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Abstract

In a nonlocal scenario, physically isolated players each have a device that inputs and outputs classical
information. Certain correlations between the joint input and output of the devices almost uniquely
identify the quantum state that they share. This phenomenon is known as self-testing and has ap-
plications in quantum cryptography with untrusted devices. It was for example shown that for every
pure two-qubit state, there exists a two-player Bell experiment whose correlations, or rather the Bell
value that is computed from the correlations, can be used here to self-test that state; the Bell value
that is used stems from a family of Bell inequalities called tilted CHSH inequalities. A special case
is the regular CHSH inequality, which is used to self-test the singlet, a maximally entangled state of
two qubits. For practical applications, estimation errors and the presence of external noise require
self-testing statements to be robust to errors.
In this thesis, we extend previous work on self-testing of the singlet with the CHSH game. First, we
use tilted CHSH inequalities to improve the robustness of previously found self-testing statements
for (almost) all pure partially entangled states. Our result consists of the explicit construction of lo-
cal quantum channels for the two players, from which we derive operator inequalities that we verify
numerically. Using a recently developed method [Kan16], the improved bounds can be inferred. Fur-
thermore, we construct a state that violates the CHSH inequality but for which there exist no local
quantum channels that achieve greater �delity than a trivial lower bound (i.e. achieve �delity with
the singlet greater than what is achievable using a separable state). This result implies that CHSH
violation is not su�cient for the two players to `extract' a singlet from their actual state by just local
operations. Future research could focus on extending our results to di�erent self-testable states such as
the GHZ-states and on self-testing in the scenario where only one of the two players has a potentially
untrusted device (quantum steering).
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1 Introduction

The �rst ideas about `quantum computers' were developed in the 1980s [Fey82, Ben82]; such comput-
ers could exploit properties that are exclusive to quantum systems, such as quantum entanglement -
the property that generally, the components of quantum systems cannot be described independently.
Since then, many applications of quantum computers have been found. The most promising of such
applications are arguably the integer factorization algorithm by Shor [Sho94], which can break today's
widely-used RSA encryption algorithm, the database search algorithm which was originally designed
by Grover and later improved by Boyer et al. [Gro96, BBHT98], and the development of quantum-key-
distribution (QKD) protocols, which started with the work of Bennett and Brassard [BB84] and Ekert
[Eke91].

In the latter of these branches, the central question is how to establish a random bit string (the key)
that is known only to the two parties who wish to communicate. QKD schemes heavily rely on the
quantum-mechanical properties of the devices used for their execution, such as entanglement. Indeed,
it has been shown that an eavesdropper can use imperfections in the devices in order to break security
[SK14]. In practice, however, quantum entanglement is di�cult to maintain due to interference of
external noise with the entangled system. Additionally, the security proofs of several QKD protocols
such as the protocol by Bennett and Brassard [BB84] only work when the dimension of the Hilbert space
of the communicating parties is known [AGM06, MMMO06]. Finally, in the cryptographic scenario of
malicious adversaries, one needs to take into account the possibility that the manufacturer of the devices
has intentionally tampered with the devices in order to eavesdrop on the communicated information.
Eavesdropping on communication devices is not just a hypothetical situation: recently, a series of
documents were published that showed that for the Central Intelligence Agency (CIA) of the U.S.A.,
large-scale hacking of mobile phones and smart TVs is standard practice [Wik]. Reasons such as these
led researchers to consider device-independence, the paradigm in which properties of the devices are no
longer assumed to operate as speci�ed. Let us �rst dive into the main tool for executing protocols in
a device-independent fashion: Bell nonlocality.

1.1 Bell nonlocality

In a Bell experiment, several parties are physically isolated so that classical communication between
the parties is impossible1, and each party is regarded as a black box which takes input and gives out-
put. After a long line of research that started with the criticism on quantum physics with the famous
paper of Einstein, Podolsky and Rosen [EPR35], the �rst to correctly realize the implications of Bell
experiments for this discussion was John Bell [Bel64]. We brie�y go into the topic of Bell nonlocality.
For a recent review on Bell tests and applications, see the work of Brunner et al. [BCP+14].

As an example of a Bell experiment, we consider the bipartite scenario with two players, usually called
Alice and Bob (see Figure 1). Alice and Bob each have a device which takes input x, y and gives output
a, b, respectively. In a real-world experiment, the devices could for example have a series of knobs
(one for each possible input setting), each of which corresponds to a measurement on some physical
state inside the device. The experiment consists of multiple runs; in each run, Alice and Bob each
select an input at random and record the outcome. After a large number of runs, Alice and Bob come
together and compute their joint statistics: the conditional probability distribution Pr(a, b|x, y). We
assume that the rounds are identical and independently distributed (the `i.i.d. assumption'), i.e. the

1In theory, this can be established by spatially separating the parties over a long distance and obtaining the required
data from the Bell experiment quickly; the non-signaling condition is then implied by the impossibility of sending signals
which travel faster than light.
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probability distribution underlying the observed statistics is well-de�ned.

Alice Bob

x y

a b

Figure 1: A Bell experiment with two players, Alice and Bob, who each have a device. In a single run of
the Bell experiment, each of the two players' devices takes binary input, picked uniformly at random.
Alice and Bob record the binary output of the device. After many runs, the two players come together
and compute their joint probability distribution Pr(a, b|x, y). The two players are physically isolated,
as indicated by the dashed vertical line.

If we assume that the devices are adequately described by classical physics, then the behaviour of
the devices can be assumed to be local : that is, whatever operations the devices apply internally, the
behaviour of a device can only be determined by anything that is spatially close to the device. In
particular, since Alice and Bob are physically isolated, the behaviour of the two devices can only be
correlated to each other if the devices were somehow connected before the experiment. In physics, such
pre-established connections are referred to as local variables.

In the simplest case, the output of each device is a deterministic function of its input. For example, if
Alice's device has two knobs, labeled 0 and 1, it could be that the device outputs the label of the knob
that was pushed. In this case, we say that the behaviour of the device corresponds to a deterministic
response function.

It has been shown [Fin82] that any local behaviour of the devices can be explained by choosing in each
run a deterministic response function, where the choice of response function is made according to some
probability distribution. However, if the knobs of the devices correspond to measurements on entangled
quantum states, the devices' behaviour generally cannot be expressed by such a probabilistic mixture
of deterministic functions. For this reason, Bell experiments have taken a prominent position in the de-
bate on the validity of quantum mechanics. Throughout the past decades, many Bell experiments have
been performed. It was only recently that the two main `loopholes' in these experiments were closed
simultaneously2 [HBD+15, HKB+16, GVW+15, SMSC+15]. The experimentally observed correlations
indeed could not be explained by local variables, which shows that, on the most fundamental level, the
real world cannot be explained by any local-variable theory such as classical physics.

2First, there is the locality loophole, the prohibition of classical communication between the boxes. Second, there is
the detection loophole: for any behaviour of the devices, Alice and Bob could change the observed statistics Pr(a, b|x, y)
by not taking all runs of the Bell experiment into account in their calculations; this post-selection is therefore not allowed
when dealing with the data obtained from Bell experiments.
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In practice, it is more convenient to work with a single number that `measures' the degree of nonlocality
than with the entire conditional probability distribution Pr(a, b|x, y). Such a number is found in the
Bell value, a linear combination of the probabilities Pr(a, b|x, y). In case the Bell value is greater than
what can be achieved by distributions produced by local variable theories, we speak of a Bell violation
of a Bell inequality.

Since entangled quantum states can yield a Bell violation while classical devices cannot, Alice and Bob
can �nd out if their devices contain some kind of quantum state on the sole basis of the correlations.
Although this fact is quite remarkable already, the connection between the behaviour of the devices
and the observed statistics goes even further: if we assume quantum mechanics to be the underlying
theory governing the behaviour of the devices, then certain statistics allow us to uniquely identify the
quantum state and the measurements of the boxes (up to some well-understood equivalences). This
was �rst explicitly shown by Mayers and Yao [MY98, MY04], but already implicit in earlier work
[Cir80, PR92, SW88]. It is exactly this feature of Bell nonlocality that is useful in the context of
cryptography.

1.2 From Bell experiments to device-independence and self-testing

The �rst ideas on the use of nonlocal correlations in order to test for a nosy eavesdropper in the
context of key distribution were already implicit in the celebrated QKD scheme by Ekert [Eke91].
The �rst device-independent quantum key distribution protocol (DI-QKD) was developed by Bar-
rett et al. [BHK05], who showed how two parties can generate a single random shared bit, secure
against any post-quantum eavesdropper. Later work in DI-QKD mainly focused on developing similar
protocols that generate more shared key bits with fewer device uses, and on proving their security
[AMP06, MW06, AGM06, MPA11, VV14, DFR16, AFRV16]. For an overview of the �eld, we refer to
two reviews [BCP+14, ER14].

Related to DI-QKD is the �eld of device-independent randomness generation, where the central ques-
tion is: how can we generate truly random bits with the use of potentially untrusted devices? This
is a simpler task than device-independent key distribution, since one can always execute a DI-QKD
protocol locally to generate a random key and subsequently use the key as a random bit string. The
generation of randomness naturally points toward Bell inequalities, since it can be shown that Bell
violation implies the presence of intrinsic randomness (for a comprehensive derivation, see the lecture
notes by Scarani [Sca12]). The �rst work on device-independent randomness generation used Bell-
violating devices [Col07]. Later work has mainly focused on �nding protocols that are secure under
relaxed assumptions and on proving their limitations [PAM+10, CK11, SCA+11, BPPP14, MS16]. For
a more elaborate overview, we again refer to Brunner et al. [BCP+14].

A third branch of the device-independent approach to quantum information theory is the �eld of
self-testing : device-independent characterization of the quantum state and measurements. The central
question in self-testing of quantum states is: given the observed correlations of several parties in a Bell
experiment, what knowledge can be inferred about the quantum state that the parties possess? This
knowledge is usually expressed as a self-testing statement: a bound on a measure that compares the
optimal state and the actual state, where the bound is a function of a Bell value. A similar question
can be asked for self-testing of measurements.

In self-testing, it is the connection between observed correlations on the one hand and the shared
state and applied measurements on the other that is the object of research, rather than the use of
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this connection for cryptographic purposes. Indeed, it is most remarkable that classical players (in our
example: Alice and Bob) can determine which quantum state is shared by the devices, solely on the
basis of correlations.

As already mentioned, Mayers and Yao were the �rst to explicitly note the usefulness of empirical
correlations for practical applications [MY98, MY04]. In their work, the object under study was a
maximally entangled state of two qubits, to which we will refer as the singlet in this thesis. It was
already shown before for a particular Bell inequality, the CHSH inequality [CHSH69], that particular
correlations are only reproduced by devices sharing a singlet (again, up to some well-understood equiv-
alences) [PR92, BMR92]. By connecting the practical usefulness and the theoretical work, the singlet
state was the �rst state to be shown to be self-testable. Since then, many other states and measurements
have been shown to be `identi�able' from certain Bell inequalities and observed correlations (where a
precise meaning of `identi�able' is given in Chapter 3) [McK14, MYS12, YN13, BP15, CGS16, McK16].

In practice, the observed statistics cannot be expected to yield the perfect correlations. The reason
for this is twofold; �rst, since the correlations are estimated only from a �nite numbers of runs of the
Bell test, they are subject to statistical errors. The presence of external noise is another factor that
contributes to the failure of Bell experiments to achieve perfect correlations in real-life experiments. It
is for this reason that in order to relate observed correlations to the states and measurements that the
devices could possibly share, we need self-testing statements that are robust to errors.

1.3 Our contributions

In this thesis, we improve the previously known robustness of self-testing statements for almost all
pure partially entangled two-qubit states. Also, we prove that a violation of the CHSH inequality by
a particular quantum state does not imply that a singlet can be `extracted' from that state (see below).

Pure two-qubit states can be self-tested with a family of Bell inequalities which go by the name of
tilted CHSH inequalities. That is, for every pure two-qubit state, there exists a tilted CHSH inequality
for which particular correlations Pr(a, b|x, y) can only be obtained if the players share that particular
state, up to some equivalences. Self-testing statements for pure two-qubit states are expressed in terms
of bounds on the �delity of the ideal two-qubit state and the actual state after Alice and Bob have
applied quantum operations locally: the maximal �delity that can be obtained in this way is referred
to as the extractability. By generalizing the approach of Kaniewski [Kan16], we improve upon all pre-
viously known self-testing bounds for the extractability [YN13, BP15, BNS+15].

In the method we used, the quantum operations that Alice and Bob apply locally are called extraction
channels, since the two players attempt to `extract' the optimal state from the state they actually pos-
sess. By constructing local extraction channels for each tilted CHSH inequality, we reduce the problem
of proving a self-testing statement to proving a particular operator inequality. We numerically veri�ed
this operator inequality for (almost) every tilted CHSH inequality, which results in new improved self-
testing statements for (almost) all pure two-qubit states.

Our second result is the construction of a state with the following two properties: (a) the state violates
the CHSH inequality; (b) there exist no local extraction channels that achieve a �delity with the max-
imally entangled two-qubit state that is strictly greater than the trivial lower bound. Here, `trivial'
refers to the �delity which can be achieved for any state. In this sense, the singlet extractability of our
constructed state is trivial.
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A result of the same �avor was already known for bound entangled states. Entanglement distillation
refers to the process of creating a maximally entangled state out of several copies of a less entangled
state by LOCC (local operations and classical communication) [BBPS96]. Bound entangled states are
entangled but undistillable (i.e. it is not possible to distill entanglement from them). Since classical
communication and the use of several copies is not included in the de�nition of `extractability', distil-
lability is a stronger notion than extractability. Vértesi and Brunner constructed a bound entangled
state which violates a Bell inequality that is di�erent from the CHSH one [VB14]; in fact, their state
does not violate the CHSH inequality. The state ρTE we constructed, however, does violate the CHSH
inequality but it is not possible to extract even a �fraction� of a maximally violating state (the singlet)
from ρTE using local operations.

This result is remarkable: although one needs entanglement for CHSH violation and maximal violation
implies that the shared state is equivalent to a singlet, it is in general not possible to create more
overlap with a maximally entangled two-qubit state from any entangled state using local operations
only.

As a corollary to our result, there exist no self-testing statements, formulated in terms of the extractabil-
ity, that yield nontrivial information about the actual state whenever the CHSH violation is very small.

The state we constructed is a classical-quantum state and can be written as a probabilistic mixture of,
on each side, a classical three-outcome register and a qubit. Intuitively, one has to apply very di�erent
local extraction maps in order to maximize the singlet �delity with a product state or a maximally
entangled state. By tweaking the probabilistic weights of our state, we obtain a state which violates
the CHSH inequality but still has trivial singlet extractability.

1.4 Organisation of the thesis

Chapter 2 gives a brief overview of the theory behind Bell operators and de�nes some general notions
of quantum information theory. Also, the CHSH scenario will be explained in more detail. A large
part of the chapter is devoted to auxiliary lemmas that are needed for our construction of the state
that violates the CHSH inequality but nevertheless has trivial singlet extractability. Chapter 3 outlines
previous work on robust self-testing of quantum states, with particular emphasis of the formalization
of the self-testing problem, since this is a nontrivial problem on its own. Our main results are contained
in Chapter 4 and 5. In Chapter 4, we construct a state that violates the CHSH inequality and has
trivial singlet extractability. Chapter 5 contains the derivation of improved robustness for self-testings
statements for (almost) all pure two-qubit states using the tilted CHSH scenario. Opportunities for
future research are given in Chapter 6.
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2 Preliminaries

In this section, we �rst review very brie�y some notions from the quantum information formalism that
are relevant to this thesis (Section 2.1). Then, in Section 2.2, we give an overview of Bell inequalities.
In the last part of this chapter, Section 2.3, several lemmas are proven that are needed for our main
result in Chapter 4.

For a more complete review of quantum information theory, we refer to the book by Nielsen and Chuang
[NC00] and to John Preskill's lecture notes [Pre15]. A mathematically more rigorous introduction to
quantum information theory can be found in the lecture notes by John Watrous [Wat16].

2.1 Quantum states and quantum operations

We review several notions from quantum information theory that are relevant to this thesis. All Hilbert
spaces in this thesis are of �nite dimension, and all operators are linear operators acting on Hilbert
spaces of �nite dimension.

2.1.1 Some properties and operations on matrices

A Hilbert space, a vector space over the complex numbers, will be denoted by H. We will denote the
standard Euclidean inner product on a Hilbert space H by 〈~v|~w〉 :=

∑
i viwi with ~v, ~w ∈ H. Any vector

~v ∈ H has norm ||~v|| :=
√
〈~v|~v〉.

The notation X and Y will denote linear operators (matrices) that act on vectors from a Hilbert space.
A linear operatorX : H1 → H2 is said to have input dimension dim(H1) and output dimension dim(H2).

We start with some notation. The complex conjugate of a complex number z is denoted by z. The
transpose of the representation of an operator X in a particular basis is written as XT and its conjugate
transpose, de�ned as its transpose where every entry is replaced by its complex conjugate, is written
as X†. If X satis�es XX† = X†X, then X is called normal. The tensor product of X and Y will be
written as X⊗Y . The identity matrix of an n-dimensional vector space will be written as 11n, or simply
11 when the dimension of the space that it acts on is clear from the context.

A unitary matrix is a matrix U that satis�es UU † = U †U = 11. Equivalently, a unitary operator is a
bijection that preserves inner products. Since a basis of a Hilbert space consists of pairwise orthonor-
mal vectors, we infer that unitaries correspond to changes of basis. We refer to UXU † as the unitary
conjugation of a matrix X with U .

If X = X†, then we call X hermitian. Any hermitian matrix can be decomposed as X =
∑

j λj |j〉〈j| for
real eigenvalues λj and orthogonal eigenstates {|j〉}j . This decomposition is the `eigendecomposition
of X'. A function f on hermitian operators is de�ned as f(X) =

∑
j f(λj) |j〉〈j|. For example, for her-

mitian matrices with nonnegative eigenvalues, the square root of X is given by
√
X =

∑
j

√
λj |j〉〈j|.

The modulus of a normal matrix X is de�ned as |X| :=
√
X†X.

The set of 2× 2 matrices is spanned by 112 together with the Pauli matrices, de�ned as

X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
where i is the imaginary unit.
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For convenience, we write

• Herm(H) for the set of hermitian operators H→ H;

• Pos(H) ⊆ Herm(H) for the set of hermitian operators H→ H with nonnegative eigenvalues. Such
operators are called positive semide�nite. Hermitian operators with strictly positive eigenvalues
are called positive de�nite.

Let H be a Hilbert space of dimension d. The trace of a matrix X ∈ Herm(H) is the sum of its eigen-
values and can be computed as Tr(X) :=

∑d
j=1 〈j|X |j〉 where {|j〉}dj=1 is an arbitrary basis of H.

The determinant of X, which is the product of its eigenvalues, is denoted by det(X). If a matrix X
acts on composite system HA ⊗ HB, then we denote its partial trace, where `system A is traced out',
as TrA(X) :=

∑dA
k=1(〈k| ⊗ 11HB )X(|k〉 ⊗ 11HB ), where dA is the dimension of HA and {|k〉}dAk=1 is an

arbitrary basis of HA.

Let X,Y ∈ Herm(H). We say that the operator inequality X ≥ Y holds if X − Y is positive semide�-
nite. Similarly, X > Y holds when X − Y is positive de�nite.

For any real number p ≥ 1, the Schatten p-norm of X : H1 → H2 is de�ned as

||X||p :=
(

Tr
(

(X†X)
p
2

)) 1
p
.

We mention three commonly used special cases of the Schatten-p-norms:

• The case p = 1 corresponds to the trace norm: ||X||tr := ||X||1 = Tr
(√

X†X
)
.

• The Frobenius norm is the special case for p = 2: ||X||2 =
√

Tr
(
X†X

)
.

• The limit of p→∞ yields the spectral norm:

||X||∞ = max{||Xu|| | u ∈ H1, ||u|| = 1}.

