework describing the way in which the public and simultaneous an-
nouncement of the individual preferences leads to individual preference
upgrade. The main results are the definitions of this lexicographic upgrade
for diverse types of reliability relations (in particular, the preorder and to-
tal preorder cases), a sound and complete axiom system for a language
describing the effects of such upgrades, and the definitions for non-public
variations.

Keywords: multiagent systems; preference; reliability; preference change;
lexicographic; modal logic; dynamic epistemic logic; aggregation; deliberation.

1 Introduction

Suppose four friends want to watch a movie, with the options being 1, 2 and
3. As it frequently happens in similar situations, the preferences of the friends
are different. So, what can they do in order to fix a ranking of the three options,
and thus decide which movie they will see? More generally, what can a set of
agents do in similar collective decision making scenarios?

The friends might try to put together their individual preferences. This can
be done by looking for an aggregation procedure: a process through which the
individual preferences are combined into a single one. As stated in Endriss [42],
“when a group needs to make a decision, we are faced with the problem of aggregating
the views of the individual members of that group into a single collective view that
adequately reflects the ‘will of the people’ ”. Finding appropriate aggregation
procedures is the fundamental aim of research fields as social choice theory
[4; 5; 6] as well as preference/belief change/merge/aggregation (e.g., Konieczny
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and Pino Pérez [75, 76]; Griine-Yanoff and Hansson [64]; Gabbay et al. [49]; Liu
[88]; Konieczny and Pino Pérez [77]). Examples of such procedures are the
different voting systems used across different countries.!

Another alternative the friends have is to allow each one of them to argue for
her preferences, trying in this way to change the opinions of the others. This
is called deliberation, a process through which the individuals share publicly
not only their own preferences but also the justifications they have for them,
aiming at influencing one another’s opinions. Several authors have pointed
to the merits of the deliberative process, which makes people reflect on their
preferences and thus influences possible changes [41; 67; 65; 23; 37; 30; 66].
Some authors have even argued that with such a public debate “there would
not be any need for an aggregation mechanism, since a rational decision would tend to
produce unanimous preferences” [41]. The campaign process that takes place in
most countries before an election might be seen as some form of deliberation,
as it allows some form of public debate through which ideas and reasons for
supporting the candidates are exposed.?

In some sense, the deliberative process is the ideal one: agents share not only
their own preferences but also the justifications they have for them, thus putting
all the available information ‘on the table’, and then proceed to a thoughtful
weighing of options based on the use of logic and reason. Even if the repetition
of such sharing and discussing process does not lead to full unanimity (an
obvious possibility), it has been argued [94; 93; 38; 56] that the deliberative
process can lead to preference profiles whose properties allows/facilitates the
use of aggregation procedures.

However, in real-life scenarios, different circumstances are combined to
guarantee that ideal deliberative processes occur rarely. One of these cir-
cumstances is the fact that, even though agents might get to know one an-
other’s preferences, certain limitations prevent them from knowing the rea-
sons/justifications for them. Another is that typically, and for diverse reasons,
different agents might influence a specific individual in different ways.

Because of these and other ‘real-life’ constrains, attempts to carry out a
deliberative process might actually end up in situations in which an indi-
vidual’s thoughts, opinions, feelings, and behaviours are influenced by (the
actual, imagined or implied presence of) others. Examples of such phenom-
ena include not only the famous informational cascades [11; 21; 104; 40] (cf. the
bandwagon effect; Leibenstein [83]; Nadeau et al. [95]; Altman [1]), but also peer
pressure [39], pluralistic ignorance [73; 78], false consensus [97] and others stud-
ied in economics, computer science and social and behavioural sciences. All
these different ways in which the preferences/beliefs/behaviour of a group of
agents influence the preferences/beliefs/behaviour of an individual might not
be completely ‘rational’, but nevertheless describe the way ‘real” agents behave
in ‘real-life” situations.

This paper provides a formal logical framework for studying a process that

11t should be noted, however, that the aim of a typical voting system is to collectively select one
option, and not to create a full collective preference.

28till, such process is not deliberation in the proper sense: before the voting, typically not all the
voters will have the opportunity to announce their preferences and justifications in public forums,
and even if they do, not all of these announcements will be heard by everyone.



deals with collective decision making scenarios following a ‘deliberative” ap-
proach, but incorporating the two limitations described above: a knowledge
of the preferences but not of its reasons, and some agents having more in-
fluence than others on each individual.> The reason for incorporating these
particular limitations is that they reflect very common real-life circumstances.
For the first, indeed in most cases we only get to know one another’s ac-
tions/opinions/preferences/beliefs without knowing the reasons behind them,
typically because of restrictions in the ‘communication channel” (i.e., lack of
time and/or space). A famous consequence of this is that, paraphrasing a pop-
ular quote, even though we tend to judge ourselves by our intentions, we tend
to judge others only by their actions. For the second, the fact that some agents
might have more influence than others is also a common feature that ideally
can be seen as agents acknowledging the different expertise individuals might
have, but which also allows to describe ‘irrational” herd behaviour situations in
which emotions (“I like a better than b, so I prefer what a chooses over what b
chooses”) come into play.*

More precisely, the goal of the present proposal is the formal study of the
way individual agents might change their preferences based not only on the
preferences of one another but also on the reliability ordering each one of them
assigns to the group. Technically, the models used here will then consist, be-
sides a domain W and a set of agents A, of both a preference relation <; € (W x W)
for each agent i € A and a reliability relation <; C (A X A) for each such i. While
<; represents the preference ordering i has over the available options W, <;
represents the reliability ordering i has over the involved agents A.° In this way,
the procedure through which the announcement of the individual preferences
leads each agent i to change her preferences can be seen as a function f whose
parameters are not only the (current/announced) preferences (<, ..., <) but
also her own reliability relation (x;). In this sense this proposal can be un-
derstood as a qualitative version of DeGroot [31], where the author presents a
quantitative model describing how a group might reach a consensus and form
a common subjective probability distribution by revealing their individual dis-
tributions to one another and pooling their opinions. In such model, each
individual 7 has not only a subjective probability distribution (corresponding
to this work’s preference relation) but also a weight she assigns to the distribu-
tion of each individual when she carries out her revision (corresponding to this
work’s reliability relation).

As the reader has surely noticed, the definition of the mentioned f will play
the most important role through this work. Again, it represents intuitively the
way an agent i will adjust her own preferences according to all the individual
preferences and the reliability she assigns to them. Again, technically it can be
defined as a function which takes as parameters |A| preference orderings over W

3There might be additional limitations: for example, the communication might not be public,
or the preferences might not be fully announced. Some of these situations can be seen as particular
cases of the framework that will be introduced, and they are briefly explored in Section 4.

4Some people have pointed out that, because of this difference in influence, not all agents are
equal, contrary to what should happen in ideal deliberative procedures. However, the degree of
influence of each agent is not global but rather individual: the most influential agent for a given
individual might not be the most influential agent for a different one. Thus, there is no ‘most
important agent(s)’; only ‘most important agent(s)’ from a given agent’s point of view.

