
Time Constraints in
Mixed Multi-unit Combinatorial Auctions

Andreas Witzel1? and Ulle Endriss2

1 CIMS, New York University, USA
2 ILLC, University of Amsterdam, Netherlands

Abstract. We extend the framework of mixed multi-unit combinatorial auctions
to include time constraints, present an expressive bidding language, and show
how to solve the winner determination problem for such auctions using integer
programming. Mixed multi-unit combinatorial auctions are auctions where bidders
can offer combinations of transformations of goods rather than just simple goods.
This model has great potential for applications in the context of supply chain
formation, which is further enhanced by the integration of time constraints. We
consider different kinds of time constraints: they may be based on either time
points or intervals, they may determine a relative ordering of transformations, they
may relate transformations to absolute time points, and they may constrain the
duration of transformations.

1 Introduction

Cerquides et al. [2] have proposed an extension of the standard combinatorial auction
model, called mixed multi-unit combinatorial auctions (or simply mixed auctions).
In a mixed auction, bidders can offer transformations, consisting of a set of input goods
and a set of output goods, rather than just plain goods. Bidding for such a transformation
means declaring that one is willing to deliver the specified output goods after having
received the input goods, for the price specified by the bid. Solving a mixed auction
means choosing a sequence of transformations that satisfies the constraints encoded by
the bids, that produces the goods required by the auctioneer from those he holds initially,
and that maximizes the amount of money collected from the bidders (or minimizes
the amount paid out by the auctioneer). Mixed auctions extend several other types of
combinatorial auctions: direct auctions, reverse auctions, and combinatorial exchanges.
A promising application is supply chain formation.

We propose extending the framework of mixed auctions by allowing bidders to
specify constraints regarding the times at which they perform the transformations offered
in their bids. The motivation for this extension is that, in a complex economy, the bidders
(service providers) themselves may need services from others and have their own supply
chains, so the bidders may have preferences over the timing of transformations and over
their relative ordering. A notion of time is already implicit in the original framework as

? Most work was done at ILLC on a GLoRiClass fellowship funded by the European Commission
(Early Stage Research Training Mono-Host Fellowship MEST-CT-2005-020841).

far as the auctioneer is concerned, who builds a sequence of transformations, but this is
not the case for the bidders. In this work we seek to redress this imbalance.

Our contribution covers four types of time constraints:
– Relative time points: associate each transformation with a time point and allow

bidders to express constraints regarding their relative ordering, e.g., transformation
X must be executed before Y .

– Absolute time points: additionally allow references to absolute time, e.g., execute X
at time 15, or at most 3 time units after Y .

– Intervals: associate transformations with intervals and specify constraints, e.g., X
must be executed during Y .

– Intervals with absolute durations: allow intervals with absolute time, e.g., X should
take at least 5 time units.

These constraint types can be freely mixed to, for instance, express an interval taking
place after a time point. Furthermore, it is possible to model soft constraints, allowing
bidders to offer discounts in return for satisfying certain time constraints, and to model
the fact that an auctioneer may sometimes be able to quantify the monetary benefit
resulting from a shorter supply chain. Our approach blends nicely into the existing
framework of mixed auctions, requiring surprisingly few modifications. This facilitates
integration with other extensions and optimizations.

In Sect. 2, we define a suitable bidding language. In Sect. 3, we define the winner
determination problem and present an integer program to solve it. Section 4 presents
the extension to time intervals. Section 5 discusses related work and concludes.

2 Bidding language

In a mixed auction, agents negotiate over transformations of goods that are equipped
with time point identifiers. In this section we introduce an expressive bidding language
that allows bidders to specify their valuations over sets of such transformations. We also
present some purely syntactic extensions to the bidding language, and we show that it is
fully expressive over the class of all “reasonable” valuations.

2.1 Transformations and time points

Let G be the finite set of all types of goods considered. A transformation is a pair
(I,O) ∈ NG × NG. An agent offering such a transformation declares that, when
provided with the multiset of goods I, he can deliver the multiset of goods O. Let T
be a finite (but big enough) set of time point identifiers. These time points are merely
identifiers, not variables having an actual value. They can be referred to from bids in
order to specify time constraints over the offered transformations. Agents negotiate over
sets of transformations with time point identifiers D ⊂ NG × NG × T , which we can
write as

D = {(I1,O1, τ1), . . . , (I`,O`, τ `)}.

For example, {({}, {q}, τ1), ({r}, {s}, τ2)} means that an agent is able to deliver q
without any input at some time τ1, and to deliver s if provided with r at some time τ2
(possibly with constraints regarding τ1 and τ2).