2.1.2 Quantum states

In quantum mechanics, a physical system is represented as a complex Hilbert space. The state of a
physical system is represented by a vector of unit length in that Hilbert space and is denoted in Dirac's
ket notation, e.g. |ϕ〉.

The state of a qubit is a vector in a complex Hilbert space of dimension 2; in general, the state of a
qudit of dimension d is given by a vector in a complex Hilbert space of dimension d. The vector (1, 0)
is abbreviated as |0〉 and we write (0, 1) as |1〉. We also de�ne |±〉 := (|0〉 ± |1〉)/

√
2.

A composite system made up out of m components, each represented by complex Hilbert space Hj for
1 ≤ j ≤ m, is represented by the complex Hilbert space

⊗m
j=1 Hj . If the state of component j is given

by |ϕj〉, then the state of the composite system is
⊗m

j=1 |ϕj〉 ∈
⊗m

j=1 Hj .

In reality, the precise state of a quantum system is usually not known. To deal with such partial
knowledge, density matrices are a helpful tool. Let H be a Hilbert space that represents a certain
quantum system. A density matrix is de�ned as ρ ≡

∑n
k=1 pk |ϕk〉〈ϕk|, where n ∈ N≥1 is a strictly

positive integer, p is an n-dimensional probability vector and the |ϕk〉 ∈ H for all 1 ≤ k ≤ n. This
de�nition is equivalent to requiring that ρ ≥ 0 while Tr(ρ) = 1. We denote the set of density matrices
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by D(H) := {ρ ∈ Pos(H) | Tr(ρ) = 1}. From now on, density matrices will be referred to as `quantum
states' or simply `states'. States that have an eigenvalue equal to 1 are referred to as `pure states',
otherwise we call them `mixed'. The density matrix that describes the state of a composite system of
m components, where the j-th component is represented by the Hilbert space Hj for 1 ≤ j ≤ m, is an
element of D

(⊗m
j=1 Hj

)
.

For two linear operators A : H1 → H2 and B : H1 → H2, the Hilbert-Schmidt inner product is de�ned
as

〈A,B〉 = Tr
(
A†B

)
(2.1)

For ρ, σ ∈ D(H), this inner product is the trace inner product 〈ρ, σ〉 := Tr(ρσ). Note that if ρ = |ϕ〉〈ϕ|
and σ = |ψ〉〈ψ| are pure states, then Tr(ρσ) = |〈ϕ|ψ〉|2.

Other than the trace inner product, there are di�erent measures of closeness on D(H), such as the
`�delity'.

De�nition 2.1. The �delity of two quantum states ρ, σ is given by F (ρ, σ) = ||√ρ
√
σ||2tr.

We state a few properties of the �delity that will be useful in the formalization of the self-testing
problem, as given in Chapter 3.

Lemma 2.2. Let ρ, σ be density matrices. The �delity F (ρ, σ) has the following properties:

1. Symmetry: F (ρ, σ) = F (σ, ρ);

2. 0 ≤ F (ρ, σ) ≤ 1, and F (ρ, σ) = 1 if and only if ρ = σ;

3. If at least one of ρ, σ is pure, then F (ρ, σ) = Tr(ρσ) = 〈ρ, σ〉.

For the proof of this lemma, we refer to John Watrous' lecture notes, proof of Proposition 3.12 [Wat16].

2.1.3 Entanglement

A product state is a state of the form ρ⊗ σ. A separable state is a state that can be written as

n∑
j=1

pj ρj ⊗ σj

with p an n-dimensional probability vector. Any state that cannot be written as a separable state is
called entangled. For Hilbert space dimension d, the `maximally mixed state' is 11d

d . A bipartite pure
state ρAB ∈ D(H1⊗H2) is called `maximally entangled' if TrA(ρAB) and TrB(ρAB) are both maximally
mixed states.

In this thesis, we refer to a maximally-entangled state of two qubits as `a singlet'. The particular
maximally-entangled state |01〉−|10〉√

2
will be denoted by |φ〉.

In order to characterize all maximally entangled two-qubit states, we need the following lemma.

Lemma 2.3. (Schmidt decomposition)
Let |ϕ〉 be a pure state, shared between two players A and B. Then there exists a set of states |jA〉,
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orthonormal in the Hilbert space of player A, and a set of states |jB〉, orthonormal in the Hilbert space
of player B, such that

|ϕ〉 =
∑
j

λj |jA〉 ⊗ |jB〉

where the λj ∈ R≥0 satisfy
∑

j λ
2
j = 1. The λj are referred to as the Schmidt coe�cients of |ϕ〉.

Furthermore, the Schmidt coe�cients are unique. If the Schmidt coe�cient λj is nondegenerate for
some j, then the states |jA〉 and |jB〉 are also unique.

For a concise proof of the lemma, we refer to the book by Nielsen and Chuang, Theorem 2.7 [NC00].
The argument for the uniqueness in given in Preskill's lecture notes, Section 2.4 [Pre15].

It is not hard to compute that every maximally entangled two-qubit state has two equal Schmidt
coe�cients 1√

2
. Using the Schmidt decomposition, we obtain a parametrization of such states.

Corollary 2.4. All maximally entangled two-qubit states can be written as

|a0〉 ⊗ |b0〉+ |a1〉 ⊗ |b1〉√
2

where {|a0〉 , |a1〉} and {|b0〉 , |b1〉} are orthonormal bases for the single-qubit Hilbert space.

Since unitary matrices correspond to changes of bases, we see that we can obtain any maximally
entangled two-qubit state from another by application of local unitaries.

2.1.4 Measurements and observables

By a POVM (Positive Operator-Value Measure) measurement on a quantum system, represented by
Hilbert space H, with possible outcomes m ∈ M for M some �nite set, we mean a set of operators
{Em}m∈M that satisfy

∑
m∈M Em = 11H , where each Em is a positive linear map H→ H. If the state

of the system immediately before measurement is ρ, then the probability of measuring m is given by
p(m) = Tr(Emρ).

POVM measurements are the most general type of measurements allowed in quantum mechanics. We
will thus refer to a POVM measurement as simply `measurement'.

A measurement with two outcomes, with measurement operators E+1 and E−1, can be described by
giving the observable Q = E+1 − E−1. Note that given Q, we can compute E±1 = (11 ± Q)/2; hence
the observable Q contains all the information needed to retrieve the measurement operators E+1 and
E−1.

Projective measurements form a special class of measurements, where the set of operators are pro-
jectors: all Em satisfy E2

m = Em. Any measurement can be made into a projective measurement by
embedding the state that is measured into a larger Hilbert space.

Let α ∈ [0, 2π) and let |ϕ〉 ∈ H. Since the pure density matrices of |ϕ〉 and eiα |ϕ〉 are the same,
multiplication with the global complex phase eiα does not change the measurement statistics.
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2.1.5 Bloch ball

The space of matrices of size 2×2 is spanned by 112,X,Y and Z. Since density matrices have unit trace,
any single-qubit density matrix ρ can be written as

ρ =
1

2
(112 + xX + yY + zZ)

with x, y, z ∈ R since ρ is hermitian. It is a straightforward exercise to prove that the eigenvalues of ρ
are nonnegative if and only if x2 + y2 + z2 ≤ 1. Thus we can represent any single-qubit density matrix
as an element (x, y, z) of a three-dimensional unit ball. This visualization is commonly referred to as
the Bloch ball.

2.1.6 Unitaries and isometries

We already mentioned unitary operators, which are bijective inner-product preserving operators. More
generally, an isometry is an inner-product preserving map which is not necessarily bijective. An isometry
V acting on H satis�es V †V = 11dim(H) since 〈ϕ|ψ〉 = 〈ϕ|V †V |ψ〉 for all |ϕ〉 , |ψ〉 ∈ H. If V is an isometry
acting on H, then the map ρ→ V ρV † is an isometry on D(H). Any unitary is an isometry; an example
of an isometry that is not a unitary is e.g. adding an ancilla qubit in a pure state.

2.1.7 Quantum channels

The most general evolution of quantum states is described by quantum channels. By de�nition, a
quantum channel Λ : D(H1)→ D(H2) is a completely-positive trace-preserving map. There are several
ways to argue that this de�nition captures all physically possible transformations that a quantum state
could be subject to. Three of such derivations are given in the book of Nielsen and Chuang [NC00]; we
present two of the resulting de�nitions here.

The �rst equivalent de�nition for Λ to be a quantum channel is as follows.

Lemma 2.5. The map Λ : D(H1) → D(H2) is a quantum channel precisely if there exist operators

Γk : H1 → H2 for 1 ≤ k ≤ n for some number n ∈ N≥1 such that
∑n

k=1

(
Γk
)†

Γk = 11H1 and

Λ(ρ) =
m∑
k=1

Γkρ
(
Γk
)†
. (2.2)

The operators Γk are denoted as the `Kraus operators' of Λ. In general, the set of Kraus operators of
a quantum channel is not uniquely de�ned.

The second de�nition has to do with another decomposition of quantum channels.

Lemma 2.6. The map Λ : D(H1) → D(H2) is a quantum channel if and only if there exists a pure
state σ ∈ D(H3) and a unitary U such that for every ρ ∈ D(H1), we have

Λ(ρ) = TrS
(
U(ρ⊗ σ)U †

)
(2.3)

where S is a subsystem of H1 ⊗H3.

For any quantum channel Λ : D(H1) → D(H2), there exists a unique map Λ† : D(H2) → D(H1)
satisfying 〈Λ(ρ), σ〉 = 〈ρ,Λ†(σ)〉, where ρ ∈ D(H1) and σ ∈ D(H2). The map Λ† is called the dual
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channel of Λ. It is not hard to see that when Λ is decomposed as in Equation (2.2), then Λ† can be
written as

Λ†(ρ) =

m∑
k=1

(
Γk
)†
ρΓk.

In general, the dual of a quantum channel is not necessarily trace-preserving and thus need not be a
quantum channel itself.

2.1.8 Dephasing channels and amplitude-damping channels

Two particular classes of qubit-to-qubit channels will be frequently used throughout the thesis: dephas-
ing channels and amplitude-damping channels. We state the general form of these channels here.

A dephasing channel or phase-damping channel contracts the Bloch ball to an ellipsoid. Formally, we
de�ne the Kraus operators E0 := (1− p

2)112 and E1 := p
2U , where U is some unitary and 0 ≤ p ≤ 1 is

the dephasing parameter. If we choose U = X, for example, then the dephasing channel contracts the
Bloch ball to an ellipsoid with as major axis the line through 11

2 and X. Setting p = 1 corresponds to
full dephasing.

Let |ϕ〉 be a single-qubit state and let |ψ〉 be a state orthogonal to it. The qubit-to-qubit amplitude-
damping channel that damps towards |ϕ〉 has Kraus operators |ϕ〉〈ϕ|+

√
1− γ |ψ〉〈ψ| and √γ |ϕ〉〈ψ|

where 0 ≤ γ ≤ 1 is the damping parameter. By setting γ = 0, the amplitude-damping channel reduces
to identity. Setting γ = 1 yields full damping: when applied to the Bloch ball, the entire Bloch ball is
contracted to the pure state |ϕ〉〈ϕ|, represented as a point on the boundary of the ball.

2.2 From Bell inequalities to self-testing

In this section, we review the mathematics behind Bell nonlocality as brie�y introduced in Chapter 1.
For a thorough review of Bell nonlocality, we refer to Brunner et al. [BCP+14]. For a deeper under-
standing of the connection between Bell nonlocality on the one hand and device-independence and
self-testing on the other, see the lecture notes by Scarani [Sca12].

In a famous paper of Einstein, Podolsky and Rosen [EPR35], the authors describe a paradox that
leads them to the conclusion that quantum mechanics cannot be a complete theory and that �hidden
variables� must be added to the theory in order to predict all properties of a physical system with
certainty. Einstein, Podolsky and Rosen describe two entangled systems3 The authors reason that,
depending on which measurement on the �rst of the two systems we apply, there are di�erent wave
functions that describe the state of the second system. Hence there are physical properties of the sec-
ond system that we cannot predict with certainty. This observation leads the authors, who believe that
two di�erent properties cannot be realized in a same system simultaneously, to the conclusion that
quantum mechanics is incomplete.

Bohm reformulated the thought experiment of Einstein, Podolsky and Rosen with two atoms, whose
spin is the physical property under consideration [Boh51, p.614]. It is this formulation that led John
Bell to prove [Bel64] that the quantum mechanical predictions of an entangled system of two spin-1

2
particles cannot be reproduced using any theory that assumes that the physical properties of the atoms
are only in�uenced by anything spatially close; such a theory is called local. Alternatively, we say that
the predictions of local theories can be explained by local variables. We usually refer to Bell's result

3It is this work from which the name EPR-pair to refer to a maximally entangled state of two qubits comes from.
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that no local theory yields the same statistical predictions as quantum mechanics, as Bell's theorem. In
the next section, we describe what it means for a theory to be local and outline the general framework
of Bell inequalities, which can be used to experimentally falsify any local theory of physics.

2.2.1 Bell games and local variables

We give a review of Bell experiments or Bell games. The basic setup is the same as described in the
introduction, Chapter 1, although in this case the questions to the players in the game are generated
randomly by a third party, a referee, rather than by the players themselves. This setup is suited to the
cryptographic setting where a customer (the referee) bought a source that produces entangled particles
and attempts to verify this claim by having two friends (Alice and Bob) play a Bell game. In the setting
as described in this section, the player-device pair is what is considered as a black box, rather than the
device on its own.

In a Bell game, we have several players who receive input from a referee and return classical output.
For simplicity, we describe the two-player setup here, with players Alice and Bob; the generalization to
an arbitrary number of players is straightforward. Alice (Bob) receives input x (y) and returns output
a (b). For both players, the referee chooses the input uniformly at random from a �nite set; the sizes
of Alice's input set and Bob's input set need not be equal. The same holds for their output sets. The
players are physically isolated to prevent classical signaling between them; this could for example be
implemented by separating them in space and requiring them to answer so quickly to the referee, that
they would need superluminal signaling in order to receive information from the other players.

After playing several rounds of the game, the referee computes the joint statistics Pr(a, b|x, y). Since
in real-life, the number of rounds is �nite, the referee can only estimate the actual correlation using
standard statistical methods; but in theory, by playing su�ciently many rounds, the real correlations
can be approximated with arbitrary precision.

The goal of the referee is to describe the possible behaviors of the players using only the observed
statistics Pr(a, b|x, y). The framework for obtaining information from the observed statistics is struc-
tured as follows. Consider the set of all explanations that we consider possible for the behaviour of
Alice and Bob. Suppose that to each pair of such possible behaviors, we associate some number λ. At
each run of the Bell game, a pair of behaviors λ is chosen according to some probability distribution
ρ(λ). The probability distribution that the referee in a Bell game obtains can now be written as

Pr(a, b|x, y) =

∫
dλ ρ(λ|x, y) Pr(a, b|x, y, λ). (2.4)

For example, suppose that the input and output of all the players are single bits, and that moreover the
output of an individual player can be computed by some deterministic function of the player's input.
In that case, each λ corresponds to a pair of deterministic functions {0, 1} → {0, 1}; there are 16 pairs
in total.

Now let us impose some conditions on Pr(a, b|x, y) for the players' behaviour to be explainable by local
variables. First, the practice of science is based upon the possibility to generate copies of a system, to
which we then perform di�erent measurements. This corresponds to the fact that the choice of λ in
each run does not depend on the inputs x and y:

ρ(λ|x, y) = ρ(λ). (2.5)

This requirement is called measurement independence.
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Secondly, after �xing λ, the behaviour of each player cannot depend on the other's input since Alice
and Bob are physically isolated. Formally, this becomes

Pr(a, b|x, y, λ) = Pr(a|x, λ)Pr(b|y, λ) (2.6)

Combining Equations (2.4), (2.5) and (2.6) yields the following description for a probability distribution
to be explainable by a local theory:

Prlocal(a, b|x, y) =

∫
dλ ρ(λ)Pr(a|x, λ)Pr(b|y, λ). (2.7)

It was shown by Fine [Fin82] that a probability distribution Pr(a, b|x, y) can be explained by local
variables if and only if it can be explained by deterministic local variables; that is, when a players'
output is a deterministic function of λ and his/her input only. Note that even for local variables, the
output of the parties may still be obtained via a stochastic process: the element of chance is then
absorbed into the choice of λ in each run.

2.2.2 The local polytope and Bell inequalities

Let us �x the sizes of the input set and output set of each of the players. Using the formalization above,
it is not hard to show the family of probability distributions of the form Pr(a, b|x, y) that are allowed
by local variables is a convex set. Indeed, suppose that P1 and P2 are such probability distributions
which can both be explained by a local theory; then qP1 + (1 − q)P2 for some q ∈ [0, 1] is explained
by assuming that before every round of the Bell game, a coin with bias q is �ipped, and, depending on
the outcome, a set of possible behaviors of the players of P1 or of P2 is picked.

The extremal points are given by the possible combinations of deterministic strategies that the players
could apply. Because each number of possible inputs and outputs is �nite (by de�nition of a Bell game),
the number of extremal points is �nite too. Hence the convex set is a polytope: this is the local polytope
for given input and output set sizes.

A facet is one of the hyperplanes that delimits the local polytope. A hyperplane can be expressed as

{~n · ~P = c | ~P} (2.8)

where ~n is a normal vector orthogonal to the hyperplane and oriented to the outside of the polytope, c
is some real constant and for a particular probability distribution Pr(a, b|x, y), the vector ~P represents
{Pr(a, b|x, y) | a, b, x, y}. A facet of the local polytope is a hyperplane of dimension d − 1 (where d is
the dimension of the local polytope) that satis�es the following two conditions. First, the intersection
of the local polytope with the facet must be nonempty. Moreover, since the polytope lies on one side
of the facet, all elements ~P of the local polytope satisfy

~n · ~P ≤ c. (2.9)

Some facets correspond to trivial constraints, such as the requirement that probabilities sum up to
one. Other facets impose non-trivial constraints on the probability distribution, however: there exist
quantum states Alice and Bob can share such that Equation (2.9) is violated. If a facet is not trivial, we
refer to Equation (2.9) as its corresponding Bell inequality. The maximal constant c for which Equation
(2.9) is satis�ed for a quantum state and measurements yielding probability distribution ~P, is called
the Bell value or classical value of the Bell inequality. Since there exist games for which these facets
are violated by players who share particular quantum states, the quantum set, the set of probability
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distributions that can be produced by quantum realizations, is strictly larger than the local polytope.
If we drop the condition that Alice and Bob are restricted by quantum realizations, the resulting family
of probability distributions is even larger than the quantum set; this is the nonsignaling set.

It is straightforward to compute that measurements on separable states yield a probability distribution
that can be explained by local variables. By taking the contraposition of this statement, we see that
entanglement is necessary for Bell violation.

We now zoom in on a particular Bell experiment, the CHSH game [CHSH69].

2.2.3 The CHSH game and self-testing of the singlet

In a single round of the CHSH game, two physically isolated players, Alice and Bob, are given single-bit
questions x and y by a third party, the referee. The questions are picked uniformly at random. Alice
and Bob share a bipartite state ρAB that they may use. After receiving their questions, they perform
their local measurements and return single-bit answers, a and b, respectively. Alice and Bob are said
to win the game if a+ b (mod 2) ≡ x ∧ y and lose otherwise.

Denote the set of measurement operators that Alice applies to her part of the state by {P x0 , P x1 }. Simi-
larly, Bob's measurement operators can be denoted by {Qy0, Q

y
1}. According to the quantum formalism,

the conditional probabilities are

Pr(a, b|x, y) = Tr
[
(P xa ⊗Q

y
b )ρAB

]
(2.10)

Now write
Ax := P x0 − P x1 , By := Qy0 −Q

y
1

One could think of Ax and By as observables, but this is not needed for what follows; one could also
think of these as de�nitions that are mathematically convenient.