5Subsection 2.1 discusses other options for representing preference and, in particular, reliability.



and a reliability ordering over A (i.e., |A| orderings over W and a priority order-
ing over them), returning then a preference ordering over W. This function can
be defined in many different ways: for example, i could adopt directly the pref-
erence ordering of her most reliable agent, or she might keep her old ordering,
using that of her most reliable agent to ‘break ties’ in equally-preferable zones.
She might even put her most reliable agent’s most preferred worlds above the
rest, using her old ordering to break ties in both zones.

In cases as the present one, a typical choice is to use the lexicographic method.
This method consists, roughly speaking, in using the order with the highest
priority first, then using the order with the second highest priority to ‘break
ties” in equally-preferred zones, then using the order with the third highest
priority to ‘break ties’ in the equally-preferred zones that still remain, and so
on; it is similar to the method used for ordering words in dictionaries. The
lexicographic method has been used not only in social choice theory [46; 47; 22;
80; 81] but also in artificial intelligence (preferential logics: Ryan [100]; Grosof
[61]; Schobbens [102]; Ryan [101]; defaults in the setting of circumscription:
Lifschitz [85, 86]; beliefs: Brandenburger et al. [24]; Dekel et al. [32]; belief
revision: Ryan [101]), and it is the most natural one for defining a function that
aggregates a collection of orders based on a priority order over them. Indeed,
the first two examples mentioned before (adopt the preference ordering of the
most reliable agent, keep the old ordering using that of the most reliable agent
to ‘break ties’) are particular instances of the lexicographic method in which
the priority ordering only considers a subset of agents [53]. The third example
is not lexicographic in the strict sense, as it cannot be defined as a lexicographic
aggregation of the original preferences [52], but it still has a lexicographic
flavour: it is the lexicographic aggregation of, first, an ‘arbitrary” preference
relation (the one placing her most reliable agent’s most preferred worlds above
the rest) and then the agent’s original preference relation.

Summarizing, this proposal studies non-completely rational but neverthe-
less realistic situations in which, after the public announcement of all the agents’
individual preferences, each individual agent might change her own prefer-
ences based not only on what has been announced but also on the reliability
order she assigns to the members of the group. All agents will change her indi-
vidual preferences using the described lexicographic method, but even though
all of them will use the just announced preferences as input, each one of them
will use her own reliability ordering for prioritizing the preferences to be aggre-
gated, thus potentially producing different results. This approach for studying
collective decision making scenarios borrows some ideas from the deliberative
tradition, as it acknowledges that the preferences of individuals can be influ-
enced by the preferences of the rest (albeit with the mentioned limitations).
Still, ideas from the aggregation literature are also clearly present, the main
one being the use of the lexicographic method for defining each individual’s
preferences after each announcement.

The work is structured as follows. Section 2 presents formally the basic
model sketched above for representing both the individual’s preferences about
objects and the relative reliability they assign to one another. It also recalls a
formal language for describing these structures as well as an axiom system char-
acterising its validities. Then, after presenting a definition of the lexicographic



method for the cases in which the reliability ordering is a total order (a straight-
forward variation of the one presented in Ghosh and Veldzquez-Quesada [53])
and a partial order [2], Section 3 introduces its preorder and total preorder
versions. The section also presents a modality for describing the model after
all agents have upgraded their preferences according to the method, together
with recursion axioms for its axiomatisation. Section 4 explores ‘non public’
variations of the lexicographic upgrade operation, and Section 5 connects this
proposal with related works. Finally, Section 6 closes by summarizing the work
and discussing possible ways to extend it.

Within the text, proofs of propositions and theorems are sometimes only
sketched; in such cases, the formal proof can be found in the Appendix.

On preference change Despite the fact that diverse preference influence phe-
nomena have been studied extensively in the literature, not only in social and
behavioural sciences, but also in economics and in computer science (see Section
5), there might be still a conviction among some people that human preferences
ultimately do not change. In this respect, this paper’s best strategy is to re-
fer the interested reader to the discussion in Griine-Yanoff and Hansson [63].
But even if the reader remains skeptic about the preference-change idea, this
paper’s proposal might still be meaningful, as agent a’s revised “preferences’
can be also understood not as a’s ‘new” preferences but rather simply as some
preferences she decides to announce in order to keep the “discussion” ongoing.
Accordingly, the reliability ordering, singling out the agents whose preferences
a trusts the most, can be rather understood as a ‘pleaseability’ ordering, singling
out the agents a wants to please the most.

2 Basic definitions

Throughout this paper, let A be a finite non-empty set of agents with |A| = n. The
following is the basic definition of this framework: the structure representing
each agent’s relative preferences and reliability over, respectively, worlds (i.e.,
the available options) and one another.

Definition 2.1 (PR frame) A preference and reliability (PR) frame F is a tuple
(W, {<i, <i}iea) where

e W is a finite non-empty set of worlds;

o <; C (W x W) is a preorder (a reflexive and transitive relation), agent i’s
preference relation over worlds in W (1 <; v is read as “ for agent 7, world v
is at least as preferable as world u”);

e

e <; C (AXA)isapreorder, agent i’s reliability relation over agents in A (j <; j
is read as “ for agent i, agent j’ is at least as reliable as agent ;). )

In the context of aggregation and deliberation it is common to assume at
least two different agents; this proposal follows such assumption.

Here are further useful definitions. First, given any domain D, any element
d € D and any binary relation R C (D x D), the set [R)(d) contains those elements
in D that are R-reachable from d, that is,

[R)(d) := {e € D | Rde}



Then,

Definition 2.2 Let < C (W X W) be a preference relation (preorder) over W.

The relation < € (W x W), with u < v read as “u is less preferred than
v” (“v is more preferred than u” or, simply, “v is preferred over u”), is
defined as u < v iffr u <vand v £ u.

The relation ~ € (W x W), with u ~ v read as “u and v are comparable”,
is defined as u ~ v iffsr u < v or v < u.

The relation =~ € (W x W), with u ~ v read as “u and v are equally
preferred”, is defined as u ~ v iffsy u < v and v < u.

Then, one more definition. For any set U C W, the binary relation Idy €
(W x W) is the identity relation on U, that is, Idy := {(u,u) € (WX W) | u € U}.«

Definition 2.3 Let < C (A X A) be a reliability relation (preorder) over A.

The relation < C (A X A), with j < k read as “j is less reliable than k” (or as
“k is more reliable than j”), is defined as j < k iffs j <k and k £ j.

The relation = C (A X A), with j = k read as “j and k are comparable”, is
defined as j ~ k iffsr j <k or k<.

The relation = C (A X A), with j = k read as “j and k are equally reliable”,
is defined as j = kiff;r j <k and k< j.

The set Mnlx C A, containing those elements in A that are <-minimal,
is defined as Mnlg := {k € A| thereisnoj € A such that j <k}. As itis
well-known, when < is also total®, Mnlx actually contains those elements
in A that are <-minimum, i.e., those that are <-below all elements in
A (formally, Mnls = {ke A|forallje A, k< j}); in such case, Mnl< will
be denoted by Mnm<. If < is additionally antisymmetric’, then Mnmx
becomes a singleton whose single element will be denoted by mn«.