2.2 Valuations

A time line Σ (for a given bidder) is a finite sequence of transformations and “clock
ticks” c (when no transformation is allocated to the bidder). That is, Σ ∈ (NG ×NG ∪
{c})∗. A valuation v maps a time line Σ to a real number p. Intuitively, v(Σ) = p
means that an agent with valuation v is willing to make a payment of p for getting the
task of performing transformations according to the time line Σ (p is usually negative,
so the agent is being paid). We write v(Σ) = ⊥ if v is undefined for Σ, i.e., the agent
would be unable to accept the corresponding deal. For example, the valuation v given by

v(({oven, dough}, {oven, cake})) = −2
v(({oven, dough}, {oven, cake}); ({}, {bread})) = −3
v(({}, {bread}); ({oven, dough}, {oven, cake})) = ⊥

expresses that for two dollars I could produce a cake if given an oven and dough, also
returning the oven; for another dollar I could do the same and afterwards give you a
bread without any input; but I could not do it the other way round.

A valuation v uses relative time if for all Σ we have that v(Σ) = v(Σ − c), where
Σ − c stands for Σ with all clock ticks c removed. That is, valuations depend only on
the relative ordering of the transformations. Otherwise v is said to use absolute time.

2.3 Bids

An atomic bid BID(D, p) specifies a finite set of finite transformations with time points
and a price. For complex bids, we restrict ourselves to the XOR-language, which, for
mixed auctions, fully expresses most (if not all) intuitively sensible valuations [2]. Our
framework can easily be extended to also handle the OR-operator. An XOR-bid,

Bid = BID(D1, p1) XOR . . . XOR BID(Dn, pn),

says that the bidder is willing to perform at most one Dj and pay the associated pj .

2.4 Time constraints

The atomic constraints for relative time are of the form τ < τ ′; and for absolute time,
with τ, τ ′ ∈ T , ξ, ξ′ ∈ N:

τ = ξ τ < ξ τ > ξ τ + ξ < τ ′ + ξ′ τ + ξ = τ ′ + ξ′

As mentioned above, the τ are not variables but just identifiers for the associated
transformations, and the above formulas are not assignments but rather constraints on
the associated transformations, with semantics as given in Sect. 2.5. For example,

BID({ ({oven, dough}, {oven, cake}, τ1),
({}, {bread}, τ2)},−3)

τ1 < τ2

expresses the above fact that I am willing to sell you the bread only after the cake.
Time constraint formulas are of the form ϕ = γ1∧· · ·∧γν with atomic constraints

γι. A bidder submits a bid Bid together with a time constraint formula ϕ, expressing that
he is willing to perform according to Bid, but only under the condition that ϕ is satisfied.
This condition is hard: the bidder will only accept if it is met.

2.5 Semantics

Syntactically, we thus have complex bids with time points together with constraint
formulas over these time points:

BID(D1, p1) XOR . . . XOR BID(Dn, pn) γ1 ∧ · · · ∧ γν .

In order to make the intuitive meanings explained above explicit, we now specify
a formal semantics. In the following, let Σ be a time line (clock ticks allowed), let
τ, τ ′ ∈ T , ξ, ξ′ ∈ N, and let ϕ and ϕ′ be time constraint formulas. Let τ ∈ Σ denote
the fact that τ is associated with some transformation in Σ, and let Σ(τ) denote the
sequence number (starting from 1) of the transformation associated with τ , if τ ∈ Σ.
For clarity, we may include the time point identifiers in the sequence. For example, if
Σ = ((I1,O1, τ1); . . .), then τ1 ∈ Σ and Σ(τ1) = 1.

We inductively define a satisfaction relation |= as follows:

Σ |= τ ◦ ξ iff τ 6∈ Σ or Σ(τ) ◦ ξ, for ◦ ∈ {=, <,>}
Σ |= τ + ξ < τ ′ + ξ′ iff τ ′ 6∈ Σ or

τ ∈ Σ and Σ(τ) + ξ < Σ(τ ′) + ξ′

Σ |= ϕ ∧ ϕ′ iff Σ |= ϕ and Σ |= ϕ′

Relative time constraints are covered by omitting the +ξ and +ξ′, and τ+ξ = τ ′+ξ′

is an abbreviation for

τ + ξ < τ ′ + (ξ′ + 1) ∧ τ ′ + ξ′ < τ + (ξ + 1).

According to this semantics, time constraints over time point identifiers that are fully
included in Σ are interpreted as expected. Constraints over time point identifiers not
in Σ are simply ignored (they are always satisfied). Note that the choice of semantics
for constraints such as τ < τ ′ is somewhat arbitrary in case only one of the time points
being compared occurs in Σ. As an intuitive justification for this detail of the semantics,
τ may be thought of as a precondition for τ ′, for instance, because some outcome of the
first transformation is needed for the second. In the case of τ + ξ = τ ′ + ξ′, this has
the effect that either none of the two mentioned transformations is included, or both are
and must have the specified distance. However, the exact details do not matter all that
much, since the bidding language allows specifying in all detail which transformations
can occur together and which cannot.