By summing up the expressions as in Equation (2.10) for Pr(a, b|x, y) that refer to the winning condi-
tions of the CHSH game, one can show that the probability that Alice and Bob win the game equals

Pr(win) =
1

2
+
β

8

where β := Tr[WρAB] is the Bell value and W is the CHSH operator :

W :=

1∑
x,y=0

(−1)x·yAx ⊗By. (2.11)

The referee collects statistics by letting Alice and Bob play multiple rounds. During each round they
are physically isolated, but they are allowed to refresh their state and to communicate in between the
rounds. This could for example be implemented by letting Alice and Bob set up their state through a
quantum channel that is controlled by the referee.

It is not hard to show that if ρAB is classical or separable, then β ≤ 2. For quantum states, it has
been shown that the Bell value β cannot exceed 2

√
2: this is known as Cirel'son's bound [Cir80]. This

upper bound is achieved exactly when Alice and Bob share the singlet state |φ〉 = |01〉−|10〉√
2

, up to local
unitaries and auxiliary degrees of freedom [PR92, BMR92]. That is, there exist local measurement
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operators such that the state ρ violates the CHSH inequality maximally, if and only if there exist local
unitaries UA, UB and a state σ such that

ρ = (UA ⊗ UB)(|φ〉〈φ| ⊗ σ)(U †A ⊗ U
†
B) (2.12)

where |φ〉 is the singlet state. We will refer to a bipartite state ρAB as an ideal state if and only if there
exist local measurement operators such that the CHSH inequality is violated maximally. The latter
condition is the case precisely if ρAB can be written in the form of Equation (2.12).

Here, it is important to mention that the `i.i.d assumption'. To be precise: in each round, a random
variable underlies the observed outcomes given the incomes. These random variables are identical and
independently distributed over the di�erent rounds. With this assumption, we can estimate the actual
probabilities with arbitrary precision by playing su�ciently many rounds. Without the i.i.d. assump-
tion, Alice and Bob could prepare di�erent states and apply di�erent measurements during the rounds;
thus the probabilities need not converge. In particular, without this assumption, Alice and Bob could
be classical players and achieve CHSH violation in the limit of in�nitely many rounds with nonzero
probability. The i.i.d. assumption makes our model clear and reasonable.

It is crucial here that we do not allow for classical communication between Alice and Bob; doing so
would enlarge the set of ideal states. To see this, consider the state (|00〉 + |11〉 + |22〉)/

√
3. It is not

hard to see that this state does not violate CHSH maximally since it cannot be written in the form
(UA⊗UB)(|φ〉〈φ|⊗σ)(U †A⊗U

†
B), where UA, UB are unitaries, |φ〉 is the singlet and σ an arbitrary state.

However, such a transformation is possible under local operations with classical communication (see
Theorem (1) in [Nie99]).

Consider the cryptographic setting where a customer bought two quantum-cryptographic devices from
a vendor, who claims that his devices produce singlets, and that each device receives a qubit from each
maximally-entangled pair when we connect the two devices with a quantum channel. Then the CHSH
game can be used to verify this claim: the customer asks two friends, Alice and Bob, to come help
testing the devices. The testing setup is evident: Alice and Bob connect the devices to let them share
a singlet, then physically isolate themselves from each other and subsequently play a single round of
the CHSH game, where the customer acts as a referee. They repeat the process to collect statistics. If
the resulting Bell violation is 2

√
2, the claim that the devices share the singlet state has been veri�ed.

Using the CHSH game, the customer can thus self-test the singlet. It is worthwhile to emphasize that
the customer can be classical, and moreover does not need to possess any knowledge of quantum physics.

In reality, due to experimental noise and the �niteness of the number of rounds that can be played, the
Bell violation cannot be expected to equal 2

√
2 even when Alice and Bob do share a singlet state. This

practical aspect requires self-testing statements to be robust to errors, which is the main topic of this
thesis. We will get into further details on robust self-testing and the formalization of the self-testing
problem in general in Chapter 3.

2.2.4 Jordan's lemma

In the device-independent scenario, there are no limitations on the dimension of the observables of
Alice and Bob. The CHSH operator, which can be written in terms of the observables, is therefore
di�cult to analyze in general. Fortunately, the following lemma greatly simpli�es the analysis.

Lemma 2.7. (Jordan's lemma)
Let M0 and M1 be Hermitian operators with eigenvalues 1 and −1. Then there exists a basis in which
both operators are block-diagonal, where the blocks have dimensions 2× 2 at most.

15



For the proof, we refer to Scarani's lecture notes [Sca12, p.32].

Jordan's lemma is useful in the context of obtaining self-testing statements from operator inequalities,
as explained in Section 3.5.

2.2.5 Werner states

Many results have been proven on the relations between observed statistics, Bell inequalities and the
quantum states and measurements achieving maximal violation, both for speci�c Bell inequalities as
well as general results (we again refer to the work of Brunner et al. for an overview [BCP+14]). We
wish to emphasize a speci�c result by Werner [Wer89], who proved that there exist bipartite mixed
states (later called Werner states) that do not violate any Bell inequality, despite the fact that they are
entangled. The Werner states where both parties have a qubit can be written as a convex combination
of the singlet and the maximally mixed state:

ρ = p |φ〉〈φ|+ (1− p)114

4

where |φ〉 := (|01〉 − |10〉)/
√

2 is the singlet state and p ∈ [0, 1] is the visibility parameter. It can be
shown that for p > 1

3 , the Werner states are entangled. However, the correlation statistics that Alice
and Bob can achieve with this state can be described by local variables for p ≤ 5

12 when any POVM
measurements are allowed [Bar02] (for just projective measurements, the statistics can be explained
by local variables for p ≤ 1

2 [Wer89]). Therefore all Werner states with 1
3 < p ≤ 1

2 are entangled, but
nonetheless cannot violate any Bell inequality.

Thus although entanglement is needed to violate a Bell inequality, it is not su�cient. In Chapter 4, we
show a result that has, in the context of self-testing, a similar �avor: there exists a bipartite state that
is entangled, but there are no quantum operations that Alice and Bob could apply locally to achieve
the �delity of this state with the singlet to more than some trivial lower bound. For details, we refer
to Chapter 4.

Classical communication is prohibited in Bell experiments. In order to relate our result from Chapter 4
to similar results in the LOCC setting (local operations with classical communication), we need the
notions of entanglement distillation and bound entanglement.

2.2.6 Entanglement distillation and the partial transpose

Two separated parties can send quantum information to each other using just local operations and
classical communication (LOCC) through a process called `teleportation', which requires the presence
of highly entangled bipartite states. In order to obtain such states, one uses `entanglement distillation',
which refers to the use of several copies of (slightly) entangled bipartite states in order to create a sin-
gle maximally entangled state between two players using LOCC operations. A bipartite state is called
`undistillable' if it is not possible to distill entanglement from any number of copies of this state. A
state is called `bound entangled' if it is entangled but nevertheless undistillable. For a more thorough
introduction to entanglement distillation, we refer to Horodecki et al. [HHHH09].

A useful tool to test for distillability is the partial transpose of a density matrix. Let ρAB ∈ D(HA⊗HB)
be a density matrix, which can be written as

ρAB =

dA∑
i=1,j=1

dB∑
k=1,l=1

pijkl |i〉〈j| ⊗ |k〉〈l|
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with coe�cients pijkl ∈ C, where dA (dB) is the dimension of HA (HB). The partial transpose of ρAB is
de�ned as

dA∑
i=1,j=1

dB∑
k=1,l=1

pijlk |i〉〈j| ⊗ |k〉〈l| .

In order to test whether a bipartite state is separable, one could use the `Peres-Horodecki criterion',
also known as the `PPT criterion' [Per96] (`PPT' stands for `positive partial transpose'). The PPT
criterion states that if ρAB is separable, then its partial transpose is positive semide�nite. The converse
does not hold in general. However, PPT entangled states are �weakly� entangled in the sense that they
are not distillable.

If a state is not PPT, it is called NPT (which stands for `nonpositive partial transpose'). It was shown by
Werner and Wolf that nonpositivity of the partial transpose is necessary for CHSH violation [WW01].
The only known criterion for proving a state to be undistillable, is to show that it is PPT. It is still an
open question whether states exist which are both bound entangled and NPT.

2.3 Preliminaries to Chapter 4

This section contains a number of auxiliary lemmas for our proof that CHSH violation does not imply
nontrivial singlet extractability (see Chapter 4).

All the lemmas in this section state properties of quantum states or quantum channels. First we show
that applying the modulus to a hermitian operator can never decrease inner products with positive
matrices.

Lemma 2.8. Let X ∈ Herm(H) and let Y ∈ Pos(H). Then 〈X,Y 〉 ≤ 〈|X|, Y 〉, where 〈., .〉 denotes the
Hilbert-Schmidt inner product as de�ned in Equation (2.1).

Proof. Note that the operator inequality X ≤ |X| holds trivially. From this, we derive that, in par-
ticular, for every eigenvector |j〉 of Y , we have 〈j|X|j〉 ≤ 〈j| |X| |j〉. Now write Y in its eigenbasis:
Y =

∑d
j=1 λj |j〉〈j|, with λj ≥ 0 for all 1 ≤ j ≤ d, where d is the dimension of the Hilbert space H.

Then we compute

〈|X|, Y 〉 − 〈X,Y 〉 = 〈|X| −X,Y 〉 = Tr((|X| −X)Y ) =
d∑
j=1

λj
(
〈j| |X| |j〉 − 〈j|X|j〉

)
which is positive since λj ≥ 0 and 〈j| |X| |j〉 ≥ 〈j|X|j〉 for all 1 ≤ j ≤ d.

Throughout our proofs in the thesis, we will use the fact that the trace inner product of two positive
operators is nonnegative, as shown in the next lemma.

Lemma 2.9. Let X,Y ∈ Pos(H). Then Tr(XY ) ≥ 0.

Proof. Write Y in its eigenbasis as Y =
∑d

j=1 λj |j〉〈j| with 1 ≤ j ≤ d = dim(H). Since X is positive,

we have 〈j|X|j〉 ≥ 0 for all j. Hence Tr(XY ) =
∑d

j=1 λj 〈j|X|j〉 ≥ 0.

We also prove that the trace inner products of three arbitrary single-qubit states obey a restriction
that is reminiscent of the triangle inequality for norms.
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Lemma 2.10. Let ρ, σ and τ be density matrices of single qubits. Suppose that

Tr(ρσ) ≥ 1− δ1

Tr(στ) ≥ 1− δ2

for 0 ≤ δ1, δ2 ≤ 1
2 .

Then Tr(ρτ) ≥ (1− 2δ1)(1− 2δ2). This bound is tight for some single-qubit density matrices.

Proof. Since ρ is a density matrix of a single qubit, we can write ρ = 1
2(112 + rXX + rYY + rZZ) with

||~r||2 = (rX)2 + (rY)2 + (rZ)2 ≤ 1, for a three-vector of coe�cients ~r = (rX, rY, rZ). Similarly for σ and
τ , with vectors ~s and ~t, respectively.

It is straightforward to calculate Tr(ρσ) = 1
2(1 + ~r · ~s), where ~r · ~s := rXsX + rYsY + rZsZ is the stan-

dard inner product on Euclidean spaces. The expressions for Tr(ρτ) and Tr(στ) follow by appropriate
substitution of the direction vector. With these expression for the trace of the products of ρ,σ and τ ,
the lower bounds become (~r · ~s) ≥ 1− 2δ1 and (~s · ~t) ≥ 1− 2δ2.

We distinguish two cases:

• Case ~s = ~0. Then σ = 112
2 , so Tr(ρσ) = Tr(στ) = 1

2 , hence δ1 = δ2 = 1
2 (since we have assumed

that δ1, δ2 ≤ 1
2). Hence the bound Tr(ρτ) ≥ (1 − 2δ1)(1 − 2δ2) reduces to Tr(ρτ) ≥ 0, which

indeed holds by Lemma 2.9.

• Case ~s 6= ~0. Dragomir proved an inequality between three inner products [Dra05, p.47]:∣∣∣(~r · ~s) · (~s · ~t)||~s||2
− (~r · ~t)

2

∣∣∣ ≤ ||~r||2||~t||2
2

for ~s 6= ~0.

Since ||~r||, ||~t|| ≤ 1 for our problem, this reduces to∣∣∣(~r · ~s) · (~s · ~t)||~s||2
− (~r · ~t)

2

∣∣∣ ≤ 1

2
for ~s 6= ~0

In particular, we can remove the modulus-symbols to obtain

(~r · ~s) · (~s · ~t)
||~s||2

− (~r · ~t)
2
≤ 1

2
for ~s 6= ~0

Reordering results in
(~r · ~s) · (~s · ~t)
||~s||2

≤ 1 + (~r · ~t)
2

for ~s 6= ~0

Since ||~s|| ≤ 1 and (~r · ~s) ≥ 1− 2δ1 ≥ 0 and (~s · ~t) ≥ 1− 2δ2 ≥ 0, we get

(~r · ~s) · (~s · ~t) ≤ (~r · ~s) · (~s · ~t)
||~s||2

≤ 1

2
(1 + (~r · ~t)) = Tr(ρτ) for ~s 6= ~0

Now substituting our bounds (~r · ~s) ≥ 1− 2δ1 and (~s · ~t) ≥ 1− 2δ2 yields the desired result.
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Tightness. Let

ρ =
112 + X

2
, σ =

112 + X+Z√
2

2
, τ =

112 + Z

2

be pure density matrices. Set δ = 1
2 −

1
2
√

2
. Then we verify that

Tr(ρσ) =
1

4
Tr

(
112 +

1√
2

112

)
=

1

2
+

1

2
√

2
= 1− δ

and by symmetry, Tr(στ) = 1− δ too. Also,

Tr(ρτ) =
1

4
Tr(112) =

1

2
=
( 1√

2

)2
=
(

1−
[
1− 1√

2

])2
=
(

1− 2
[1

2
− 1

2
√

2

])2
= (1− 2δ)2

hence the bound is tight for ρ, σ, τ .

The bipartite state that we constructed (see Chapter 4) is a `classical-quantum state', which is de�ned
as follows.

De�nition 2.11. Let Hc and Hq be Hilbert spaces of dimensions dc and dq, respectively. A state
ρcq ∈ D(Hc ⊗Hq) is called classical-quantum if it can be written in the form

ρcq =

dc∑
j=1

pj |j〉〈j| ⊗ σj

where the set {|j〉}dcj=1 forms an orthonormal basis of Hc, p is a probability vector and σj ∈ D(Hq) for
all 1 ≤ j ≤ dc.

Let Bc = {|j〉}dcj=1 be an orthonormal basis for Hc. We refer to the set

SBc :=
{ dc∑
j=1

pj |j〉〈j| ⊗ σj
∣∣∣ σj ∈ D(Hq) and p a probability vector of dimension dc

}
as the `set of classical-quantum states on Hc ⊗Hq given basis Bc'.

Quantum channels acting on classical-quantum states allow for a special decomposition; we can think
that the channel reads the value of the classical register and applies a channel from Hq which depends
on this value.

Lemma 2.12. Let Hc,Hq and Hout be Hilbert spaces of dimensions dc, dq and dout, respectively. Let
Bc = {|j〉}dcj=1 be an orthonormal basis for Hc and denote by SBc the set of classical-quantum states on
Hc ⊗Hq given basis Bc.

Let Λ : D(Hc ⊗Hq)→ D(Hout) be a quantum channel. Then there exists a set of dc quantum channels

{Λj : D(Hq)→ D(Hout)}dcj=1 such that for every state ρCQ :=
∑dc

j=1 pj |j〉〈j| ⊗ σj ∈ SBc, we have

Λ(ρCQ) =

dc∑
j=1

pjΛj(σj).
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Proof. Extend the basis Bc to a basis of Hc⊗Hq, denoted by Bcq := {|j〉⊗|j′〉 | 1 ≤ j ≤ dc, 1 ≤ j′ ≤ dq},
where {|j′〉}dqj′=1 is an arbitrary basis of Hq.

Write Λ in terms of its Krauss operators:

Λ(ρ) :=

N∑
i=1

Γiρ(Γi)
† with

∑
i

(Γi)
†Γi = 11dc·dq .

Now write each Krauss operator as Γi =
∑dc

k=1 〈k| ⊗ Γi,k, where |k〉 ∈ Bc and Γi,k : Hq → Hout. One
can do this, for example, by writing each Γi, which can be represented as a matrix with dout rows and
dc · dq columns, in the basis Bcq. Then partition the matrix into dc blocks of dout rows and dq columns;
each such a block is denoted by Γi,k, for 1 ≤ k ≤ dc.

Now we rewrite

Λ(ρCQ) =

dc∑
j=1

pj

N∑
i=1

Γi(|j〉〈j| ⊗ σj)(Γi)†

=

dc∑
j=1

pj

N∑
i=1

dc∑
k=1

dc∑
k′=1

(
〈k| ⊗ Γi,k

)(
|j〉〈j| ⊗ σj

)( ∣∣k′〉⊗ (Γi,k′)
†)

=

dc∑
j=1

pj

N∑
i=1

dc∑
k=1

dc∑
k′=1

δk,jδj,k′Γi,kσj(Γi,k′)
†

=

dc∑
j=1

pj

N∑
i=1

Γi,jσj(Γi,j)
†

where δ denotes the Kronecker-delta-function. We complete the proof by showing that the maps
Λj : D(Hq) → D(Hout), σ 7→

∑N
i=1 Γi,jσ(Γi,j)

† are quantum channels. For this, we only need to
prove that

∑N
i=1(Γi,j)

†Γi,j = 11dq for all j ∈ {1, . . . , dc}.

Fix j ∈ {1, . . . , dc}. Let |a〉 , |b〉 ∈ Hq and let |j〉 be the j-th basis vector in Bdc . Then we derive

〈a|
N∑
i=1

(Γi,j)
†Γi,j |b〉 =

dc∑
k=1

dc∑
k′=1

(
〈j| ⊗ 〈a|

)( N∑
i=1

(
|k〉 ⊗ (Γi,k)

†)( 〈k′∣∣⊗ Γi,k′
))(
|j〉 ⊗ |b〉

)
=

N∑
i=1

(
〈j| ⊗ 〈a|

)( dc∑
k=1

dc∑
k′=1

(
|k〉 ⊗ (Γi,k)

†)( 〈k′∣∣⊗ Γi,k′
))(
|j〉 ⊗ |b〉

)
.

Now, using the fact that
∑N

i=1(Γi)
†Γi = 11m and Γi =

∑dc
k=1 〈k| ⊗ Γi,k for every i ∈ {1, . . . , N}, we

obtain

〈a|
N∑
i=1

(Γi,j)
†Γi,j |b〉 = (〈j| ⊗ 〈a|)11m(|j〉 ⊗ |b〉)

= 〈j|j〉 · 〈a|b〉
= 〈a|b〉

hence
∑N

i=1(Γi,j)
†Γi,j = 11m indeed.
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The following lemma captures the fact that if a qubit-to-qubit quantum channel moves the maximally
mixed state 112

2 to a certain point close to the surface of the Bloch ball, then the entire Bloch ball is
mapped to a small region close to this point.

Lemma 2.13. Let P = cXX+ cYY+ cZZ, where cX, cY, cZ are real-valued coe�cients obeying c2
X + c2

Y +
c2
Z = 1. Furthermore, let Λ be a quantum channel, such that the eigenvalues of Λ(112

2 ) are δ and 1− δ,
with 0 ≤ δ ≤ 1

2 .

Then the matrix modulus of Λ(P ) can be upper bounded by |Λ(P )| ≤ 2
√
δ112.

Proof. By positivity of quantum channels we have Λ
(

112±P
2

)
≥ 0. Denote ω := Λ(112

2 ), so that we

obtain −2ω ≤ Λ(P ) ≤ 2ω.

Every matrix in this proof of which the entries are written explicitly, is written in the eigenbasis of ω.
This is straightforward for the matrix ω:

ω =

(
δ 0
0 1− δ

)
.