The set Mxl< C A, containing those elements in A that are <-maximal, is
defined as Mxl« := {k € A | there is no j € A such that k < j}. Similar to the
previous case, when < is also total, Mxl< actually contains those elements
in A that are <-maximum, i.e., those that are <-above all elements in
A (formally, Mxlx = {ke A|forallje A, j<k}); in such case, Mxl< will
be denoted by Mxm«. If < is additionally antisymmetric, then Mxm«
becomes a singleton, whose single element will be denoted by mx«.

A set B C A is an <-cluster when < is a maximal universal relation over B,
that is, when

(1) i < jforalli,j € B (or, in other words, the restriction of < to B is a
universal relation, < N (B X B) = B X B), and

(ii) for alli € A\ B, the set B U {i} does not satisfy the previous point (or,
in other words, B C B’ implies RN (B’ X B’) # B’ X B’). <

For every j,k € A, j < kor k < j (or both).
"For every jk € A, j <kand k < jimply j = k.



Example 2.1 The situation described in this work’s opening paragraph can be
represented by a PR frame in which the set of agents is A = {a,),c,d} and the
set of worlds is W = {w;, w,, w3} (with each world representing one movie).
Suppose the individual preferences are as described in the following diagrams,
with reflexive and transitive edges omitted.

wy ws O w1

Q i = o
O =
O/ \O 4 \O/ O/C;\O
w1 w3 wy O Wy wy w3
< <p <c <i

Observe how, for example, while w; and w3 are not comparable for a (w; +, w3),
the latter is more preferred than the former for b (w; <;, ws), they are equally
preferred for ¢ (w; =~ w3) and the former is more preferred than the later for 4
(w3 <4 wi). Moreover, suppose reliability is given as in the following diagrams
(again, omitting reflexive and transitive edges).
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Now observe how, for example, while cis less reliable than a for a herself (¢ <, a),
they are incomparable for b and d (c #; a and c #, a) but equally reliable for ¢
(¢ = a). Note also how Mxls, = Mxmy, = {d}, as ¥, is total. This is not the case
for 53, and thus Mxl¢, # Mxmg,, as Mxlg, = {b, ¢, d} but Mxm<, = @. Moreover,
while {b, ¢} is not a <,-cluster (its elements are not pairwise <,-equally reliable),
it is a <p-cluster; nevertheless, it is neither a <.-cluster (its elements are pairwise
<-equally reliable, but so are those of its strict super set {a, b, c}) nor a <;-cluster
(same reason as for <,). Finally, [<,)(b) = {b,d}, [<p)(b) = (b, c}, while [<:}(b) = @
and [<;)(b) = {a,d}. <

2.1 On preference and reliability

As mentioned earlier, this work models situations in which, after individual
preferences are announced, each agent changes her preferences according to
what has been announced and the relative reliability she assigns to all the agents
(including herself: she might consider herself as more reliable than some agents
but also as less reliable than some others).

In the defined frames, the agents’ preferences are represented by a binary
relation, a strategy used by several works in the formal study of preferences
(see, e.g., von Wright [105]; Arrow et al. [5, 6]; Griine-Yanoff and Hansson
[64]; Liu [88] and further references therein). Such relation is typically assumed
to be at least reflexive and transitive, as in this work. Thus, when presented



with options u and v, each agent i can give one of four answers: (i) she
prefers v over u, u <; v, (ii) she prefers u over v, v <; u, (iii) she considers
both equally preferable, u =~; v, or (iv) she considers them incomparable, u +; v
(i.e., she abstain from any judgement). Note how, since incomparability is
an option, maximum worlds (those that are at least as preferred as any other
element) might not exist; nevertheless, given the finiteness of the domain, there
are always maximals ones (those that are not less preferred than some other
element). An analogous statement is true for minimums and minimals.

The concept of reliability between agents requires a deeper discussion. It
is related to the notion of frust, which has been important within artificial
societies (e.g., Falcone et al. [44, 45]; Golbeck [55]), and for which there are
several proposals for its formal representation. It is worthwhile to discuss,
albeit briefly, how reliability as discussed here relates to trust.

Though there are proposals that define trust as an attitude of an agent who
believes that another agent has a given property [27; 33; 34; 43], a common
understanding of this concept is as “agent 7 trusts agent j’s judgement about
@” (called “trust on credibility” in Demolombe [33]). And, while there are
approaches that define trust in terms of other attitudes, as knowledge, beliefs,
intentions and goals (e.g., Demolombe [33]; Herzig et al. [70]), others define
it as a semantic primitive, typically by means of a neighbourhood function N :
W — ¢o(p(W)) that assigns, to every pair of agents i,j in every world w, a
set of sets of worlds N; j(w). In such frameworks, it is said that agent i trusts
agent j’s judgement about ¢ at world w if and only if the set of worlds in W
where ¢ holds is in Njj(w) [84].% The notion of trust is not represented with
normal modal semantics in order to avoid closure under logical consequence:
that agent i trusts agent j’s judgement about some formula does not imply that
i also trusts j on the formula’s logical consequences.

In contrast, reliability as discussed here is closer to the notion of trust of
Holliday [71], where it is understood as an ordering among sets of sources of
information (cf. the discussions in Cantwell [26]; Goldman [59]). One noticeable
difference between the more standard representation of trust (on credibility) and
what is called reliability here is then that the former parametrises trust with a
formula (which can be understood as a topic or area of expertise). Nevertheless,
the key distinction is that the latter does not yield absolute judgements (“i relies
on j’'s judgement [about ¢]”), but only comparative ones (“for i, agent k is at
least as reliable as agent j”). For the purposes of this work, such comparative
judgements will suffice, as the main goal is to describe the way the relative
reliability/trust in a collection of sources affects the way the information the
sources provide is assimilated.’

In this proposal, the reliability relation is asked to be a reflexive and tran-
sitive relation. As mentioned, these are the two natural requirements for an
ordering, but when the ordering is intended to represent some form of priority,
two other properties are frequently chosen: totality and antisymmetry. Asking

8Some variants deal with graded trust, as Demolombe and Liau [35]; Lorini and Demolombe
[90]; Lorini et al. [91].

9Note how it is also possible to define reliability relative to a particular topic by requiring a
relation <f1 for each agent i and each set of worlds U € W. Then, j <}l k can be understood as
“when discussing subject ¢, agent k is at least as reliable as agent j for agent i”, with ¢ a formula
that is true exactly in the worlds in U. This paper works with “plain’ reliability in order to not
deviate the attention from its main topic.



for these two extra properties would amount to force every agent to select,
among any pair of agents, a single most reliable one. This paper’s choice is,
instead, a more realistic setting that allows for any two agents not only to be
incomparable (as the relation does not need to be total) but also to be equally
reliable (as the relation does not need to be antisymmetric).

Finally, note how the approaches mentioned above as well as the present
one consider reliability/trust as a concept that is part of the system’s definition.
This is because, again, the aim is to understand how the announcement of the
agents’ preferences and the relative reliability/trust they assign to one another
affects individual preferences. There are, of course, other possibilities. For
example, one could understand reliability/trust as a concept that arises from the
system’s behaviour, using then the way the information is assimilated in order
to define the absolute/comparative trust in the sources. Such approach would
understand this notion not statically, but rather dynamically.

