
Covertly Controlling Choices

Manipulating Decision Making Under Partial Knowledge

MSc Thesis (Afstudeerscriptie)

written by

Simone Griffioen

(born November 18, 1992 in Groningen)

under the supervision of Prof. dr. Jan van Eijck, and submitted to the Board of Examiners in partial
fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

June 15, 2017 Prof. dr. Ronald de Wolf (Chair)
Prof. dr. Jan van Eijck (Supervisor)
Dr. Ulle Endriss
Dr. Ronald de Haan
Malvin Gattinger, MSc

Abstract

The problem of reaching collective decisions on interconnected issues is studied in binary judgement
aggregation with integrity constraints. In this thesis, we present an implementation of the framework
for binary judgement aggregation and extend this implementation to study the decision making process.
First we introduce several (new) rules, such as the priority rule, the distance based rule and the
least squares rule. We illustrate and motivate the usefulness of these rules by examples using the
implementation. We introduce the notion of a majority preserving rule and we prove that both the
priority and the distance based rule are majority preserving. It is well known that most reasonable
aggregation rules are susceptible to manipulation under full knowledge. We study manipulation of
the decision making process. To generalize this, we quantify the preferences of agents and we use this
to study manipulations under both full, but also partial knowledge. We illustrate how agents could
manipulate certain aggregation rules. Not only aggregation rules can be manipulated, other parts of
the decision making process are susceptible to manipulation as well. An agent could use her knowledge
for making a choice of an aggregation rule or when setting an agenda. We adapt a known concept
of agenda manipulation to our setting and combine this with manipulation of the aggregation rule.
We investigate how much knowledge agents need to be able to manipulate and we show that even
without knowledge, there are plenty of opportunities for manipulation. Finally, we use the quantified
preferences to quantify manipulability of aggregation rules under different amounts of knowledge, and
we show how we can use this quantification to choose a rule that is less manipulable.

Acknowledgements

I would like to express my gratitude to everyone who has made this thesis possible. The positive
feedback of my friends, fellow students and family, who were willing to listen to and discuss my ideas
encouraged me to stay enthusiastic and it helped me to get a clear line in my research. Malvin, Noor
and my dad read and annotated my thesis. They pointed out what I should clarify and where a nice
example would help a lot. Sharing thesis suffering with Hugo was motivating, since suffering together is
much nicer than suffering alone. Jan was always willing to have a chat about my thesis, politics or any
other interesting subject. He organized weekly thesis lunches in which I could share my thesis troubles
with other students in the same position. Furthermore I would like to acknowledge the members of the
committee for the time they took to read my thesis and prepare the defense.

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Outline of thesis . 5

List of Symbols 6

2 Binary aggregation with integrity constraints 8

2.1 Basic definitions . 8

2.2 Aggregation rules . 13

2.3 Preference aggregation . 26

3 Manipulating decision making 32

3.1 Measuring satisfaction . 34

3.2 Manipulation of the aggregation rule . 38

3.2.1 Manipulating rules under full knowledge . 38

3.2.2 Manipulating rules under partial knowledge . 42

3.2.3 A manipulation tool . 46

3.2.4 Manipulating social choice functions . 49

3.2.5 How much knowledge is needed for manipulation of the aggregation rule? 54

3.3 Setting the aggregation procedure . 58

3.3.1 Choosing an aggregation rule . 59

3.3.2 Agenda setting . 60

1

Contents Contents

3.4 Summary . 68

4 Quantifying manipulability of aggregation rules 69

4.1 Basic manipulative power . 69

4.2 Manipulative power . 70

4.2.1 Under full knowledge . 70

4.2.2 Under full ignorance . 71

4.2.3 Worst-case scenario . 71

4.3 Summary . 72

5 Conclusions and suggestions for future research 73

Bibliography 77

Appendices 78

A Some useful functions 79

A.1 Functions that are not specific to aggregation . 79

A.2 Functions that are specific to aggregation . 80

A.3 Representative voter rules . 82

B Quantifying manipulation functions 86

2

1 | Introduction

1.1 Motivation

Each day every one of us has to make many decisions.

“What do I want for dinner tonight?”
“What color shoes do I want to buy?”
“Which movie do I want to see?”
“Do I want to go to bed early tonight?”

These decisions might be interconnected. For example, if I want to go to bed early tonight, I do not
want to see a very long movie. Making all these decisions on your own can already be a tough task,
however, if multiple people are involved, reaching a collective decision is certainly not a piece of cake!
We will illustrate this with an example.

Example 1 - Cat or Dog. A family has to decide on the purchase of a new pet. In Table 1.1, the
family members’ preferences about the purchase can be found.

dog cat both

Member 0 Yes No No
Member 1 Yes Yes Yes
Member 2 No Yes No

Majority Yes Yes No

Table 1.1: The opinion of 3 family members on the purchase of pets.1

When making binary decisions, a reasonable strategy is to follow the opinion of the majority. This way,
if the family would vote for having both a cat and a dog, they would decide not to. However, if they
would vote for having a cat, they would buy a cat, and if they would continue to vote for having a dog,
they would also buy a dog. In both cases, the decision is made according to the majority, however, we
end up with contradictory outcomes: according to majority, they should buy a cat, and a dog, but not
both a cat and a dog. This is impossible! ⌅

Note that while all the opinions of the individual family members are completely rational, proposition-
wise majority voting gives us a result that is not. That is, the outcome is logically impossible. This is

1It might seem quite unnatural to vote for these three issues, however this example shows that it actually matters
whether we vote separately on the first two issues, or only on the third.

3

Chapter 1. Introduction 1.1. Motivation

also known as the doctrinal paradox. Clearly reaching a decision on these kinds of subjects is not as
straightforward as it might look at first sight. How to do this judgement aggregation is a question that
generalizes earlier preference aggregation problems, in which a winner from a set of alternatives has to
be chosen.2 A paradox in judgement aggregation is a case in which all individuals stick to a certain
constraint, but a seemingly reasonable aggregation rule produces a group decision that violates this
same constraint, such as in the example above. The field of judgement aggregation is concerned with
these paradoxes and finding aggregation rules that do not generate paradoxes, that is, rules that lift
the constraint to the collective level. This is mostly studied by the axiomatic method. Here axioms are
given that describe desirable properties of aggregation rules. Grandi and Endriss (2011a) showed that
some very desired axioms can only hold simultaneously when the rule is a quota rule. In their paper, the
class of integrity constraints that are lifted by quota rules is characterised. Most integrity constraints
are not lifted by quota rules. For such an integrity constraint, all reasonable rules are susceptible to
manipulation, that is, people may want to lie about their preferences to obtain better outcomes of
the aggregation rule. This is manipulation of the aggregation rule. In the literature, there are several
definitions for manipulability of an aggregation rule, which are not all equivalent. For example, Dietrich
and List (2007b) uses another definition than Grandi (2012). Besides manipulation of the aggregation
rule, there are other parts in the decision making process where an agent could influence the outcome.
For one, the individuals involved in the decision making often first have to agree on the rule that they
use. In daily life, mostly little consideration is given to this: a certain rule is proposed and accepted if
it sounds reasonable. However, as we will see, picking a certain rule can be a way of manipulating the
outcome. Besides this, if a certain type of rule is chosen, the outcome will also depend on the agenda
setting, that is: the questions that are voted on and the order of voting on them. One can sometimes
set the agenda in such a way that a more preferable outcome will be obtained. This is called agenda
manipulation. Dietrich (2013), studies agenda manipulation for binary aggregation.

These different kinds of manipulation that can occur within the decision making process have been
studied before, but in most research not much regard is given to the case where the manipulator has
only partial knowledge. In every day life, agents will almost never have full knowledge about the
preferences of others. Therefore, in this thesis, we will study how the decision making process can be
manipulated under partial knowledge. We will discuss several notions of manipulability and we will
quantify the manipulability of some rules.

We study manipulations for agents that are not risk-averse. They only care about their expected
happiness. A different approach is taken in Terzopoulou (2017). Here it is assumed that agents are risk
averse and only manipulate if they are sure they will be better off.

One might wonder, is manipulability actually important? Of course in some cases it might not be.
If you know that you can trust your co-voters to tell the truth it will not matter. However, in other
cases, manipulability is mostly something you want to avoid. Even though it seems that everyone has
the same advantage if a rule is manipulable, this is not really the case. First of all, not everyone is
equally good with numbers, and since manipulation asks for some calculations - even more so in case
of manipulation under partial knowledge - for some people it is easier to manipulate than for others.
Secondly, if a rule is manipulable, it does not mean that everyone is better off when they lie. People
with certain preferences may have much more opportunities to manipulate than others. Another reason
for wanting to avoid manipulability is that we would like to know the individuals’ true preferences.
Otherwise it might be that everyone is trying to manipulate, producing an outcome that has almost
nothing to do with everyones true preferences.

2In Grandi and Endriss (2011a), a framework for binary judgement aggregation with integrity constraints is presented
and a translation from the framework of preference aggregation into that of binary judgement aggregation is given.

4

Chapter 1. Introduction 1.2. Outline of thesis

1.2 Outline of thesis

The remainder of this thesis is structured as follows.

In Chapter 2 we study the basics of binary aggregation with integrity constraints. The first section of
the first chapter introduces the necessary definitions for binary aggregation from Grandi and Endriss
(2011a). We give a functional implementation of this framework that is based on Eijck (2016)3. We
illustrate the implementation by means of multiple examples. In the second section we introduce
several aggregation rules together with their implementation and we discuss their properties using the
axiomatic method. In this, we adapt the standard axioms to work for non-resolute rules. We prove that
some rules have the nice property of agreeing with the majority rule when possible. Some examples
are given to illustrate relevance of different rules. In the third section we briefly explain how we can
translate preference aggregation into the framework of binary judgement aggregation. We illustrate
this by an example and we describe the Copeland rule as an example of a social choice function.

The topic of Chapter 3 is manipulating decision making. The first and largest section of this chapter is
devoted to manipulation of the aggregation rule. When agents are provided with only partial knowledge
about the preferences of the others, they try to maximize their expected “satisfaction with the outcome”
by lying about their preferences. This concept is formalized using game theoretic utility functions. We
use these to give different definitions of manipulation of the parts of the decision making process (under
partial knowledge). We provide a manipulation tool an agent can use to determine her optimal vote.
We prove some characterization results on manipulability of the aggregation rule.

In the second section of Chapter 3 we discuss how agents can manipulate the setting of the aggregation
procedure. There are multiple ways in which they can do this. They can influence the choice of
an aggregation rule and they can influence the agenda setting. For this we translate the framework
of Agenda manipulation from Dietrich (2013) to the framework from Grandi and Endriss (2011a).
We introduce agenda manipulation under partial knowledge. We combine agenda manipulation with
manipulation of the aggregation rule and we implement a function that determines the optimal agenda
for a given agent with a given utility.

In Chapter 4 we look at manipulability from another perspective. We investigate which rules are more
or less susceptible to manipulation. A standard way to quantify manipulability of aggregation rules
is the percentage of profiles in which an agent with full knowledge could manipulate. We propose a
different measure that takes into account how beneficial a certain manipulation is for an agent. If we
apply this on a large number of random utility functions, we can determine an average percentual win
in utility for manipulators. We apply this on a specific example rule for a certain integrity constraint.

Chapter 5 concludes and gives several suggestions for further research.

A bonus feature of this thesis is that all aggregation rules discussed or newly proposed are implemented.
Indeed, the implementation is very useful in guiding our analysis. Two appendices give details on basic
functions that the implementation depends on. The thesis should be accessible without consultation of
the appendices. These are merely provided to ensure a self-contained presentation of the implementation.

3All implementations used and given in this thesis can be found on Github (https://github.com/simonegrif/
CovertlyControllingChoices/).

5

https://github.com/simonegrif/CovertlyControllingChoices/
https://github.com/simonegrif/CovertlyControllingChoices/

List of Symbols

(F
A

)

A2A An aggregation system, containing an aggregation rule for each feasible agenda.

>µ Pairwise majority comparison.

Agree(B,B0
) The set of issues j 2 I for which b

j

= b0
j

.

� The set of alternatives in preference aggregation.

DB The distance based rule.

IC An integrity constraint.

IC
<

The integrity constraint for preference aggregation.

Maj(B) The rule that gives those ballots B that agree on each issue either with the weak
or the strict majority.

Maj

S

(B) The strict majority resolution of profile B

Maj

W

(B) The weak majority resolution of profile B

A The set of feasible agendas.

E(S) The set of ballots over ⌦ that are consistent with some ballot in S.

I A set of issues.

N A set of individual agents.

Mod(IC) The list of ballots satisfying IC.

⌦ A set of issues of which an agenda should be a subset.

PR The priority rule.

B A profile, consisting of a ballot B
i

for each agent i.

B�i

profile B without ballot B
i

B
i

The ballot of agent i from profile B.

b
j

The vote for issue j in ballot B.

B
i,j

The vote of agent i on issue j in profile B.

E
F

(U
i

, B, k) The expected utility U
i

of the outcome of F when casting ballot B, given knowledge
k.

6

Chapter 1. Introduction 1.2. Outline of thesis

l0 The integrity constraint p0 ^ p1 ! (¬p2 ^ . . . ^ ¬p
m�1)

LS The least squares rule.

MM The minimax rule.

n0 The empty integrity constraint.

p
j

The propositional symbol associated with issue j

q0 The integrity constraint (p0 ^ p2) $ p1

7

2 | Binary aggregation with integrity

constraints

This chapter will provide basic definitions, illustrated by an implementation. We use Haskell as
implementation language. Some familiarity with functional programming notation is assumed in our
presentation. For the required background in functional programming the reader can consult Khan
(2014). The thesis is written in so-called Literate Programming style. See Knuth (1992).

2.1 Basic definitions

We consider a set of individual agents N = {0, . . . , n � 1}. All agents give their opinion on a set of
(binary) issues I = {0, . . . ,m� 1} by means of casting a boolean vote.

module Aggregation where
import MyBasics
import Data.List

type Vote = Bool
type Issue = Int
type Agent = Int

An agent can express his opinions on this set of issues by casting a Ballot, which is an element of the
boolean combinatorial domain {True,False}m.

type Ballot = [Vote]

Issues are the indices of ballots. Since a ballot is quite spacious, we will sometimes convert this to an
integer by converting the binary representation into an integer.1

1To improve readability, some of the functions can be found in Appendix A.

8

Chapter 2. Binary aggregation with integrity constraints 2.1. Basic definitions

type BalInt = Int

b2i :: Ballot -> BalInt
b2i = bin2int

To convert an integer back to a ballot, we can convert the integer to a list of bits. We map 1 to True
and 0 to False. We need to know the number of issues such that we can add the leading zeros (for
[0,0,1,1] is different from [1,1]). If the integer is too large to generate a ballot of given length we
generate an error.

i2b :: Int -> BalInt -> Ballot
i2b m = assert

(\ i _ -> i < 2^m)
(\ i _ -> "ballot "++ show i ++" does not exist")
(\ i -> let

bs = int2bin i
m’ = m - length bs

in
replicate m’ False ++ bs)

We can convert the ballot (True,True,False) to an integer and back to a ballot.

> b2i [True,True,False]
6

> i2b 3 6
[True,True,False]

A profile B = (B1, . . . Bn

) consists of a ballot for each agent.

type Profile = [Ballot]
type ProfInt = [BalInt]

We can convert a list of ballots to a list of integer ballots and vice versa.

is2bs :: Int -> [BalInt] -> [Ballot]
is2bs m = map (i2b m)

bs2is :: [Ballot] -> [BalInt]
bs2is = map b2i

Note that it is assumed for this conversion that the ballots are all of the same size. We write b
j

for the
(j � 1)

th element of a ballot B (so the vote on issue j in ballot B) and b
i,j

for the (j � 1)

th element of
ballot B

i

within the profile. Agents are the indices of the profile. When S is a set of ballots, we define

9

Chapter 2. Binary aggregation with integrity constraints 2.1. Basic definitions

S
j

= {v 2 {True,False} | 9B 2 S such that b
j

= v}. We will write B�i

for the partial profile without
ballot B

i

, which we will call the min
i

-profile. We write (B,B�i

) for the profile in which the ballot of
agent i is replaced by ballot B.

type MinIProfile = (Profile , Profile)

We can split a profile to obtain the corresponding min
i

-profile.

splitProfile :: Agent -> Profile -> MinIProfile
splitProfile i profile = (take i profile , drop (i+1) profile)

We can use our implementation to represent any profile, such as the profile in Example 1.

Example 1 (continued). We continue with the example from the introduction. In Table 2.1, we
repeat the family members preferences about the purchase. In our implementation this profile is
represented as [4,7,1].