In order to write Λ(P ) in the eigenbasis of ω, we note the following facts. Since Λ is a quantum channel,
it sends hermitian operators to hermitian operators. Also, Λ is trace-preserving. Combining these two,
we see that Λ(P ) can be written in the eigenbasis of ω as

Λ(P ) =

(
t y
y∗ −t

)
for some t ∈ R, y ∈ C.
Now Λ(P ) ≥ −2ω translates into (

2δ + t y
y∗ 2− 2δ − t

)
≥ 0

which implies that the determinant of Λ(P ) + 2ω is greater than or equal to zero:

(2δ + t) · (2− 2δ − t)− |y|2 ≥ 0.

Similarly, from Λ(P ) ≤ 2ω, we obtain

(2δ − t) · (2− 2δ + t)− |y|2 ≥ 0.

Adding the two equalities gives

(2δ + t)(2− 2δ − t) + (2δ − t)(2− 2δ + t)− 2|y|2 ≥ 0.

Expanding the left hand side yields

8δ − 8δ2 − 2t2 − 2|y|2 ≥ 0.

Dividing by 2 on each side yields
4δ − 4δ2 − t2 − |y|2 ≥ 0

from which we obtain
t2 + |y|2 ≤ 4δ − 4δ2 = 4δ(1− δ) ≤ 4δ · 1 = 4δ (2.13)

where we used the fact that δ ≥ 0.
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We use Equation (2.13) to show that 2
√
δ − |Λ(P )| ≥ 0. We compute (in the eigenbasis of ω):

2
√
δ112 − |Λ(P )| = 2

√
δ112 −

√
Λ(P )2

= 2
√
δ112 −

√(
t2 + |y|2 0

0 t2 + |y|2
)

=

(
2
√
δ −

√
t2 + |y|2 0

0 2
√
δ −

√
t2 + |y|2

)
.

Using Equation (2.13), we now conclude that 2
√
δ112 − |Λ(P )| is a positive matrix.

The �delity of any separable bipartite state with another state is bounded as in the following lemma.

Lemma 2.14. Let ρ be a separable bipartite state. The �delity of ρ with a pure bipartite state ϕ is
upper bounded as

F (ρ, ϕ) ≤ λmax(ϕ)2

where λmax(ϕ) denotes the largest Schmidt coe�cient of the state ϕ. Furthermore, if λmax is nondegen-
erate, then the bound is saturated if and only if ρ equals the unique pure product state that corresponds
to λmax(ϕ) in the Schmidt decomposition of ϕ.

Proof. We prove the case where ρ is a pure product state. Since a separable state can be written as
convex combination of product states and any product state can be written as convex combination of
pure product states, considering pure product states is su�cient for proving the lemma.

Write ρ = ψA ⊗ ψB with ψA = |ψA〉〈ψA| and ψB = |ψB〉〈ψB| pure states. Furthermore, let

|ϕ〉 =
∑

j λj |jA〉 ⊗ |jB〉

be a Schmidt decomposition of ϕ = |ϕ〉〈ϕ|. Using Lemma 2.2 and the fact that ϕ is pure, we have

F (ρ, ϕ) = F (ψA ⊗ ψB, ϕ) = Tr((ψA ⊗ ψB)ϕ)

hence

F (ρ, ϕ) = Tr((ψA ⊗ ψB)ϕ)

=
∣∣(〈ψA| ⊗ 〈ψB|) |ϕ〉 ∣∣2

=
∣∣∑

j

λj(〈ψA|jA〉 · 〈ψB|jB〉)
∣∣2

≤
∑
j

λ2
j | 〈ψA|jA〉 · 〈ψB|jB〉 |2

≤ λ2
jmax · 1 (2.14)

where λjmax = λmax(ϕ) denotes the largest Schmidt coe�cient of ϕ.

If λjmax is nondegenerate, then Inequality (2.14) is saturated if and only if |ϕA〉⊗|ϕB〉 = |jmax
A 〉⊗|jmax

B 〉.
Conversely, if |ϕA〉⊗|ϕB〉 = |jmax

A 〉⊗|jmax
B 〉, then indeed F (ρ, ϕ) = λ2

jmax = λmax(ϕ)2. We thus conclude
that the upper bound is saturated if and only if |ϕA〉 ⊗ |ϕB〉 = |jmax

A 〉 ⊗ |jmax
B 〉.
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3 Self-testing: a brief overview

One of the most promising branches of quantum cryptography is arguably the �eld of Quantum Key
Distribution (QKD), where the main task is to use quantum states and measurements to generate a
random bit string (the key) known only to the two communicating parties and no-one else. Surpris-
ingly, QKD protocols were constructed that remained secure even if they are executed using untrusted
devices. Such protocols are now called `device-independent' quantum-key-distribution (DI-QKD) pro-
tocols. Bell nonlocality is a key tool for DI-QKD, since observed statistics can allow us to rule out any
classical correlations and moreover can in some extremal cases almost uniquely identify the state and
measurements.

The development of the �eld of self-testing, which refers to device-independent certi�cation of the state
and measurements, cannot be seen independently from its applications in quantum cryptography.
We �rst give a brief overview of the development of the device-independent perspective on QKD and
randomness generation, before formalizing the self-testing problem. As already mentioned in Chapter 2,
in the entire thesis the term `singlet' will be used to refer to a maximally entangled pair of two qubits.

3.1 The emergence of the device-independence paradigm

In the celebrated QKD protocol by Ekert [Eke91], Alice and Bob receive qubits from a singlet source,
so that each of them ends up with one qubit from each maximally entangled pair. The two parties
apply measurements to their part of the states and subsequently use the CHSH inequality to test for
eavesdropping: suppose that an eavesdropper had intercepted one or more qubits and measured them
before sending them on. Then the resulting two-qubit state that the intercepted qubits were part of is
not entangled. Hence the presence of an eavesdropper decreases the CHSH value β to at most the clas-
sical value 2. The case of an imperfect source that does not send maximally entangled states, thereby
seriously compromising the security of this protocol, will also yield strictly smaller CHSH violation.
Ekert was the �rst to show that Bell nonlocality can be useful for quantum cryptographic purposes.

Later, Bennett et al. [BBM92] proposed a simpler QKD scheme (called `BBM' afterwards), based on
maximally entangled pairs of qubits too but without the need to invoke Bell nonlocality. This protocol
is an entanglement-based version of the BB84 scheme [BB84].

Such entanglement-based protocols were the initial motivation behind the research of Mayers and Yao,
who were the �rst to explicitly notice the usefulness of certifying state and measurements using observed
correlations [MY98, MY04] (although the ideas were implicit in earlier papers [Cir80, PR92, SW88]).
They remark that imperfect sources can be constructed that undermine the security of the protocol
while it requires thorough investigation to detect the imperfection of the source; therefore, a `self-
checking source' is needed, and we can `self-test' the underlying state and measurements. At the time,
it was already known that all states that violate the CHSH inequality maximally can be written in the
form

(UAA′ ⊗ UBB′)(|ϕAB〉〈ϕAB| ⊗ τA′B′)(U †AA′ ⊗ U
†
BB′) (3.1)

does so too, where |ϕAB〉 is the singlet state, UAA′ and UBB′ are unitaries and τA′B′ can be any state
[PR92, BMR92]. However, although Mayers and Yao explicitly mention the relevance of Bell inequal-
ities in Ekert's QKD protocol, they did not explicitly use Bell inequalities for self-testing themselves.
Instead, they used the entire conditional probability distribution, obtained from a Bell experiment, and
showed that particular observed correlations uniquely identify the underlying state and measurements,
up to the same equivalences as de�ned in Equation (3.1). It is noteworthy to mention that the condi-
tions that Mayers and Yao impose on the observed correlations clearly violate the CHSH inequality,
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although not maximally; thus, use of the entire set of observed correlations rather than just a Bell
value yields more information about the underlying state, as one would expect.

After the �rst paper by Mayers and Yao on self-testing, it took a while before the �eld of device-
independence took o�. Scarani, one of the pioneers in the �eld, attributes this in hindsight to the fact
that quantum cryptography was still young [Sca12, Appendix B]. After quantum cryptography had
outgrown its early stage, the �rst work to pave the way for a new �eld was the work of Barrett, Hardy
and Kent [BHK05], who used Bell nonlocality to construct the �rst device-independent quantum cryp-
tographic protocol which is secure against all non-signaling eavesdroppers. It is important to note here
that such a protocol remains useful even if quantum mechanics turns out to be invalid, as long as the ad-
versaries are non-signaling. With the proposed protocol, Alice and Bob can generate a single shared bit.

Not long after, Acín et al. [AGM06] published a paper in which several previous results were reconsid-
ered. First, the authors noted that the BB84 protocol and its entanglement-based variant BBM are not
secure in the context of device-independence. The realization that the security of BB84 and BBM are
based upon the assumptions that qubits are being sent came from the perspective of Bell nonlocality:
in both protocols, the joint statistics that Alice and Bob compute can always be reproduced using
local variables (see [Sca12, p.12]), hence the correlations that are produced locally could in reality be
using a larger, separable state. This makes both protocols un�t for use with untrusted devices. Others
con�rmed the compromised security of BB84 and BBM in a device-independent setting for di�erent
reasons [MMMO06, Appendix A]. Inspired by the Ekert protocol, Acín et al. use the CHSH inequality
to construct a QKD protocol and call it `CHSH-protocol'. In this work, the set of states that maximally
violate the CHSH inequality, as given by Equation (3.1), is explicitly used.

At roughly the same time, Scarani et al. [SGB+06] built upon the work of Barrett et al. to prove that
noisy quantum states can also be used to achieve correlations that are `su�ciently nonlocal' for key
generation.

Later, Acín et al. zoom in on on quantum adversaries rather than the more general nonsignaling ones, in
order to obtain better key rates [ABG+07]. It is this paper also, in which the term `device-independence'
is �rst coined.

A couple of years later, the �rst results on randomness generation with potentially untrusted devices
and randomness ampli�cation from Bell nonlocality were obtained [Col07, PAM+10, CK11].

We can say that, based upon the numerous results in the �eld, in the meantime, device-independent
QKD has clearly taken o�. Most research so far has focused on creating more key with increasingly
noisier states and fewer device uses and their proofs of security in a device-independent scenario
[AMP06, MW06, MPA11, VV14, DFR16, AFRV16]. Randomness generation and ampli�cation with
potentially untrusted devices has also seen a lot of activity [SCA+11, VV12, CVY13, BPPP14, MS16].
We refer to Ekert and Renner's review for a more complete set of references [ER14].

Whenever `device-independence' is used nowadays, the term usually refers to the use of Bell nonlocal-
ity in applications such as QKD and randomness generation. While increasingly more results on this
side were obtained, the fundamental interests in the connection between observed correlations and the
underlying state and measurements itself also started to grow: this is the subject of self-testing, which
deals with device-independent state and measurement certi�cation. In self-testing scenarios, the fact
that nonlocality can be shown using observed correlations is taken one step further (see also Figure 2):
if we assume that quantum physics gives a correct description of the physical system under
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consideration, then given observed correlations, what knowledge can be inferred about the state and
the measurements? The �rst work of Mayers and Yao stated correlations that are only produced by the
singlet (up to the equivalences from Equation (3.1)); an immediate follow-up question is: what if the
correlations are not perfect? In practice, the real correlations are based upon a �nite number of runs
of a Bell game and can therefore only be estimated. Moreover, experiments are never free of noise. We
thus need to be able to perform self-testing with robustness against errors. Bardyn et al. [BLM+09]
was one of the �rst to consider several �gures of merit to formalize the robustness problem, followed
by McKague et al. [McK10, MYS12, McK14].

Alice Bob

x y

a b

Figure 2: The setup for self-testing of bipartite quantum states. Two players, Alice and Bob, each
have a device. Both devices are given classical input (x and y, respectively), which corresponds to
the application of measurements inside the devices, and classical output (a and b). The devices are
physically isolated, so that sending signals from one to the other is not possible. The central question
is: given the conditional probabilities Pr(a, b|x, y), what information can be obtained about the state
that the devices share?

This thesis presents our work on self-testing of quantum states. In this chapter, we give an overview of
the states that have been shown to be identi�able with certain correlations. We discuss several �gures of
merit used to formalize the problem of robust self-testing and we show how previous self-testing proofs
�t in in these formalizations. This chapter is ordered as follows. First, we de�ne when a state can be
self-tested and discuss several formalizations of robust self-testing, the setting in which the observed
correlations are not identical to the correlations a reference state would produce. Then we give a brief
overview of which states have been shown to be self-testable so far. After this, we turn our attention
to an outline of the methods that were used so far to prove self-testing statement: we identi�ed two
main methods for �nding robust self-testing statements and categorized the main results according to
these two methods. This chapter aims to only give a brief overview of the main results in the �eld
of self-testing. In the next chapters, more focus will be on self-testing of the singlet and of partially
entangled two-qubit states, since our work extends the known results for the certi�cation of these states.

3.2 Formalization of the self-testing problem of state certi�cation

In self-testing of states, the main question is: given observed correlations, what can be inferred about
the underlying state? Before giving a formalization of this question, let us focus on what we cannot
infer. For simplicity, we focus on the CHSH inequality as an example.
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We know that if the devices share the singlet state, then their correlations can maximally violate the
CHSH inequality if particular measurements are applied inside the devices. However, the devices could
as well contain states that are left untouched during the measurement. As more poetically formulated
by McKague et al. [MYS12], isolated qubits do not exist in nature: for example, when a qubit is real-
ized as the spin of an electron, then we need the entire electron, including properties such as angular
momentum. Therefore, if we add degrees of freedom to the singlet state (that is, we tensor it with
an arbitrary state upon which the measurements act trivially), then the devices will still maximally
violate the CHSH inequality.

Moreover, Alice could change the local bases of her state and simultaneously change her measurement
operators in the same way, which will not a�ect the correlation statistics when she plays the CHSH
game. Likewise for Bob. Hence, our de�nitions should also allow for local changes of bases.

Neither of these features can be detected on the basis of the observed correlations only. Therefore, if
ρAB maximally violates a particular Bell inequality, then

(UAA′ ⊗ UBB′)(ρAB ⊗ τA′B′)(U †AA′ ⊗ U
†
BB′) (3.2)

does so too, where UAA′ and UBB′ are unitaries and τA′B′ can be any state. Note that this expression
is exactly the same as Equation (3.1); if we let ρAB denote the singlet state, then all states that vi-
olate the CHSH inequality can be written as in Equation (3.2). Thus, surprisingly, the two inherent
limitations to self-testing turn out to be not only necessary, but also su�cient in some cases, such as
in the case of the CHSH inequality.

For a formalization of the self-testing problem, we follow the general framework proposed by McKague
et al. [MYS12], which builds upon the original work by Mayers and Yao and was already used in earlier
work [McK14]. This formalization has been used by many others [McK14, MYS12, YVB+14, BP15,
BNS+15, CGS16].

The framework is best understood when taking the `necessary and su�cient' condition from Equa-
tion (3.2) as a starting point. Let us �rst consider the case in which all states are pure. In line with
McKague et al., we de�ne a pure state |ψ〉 to be self-testable using a particular Bell test if the following
holds: if a pure state |ψ〉 has the property that there exist local measurements that yield the same
correlations as |ϕ〉 in the Bell test, then |ϕ〉 can be obtained from |ψ〉 by adding pure ancilla states
and applying local changes of bases (i.e. local unitaries). Since adding ancillas in a pure state, followed
by an application of unitaries does not change inner products, these considerations bring us onto the
use of local isometries. Formally, we require the existence of local isometries VA and VB and a �junk�
state |junk〉 such that (

VA ⊗ VB)(|ϕ〉) = |ψ〉 ⊗ |junk〉 . (3.3)

Another motivation for the use of local isometries is the fact that the correlations can be written as
inner products Pr(a, b|x, y) = Tr

(
(P xa ⊗Q

y
b )ρAB

)
. As

Tr
(
(P xa ⊗Q

y
b )ρAB

)
= Tr

(
(VAP

x
a V
†
A ⊗ VBQ

y
bV
†
B)(VA ⊗ VB)ρAB(V †A ⊗ V

†
B)
)
,

we see that that correlations are una�ected by local isometries.

The de�nition as given in Equation (3.3) extends in a straightforward manner to the case where |ψ〉
and the added ancillas are mixed.
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De�nition 3.1. Let HA,HB,H′A,H′B be Hilbert spaces. Let ψAB ∈ D(HA ⊗ HB) be a pure bipartite
state. Let ρA′B′ ∈ D(H′A ⊗H′B) be a bipartite state.

We say that the state ρA′B′ holds the pure state ψAB if there exist Hilbert spaces EA and EB, local
isometries VA′ : H′A → HA ⊗ EA and VB′ : H′B → HB ⊗ EB and a `junk state' σjunkA′′B′′ ∈ D(EA ⊗ EB),
such that (

VA′ ⊗ VB′
)
ρA′B′

(
V †A′ ⊗ V

†
B′
)

= ψAB ⊗ σjunkA′′B′′ .

We now say that the pure state ψAB is self-testable if we can infer from particular correlations in a
Bell experiment that the underlying state holds ψAB.

De�nition 3.2. (Self-testability)
We say that the pure state ψAB is self-testable if there exist correlations Pr(a, b|x, y), obtained from a
Bell experiment as depicted in Figure 2, from which we can infer that the underlying state ρA′B′ in the
Bell experiment holds ψAB.

The state ρA′B′ is called `input state' or `physical state' and the pure state ψAB is the `target state'
or `reference state'. The correlations Pr(a, b|x, y) as stated above are called `perfect correlations' or
`perfect statistics'.

In order perform do both state and measurement certi�cation, De�nition 3.1 can be extended with the
requirement that the measurements used in the Bell experiment act nontrivially on the target state
only. Since we only treat state certi�cation in this thesis, we omit this requirement. For the framework
for simultaneous state and measurement certi�cation, we refer to McKague et al. [MYS12].

It is not straightforward to extend this de�nition to the case where the correlations are di�erent from
the ideal case. In the next section, we will give an overview of several di�erent formalization of state
certi�cation in the presence of errors. The focus will be on formulating self-testing statements, which
convey the relation between the observed statistics and the `distance' (in some measure) between the
physical system and the reference system. In this thesis, we focus on not using all correlations, but just
the Bell value.

3.3 Measures for robust state certi�cation

In practice, it is not possible to achieve the ideal correlations, since any real-world experiment will
be subject to noise and the experimental statistical �uctuation of the correlations will never vanish,
since the number of runs of the Bell experiment is �nite. For these reasons, we want to be able to infer
information about the physical state in the case of imperfect statistics too.

In this section, we describe three formalizations of robustness bounds for self-testing statements, where
the bound is a function of Bell violation. These three are the MYS-measure, the Mayers-Yao �delity and
the extractability. For each of the formalization, the setup is the same: we start with a Bell inequality B
with quantum value βQ and classical value βC < βQ, and a target state ψAB which maximally violates
B. Moreover, the Bell inequality B has the property that a state ρA′B′ achieves maximal violation if
and only if ρA′B′ holds ψAB, in the sense of De�nition 3.1. The three di�erent approaches given in this
section formalize the following question: if a state ρA′B′ achieves Bell value β on B, then how `close'
are ρA′B′ and ψAB?
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This `closeness' is captured by the robustness `measures' treated in this section: the MYS-measure
FMYS, the Mayers-Yao measure FMY and the extractability Ξ. Each of these measures maps the tuple
of input state and target state to a real number in the interval [0, 1]. Before treating these three notions
in detail, let us give the general framework for self-testing statements using one of these measures.

De�nition 3.3. (Self-testing statements in either MYS-measure/Mayers-Yao measure/extractability)
Suppose that the target state ψAB is self-testable using the perfect statistics that yield maximal violation
βQ to some Bell inequality B. Write βC for the classical value of B.

A robust self-testing statement using B and measure f ∈ {FMYS, FMY,Ξ} is given by a continuous
function g : [βC , βQ]→ [0, 1] with the following two properties: �rst, lim

β→βQ
g(β) = 1, and, moreover, for

all states ρA′B′ that violate B with violation βobs, we have

f(ρA′B′ → ψAB) ≥ g(βobs).