Using a more technical justification, we prefer this interpretation of constraints
because it turns out that it has a straightforward translation to integer constraints, which
we need for the implementation described in Sect. 3.3.

We say that a set of transformations D permits Σ if Σ consists of exactly the trans-
formations inD (and optionally clock ticks). In contrast to this definition, in [2], different
assumptions concerning free disposal are distinguished. Informally, free disposal means
that participants are always happy to accept more goods than they strictly require; if they
really have absolutely no use for them (or are even bothered by them), they can dispose
of them for free. Free disposal makes intuitive sense for most every-day goods; however
it is not as appropriate for certain “goods” like nuclear waste. We do not delve further

into this issue here and continue without any free-disposal assumptions; however, we
emphasize that this is purely for the sake of clarity, and these assumptions could be built
in with only minuscule changes. In particular, the issue of free disposal as far as bidders
are concerned has no impact on the winner determination problem discussed in Sect. 3;
it only affects the definition of the semantics of the bidding language.

We now define the valuation expressed by an atomic bid Bid = (D, p) together with
a time constraint formula ϕ as

vBid,ϕ(Σ) =

{
p if D permits Σ and Σ |= ϕ

⊥ otherwise.

Accordingly, the valuation expressed by a complex bid Bid = XORnj=1 Bidj together
with a time constraint formula ϕ is (interpreting ⊥ as −∞):

vBid,ϕ(Σ) = max{vBidj ,ϕ(Σ) | j ∈ {1, . . . , n}}.

That is, out of all the applicable atomic bids Bidj (i.e., where vBidj ,ϕ(Σ) 6= ⊥), the
auctioneer is allowed to choose the one giving him maximum profit.

2.6 Syntactic extensions

The time constraint language may seem limited, allowing only conjunctions of atomic
constraints. However, additional expressive power can be “borrowed” from the bidding
language. We discuss two extensions to the time constraint language.
Disjunctive time constraints. A bidder may want to offer (I1,O1), (I2,O2) and
(I3,O3) for price p, where the third should take place after the second or the first, i.e.,

BID({(I1,O1, τ1), (I2,O2, τ2), (I3,O3, τ3)}, p) τ1 < τ3 ∨ τ2 < τ3,

with the obvious meaning of the disjunction ∨. This is not directly possible in our time
constraint language. However, it can be translated into

BID({(I1,O1, ϑ1), (I2,O2, ϑ2), (I3,O3, ϑ3)}, p)
XOR BID({(I1,O1, ζ1), (I2,O2, ζ2), (I3,O3, ζ3)}, p)

ϑ1 < ϑ3 ∧ ζ2 < ζ3.

The choice which of the disjuncts to satisfy has been moved into the bid expression
and is determined by picking one of the atomic bids. Since their variables are disjoint,
this pick makes one conjunct of the transformed time constraint formula vacuously true,
while the other conjunct still needs to be satisfied. Since it may happen that both of
the original disjuncts are satisfied in the end, disjunction is the right notion here, even
though it is translated into an XOR of bids.

For a general formulation, we allow a bid expression in XOR normal form together
with a time constraint formula in disjunctive normal form:

XORnj=1 Bidj
∨ν
ι=1 ϕι,

where the ϕι are standard (conjunctive) time constraint formulas. The bidder can thus
conveniently express, e.g., several alternative partial orders over his transformations.

Let now σι for ι ∈ {1, . . . , ν} be substitutions (with disjoint ranges), each mapping all
variables occurring in the bid to fresh (used nowhere else) ones. The translation is:

XORνι=1 XORnj=1 Bidjσι
∧ν
ι=1 ϕισι.

This may seem surprising, because in the original formulation the auctioneer has two
choices (which of the time constraint disjuncts to satisfy and which bid to pick), and in
the translation he loses the choice among the time constraints. However, in return he gets
the freedom to choose over the outer XOR. As illustrated in the example above, this boils
down to choosing one of the fresh variable spaces, which corresponds to choosing one
of the original disjuncts. All the rest of the transformed time conjunction does not have
any effect, because it talks about variables which do not occur in the chosen sub-bid.
The auctioneer then proceeds to pick a bid from the inner XOR, just as before.

Soft time constraints. Soft constraints are constraints with associated costs. Intuitively,
such a constraint does not have to be satisfied, but if it is, the price of the bid is modified
by the given cost (usually a discount to the auctioneer).