Issue: 0 : dog 1 : dog and cat 2 : cat

Member 0 True False False
Member 1 True True True
Member 2 False False True

Table 2.1: Three family members cast their vote on three issues.2

exampleA :: Profile
exampleA = is2bs 3 [4,7,1]

> exampleA
[[True,False,False],[True,True,True],[False,False,True]]

⌅

If we know the number of issues, we can generate the list of all possible ballots on those issues.

allBallots :: Int -> [Ballot]
allBallots 0 = [[]]
allBallots m = map (True :) allbs ++

map (False :) allbs where
allbs = allBallots (m-1)

2Note that the ordering of the issues in this example seems somewhat odd. This is done with eye on a future use in
which the ordering will be important.

10

Chapter 2. Binary aggregation with integrity constraints 2.1. Basic definitions

Two ballots B and B0 are said to agree on an issue i if b
i

= b0
i

. Two agents agree on an issue if the
ballots representing their true preferences agree on that issue.

agree :: Ballot -> Ballot -> Issue -> Bool
agree b1 b2 i = b1 !! i == b2 !! i

We define the set

Agree(B,B0
) = {j 2 I | b

j

= b0
j

},
of issues on which two ballots agree.

agreeSet :: Ballot -> Ballot -> [Issue]
agreeSet b1 b2 = let

m = length b1
in [i | i <- [0..(m-1)], b1 !! i == b2 !! i]

The coalition of an issue, given a profile, is the list of agents that are in favour of that issue (i.e., the
agents that have voted True for the issue).

coalition :: Issue -> Profile -> [Agent]
coalition i profile = let

pairs = zip [0..] profile
in

[ag | (ag,ballot) <- pairs , ballot !!i]

The anticoalition is the complement of the coalition.

anticoalition :: Issue -> Profile -> [Agent]
anticoalition i profile = let

n = length profile
in

[0..n-1] \\ coalition i profile

Integrity constraints

In Example 1, any rational decision cannot include a False for “cat and dog” while including True for
both “cat” and “dog”. This poses a constraint on the outcome of the aggregation procedure, and if we
expect people to be rational, it also poses a constraint on cast ballots. In other examples there might
be different constraints expressing the coherence of certain issues. To express these constraints, we
associate a propositional symbol p

j

with each issue j, and let L
PS

be the corresponding propositional
language.

11

Chapter 2. Binary aggregation with integrity constraints 2.1. Basic definitions

Definition 1. An Integrity constraint is a formula IC 2 L
PS

that expresses the connection between
issues.

A ballot B is said to satisfy an integrity constraint IC when the formula we obtain by substituting
every p

i

in IC by b
i

is not equivalent to falsum. We will use integrity constraints only to check whether
certain ballots satisfy them, hence we will implement them as a property of ballots instead of as a
logical formula.

type IC = Ballot -> Bool

For example, we can have the following integrity constraints:

• n0 = > is the empty constraint,

• s0 = p0 $ p1 says that the first two issues need to have the same value,

• q0 = (p0 ^ p2) $ p1 states that issues 0 and 2 are both true if and only if issue 1 is,

• r0 = ¬(p0 ^ p1 ^ p2) expresses that the first three issues cannot all be true,

• v0 = p0 _ . . . _ p
m�1 expresses that not all issues should be false,

• l0 = p0 ^ p1 ! (¬p2 ^ . . . ^ ¬p
m�1) expresses that if the first two issues are true, then all others

should be false,

• z0 = p0 _ p1 expresses that one of the first two issues should be true,

which are encoded below.

n0 , s0 , q0, r0, v0 , l0, z0 :: IC
n0 _ = True
s0 (x:y:_) = x == y
s0 _ = True -- True for single issue ballots
q0 (x:y:z:_) = ((x && z) --> y) && (y --> (x && z))
q0 _ = True -- True for 1 and 2 issue ballots
r0 (x:y:z:_) = not (x && y && z)
r0 _ = True -- True for 1 and 2 issue ballots
v0 = or
l0 (x:y:xs) = (x && y) --> all not xs
l0 _ = True -- True for 1 and 2 issue ballots
z0 (x:y:_) = x || y
z0 _ = True -- True for 1 issue ballots

Clearly, any property of ballots can be expressed like this, for in a sense we are using the built-in
Boolean logic of the implementation language. We can check whether a ballot satisfies the integrity
constraint the following way.

> s0 [True, False, False]
False

12

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

We let the set of models of the integrity constraint, Mod(IC) be the set of all ballots that satisfy IC.

models :: Int -> IC -> [Ballot]
models m bc = [b | b <- allBallots m, bc b]

An element of Mod(IC) is also called a rational ballot and a profile in which all ballots belong to
Mod(IC) is a rational profile.

checkProfile :: Profile -> IC -> Bool
checkProfile profile p = all p profile

Example 1 (continued). Since Agent 1 does not vote the same on the first 2 issues, the profile of
Example 1 is not rational for s0.

> checkProfile exampleA s0
False

Clearly, the integrity constraint that expresses the situation of Example 1 is q0. Indeed all family
members hold a rational ballot.

> checkProfile exampleA q0
True

⌅

2.2 Aggregation rules

An aggregation rule is a method for aggregating the individual preferences of the agents into a collective
decision. For example, when there is no constraint, we can decide on every issue according to majority.
Formally we use the following definition.

Definition 2. An aggregation rule F : {0, 1}m⇥n ! P({True,False}m) is a function that maps every
profile to a nonempty set of ballots.

In our implementation we also take the number of issues and the integrity constraint as parameters to
enable us to write more generic aggregation rules that can be used for different m, IC.

type AR = Int -> IC -> Profile -> [Ballot]

The type for the aggregation rule is such that we do not necessarily reach a unique decision. In some
rules there might be multiple decisions that are equally “good” according to the rule. In that case

13

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

the agents have to agree on a way of breaking ties. Simply rolling a die is a fair option. We call an
aggregation rule resolute, when it always provides us with exactly one outcome, that is, |F (B)| = 1 for
all B 2 {0, 1}m⇥n.

We create a new module for the implementation of some aggregation rules.3

module Rules where
import Aggregation
import MyBasics
import AgHelpFun
import Data.List
import Data.Tuple
import Data.Ord

The majority rule

We have seen the majority rule a few times before. When we accept an issue if and only if a majority
does, we are applying the majority rule to the profile. If there is an even number of voters, we have two
kinds of majorities, namely the strict and the weak majority. The following function gives the (strict or
weak) majority resolution of a given profile, respectively denoted by Maj

S

(B) and Maj

W

(B).

majResolve :: Quotkind -> AR
majResolve kind m _bc profile =

[[majority kind m i profile | i <- [0..(m-1)]]]

If we do not make a choice in case of weak majorities, we obtain the rule Maj(B) encoded below. This
rule is resolute for odd n.

majResolveAll :: AR
majResolveAll m _ profile = majResolveAll ’ 0 where

majResolveAll ’ i =
if i == m then [[]]
else

let
ms = majority Strict m i profile
mw = majority Weak m i profile

in
if mw == ms then map (mw :) (majResolveAll ’ (i+1)) else

map (ms :) (majResolveAll ’ (i+1)) ++
map (mw :) (majResolveAll ’ (i+1))

Example 2. Suppose four agents have to decide on three issues. There is no integrity constraint.
Their preferences can be found in Table 2.2. This profile is encoded as follows.

3We use functions from the module AgHelpFun, which can be found in Appendix A.

14

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

Issue: 1 2 3

Agent 1 True True True
Agent 2 True True True
Agent 3 False True True
Agent 4 False True False

Table 2.2: Four agents express their preferences on three issues.

exampleF :: Profile
exampleF = [[True ,True ,True],

[True ,True ,True],
[False ,False ,True],
[False ,False ,False]]

We can apply the weak, strict or general majority rule.

> majResolve Strict 3 n0 exampleF
[[False,False,True]]

> majResolve Weak 3 n0 exampleF
[[True,True,True]]

> majResolveAll 3 n0 exampleF
[[False,False,True],[False,True,True],[True,False,True],[True,True,True]]

We see that the general majority rule gives us all combinations of the weak and strict resolutions for
the different issues. ⌅

Axioms for aggregation rules

Example 1 - Cat or Dog (continued). For our example about the family purchasing pets, we
obtain the following strict majority winner.

> majResolve Strict 3 n0 exampleA
[[True,False,True]]

Thus if the family would apply the majority rule on all separate issues, according to majority, they
should buy a dog and they should buy a cat, but they should not buy both. ⌅

Clearly the above example is contradictory. This problem arises because the majority rule is not
collectively rational for q0.

Definition 3. Given an integrity constraint IC, an aggregation rule F is called collectively rational
(CR) for IC if for all rational profiles B, all elements of F (B) are also rational. We also say that F lifts
IC to the collective level.

15

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

As shown in Grandi and Endriss (2013), the class of integrity constraints that is lifted by the majority
rule is exactly the class of formulas that are equivalent to a conjunction of clauses of size at most two.
To illustrate this, we will prove the following weaker statement.

Theorem 1. Majority voting is collectively rational with respect to the class of integrity constraints
that are conjunctions of literals.

Proof. Suppose IC is a conjunction of literals. This means that IC is equivalent to p
i1 ^ . . . ^ p

ik ^
¬p

ik+1 ^ . . . ^ ¬p
im . If the agents all cast a rational ballot, then this must mean that they all vote in

favour of issues i1, . . . , ik and not in favour of i
k+1, . . . , im. Hence since unanimity is always a majority,

by majority voting i1, . . . , ik will be accepted and i
k+1, . . . , im will be rejected, thus the outcome wil

satisfy IC. ©

Since any outcome of a rule should be possible, we should use a collectively rational rule. Because of
this, we see that the majority rule is not always a possibility. Therefore we should look at other possible
aggregation rules. For example, we could use the rule that always picks the ballot (True,True, . . .).
However, this is not a very interesting rule, since we somehow want the rule to actually use the
information given in the profile to generate a “reasonable” group decision. To formalize this notion
of a reasonable rule, we study these rules using the axiomatic method. These axioms are properties
that might be desirable for aggregation rules. We introduce here axioms for non-resolute aggregation
rules. In the resolute case, these axioms are equivalent to the resolute axioms introduced in Lang et al.
(2015). For these non-resolute axioms we first need the following definition.

Definition 4. We define the negation of elements in {True,False} as ¬True = False and ¬False = True.
The negation of a set S ✓ {True,False} is given by ¬S = {x 2 {True,False} | 9y 2 S such that x = ¬y}.

Now we will introduce some axioms an aggregation rule F can satisfy. The axiom of unanimity states,
that if all agents vote unanimously on an issue, the outcome of the rule should agree with them on this
issue.

Unanimity (U). For any profile B 2 Mod(IC)

n and any x 2 {True,False}, if b
i,j

= x for all i, then
F (B)

j

= {x}.

An aggregation rule satisfies Anonymity if it is symmetric with respect to agents.

Anonymity (A). For any any profile B 2 Mod(IC)

n, and any permutation � : I ! I, we have
F (B1, . . . , Bn�1) = F (B

�(1), . . . , B�(n�1)).

The axiom of issue-neutrality states that if two issues have exactly the same coalition in a profile, then
the outcome(s) must be equal for the two issues.

Issue-Neutrality (N

I
). For any two issues j, j0 2 I, and any profile B 2 Mod(IC)

n, if b
i,j

= b
i,j

0

for all i 2 N , then F (B)

j

= F (B)

j

0 .

Domain neutrality states that if the coalition of an issue is exactly the anticoalition of another issue,
then the outcome(s) on the one issue should be the inverse of the outcome(s) on the other.

Domain-Neutrality N

D
. For any two issues j, j0 2 I, and any profile B 2 Mod(IC)

n, if b
i,j

= ¬b
i,j

0

for all i 2 N , then F (B)

j

= ¬(F (B)

j

).

Responsiveness states that for any issues both True and False must be a possible outcome.

16

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

Responsiveness (R). For any issue j 2 I, there are profiles B,B0 2 Mod(IC)

n such that True 2
F (B)

j

and False 2 F (B0
)

j

.

Independence states that the outcome on an issue should not depend on the votes on other issues. That
is, if no agent changes his vote on issue j then the set of the outcomes for j should not change either.

Indepencence (I). For any issue j 2 I, and any two profiles B,B0 2 Mod(IC)

n, if b
i,j

= b0
i,j

for all
i 2 N , then F (B)

j

= F (B0
)

j

.

We now introduce an axiom of weak independence, since this can simplify some proofs. The axiom of
weak independence states that if only one agent changes his ballot, but she does not change her vote
on issue j, then the j-vote set of the outcome should not change either. We will show that this axiom
is actually equivalent to the axiom of independence.

Weak Independence (WI). For any issue j 2 I, any agent i, any min
i

-profile B�i

2 Mod(IC)

n

and for any pair of alternative ballots B
i

, B0
i

if b
i,j

= b0
i,j

, then F (B
i

,B�i

)

j

= F (B0
i

,B�i

)

j

.

Theorem 2. F satisfies I if and only if it satisfies WI.

Proof. Suppose F satisfies I. For the left to right direction, let j be an issue, i an agent, B�i

a
min

i

-profile and B
i

, B0
i

a pair of alternative ballots such that b
i,j

= b0
i,j

. Since b
i

0
,j

= b
i

0
,j

for all
i0 6= i 2 N , we get by independence F (B

i

,B�i

)

j

= F (B0
i

,B�i

)

j

. Thus F satisfies weak independence.
Now suppose F satisfies weak independence. Let j be an issue and let B = (B1, . . . , Bn

), B0
=

(B0
1, . . . , B

0
n

) be profiles such that b
i,j

= b0
i,j

for all i 2 N . Now we will show

F (B0
0, . . . , B

0
i�1, Bi

, . . . B
n�1)j = F (B0

0, . . . , B
0
i

, B
i+1, . . . Bn�1)j 8i 2 M,

by induction on i. For i = 0, this follows directly by weak independence. Suppose for some i 2 M
we have F (B0

0, . . . , B
0
i�1, Bi

, . . . B
n�1)j = F (B0

0, . . . , B
0
i

, B
i+1, . . . Bn�1)j . Then we can apply weak

independence for agent i+ 1 to obtain F (B0
0, . . . , B

0
i

, B
i+1, . . . Bn�1)j = F (B0

1, . . . , B
0
i+1, Bi+2, . . . Bn

)

j

.
Hence by induction F (B0

0, . . . , B
0
i�1, Bi

, . . . B
n�1)j = F (B0

0, . . . , B
0
i

, B
i+1, . . . Bn�1)j for all i 2 M. This

gives us F (B)

j

= F (B0
)

j

. Hence F satisfies independence. ©

The axiom of monotonicity (which is also applicable to non-resolute rules) states that if acceptance
(resp. rejection) is a possible outcome for an issue, and this issue gets more (resp. less) support,
acceptance (resp. rejection) should still be a possible outcome.

Monotonicity (M)

4
. For any issue j 2 I, any agent i 2 N , any min

i

-profile B�i

2 Mod(IC)

n and
for any pair of alternative ballots B

i

, B0
i

such that b
i,j

= ¬x and b0
i,j

= x, we have x 2 F (B
i

,B�i

)

j

implies x 2 F (B0
i

,B�i

)

j

.

Monotonicity implies the following notion of weak monotonicity.

Weak Monotonicity (WM). For any issue j 2 I, any agent i 2 N and any min
i

-profile B�i

2
Mod(IC)

n, if there exists a pair of ballots B
i

,B0
i

such that b
i,j

= ¬x and b0
i,j

= x, then for some such
pair, x 2 F (B

i

,B�i

)

j

implies x 2 F (B0
i

,B�i

)

j

.

Note that if F is resolute and satisfies both I and WM, it also satisfies M.

For the next axiom we first need some notation. If B = (B0, . . . , Bn�1) and B0
= (B0

0, . . . , B
0
n�1),

let the support of a profile, be the set of ballots that occur at least once in the profile, that is
Supp(B) = {B0, . . . , Bn�1} and let B�B0

= (B0, . . . , Bn�1, B
0
0, . . . , B

0
n�1).

4The resolute version of this definition of monotonicity was introduced by Grandi and Endriss (2011a).

17

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

The axiom of reinforcement states that if you let two separate groups (with the same support) vote, if
they have outcomes in common, as a joint group the rule should produce exactly these outcomes.

Reinforcement. For any two profiles B = (B0, . . . , Bn�1) and B0
= (B0

0, . . . , B
0
n�1) such that

Supp(B) = Supp(B0
) and F (B) \ F (B0

) 6= ;, we have F (B�B0
) = F (B) \ F (B0

).

As some impossibility theorems show, for several integrity constraints a lot of these axioms cannot be
combined in one collectively rational aggregation rule. Therefore, when picking a rule, you have to
decide which axioms are most important to you.

We also introduce another very nice property we would like aggregation rules to have, namely that
it agrees with the majority rule when possible. That is, when the majority rule provides rational
outcomes, the aggregation rule should have exactly these outcomes. As the majority rule is seen as an
attractive or even perfect rule, this is very appealing. This was introduced in Lang et al. (2015)

Definition 5. Let F an aggregation rule. F is majority preserving when for any profile B such that
Maj(B) \Mod(IC) 6= ;, we have F (B) = Maj(B) \Mod(IC).