2.2 A formal language
Throughout this paper, let P be a countable set of atomic propositions.

Definition 2.4 (Language £) Formulas ¢,v (£f) and relational expressions
11,0 (L") of the language £ are given by

P Pu=TIlpljEikl-pleVi|(m)e
mou=1]<|2|p, )| —-n|nVUo|nNo

with p € P and i,j,k € A. Other propositional constants (L), other Boolean
connectives (A, =, &) and the dual modal universal operators [r] are defined
as usual ([rt] ¢ := = (m) ~¢ for the latter). Define also, for any relational ex-
pression 71, the modal operator 7t as 1. ¢ := [=1] ~¢. All these abbreviations
will simplify both the writing of formulas and the presentation of the axiom
system. |

The set of formulas of £ contains the always true formula (T), atomic
propositions (p) and formulas for describing the agents’ reliability relations
(j i k), and it is closed under negation (—), disjunction (V) and modal operators
of the form (7r) with 7 a relational expression. The set of relational expressions
contains the constant 1 (the global relation, as it will follow from its semantic
definition), the preference relations (<;) and their respective converse (>;; Prior
[96]; Burgess [25]; Goldblatt [57]) and an additional construction of the form
?(p, ) with ¢ and ¢ formulas of the language [52], and it is closed under
Boolean operations over relations (the so-called Boolean modal logic; Gargov and
Passy [50]; Lutz and Sattler [92]).

The following two definitions establish what a model is and how formulas
of L are interpreted over them.

Definition 2.5 (PR model) A PR model Mis a tuple (F, V) where Fis a PR frame
and V : P — o(W) is a valuation function. The domain of a model M will be
denoted sometimes as Dy;. <

Definition 2.6 (Semantic interpretation) For the semantic interpretation, let
M = (W,{<;,<i}iea, V) be a PR model. The function [-]" : £f — o(W), from



formulas in £ to subsets of W, and the function {-Y : £ — p(W x W), from
relational expressions in £ to binary relations over W, are defined inductively
and simultaneously in the following way:.

[T :=w okM=[w ifj<ik
I[P]]M = V(p) @ otherwise
[-¢1" = W\ [o]"
[ovyl" = [o]" v [y]"
[y @l = {w e W | (o) 0 [9]" # @}

with n)M the set of worlds reachable from w via {n)",'* and

(M :=WxWw (=M = (W x W)\ gry
(< =< (ruoyM = (™ u oy
Y ={ou) e WxW) lu<io)  {rnnoy = (r* n oy

2@, W o= [l x [y

Note, in particular, how {?(¢, 1/))))M is the set of those pairs (u,v) € (W X W)
such that u satisfies ¢ and v satisfies 1.!! Asusual, a formula ¢ is true at world
w in model M when w € [¢]", and it is true at M when [@]" = Dy As usual,
@ is valid when [@]" = Dy for every model M. <

As a consequence of the previous definition,

w o if[e]" 2o
@ otherwise

[l = {
and hence (1) is the global existential modality. Moreover,

[rlel = {wew [y c o]}, [Te]" = {wew| Lol c (nyt)

Thus, while [rt] is a standard universal modality for the relation ()M, the
modality E is the window operator [58; 20; 51].

On the language’s operators First, note how reliability formulas j E; k can be
combined with Boolean operators to express more complex reliability relations:

e (j=ik)=(GThAKE) e (jTik)=(GEkA-KkE )
o (jEF k) =-(j=k) o (jABKk):==(GCik)A-KET )

Similarly, with relational expressions it is possible to define modalities for
relations that can be defined from <; (see Definition 2.2). For example,

OFormally, (™ := [{ryM)(w).
HCompare (?(¢, zp)))M with the relation ((?(p))M ={(w,u) e WxW)|ue ][(p]]M} for the tradi-
tional PDL test operation ?¢ [69].

10



o Fii=—2; o < i=5iNY o i :=<N2
o £:=—% e > :=%£iN2
and hence
e Do =(=2pDop o (<N :=(NEHo o (=)o =(N2)@
o (Lnp:=(-<pDo o CGnp:=({L&iNnz)o

Moreover, the operator ?(¢, 1) allows the construction of relations connect-
ing worlds that satisfy the specified formulas. All these relations, modalities
and formulas will be useful not only for describing the agents’ preferences and
reliabilities, but also for simplifying formulas and also for providing axioms
for the lexicographic upgrade operation to be introduced in Subsection 3.3.

Example 2.2 Consider the frame described in Example 2.1; let P = {p;, p2, p3} be
the set of atomic propositions, and take a valuation V such that

V(p1) == {w1}, V(p2) == {wa}, V(p3) := {ws}

(i.e., each p; represents the movie 7). The language .L can be used to describe the
situation. For example, the following formulas are true at the model, as each
one of them is true in all the model’s worlds:

e py» — [<,] L: world w; is one of a’s maximals.
o [1](<,) p2: world w; is one of a’s maximums.

e p3 © [<p]L: world ws is b’s unique maximal (and, as <, is total and
antisymmetric, it is also her unique maximum).

e p» — [>.] L: world w; is one of ¢’s minimals.

o ((p2Vp3) & [>al L) A (p2 = (=) p3): worlds w, and w3 are d’s minimals,
and she considers them are equally preferred.

o (cCh,a)A(c @y a)A(c =ca)A(c By a): each agent’s opinion about the
relative reliability of a and c. <«

Digression: from preference over objects to preference over properties A
PR frame represents the agents’ preferences over worlds. Such preference
over objects can be lifted to an ordering over sets of such objects (i.e., an
ordering over object’s properties) in different ways, as it has been discussed by
economic theorists (the standard reference is Barbera et al. [14]) and by logicians
[18; 54; 19; 88]. For example, one can say that the set of objects satisfying the
property ¥ (the set of y-objects) is at least as preferable as the set of objects
satisfying the property ¢ (the set of g-objects) when there is a y-object that
the original ordering considers at least as preferable as some ¢@-object (a 33
preference of 1 over ¢; see below). But one can be more drastic and say that the
set of 1-objects is at least as preferable as the set of p-ones when the original
ordering considers every 1p-object at least as preferable as every g-one (a VYV
preference of 1 over ¢). In general, the quantification combination gives raise
to the following possibilities:
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o <MY iffyy  thereis a p-object w and there is a y-object u such that w < u
<Ay iff df for every g-object w there is a i-object u such that w < u

o <y iffyy  there is a p-object w such that w < u for every ip-object u

o) < Y iffgr  w < u for every g-object w and every -object u

which, by using a first-order language and indexing the original preference
relation over objects, can be also defined as

o<y ffyy T (p@) A up) Aw < w)

e<y  iffyy Vo (p@) - Jup) Aw <)

@ S?V P iffzer Elw.((p(w) AVu.(Pp(u) - w <; u))

@ S;"V W iffer Vw.((p(w) - Yu.(pu) - w <; u))

The language L is expressive enough to define formulas depicting such
orderings. The first two cases, taken from the aforementioned references, are
straightforward: besides the global modalities, they only require modalities for
the agent’s preference relation.