We now treat the three robustness measures in detail. A brief remark on notation: the letter V will be
used to refer to isometries and its index will denote the register it acts on. For example, the isometry
VAA′ acts upon the combined register AA′.

The �rst formalization, called the MYS-measure in this thesis, follows naturally from the de�nition of
self-testing as given in De�nitions 3.1 and 3.2. The name MYS-measure comes from the fact that this
formalization was given before (for a pure input state) by McKague, Yang and Scarani [MYS12].

De�nition 3.4. Let ψAB be a self-testable state. We de�ne the MYS-measure of target state ψAB from
input state ρA′B′ as

FMYS(ρA′B′ → ψAB) := sup
VA′ ,VB′ ,σ

junk

A′′B′′

F
(
(VA′ ⊗ VB′)ρA′B′(V †A′ ⊗ V

†
B′), ψAB ⊗ σ

junk
A′′B′′

)
where the supremum is taken over a state σjunkA′′B′′ of some dimension and local isometries VA′ and VB′

of appropriate input/output dimensions.

Note that in the MYS-measure, observing perfect statistics (which yield βobs = βQ) implies that the
input state holds the target state. To see this, note that the MYS-measure equals 1 if and only if there
exist isometries VA′ and VB′ and a state σjunkA′′B′′ such that

(VA′ ⊗ VB′)ρA′B′(V †A′ ⊗ V
†
B′) = ψAB ⊗ σjunkA′′B′′ .

When the statistics are not perfect, the Bell violation βobs is strictly smaller than βQ; intuitively, the
isometry Φ = ΦA ⊗ ΦB in the MYS-measure maps the input state to the `closest' target state with
auxiliary degrees of freedom.

The MYS-measure has a trivial lower bound. As an example, consider the case where the target state
ψAB is the pure state |01〉−|10〉√

2
and the Bell test used is the CHSH game. Then we can de�ne the local

isometries

VA′ : |ϕ〉 → |0〉 ⊗ |ϕ〉
VB′ : |ϕ〉 → |1〉 ⊗ |ϕ〉
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so that for any input state ρA′B′ , we have (VA′ ⊗ VB′)ρA′B′(V †A′ ⊗ V
†
B′) = |01〉 ⊗ ρA′B′ . By setting the

state σjunkA′′B′′ equal to ρA′B′ , we get

F
(
(VA′ ⊗ VB′)ρA′B′(V †A′ ⊗ V

†
B′), ψAB ⊗ ρA′B′

)
= F

(
|01〉〈01| ⊗ ρA′B′ , ψAB ⊗ ρA′B′

)
=

1

2
.

In general, the MYS-measure as given in De�nition 3.4 can be trivially lower bounded by λ2
max(ψAB),

where λmax denotes the largest Schmidt coe�cient.

De�nition 3.4 has been used by many authors for self-testing statements: see the next section for a
brief overview of the authors that work with this formalization. All proofs used with this de�nition so
far rely on explicit construction of the isometry. The original de�nition proposed by McKague et al.
[MYS12] includes measurement certi�cation too; in fact, each of the proofs resulting in bounds on the
MYS-measure �rst derive constraints on the measurement operators from the Bell value in order to
obtain such bounds. When we only wish to perform state certi�cation, �nding bounds for certifying
state and measurements simultaneously is restrictive: observing a Bell violation βobs < βQ is either
due to the fact that the underlying state is noisy, or misalignment of the measurements, or a mixture
of the two. For this reason, we might hope to obtain better bounds if we consider state certi�cation
and measurement certi�cation separately.

A second formalization of robust self-testing is formulated in terms of what Bardyn et al. proposed as
the `Mayers-Yao �delity' [BLM+09].

De�nition 3.5. Let ψAB be a self-testable target state. The Mayers-Yao �delity of ψAB from input
state ρA′B′ is de�ned as

FMY(ρA′B′ → ψAB) := sup
ρ
F (ρA′B′ , ρ) (3.4)

where the supremum is taken over bipartite states of the form

ρ = (VAA′′ ⊗ VBB′′)(ψAB ⊗ σjunkA′′B′′)(V
†
AA′′ ⊗ V

†
BB′′) (3.5)

where σjunkA′′B′′ is a state of some dimension and VAA′′ and VBB′′ are isometries of appropriate input/out-
put dimensions4.

In the case of self-testing of the singlet, for example, the Mayers-Yao �delity and the MYS-measure are
suited for the black-box scenario in which we wish to �nd out how much the input state di�ers from a
singlet (up to local unitaries and additional degrees of freedom). In the scenario where we wish to test
the state, realized in devices which we bought from a potentially untrusted vendor, we need to take all
possible quantum operations into account rather than just isometries. In line with the work of Bardyn
et al. [BLM+09] and Kaniewski [Kan16], we de�ne a third robustness measure, the extractability.

De�nition 3.6. Let ψAB be a self-testable state. The extractability of target state ψAB from input state
ρA′B′ is de�ned as

Ξ(ρA′B′ → ψAB) := max
ΛA,ΛB

F ((ΛA ⊗ ΛB)(ρA′B′), ψAB) (3.6)

where the maximum is taken over quantum channels of the correct input/output dimensions (called
extraction channels in this context).

4In the work of Bardyn et al., the supremum is taken over unitaries rather than isometries, which does not yield a
�delity that is de�ned on all input states. To see this, consider the singlet as target state ψAB . Then ρ in Equation (3.5)
has even local dimension if the maps VA and VB were unitaries. Hence if the input state ρA′B′ is of odd local dimension,
then the �delity in Equation (3.4) is not de�ned.
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Just like the MYS-measure, the extractability has the property that observing βobs = βQ (which cor-
responds to an extractability of 1) implies that the input state ρA′B′ holds the target state ψAB. We
show this.

By de�nition, we have that Ξ(ρA′B′ → ψAB) = 1 i� there exist local channels ΛA,ΛB for which
F ((ΛA ⊗ ΛB)(ρA′B′), ψAB) = 1, which is equivalent to

(ΛA ⊗ ΛB)(ρA′B′) = ψAB. (3.7)

If ρA′B′ holds ψAB as in De�nition 3.1, then Equation (3.7) holds by picking the isometries from
De�nition 3.1 as quantum channels. For the converse statement, assume that Equation (3.7) holds for
some quantum channels ΛA,ΛB. Using Lemma 2.6, we can write

ψAB = TrA′′′
(

TrB′′′
(
(UA′A′′ ⊗ UB′B′′)(ρA′B′ ⊗ σA′′ ⊗ σB′′)(U †A′A′′ ⊗ U

†
B′B′′)

))
(3.8)

where UA′A′′ , UB′B′′ are unitaries, σA′′ and σB′′ are pure states, A′′′ is a subsystem of AA′′ and B′′′ is
a subsystem of BB′′. Since ψAB is pure, we infer that the RHS of Equation (3.8) before tracing out
can be written as

(UA′A′′ ⊗ UB′B′′)(ρA′B′ ⊗ σA′′ ⊗ σB′′)(U †A′A′′ ⊗ U
†
B′B′′) = ψAB ⊗ τA′′′B′′′ .

Since σA′′ is pure and UA′A′′ is a unitary, the map ρ 7→ UA′A′′(ρ ⊗ σA′′)U †A′A′′ is an isometry, and for
similar reasons the map ρ 7→ UB′B′′(ρ ⊗ σB′′)U †B′B′′ is an isometry too. Therefore ρA′B′ holds ψAB in
the sense of De�nition 3.1. This concludes the proof that the extractability equals 1 if and only if ρA′B′
holds ψAB.

Bardyn et al. note that the extractability is also a relevant notion in practice when we want to establish
how well we can improve a purchased source, by applying local operations before using the source.

The extractability has the same trivial lower bound as the MYS-measure. The most natural one for
the extractability can be achieved when Alice and Bob discard their shares and replace their part by a
�xed state. This corresponds to applying full amplitude damping channels locally. When Alice and Bob
do so, the best amplitude damping channel they can apply yields F ((ΛA ⊗ ΛB)(ρA′B′), ψAB) = λ2

max,
where λmax is the maximal Schmidt coe�cient of ψAB. So, just like for the MYS-measure, the ex-
tractability of the singlet is trivially lower bounded by 1

2 .

Since any isometry is a quantum channel, we see that the MYS-measure is related to the extractability
as

FMYS(ρA′B′ → ψAB) ≤ Ξ(ρA′B′ → ψAB)

for any input state ρA′B′ and target state ψAB. Thus the extractability is more �forgiving� than the
MYS-measure.

We have already seen that the MYS-measure and the extractability share the same lower bound. We
�nish this section by noting two additional properties that both measures have in common: they are
convex in the input state and moreover, their in�mum over all input states with Bell value at least β
can be upper bounded as a function of β.

Lemma 3.7. Let f(ρA′B′ → ψAB) be either the extractability or MYS-measure of input state ρA′B′

and target state ψAB. Let the notation be as in the de�nition of a robust self-testing statement for ψAB
using Bell inequality B (De�nition 3.3). Then the following hold:
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1. If ρA′B′ = pσA′B′ + (1− p)τA′B′ for bipartite states σA′B′ and τA′B′ and some p ∈ [0, 1], then

f(ρA′B′ → ψAB) ≤ p · f(σA′B′ → ψAB) + (1− p) · f(τA′B′ → ψAB).

2. For every β ∈ [βC , βQ], all bipartite states σA′B′ which achieve Bell value at least β are upper
bounded as

f(σA′B′ → ψAB) ≤ λmax + (1− λmax) · β − βC
βQ − βC

where λmax denotes the largest Schmidt coe�cient of ψAB.

The �rst property is a direct consequence of the de�nition of extractability and subadditivity of the
maximum. The second statement, where f is the extractability, is proven by considering a convex
combination of the target state ψAB and a separable state (for details, we refer to Kaniewski [Kan16]).
The proofs for the MYS-measure are analogous.

In the next section, we give an overview of the states that have been shown to be self-testable and
which of the robustness measures as described in this section were used.

3.4 Self-testable states and methods to prove their self-testability

In the past decade, a couple of di�erent methods have been applied to derive robust self-testing state-
ments for a variety of states. We name some of them.

3.4.1 Self-testing statement from algebraic relations on the observables

Most of the self-testing statements cited in this chapter were derived by �rst proving some kind of
algebraic relations on the observables.

Mayers and Yao studied the setup of two devices containing a bipartite state [MY04]. They considered
the ideal case in which each device has a qubit, which are maximally entangled, and each device has
three measurement settings: projective measurements at an angle {−π

8 , 0,
π
8 }. This con�guration yields

nine (three settings on each side) probability distributions Pr(a, b|x, y) of settings x, y and outcomes
a, b. Mayers and Yao showed that this setup is the only setup that gives rise to these probability
distributions, up to auxiliary degrees of freedom and local changes of basis. As such, the observed
correlations can be used to �self-check� the devices. The proof consists of a series of lemmas that are
aimed at proving properties of the behaviour of (functions of) the observables when applied to the
state. Mayers and Yao only consider the ideal case and do not provide any robustness bounds.

The �rst robust self-testing bound for the singlet with the CHSH inequality was given by McKague et
al. [MYS12]. The approach is applied to self-testing the singlet, �rst with the CHSH inequality and then
with the Mayers-Yao measure. McKague et al. provide state certi�cation and measurement certi�cation
in one go, formulated in terms of the MYS-measure. Their proofs consist of an explicit construction
of the isometry from De�nition 3.4 as a function of the physical observables, and subsequently use
commutation relations of the observables to prove their bounds in the MYS-measure.

Exactly the same kind of proof structure was used before to self-test graph states [McK14], and used in
later work to prove the self-testing of many singlets in parallel [McK16]. Robust self-testing statements
of all partially entangled two-qubit states with the use of the tilted CHSH inequality (the topic of
Chapter 5) was proven using this method too: this was done by Bamps and Pironio [BP15], building
upon the work of others [AMP12, YN13]. Building on the work of Yang and Navascues [YN13], it was
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recently proven that all pure bipartite states can be self-tested [CGS16], again using the approach of
explicit construction of the isometry. The latter result does not include robustness bounds.

What all these results have in common, is that the achieved robustness is very weak; the bounds become
trivial for errors of the order of magnitude of βQ − βobs ≈ 10−4, where βQ is the quantum value of the
Bell inequality used in the proofs and βobs is the observed Bell violation. This work focused on proving
self-testability of states, but for robust state-certi�cation that is relevant to real-world experiments, we
will have to use a di�erent approach. As argued before, the MYS-measure might be too strict for either
state certi�cation or measurement certi�cation at the same time, whereas approaching these separately
might yield better results. Indeed, a new method for measurement certi�cation was recently proposed
[Kan17].

3.4.2 Experimentally-relevant bounds

Bardyn et al. were the �rst to analytically prove a number of self-testing statements for the singlet and
show bounds on both the Mayers-Yao �delity as well as on the extractability [BLM+09]. The bounds on
the extractability were improved using a numerical method, the SWAP method, which was developed
by Bancal et al. [BNS+15]. Intuitively, the isometry in the de�nition of self-testability, De�nition (3.2),
locally swaps the right state, encoded in the input state, into ancilla qubits. Using this isometry, the
SWAP method lower bounds the extractability by numerically optimizing over all correlations from a
superset of the quantum set.

Bancal et al. apply the SWAP method to construct robust self-testing bounds for several states, among
which the singlet using the Mayers-Yao correlations and any partially entangled two-qubit state us-
ing the tilted CHSH inequality [BNS+15]. In later work, the SWAP method was applied for robust
self-testing of particular partially-entangled qutrits [YVB+14], the three-qubit W state [WCY+14], the
three- and four-qubit GHZ state and the four-qubit linear cluster state [PVN14] and the maximally
entangled state of two qutrits [SAT+16]. In all of these cases, the robustness is practically relevant.

The SWAP method is thus a versatile tool for �nding self-testing statements of practically relevant
robustness. However, since its computational cost grows fast when increasing the dimension of the
target state, all applications of the method have so far been restricted to states of at most four qubits
or two qutrits.

So far we have distinguished two main approaches for robust self-testing: one which is aimed at proving
self-testing statements for families of states of arbitrarily large dimension. The corresponding proofs
are all based on proving bounds of the behaviour of the local measurements and allow only for very
small errors, which are too weak for use in practice. On the other hand, there are a few analytic results
by Bardyn et al. with experimentally-relevant robustness, which were improved by Bancal et al. using
the SWAP method, a numerical method that yields experimentally robust self-testing statements, but
the size of the states that the method could handle so far is small (up to approximately four qubits)
due to rapidly growing computational cost.

One way to get rid of the latter problem, is to �nd a new analytic method. This was done recently by
Kaniewski, who derived analytic self-testing bounds whose robustness is also experimentally relevant
[Kan16]. The next section is devoted to this method.
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3.5 Self-testing from operator inequalities

The results in Chapter 5 build upon previous work by Kaniewski [Kan16], who showed that bounds
on the extractability can be derived from certain operator inequalities. This section is devoted to this
derivation. First, we show how to obtain self-testing statements from operator inequalities. Then, we
show how such operator inequalities can be proven.

3.5.1 From operator inequality to self-testing statement

Let ψAB be a pure target state and B a Bell inequality. For simplicity, we treat the bipartite case here
rather than the general multipartite case. We denote the Bell operator of B by W ; the Bell operator
can be written as (see Section 2.2):

W =
∑
x,y,a,b

cx,y,a,bP
x
a ⊗Q

y
b (3.9)

where the cx,y,a,b are real constants and the P xa (Qyb ) are the measurement operators for Alice (Bob)
on input x (y).

We will derive an operator inequality that yields a lower bound on the extractability. For completeness,
we state the extractability from De�nition 3.6 again: the extractability of ψAB from ρA′B′ is de�ned as

Ξ(ρA′B′ → ψAB) = max
ΛA,ΛB

F
(
(ΛA ⊗ ΛB)(ρA′B′), ψAB

)
where ΛA and ΛB are the extraction channels.

Now let us start the derivation with a particular operator inequality. Let ΛA,ΛB be local extraction
channels (see De�nition 3.6), that only depend on Alice's and Bob's local measurement operators P xa
and Qyb , respectively (but not on the input state). Furthermore, de�ne

K := (Λ†A ⊗ Λ†B)(ψAB). (3.10)

where Λ† refers to the dual channel of quantum channel Λ. Now presume that for some �xed real
parameters s and µ the operator inequality

K ≥ sW + µ11 (3.11)

holds for all possible measurements (recall that W and the extraction channels are functions of the
measurement operators P xa for Alice and Qyb for Bob). Then we can take the trace with the input state
ρA′B′ on both sides of Inequality (3.11). Expanding the left hand side yields

Tr
(
Kρ′AB

)
= 〈
(
Λ†A ⊗ Λ†B

)
(ρAB), ρ′AB〉 = 〈ρAB,

(
ΛA ⊗ ΛB

)
(ρ′AB)〉 (3.12)

and computing the right hand side of Inequality (3.11) boils down to

Tr
(
sWρ′AB + µ11ρ′AB

)
= sβ + µ (3.13)

By combining Equations (3.12) and (3.13), we get

F
(
(ΛA ⊗ ΛB)(ρA′B′), ψAB

)
≥ sβ + µ

which holds for all possible measurement operators, since the operator inequality that we started with,
Equation (3.11), did so too.
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Using the de�nition of extractability, De�nition 3.6, we obtain

Ξ(ρA′B′ → ψAB) ≥ sβ + µ

which expresses that the extractability of ψAB from ρA′B′ is lower bounded by a linear function of the
observed Bell violation: this is precisely a self-testing statement.

Proving the operator inequality given in Equation (3.11) is hard in general, since we made no assump-
tions about the dimension of the Hilbert space that the measurement operators act upon. Fortunately,
the operator inequality can be proven in some cases, which can be seen in the next section.

3.5.2 How to prove such operator inequalities

We show that if the inputs and outputs of both Alice and Bob in the Bell experiment corresponding
to B are binary, then proving the operator inequality from Equation (3.11) becomes tractable. As in
Section 2.2.3, denote the observables of Alice and Bob by Ax := P x0 − P x1 and By := Qy0 − Q

y
1 (for

x, y ∈ {0, 1}), which are applied to the shared state ρA′B′ .

First, note that if the measurements that Alice and Bob apply are not projective, then Alice and Bob
could add ancillas to make them so as �rst part of the extraction procedure.

Second, we can use Jordan's lemma (see Lemma 2.7) to further ease the analysis. By applying Jordan's
lemma to Alice's observables A0 and A1, we see that

Ax =
⊕
m

Amx (3.14)

with x ∈ {0, 1} and Amx has dimensions 2× 2 at most. As part of the extraction procedure, Alice can
embed her part of the state ρAB into a larger Hilbert space, in order to make all blocks of size 2× 2.

A similar expression can be given for Bob's observables:

By =
⊕
n

Bn
y (3.15)

for y ∈ {0, 1}, where, for the same reason as given above, we can assume that the block Bn
y are of size

2× 2.

Since the outcomes of the players are binary, the observables Ax and By obtain all the information
needed to retrieve the measurement operators (see also Section 2.1.4). In particular, we can write the
Bell operator W from Equation (3.9) in terms of the observables. Then, using Equations (3.14) and
(3.15), we see that we can write W as

W =
⊕
m,n

Wmn

whereWmn is of size 4×4. One can think ofWmn as a Bell operator where the underlying state consists
of two qubits. As an example, suppose that W is the CHSH operator W =

∑1
x=0,y=0(−1)x·yAx ⊗By,

then Wmn =
∑1

x=0,y=0(−1)x·yAmx ⊗Bn
y .

A similar reasoning can be given for the operator K from Equation (3.10). We can now write

K − sW − µ11 =
⊕
mn

(Kmn − sWmn − µ114)
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where the matrices Kmn and Wmn have sizes 4× 4. Now if for every block ,the operator inequality

Kmn ≥ sWmn + µ114 (3.16)

holds, then the `big' operator inequality (3.11) holds too.