We will introduce a number of aggregation rules and we will investigate which axioms and other
properties are satisfied by these rules.

The priority rule

As suggested in List and Pettit (2002), one way to ensure collective rationality is by prioritizing issues.
The procedure that is most often used for this is the premise-based procedure, in which certain issues
are treated as premises, on which is decided by majority, where the decisions on the other issues should
follow logically from the premises. To ensure this procedure is collectively rational and well-defined,
the premises must be carefully chosen and for any assignment of the premises, the truth value of each
of the conclusions has to be fully determined. However, this might not always be possible for every
integrity constraint. Consider integrity constraint IC = p0 _ p1 _ p2. The majority rule does not lift
IC. However, no matter which set of premises we choose, if we vote True for one of the premises, the
conclusion(s) is(/are) not determined. Therefore here we suggest a more general approach following the
ideas of List (2002a).

In this priority rule we assume issues are ordered by decreasing importance. We resolve the issues in
order, choosing the majority outcome if this does not clash with the integrity constraint. If it does
clash, we decide against the majority on the issue.

Definition 6. The priority rule is the aggregation rule given by PR(B) = pr

m

(B), where we define
pr

j

(B) inductively on j 2 {0, . . . ,m} as follows.

pr

0
(B) = Mod(IC)

pr

j+1
(B) =

(
{B 2 pr

j

(B) |Maj(B)

j

= {b
j

}} if this set is nonempty ,

pr

j

(B) otherwise.

We implement this rule.

priority :: AR
priority m bc profile =

18

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

let
mjS = head (majResolve Strict m n0 profile)
mjW = head (majResolve Weak m n0 profile)
priority ’ i outcomes =

if i == m then outcomes
else

let
newOutcomes = filter (\x -> agree x mjS i || agree x mjW i)

outcomes
in

if null newOutcomes then priority ’ (i+1) outcomes
else priority ’ (i+1) newOutcomes

in
priority ’ 0 (models m bc)

For Example 1, if the priority order is 0, 1, 2, we can use this rule to reach a decision. In this way the
decision for a cat will depend upon the first two majority outcomes.

> priority 3 q0 exampleA
[[True,False,False]]

With these priorities, the family should only buy a dog, but not a cat. We now study which axioms
and properties the priority rule satisfies.

Theorem 3. The priority rule is a collectively rational, well-defined aggregation rule.

Proof. This follows quite straightforward by the definition of prm(B). ©

Theorem 4. On any profile where |Maj(B)| = 1, we have |PR(B)| = 1.

Proof. This follows quite straightforward by the definition of prm(B). ©

This implies the following corollary.

Corollary 1. For odd n, the priority rule is resolute.

We will prove the priority rule satisfies reinforcement. For this we need the following Lemma.

Lemma 1. For any profile B, j 2 {0, . . . ,m� 1}, we have pr

j+1
(B) ✓ pr

j

(B).

Proof. This follows directly from the definition of prm(B). ©

Theorem 5. The priority rule satisfies reinforcement.

Proof. Let B = (B0, . . . , Bn�1) and B0
= (B0

0, . . . , B
0
n�1) such that Supp(B) = Supp(B0

) and PR(B) \
PR(B0

) 6= ;. This means there must be a ˜B 2 PR(B) \ PR(B0
). First note that this implies

˜B 2 pr

j

(B) \ pr

j

(B0
) for any j  m by Lemma 1.

19

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

We will prove pr

j

(B �B0
) = pr

j

(B) \ pr

j

(B0
) by induction on j. For j = 0 we have pr

0
(B �B0

) =

Mod(IC) = pr

0
(B) = pr

0
(B0

) = pr

0
(B) \ pr

0
(B0

).

Suppose for j we have pr

j

(B�B0
) = pr

j

(B) \ pr

j

(B0
). This is our induction hypothesis, which we will

continuously throughout the proof. Now we distinguish two cases

1. Suppose for all B 2 pr

j

(B � B0
), we have that b

j

=

˜b
j

. Then by definition of pr, prj+1
(B �

B0
) = pr

j

(B � B0
). Also, since ˜B is in both pr

j+1
(B) and in pr

j+1
(B0

), we know that {B 2
pr

j

(B) | b
j

=

˜b
j

} ✓ pr

j+1
(B) and similarly for B0. Hence since by induction hypothesis for all

B 2 pr

j

(B) \ pr

j

(B0
) we have b

j

=

˜b
j

, we get pr

j

(B) = {B 2 pr

j

(B) | b
j

=

˜b
j

} and similarly for
B0, thus we obtain pr

j

(B) \ pr

j

(B0
) ✓ pr

j+1
(B) \ pr

j+1
(B0

). Hence we get, by Lemma 1 and by
induction hypothesis that prj+1

(B)\pr

j+1
(B0

) = pr

j

(B)\pr

j

(B0
) = pr

j

(B�B0
) = pr

j+1
(B�B0

).

2. If we are not in the case above, then there is a B 2 pr

j

(B�B0
) = pr

j

(B) \ pr

j

(B0
), such that

b
j

6= ˜b
j

. Then both this B and ˜B are in both pr

j

(B) and pr

j

(B0
), thus also in pr

j

(B�B0
). Note

that ˜B 2 pr

j+1
(B) and ˜B 2 pr

j+1
(B0

), hence we must have ˜b
j

2 Maj(B)

j

and ˜b
j

2 Maj(B0
)

j

.

Now we must be in one of the following three cases. Either Maj(B)

j

= {˜b
j

} and Maj(B0
)

j

= {˜b
j

},
in which case Maj(B�B0

)

j

= {˜b
j

}, hence pr

j+1
(B�B0

) = {B 2 pr

j

(B0
) \ pr

j

(B) | b
j

=

˜b
j

} =

{B 2 pr

j

(B) | b
j

=

˜b
j

} \ {B 2 pr

j

(B0
) | b

j

=

˜b
j

} = pr

j+1
(B) \ pr

j+1
(B0

).

Or we have that w.l.o.g. Maj(B)

j

= {˜b
j

, b
j

} and Maj(B0
)

j

= {˜b
j

} . This implies Maj(B�B0
)

j

=

{˜b
j

}. Thus we get pr

j+1
(B) \ pr

j+1
(B0

) = pr

j

(B) \ {B 2 pr

j

(B0
) | b

j

=

˜b
j

} = {B 2 pr

j

(B0
) \

pr

j

(B) | b
j

=

˜b
j

} = pr

j+1
(B�B0

).

Or we have that Maj(B)

j

= {˜b
j

, b
j

} and Maj(B0
)

j

= {˜b
j

, b
j

}, in which case Maj(B�B0
)

j

= {˜b
j

, b
j

},
hence pr

j+1
(B) \ pr

j+1
(B0

) = pr

j

(B) \ pr

j

(B0
) = pr

j

(B � B0
) = pr

j+1
(B � B0

), by induction
hypothesis.

Hence the priority rule satisfies reinforcement. ©

Furthermore we can easily see that the priority strategy satisfies anonymity. However depending on
the integrity constraint and the ordering, it might violate unanimity, neutrality, independence and
monotonicity. We give an example where the priority rule violates unanimity.

Example 3. Suppose n = 3, m = 4 and consider the integrity constraint IC = (p0 ^ p1 ^ p2) ! ¬p3
and the profile given in Table 2.3. Clearly all agents satisfy the integrity constraint.

Issue: 0 1 2 3

Agent 0 > > ? >
Agent 1 ? > > >
Agent 2 > ? > >

Table 2.3: 3 agents vote on 4 issues.

exEic :: IC
exEic (x0:x1:x2:x3:_) = (x0 && x1 && x2) --> not x3
exEic _ = True

exampleE :: Profile

20

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

exampleE = [[True ,True ,False ,True],[False ,True ,True ,True],
[True ,False ,True ,True]]

We now show that the profile satisfies the integrity constraint and does not accept the unanimous vote
on issue 3.

> checkProfile exampleE exEic
True

> priority 4 exEic exampleE
[[True,True,True,False]]

This shows that the priority rule is not for all integrity constraints a unanimous rule. ⌅

The Priority rule does satisfy another very nice property.

Theorem 6. The priority rule is Majority preserving.

Proof. Let PR denote the priority rule, and Maj denote the general majority rule. Let B be such
that Maj(B) \ Mod(IC) 6= ;. So there is a ˜B 2 Maj(B) \ Mod(IC). Take now an arbitrary B 2
Maj(B) \ Mod(IC). We prove B 2 PR(B) by proving B 2 pr

j

(B) by induction on j. We have
B 2 Mod(IC) = pr

0
(B).

Now suppose B 2 pr

j

(B), then we have either Maj(B)

j

= {b
j

}, since B 2 Maj(B), which gives
us B 2 pr

j+1
(B). Or we have Maj(B)

j

= {b
j

,¬b
j

}, thus pr

j+1
(B) = pr

j

(B), which also gives
B 2 pr

j+1
(B). Hence by induction we have B 2 pr

j

(B) for all j, so B 2 PR(B). Hence we have
Maj(B) \Mod(IC) ✓ PR(B) and specifically we have ˜B 2 PR(B).

Now suppose B 62 Maj(B) \ Mod(IC). This must mean that either B 62 Mod(IC), which clearly
implies B 62 PR(B). Or we have B 62 Maj(B). This implies that there is a j such that b

j

62 Maj(B)

j

.
Hence we must have Maj(B)

j

= {¬b
j

}. Now since we have that ˜B 2 Maj(B) \ Mod(IC) ✓ PR(B),
we have ˜b

j

= ¬b
j

and we have ˜B 2 pr

j

(B) for any j, hence {B0 2 pr

j

(B) | Maj(B)

j

= {b0
j

}} is
nonempty, hence pr

j+1
(B) = {B0 2 pr

j

(B) | Maj(B)

j

= {b0
j

}}, hence B 62 pr

j+1
(B). This shows

PR(B) ✓ Maj(B) \Mod(IC).

The two above together give us Maj(B) \Mod(IC) = PR(B), which was what we wanted to prove. ©

Distance-based rule

A measure for the difference between two ballots B,B0 is the Hamming distance

H(B,B) := |{j |B
j

6= B0
j

}|,
which is the number of issues on which the ballots disagree. We can encode this

hamming :: Ballot -> Ballot -> Int
hamming i j = hamming ’ i j 0 where

21

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

hamming ’ [] _ d = d
hamming ’ _ [] d = d
hamming ’ (x:xs) (y:ys) d

| x == y = hamming ’ xs ys d
| otherwise = hamming ’ xs ys (d + 1)

The Hamming distance between a ballot B and a profile B is the sum of the Hamming distances
between B and the ballots in B.

H(B, B) :=

X

B

02B

H(B,B0
)

Since an outcome of a rule should represent the opinions of the agents and thus agree with them as
much as possible, a logical choice for a rule is the following distance-based rule, as introduced in Pigozzi
(2006) and Miller and Osherson (2008).

Definition 7. The distance-based rule DB is the aggregation rule that selects from the ballots that
agree with the integrity constraint, the ballots that minimise the Hamming distance to the profile.
That is,

DB(B) = argmin

B2Mod(IC)
H(B, B).

dbRule :: AR
dbRule m bc profile = let

f x = profileSum (hamming x) profile
in

minimaBy (comparing f) (models m bc)

For Example 1, we get a set of distance based outcomes.

> dbRule 3 q0 exampleA
[[False,False,True],[True,False,False],[True,True,True]]

Clearly DB is not resolute. A tie breaking rule could be used to make a decision.

Theorem 7. The distance-based rule satisfies reinforcement.

Proof. Let B,B0 be such that Supp(B) = Supp(B0
) and DB(B)\DB(B0

) 6= ;. Let B 2 DB(B)\DB(B0
).

Then H(B,B) and H(B,B0
) are both minimal. Hence H(B,B � B0

) = H(B,B) + H(B,B0
) is

minimal. Hence B 2 DB(B � B0
). Now for the other direction, suppose B 62 DB(B) \ DB(B0

).
Without loss of generality we may assume B 62 DB(B). Now since DB(B) \ DB(B0

) 6= ; there is a
B0 2 DB(B) \ DB(B0

). For B0 we must have H(B0,B) < H(B,B) and H(B0,B0
)  H(B,B0

). Thus
we have H(B0,B � B0

) = H(B0,B) + H(B0,B0
) < H(B,B) + H(B,B0

) < H(B,B � B0
). Hence

B 62 DB(B�B0
). Together this gives DB(B�B0

) = DB(B) \ DB(B0
). ©

Furthermore, it clearly satisfies anonymity, but depending on the integrity constraint it might violate
all other axioms.

22

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

Below we will show that the distance based rule is Majority preserving, which makes it an appealing
rule.

Theorem 8. The distance based rule is Majority preserving.

Proof. Let DB denote the distance based rule, and Maj denote the general majority rule. Let B be
such that Maj(B) \Mod(IC) 6= ;. Thus we have some ˜B 2 Maj(B) \Mod(IC). Now suppose we have
an arbitrary B 2 Maj(B) \ Mod(IC). We have for any ballot B0, any issue j that |{B00 2 B | B0

j

=

B00
j

}|  |{B00 2 B |B00
j

= B
j

}|. Hence for the Hamming distance we get

H(B, B0
) =

X

j

n� |{B00 2 B |B0
j

= B00
j

}| �
X

j

n� |{B00 2 B |B00
j

= B
j

}|

= H(B, B)

Hence H(B, B0
) � H(B, B) for any B0 2 Mod(IC), thus B 2 DB(B). Hence we have that Maj(B) ✓

DB(B).

Now suppose B 62 Maj(B) \ Mod(IC). If B 62 Mod(IC), then B 62 DB(B). If B 62 Maj(B), then
we have that there is a j such that |{B00 2 B | ¬b

j

= b00
j

}| > |{B00 2 B | b00
j

= b
j

}|. Now consider
˜B 2 Maj(B) \ Mod(IC) (which exists since Maj(B) \ Mod(IC) 6= ;). Then we must have ˜b

j

= ¬b
j

,
hence |{B00 2 B | ˜b

j

= b00
j

}| > |{B00 2 B | b00
j

= b
j

}|. Also for all k 6= j, |{B00 2 B | ˜b
k

= b00
k

}| � |{B00 2
B | b00

k

= b
k

}|. Now we get

H(B, B) =

X

l

n� |{B00 2 B | b
l

= b00
l

}| >
X

l

n� |{B00 2 B | b00
l

=

˜b
l

}|

= H(B, ˜B)

Hence H(B, B) > H(B, ˜B), thus B 62 DB(B). From this we can conclude Maj(B) = DB(B). ©

Minimax rule

In a family (or within another group) it might be more important to make sure that nobody is really
unhappy than to make some peoply really happy. We suggest a way to prevent depressed family
members: minimise the maximal Hamming distance to the individual ballots of the agents. We call this
the minimax rule, which resembles the minimax rule for approval voting given in Brams et al. (2007).
This rule was also suggested in Lang et al. (2011).

Definition 8. The minimax rule MM is the aggregation rule that selects from all rational ballots,
those ballots that minimise the maximal Hamming distance to the individual ballots in the profile.
That is,

MM(B) = argmin

B2Mod(IC)
max

i2N
H(B

i

, B).

We implement this rule.

23

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

mmRule :: AR
mmRule m bc profile = let

bs = models m bc
maxdist b = maximum (map (hamming b) profile)

in
minimaBy (comparing maxdist) bs

We can apply this rule to Example 1 and we see there are three outcomes that minimise this maximal
distance.

> mmRule 3 q0 exampleA
[[True,True,True],[True,False,False],[False,False,True]]

Example 4 - Culture or Nature. Suppose you are making a group travel with five persons and
every day you have to choose between a trip in nature and a cultural trip. Three of the five persons
always prefer a cultural trip, one likes culture a lot, but would like to make a trip in nature on the last
day and one person wants to make a trip in nature every day. The total journey takes 5 days. Let
m = 5 and let issue i denote the statement “we make a cultural trip on day i+ 1”. Thus the profile is
given as follows.

exampleProfTravel :: Profile
exampleProfTravel = [[True ,True ,True ,True ,True],

[True ,True ,True ,True ,True],
[True ,True ,True ,True ,True],
[True ,True ,True ,True ,False],
[False ,False ,False ,False ,False]]

Every day you can do watever you like, hence there is no integrity constraint. Deciding by majority,
you end up making a cultural trip every day.

> majResolveAll 5 n0 exampleProfTravel
[[True,True,True,True,True]]

However, it seems somewhat unfair to never do what the fifth group-member wants. We could also
decide to apply the minimax rule. This would give the following outcome.