Proposition 2.1 Let M = (W, {<;, <i}iea , V) be a PR model. Then,
o @API" =W iff o<y

o [[lg =PIV =W iff o<y
Proof. See the Appendix (page 35). -

Thanks to the defined relational operators (in particular, thanks to the ex-
istence of modalities for <; and >;), the remaining cases can be also expressed
within £ with a caveat: both ¢ <?* ¢ and ¢ <Y ¢ imply that the original
preference over objects is total, as the first requires for every y-object to be <;-
reachable from the given ¢-one, and the second requires for every y-object to
be <;-reachable from every ¢-one. Thus, one possibility is simply to assume
that indeed the given PR model is based on a frame in which every preference
relation is total.

Proposition 2.2 Let M = (W, {<;, <i}iea , V) be a PR model in which each <; is a total
preorder. Then,

o [(W@A>1-YI" =W iff o<y
o [ - [<1-I" =W iff o<y
Proof. See the Appendix (page 35). -

Another alternative is to modify the definitions of <?* and <" to make
them suitable for the more general case of non-total preference relations.

Proposition 2.3 Let M = (W, (<, <i}iea, V) be a PR model. Define

o<y iy Fw(e@) A V(@) Aw ~ 1) - w < u))
® g;"\’" Y zﬁ‘def Vw.((p(w) S Vu((u)Aw~ju) - ws; M))
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Then,
o (W@ A>I-VIM=W iff ¢ <M

« M@= <=l =W if ¢</"y
Proof. See the Appendix (page 36). ]

Axiom system Here is an axiom system characterising formulas of £ valid in
PR models [52].

Theorem 1 Table 1 provides a sound and complete axiom system (with i any agent
and T any relational expression) for L with respect to PR models.

Proof. The first five blocks of the table are known to be sound and complete for
the fragment of the language they take care of: (i) axioms and rules in the first
block take care of propositional validities; (ii) those in the second establish that
every modality is normal; (iii) axioms in the third state that <; is a reflexive
and transitive relation; (v) those in the fourth establish that >; is the converse
of <; [96; 25]; (v) axioms and rules of the fifth characterise validities involving
Boolean relational operations [50], with (?) the axiom for the relational test
operator [52]. Showing that axioms in the sixth block characterise reflexivity
and transitivity for the relations < is straightforward. ]

F ¢ for every propositional tautology ¢ From+ g and + ¢ — ¢ infer + ¢

Fnllp = ) = ([rle = [1]Y) (K,) From + @ infer + [1] ¢ (N,)

Fop— (<)o (T HEN (D= (S (4<)
Fo = [Silzhe (Conls) ko - [2](<He (Con2.)
Fop—=(Le (Te) Do —->De (4¢)
Fe—-[1ILe (5¢)

1l & ([nlo AT =) (1)  F1T (1)
QWL 2@ o (1 A D@2 A @) (?)
=l o =g (-)  Flrd=p o - (=)
F(mUayp & (M) e V(o)) (V) FmNno @H(E@Az(p) (n)

From+ [t]¢ — ([l — [ple) infer +[n]¢p — (E —p = E —wp) (BR)

FjCij foreveryagentj (reflexivity)

F(E kAKC ) > jC; ¢ forall agents jk, ¢ (transitivity)

Table 1: Axiom system for L. w.r.t. PR models.
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3 Preference dynamics via lexicographic upgrade

In collective decision scenarios, a public announcement of the agents’ indi-
vidual preferences might induce each agent to change her own preferences
according to what has been announced and the reliability ordering she assigns
to the set of agents. As mentioned in the Introduction, this section studies a par-
ticular method for performing this change: the lexicographic method. The study
is carried out in different phases, according to the properties of the reliability
ordering that defines the priority of the preferences to be aggregated.

3.1 Reliability as a total order

Suppose the reliability relation, the one defining the priority of the preference
orderings to be aggregated, is a total order (a total, reflexive, transitive and
antisymmetric relation). In such cases, any preference orderings <’ and <”
can be compared, and one of them will be strictly more reliable than the other.
In such cases, the result of the preferences’ lexicographic aggregation can be
defined in the following way.

Definition 3.1 (Lexicographic upgrade, total order version) Let {<;};c, be a fi-
nite collection of binary preference orderings over a domain W; let < C (A X A)
be a total order over A and recall that, in such cases, < has a unique minimum
mny. The preference ordering << C (W x W) is defined as

=< =

u << v iffyy (usmngv/\ /\ uziv)v \/ (u<]-v/\ /\ uzkv)

ieA\{mng} jeA\{mn<} kel<)(j)

1 2

Thus, u << v holds if this agrees with the least prioritised ordering (<mn.) and
for the rest of them u and v are equally preferred (part 1), or if there is an
ordering <; with a strict preference for v over u and all orderings with strictly
higher priority (those with indexes in [<)(j)) see u and v as equally preferred
(part 2). <

As the reliability ordering is a total order, the effect of a lexicographic up-
grade can be summarised in a single sentence: the preference ordering with the
highest priority is taken as the starting point, and the rest of the orderings are
used, hierarchically, to ‘break ties” between equally preferred worlds.

In Ghosh and Veldzquez-Quesada [53] the authors define a similar oper-
ation, called general lexicographic upgrade (glu), and used for situations in
which the reliability relation is a total order. In a glu, both the preference or-
derings to be aggregated and the priority ordering with which the aggregation
will take place are given by what is called a lexicographic list. Using such list
allows the glu to represent other natural lexicographic upgrades, as those that
arise when the preferences of some agents in A are not used for building up the
new preference ordering.!?> The just defined lexicographic upgrade is in fact
an instance of this glu in which the lexicographic list is given directly by the
agent’s reliability relation.

120ne example is the mentioned situation in which the agent adopts directly the preference or-
dering of her most reliable agent. For other examples, see Definitions 7-10 of Ghosh and Veldzquez-
Quesada [53]. See also Subsection 4.1 for such variations within this framework.
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Example 3.1 Consider the preference relations <,, <, and <, from Example 2.1
(<, slightly modified), shown below on the left, and consider the application of
the lexicographic upgrade of Definition 3.1 following the reliability ordering <
shown below on the center.

w, w3 CTD w, ws (? w3 CTD
Q 0=0
/N Q N/ ® Q
O— i o i i
w, ws3 w, O wy @ wy O
Sa Sb SC < S<

The resulting preference ordering, <<, appears above on the right. Following
the discussion, it can be seen as the result of refining the preference ordering
with the highest priority, <., by using the preference ordering with the second
highest priority, <;. Since the use of the two topmost preference orderings
already makes the resulting relation << antisymmetric, the preference ordering
with the lowest priority, <,, is never consulted. <

3.2 Reliability as a partial order: lexicographic rule

Suppose now that the reliability relation is a partial order (a reflexive, transitive
and antisymmetric relation). In such cases, two given preference orderings
might not be comparable, but if they are, one of them will be strictly more
reliable than the other. In such cases, one can rely on the lexicographic rule of
Andréka et al. [2]. Using this paper’s notation, the rule is defined as follows.