Note that the inequality (3.16) holds for every block if we can prove the inequality for all possible qubit
observables. We are free to choose the basis in which we prove the operator inequality (3.16); since the
only property of a pair of qubit-observables A0, A1 that is invariant under unitary conjugation is the
angle between them, we can write

Ar := cos(a)X + (−1)r sin(a)Z (3.17)

for a ∈ [0, π2 ]. A similar expression holds for Bob's observables.

In short, we have seen in this section that in a Bell experiment where the players' input and output are
both binary, we can derive robust self-testing bounds on the extractability from the operator inequality
(3.11).

Using this method, Kaniewski showed that given CHSH violation β, the singlet extractability can be
lower bounded by 1

2 + 1
2 ·

β−β∗
2
√

2−β∗ , where the threshold violation β∗ = 16+14
√

2
17 ≈ 2.11 is the smallest

violation at which the bound becomes non-trivial. At the moment of writing, this is the best lower
bound that has been established for self-testing the singlet with the CHSH inequality.

The local extraction channels that were used for this bound are dephasing channels, where the de-
phasing parameter depends on the angle between the observables. In order to derive new self-testing
bounds for (almost) all pure partially entangled two-qubit states (see Chapter 5), we use the same type
of dephasing channels, with slight adaptations.
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4 CHSH violation does not imply nontrivial singlet extractability

Let us note a few properties of two sets of states, namely all separable states and all states that are
equivalent to a singlet (i.e. are a singlet up to auxiliary degrees of freedom and local unitaries), in rela-
tion to the CHSH inequality and self-testing. We have seen that for these two sets, singlet extractability
and CHSH violation go hand in hand: �rst, separable states have trivial singlet extractability and do
not violate the CHSH inequality. States that are equivalent to a singlet, on the other hand, are the
only states with the following two properties: they have singlet extractability equal to 1 (the maximal
possible value) and, moreover, they violate the CHSH inequality maximally for the right choice of
measurements.

Robust self-testing statements obtained from operator inequalities, as described in Section 3.5, were
shown before to yield a threshold violation of β∗ ≈ 2.11 [Kan16]. That is, we can extract a nontrivial
singlet from any state that achieves CHSH violation greater than β∗. By improving the local extrac-
tion channels that yielded these robustness bounds, we attempted to `close the gap', in order to obtain
a threshold violation of 2 (since separable states yield a CHSH violation of 2, obtaining β∗ < 2 is
impossible). Unfortunately, numerous attempts failed - in fact, all channels we considered performed
considerably worse than the dephasing channels used to obtain β∗ ≈ 2.11.

The fact that none of our attempts came close to the performance of the dephasing channels, led us to
conjecture that the dephasing channels are optimal (although we have not found a proof). Secondly, it
brought us to reconsider whether it was possible to `close the threshold gap' at all. It felt natural to ask
about the intermediate regime: does every Bell violation β > 2 imply nontrivial singlet extractability?
In this section, we answer this question in the negative.

In what follows, we construct a state with the following two properties: (a) the state violates the
CHSH inequality; (b) the singlet extractability of the state, as de�ned in De�nition 3.6, is triv-
ial. The latter property means that for any pair of local extraction channels ΛA and ΛB, we have
F
(
(ΛA ⊗ ΛB)(ρTE),Φ+

)
≤ 1

2 , where ρTE is the state we constructed (with trivial extractability) and
Φ+ is a maximally entangled two-qubit state.

The existence of such a state is surprising. Entanglement is necessary for Bell violation in general, and
for CHSH violation in particular, a state even needs to be NPT entangled (which could be thought of
as a �strong� form of entanglement, see also Section 2.2.6). On top of this, maximal CHSH violation is
only possible with a state that `contains' a maximally entangled two-qubit state. It is therefore intuitive
that a state that violates the CHSH inequality should also be `close' to a singlet, and this closeness
should be detectable with a measure such as the extractability. Especially since the extractability in-
volves quantum channels, we allow for the most general local (i.e. without communication) processing
of the state. In spite of all these considerations, this intuition remarkably turns out to be incorrect:
it is a surprising fact that there exist entangled states that violate the CHSH inequality but although
Alice and Bob can apply any quantum operation, the �delity of their state with the singlet will be at
most as good as discarding their parts and replacing it by a �xed separable state.

Although entanglement is necessary for CHSH violation, the converse does not hold: Werner states
(see Section 2.2.5) are entangled but do not violate any Bell inequality. Our result shows a similar
property, in the relation between entanglement and singlet extractability rather than CHSH violation
and entanglement: although nontrivial singlet extractability implies entanglement (see Lemma 2.14),
the converse is proven incorrect by our counterexample.
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This section is ordered as follows. We will �rst set up the conventions; that is, the speci�c maximally
entangled two-qubit state that we use and the observables, two on each side, we select. Then we de�ne
the state ρTE ≡ ρTE(ν) as a function of a single parameter ν ≥ 0. We show that, with the observables
as chosen before, the state ρTE(ν) violates the CHSH inequality by construction if ν > 0. The rest of
the chapter proves that there exists a ν > 0 indeed for which the �delity of (ΛA ⊗ ΛB)(ρTE(ν)) with
the singlet is at most 1

2 for any choice of extraction channels ΛA and ΛB. This concludes the proof that
there exists a state that violates the CHSH inequality but nevertheless has trivial singlet extractability.

4.1 The target state

The CHSH inequality is maximally violated by all maximally entangled states of two qubits. Since all
such states di�er only by local unitary conjugation (see Section 2.1.3), Alice and Bob could always
�rst apply their local unitaries before applying their local extraction channels. Hence the singlet ex-
tractability of any input state is una�ected by the choice of maximally entangled two-qubit state used
as target state. For our proof, it will turn out to be convenient to work with a particular maximally
entangled two-qubit state, which we de�ne as follows.

Let Φ be the pure density matrix of |00〉+|11〉√
2

= (112 ⊗ (ZX))
(
|01〉−|10〉√

2

)
. De�ne the unitary U by

U := cos
(3π

8

)
Z + sin

(3π

8

)
X. (4.1)

Using this unitary, we compute

Φ+ := (11⊗ U)Φ(11⊗ U †) =
1

4

(
112 ⊗ 112 + Y ⊗ Y + X⊗ X + Z√

2
+ Z⊗ X− Z√

2

])
(4.2)

Note that both 112⊗ (ZX) and 112⊗U are unitaries. Hence, since Φ is a maximally entangled state and
Φ+ only di�ers from Φ by local unitary conjugation, so is Φ+. In what follows, the state Φ+ is the one
we wish to extract.

By de�ning

V := cos
(3π

16

)
11− i sin

(3π

16

)
Y (4.3)

it is straightforward to compute that

Φ+ is the pure density matrix of
1√
2

(V ⊗ V )(|00〉 − |11〉).

Hence the symmetric Schmidt decomposition of Φ+ is given by 1√
2

(
V |0〉 ⊗ V |0〉 − V |1〉 ⊗ V |1〉

)
.

4.2 The observables

The observables of Alice and Bob are operators acting on C3 × C2. We de�ne Alice's and Bob's
observables as follows:

A0 = B0 =
(
|0〉〈0|+ |1〉〈1|+ |2〉〈2|

)
⊗ X

A1 = B1 = |0〉〈0| ⊗ X + |1〉〈1| ⊗ Z + |2〉〈2| ⊗ (−X). (4.4)

The CHSH operator W , which depends on the observables of Alice and Bob, has been de�ned in
Equation (2.11). We repeat it here for completeness:

W =
1∑

j,k=0

(−1)j·kAj ⊗Bk
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Note that W can be written as

W =

2∑
x=0,y=0

|x〉〈x|A ⊗ |y〉〈y|B ⊗Wxy (4.5)

where the Wxy can be ordered in a diagram, as depicted in Table (4.6).

2 2X⊗ X 2Z⊗ X −2X⊗ X
Bob 1 2X⊗ X X⊗ (X + Z) + Z⊗ (X− Z) 2X⊗ Z

0 2X⊗ X 2X⊗ X 2X⊗ X
0 1 2

Alice

(4.6)

Throughout the proof, we will frequently refer to the di�erent choices of x and y. It will be conve-
nient to use the visual representation from Table (4.6) for these choices. We will refer to the point
x = y = 1 as `the center', and to the set of the remaining (x, y) as `the frame'. We denote the center
by C := {(1, 1)} and the frame by F := {0, 1, 2}2 − C.

4.3 The input state ρTE

We de�ne the input state ρTE as

ρTE :=
2∑

x,y=0

pxy |x〉〈x| ⊗ |y〉〈y| ⊗ ρxy (4.7)

where the states ρxy are given by

ρxy :=

{
Φ+ if x = y = 1 (�the center�)
1
4(11⊗ 11 +

Wxy

2 ) otherwise (�the frame�)

where Φ+ has been de�ned as in Equation (4.2). We denote ν := p11, and the remaining weights pxy
for (x, y) ∈ F are given by

pxy =
cxy
41
· (1− ν)

where the cxy's are de�ned as

2 c02 = 8 c12 = 0 c22 = 8
y 1 c01 = 3 c21 = 0

0 c00 = 11 c10 = 3 c20 = 8
0 1 2

x

(4.8)

Note that for (x, y) ∈ F , the states ρxy are separable and ρ11 is a singlet, up to local unitary conjuga-
tion. We therefore have Tr(Wxyρxy) = 2 for (x, y) ∈ F with the Wxy de�ned as in Table (4.6), while
for x = y = 1, we obtain Tr(W11ρ11) = 2

√
2. By linearity, the Bell violation of ρTE is 2 + (2

√
2− 2)ν.

Therefore the state ρTE violates the CHSH inequality if and only if ν > 0. At the end of this chapter,
we will set the weight ν to some strictly positive value to ensure trivial extractability.
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4.4 Amplitude-damping channel

We already noted that the singlet extractability is trivially lower bounded by 1
2 , since Alice and Bob

can always choose to ignore their shared state and locally replace it by a �xed state. Replacing a
state corresponds to completely amplitude-damping channels. Since the Schmidt decomposition of
any maximally-entangled state of two qubits is not unique because it has Schmidt coe�cient 1

2 with
degeneracy two, there any many choices of local bases to write the state in the form of Corollary 2.4:
if we write the state in the form

|a0〉 ⊗ |b0〉+ |a1〉 ⊗ |b1〉√
2

where {|a0〉 , |a1〉} and {|b0〉 , |b1〉} are bases for Alice's and Bob's qubit, respectively, then a natural
completely amplitude-damping channel that achieves singlet �delity 1

2 is damping to |a0〉 (|a1〉) for
Alice and damping to |b0〉 (|b1〉) for Bob. In the rest of this chapter, it will be convenient to be able
to refer to the amplitude-damping channels that achieve singlet �delity 1

2 . For this reason, we choose
one of such channels for our target state from Equation (4.2) and describe it here explicitly.

If Alice and Bob share the state |00〉−|11〉√
2

, then they can obtain the target state Φ+ as given in Equation
(4.2) by both applying the unitary V from Equation (4.3) to their part of the state. Now write |ϕ〉 :=
V |0〉 and |ψ〉 := V |1〉, so that we can write the target state from Equation (4.2) in its symmetric
Schmidt decomposition as

Φ+ =
1

2

(
|ϕ〉 |ϕ〉 − |ψ〉 |ψ〉

)(
〈ϕ| 〈ϕ| − 〈ψ| 〈ψ|

)
.

Then de�ne the amplitude-damping channel that shrinks the entire Bloch sphere to the state |ϕ〉〈ϕ|,
given by

ΛAD,ϕ : ρ 7→ E0ρE
†
0 + E1ρE

†
1 (4.9)

where the Kraus operators E0, E1 are given by

E0 := |ϕ〉〈ϕ| , E1 := |ϕ〉〈ψ| .

It is straightforward to compute that ΛAD,ϕ(ρ) = |ϕ〉〈ϕ| for any single-qubit state ρ. Hence for any
two-qubit state ρAB that Alice and Bob share, we have F

(
(ΛAD,ϕ ⊗ ΛAD,ϕ)(ρAB),Φ+

)
= 1

2 .

4.5 Main result and proof outline

For completeness, we state the trivial extractability of ρTE as a theorem.

Theorem 4.1. There exists a ν > 0 such that the state ρTE, as de�ned in Equation (4.7) violates the
CHSH inequality, but nevertheless has trivial singlet extractability. To be precise: let W be the CHSH
operator as given in Equation (2.11) where the observables are stated in Equation (4.4), let Φ+ be the
maximally entangled state from Equation (4.2), and let ΛA,ΛB be quantum channels. Then there exists
a ν > 0 such that the state ρTE ≡ ρTE(ν) satis�es both

Tr(WρTE) > 2 and max
ΛA,ΛB

F ((ΛA ⊗ ΛB)(ρTE),Φ+) =
1

2
.
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Our goal is to upper bound the �delity F ((ΛA⊗ΛB)(ρ),Φ+) by 1
2 , for any choice of extraction channels

ΛA,ΛB. Using Lemma (2.12), this �delity can be expressed in terms of a set of six qubit-to-qubit
channels: three channels ΛxA for Alice, for each choice of x ∈ {0, 1, 2}, and similarly three channels ΛyB
for Bob, with y ∈ {0, 1, 2}. To see this, recall that F (σ1, σ2) = 〈σ1, σ2〉 when at least one of σ1, σ2 is
pure, where 〈X,Y 〉 := Tr

(
Y †X

)
. Since Φ+ is a pure state, we can apply Lemma (2.12) to obtain six

qubit-to-qubit quantum channels ΛxA,Λ
y
B for x, y ∈ {0, 1, 2}, such that

F ((ΛA ⊗ ΛB)(ρTE),Φ+) = 〈(ΛA ⊗ ΛB)(ρ),Φ+〉

= 〈(ΛA ⊗ ΛB)(
2∑

x,y=0

pxy |x〉〈x| ⊗ |y〉〈y| ⊗ ρxy),Φ+〉

=
2∑

x,y=0

pxy〈(ΛxA ⊗ ΛyB)(ρxy),Φ+〉. (4.10)

Since the states on the frame are separable, their singlet extractability is trivial. Hence for (x, y) on
the frame, the values for 〈(ΛxA⊗ΛyB)(ρxy),Φ+〉 are upper bounded by 1

2 . We have seen previously that
the amplitude-damping channels described in Section (4.4) achieve this upper bound. We will show
that amplitude-damping channels are in fact the only channels achieving this bound, and moreover,
that this also holds approximately. In particular, we show that there is a trade-o� between the �delity
with the singlet that the extraction channels can achieve on the frame on the one hand, and in the
center on the other. That is, if Alice and Bob apply extraction channels that achieve almost-optimal
performance on all points on the frame, then the �delity in the center cannot be much greater than
1
2 . Using Equation (4.10), we then pick the weight ν such that the �delity with the singlet is upper
bounded by 1

2 , for any choice of local extraction channels.

Our proof is divided into several steps. We �rst show (in Lemma 4.2) that if the local extraction chan-
nels ΛxA and ΛyB for (x, y) on the frame achieve �delity close to 1

2 , then the extraction channels in the
center cannot di�er too much from the amplitude-damping channels de�ned in Section (4.4).

If the extraction channels in the center are approximately amplitude-damping channels that damp to
a pure product state, they must, by linearity, shrink the entire Bloch sphere to a tiny volume close to
the boundary. This point is made rigorous in Lemma 4.3. Note that this tiny volume cannot be too
far o� from the product state that the amplitude-damping channels from Section (4.4) damp towards.
This observation leads us to Lemma 4.4: we show that the �delity of any state in this tiny volume
with singlet state from Equation (4.2) cannot be much greater than 1

2 . We then obtain an upper bound
on the singlet extractability with the use of Equation (4.10). This upper bound allows us to pick the
weight ν in the center such that the singlet extractability of our input state ρ becomes trivial.

4.6 Notation

Before starting the proof, we introduce some extra notation. De�ne

σ±x := ΛxA(|±〉〈±|)

τ±y := [U †(ΛyB(|±〉〈±|))U ]T

where the unitary U has been de�ned in Equation (4.1). Now we use the fact that Tr(A⊗BΦ) =
1
2 Tr

(
ABT

)
for any 2× 2 linear operators A and B, where Φ is the pure density matrix of |00〉+|11〉√

2
, as

de�ned in Section 4.1. Using the relation between the states Φ and Φ+ from Equation (4.2), we now

40



obtain

〈(ΛxA ⊗ ΛyB)(|++〉 〈++|),Φ+〉 = 〈σ+
x ⊗ (U(τ+

y )TU †),Φ+〉 = 〈σ+
x ⊗ (τ+

y )T ,Φ〉 =
1

2
Tr
(
σ+
x τ

+
y

)
(4.11)

and, similarly,

〈(ΛxA ⊗ ΛyB)(|+−〉 〈+−|),Φ+〉 =
1

2
Tr
(
σ+
x τ
−
y

)
, (4.12)

〈(ΛxA ⊗ ΛyB)(|−+〉 〈−+|),Φ+〉 =
1

2
Tr
(
σ−x τ

+
y

)
, (4.13)

〈(ΛxA ⊗ ΛyB)(|−−〉 〈−−|),Φ+〉 =
1

2
Tr
(
σ−x τ

−
y

)
. (4.14)

The states ρxy on the frame are separable, hence their singlet extractability is at most 1
2 . We now

de�ne the di�erences from this upper bound as

εxy :=
1

2
− 〈(ΛxA ⊗ ΛyB)(ρxy),Φ+〉 for (x, y) ∈ F . (4.15)

In the remainder of the chapter, we show that the singlet extractability of the state in the center is
upper bounded by 1

2 + O(εwav), where εwav is a particular weighted average of the εxy on the frame,
de�ned as

εwav :=
1

41

∑
(x,y)∈F

cxyεxy =
1

1− ν
∑

(x,y)∈F

pxyεxy (4.16)

where the coe�cients cxy are given in Table (4.8).

4.7 Upper bounding the extractability in the center as a function of εwav

The �rst step is to show that, when the εxy are small, the channels of Alice and Bob for x = y = 1
(denoted by Λ1

A and Λ1
B) are `close' to the amplitude-damping channels from Section (4.4). To do so,

we show that Tr
(
σ+

1 σ
−
1

)
and Tr

(
τ+

1 τ
−
1

)
cannot be much smaller than 1.

Lemma 4.2. Both Tr
(
σ+

1 σ
−
1

)
and Tr

(
τ+

1 τ
−
1

)
are lower bounded by max(0, 1− 328εwav), where εwav is

de�ned in Equation (4.16).

Proof. The fact that Tr
(
σ+

1 σ
−
1

)
is lower bounded by zero, follows directly from the fact that σ+

1 =
Λ1
A(|+〉〈+|) and σ−1 = Λ1

A(|−〉〈−|) are positive semide�nite operators (see Lemma 2.9). For Tr
(
τ+

1 τ
−
1

)
,

�rst realize that

Tr
(
τ+

1 τ
−
1

)
= Tr

(
(τ+

1 τ
−
1 )T

)
= Tr

(
(τ−1 )T (τ+

1 )T
)

= Tr
(
(τ+

1 )T (τ−1 )T
)
.

Then we note that (τ±1 )T = U †Λ1
B(|±〉〈±|)U is a single-qubit state, so the fact that Tr

(
τ+

1 τ
−
1

)
≥ 0

follows with Lemma 2.9. Showing the other lower bound, 1− 328εwav, is less straightforward.

We show that both Tr
(
σ+

1 σ
−
1

)
and Tr

(
τ+

1 τ
−
1

)
are lower bounded by 1− 328εwav = 1− 8(11ε00 + 8ε02 +

8ε20 + 8ε22 + 3(ε10 + ε01)).

Note that when x = 0 or y = 0, we have ρxy = 11⊗11+X⊗X
4 = |++〉〈++|+|−−〉〈−−|

2 .
Using Equations (4.11)-(4.14), we de�ne

ε++
xy :=

1

2
− 〈(ΛxA ⊗ ΛyB)(|++〉〈++|),Φ+〉 =

1

2
− 1

2
Tr
(
σ+
x τ

+
y

)
for (x, y) with x = 0 or y = 0
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and also

ε−−xy :=
1

2
− 〈(ΛxA ⊗ ΛyB)(|−−〉〈−−|),Φ+〉 =

1

2
− 1

2
Tr
(
σ−x τ

−
y

)
for (x, y) with x = 0 or y = 0

Since product states have �delity at most 1
2 with any two-qubit maximally entangled state, we see that

ε++
xy and ε−−xy are both nonnegative.