For example, a bidder may want to bid on (I1,O1) and (I2,O2) for price p and
offer a discount, i.e., raise his bid by δ, if he gets to do the first before the second:

BID({(I1,O1, τ1), (I2,O2, τ2)}, p) (τ1 < τ2, δ).

Again, this expression can be translated:

BID({(I1,O1, ϑ1), (I2,O2, ϑ2)}, p)
XOR BID({(I1,O1, ζ1), (I2,O2, ζ2)}, p+ δ)

ζ1 < ζ2.

The general translation is analogous to the previous one and omitted for space reasons.
Note also that the transformations can be combined. For example, a soft time con-

straint could have a disjunctive condition.
The blowup resulting from the transformations is straightforwardly seen to be linear

in the number of disjuncts or of alternative discounts, respectively. Our constructions and
the resulting blowup straightforwardly carry over to any bidding language that allows
XOR as outermost connective.

2.7 Expressive power

We say a valuation is finite if it has a finite domain (i.e., yields non-⊥ for finitely many
time lines only) consisting of finite sequences of finite transformations (i.e., with finite
input and output). The XOR language with time constraints is fully expressive for finite
valuations: XOR bids with relative time constraints can express all finite valuations
that use relative time; XOR bids with absolute time constraints can express all finite
valuations. The proof is simple: Take an XOR bid with one atomic bid BID(D, p) for
each Σ in the domain of v, with D set to permit Σ and p set to v(Σ), and impose the
order corresponding to Σ using time constraints (note that there may be several atomic
bids with the same transformations in D, but different time points).

3 Winner determination

We now study the winner determination problem (WDP). This is the problem, faced
by the auctioneer, of determining which transformations to award to which bidder, so
as to maximize (minimize) the sum of payments collected (made), given the bids of
the bidders expressed in our bidding language. This may be interpreted as computing a
solution that maximizes revenue for the auctioneer, or utilitarian social welfare for the
collective of bidders (if we interpret prices offered as reflecting bidder utility). Note that
we are interested in the algorithmic aspects of the WDP. Game-theoretical considerations,
such as how to devise a more sophisticated pricing rule that would induce bidders to
bid truthfully, are orthogonal to the algorithmic problem addressed here. (We briefly
comment on mechanism design issues in Sect. 5, but this is not the topic of this paper.)

For symmetry between bidders and auctioneer, we do not assume free disposal for
the auctioneer (just like for the bidders), i.e., he does not want to end up with any goods
except the required ones. Note, however, that the formulations are easily adapted to allow
free disposal (and we point out the necessary changes along the way).

After formulating the WDP, we give an integer program [9] solving it. We aim at
keeping the descriptions short and focus on the changes compared to the version from [2].
The advantage of this approach, besides showing how few modifications are necessary,
is that it is modular and can (hopefully) be combined without too much effort with other
extensions or optimizations.

3.1 WDP with time constraints

The input to the WDP consists of
– a bid expression Bidi in XOR normal form together with a conjunction of time

constraints ϕi, for each bidder i;
– a multiset Uin of goods the auctioneer holds in the beginning;
– and a multiset Uout of goods the auctioneer wants to end up with.

Let Bidij denote the jth atomic bid BID(Dij , pij) occurring within Bidi, let tijk be a
unique label for the kth transformation in Dij (for some arbitrary but fixed ordering of
Dij), and let τijk be the time point identifier associated with transformation tijk. Let
(Iijk,Oijk) be the actual transformation labelled with tijk, and T be the set of all tijk.

An allocation sequence Σ resembles the time line we introduced before, but can
only contain transformations actually offered by some bidder, and each one at most once.
That is, Σ now is a permutation of a subset of T , possibly interspersed with clock ticks c.

We write tijk ∈ Σ to say that the kth transformation in the jth atomic bid of
bidder i has been selected, and we write Σ(tijk) to denote the sequence number of
tijk (starting from 1) if tijk ∈ Σ. By Σi we denote the projection of Σ to bidder i,
that is, Σ with each tijk replaced by (Iijk,Oijk, τijk) and all ti′jk replaced by c for
i′ 6= i. By (Im,Om) we denote the mth transformation in Σ. Thus, we have two ways
of referring to a selected transformation: by its position in the received bids (tijk) and by
its position m in the allocation sequence.