> mmRule 5 n0 exampleProfTravel
[[True,True,True,False,False],
[True,True,False,True,False],
[True,True,False,False,True],
[True,True,False,False,False],
[True,False,True,True,False],
[True,False,True,False,True],
[True,False,True,False,False],
[True,False,False,True,True],
[True,False,False,True,False],

24

Chapter 2. Binary aggregation with integrity constraints 2.2. Aggregation rules

[False,True,True,True,False],
[False,True,True,False,True],
[False,True,True,False,False],
[False,True,False,True,True],
[False,True,False,True,False],
[False,False,True,True,True],
[False,False,True,True,False]]

In this way, the opinions of the minorities are also taken into account. We could combine this rule with
for example the distance based rule to choose from this large number of possibilities. ⌅

This example shows that the minimax rule is not majority preserving. However, the minimax rule does
have another nice property.

Theorem 9. The minimax rule satisfies reinforcement.

Proof. To see this, note that MM(B) = argmin

B2Mod(IC) max

B

02Supp(B) H(B0, B). Now reinforcement
follows trivially. ©

In Example 4, the anomalous preferences of agent 4 have a big influence on the outcome in the minimax
rule. This might seem somewhat unfair. Therefore we suggest a rule that is somehow in between
the minimax and the distance based rule, namely the least squares rule. We will see that it gives an
intuitively more satisfactory outcome for this example.

Least squares rule

Definition 9. The least squares rule LS is the aggregation rule that selects from all rational ballots
those ballots that minimise the sum of the squared Hamming distance to ballots from the profile. That
is,

LS(B) = argmin

B2Mod(IC)

n�1X

i=0

(H(B
i

, B))

2.

In this rule, the votes of outliers are more important to the decision than the more “average” votes.

lsRule :: AR
lsRule m bc profile = let

sq x y = hamming x y ^ (2 :: Int)
f x = profileSum (sq x) profile

in
minimaBy (comparing f) (models m bc)

Theorem 10. The least squares rule satisfies reinforcement.

Proof. This is proven similarly to Theorem 7. ©

25

Chapter 2. Binary aggregation with integrity constraints 2.3. Preference aggregation

In Example 1, the least squares rule gives the same outcomes as the minimax rule.

> mmRule 3 q0 exampleA
[[True,True,True],[True,False,False],[False,False,True]]

Example 4 - Culture or Nature (continued). We will now apply the least squares rule to
Example 4.

> lsRule 5 n0 exampleProfTravel
[[True,True,True,True,False]]

We see that this rule provides us with the intuitive outcome of making a trip to nature one day, and
making cultural trips the other days. This seems like an optimal solution in between the minimax and
the distance based rule. ⌅

Note that this is again an example that shows that the least squares rule is not majority preserving.
One could take this example to show that being majority preserving is not always a desirable property
for an aggregation rule.

2.3 Preference aggregation

Up to now we studied decision making on binary issues. We will now study judgement aggregation, in
which agents have to express their preferences over a set of alternatives. To illustrate this, we start
with an example.

Example 5 - Painting a house. Suppose three family members have to decide which color to paint
their house. The paint store only sells blue, red and yellow paint, so they have three options. Let
the corresponding alternatives be 0=blue, 1=red, 2=yellow. Suppose the family members have the
following preferences over the alternatives.

Agent 0: 0 > 1 > 2,

Agent 1: 1 > 0 > 2,

Agent 2: 2 > 1 > 0.

How should the family decide which color to paint their house? ⌅

Basic definitions

In preference aggregation, agents have to express their preferences over a finite set of alternatives
� = 0, 1, . . . , v � 1, by giving a linear ordering on �.

type Alternative = Int
type Preference = [Alternative]

We can translate the problem of preference aggregation into our framework for binary judgement
aggregation (Grandi and Endriss (2011a)). Every pair of alternatives (i, j) will represent an issue,

26

Chapter 2. Binary aggregation with integrity constraints 2.3. Preference aggregation

namely whether or not i is preferred over j. Thus if I vote True for (i, j), that means I prefer i over j.
We map pairs of alternatives to issues and back.

alt2iss :: (Alternative , Alternative) -> Int -> Issue
alt2iss (i,j) v = j + i * v

iss2alt :: Issue -> Int -> (Alternative ,Alternative)
iss2alt i v = (div i v,rem i v)

In Example 5, where � = {0, 1, 2}, we can translate the preference blue>red, which corresponds to the
pair (0, 1) to the issue numbered 1.

> alt2iss (0,1) 3
1

> iss2alt 1 3
(0,1)

We can also translate a preference order to a ballot and back.

pref2ballot :: Preference -> Ballot
pref2ballot pref = let

v = length pref
p2b i | i == v * v = []

| elemIndex (fst (iss2alt i v)) pref
< elemIndex (snd (iss2alt i v)) pref = True : p2b (i+1)

| otherwise = False : p2b (i+1)
in

p2b 0

ballot2pref :: Int -> Ballot -> Preference
ballot2pref v ballot = let

f i j | i == j = EQ
| ballot !! alt2iss (i,j) v = LT
| otherwise = GT

in
sortBy f [0..(v-1)]

ballots2prefs :: Int -> [Ballot] -> [Preference]
ballots2prefs v = map (ballot2pref v)

pref2int :: Preference -> BalInt
pref2int = b2i . pref2ballot

int2pref :: Int -> BalInt -> Preference
int2pref v = ballot2pref v . i2b (v * v)

> pref2ballot [0,1,2]
[False,True,True,False,False,True,False,False,False]

27

Chapter 2. Binary aggregation with integrity constraints 2.3. Preference aggregation

Similarly we can translate a complete profile, which consist of a preference order for every agent.

prefs2profile :: [Preference] -> ProfInt
prefs2profile = map pref2int

profile2prefs :: Int -> ProfInt -> [Preference]
profile2prefs v = map (int2pref v)

Example 5 - Painting a house (continued). The ballots corresponding to the preference profile
of our family can be found in Table 2.4. Translated into integers, our profile is given by [200,104,38]

Pair: (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

Issue: 0 1 2 3 4 5 6 7 8

Member 0 ? > > ? ? > ? ? ?
Member 1 ? ? > > ? > ? ? ?
Member 2 ? ? ? > ? ? > > ?

Table 2.4: Three family members express their preferences for a color for their house. The preference
profile is translated into a binary judgement profile. To fit in the Table, > is shorthand for True, ? for
False.

exampleD :: Profile
exampleD = is2bs 9 [200 ,104 ,38]

We can check this.

> profile2prefs 3 exampleD
[[0,1,2],[1,0,2],[2,1,0]] ⌅

Clearly with this translation we obtain m = v2 issues. We will extend our language L
PS

, with symbols
p(a,b) for the issues that correspond to the pairs (a, b). Our binary preferences should represent a linear
ordering on alternatives. This is captured by the following set of integrity constraints, which we call
IC

<

:

Antisymmetry: p(a,b) $ ¬p(b,a) for a 6= b 2 �

Irreflexivity: ¬p(a,a) for all a 2 �

Transitivity: p(a,b) ^ p(b,c) ! p(a,c) for a, b, c 2 � pairwise distinct

We can encode this as lo0 v.

lo0 :: Int -> IC
lo0 v ballot = let

diag = [(a,a) | a <- [0..(v -1)]]
diagelems = [ballot !!i | i <- [0..(v * v - 1)],

28

Chapter 2. Binary aggregation with integrity constraints 2.3. Preference aggregation

iss2alt i v ‘elem ‘ diag]
irrefl = all (== False) diagelems
antisymPart i = (iss2alt i v ‘elem ‘ diag) ||

(ballot !! i /= ballot !! alt2iss (swap (iss2alt i v)) v)
antisym = all antisymPart [0..(v * v - 1)]
tr i x = (ballot !!i && ballot !! x

&& fst (iss2alt x v) == snd (iss2alt i v)) -->
ballot !! alt2iss (fst (iss2alt i v),snd (iss2alt x v)) v

transPart i = all (tr i) [0..(v*v-1)]
transitive = all transPart [0..(v * v - 1)]

in
irrefl && antisym && transitive

Because we have this translation, we can now also use our implementation to tackle problems in
preference aggregation. Or maybe better: our implementation is an implementation of basic concepts
in preference aggregation. Though not the most efficient one, because of the exponential blowup and
the necessary translations. We can now implement and use rules for preference aggregation, and we
can even apply some of the rules we already have, such as the distance based rule. Any aggregation
function that is collectively rational for IC

<

coincides with a social welfare function, which is a function
returning a (set of) preference ordering(s). However, when choosing from alternatives, we are often not
specifically interested in a collective ordering of the Alternatives, but more in one winner or a set of
winners. For this we use social choice functions, which are defined as follows.

Definition 10. A social choice function is a function F : (Mod(IC
<

))

N ! P(�), selecting one or more
of the alternatives, given a preference profile.

type SCF = Int -> Profile -> [Alternative]

We call a social choice function resolute if |F (B)| = 1 for all B 2 Mod(IC
<

).

When deciding on a winner from a preference profile, an appealing way to compare alternatives is by
pairwise majority comparison. We let y be a pairwise majority winner against x (we write y >µ x),
when {B 2 B | B(y,x) = True} > {B 2 B | B(y,x) = False}. Intuitively a winner should also win as
much pairwise majority comparisons as possible. This gives rise to the following social choice function
suggested by Copeland (1951).

The Copeland rule

The Copeland rule uses the Copeland score of an alternative x, given a certain profile, which is as
follows

Copeland(x) = |{y 2 � | x >µ y}|� |{y 2 � | y >µ x}|,

Thus the Copeland score of an alternative is the number of alternatives it would defeat in a pairwise
majority elecation, minus the number of alternatives it would lose against. For example, if we look at
Example 5, we see that blue wins against yellow in a pairwise majority comparison, but it loses against
red. Hence its Copeland score is 0.

29

Chapter 2. Binary aggregation with integrity constraints 2.3. Preference aggregation

We encode a function that calculates the Copeland score of an alternative given a profile.

copelandScore :: Alternative -> Int -> Profile -> Int
copelandScore i v profile = let

m = v * v
iFirst = [alt2iss (i,b) v | b <- [0..(v -1)]]
iSnd = [alt2iss (b,i) v | b <- [0..(v -1)]]

in
length [j | j <- iFirst , majority Strict m j profile] -
length [j | j <- iSnd , majority Strict m j profile]

Note that this function uses the translation from alternatives to issues.

Indeed the Copeland score of blue in example 5 is 0.

> copelandScore 0 3 exampleD
0

Definition 11. The Copeland rule Copeland is the social choice function that selects from ⇠ those
alternatives with the highest Copeland score.

We implement the Copeland rule.

copelandRule :: SCF
copelandRule v profile =

maximaBy (comparing (\i -> copelandScore i v profile)) [0..(v-1)]

The Copeland winner of Example 5 is alternative 1.

> copelandRule 3 exampleD
[1]

Thus according to the Copeland rule, the family should paint their house red.

We could study social choice functions in the same fashion as we studied binary aggregation rules, by
characterizing them in terms of the axioms they satisfy, as is done in Zwicker (2016). This is outside
the scope of this thesis.

Summary

We now have an implementation of all the basic concepts in binary judgement aggregation and preference
aggregation. We also implemented several aggregation rules and a social choice function. Some more
aggregation rules can be found in appendix A.3. This implementation can also be used to implement
any rule of your own.

30

Chapter 2. Binary aggregation with integrity constraints 2.3. Preference aggregation

In the next chapter, we turn our attention to manipulation of the decision making process, in which we
will use our implementation of the priority and the distance based rule. We will also return to social
choice functions and explain how these can be manipulated.

31

3 | Manipulating decision making

In this chapter, we will discuss several ways in which an agent could influence the process of decision
making such that the final decision will (probably) be more benificial to her. There are several ways in
which an agent can manipulate this process. We will start with two examples in which an agent can
ensure a better outcome for herself by lying about her preferences.

module Manipulation where
import Aggregation
import AgHelpFun
import MyBasics
import Rules
import Data.Ord (comparing)
import Data.List
import Text.Read (readMaybe)
import Control.Arrow

Example 6 - Spending money. Consider a family of three members that has to decide whether
they want to buy a new kitchen, buy a car, go on holidays, remodel their garden and/or change their
floor. If they buy both a new kitchen and a new car, no money is left for the other expenses. If they
buy only one of the two, they have enough money for the rest. Thus they have the integrity constraint
l0 = p0 ^ p1 ! (¬p2 ^ . . . ^ ¬p

m�1). The individual preferences of the family members can be found in
Table 3.1. In the implementation, this profile is given by [15,23,8].

Issue: 0 : new kitchen 1 : new car 2 : vacation 3: remodel garden 4 : change floor

Member 0 False True True True True
Member 1 True False True True True
Member 2 False True False False False

Table 3.1: Three family members cast their vote on five issues.

exampleC :: Profile
exampleC = is2bs 5 [15 ,23 ,8]

Suppose the family members decide to prioritize the decisions in order 0, 1, 2, 3, 4. They decide by
majority only if the decision is not forced by the integrity constraint. If they do this they get the

32

Chapter 3. Manipulating decision making

following outcome.

> priority 5 l0 exampleC
[[False,True,True,True,True]]

This result agrees on two issues with the preferences of agent 2. Now suppose she really hates going on
vacation and she wants to keep the garden and floor as it is. Agent 2 could choose to misrepresent her
preferences, by casting the ballot (True,True,False,False,False), which has the integer representation
24. We can apply the priority rule to the profile in which she lies.

> priority 5 l0 [15,23,24]
[[True,True,False,False,False]]

This way, they will get a new kitchen, but the other three issues agent 2 did not agree with are not
happening. The result now agrees on four issues with the preferences of agent 2. Hence, if all issues are
equally important to agent 2, by misrepresenting her preferences, she managed to force an outcome
that is more beneficial to her. ⌅

In the previous example, an agent could lie about her preferences to get her way on more issues.
Another case in which it might not be optimal to cast an honest ballot, is if certain issues are more
important to you than other ones. We show this with Example 1.

Example 1 - Cat or Dog (continued). Remember that the issues were numbered 0=“dog”, 1=“cat
and dog”, 2=“cat”. Suppose that the family members decide to solve the issues by priority, where issues
are prioritized in the order 0, 1, 2. If they do this, on base of their true preferences, they will get a dog,
and not a cat.

> priority 3 q0 exampleA
[[True,False,False]]

However, if family member 1 rather has a cat than a dog, she can choose to misrepresent her preferences,
by saying that she only wants a cat. If we now apply the priority strategy, the family will not decide
to buy a dog, and they will not decide to buy both a cat and a dog. These decisions do not force a
decision on buying a cat, hence by applying majority on this issue, they decide to buy a cat.

> priority 3 q0 [4,1,1]
[[False,False,True]] ⌅

The above are examples of manipulation of the aggregation rule. When agents are provided with only
partial knowledge about the preferences of the others, they try to maximize their expected “satisfaction
with the outcome” by lying about their preferences. There are more ways in which an agent can try to
manipulate the outcome. For example, she could influence the choice of an aggregation rule, or make
sure the right issues are on the agenda. The process consisting of picking a rule, setting the agenda
and the application of the aggregation rule is called the decision making process. We will first discuss
manipulation of the aggregation rule by lying about ones preferences. Then we will discuss how agents
can manipulate the choice of a rule and the agenda setting.

33

Chapter 3. Manipulating decision making 3.1. Measuring satisfaction

3.1 Measuring satisfaction

In literature, there are several different definitions of manipulability of aggregation rules (e.g. the
definition given in Grandi (2012) is a special case of the definition in Dietrich and List (2007b)). These
different definitions make some assumptions on the preferences of agents. For example, in Grandi
(2012) it is assumed that agents prefer an outcome that has a smaller Hamming distance to their
true ballot. In Dietrich and List (2007b), it is assumed that agents are closeness-respecting, that is if
Agree(B,B0

) ✓ Agree(B,B00
), where B represents the true preferences of agent i, then agent i will like

B00 better or equally as B0. However, this does not nessecarily have to be the case.

Example 7. Suppose I prefer to have only a dog and no cat, but if we do not get a dog, then I would
rather have a cat than no pet at all. This means that on the issues (Dog, Cat and Dog, Cat) my true pref-
erence is (True,False,False), but the outcome (False,False,True) is better for me than (False,False,False),
even though Agree((True,False,False), (False,False,True)) ✓ Agree((True,False,False), (False,False,False)).
⌅

The example above shows that the assumption that preferences should be closeness-respecting is not
straightforward and neglects a lot of cases we might come across in real life. We will therefore depart
from the literature by giving a more general definition for manipulability of the aggregation rule1, which
we later give in Definition 16. For discussing manipulation under full knowledge, only an ordering
on outcomes is nessecary. However, to enable us to extend our framework to manipulation under
partial knowledge and to do measurements on the lucrativity of manipulation we will use the game
theoretical concept of a utility function, that gives a measure of satisfaction experienced by an agent
when presented with a certain outcome.