In this way, we obtain the following 10 equalities (two equalities for each point (x, y) with x = 0 or
y = 0):

Tr
(
σ+
x τ

+
y

)
= 1− 2ε++

xy

and

Tr
(
σ−x τ

−
y

)
= 1− 2ε−−xy (4.17)

for (x, y) with x = 0 or y = 0

Also, note that

ε++
xy + ε−−xy = 2εxy (4.18)

for (x, y) with x = 0 or y = 0

where εxy has been de�ned in Equation (4.15).

We can de�ne similar quantities when x = y = 2, for which we have ρ22 = 11⊗11−X⊗X
4 = |+−〉〈+−|+|−+〉〈−+|

2 .
If we de�ne

ε+−
22 :=

1

2
− 〈(Λ2

A ⊗ Λ2
B)(|+−〉〈+−|),Φ+〉 =

1

2
− 1

2
Tr
(
σ+

2 τ
−
2

)
ε−+

22 :=
1

2
− 〈(Λ2

A ⊗ Λ2
B)(|−+〉〈−+|),Φ+〉 =

1

2
− 1

2
Tr
(
σ−2 τ

+
2

)
then we get

Tr
(
σ+

2 τ
−
2

)
= 1− 2ε+−

22

Tr
(
σ−2 τ

+
2

)
= 1− 2ε−+

22 (4.19)

Also,
ε+−

22 + ε−+
22 = 2ε22 (4.20)

Now we repeatedly apply lemma 2.10 to equations (4.17) and (4.19) to obtain the desired bounds. For
the lower bound for Tr

(
σ+

1 σ
−
1

)
, a chain of inequalities is depicted in Figure 3, resulting in the bound

Tr
(
σ+

1 σ
−
1

)
≥ 1− 8(6ε++

00 + ε−−00 + ε−−10 + 2ε++
10 + 4ε++

20 + 4ε++
02 + 4ε+−

22 ) (4.21)

Equation (4.18) allows us to merge some of the terms, which results in

Tr
(
σ+

1 σ
−
1

)
≥ 1− 8(5ε++

00 + ε00 + ε10 + ε++
10 + 4ε++

20 + 4ε++
02 + 4ε+−

22 ) (4.22)

From Equation (4.18) we obtain ε++
xy ≤ 2εxy and ε−−xy ≤ 2εxy, and, similarly, Equation (4.20) yields

ε+−
22 ≤ 2ε22. Substituting these in the inequality (4.22) results in
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Tr
(
σ+

1 σ
−
1

)
≥ 1− 8(11ε00 + 3ε10 + 8ε20 + 8ε02 + 8ε22) (4.23)

By subtracting the nonnegative term 8 · 3ε01, we obtain the desired lower bound

Tr
(
σ+

1 σ
−
1

)
≥ 1− 8(11ε00 + 3(ε10 + ε01) + 8ε20 + 8ε02 + 8ε22) = 1− 328εwav (4.24)

The case for Tr
(
τ+

1 τ
−
1

)
is analogous, by replacing the σ's in Figure 3 by τ 's and vice versa. We can do

so because the derivation in Figure 3 only depends on Equations (4.17) and (4.19) and Lemma 2.10,
each of which is invariant under swapping Alice and Bob. The resulting bound can be obtained by
swapping the indices in Equation (4.23):

Tr
(
τ+

1 τ
−
1

)
≥ 1− 8(11ε00 + 3ε01 + 8ε20 + 8ε02 + 8ε22) (4.25)

from which we subtract the nonnegative term 8 · 3ε10 to obtain the desired result.

43



T
r( σ+ 1

σ
− 1

) ≥
1
−

8(
6ε

+
+

0
0

+
ε−
−

1
0

+
2
ε+

+
1
0

+
4
ε+

+
2
0

+
4
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As explained above, the previous lemma indicates that Λ1
A and Λ1

B are close to the full amplitude-
damping channels from Section (4.4). Note that an completely-amplitude-damping channel to a pure
state, shrinks the Bloch sphere to a point on its boundary. Hence any channel close to an amplitude-
damping channel, must shrink the Bloch ball to some tiny volume, not far away from the boundary of
the Bloch ball.

From this we infer that the center of the Bloch sphere, the maximally mixed state 112
2 , is sent to a state

that is close to the boundary. This idea is captured by the next lemma.

Lemma 4.3. The smaller eigenvalue of Λ1
A(112

2 ) is upper bounded by 328εwav, and so is the smaller
eigenvalue of Λ1

B(112
2 ).

Proof. Note that we can write Λ1
A(112

2 ) = Λ1
A( |+〉〈+|+|−〉〈−|2 ) =

σ+
1 +σ−1

2 . Denote the eigenvalues of σ
+
1 +σ−1

2
by δA and 1 − δA, with 0 ≤ δA ≤ 1

2 (hence δA is the smaller eigenvalue). Using the fact that for any
matrix M of rank 2, we have 2 det(M) =

(
Tr(M)

)2 − Tr
(
M2
)
, we obtain

1

2
δA ≤ δA(1− δA)

=
1

2
det
(σ+

1 + σ−1
2

)
=

1

2

[(
Tr
[σ+

1 + σ−1
2

])2
− Tr

([σ+
1 + σ−1

2

]2)]
=

1

2
· 1

4

[(
Tr
(
σ+

1

))2
+
(

Tr
(
σ−1
))2

+ 2 Tr
(
σ+

1

)
Tr
(
σ−1
)
− Tr

(
(σ−1 )2

)
− Tr

(
(σ−1 )2

)
− 2 Tr

(
σ−1 σ

−
1

)]
=

1

2
· 1

4

[
4− Tr

(
(σ−1 )2

)
− Tr

(
(σ−1 )2

)
− 2 Tr

(
σ−1 σ

−
1

)]
=

1

2

[
1− 1

4

[
Tr
(
(σ+

1 )2
)

+ Tr
(
(σ−1 )2

)
+ 2 Tr

(
σ+

1 σ
−
1

)]]
By the Cauchy-Schwarz inequality, we have[

Tr
(
σ+

1 σ
−
1

)]2
=
[
〈σ+

1 , σ
−
1 〉
]2 ≤ Tr

(
(σ+

1 )2
)
· Tr

(
(σ−1 )2

)
≤ Tr

(
(σ+

1 )2
)
· 1 = Tr

(
(σ+

1 )2
)

and, similarly,
[

Tr
(
σ+

1 σ
−
1

)]2 ≤ Tr
(
(σ−1 )2

)
. From Lemma (2.10) we had Tr

(
σ+

1 σ
−
1

)
≥ max(0, 1 −

328εwav). We can therefore continue the series of inequalities as

1

2
δA ≤ 1

2

[
1− 1

4

(
2 max(0, 1− 328εwav)2 + 2 max(0, 1− 328εwav)

)]
≤ min

(1

2

[
1− 1

4

(
2(1− 328εwav)2 + 2(1− 328εwav)

)]
,
1

2
[1− 1

4
(2 · 0 + 2 · 0)

)
≤ min

(1

2

[
1− 1

4

(
2(1− 328εwav) + 2(1− 328εwav)

)]
,
1

2

)
= min

(1

2

[
1− (1− 328εwav)

]
,
1

2

)
≤ 1

2
· 328εwav

hence δA ≤ 328εwav.
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With an analogous argument, one can show that the smaller eigenvalue of τ
+
1 +τ−1

2 is upper bounded by
328εwav too.

Now if a channel maps the center of the Bloch ball, the maximally mixed state 112
2 , to a state close to

the boundary, then by linearity the entire Bloch ball will be mapped to a tiny volume not far away from
the boundary either. Consequently, the state (Λ1

A ⊗ Λ1
B)(Φ+) is close to a product state, where Φ+ is

the target state, as de�ned in Equation (4.2). Since two-qubit product states have �delity 1
2 with any

maximally entangled two-qubit state, we thus conclude that the �delity 〈(Λ1
A ⊗ Λ1

B)(Φ+),Φ+〉 cannot
exceed 1

2 by much. This idea is made rigorous in the next lemma.

Lemma 4.4. The �delity of Φ+ with its image under Λ1
A ⊗ Λ1

B is bounded as

〈(Λ1
A ⊗ Λ1

B)(Φ+),Φ+〉 ≤
1

2
+ 656εwav.

Proof. Note that we have the following two bounds.

• We have 〈
(Λ1

A ⊗ Λ1
B)

(11⊗ 11 + σY ⊗ σY)

4
,Φ+

〉
≤ 1

2
(4.26)

since the �rst argument is a separable state, and the �delity of a separable state with a two-qubit
maximally entangled state is at most 1

2 (see Corollary 2.14).

• Write P and P ′ such that 112+P
2 and 112+P ′

2 are arbitrary vectors on the Bloch ball:

P := cXX + cYY + cZZ and P ′ := c′XX + c′YY + c′ZZ

where cX, cY, cZ, c′X, c
′
Y, c
′
Z ∈ R and c2

X + c2
Y + c2

Z = (c′X)2 + (c′Y)2 + (c′Z)2 = 1. In line with the

notation of the proof of Lemma (4.3), denote the minimal eigenvalue of Λ1
A

(
112
2

)
by δA, and write

δB for the smaller eigenvalue of Λ1
B

(
112
2

)
. Then using Lemmas 2.13 and 2.8, we obtain

〈(Λ1
A ⊗ Λ1

B)(P ⊗ P ′),Φ+〉
Lemma 2.8
≤ 〈|(Λ1

A ⊗ Λ1
B)(P ⊗ P ′)|,Φ+〉

= 〈|(Λ1
A)(P )| ⊗ |(Λ1

B)(P ′)|,Φ+〉
Lemma 2.13
≤ 〈2

√
δA112 ⊗ 2

√
δB112,Φ+〉

≤ 4
√
δAδB

〈
112 ⊗ 112,Φ+

〉
= 4

√
δAδB

Lemma 4.3
≤ 4

√
328εwav · 328εwav

≤ 4 · 328εwav (4.27)

= 1312εwav. (4.28)

As de�ned in Equation (4.2), the target state Φ+ is given by

Φ+ =
1

4

(
11⊗ 11 + Y ⊗ Y + X⊗ X + Z√

2
+ Z⊗ X− Z√

2

)
.
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Using Equations (4.26) and (4.28), we obtain

〈(Λ1
A ⊗ Λ1

B)(Φ+),Φ+〉 =
〈

(Λ1
A ⊗ Λ1

B)
(11⊗ 11 + Y ⊗ Y

4

)
,Φ+

〉
+

1

4

〈
(Λ1

A ⊗ Λ1
B)
(
X⊗ X + Z√

2

)
,Φ+

〉
+

1

4

〈
(Λ1

A ⊗ Λ1
B)
(
Z⊗ X− Z√

2

)
,Φ+

〉
≤ 1

2
+

1

4
· 1312εwav +

1

4
· 1312εwav

=
1

2
+ 656εwav.

4.8 Upper bounding the singlet extractability of ρTE

To conclude the proof, we show that the state ρTE, after application of extraction channels, has trivial
�delity with the singlet for any choice of channels. To do so, we need to unfold our de�nitions and use
lemma 4.4.

First, write F
(

(ΛA ⊗ ΛB)(ρTE),Φ+

)
as a sum of inner product, as in Equation (4.10):

F
(

(ΛA ⊗ ΛB)(ρTE),Φ+

)
=

2∑
x,y=0

pxy〈(ΛxA ⊗ ΛyB)(ρxy),Φ+〉

= ν · 〈(Λ1
A ⊗ Λ1

B)(ρ11),Φ+〉+
∑
x,y∈F

pxy〈(ΛxA ⊗ ΛyB)(ρxy),Φ+〉

where, as before, we have denoted ν := p11. Substituting the de�nition of the εxy as in Equation (4.15),
we get:

F
(

(ΛA ⊗ ΛB)(ρTE),Φ+

)
= ν · 〈(Λ1

A ⊗ Λ1
B)(ρ11),Φ+〉+

∑
x,y∈F

pxy(
1

2
− εxy).

Now by using Lemma (4.4), we obtain

F
(

(ΛA ⊗ ΛB)(ρTE),Φ+

)
≤ ν ·

(1

2
+ 656εwav

)
+

∑
x,y∈F pxy

2
−
( ∑
x,y∈F

pxyεxy

)
By substituting the de�nition of εwav as in Equation (4.16), we can continue the series of inequalities
as

F
(

(ΛA ⊗ ΛB)(ρTE),Φ+

)
≤ ν ·

(1

2
+ 656εwav

)
+

1− ν
2
− (1− ν)εwav

= ν · (656εwav + εwav)− εwav +
1

2

= εwav · (657ν − 1) +
1

2
.
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Setting ν = 1
657 ≈ 0.0015 ensures that the �rst term vanishes, which results in

F
(

(ΛA ⊗ ΛB)(ρTE),Φ+

)
≤ 1

2 . With ν = 1
657 , the Bell value of ρTE becomes 2 + (2

√
2− 2)ν ≈ 2.0013.

This concludes the proof of the main theorem of this chapter, Theorem 4.1.

The CHSH violation of the state we constructed greatly depends on the constants appearing in the
several lemmas in this chapter. We note a few possibilities for optimization of these constants, thereby
improving the CHSH violation of our state. First, the main lemma to the proof, Lemma 4.2, only
considers Alice's and Bob's channels separately. However, we have already seen that the singlet ex-
tractability of our state equals 1

2 if and only if the extraction channels of Alice and Bob damp towards
the same term in the symmetric Schmidt decomposition of the singlet (see Section 4.4). Adjusting the
proof while keeping this relation between Alice's and Bob's channels in mind might yield a greater
CHSH violation than β ≈ 2.0013. Second, Lemmas 4.4 and 4.3 involve the smallest eigenvalue of the
maximally mixed state after application of the extraction channels. This smallest eigenvalue yields
bounds on the �delity with the singlet state as given in Lemma 2.13. However, upon close inspection,
we see that these lemmas use the product of the eigenvalues (i.e. the determinant), rather than the
smallest eigenvalue, which upper bounds the product. Improvement on the �nal CHSH violation could
therefore be made by improving this lemma too.
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5 The tilted CHSH inequality

5.1 Self-testing using the tilted CHSH inequality

The following family of Bell operators, which form a generalization of the CHSH operator, was intro-
duced by Acín et al. [AMP12]:

B = αA0 ⊗ 11 +
∑

j,k∈{0,1}

(−1)j·kAj ⊗Bk (5.1)

where A0, A1, B0, B1 are observables and 0 ≤ α < 2 is a parameter. The classical value of the Bell
operator is 2 + α whereas quantum states can yield a violation up to

√
8 + 2α2. Consider the set of

partially entangled two-qubit states, which can, up to local unitaries, be written in the form

cos(θ) |00〉+ sin(θ) |11〉 (5.2)

where θ ∈]0, π4 ]. Acín et al. showed that these states maximally violate the tilted CHSH inequality with
the parameter α = 2/

√
1 + 2 tan2(2θ).

Building upon the work of Yang and Navascués [YN13], it was shown by Bamps and Pironio [BP15] that
the states from Equation (5.2) are the only states that maximally violate the tilted CHSH inequality,
up to additional degrees of freedom and local unitaries (these two features are necessary for self-testing,
see Section 3.2). The proof by Bamps and Pironio also includes analytic self-testing bounds for these
states. Their approach followed the line of work of McKague et al. as given in De�nition 3.4; as such,
they explicitly constructed the isometries as required by the de�nition of self-testability, De�nition 3.2.
The analytic bounds thus obtained are of order O(

√
ε), where ε is the di�erence between the observed

violation and the maximal violation. These bounds are rather weak; for α = 0 for example (which
corresponds to self-testing of the singlet), the bound becomes trivial for ε ' 2.3 · 10−3. For α = 1, the
bounds are trivial for ε ' 1.5 · 10−4.

These bounds were signi�cantly improved by Bancal et al. by application of the numerical SWAP
method (see Section 3.4.2) [BNS+15]. Their results are depicted in Figure 4.

5.1.1 Our contribution

Numerically, we found improved self-testing bounds using the tilted CHSH inequality for all pure two-
qubit states which can be parametrized, up to local unitaries, as in Equation (5.2) with θ ∈ [0.14, π4 ].
Further research is needed to verify that the bounds also hold for pure two-qubit states with θ ∈]0, 0.14].
We �rst state the �nal bounds.

Result 5.1. (Numerical result)
Denote by Φα a pure two-qubit state with Schmidt coe�cients cos(θ) and sin(θ) with θ ∈ [0.14, π4 ], where

α = 2/
√

1 + 2 tan2(2θ). Let ρ be a state that achieves a violation β of the tilted CHSH inequality as
given in Equation (5.1). Then

max
ΛA,ΛB

F
((

ΛA ⊗ ΛB
)
(ρ),Φα

)
≥ sα · β + µα (5.3)

where sα and µα are given by:

sα =
1− 1

4

(
1 +

√
4−α2

8+2α2 +
√

2α2

8+2α2

)
√

8 + 2α2 − (2 + α)
, (5.4)

µα = 1− sα ·
√

8 + 2α2. (5.5)
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The remainder of this chapter is devoted to the derivation of this result, which we show using the
method described in Section 3.5. Building upon the work of Acín et al., we �rst write down the state
and measurement operators that maximally violate the tilted CHSH inequality. Then we explicitly
extend the local extraction channels for the CHSH scenario [Kan16] to the scenario of the tilted CHSH
inequality. Finally, for every α ∈ [0, 1.85] (which corresponds to θ ∈ [0.14, π4 ]) we compute an operator
inequality and parameters sα and µα that imply Equation (5.3). We veri�ed these operator inequalities
numerically; for details about the numerics, we refer to the end of this chapter (Section 5.2.7).
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Figure 4: Lower bounds (solid line) on the extractability (see De�nition 3.6) for partially en-
tangled pure states cos(θ) |00〉 + sin(θ) |11〉 as a function of the tilted CHSH violation β, where
α = 2/

√
1 + 2 tan2(2θ). The horizontal axes range from the classical value to the quantum value. The

trivial lower bound is indicated by a dashed horizontal line. Vertical dashed lines indicate the threshold
violation β∗. The dotted lines are the previous best bounds as found by Bancal et al. [BNS+15]. The
case α = 0 corresponds to self-testing bounds for the maximally entangled two-qubit state as found
before [Kan16].

5.2 Self-testing bounds from operator inequalities for (almost) all pure two-qubit
states

5.2.1 The observables

Recall that, as a consequence of Jordan's lemma, we only need to consider qubit observables (see the
text just before Equation (3.17) in Section 3.5). Similar to Equation (3.17), we de�ne Alice's and Bob's
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observables as

Ar(a) := cos(a)X + (−1)r sin(a)Z

Br(b) := cos(b)X + (−1)r sin(b)Z (r = 0, 1)

where a, b ∈ [0, π2 ] are Alice's and Bob's angles, respectively. By the same reasoning as in Section 3.5,
this formulation covers all possible choices of observables.