Given Σ, we can inductively define the bundle of goods held by the auctioneer after
each step (let g ∈ G be any good, and letM0 = Uin):3

Mm(g) =Mm−1(g) +Om(g)− Im(g) (1)

under the condition that

Mm−1(g) ≥ Im(g). (2)

Given a multiset Uin of goods available to the auctioneer, a multiset Uout of goods
required by the auctioneer, and a set of bids Bidi with time constraints ϕi, an allocation
sequence Σ is a valid solution if

(i) for each bidder i, some Dij permits Σi, or Σi ∈ {c}∗
(ii) for each bidder i, Σi |= ϕi

(iii) Eq. (1) and (2) hold for each transformation (Im,Om) ∈ Σ and each good g ∈ G
(iv) for each good g ∈ G,M|Σ|(g) = Uout(g).4

The revenue for the auctioneer associated with a valid solution Σ is the sum of the
prices of the selected atomic bids, i.e.,

∑
{̇pij | ∃k : tijk ∈ Σ}̇.

Given multisets Uin and Uout of initial and required goods and a set of bids with
time constraints, the winner determination problem (WDP) consists in finding a valid
solution that maximizes the auctioneer’s revenue.

3.2 Original integer program

In this part, we closely follow Cerquides et al. [2]. The main issue is to decide, for each
offered transformation, whether it should be selected for the solution sequence, and if so,
at which position. Thus, we define a set of binary decision variables xmijk ∈ {0, 1}, each
of which takes on value 1 if and only if the transformation tijk is selected at the mth
position of the solution sequence.

The position numberm ranges from 1 to an upper boundM on the solution sequence
length. For the time being, we take M = |T |, the overall number of transformations,
accommodating all sequences that can be formed using only transformations (and not
clock ticks). We consider an alternative way for specifying M at the end of Sect. 3.3.

Further, i ranges over all bidders; j ranges for each bidder i from 1 to the number of
atomic bids submitted by i; and k ranges for each atomic bid j of bidder i from 1 to the
number of transformations in that bid.

We use the following auxiliary binary decision variables: xm takes on value 1 if and
only if any transformation is selected at the mth position; xijk takes on value 1 if and
only if transformation tijk is selected at all; and xij takes on value 1 if and only if any
of the transformations in the jth atomic bid of bidder i are selected.

The following set of constraints define a valid solution without taking time constraints
into account (i.e., neglecting (ii) in the valid solution definition above):
(1) Select either all or no transformations from an atomic bid (cf. (i) above):

xij = xijk (∀ijk)
3 Given a multiset S ∈ NG and an item g ∈ G, we write S(g) to denote the number of copies of
g in S.

4 Replace = by ≥ to model free disposal.

(2) Select at most one atomic bid from each XOR normal form bid (cf. (i) above):∑
j xij ≤ 1 (∀i)

(3) Select each transformation at most for one position: xijk =
∑
m x

m
ijk (∀ijk)

(4) For each position, select at most one transformation: xm =
∑
ijk x

m
ijk (∀m)

(5) There should be no gaps in the sequence: xm ≥ xm+1 (∀m)
Note that this is strictly speaking not required; indeed we drop this constraint later
on in order to allow clock ticks between transformations.

(6) Treating eachMm(g) as integer decision variable, ensure that necessary input goods
are available (cf. (iii) above):

Mm(g) = Uin(g) +
∑m
`=1

∑
ijk x

`
ijk · (Oijk(g)− Iijk(g))

Mm(g) ≥
∑
ijk x

m
ijk · Iijk(g) (∀g ∈ G,∀m)

(7) In the end, the auctioneer should have the bundle Uout (cf. (iv) above):5

MM (g) = Uout(g) (∀g ∈ G)
Solving the WDP now amounts to solving the following integer program:

max
∑
ij xij · pij , subject to constraints (1)–(7)

A valid solution is then obtained by making transformation tijk the mth element of
the solution sequence Σ exactly when xmijk = 1.

3.3 Modified integer program

To implement time constraint handling (thus obeying (ii) in the definition of valid
solution given above), we first introduce an additional set of auxiliary binary decision
variables ymijk ∈ {0, 1}, taking on value 1 if and only if transformation tijk is selected
at the mth position or earlier in the solution sequence. This is achieved by adding the
following constraint:
(8) ymijk should be 1 iff tijk ∈ Σ and Σ(tijk) ≤ m: ymijk = ym−1

ijk + xmijk (∀ijkm),
with y0

ijk = 0.
We now give implementations for our two variants of time constraints.

Relative time. Each bidder i’s time constraint formula is a conjunction of atomic time
constraints, and all bidders’ time constraints need to be satisfied. The following set of
integer constraints takes care of this.
(9a) For each τijk < τij′k′ occurring in

∧
i ϕi: ymijk ≥ y

m+1
ij′k′ (∀m).