Since outcomes are sets of ballots, to represent satisfaction with the outcome, we define for each agent
i 2 N , a utility function U

i

: P(Mod(IC)) ! R�0 on sets of ballots. This utility function assigns to
each set of rational ballots S a number, expressing the agents satisfaction with S as an outcome. We
can extend this definition to a utility on single ballots, where we let U

i

(B) = U
i

({B}).

type UtilitySingle = Ballot -> Float
type UtilitySet = [Ballot] -> Float

uSingle :: UtilitySet -> UtilitySingle
uSingle u ballot = u [ballot]

Definition 12. A utility function U
i

is called set-consistent if for any set of ballots S, U
i

(S) 
max

B2S

U
i

(B) with equality if and only if U
i

(B0
) = max

B2S

U
i

(B) 8B0 2 S.

Definition 13. A set-consistent utility function U
i

is called top-respecting to a ballot B if U
i

(B) =

max

B

02Mod(IC) Ui

(B0
).

In the remainder of the thesis we will assume any utility U
i

is set-consistent and top-respecting to
the ballot representing the true preferences of agent i, thus if we say U

i

is the utility of an agent, we
assume his true ballot is one which U

i

is top respecting to.
1Dietrich and List (2007b) also give a definition of manipulability on a set Y ✓ I. For this definition, there are even

more restrictions on the agent. She does not only need to be closeness-respecting, but she should also only “care” about
issues in Y . That is, she should like ballots that only differ on issues in Y equally.

34

Chapter 3. Manipulating decision making 3.1. Measuring satisfaction

We define Top(U
i

) as the set of ballots for which the utility is maximal. Thus

Top(U
i

) = {B 2 Mod(IC)|U
i

(B) � U
i

(B0
) 8B0 2 Mod(IC)}.

Given a utility function we calculate the true preferences of an agent.

truePrefs :: Int -> UtilitySingle -> IC -> [Ballot]
truePrefs m u bc = maximaBy (comparing u) (models m bc)

There are other properties that utility functions might satisfy. For example a natural assumption on a
utility function is the following.

Definition 14. A utility function is called average-respecting if the utility of a set is the average of
the utilities of the elements.

If ties are broken at random, the average-respecting utility gives the expected utility of the single
outcome. This shows that in some cases it is reasonable to assume utility functions are average-respecting.
If we are provided with a utility only defined on single ballots, we can calculate a corresponding full
utility function. We encode this.

uSet :: UtilitySingle -> UtilitySet
uSet u ballots = sum (map u ballots) /

fromIntegral (length ballots)

Another property that utility functions can have is quite interesting, since this property is often assumed
when studying manipulability.

Definition 15. We call a utility function U
i

closeness-respecting to a ballot B if for any B0, B00, we
have that Agree(B,B0

) ✓ Agree(B,B00
) implies U

i

(B0
)  U

i

(B00
). A utility function is called closeness-

respecting if it is closeness-respecting to some ballot. U
i

is closeness-respecting to a set of ballots S if
U
i

is closeness-respecting to B for all B 2 S.

This means that when an agent agrees with an outcome on a certain set of issues, when presented with
an outcome that also agrees with her on this set of issues (and possibly more), she should not be less
satisfied with this new outcome. There are a few interesting things to note here. Firstly, not every
utility is closeness-respecting to an element from Top(U

i

). Secondly, if U
i

is closeness-respecting to
the true preferences B

i

of agent i, then it is also top-respecting. Thirdly, if U
i

is closeness-respecting
to some ballot ˜B, U

i

is not necessarily closeness-respecting to all B 2 Top(U
i

). We will illustrate the
latter with an example.

Example 8. Suppose we have two issues and no integrity constraint. Let U
i

be given by the average-
respecting utility corresponding to the single-ballot utility given by

U
i

(B) =

8
><

>:

2 if b0 = True

1 if b0 = False and b1 = True

0 otherwise.

We leave it to the reader to check that U
i

is closeness-respecting to (True,True). Also, (True,False) 2
Top(U

i

), but we can check that U
i

is not closeness-respecting to (True,False).

35

Chapter 3. Manipulating decision making 3.1. Measuring satisfaction

We will not assume all utility functions are closeness-respecting or average-respecting.

Suppose agent i is an agent with true preferences B
i

, who cares about all issues equally much. In this
case, her utility function is one that is induced by the Hamming distance, namely

UH
i

(B) = m�H(B
i

, B),

which gives the number of issues on which B0 agrees with her preferences. We call this utility the
Hamming utility.

uH :: Ballot -> Int -> UtilitySingle
uH tPrefs m b = fromIntegral (m - hamming tPrefs b)

It might be that an agent cares more about some issues than about others. To express relative
importance of issues to an agent i, we can use a weight function w

i

: I ! R�0.

type WeightF = Issue -> Float

In Example 1, family member 1 was more inclined on having a cat than a dog. She could have the
following weight function.

w1(0) = 1,

w1(1) = 1,

w1(2) = 2.

We can encode this.

w1 :: WeightF
w1 0 = 1
w1 1 = 1
w1 _ = 2

Any weight function induces the weighted Hamming distance to a ballot B0 and corresponding weighted
Hamming utility

Hwi
(B,B0

) =

X

j2I
|b

j

� b0
j

| · w
i

(j),

U
i

(B) =

0

@
X

j2I
w

i

(j)

1

A�Hwi
(B,B0

).

This can be encoded as follows.

36

Chapter 3. Manipulating decision making 3.1. Measuring satisfaction

wHamming :: WeightF -> Int -> Ballot -> Ballot -> Float
wHamming w m b1 b2 = sum (map f [0..(m-1)]) where

f i = if agree b1 b2 i
then 0 else w i

uHW :: WeightF -> Ballot -> Int -> UtilitySingle
uHW w tPrefs m b = sum (map w [0..(m-1)]) - wHamming w m tPrefs b

In Example 1, the utility for having only a dog is smaller then the utility for having only a cat.

> uHW w1 (i2b 3 7) 3 (i2b 3 3) [True,False,False]
1.0

> uHW w1 (i2b 3 7) 3 (i2b 3 3) [False,False,True]
2.0

Theorem 11. The (weighted) Hamming utility U
i

is closeness-respecting to Top(U
i

).

Proof. Let U
i

be the utility function induced by the weighted Hamming distance Hwi to ˜B. Let
B 2 Top(U

i

). This means

U
i

(B) = U
i

(

˜B),
X

j2Agree(B̃,B)

w
i

(j) =
X

j2Agree(B̃,B̃)

w
i

(j),

X

j2Agree(B̃,B)

w
i

(j) =
X

j2I
w

i

(j),

X

j 62Agree(B̃,B)

w
i

(j) = 0.

Hence w
i

(j) = 0 for all j 62 Agree(

˜B,B). Now we will show that U
i

is closeness-respecting to B.
Suppose for some rational ballots B0, B00 we have

Agree(B,B00
) ✓ Agree(B,B0

).

By definition of the weighted Hamming utility U
i

, we have

U
i

(B00
) =

X

j2Agree(B̃,B

00)

w
i

(j).

Since w
i

(j) = 0 for all j 62 Agree(

˜B,B), we obtain

U
i

(B00
) =

X

j2Agree(B̃,B

00)\Agree(B,B

00)

w
i

(j).

Now since Agree(

˜B,B00
) \ Agree(B,B00

) = Agree(

˜B,B) \ Agree(B,B00
), and since w

i

(j) = 0 for all
j 62 Agree(

˜B,B), we get

U
i

(B00
) =

X

j2Agree(B,B

00)

w
i

(j).

37

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

Now because Agree(B,B00
) ✓ Agree(B,B0

),

U
i

(B00
) 

X

j2Agree(B,B

0)

w
i

(j).

Applying the same things as before we get

U
i

(B00
) 

X

j2Agree(B̃,B

0)

w
i

(j)

= U
i

(B0
).

Hence all of this gives us U
i

(B00
)  U

i

(B0
), thus U

i

is closeness-repecting to Top(U
i

). ©

Besides these (somehow natural) utilities, there can also be other utilities. For example a utility that
formalizes the preference “I would rather have a cat and no dog, but if we do not get a cat I want a
dog.”.

3.2 Manipulation of the aggregation rule

In the previous chapter we discussed several rules to aggregate agents individual preferences in a group
decision. To be able to use these rules, the preferences of the agents need to be known. However,
since mind-reading is a skill only possessed by a small group of fortunate ones, the best way to get
these preferences is to ask the agents what their preferences are. This causes a vulnerability for the
decision making process, since agents can choose to be dishonest about their preferences. If an agent
can increase her (expected) utility by lying about her preferences, we say that she can manipulate the
aggregation rule. We will first study the case in which the agent has full knowledge about the ballots of
the other agents.

3.2.1 Manipulating rules under full knowledge

Using our definition of utility, we obtain the following definition for manipulability of the aggregation
rule under full knowledge.

Definition 16 (Manipulability under full knowledge). A rational aggregation rule F is manipulable
under full knowledge by agent i with utility U

i

at profile B, containing ballot B
i

if U
i

is top-respecting
to B

i

and there exists a ballot B0
i

such that U
i

(F (B�i

, B0
i

)) > U
i

(F (B�i

, B
i

)).
A rational aggregation function F is manipulable under full knowledge if there exists an agent i, a
utility function U

i

and a profile B such that F is manipulable under full knowledge by i at B.

We will call manipulability by (agents with) a closeness-respecting utility, closeness-respecting manipu-
lability.

Some characterization results

Now we do have a definition for manipulability, however this does not give us an easy way to check
aggregation rules for manipulability. This is because there is an infinite number of top-respecting utility

38

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

functions and we cannot check them all. Therefore we would like to find equivalent requirements for
manipulability.
Theorem 12 (Characterization of closeness-respecting manipulability for resolute aggregation rules).
Let F be a resolute aggregation rule, B a profile containing ballot B

i

.
There exists an issue j 2 I and a ballot B0

i

6= B
i

such that F (B0
i

,B�i

)

j

= {b
i,j

}, and F (B)

j

6= {b
i,j

} if
and only if there exists a utility function U

i

that is closeness-respecting to B
i

, such that F is manipulable
under full knowledge by agent i at profile B.

Proof. Let F be an aggregation rule, B a profile containing ballot B
i

. Suppose there is an issue j 2 I
and a ballot B0

i

6= B
i

such that F (B0
i

,B�i

)

j

= {b
i,j

}, and F (B)

j

6= {b
i,j

}. Since B0
i

6= B
i

, there is a j0

such that b0
i,j

0 6= b
i,j

0 . If j = j0, let

w
i

(j00) =

(
1 if j00 = j,

0 otherwise.

The corresponding Hamming utility is

U
i

(B) =

(
1 if b

j

= b
i,j

,

0 otherwise.

Then since F (B0
i

,B�i

)

j

= {b
i,j

} and F (B)

j

6= {b
i,j

}, we have U
i

(F (B0
i

,B�i

)) = 1 > 0 = F (B). And
we have U

i

(B
i

) = 1 > 0 = U
i

(B0
i

), since b0
i,j

0 6= b
i,j

0 . Hence F is manipulable under full knowledge
by agent i with utility U

i

, which is a Hamming utility to B
i

and thus closeness-respecting to B
i

by
Theorem 11.
If j 6= j0,let

w
i

(j00) =

8
><

>:

2 if j00 = j,

1 if j00 = j0,
0 otherwise.

The corresponding Hamming utility is

U
i

(B) =

8
>>><

>>>:

3 if b
j

= b
i,j

and b
j

0
= b

i,j

0

2 if b
j

= b
i,j

^ b
j

0 6= b
i,j

0 ,

1 if b
j

6= b
i,j

^ b
j

0
= b

i,j

0 ,

0 otherwise.

Then since F (B0
i

,B�i

)

j

= {b
i,j

} and F (B)

j

6= {b
i,j

}, we have U
i

(F (B0
i

,B�i

)) � 2 > 1 � F (B). And
we have U

i

(B
i

) = 3 > 2 � U
i

(B0
i

), since b0
i,j

0 6= b
i,j

0 . Hence F is manipulable under full knowledge
by agent i with utility U

i

, which is a Hamming utility to B
i

and thus closeness-respecting to B
i

by
Theorem 11.
For the other direction, suppose there exists a utility function U

i

that is closeness-respecting to
B

i

, such that F is manipulable by agent i at profile B by agent i. Then there exists a ballot
B0

i

such that U
i

(F (B�i

, B0
i

)) > U
i

(F (B�i

, B
i

)) and U
i

(B0
i

) < U
i

(B
i

). Hence since U
i

is closeness-
respecting, we must have Agree(B

i

, F (B�i

, B0
i

)) (Agree(B
i

, F (B�i

, B
i

)). Hence there is some j such
that F (B0

i

,B�i

)

j

= {b
i,j

}, and F (B)

j

6= {b
i,j

}. ©

When U
i

is not closeness-respecting, the right-to-left direction of the previous theorem does not hold.
Consider m = 2, n = 3, the majority rule Maj and

U0(B) =

8
><

>:

3 if B = (1, 0)

2 if B = (0, 1)

1 otherwise.

39

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

Now if B = ((1, 0), (1, 1), (0, 1)), U0(Maj(B)) = U0((1, 1)) = 1 < 2 = U0((0, 1)) = U0(Maj((0, 1),B�0)).
So agent 0 can manipulate the majority rule under utility U0. However, the only j for which Maj(B)

j

6=
{b0,j} is j = 1, however, for no ballot B0

0 we get Maj(B0
0,B�0)1 = b0,1, since there is already a majority

for issue 1 without agent 0. Hence it is not manipulable.

Theorem 13. If F is a resolute aggregation rule, then F is monotonic and independent if and
only if F is not manipulable at any profile containing B

i

by an agent with a utility function that is
closeness-respecting to ballot B

i

.

Proof. Let F be an aggregation rule that satisfies monotonicity and independence and let agent i
have utility U

i

that is closeness-respecting to some ballot B
i

. Now let B be any profile containing B
i

.
Now consider any alternative ballot B0

i

and any issue j 2 I such that F (B0
i

,B�i

)

j

= {b
i,j

}. Now if
b0
i,j

= b
i,j

, by independence F (B
i

,B�i

)

j

= F (B0
i

,B�i

)

j

= {b
i,j

} and if b0
i,j

6= b
i,j

, then by monotonicity,
F (B

i

,B�i

)

j

= {b
i,j

}. Hence by Theorem 12, F is not manipulable by agent i with utility U
i

. Since
U
i

, B were arbitrary, F is not manipulable at any profile by an agent with a utility function that is
closeness-respecting to some ballot B

i

.

For the other direction, suppose first F is not monotonic. Then there is an agent i, issue j, a profile B
containing B

i

, and there is an alternative ballot B0
i

such that b
i,j

= x, b0
i,j

= ¬x, F (B
i

,B�i

)

j

= {¬x}
and F (B0

i

,B�i

)

j

= {x}. Hence F (B
i

,B�i

)

j

6= {b
i,j

} and F (B0
i

,B�i

)

j

= {b
i,j

}. Thus by Theorem 12,
we have that there is a U

i

that is closeness-respecting to B
i

such that agent i can manipulate F at B.

Now suppose F is not independent. Then by Theorem 2, it is also not weakly independent. Hence
there is an issue j, an agent i, a profile B containing B

i

and there is an alternative ballot B0
i

such that
b
i,j

= b0
i,j

and F (B)

j

6= F (B0
i

,B�i

)

j

. Now we can assume w.l.o.g. that F (B0
i

,B�i

)

j

= {b
i,j

} = {b0
i,j

}
(otherwise we can switch B

i

and B0
i

). Then we have F (B
i

,B�i

)

j

6= {b
i,j

}, hence by theorem 12, there
is a U

i

that is top respecting to B
i

such that agent i can manipulate F on B.

Hence we have that F is weakly monotonic and weakly independent if and only if F is not manipulable
by an agent with a utility function that is closeness-respecting to some ballot B. ©

This indeed coheres with a result from Dietrich and List (2007b). Note that monotonicity and
independence are very strict requirements, and indeed there are few aggregation rules that satisfy
both of these. Dietrich and List (2007a) show for resolute rules that if we also require anonymity and
responsiveness, these four axioms are satisfied if and only if the rule is a quota rule. The majority rule
satisfies both weak monotonicity and (weak) independence hence is not manipulable by agents with a
closeness-respecting utility function.

Theorem 14. For any aggregation rule F , profile B containing ballot B
i

, the following is true: There
exists a top-respecting (to B

i

) utility U
i

such that F is manipulable under full knowledge by agent i, if
and only if F (B

i

,B�i

) 6= {B
i

} and there is an alternative ballot B0
i

such that F (B
i

,B�i

) 6= F (B0
i

,B�i

).

Proof. Let F be an aggregation rule, B a profile containing ballot B
i

of agent i. Let U
i

be such that
agent i can manipulate F at B. Then there is an alternative ballot B0

i

such that U
i

(F (B0
i

,B�i

)) >
U
i

(F (B
i

,B�i

)) and U
i

(B
i

) > U
i

(B0
i

). From the first fact it follows that F (B
i

,B�i

) 6= F (B0
i

,B�i

).
From the second combined with the first, since U

i

is top respecting and set-consistent, we must have
F (B

i

,B�i

) 6= {B
i

}.