Using this observable parametrization, the tilted CHSH operator from Equation (5.1) becomes

B(a, b) = 2
[
(cos(a)X + sin(a)Z)⊗ (cos(b)X + α11)

+(cos(a)X− sin(a)Z)⊗ sin(b)Z
]

(5.6)

5.2.2 The target states: partially entangled two-qubit states

The tilted CHSH inequality is maximally violated by pure states of the form |ϕθ〉 := cos(θ)|00〉 +
sin(θ)|11〉 for θ ∈]0, π4 ]. Bamps and Pironio proved that the observables that achieve maximal violation
with this state are [BP15]

A0 = Z B0 = cos(b∗)Z + sin(b∗)X
A1 = X B1 = cos(b∗)Z− sin(b∗)X

(5.7)

where tan(b∗) = sin(2θ). For the case α = 0 (corresponding to θ = π
4 ), the tilted CHSH operator

reduces to the regular CHSH operator, and the observables that yield maximal violation are

A0 = Z B0 = (Z + X)/
√

2

A1 = X B1 = (Z− X)/
√

2.
(5.8)

For α = 0, however, our observable parametrization yields maximal CHSH violation when

A0 = B0 =
X + Z√

2
, A1 = B1 =

X− Z√
2
. (5.9)

In order to obtain the state that maximally violates the tilted CHSH inequality for given α, we therefore
need to change the local bases of the target state |ϕθ〉 = cos(θ) |00〉+ sin(θ) |11〉. Let us �rst compute
the pure density matrix |ϕθ〉〈ϕθ|:

|ϕθ〉〈ϕθ| = cos2(θ)
[Z + 11

2
⊗ Z + 11

2

]
+ sin2(θ)

[Z− 11

2
⊗ Z− 11

2

]
+

1

2
cos(θ) sin(θ)

[
X⊗ X− Y ⊗ Y

]
=

1

4

(
11⊗ 11 + sin(2θ)

[
X⊗ X− Y ⊗ Y

]
+ Z⊗ Z + cos(2θ)

[
Z⊗ 11 + 11⊗ Z

])
. (5.10)

By comparing Equations (5.8) and (5.9), we see that we need to apply the following two local unitary
transformations to |ϕθ〉〈ϕθ|:

• for Alice: change X into X−Z√
2

and Z into X+Z√
2
. This corresponds to a rotation of the Bloch sphere

over an angle π
4 about the Y-axis;

• for Bob: change X into Z and vice versa, and change Y by −Y. This corresponds to a rotation
about the axis through 11

2 and X+Z√
2
. During this process, X and Z are swapped and Y picks up a

minus sign.
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Applying these two transformations to |ϕθ〉〈ϕθ| from Equation (5.10), we obtain the target state that
we will use:

Φα :=
1

4

(
11⊗ 11 + sin(2θ)

[X− Z√
2
⊗ Z + Y ⊗ Y

]
+

X + Z√
2
⊗ X

+ cos(2θ)
[X + Z√

2
⊗ 11 + 11⊗ X

])
(5.11)

=
1

4

[
11⊗ 11 +

1√
4 + α2

(
α
√

2
[X + Z√

2
⊗ 11 + 11⊗ X

]
+
√

4− α2Y ⊗ Y +
√

4 + α2
X + Z√

2
⊗ X +

√
4− α2

X− Z√
2
⊗ Z

)]
(5.12)

where we used the relation α = 2/
√

1 + 2 tan2(2θ) to rewrite the target state as a function of α instead
of θ.

5.2.3 Trivial lower bound to extractability

The target state Φα is a pure state with Schmidt coe�cients cos(θ) and sin(θ), where θ ∈]0, π4 ]. The
trivial lower bound to the extractability maxΛA,ΛB F

(
(ΛA ⊗ ΛB)(ρ),Φα

)
is given by the square of the

larger of the two Schmidt coe�cients of Φα (see Section 3.5); hence the trivial lower bound is given by

cos(θ)2 = 1
2

(√
2α2

4+α2 + 1
)
.

5.2.4 Optimal observables

We obtain the observable angles at which maximal violation occurs in our parametrization by applying
the same transformations to the optimal observables as given in Equation (5.7). Doing so, we get the
following optimal observables:

A0 = X+Z√
2

B0 = cos(b∗)X + sin(b∗)Z

A1 = X−Z√
2

B1 = cos(b∗)X − sin(b∗)Z
(5.13)

where we had de�ned the angle b∗ as tan(b∗) = sin(2θ) =
√

4−α2

4+α2 . Hence the optimal violation occurs
at the angles a = π

4 and b = b∗ in our parametrization.

5.2.5 Extraction channels

Kaniewski used the following extraction channels for the CHSH inequality.
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Extraction channels for CHSH [Kan16]
Alice and Bob have the same extraction channel ΛCHSH as a function of their angle a and b,
respectively, de�ned as:

[ΛCHSH(x)](ρ) :=
1 + g(x)

2
ρ+

1− g(x)

2
Γ(x)ρΓ(x) (5.14)

where

Γ(x) :=

{
X if x ∈ [0, π/4]
Z for x ∈ (π/4, π/2]

and
g(x) := (1 +

√
2)(sin(x) + cos(x)− 1)

where x denotes the angle.

For the optimal angles for CHSH, a = b = π
4 , we have g(π4 ) = 1, hence the extraction channels are

identity channels. For angles x = 0 or x = π
2 , which correspond to commuting observables, the channels

are full dephasing channels in the X-axis or Z-axis, respectively.

In order to �nd self-testing bounds using the tilted CHSH inequalities, we use dephasing channels again.
When �nding these extracting channels, we wish to keep two following properties of the channels: full
dephasing for commuting observables and identity channels for the optimal angles. To do so, we need
to modify the function g into functions gAα and gBα , such that the following two conditions hold:

(a) gAα (0) = gAα (
π

2
) = gBα (0) = gBα (

π

2
) = 0

(b) gAα (
π

4
) = 1 and gBα (b∗) = 1.

(Recall that b∗ ≡ b∗(α) is the optimal angle for Bob). Moreover, for the extraction channels from Equa-
tion (5.14) to be valid channels, the functions also need to satisfy gAα (x), gBα (x) ∈ [−1, 1] for all x ∈ [0, π2 ].

For Alice, the optimal angle is independent of α, so we can set gAα (x) := g(x). For Bob's function gBα ,
we set out to �nd a function of the form gBα (x) = fα(x)g(x) for some function f to be determined
later. The reason for scaling the original function g by multiplication is that, since g vanishes at x = 0
or x = π

2 , the new function gBα will do so as well. We therefore only need to �nd a function f that
satis�es fα(b∗)g(b∗) = 1 and −1 ≤ fα(x)g(x) ≤ 1.

Assuming that fα(x)g(x) is maximal for x = b∗, we have

∂

∂x
fα(x)g(x)

∣∣∣
x=b∗

= 0, hence f ′α(b∗) = fα(b∗) ·
(
− g′(b∗)

g(b∗)

)
A solution to this single-point equation is given by fα(x) = e−λ(α)·x, where

λ(α) :=
g′(b∗)

g(b∗)
=

cos(b∗)− sin(b∗)

cos(b∗) + sin(b∗)− 1
=

√
4 + α2 −

√
4− α2

√
4 + α2 +

√
4− α2 − 2

√
2

where in the last equation, we used the relations tan(b∗) = sin(2θ) and α = 2/
√

1 + 2 tan2(2θ).
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The second condition, −1 ≤ fα(x)g(x) ≤ 1 is satis�ed by correctly normalizing fα(x).

The functions Γ which are used in the extraction channel for the CHSH case need modi�cation too. In
particular, we need to change the angle at which the dephasing axis transition between the X-axis and
the Z-axis. For the regular CHSH, this transition angle is the optimal angle a = b = π

4 . It is natural to
let this transition occur at the optimal angle for α 6= 0 too.

Collecting all the modi�cations to the extraction channels as explained above, we obtain the following
channels for the tilted CHSH scenario.

Extraction channels for the tilted CHSH scenario
Consider the extraction channel Λ(x) as function of the angle x, de�ned as:

[Λ(x)](ρ) :=
1 + g(x)

2
ρ+

1− g(x)

2
Γ(x)ρΓ(x)

where

Γ(x) :=

{
X if x ∈ [0, x∗]
Z for x ∈ (x∗, π/2]

with x∗ the transition angle and g a dephasing parameter function.

For Alice, the transition angle is a∗ = π
4 and the function

gA(a) := (1 +
√

2)(cos(a) + sin(a)− 1).

For Bob, we have b∗ = b∗(α) = arctan
(√

4−α2

4+α2

)
and the function g becomes

gBα (x) := h(α, x)/h(α, b∗),

where
h(α, x) := gA(x) · e−λ(α)x

and

λ(α) :=

√
4 + α2 −

√
4− α2

√
4 + α2 +

√
4− α2 − 2

√
2

5.2.6 Operator inequality

We compute Ktilted(α, a, b) :=
(
ΛA(α, a)†⊗ΛB(α, b)†

)
(Φα), where ΛA and ΛB are the extraction chan-

nels derived in the previous section and Φα is the partially entangled state as de�ned in Equation (5.12).

We introduce some notation �rst. If x∗ denotes the optimal angle, write

ρ(x) =

{
ρx≤x∗

ρx>x∗

}

when ρ(x) = ρx≤x∗ if x ≤ x∗ and ρ(x) = ρx>x∗ otherwise. Using this notation, we can write

ΛA(a)(X) = X ·

{
1

gA(a)

}
and ΛA(a)(Z) = Z ·

{
gA(a)

1

}
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and similarly,

ΛB(b)(X) = X ·

{
1

gBα (b)

}
and ΛB(b)(Z) = Z ·

{
gBα (a)

1

}
.

It is now straightforward to compute

Ktilted(α, a, b) =
1

4

[
11⊗ 11

+
1√
2

{
X + gA(a)Z

gA(a)X + Z

}
⊗

{
X

gBα (b)X

}

+

√
4− α2

√
4 + α2

(
gA(a)gBα (b)Y ⊗ Y +

1√
2

{
X− gA(a)Z

gA(a)X− Z

}
⊗

{
gBα (b)Z

Z

})
+

α√
4 + α2

({X + gA(a)Z

gA(a)X + Z

}
⊗ 11 +

√
211⊗

{
X

gBα (b)X

})
]

Following the method to obtain linear self-testing bounds on the extractability from operator inequal-
ities as described in Section 3.5, we need to �nd real-valued parameters sα and µα, such that the
operator inequality

Tα,s,µ(a, b) := Ktilted(α, a, b)− sαB(α, a, b)− µα114 ≥ 0 (5.15)

holds, for all α ∈ [0, 1.85] and a, b ∈ [0, π2 ], where B(α, a, b) is the tilted CHSH operator as de�ned in
Equation (5.6).

By noting that Tα,s(a, b) = (H⊗X)Tα,s(
π
2 − a, b)(H ⊗X) for all α and s, where H = (X+Z)/

√
2 is the

Hadamard gate, we see that it is su�cient to only consider a ∈ [0, π4 ]. We thus obtain

Tα,s,µ(a, b) =
(1

4
− µ

)
11⊗ 11

+
1

4

√
4− α2

4 + α2
gA(a)gBα (b)Y ⊗ Y

+
( 1

4
√

2

{
1

gBα (b)

}
− 2s cos(a) cos(b)

)
X⊗ X

+
( 1

4
√

2
gA(a)

{
1

gBα (b)

}
− 2s sin(a) cos(b)

)
Z⊗ X

+
(1

4

√
4− α2

8 + 2α2

{
gBα (b)

1

}
− 2s cos(a) sin(b)

)
X⊗ Z

−
(1

4

√
4− α2

8 + 2α2
gA(a)

{
gBα (b)

1

}
− 2s sin(a) sin(b)

)
Z⊗ Z

+
α

4
√

4 + α2

(
(X + gA(a)Z)⊗ 11 +

√
2

{
1

gBα (b)

}
11⊗ X

)
− αs(cos(a)X + sin(a)Z)⊗ 11 (5.16)

for α ∈ [0, 2[ and a ∈ [0, π4 ] and b ∈ [0, π2 ], where the expressions in between curly brackets are
dependent on Bob's transition angle b∗.
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5.2.7 Computing the optimal s and µ

Numerical evidence indicates that the operator Tα,s,µ(a, b) has strictly positive eigenvalues for all
α ∈ [0, 1.85] and s ≥ 0 and for all (a, b) ∈ [0, π4 ] × [0, π2 ] − {(π4 , b

∗), (0, π2 )}. We �rst compute the
minimal eigenvalues of Tα,s,µ at the two `critical' points for which Tα,s,µ(a, b) is singular:

Minimal eigenvalues: (5.17)

Tα,s,µ(
π

4
, b∗) : 1− s

√
8 + 2α2

Tα,s,µ(0,
π

2
) :

1

4

(
1 +

√
4− α2

8 + 2α2
+

√
2α2

8 + 2α2

)
− (2 + α)s

Our goal is to �nd s = sα and µ = µα that satisfy (a) the operator inequality as given in Equation
(5.15) and (b) for which the threshold violation β∗ is minimal (see Section 3.5 for more details on
the threshold violation). Since the trivial lower bound to the extractability of the input state with the

target state Φα is given by 1
2

(√
2α2

4+α2 + 1
)
(see Section 5.2.3), we obtain the threshold violation as a

function of α, s and µ:

β∗ =
1

s

[
1

2

(√ 2α2

4 + α2
+ 1
)
− µ

]
By substituting the minimal eigenvalues of Tα,s,µ(a, b) at the two critical points as given in Equation
(5.17), we �nd that the threshold violation is minimized at the intersection of these two eigenvalues,
as a function of s. Setting these two eigenvalues equal and solving for s yields

sα :=
1− 1

4

(
1 +

√
4−α2

8+2α2 +
√

2α2

8+2α2

)
√

8 + 2α2 − (2 + α)
.

The two lines intersect at the value

µα := 1− sα ·
√

8 + 2α2.

Setting α = 0 recovers the parameters for the self-testing lower bounds for the singlet as found by
Kaniewski [Kan16].

5.2.8 Numerical veri�cation for positivity of Tα,s,µ(a, b)

We used the built-in numerical function Eigenvalues of the computer program Mathematica (version
8.0) to compute the eigenvalues of Tα,sα,µα(a, b) as given in Equation (5.16), with sα and µα as given
in the previous section. The variables α,a and b were given the following values:

• α ∈ [0, 1.85], with step size dα = 0.05;

• a ∈ [0, 22 · ε√
2
] ≈ [0, π4 ] with step size da = ε√

2
, where ε = 0.05;

• b ∈ [0, 44 · ε√
2
] ≈ [0, π2 ] with step size db = ε√

2
, where ε = 0.05.

The value α = 1.85 corresponds to θ ≈ 0.14. For given α, the distance between (a, b) ∈ [0, π4 ] × [0, π2 ]
and the closed grid point (a, b) for which the eigenvalues of Tα,sα,µα were computed is at most ε.

For all of these values, the minimal eigenvalue of Tα,sα,µα(a, b) was nonnegative, with a precision
of 10−12. We thus veri�ed that the operator Tα,sα,µα(a, b) is positive semide�nite for 0 ≤ α ≤ 1.85.
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Following the method as outlined in Section 3.5, we arrive at our main result, Result 5.1.

For α > 1.85, the minimal eigenvalue of Tα,sα,µα(a, b) ranged from the order of 10−6 to 10−3. More
research will have to show if these are numerical artifacts or that a slight adaption of the dephasing
channels will yield nonnegative eigenvalues for Tα,sα,µα(a, b).
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6 Discussion and conclusion

Self-testing bounds as a function of Bell violation can be formulated in terms of the extractability (see
De�nition 3.6), which is the �delity of the target state with the input state after the players of the Bell
game are allowed to apply local quantum channels called extraction channels. Using this formulation,
we improved upon previously known robustness bounds for self-testing of (almost) all pure partially
entangled two-qubit states using tilted CHSH inequalities. The proof for our new robustness bounds
is based upon the construction of extraction channels for maximally entangled two-qubit states by
Kaniewski [Kan16]. We extended these channels to the case of partially entangled two-qubit states,
thereby �nding new robustness bounds which improve upon all previously known results.

Furthermore, we constructed a state that violates the CHSH inequality but has trivial singlet ex-
tractability. Here `trivial' indicates that there are no channels that achieve strictly greater �delity with
the singlet than when Alice and Bob ignore their shares and replace it by a �xed state. For the singlet,
the trivial extractability is 1

2 . The state we constructed is a classical-quantum state and can be written
as a probabilistic mixture of, on each side, a classical three-outcome classical register and a qubit. We
showed that no pair of extraction channels can perform well at both the separable two-qubit states
and the maximally-entangled two-qubit state at the same time; as a consequence, the overall �delity
is at most 1

2 .

The existence of such a state as described here shows not only that the CHSH violation does not
imply nontrivial singlet extractability, but also that entanglement is not su�cient for nontrivial sin-
glet extractability. Our result is, in the context of self-testing, of the same �avour as the existence of
Werner states [Wer89], which are states that are genuinely entangled but nonetheless admit a local
hidden variable model and thus do not violate any Bell inequality (see also Section 2.2.5). In the case
of two qubits, Werner states are singlets mixed with uniform noise; by linearity of the singlet �delity,
one directly computes that the Werner state with visibility parameter p has singlet extractability at
least 1+3p

4 , which is nontrivial for p > 1
3 . Since all Werner states with p ≤ 1

2 cannot violate any Bell
inequality, we infer that nontrivial singlet extractability does not imply CHSH violation. The state of
implications between entanglement, CHSH violation and singlet extractability is depicted in Figure 5.

Rather than considering the relation between singlet extractability and entanglement, it is a natural
step to ask about bound entanglement. Bound entangled states are entangled but undistillable. Vértesi
and Brunner constructed a bound entangled state that exhibits Bell nonlocality [VB14]. As classical
communication is allowed in the process of entanglement distillation, an undistillable state has trivial
singlet extractability. Vértesi and Brunner proved undistillability of the state they proposed by showing
positivity of its partial transpose and provided an explicit Bell inequality, di�erent from the CHSH
inequality, that the state violates. Since nonpositivity of the partial transpose is necessary for CHSH
violation, the state Vértesi and Brunner constructed does not violate the CHSH inequality. Our result
is di�erent from the work of Vértesi and Brunner since the state that we constructed violates the CHSH
inequality.

6.1 Future research

The state we constructed has CHSH violation β ≈ 2.0013. As a corollary to our result, the observation
of a CHSH violation β . 2.0013 does not yield any information about the singlet extractability of the
underlying state. On the other hand, nontrivial singlet extractability can be inferred if β > 2.11. It
is up to future research to close this gap and to examine what information can be inferred about the
state if it yields a CHSH violation β ∈ (2.0013, 2.11]: what is the real threshold violation in this regime?
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Figure 5: The relations between three properties that a quantum state can possess.

At the end of Chapter 4, we noted a few opportunities to improve the bounds on the CHSH violation
of our constructed state. By optimizing our proof, we might be able to make the gap β ∈ (2.0013, 2.11]
smaller.

We have successfully obtained self-testing statements for two-qubit states from operator inequalities.
A next step is to apply this method to di�erent entangled states. In particular, future research could
focus on the n-partite genuinely entangled states

|0〉⊗n + |1〉⊗n√
2

which go by the name of GHZ-states [GHZ89]. Possibly, we could use operator inequalities to prove ro-
bust self-testing statements for the GHZ-states using the family of Mermin-Ardehali-Belinskii-Klyshko
operators [Mer90, Ard92, BK93] (see also [Kan17] for a concise de�nition of this family of operators).
Recently, provably tight self-testing bounds were constructed for the case n = 3 [Kan16]. Similar to our
extension of self-testing statements of the maximally entangled two-qubit state to partially entangled
two-qubit states, research could focus on extending the tight bounds for n = 3 to general n > 3. This
task is of a di�erent �avour than our results, however: since the operator inequalities that correspond
to self-testing bounds grow with dimensionality, proving self-testing for n-partite GHZ states requires
proving in�nitely many operator inequalities whose dimensions grow exponentially with n.

Finally, one could examine the use of operator inequalities for a one-sided variant of self-testing called
quantum steering. A steering setup is a variation to a Bell experiment where only Alice considers
her device as a black box, while Bob has full control over his measurements (for a general review on
steering, we refer to Cavalcanti and Skrzypczyk [CS16]). Such a setup is also called a one-sided device-
independent scenario, since only Alice need not trust her device. The central question is: given Bob's
measurements and his outcome, and Alice's input and output, what can be inferred about the shared
state? Robustness bounds for steering have already been found [�ASA16, GWK17]; future research
could attempt to improve these with operator inequalities, using the method described in Section 3.5.
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