In accordance with the time constraint semantics, if neither tijk nor tij′k′ occurs in the
solution sequence, this requirement is vacuously satisfied since both sides stay 0. If tij′k′

does occur, then ymij′k′ will become 1 at some point m. In this case, the requirement boils
down to ym−1

ijk being 1 as well, so tijk must have occurred already.
Solving the WDP with relative time constraints thus amounts to the same optimiza-

tion as before, but subject to constraints (1)–(8) and (9a).
Absolute time. In order to have an absolute notion of time, we need some way of
mapping points of a possible solution sequence to an absolute time line. The simplest

5 With free disposal, = would become ≥.

way is to interpret each sequence point itself as a time unit (a minute, a day, a week, . . .),
and this is the approach we take.

Before giving the formalization, we need to discuss some conceptual details. If we
interpret steps in the sequence as absolute time units, some issues arise which did not
matter before. Firstly, while it may be acceptable to break time down into discrete steps
of equal duration, it is not so easy to defend that any transformation that can possibly be
offered should have exactly that duration. Secondly, there is no reason why the auctioneer
should wait for one transformation to end before commissioning the next transformation,
which may be offered by a different, idling bidder, unless the output of the former is
needed as input to the latter. To some extent, these issues can be addressed by a purely
conceptual extension presented in Sect. 4. However, we leave it to future work to design
frameworks which handle time in a more flexible way and truly optimize for effective
parallelizations. For our purposes, we simply assume that the auctioneer is busy when he
is delivering or receiving goods of some particular transformation, and cannot deal with
several bidders simultaneously.

To start the formalization, first of all we drop constraint (5). As mentioned, it is not
strictly speaking necessary anyway, and since now the bidders can refer to arbitrary
absolute time points, we actually might have to accept gaps in the sequence.

Now a technical issue arises: The length of possible solution sequences is no longer
bounded by |T |. While it may be possible to find a correct bound by looking at all
numbers occurring in the bidders’ time constraints, we settle for a different solution: The
auctioneer manually specifies M , the maximum length of the solution sequence.

At first glance this seems like a pure loss of generality; however the auctioneer may
profit from having some control over the size of the WDP he has to solve, and he can
always iterate over different values forM in his search for a good solution. Economically
speaking, it also makes sense that the auctioneer wants some control over the length of
his supply chain, rather than allowing an arbitrary length. Indeed, he might have graded
preferences over the time his supply chain takes, as discussed in Sect. 3.4.

We now give the integer constraints for handling absolute time constraints.

(9b) For each τijk + ξ < τij′k′ + ξ′ occurring in
∧
i ϕi: ym+ξ′

ijk ≥ ym+ξ+1
ij′k′ (∀m)

For each τijk + ξ = τij′k′ + ξ′ occurring in
∧
i ϕi: ym+ξ′

ijk = ym+ξ
ij′k′ (∀m)

(10) For each τijk ◦ ξ, with ◦ ∈ {=, <,>}, occurring in
∧
i ϕi: xmijk = 0 (∀m 6 ◦ ξ).

Constraint (9b) requires some explanation. First of all, note that (9a), the version for
relative time, is covered as a special case. As indicated by the semantics, the absolute
time variant is thus an extension of the relative time variant. Secondly, note that the
second half of (9b) can be obtained from the first half if interpreted as an abbreviation,
as in Sect. 2.5. Now consider the case where ξ′ = 0. Intuitively speaking, the time
constraint then says that tijk must take place at least ξ + 1 time steps before tij′k′ . That
is, whenever tij′k′ is selected, tijk must already have been selected for at least ξ + 1
time steps. In terms of the integer program, this means that, for all positions m, ymij′k′

must be 0 unless ym−ξ−1
ijk was already 1. Now it is only a small step to the formulation

in (9b).
Solving the WDP with absolute time constraints amounts to the same optimization

as before, but subject to constraints (1)–(4), (6)–(8), (9b) and (10).

A valid solution is then obtained by making transformation tijk the mth element of
the solution sequence Σ if and only if xmijk = 1, and using a clock tick c as mth element
when there is no xmijk which equals 1 (i.e., when xm = 0).

3.4 Valuation for the auctioneer

Given that we decided to require the auctioneer to specify the maximum length M of the
solution sequence (for the absolute-time variant of the framework), we may also want to
enable him to express more detailed preferences over durations. This can be achieved in
a neat way, also enabling the auctioneer to express graded preferences over final bundles.

So assume the auctioneer derives a certain value from a given supply chain, depending
on its overall duration and its outcome, the bundle of goods he owns in the end. Note
that we here assume absolute time; with relative time, preferences over durations do not
make much sense, but the results can easily be adjusted to only model preferences over
outcomes.

We thus assume the auctioneer’s valuation is a function u : N× NG → R ∪ {⊥},
mapping duration/outcome pairs to a value or ⊥, meaning the duration/outcome pair is
not acceptable. This valuation can be incorporated into the WDP in the following way.