Definition 3.2 (Lexicographic rule (cf. Andréka et al. [2])) Let {<;};cy be a fi-
nite collection of binary preference orderings over a domain W; let < be a
partial order over A.!> The preference ordering < C (W x W) is defined as

u SZ v iffer /\(u <oV \/ u<; v)

i€A jel=<)()
N—— ———
1 2

Thus, u < v holds if and only if every agent in A agrees with this, or else for
every agent who does not agree there is an agent with both a higher priority

and a strict preference for v over u. <«

This lexicographic rule, which requires for < to be a partial order, looks
different from the lexicographic upgrade of Definition 3.1 for cases in which
< is a total order. Nevertheless, as Proposition 3.1 below shows, the two are
equivalent when the priority ordering is a finite total order.

Proposition 3.1 Let {<;};c, be a finite collection of binary preference orderings over a
domain W; let < be a total order over A. Then, for all u,v € W,

; Ir
U< iff u<lvo

13While in Andréka et al. [2] this definition (Definition 2.3 on page 18) allows the collection of
preference orderings to be infinite, here the finite set A is used. Also, in Andréka et al. [2] the
orderings to be aggregated are not required to satisfy any property.
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Proof. Here is a sketch; for the formal proof, see the Appendix (page 36).

From left to right, u << v is given by a disjunction (Definition 3.1). If the
first disjunct holds, all agents in A consider v at least as preferable as u, and
hence every element of A satisfies part 1 of Definition 3.2. If the second disjunct
holds, there is j € A with a strict preference for v over u and with all orderings
with higher priority seeing u and v as equally preferred. Hence, while those
elements of A lying <-below j satisfy part 2, j and those <-above it satisfy part
1. Since < is a total order, the previous sentence deals with all elements of 4,
and hence u < v

From rlght to left assume u < v. According to Definition 3.2, every agent
either considers v at least as preferable as u, or else can <-see a more reliable
agent with a strict preference of v over u. Suppose every agent considers v
at least as preferable as u; if, additionally, every agent in A \ {mn<} considers
u at least as preferable as v then, by part 1 of Definition 3.1, u << v. If the
additional assumption fails, then there is at least an agent in A\ {mn<} who does
not consider u at least as plausible as v. Given A’s finiteness and <’s properties,
among such agents there is a single one with the highest priority, and she
satisfies the requirements in part 2 of Definition 3.1; hence, u << v. Suppose
now otherwise, i.e., suppose u <; v does not hold for all i € A; then there is
at least one element in A which does not consider v as at least as plausible as
u. Let j be, among such agents, the one with the highest priority, so agents
<-above j consider v at least as plausible as #. From Definition 3.2, there should
be at least one agent with higher priority that prefers v strictly over u; let j
be, among such agents, the one with the highest priority, so agents <-above j’
do not prefer v strictly over u. But such agents are also <-above j; then, they
consider v and u equally preferable, and therefore j* satisfies the requirements
of part 2 of Definition 3.1; hence, u << v. [ |

Example 3.2 Consider the preference relations <,, <, and <. from Example 3.1,
shown below on the left. Consider now the application of the lexicographic
upgrade of Definition 3.2 with the reliability ordering < shown below on the
center.

[ w3 O wy w3 Wy w3
Q | <0 @ ® Q O
N (OR
g0 ! 4 <I> 4
wy w3 w1 O wy w1
<a Sb <c < §<

The resulting preference ordering, <<, appears above on the right. Note how
there is an edge from w; to w3 because all preference orderings agree with this
(e, w1 <4 w3, w1 <p ws, w1 <, w3). On the other hand, there is an edge from
wj to wy because (i) a agrees, (ii) b agrees and (7ii) while ¢ does not agree, there
is someone with a strictly higher priority than that of ¢ (namely, 2) who places
wy strictly below w,. There are no further edges (besides the reflexive ones)
because either a or b does not agree with them, and none of them has someone
with a strictly higher priority overruling her. )
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3.3 Reliability as a preorder

In Definition 3.2, the priority ordering is assumed to be a partial order, i.e., a
reflexive, transitive and antisymmetric relation. Thus, even though this allows
for two different agents to be incomparable, it does not allow for them to have
equal priority. Since the reliability relations in a PR frame allow equal reliability
(as antisymmetry is not required), the main focus of the present work will be
the following generalisation.

Definition 3.3 (Lexicographic upgrade, preorder version) Let {<;};c, be a fi-
nite collection of binary preference orderings over a domain W; let < be a
preorder over A. The relation < C (W x W) is defined as

=< =

21 22 23
u << v iffg /\(uéiv\/ \/ (/\jlgjz/\ /\\/j%k/\/\uqv))
ieA BCI<)(i)  ji,j2€B keA\B jeB jeB
——
1 2

According to this definition, u << v holds if and only if every agent in A agrees
with this relative position between u and v (part 1), or else for every agent who
does not agree there is a non-empty <-cluster B containing agents with higher
priority for whom v is preferred over u (part 2). <«

The generalisation takes place in part 2. According to Definition 3.2, in order
for u <" v to hold, for every agent i who does not consider v at least as plausible
as u there should be an agent j with higher priority (j € [<)(i)) for whom v is
preferred over u (u <; v). But in Definition 3.3 the reliability ordering is just a
preorder, so besides incomparable agents there might be also sets containing
different but equally reliable agents. Thus, in order for u << v to hold, for every
agent i who does not consider v at least as plausible as u there should be a
set of agents B, with all its members equally reliable (ji, j» € B implies j; = jp;
part 2.1) and no other equally reliable agent being left out (for every k € A\ B
there is a j € B such that j # k, from which it also follows that B is non-empty;
part 2.2) —that is, a cluster— such that all agents in B have higher priority than
i (B C [<)(i)) and all of them agree in that v is preferred over u (u <; v for all
j € B; part 2.3). Of course, a different alternative for a generalisation is to stick
with Definition 3.2, asking for the existence of just a single agent with higher
priority who places v above u. This proposal’s choice, to ask for the existence
of a cluster with higher priority whose agents all place v above u, emphasises
the fact that all agents in a cluster have the same priority, and thus in order for
them to make a ‘final” decision, they all should agree in their opinion.

This lexicographic upgrade for preorders is indeed a generalisation of the
lexicographic rule (for partial orders): when < is antisymmetric, the cluster B
is forced to have at most one element (part 2.1) and to be non-empty (part 2.2),
and therefore Definition 3.3 boils down to Definition 3.2. Formally,

Proposition 3.2 Let {<;};c, be a finite collection of binary preference orderings over a
domain W; let < be a partial order over A. Then, forallu,v e W,

u<hro iff u<<wv
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Proof. From left to right, if i satisfies part 1 of Definition 3.2, then it satisfies part
1 of Definition 3.3, and if it satisfies part 2 of Definition 3.2, then the required
j defines a set {j} which, by <’s reflexivity and antisymmetry, is a <-cluster
satisfying part 2 of Definition 3.3. Hence, u << v. From right to left, if i satisfies
part 1 of Definition 3.3, then it satisfies part 1 of Definition 3.2, and if it satisfies
part 2 of Definition 3.3, then from <’s antisymmetry the required <-cluster
B must be a singleton whose single element satisfies part 2 of Definition 3.2.
Hence, u <" v. For the formal details, see the Appendix (page 37). ]

Example 3.3 Consider the preference relations <,;, <, and <, from Example
3.1, shown below to the right. Consider the application of the lexicographic
upgrade of Definition 3.3 with the reliability ordering shown below to the left.

wy w3 O w1 w3 w3
Q | Q=0 —0) Q
N Q » N
=0 ] 4 @ ¢ o
w1 w3 wy O wy w1 Wy
<a <b <c < Sg

The resulting preference ordering, <, appears above on the right. Again, there
is an edge from w; to w3 because all preference orderings agree with this. On
the other hand, there is an edge from w, to w3 because b and c agree with this
and, moreover, the fact that a does not agree is overruled by the opinion of all
the members of the <-cluster {b, ¢}, which lies <-above a. <

Some properties Here are some interesting properties of this lexicographic
upgrade (and thus all the others it generalises). The first is that it respects
unanimity about the relative position of any pair of worlds.