For the other direction, suppose there is a profile B containing B
i

and there is an alternative ballot B0
i

such that F (B
i

,B�i

) 6= F (B0
i

,B�i

) and F (B
i

,B�i

) 6= B
i

. Now suppose B0
i

6= F (B0,B�i

). Then the

40

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

following utility is well defined.

U
i

(B) =

8
><

>:

2 if B = B
i

or B = F (B0
i

,B�i

),

1 if B = F (B
i

,B�i

) or B = B0
i

,

0 otherwise.

Now we have that U
i

is top-respecting to B
i

, U
i

(B0
i

) < U
i

(B
i

) and U
i

(F (B0
i

,B�i

)) > F (B
i

,B�i

), hence
F is manipulable under full knowledge by agent i.

In the case that B0
i

= F (B0,B�i

), the following utility is well defined.

U
i

(B) =

8
>>><

>>>:

3 if B = B
i

2 if B = B0
i

(which equals F (B0,B�i

)),

1 if B = F (B
i

,B�i

)

0 otherwise.

Now we have again that U
i

is top-respecting to B
i

, U
i

(B0
i

) < U
i

(B
i

) and U
i

(F (B0
i

,B�i

)) > F (B
i

,B�i

),
hence F is manipulable under full knowledge by agent i. ©

Corollary 2. An aggregation rule F is manipulable under full knowledge if and only if there exists
a profile B containing ballot B

i

, and an alternative ballot B0
i

such that F (B
i

,B�i

) 6= F (B0
i

,B�i

) and
F (B

i

,B�i

) 6= {B
i

}.
Corollary 3. If an aggregation rule F is non-manipulable and there are B

i

, B0
i

,B such that F (B
i

,B�i

) 6=
F (B0

i

,B�i

), then for all B we must have F (B,B�i

) = {B}.

Proof. Suppose there are B
i

, B0
i

,B such that F (B
i

,B�i

) 6= F (B0
i

,B�i

), and there is a B for which
F (B,B�i

) 6= B. Then we must have that either F (B,B�i

) 6= F (B
i

,B�i

) or F (B,B�i

) 6= F (B0
i

,B�i

).
Hence F is manipulable under full knowledge by Theorem 14. This proves the Corollary. ©

For the next theorem, we first need a definition.

Definition 17. An aggregation rule F is a dictatorship when there is an i 2 N such that F (B) = {B
i

}
for all rational profiles B.

Theorem 15. Suppose |Mod(IC)| � 3. An aggregation rule F is non-manipulable if and only if it is
either constant or a dictatorship.

Proof. Obviously dictatorships and constant rules are not manipulable. For the other direction,
suppose that F is not manipulable and not constant. Since F is not constant, there are profiles
(B0, . . . , Bn�1), (B

0
0, . . . , B

0
n�1) such that

F (B0, . . . , Bn�1) 6= F (B0
0, . . . , B

0
n�1).

This implies that for some i, we must have

F (B0
0, . . . , B

0
i�1, Bi

, . . . , B
n�1) 6= F (B0

0, . . . , B
0
i

, B
i+1, . . . , Bn�1).

Now let B00
�i

= B0
0, . . . , B

0
i�1, Bi+1, . . . , Bn�1. Since F is not manipulable and F (B

i

,B00
�i

) 6= F (B0
i

,B00
�i

),
by Corollary 3, this implies that F (B,B00

�i

) = {B} for all B 2 Mod(IC). Now consider some arbitrary
profile B⇤

�i

= B⇤
0 , . . . , B

⇤
n�1. We define the following function

G(B, k)
l

=

8
><

>:

B if l = i,

B⇤
l

if l 6= i and l  k,

B00
l

if l 6= i and l > k.

41

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

We have that G(B, k) defines a profile. We will prove that for any k 2 I, F (G(B, k)) = {B} for all
B 2 Mod(IC), by the induction on k.

For k = 0, G(B, 0) = B,B00
�i

, hence we have F (G(B, 0)) = {B}.

suppose F (G(B, k)) = {B} for all B 2 Mod(IC). Now if k + 1 = i, we have G(B, k) = G(B, k + 1),
hence F (G(B, k)) = F (G(B, k + 1)).

If k + 1 6= i, let A1 6= A2 2 Mod(IC) be unequal to B00
k+1 (these exist since |Mod(IC)| � 3). Then by

induction hypothesis, we have

F (G(A1, k)) = {A1},
F (G(A2, k)) = {A2}.

By definition of G we have G(A1, k)k+1 = B00
k+1 = G(A2, k)k+1.

Now Since F (G(A1, k)) = {A1} 6= {G(A1, k)k+1} and G(A1, k + 1) = B⇤
k+1, G(A1, k)�(k+1), by Corol-

lary 3 contraposed, we must have

F (G(A1, k + 1)) = F (G(A1, k)) = {A1},

and similarly

F (G(A2, k + 1)) = F (G(A2, k)) = {A2}.

Thus

F (G(A1, k + 1)) 6= F (G(A2, k + 1))

Hence by Corollary 3, for any B we must have F (G(B, k + 1)) = F (B,G(A1, k + 1)�i

) = B.
This shows by induction that F (G(B, k)) = B for all B 2 Mod(IC) and for all k 2 I. We can conclude
from this that also F (B,B⇤

�i

) = F (G(B,n� 1)) = B for all B 2 Mod(IC), and since B⇤ was arbitrary,
agent i is a dictator. ©

At first sight, the result of Theorem 15 looks similar to the Gibbard-Satterthwaite Theorem. However
mathematically the two results are very different. Here the impossibility is more direct because of the
extreme freedom in picking a utility function that works.

3.2.2 Manipulating rules under partial knowledge

Given that the utility function expresses the agents satisfaction with a certain outcome, any agent would
like to have an outcome such that the utility is as high as possible. As we showed above, all reasonable
rules are susceptible to manipulation. These manipulations are quite straightforward, however, they all
require full knowledge about the preferences of the other agents. In real life this will almost never be
the case. We will now investigate manipulations by agents that do not have full knowledge.2

In this thesis we will only consider identically distributed beliefs. That is, an agent has a belief about
what the ballots of the other agents could be, and her ignorance about the remaining possibilities
is given by a uniform distribution. For example, she might know that her neighbour will vote True

2We discuss the case in which agents have partial knowledge on the ballots of other agents. One could also consider
cases in which agents have knowledge on the true preferences of other agents, including their utility functions. This would
give rise to a bayesian game which would be an interesting line of research.

42

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

for issue 1, therefore she knows that all profiles in which her neighbour votes False for issue 1 are
not possible. We could easily extend this approach by adding probabilities to our knowledge. The
reason that we will not do this here is twofold. First of all, since the number of possible profiles grows
exponentially with the number of agents and issues, assigning separate probabilities to each of these will
be a complicated job for an agent. Secondly, this would make the illustrative examples in this thesis
harder to comprehend. Thus, in this thesis, the knowledge k

i

2 P((Mod(IC)

i ⇥Mod(IC))

n�i�1
) of an

agent i consists of a list of possible min
i

-profiles. Note that this is just knowledge about the ballots
agents cast and does not take into account meta-knowledge such as knowledge about the utilities or
the knowledge of other agents.

type Knowledge = [MinIProfile]

We encode a function to split multiple profiles into min
i

-profiles.

splitProfiles :: Agent -> [Profile] -> Knowledge
splitProfiles i = map (splitProfile i)

We can use this function to create knowledge sets. Consider Example 6. If agent 2 is fully ignorant
about the preferences of the other agents (except that they are rational), we can encode this as follows.

exampleKn1 :: Knowledge
exampleKn1 = nub (splitProfiles 2 (allProfiles 5 3 l0))

It will turn out that we can construct cases where manipulation under full ignorance is possible. Thus
this knowledge set is an interesting one.

Suppose on the other hand that agent 2 knows her family members will vote True for issues 2, 3 and
4, but she does not know their opinions on issues 0 and 1 (note that their preferences on these are
not forced completely by their votes on issues 2, 3 and 4). In this case her knowledge is given by
exampleKn2.

exampleKn2 :: Knowledge
exampleKn2 = let

f x = and (drop 2 (x!!1) ++
drop 2 (head x))

in
nub (splitProfiles 2 (filter f (allProfiles 5 3 l0)))

When having a meeting, announcements can be made that trigger a knowledge update. For example, if
agent 1 says: “I am going to vote True for issue 1” and I believe her, I want to update my knowledge,
by deleting all profiles in which she votes False for issue 1.

43

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

updateKnowledge :: Int -> Agent -> Issue ->
Vote -> Knowledge -> Knowledge

updateKnowledge m a i vote kn = let
j = length (fst (head kn))
n = length (uncurry (++) (head kn)) + 1

in
if null (checkIndices (m,n,j,a,i)) then let

update (x,y) = ((x ++ [i2b m 0] ++ y) !! a) !! i == vote
in

filter update kn
else

error (unlines (checkIndices (m,n,j,a,i)))

Not all possible knowledge updates can be done with this function, for example after the statement “I
will vote True for issue 0 if I vote true for issue 1”, we would need a more complicated knowledge update
function. The reader is encouraged to implement such a function. For our examples the knowledge
update function that was mentioned above will do.

Example 6 - Spending money (continued). If family member 0 announces that she will vote True
for issue 0, family member 2 wants to update her knowledge. After updating, the set of possible profiles
is smaller.

> length exampleKn2
9

> length (updateKnowledge 5 0 0 True exampleKn2)
3

⌅

Using knowledge sets, we can calculate the expected utility E
F

of the outcome of F when casting ballot
B, given knowledge k. This is given by

E
F

(U
i

, B, k
i

) =

P
(~a,~b)2ki

U
i

(F (~a,B,~b)

|k
i

|
We encode this.

expectedUBinA :: Ballot -> UtilitySet -> Knowledge
-> Int -> IC -> AR -> Float

expectedUBinA b u kn m bc rule = let
know = map (\(x,y) -> (x ++ [b] ++ y)) kn
utility x = u (rule m bc x)

in
sum (map utility know) / fromIntegral (length know)

Example 6 - Spending money (continued). The preferences of agent 2 are represented by the
integer Ballot 8. Suppose all questions are equally important to her, so her utility function is
uH (i2b 5 8) 5. She is fully ignorant, which is represented by the knowledge exampleKn1. We can
check the expected utilities for reporting her (honest or dishonest) preferences in the priority rule. For
example, we can compare her expected utilities for her honest ballot 8 and her dishonest ballot 24.

44

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

> expectedUBinA (i2b 5 24) (uSet (uH (i2b 5 8) 5)) exampleKn1 5 l0 priority
3.4624

> expectedUBinA (i2b 5 8) (uSet (uH (i2b 5 8) 5)) exampleKn1 5 l0 priority
3.7696

Clearly under full ignorance, reporting her true preferences is better than reporting the false preferences
represented by the integer 24. However, if we consider the case in which she knows that the other
family members will vote True for issues 2,3 and 4, we get the following expected utilities.

> expectedUBinA (i2b 5 24) (uSet (uH (i2b 5 8) 5)) exampleKn2 5 l0 priority
1.6666666

> expectedUBinA (i2b 5 8) (uSet (uH (i2b 5 8) 5)) exampleKn2 5 l0 priority
1.4444444

We see that even under full ignorance, the expected utility for family member 2 is higher if she misreports
her true preferences by casting ballot 24 instead of ballot 8. ⌅
Definition 18 (Manipulability under partial knowledge). An aggregation rule F , is called manipulable
by agent i under knowledge k

i

, if there is a ballot B0
i

, such that E
F

(U
i

, B0
i

, k
i

) > E
F

(U
i

, B
i

, k
i

) 8B
i

2
Top(U

i

).

As shown above, sometimes we can also manipulate under partial knowledge. The minimal amount of
knowledge we can have is when we are fully ignorant about the preferences of the others (in which case
our knowledge set is maximal).

Definition 19. The full-ignorance set of agent i for the integrity constraint IC is the set Mod(IC)

i ⇥
Mod(IC)

n�i�1 denoting all possible min
i

-profiles B�i

given the integrity constraint IC. An agent is
said to be fully ignorant if her knowledge is the full-ignorance set. A knowledge set k

i

is called the
full-knowledge set if k

i

has only one element.

Note that a knowledge set should not be empty, since this can only be the case when the agents
knowledge is inconsistent.

For any IC,m, n we can create the full-ignorance set.

noKnowledge :: Int -> Int -> Agent -> IC -> Knowledge
noKnowledge m n a bc = nub (splitProfiles a (allProfiles m n bc))

Definition 20. An aggregation rule F is called full-ignorance manipulable if there exists a set of agents
N , an agent i 2 N , some utility U

i

of agent i, such that F is manipulable by i under the full-ignorance
set.

When we have full knowledge, our definitions for manipulability under full and partial knowledge
coincide.

Theorem 16. When k
i

is a full-knowledge set {B�i

}, F is manipulable by agent i under knowledge k
i

if
and only if F is manipulable under full knowledge by agent i at the profile B

i

,B�i

, for all B
i

2 Top(U
i

).

45

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

Proof. Suppose F is manipulable by agent i under knowledge k
i

= {B�i

}. Then there is a ballot B0
i

,
such that E

F

(U
i

, B0
i

, k
i

) > E
F

(U
i

, B
i

, k
i

) 8B
i

2 Top(U
i

). Hence

U
i

✓
F (B0

i

,B�i

)

|k
i

|
◆

> U
i

✓
F (B

i

,B�i

)

|k
i

|
◆

8B
i

2 Top(U
i

)

U
i

(F (B0
i

,B�i

)) > U
i

(F (B
i

,B�i

)) 8B
i

2 Top(U
i

).

So we must have F (B0
i

,B�i

) 6= F (B
i

,B�i

) 8B
i

2 Top(U
i

). Hence F is manipulable under full
knowledge by agent i at the profile B

i

,B�i

for all B
i

2 Top(U
i

). The other direction is proven
similarly. ©

We can use the expected utility to calculate which ballot from a given set of ballots maximizes the
expected utility.

bestBallots :: [Ballot] -> UtilitySet -> Knowledge
-> Int -> IC -> AR -> [Ballot]

bestBallots ballots ui kn m bc rule
| null kn = error "\nKnowledge is empty .\n"
| otherwise = maximaBy (comparing f) ballots where

f b = expectedUBinA b ui kn m bc rule

In Example 6, it is beneficial for agent 2 to misreport her preferences.

> bestBallots (models 5 l0) (uSet (uH (i2b 5 8) 5)) exampleKn2 5 l0
priority

[[True,True,False,False,False]]

When the family would have used the distance based rule, it would not have been beneficial for agent 2
to misreport her preferences, however lots of dishonest ballots would have given her the same expected
utility.

> bestBallots (models 5 l0) (uSet (uH (i2b 5 8) 5)) exampleKn2 5
l0 dbRule

[[False,True,True,True,True],
[False,True,True,True,False],
[False,True,True,False,True],
[False,True,True,False,False],
[False,True,False,True,True],
[False,True,False,True,False],
[False,True,False,False,True],
[False,True,False,False,False]]

3.2.3 A manipulation tool

To help the manipulating agent, we will combine everything from the previous sections into an interactive
environment. First we need a function to update the set of ballots the agent can choose from. For

46

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

example, it might be that she already voted on the first issue, hence she cannot choose from all ballots
B 2 Mod(IC) anymore.

updateBallotSet :: [Ballot] -> Issue -> Vote -> [Ballot]
updateBallotSet ballots i vote =

filter (\x -> x !! i == vote) ballots

We write some functions to get user input.

getAgent , getIss , getVote :: IO String
getAgent = get "\nAgent :\n"
getIss = get "\nIssue :\n"
getVote = get "\nVote :\n"

typeErr :: String
typeErr = "\nIncorrect type for input , try again\n"

Now given m, n, agent i, her utility U
i

, the integrity constraint IC and the aggregation rule F , we can
manipulate the aggregation rule under partial knowledge.

manipulateAR :: Int -> Int -> Agent
-> UtilitySet -> IC -> AR -> IO()

manipulateAR m n j uj bc rule =
manipulate startBallots startKnowledge where

startKnowledge = nub (splitProfiles j (allProfiles m n bc))
startBallots = models m bc
manipulate ballots kn = do

putStr ("\n Press u to update knowledge ,"
++ " r to restrict own ballot ,"
++ " b to calculate best ballot ,"
++ " q to quit , k to show knowledge ,"
++ " s to show set of possible ballots\n")

l <- getLine
case l of

"b" -> print (bestBallots ballots uj kn m bc rule)
"q" -> putStr "\nBye\n"
"k" -> do

print kn
manipulate ballots kn

"s" -> do
print ballots
manipulate ballots kn

"r" -> do
i <- getIss
vote <- getVote
case (readMaybe i :: Maybe Issue ,

readMaybe vote :: Maybe Vote) of
(Just i’, Just vote ’) -> do

47

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

let newBallots = updateBallotSet ballots i’ vote ’
manipulate newBallots kn

_ -> do
putStr typeErr
manipulate ballots kn

_ -> do
a <- getAgent
i <- getIss
vote <- getVote
case (readMaybe a :: Maybe Agent ,

readMaybe i :: Maybe Issue ,
readMaybe vote :: Maybe Vote) of

(Just a’, Just i’, Just vote ’) ->
if null (checkIndices (m,n,j,a’,i’)) then do

putStr (unlines (checkIndices (m,n,j,a’,i’)) ++
"Try again\n")

manipulate ballots kn
else do
let newKnowledge =

updateKnowledge m a’ i’ vote ’ kn
manipulate ballots newKnowledge

_ -> do
putStr typeErr
manipulate ballots kn

Example 6 - Spending money (continued). We can apply this interactive implementation on
Example 6. We start with full ignorance, thus all rational ballots are still possible and equally likely.
We find out agent 0 votes True for issue 0, hence we update our knowledge. After that we calculate the
optimal ballot to cast.