After receiving the bids, the auctioneer decides on a maximum duration M and
creates an additional bid under an unused bidder identity:

XOR
{(m,U) |u(m,U)6=⊥}

BID({(U , {}}, τm,U)}, u(m,U)),

where } is a special token that does not occur as a good in any other bid, together with
time constraints: ∧

{(m,U) |u(m,U)6=⊥}

τm,U = m.

The transformations in this bid are to be thought of as terminal transformations: they
denote the possible time points and outcomes at which a solution sequence may end, and
the associated values for the auctioneer. Using this method, the auctioneer’s valuation
can be expressed with very few changes to the integer program:

– The terminal transformations should only be used at the respective intended positions
in the sequence; this is ensured by the given time constraints.

– At most one of them should be used; this is ensured by the XOR (and strictly speaking
also follows from the last point below).6

– At least one7 of them should be used; this can be ensured by setting Uout = {}}.
– The unique terminal transformation that is actually used should indeed be the end of

the solution sequence.8

6 Even more strictly speaking, it also follows from the next requirement and the fact that we
assume no free disposal; we include it nevertheless for conceptual clarity and in order to
accommodate a possible free disposal assumption.

7 This could read “exactly one”, but again, we want to accommodate a possible free disposal
assumption.

8 As a last remark, this requirement could be dropped if we did assume free disposal and all bids’
prices were positive.

For this last point, we need an additional integer constraint:
(11) No transformations are scheduled after a terminal transformation:

xm+1
ijk ≤ 1− ym−1j′k′ (∀ijkj′k′m)

(−1 being the auctioneer’s “bidder identity”).
While the above requirements could also be encoded more directly and more effi-

ciently into the integer program, for clarity we here restrict ourselves to this version
using the high-level features of the bidding language.

Many further extensions and optimizations along these lines are conceivable. We do
not try to exhaust them here, but sketch only one example. The auctioneer might want
to extract some goods U from the supply chain by some intermediate time point ξ, not
necessarily at its end. To express this, he can add a transformation (U , {�}, τ) with time
constraint τ < ξ + 1 to his bid, and add � to Uout. Dropping constraint (11) for this
transformation, he makes it non-terminal. He can also make this a soft requirement by
including another transformation that yields � from no input and attaching appropriate
prices to the corresponding bids.

3.5 Computational complexity

As in the original model [2], the WDP for mixed auctions with time constraints is NP-
complete: NP-hardness follows from NP-hardness of the WDP for standard combinatorial
auctions [8] and NP-membership follows from the fact that the validity of a given
allocation sequence can clearly be verified in polynomial time. Fionda and Greco [4]
have started to chart the tractability frontier for a slightly simplified version of the
original framework by Cerquides et al. [2], using various criteria to restrict the class
of allowed bids. Their results concerning the XOR language still hold in our extended
framework. In particular, even with time constraints the WDP still remains tractable if
only one transformation outputs any particular good [4, Theorem 3.7]. Further tractability
islands may be identified in future work.

Regarding the integer program, while there is room for optimizations, the number
of variables we introduce is of the same order as in the original formulation: O(n2),
where n is the number of transformations occurring in the bids submitted. The most
recent work on winner determination algorithms for mixed auctions has tried to reduce
the number of decision variables needed so as to improve performance [5,7]. Due to
the modular nature of our approach, we are optimistic that it will be possible to take
advantage of these optimizations and integrate them with our extensions.

4 Intervals

It may be desirable to allow transformations to overlap or take place during others, and to
allow transformations to have different durations. Interestingly, intervals can be handled
in our framework without any additional machinery. A transformation with start time
and end time can be rewritten into two transformations with single time points and an
appropriate time constraint:

(I,O, [τ, τ ′])
(I, ∅, τ), (∅,O, τ ′)
τ < τ ′

Since the replacement takes place within a single atomic bid, it is guaranteed that
either both the start and end transformations will be selected, or neither. That is, the
interval transformation remains intact.

The usual interval relations (see the interval calculus by Allen [1]; due to sequentiality
we consider only strict relations) can be defined as macros:

[τ1, τ ′1] BEFORE [τ2, τ ′2] τ ′1 < τ2

[τ1, τ ′1] OVERLAPS [τ2, τ ′2] τ1 < τ2 ∧ τ ′1 < τ ′2

[τ1, τ ′1] DURING [τ2, τ ′2] τ2 < τ1 ∧ τ ′1 < τ2

With absolute time, absolute restrictions on the durations can also be implemented:

duration([τ, τ ′]) ◦ ξ τ ′ ◦ τ + ξ, ◦ ∈ {<,>,=}

Note that expressions like duration(·) > duration(·) are not so straightforwardly
expressible, but arguably also much less useful in the context of specifying bids.