Proposition 3.3 Let {<;};c, be a finite collection of binary preference orderings over a
domain W, and let < be a preorder over A. Take any u,vin W.

(@) Ifu=~;vforallieA, then u ~¢v.
(i) Ifu <;vforalli€ A, then u << v.
(iii) Ifu +; v foralli€ A, then u +< v. ]

On the other hand, unanimity on the ‘comparability” relation ~ is not pre-
served: evenif u and v are comparable for all agents in A, the reliability ordering
< might divide A into two disconnected regions with different opinions with
respect to 1 and v’s relative position (e.g., one of them a singleton whose ele-
ment prefers u over v, and the other a singleton whose element prefers v over
u). In such case, neither u << v nor v << u will hold. Still, comparability can be
preserved when the reliability ordering satisfies extra requirements, as shown
below when discussing the preservation of totality.

More important for this paper’s purposes, the lexicographic upgrade pre-
serves reflexivity and transitivity from the preference orderings.
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Proposition 3.4 Let {<;};c, be a finite collection of binary preference orderings over a
domain W; let < be a preorder over A. If every <; is reflexive (transitive), then so is
<<. | |

What about antisymmetry and totality, the two other properties typically
required for relations representing orderings? For antisymmetry, the answer is
straightforward: thanks to A’s finiteness, such property is indeed preserved.

Proposition 3.5 Let {<;};c, be a finite collection of binary preference orderings over a
domain W, let < be a preorder over A. If every <; is antisymmetric, then so is <<. W

The fact that antisymmetry is preserved relies on A’s converse well-found-
edness, a consequence of its finiteness: if an infinite <-ascending chain of
<-clusters were possible (e.g., i1 < iy < ...), then while for every i € A with
u <; v there might be an i’ strictly <-above i such that v <; u, for every i’ € A
with v <; u there might be an i strictly <-above i’ such that u <; v (e.g., u <;, v
for ¢ odd, and v <;, u for € even). In such case, u << v and v << u would both
hold, even if u and v are different.

For totality, the answer is more elaborate. First, as it has been mentioned,
the lexicographic upgrade does not respect unanimity on comparability; thus,
it does not preserve totality. Moreover, assuming that < is a total preorder is
not enough. Take any pair u, v, and suppose not only that the single element
of every singleton cluster considers u and v equally preferable, but also that
all remaining (i.e. all non-singleton) clusters are ‘not unanimous’, i.e., each
contains at least one element preferring u over v and one preferring v over u. If
there is at least one non-singleton cluster, then neither u << v nor v << u holds:
there is at least one agent i € A (in the non-singleton cluster) for which u £; v
and there is no cluster whose elements all agree on u < v, so u £< v, and there
is at least one agent i € A (in the non-singleton cluster) for which v £; u and
there is no cluster whose elements all agree on v < 1, so v £ u.

When looking for conditions guaranteeing that totality is preserved, the
work of Andréka et al. [2] is helpful once again: as it is shown in its Theorem
4.1, the lexicographic rule of Definition 3.2 preserves totality when the reliability
‘priority” relation is also total. Hence, as such upgrade is the particular case
of the lexicographic upgrade in which < is antisymmetric (Proposition 3.2), it
follows that the lexicographic upgrade of Definition 3.3 preserves totality when
< is both total and antisymmetric. Indeed, when < is antisymmetric, every cluster
is a singleton, and therefore it has a single ‘unanimous’ opinion about u and
v’s relative position. This forbids situations as those described in the previous
paragraph, as if the single element of every singleton cluster (i.e., every agent)
considers u and v equally preferable, there is unanimity on both u < v and
v < u, and thus both u <4 v and v << u hold. If, on the other hand, there is a
cluster whose element prefers either u or else v above the other, simply pick,
among such clusters, the one with the highest priority (which exists, as < is
both total and antisymmetric): its single element will make the final decision if
unanimity fails, making then either u << v or else v << u true.

Finally, below there is a slightly different (but clearly equivalent) alternative
for formulating the definition of the lexicographic upgrade for preorders; it
will be useful when providing an axiom system for the operation’s associated
dynamic modality. First, a couple of useful abbreviations.
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Definition 3.4 Let {<;},c4 be a finite collection of binary preference orderings
over a domain W; let < be a preorder over A and take B C A.

e The set C’. contains those non-empty <-clusters in A that lie <-above i € A:
CL :={BCA|Bisa <-cluster withB # @ and j € B implies i < j}

e The relation <g C (W X W) is the intersection of all the relations <; with
jEB:

<g :ﬂ<]

Note how this is niof equivalent to define <z as (5 <;and then, following
Definition 2.3, define <g as <z N #5.14 <

Then, the definition.

Definition 3.5 (Lexicographic upgrade, alternative definition) Let {<;};c, be a
finite collection of binary preference orderings over a domain W; let < be a
preorder over A. The relation << € (W x W) is defined as

=< =

<=M )

i€A BeCL <

Frame and model operations When the reliability ordering < is a preorder
and the preference orderings in {<;};c, are preorders, the resulting (preference)
ordering << is also a preorder (Proposition 3.4). Thus, consider any PR frame
(W, {<i, <i}ica): if each agent i upgrades her own preference ordering <; using
her own reliability ordering <;, the resulting structure (W, {</, <i}ica), with each
<; given by <, is a PR frame too, as both its reliability and its preference
relations are preorders. Here is the formal definition of the new structure.

Definition 3.6 (Frame and model operations) Let F = (W, {<;, <;};ca) be a PR
frame; let M = (F, V) be a PR model. The PR frame Fy,, differing from F only in
the agents’ preference relations, is the result of upgrading the preferences of all
agents according to the lexicographic upgrade (Definition 3.3) and each agent’s
reliability relation. Formally, Fix = (W, {<!, <i}ica) is such that, for every i € A,

S; = S<i
Accordingly, the model My is formally defined as Mjx = (Fix, V). <

Naturally, it is also possible to define frame/model operation in which the
lexicographic upgrade is applied to the preference ordering of a single given
agent (but see Subsection 4.1 for an alternative representation of such situa-
tions).