> manipulateAR 5 3 2 (uSet (uH (i2b 5 8) 5)) l0 priority

Press u to update knowledge, r to restrict own ballot,
b to calculate best ballot, q to quit, k to show knowledge,
s to show set of possible ballots

?> u

Agent :
?> 0

Issue :
?> 0

Vote :
?> True

Press u to update knowledge, r to restrict own ballot,
b to calculate best ballot, q to quit, k to show knowledge,
s to show set of possible ballots

?> b
[[False,True,False,False,False]] ⌅

48

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

This is of course just a short example of how this works. The reader should feel free to try and do
some manipulations with this herself.

3.2.4 Manipulating social choice functions

In social choice functions for preference aggregation, manipulation works in a similar way. Here we will
introduce the necessary implementations to be able to deal with these manipulations. We also provide
some definitions. Definitions for manipulability under full/partial knowledge, expected utility, etcetera
transfer in a straightforward way from the definitions for binary aggregation. We will not spell out
these formal definitions, but refer to the implementation instead.

Definition 21. A utility function on alternatives, U
i

: P(�) ! R for an agent i 2 N , is a function,
assigning to each set of alternatives S a number, expressing the agents satisfaction with S as an
outcome.

As before, we write U
i

(a) for U
i

({a}).

type UtilitySCSingle = Alternative -> Float
type UtilitySCSet = [Alternative] -> Float

uSet2 :: UtilitySCSingle -> UtilitySCSet
uSet2 u alts = sum (map u alts) / fromIntegral (length alts)

A utility function on alternatives u
i

is assumed to be order-respecting to the true preference ordering of
agent i. That is, if an agent (honestly) prefers a over b or likes them both equally, then we must have
U
i

(a) � U
i

(b). Therefore the set of true preference rankings of agent i should satisfy

Top(U
i

) = {B 2 ModIC |B(a,b) = True $ U
i

(a) � U
i

(b) 8a, b 2 �}.

truePrefsSC :: Int -> UtilitySCSingle -> [Preference]
truePrefsSC v ui = let

combs = [(a,c)| a <- [0..(v-1)], c <- [0..(v-1)]]
test b (a,c) = (ui a == ui c) ||

(b !! alt2iss (a,c) v == (ui a > ui c))
f b = all (test b) combs

in
profile2prefs (v*v)
(bs2is (filter f (models (v*v) (lo0 v))))

Example 5 - Painting a house (continued). Consider Example 5 about the family that had to
decide what color to paint their house. Agent 0 could have the following utility function on single
alternatives.

u0 :: UtilitySCSingle
u0 0 = 4

49

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

u0 1 = 1
u0 _ = 0

If we assume the utility is average-respecting, we can extend this naturally to a utility function on sets.
⌅

As with aggregation functions, we can calculate the expected utility given a certain knowledge, ballot,
utility and social choice function.

expectedUSCF :: Ballot -> UtilitySCSet -> Knowledge
-> Int -> SCF -> Float

expectedUSCF b u kn v rule = let
know = map (\(x,y) -> (x ++ [b] ++ y)) kn
utility x = u (rule v x)

in
sum (map utility know) / fromIntegral (length know)

Now suppose agent 0 is fully ignorant. We can encode this as follows.

exampleKn3 :: Knowledge
exampleKn3 = nub (splitProfiles 0 (allProfiles 9 3 (lo0 3)))

We can calculate her expected utility.

> expectedUPrA 200 (uSet2 u0) exampleKn3 3 copelandRule
2.8888888

Of course this fact alone is not very interesting, so we will use this again to find what ballot agent 0
should cast to get the best expected utility.

bestPrefs :: [Ballot] -> UtilitySCSet -> Knowledge
-> Int -> SCF -> [Preference]

bestPrefs ballots u kn v rule = let
f b = expectedUSCF b u kn v rule
sortedBallots = sortBy (comparing (\x -> u [b2i x])) ballots

in
ballots2prefs v (maximaBy (comparing f) sortedBallots)

We use this to calculate what ballot agent 0 should cast.

> bestPrefs (models 9 (lo0 3)) (uSet2 u0) exampleKn3 3 copelandRule
[[0,1,2]]

50

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

So with this knowledge, it is clearly best for agent 0 to cast a ballot representing her true preferences.
This is not surprising as the Copeland rule satisfies the axiom of neutrality with respect to alternatives,
and in the integrity constraint, alternatives are also interchangable, thus under full ignorance, no
difference can really be made between alternatives. Let us now see what happens if agent 0 has some
information, namely she knows the ballot of agent 1.

exampleKn4 :: Knowledge
exampleKn4 = splitProfiles 0 (filter (\x -> x !! 1 == i2b 9 104)

(allProfiles 9 3 (lo0 3)))

We determine the best preference ordering for agent 0 and we calculate the corresponding expected
utility.

> bestPrefs (models 9 (lo0 3)) (uSet2 u0) exampleKn4 3 copelandRule
[[0,2,1]]

> pref2int [0,2,1]
194

> expectedUSCF (i2b 9 194) (uSet2 u0) exampleKn4 3 copelandRule
2.6111112

We can calculate the expected utility for casting an honest ballot.

> expectedUSCF (i2b 9 200) (uSet2 u0) exampleKn4 3 copelandRule
2.5

Even without having any knowledge about the preferences of agent 2, agent 0 should cast the insincere
ballot [0,2,1], which has a higher expected utility than her sincere ballot [0,1,2].

When updating knowledge in case of preference aggregation (for either social choice, or social welfare
functions), we would like to express our knowledge in terms of the pairs (a, b).

updateKnowledgePA :: Int -> Agent ->
(Alternative , Alternative) -> Vote
-> Knowledge -> Knowledge

updateKnowledgePA v a (i,j) =
updateKnowledge (v * v) a (alt2iss (i,j) v)

Similarly as for binary judgement aggregation rules, we can put everything together to obtain a tool
for a manipulating agent. First we introduce a function to get a pair of alternatives from the user.

getAlts :: IO (String ,String)
getAlts = do a <- get "\nPrefers a over b. What is a?\n"

b <- get "\n What is b? \n"
return (a,b)

51

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

We check whether the alternatives are indeed smaller than the total number of alternatives.

checkIndicesAlts :: (Alternative ,Alternative ,Int) -> String
checkIndicesAlts (a,b,v)

| a > v-1 || b > v-1 =
"Alternative index too large\n"

| a < 0 || b < 0 =
"Alternative index too small\n"

| otherwise = ""

We encode a manipulation tool for social choice functions.

manipulateSCF :: Int -> Int -> Agent
-> UtilitySCSet -> SCF -> IO()

manipulateSCF v n j uj rule =
manipulate startBallots startKnowledge where

m = v * v
startKnowledge = nub (splitProfiles j (allProfiles m n (lo0 v)))
startBallots = models m (lo0 v)
manipulate ballots kn = do

putStr ("\n Press u to update knowledge ,"
++ " r to restrict own ballot ,"
++ " b to calculate best preference order ,"
++ " q to quit , k to show knowledge ,"
++ " s to show set of possible ballots\n")

l <- getLine
case l of

"b" -> print (bestPrefs ballots uj kn v rule)
"q" -> putStr "\nBye\n"
"k" -> do

print kn
manipulate ballots kn

"s" -> do
print ballots
manipulate ballots kn

"r" -> do
(p1 ,p2) <- getAlts
case (readMaybe p1 :: Maybe Alternative ,

readMaybe p2 :: Maybe Alternative) of
(Just p1 ’, Just p2 ’) -> do

let i = alt2iss (p1’,p2 ’) v
let newBallots = updateBallotSet ballots i True
manipulate newBallots kn

_ -> do
putStr typeErr
manipulate ballots kn

_ -> do
a <- getAgent
(p1 ,p2) <- getAlts
case (readMaybe a :: Maybe Agent ,

readMaybe p1 :: Maybe Alternative ,

52

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

readMaybe p2 :: Maybe Alternative) of
(Just a’, Just p1 ’, Just p2 ’) -> do

let i = alt2iss (p1’,p2 ’) v
if null (checkIndices (m,n,j,a’,i)) &&

null (checkIndicesAlts (p1’,p2 ’,v)) then do
let newKnowledge =

updateKnowledge m a’ i True kn
manipulate ballots newKnowledge
else do

putStr (unlines (checkIndices (m,n,j,a’,i)) ++
checkIndicesAlts (p1 ’,p2’,v) ++
"Try again\n")

manipulate ballots kn
_ -> do

putStr typeErr
manipulate ballots kn

We can apply this to our example. First agent 2 finds out agent 0 prefers yellow over blue. She updates
her knowledge. Then agent 2 states that she prefers red over yellow. To stay true to herself she restricts
her own ballot. After this they decide to vote. We can calculate her best preference.

> manipulateSCF 3 3 2 (uSet2 u0) copelandRule

Press u to update knowledge, r to restrict own ballot,
b to calculate best preference order, q to quit,
k to show knowledge, s to show set of possible ballots

?> u

Agent :
?> 0

Prefers a over b. What is a?
?> 2

What is b?
?> 0

Press u to update knowledge, r to restrict own ballot,
b to calculate best preference order, q to quit,
k to show knowledge, s to show set of possible ballots

?> r

Prefers a over b. What is a?
?> 1

What is b?
?> 2

Press u to update knowledge, r to restrict own ballot,
b to calculate best preference order, q to quit,
k to show knowledge, s to show set of possible ballots

53

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

?> b
[[0,1,2]]

The interactive implementation above can be used to do any manipulation on social choice functions.
We encourage the reader to try it.

3.2.5 How much knowledge is needed for manipulation of the aggregation
rule?

Now that we know how we can manipulate aggregation rules with partial knowledge, we can investigate
how much knowledge is actually needed for manipulation. It turns out that in a lot of cases, that is
none at all.

First of all, note that having more knowledge does not necessarily mean that your manipulation will be
more effective.

Example 1 - Cat or Dog (continued). Suppose agent 2 has the following utility function.

uDC2 :: UtilitySet
uDC2 = uSet (uDC2 ’.b2i) where

uDC2 ’ 1 = 100
uDC2 ’ 7 = 80
uDC2 ’ 4 = 70
uDC2 ’ _ = 0

Note that this function is top-respecting to the honest ballot of agent 2, represented by the integer 1.
under full ignorance, we calculate the best ballot for agent 2.

> bestBallots (models 3 q0) uDC2 (noKnowledge 3 3 2 q0) 3 q0 priority
[[True,True,True]]

This ballot is represented by the integer 1. What would the outcome be if she would cast this ballot?

> priority 3 q0 (is2bs 3 [4,7,7])
[[True,True,True]]

We calculate her utility for this outcome.

> uDC2 [[True,True,True]]
80.0

Now suppose agent 2 knows the ballot of agent 1, her best ballot changes.

> bestBallots (models 3 q0) uDC2 (filter (\(_:y:_,_) -> y == i2b 3 7)
(noKnowledge 3 3 2 q0)) 3 q0 priority

[[False,False,True]]

54

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

This ballot is her true ballot in the profile exampleA. However, if she would cast this ballot, she would
end up with a lower utility.

> uDC2 (priority3 q0 exampleA)
70.0

Thus, having knowledge about the ballot of agent 0 did not help agent 2 here. ⌅

The fact that having more knowledge is not always beneficial seems counter-intuitive. Gaining knowledge
about the other ballots should help for manipulation. Of course having full knowledge is optimal; then
you can ensure a maximal utility. However, other knowledge might be misleading (e.g. you accidentally
obtain knowledge that is not representative for the total profile). If we do not get misleading knowledge
on purpose, we can expect our calculations of the expected utility to become on average more accurate
when we get more knowledge, since the average of a set of values should on average be closer to the
individual elements of the set when the set is smaller.

Example 6 - Spending money (continued). Suppose family member 2 is fully ignorant about the
preferences of the other agents. Also assume that issues 2,3 and 4 are much more important to her
than issues 0 and 1. This can be represented by the following weight function on issues.

w2 :: WeightF
w2 0 = 1
w2 1 = 1
w2 2 = 100
w2 3 = 100
w2 _ = 100

uExHome :: UtilitySet
uExHome = uSet (uHW w2 (i2b 5 8) 5)

Now if we use the distance based rule, we see that even under full ignorance reporting her false
preferences represented by integer 24, gives a higher expected utility than reporting her true preferences
represented by 8.

> expectedUBinA (i2b 5 8) uExHome (noKnowledge 5 3 2 l0) 5 l0 dbRule
232.3408

> expectedUBinA (i2b 5 24) uExHome (noKnowledge 5 3 2 l0) 5 l0 dbRule
234.7568 ⌅

A more striking example is that even the majority rule, that we somehow see as a perfect rule, can be
manipulable under full ignorance.

Example 9. Suppose n = 3 family members vote on the issues “cat” and “dog” (but this time we do
not have an issue “cat and dog”). We see that there is no integrity constraint, thus we can apply the
majority rule. We consider the utility function u0ExMaj of agent 0 on the ballots.

55

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

u0ExMaj :: UtilitySet
u0ExMaj = uSet (u0ExMaj ’.b2i) where

u0ExMaj ’ 2 = 100
u0ExMaj ’ 3 = 90
u0ExMaj ’ 1 = 55
u0ExMaj ’ _ = 1

Thus, agent 0 wants a cat and a dog, but if that is not possible, she’d rather have a cat and no dog
than a dog and no cat or no pets at all. Clearly the true preferences of agent 0 are given by the ballot
(True,False), represented by 3.

> bestBallots (models 2 z0) u0ExMaj (noKnowledge 2 3 0 n0) 2 n0 majResolveAll
[[True,True]]

With this utility function, her best pick for a ballot is one that does not represent her true preferences.
Hence even when the majority rule is collectively rational for some integrity constraint, we can not be
sure manipulations will not happen. ⌅

We will now investigate which rules are and which are not manipulable under full ignorance. The
following theorem gives a characterization for this.

Theorem 17. Let F be an aggregation rule, B
i

be a ballot for agent i. Then there exists a utility
U
i

top-respecting to B
i

such that F is full-ignorance manipulable by agent i if and only if there is an
alternative ballot B0

i

6= B
i

and some set of ballots S 6= {B
i

} such that |{B�i

| F (B0
i

,B�i

) = S}| <
|{B�i

| F (B
i

,B�i

) = S}|.

Proof. Let k0 denote the full-ignorance set. Suppose for all B0
i

6= B
i

and every S ✓ Mod(IC) such that
S 6= {B

i

} we have |{B�i

| F (B0
i

,B�i

) = S}| � |{B | F (B
i

,B�i

) = S}|.

Now first note that
X

S✓Mod(IC)

|{B0
�i

| F (B
i

,B0
�i

) = S}| =
X

S✓Mod(IC)

|{B0
�i

| F (B0
i

,B0
�i

) = S}| = |Mod(IC)

n�1|,

Hence we must have
X

S2P(Mod(IC))\{{Bi}}
|{B0

�i

| F (B0
i

,B0
�i

) = S}|�
X

S2P(Mod(IC))\{{Bi}}
|{B0

�i

| F (B
i

,B0
�i

) = S}|

= |{B0
�i

| F (B
i

,B�i

) = {B
i

}}|� |{B0
�i

| F (B0
i

,B�i

) = {B
i

}}|
Thus we also have

X

S2P(Mod(IC))\{{Bi}}
|{B0

�i

| F (B0
i

,B0
�i

) = S}|� |{B0
�i

| F (B
i

,B0
�i

) = S}|

= |{B0
�i

| F (B
i

,B�i

) = {B
i

}}|� |{B0
�i

| F (B0
i

,B�i

) = {B
i

}}|.
And since for all B0

i

6= B
i

and every S ✓ Mod(IC) such that S 6= {B
i

} we have |{B�i

| F (B0
i

,B�i

) =

S}| � |{B | F (B
i

,B�i

) = S}|, we must have |{B0
�i

| F (B0
i

,B0
�i

) = S}|� |{B0
�i

| F (B
i

,B0
�i

) = S}| � 0

56

Chapter 3. Manipulating decision making 3.2. Manipulation of the aggregation rule

and thus also |{B0
�i

| F (B
i

,B�i

) = {B
i

}}|� |{B0
�i

| F (B0
i

,B�i

) = {B
i

}}| � 0. Hence since for any U
i

that is top respecting to B
i

, we have U
i

(B
i

) � U
i

(S) for any S ✓ Mod(IC). Hence we have
X

S2P(Mod(IC))\{{Bi}}
U
i

(S) · (|{B0
�i

| F (B0
i

,B0
�i

) = S}|� |{B0
�i

| F (B
i

,B0
�i

) = S}|)

 U
i

(B
i

) · (|{B0
�i

| F (B
i

,B�i

) = {B
i

}}|� |{B0
�i

| F (B0
i

,B�i

) = {B
i

}}|).