5 Conclusions and related work

We presented an extension to the existing framework of mixed multi-unit combinatorial
auctions [2], enabling bidders to impose time constraints on the transformations they
offer.

In the original framework, the auctioneer is free to schedule the offered transforma-
tions in any way suitable to achieve his desired outcome, while bidders are left with
no control over this process. Our work redresses this asymmetry, thus representing an
important step towards a more realistic model of supply chain formation, where bidders
themselves may have supply chains or other factors restricting the possible schedules for
performing certain transformations.

Starting from a very basic core language for expressing time constraints, we have
given various extensions, many purely syntactic, showing the somewhat unexpected
power inherent to the core language.

We have also extended the integer program given in [2] to handle time constraints.
Our extensions are modular in a way that will facilitate combining them with other
extensions and optimizations for mixed auctions, such as [5,7].

Time constraints have been applied to different types of combinatorial auctions in
the literature. For example, Hunsberger and Grosz [6] extended an existing algorithm for
winner determination in combinatorial auctions to allow precedence constraints when
bidding on roles in a prescribed action plan (“recipe”). Collins [3] permitted relative time
constraints in a combinatorial reverse auction over combinations of tasks, and tested the
efficiency of various approaches to solving the winner determination problem.

Auction frameworks involving time have also been fruitfully applied to problems
of distributed scheduling. In Wellman et al. [10], time constraints do not enter sepa-
rately, rather time slots are the actual objects being auctioned, and game-theoretic and
mechanism design issues are discussed.

While it would be interesting to examine whether the insights about efficiency
and alternative approaches to handling time could be applied to our framework, the

roles, tasks, and time slots being auctioned in those contributions are “atomic”, and the
formulations and results do not easily translate to transformations in the context of mixed
auctions.

Concerning mechanism design, with finite valuations, the incentive-compatibility of
the Vickrey-Clarke-Groves (VCG) mechanism carries over from standard combinatorial
auctions to mixed multi-unit combinatorial auctions with time constraints (see also
[2]). It is a question of independent interest, whether and how this can be extended to
non-finite valuations when still allowing only finite bids. In this case the bidders would
not be able to express their true valuations exactly, so it is not obvious how truthfulness
and incentive compatibility should be defined.

Other topics for future work include the exact interplay between the various syntactic
extensions we have given, defining a uniform general language, and determining whether
some of the features can be implemented in more direct (and efficient) ways than through
the translation to the core language used in this work. The same holds for the underlying
bidding language, where operators such as OR may be executed more efficiently than
through translation to XOR.

Changing the integer program to allow OR instead of XOR is straightforward; an XOR-
of-OR language, generalizing both the XOR and the OR languages, can be accommodated
with more extensive changes, buying the advantage of preserving our constructions for
disjunctive and soft time constraints.

Finally, an empirical analysis needs to be performed, including testing and optimizing
our integer program.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

2. J. Cerquides, U. Endriss, A. Giovannucci, and J. A. Rodrı́guez-Aguilar. Bidding languages
and winner determination for mixed multi-unit combinatorial auctions. In Proc. IJCAI-2007,
Hyderabad, India, 2007.

3. J. E. Collins. Solving combinatorial auctions with temporal constraints in economic agents.
PhD thesis, University of Minnesota, 2002.

4. V. Fionda and G. Greco. Charting the tractability frontier of mixed Multi-Unit combinatorial
auctions. In Proc. IJCAI-2009, Pasadena, CA, July 2009.

5. A. Giovannucci, M. Vinyals, J. A. Rodrı́guez-Aguilar, and J. Cerquides. Computationally
efficient winner determination for mixed multi-unit combinatorial auctions. In Proc. AAMAS-
2008. IFAAMAS, 2008.

6. L. Hunsberger and B. J. Grosz. A combinatorial auction for collaborative planning. In Proc.
4th International Conference on MultiAgent Systems. IEEE Computer Society, 2000.

7. B. Ottens and U. Endriss. Comparing winner determination algorithms for mixed multi-unit
combinatorial auctions. In Proc. AAMAS-2008. IFAAMAS, 2008.

8. M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable combinational
auctions. Management Science, 44(8):1131–1147, Aug. 1998.

9. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc., New York,
NY, USA, 1986.

10. M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason. Auction protocols for
decentralized scheduling. Games and Economic Behavior, 35(1–2):271–303, 2001.

	Time Constraints inMixed Multi-unit Combinatorial Auctions
	Andreas Witzel and Ulle Endriss