For a simple counterexample, suppose the described definitions and take W := {w, u} with
<1:=WXxWand <5 := <1\ {(t, w)}). Then, <1= @ and <;= {(w, u)}, and therefore <1 N <; = @, but
nevertheless <1 N <, = <5 and thus (<1 N <3)’s strict relation is <y, that is, {(w, u)}.
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Caveat The lexicographic policy is not the only ‘reasonable’ policy an agent
can use for upgrading her preferences. For example, an agent a can upgrade
her preferences by placing her most reliable agent’s most preferred worlds
above the rest, then using her old ordering within each zone. This upgrade,
called lexicographic in Rott [98]; van Benthem [15] and conservative in Ghosh and
Veldzquez-Quesada [52], has been shown in Ghosh and Veldzquez-Quesada
[53] not to be an instance of their glu (which is ‘equivalent’ to the lexicographic
upgrade of Definition 3.1 for totally ordered reliability relations), as there are
cases in which the output of the former cannot be reproduced by any instance of
the latter. The example below shows how this conservative upgrade is neither
an instance of the more general lexicographic upgrade (Definition 3.3) that is
central to this proposal.

Example 3.4 Suppose agent a is agent b’s most reliable agent, b <; 4, and their
individual preferences are as below (reflexive and transitive arrows omitted).

w1 O w3
w, O—>O/¢ eom
N o w3 O—)O—)O—)O wy
b <p

A conservative upgrade on b’s preferences will create two zones, the upper
one with a’s most preferred worlds (w3 and wy), and the lower one with the
remaining worlds (w; and w,). Within each zone, b’s old preferences will
apply, thus placing w; strictly above w, and w, strictly above w,. The resulting
ordering sé is, then,

wy w3
wi O—=>O—=>0O—>0) v
<

Clearly, a direct application of the lexicographic upgrade will produce a
different outcome, as w, <<, w; because not only w, <, w; but also the <;-
cluster {a} lies <,-above b and satisfies w, <, wi. Moreover, <’ cannot be
recreated, even if the reliability ordering changes: (i) both a #;, b and a =, b fail
as, in such case, wy £, w; because agent ais such that w; £, w, and there are no
cluster of agents <,-above g; (ii) a <, b fails as, in such case, wy <<, w; because
not only there is a <-cluster {b} lying <;-above a and satisfying w, <, w;, but
also wy <p wy. <

The conservative upgrade is not lexicographic: it does not create a prefer-
ence ordering following a priority list of orderings. Instead, it uses a partition
of the domain to create an ordered collection of ‘clusters’, using then a default
ordering to sort the worlds within each ‘cluster’. When working with pref-
erence relations that are total preorders and reliability relations that are total
orders, this conservative upgrade and the glu are shown to be instances of the
general layered upgrade [52]. Nevertheless, such operation lacks some desirable
properties, the most important one being the preservation of unanimous pref-
erences. Thus, under such upgrade policy, a reached ‘full agreement’ can be
broken when “further discussion” is allowed.
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3.4 Coda: reliability as a total preorder

For the sake of completeness, this subsection provides an alternative definition
of the lexicographic upgrade for those cases in which the reliability ordering is
a total preorder (i.e., a total, reflexive and transitive relation), and thus although
there might be different agents with the same priority, each one of them is
comparable to any other.

Proposition 3.6 Let {<;};c, be a finite collection of binary preference orderings over a
domain W; let < be a total preorder over A. Define the sets

C< ;= {B C A|B isa <-cluster withB # @}
CE®:={B' €C<| forall jeBand j €B, j < j'}

so C is the set of non-empty <-clusters in A and, given B C A, C% is the set of all
<-clusters in A lying <-above all elements of B. Then,

U< iff /\usivv \/(/\u<ij /\/\usjvv)

feA BeC<  jeB B'cCE j'eB’
N—

1 2

Proof. The statement says that u << v if and only if either all agents in A
consider v at least as preferable as u, or else there is a non-empty cluster of
agents B whose elements place v above u, with every element of every cluster
with higher priority considering v at least as preferable as 1. From left to right,
if all agents satisfy part 1 of <’s definition, then part 1 of the statement’s right-
hand side holds. Otherwise, for each i with u £; v there is a non-empty <-cluster
lying <-above i whose agents put all v above u. Since < is total and A is finite,
among all such clusters it is possible to select the one with higher priority, B,
which satisfies the requirements on part 2 of the statement’s right-hand side.
From right to left, if part 1 holds, then clearly, u << v. Otherwise, part 2 holds;
let B be such <-cluster, and consider any agent i € A. If i is in B or in a cluster
above B, then it is satisfies part 1 of <<’s definition; otherwise, it is in a cluster
below B, but then B itself is the needed <-cluster required by part 2 of <.’s
definition. Thus, u << v. For the formal details, see the Appendix (page 40). m

The advantage of this definition is that it is not given as a disjunction
that each agent in A should satisfy, but rather as a disjunction that asks for
either unanimity or otherwise the existence of a cluster that, when there is no
unanimity, has the ‘last word’.

Addendum If the reader started by looking at the definition of the lexico-
graphic upgrade for the total order case (Definition 3.1), and then asked to
provide a definition for the total preorder case, she/he might have suggested
the following:

(/\ u<s;ov A /\ uziv) \Y \/ (/\u<jv A /\/\uz]vv)

ieEMnmy i€A\Mnm. BeCMm<  jeB B'eCE j'eB’

<

1 2

This alternative asks for either all non-minimum agents to consider # and v
equally preferred and all minimum agents to consider v at least as preferred as u
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(part 1), or else the existence of a cluster above the bottom whose elements have
strict preference for v over 1, and with all agents above such cluster seeing both
worlds as equally preferred. This alternative indeed is closer to the definition
for the total order case, but nevertheless it is not equivalent to the definition for
the total preorder case provided above (Proposition 3.6).

Fact 3.1 Consider three agents, a (total preorder) reliability ordering and two worlds
u,v such that

Under the equivalence stated in Proposition 3.6, u < v is the case, as u < v holds
for all agents, and therefore part 1 holds. However, under the alternative provided just
above, u £< v: part 1 fails because u = v is not the case for all non-minimum agents
(in particular, it is not the case for c), and part 2 fails because the unique cluster whose
elements all agree on u < v, {a}, is not above the bottom. [ |

In order to confirm that Proposition 3.6 truly provides the total preorder
version of the lexicographic upgrades that have been defined so far, the fol-
lowing proposition shows how, when the reliability ordering is a total order,
the “definition” on Proposition 3.6 (TP) and Definition 3.1 (TO) are, indeed,
equivalent.

Proposition 3.7 Let {<;};c, be a finite collection of binary preference orderings over a
domain W. Let < be a total order over A and thus, by Propositions 3.2 (equivalence
for the partial order case) and 3.1 (equivalence for the total order case), take << as in
Definition 3.1. Then,

U< iff /\ugivv \/(/\u<]-v/\ /\/\usj/v)
ieA BeC<  jeB B’eCE j'eB’

—_————
TP-1

TP-2
Proof. From right to left. Suppose TP-1 holds, so all agents are such that u < v.
If, additionally, all agents are such that v < u, then all agents are such that
u = v, and hence part 1 of Definition 3.1 (TO-1) holds. Otherwise, let j be the
<-maximum (recall: < i