This gives us
X

S✓Mod(IC)

U
i

(B) · |{B0
�i

| F (B
i

,B0
�i

) = S}| �
X

S✓Mod(IC)

U
i

(B) · |{B0
�i

| F (B0
i

,B0
�i

) = S}|,

hence

E
F

(U
i

, B
i

, k0) � E
F

(U
i

, B0
i

, k0),

Thus F is not full-ignorance manipulable by agent i with top respecting utility U
i

.

For the other direction, suppose there is a pair of alternative ballots B
i

6= B0
i

and some S 6= {B
i

} such
that, |{B0

�i

| F (B0
i

,B0
�i

) = S}| < |{B0
�i

| F (B
i

,B0
�i

) = S}|.

Let l be the number of possible min
i

-profiles (hence l = |k0|). We let the utility U
i

of agent i be

U
i

(S0
) =

8
><

>:

2l if S0
= {B

i

},
= 0 if S0

= S,

= 2l � 1 otherwise.

Since S 6= {B
i

}, this is well-defined. Also we have U
i

(B
i

) > U
i

(B0
i

) and

E
F

(U
i

, B0
i

, k0) · l =
X

B�i2k0

U
i

(F (B0
i

,B�i

)).

Some investigation of U
i

lears us that this implies

E
F

(U
i

, B0
i

, k0) · l = 2l · l � |{B�i

| F (B0
i

,B�i

) 6= {B
i

}}|� (2l � 1) · |{B�i

| F (B0
i

,B�i

) = S}|.

Since {B
i

} 6= S, we must have that l = |k0| � 2 and thus we also have l � |{B�i

|F (B0
i

,B�i

6= {B
i

})}|,
thus we continue

E
F

(U
i

, B0
i

, k0) · l � 2l · l � l � (2l � 1) · |{B�i

| F (B0
i

,B�i

) = S}|
> 2l · l � (2l � 1)� (2l � 1) · |{B�i

| F (B0
i

,B�i

) = S}|
= 2l · l � (2l � 1) · (|{B�i

| F (B0
i

,B�i

) = S}|+ 1).

Now by assumption we have |{B�i

| F (B0
i

,B�i

) = S}| < |{B�i

| F (B
i

,B�i

) = S}|, hence we can
continue

� 2l · l � (2l � 1) · |{B�i

| F (B
i

,B�i

) = S}|
� 2l · l � |{B�i

| F (B
i

,B�i

6= {B
i

})}|� (2l � 1) · |{B�i

| F (B
i

,B�i

) = S}|
= E

F

(U
i

, B
i

, k0) · l.

Hence E
F

(U
i

, B0
i

) > E
F

(U
i

, B
i

), so F is full-ignorance manipulable by agent i with utility U
i

that is
top-respecting to U

i

. ©

57

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

We can use this characterization to prove that full-ignorance manipulability implies full-knowledge
manipulability.

Theorem 18. If an aggregation rule F is full-ignorance manipulable by agent i with utility U
i

top-
respecting to B

i

, then it is full-knowledge manipulable by agent i on some profile including B
i

.

Proof. Suppose F is full-ignorance manipulable by agent i with utility U
i

top-respecting to B
i

. Then
by Theorem 17, there is an alternative ballot B0

i

6= B
i

and some set of ballots S 6= {B
i

} such that
|{B�i

| F (B0
i

,B�i

) = S}| < |{B�i

| F (B
i

,B�i

) = S}|. Hence we must have that there is some min
i

-
profile B�i

such that F (B
i

,B�i

) = S 6= {B
i

} and F (B0
i

,B�i

) 6= S = F (B
i

,B�i

). Hence Theorem 14
implies that F is manipulable under full knowledge at profile B

i

,B�i

by agent i. ©

This theorem does not hold in the other direction. Consider the following example.

Example 10. Let n = 3, m = 4 and let

F (B0, B1, B2) =

(
(False,False,False,False) if b0,1 = b1,1,

(True,True,True,True) otherwise.

Now let

U1(B) =

(
1 if B = (True,True,True,True)

0 otherwise.

Clearly agent 1 can manipulate F if she knows B0,1. However, under full ignorance, her expected utility
for all possible ballots is equal to 0.5. Thus agent 1 cannot manipulate F . ⌅

The rule in this example is a non-trivial one, since it is neither constant nor a dictatorship. Hence this
shows that there are non-trivial rules that cannot be manipulated under full ignorance. This is a very
nice result, since this implies that the result of Theorem 15 can be circumvented if only we can make
sure that agents have the least information possible about each others preferences. We characterized
the class of aggregation rules for which this holds. This characterisation of Theorem 17 does seem very
strict. An interresting line of research for the future is to study these rules and to investigate whether
there are cases in which these rules are suitable.

3.3 Setting the aggregation procedure

In the previous section we investigated how agents can manipulate aggregation rules by lying about their
preferences. Here we assume that the aggregation rule is fixed. However, when voting, often agents first
have to agree on an aggregation rule. They probably will not vote on this, since then, what aggregation
rule would they use to determine which rule to use? This would create a Droste effect from which
they can never escape! So how does this work? For official bodies like parliament, sometimes a voting
procedure is established in laws or rules. Or there is some council that determines the procedure.3 In
smaller or less formal groups often it happens that somebody proposes some kind of rule that sounds
reasonable and nobody protests. When properly prepared, one can use this to her advantage and have
much more influence than by manipulating the rule itself. We will now highlight two ways in which
this can be manipulated. When the issues to be voted on are set, agents can manipulate the outcome

3This happend for example in Leininger (1993). Here the decision on the voting procedure made all of the difference!
For any possible outcome a voting procedure could have been found that would give this outcome.

58

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

by suggesting certain rules. However, this is not the only thing that can be manipulated when deciding
on a procedure. When the kind of aggregation rule that will be used is set, agents can manipulate by
setting the agenda, which is the list of issues to be voted on. We will see that the same rule will give
different outcomes for different agendas.

3.3.1 Choosing an aggregation rule

Example 6 - Spending money (continued). Suppose that the family from Example 6 will first
decide on an aggregation rule before they vote for what to buy. Consider agent 2, with equally weighted
Hamming utility to the ballot represented by integer 8, and with the specific amount of knowledge
exampleKn2. We have seen before that her best pick for a ballot to cast was different for the priority
rule and the distance based rule, namely the ballots represented by 24 and 8 respectively. As an
anticipating agent, she can use this information to influence the choice of a rule. Both best ballots give
different expected utilities for their corresponding aggregation rules.

> expectedUBinA (i2b 5 24) (uSet (uH (i2b 5 8) 5)) exampleKn2 5 l0 priority
1.6666666

> expectedUBinA (i2b 5 8) (uSet (uH (i2b 5 8) 5)) exampleKn2 5 l0 dbRule
1.4444444

Because the best ballot for the priority rule gives agent 2 a higher expected utility than her best ballot
for the distance based rule, she should suggest to use the priority rule. ⌅

The above example shows that sometimes an agent should prefer a certain rule, to maximize her
expected utility. For a given rule, knowledge and utility we can calculate what ballot the agent should
cast. This ballot gives her a certain expected utility, that is higher than her expectations when casting
any other ballot. We calculate this best expectation.

bestExpectation :: Int -> UtilitySet -> Knowledge -> IC -> AR -> Float
bestExpectation m ui kn bc rule = let

b = head (bestBallots (models m bc) ui kn m bc rule)
in

expectedUBinA b ui kn m bc rule

To find out which rule is optimal, we can compare the best expectations.

> bestExpectation 5 uExHome
(noKnowledge 5 3 2 l0) l0 dbRule

240.488
> bestExpectation 5 uExHome

(noKnowledge 5 3 2 l0) l0 priority
247.24

In this case, where the agent is fully ignorant, she could better suggest the priority rule than the
distance based rule, since this gives her a higher best expectation. Note that we assume the agent will

59

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

try to manipulate the rule as well. If she would not do that, we should compare the expectation for her
true ballot instead.

We implement a function that picks the best rules from a list of possible rules. The output is a list
containing the indices of the best rules in the inputlist.

bestRules :: Int -> UtilitySet -> Knowledge -> IC -> [AR] -> [Int]
bestRules m ui kn bc rules = maximaBy

(comparing (\r -> bestExpectation m ui kn bc (rules !! r)))
[0..(length rules - 1)]

Indeed in our example the priority rule is better than the distance based rule.

> bestRules 5 uExHome (noKnowledge 5 3 2 l0) l0 [priority, dbRule]
[[1]]

3.3.2 Agenda setting

When deciding on certain issues, first an agenda has to be set. That is; it has to be decided on which
issues exactly will be voted. To illustrate this, in Example 1, a decision on the issue “cat and dog” can
be reached by majority voting on the issues “cat” and “dog”, but also by majority voting on the issue
“cat and dog”. These are two different agendas that both settle the issue “cat and dog”. Note that
in this case, the setting of the agenda actually matters for the outcome of the rule. When voting by
majority for the separate issues, the family will decide to buy a cat and a dog, however, when voting
for only the one issue “cat and dog”, the family will not. An agenda setter can use this fact to her
advantage. She can set the agenda in such a way that it will affect the collective outcome on certain
propositions. This is called agenda manipulation.

In this section, we will start with some definitions to make this more precise and we will use these to
give some more examples of manipulations. We start with the formal definition of an agenda. Let
⌦ be a fixed non-empty set of issues, together with a constraint IC. These might be infinite, but for
simplicity we will now assume they are finite and |⌦| = m. An agenda A is a subset of ⌦. It represents
the set of issues that we are voting on. Note that as it is a set, the order does not matter, just as the
order of the issues in I did not matter. However, we do need to be careful if we study rules that are
not issue-neutral, as these rules should come together with an ordering on the agenda.

type Agenda = [Issue]

An Agenda A is said to extend an agenda A0 if A0 ✓ A.

The reason that we could vote for different issues than the ones we actually want to decide upon, is
that when we are dealing with an integrity constraint, often our decision on certain issues is forced by
our decision on other ones (e.g. in Example 1, the decision for “cat and dog” is forced by our decisions
on the other two issues).

A ballot B that expresses the preferences on an agenda A is called a ballot over A. Two ballots B and

60

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

B0 over agendas A and A0 respectively are consistent when they agree on all issues in A \ A0. Two
profiles B, B0 are consistent when for any i 2 N , B

i

is consistent with B0
i

. Two sets S1, S2 of ballots are
consistent if for any B 2 S1 there is a ballot B0 2 S2 such that B is consistent with B0, and reversely.

consistentBallot :: Agenda -> Agenda -> Ballot -> Ballot -> Bool
consistentBallot ag1 ag2 b1 b2 =

all (\j -> case elemIndex (ag1 !! j) ag2 of
Nothing -> True
Just ix -> b1 !! j == b2 !! ix)

[0..(length ag1 -1)]

The ballot (True,True) on agenda {0, 1} is consistent with the ballot (True,False) on agenda {1, 2} since
they both agree on issue 1, which is the only element in the intersection of the two agendas.

> consistentBallot [0,1] [1,2] [True, True] [True, False]
True

> consistentBallot [0,1] [1,2] [True, True] [False, False]
False

We can create a set of all rational ballots over some agenda A0 that are consistent with a certain ballot
B over another agenda A. We call this the set of ballots over A0 that correspond to B.

corBallots :: Agenda -> Agenda -> Int -> IC -> Ballot -> [Ballot]
corBallots ag1 ag2 m bc b = let

bs = models (length ag2) (restrictIC ag2 m bc)
in

filter (consistentBallot ag1 ag2 b) bs

We test what ballots over agenda {1, 2} correspond to ballot (True,True) over agenda {0, 1}.

> corBallots [0,1] [1,2] 3 n0 [True, True]
[[True,True],[True,False]]

When B is a ballot over A, we can restrict this ballot to a smaller agenda. Suppose A0 is a different
agenda. We denote the corresponding ballot over A \A0 as B�

A

0 . This is the ballot that holds a vote
for every issue in A \A0, and agrees with ballot B on all of these issues. We can also restrict a set of
ballots or a profile, by restricting every ballot in the set or profile. The restriction of profile B and set
S to agenda A is written as B�

A

and S�
A

respectively. Note that two ballots B and B0 over agendas A
and A0 respectively are consistent when B�

A

0
= B0�

A

.

restrictBal :: Agenda -> Agenda -> Ballot -> Ballot
restrictBal ag1 ag2 b1 = head (filter (consistentBallot ag1 ag2 b1)

(models m n0)) where
m = length ag2

61

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

restrictProfile :: Agenda -> Agenda -> Profile -> Profile
restrictProfile ag1 ag2 = map (restrictBal ag1 ag2)

restrictKnowledge :: Agenda -> Agenda -> Knowledge -> Knowledge
restrictKnowledge ag1 ag2 = map (restrictProfile ag1 ag2 ***

restrictProfile ag1 ag2)

A ballot over a smaller agenda can still satisfy the integrity constraint (where the integrity constraint is
defined over ⌦). For this we restrict an integrity constraint IC over ⌦ to ballots over A, by saying that
ballot B on A satisfies IC if and only if there is a rational ballot B0 over ⌦ that can be restricted to B.
The set of rational ballots over A is denoted as Mod

A

(IC).

restrictIC :: Agenda -> Int -> IC -> IC
restrictIC ag m bc b =

any (consistentBallot ag [0..(m-1)] b) (models m bc)

Let S be a set of rational ballots on some agenda A. We define

E(S) = {B 2 Mod(IC) |B is consistent with some B0 2 S}.
This is the set of ballots over ⌦ that are consistent with some ballot in S. We write E(B) for E({B}).
We are also interested in the utility for ballots over a specific agenda. Since a ballot might correspond
to a set of ballots on ⌦, we let the utility on single ballots be the utility of the corresponding set. We
let the utility on sets of ballots be the average of the utility on single ballots, assuming a random
tie-breaking on the outcome of the rule on the Agenda. We will denote the utility U

i

restricted to A as
U
i

�
A

.

Definition 22. The utility U
i

restricted to agenda A is given by

U
i

�
A

(S) =

P
B2S

U
i

(E({B}))
|S|

We encode this.

restrictUtility :: Agenda -> Agenda -> Int ->
IC -> UtilitySet -> UtilitySet

restrictUtility ag1 ag2 m bc u bs = let
singleu b = u (corBallots ag2 ag1 m bc b)

in
uSet singleu bs

We can restrict the utility uExHome from Example 6 to the agenda {1, 2}. We can use this to calculate
the utility for a smaller ballot on the smaller agenda.

> restrictUtility [0..4] [1..2] 5 l0 uExHome [[True,False]]
221.8

62

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

A set of ballots S over an agenda A entails a vote v on an issue j0 2 ⌦ if every rational ballot B0

over ⌦ that is consistent with some B 2 S satisfies b0
j

0 = v. An agenda A settles an agenda A0 if any
rational ballot B 2 Mod

A

(IC) is consistent with exactly one B0 2 Mod

A

0
(IC) (or equivalently, if for

each B 2 Mod

A

(IC), {B} entails a vote v
j

for all j 2 A0). We encode a function that tests whether one
agenda settles another one.

settles :: Int -> Agenda -> Agenda -> IC -> Bool
settles m ag1 ag2 bc = let

l1 = length ag1
ag2 ’ = nub (ag2 ++ ag1)
l2 = length ag2 ’
bc1 = restrictIC ag1 m bc
bc2 = restrictIC ag2 ’ m bc
bs1 = models l1 bc1
bs2 = models l2 bc2
f b = length (filter (consistentBallot ag1 ag2 ’ b) bs2) == 1

in
all f bs1

In Example 1, the issue “cat and dog” is settled by the issues “cat” and “dog”.

> settles 3 [0,2] [1] q0
True

The scope ¯A of an agenda A is the largest set A0 such that A settles A0. Suppose A0 is the agenda of
issues that we actually want to make a decision on. We could set the agenda A0, however, there might
be another agenda that also settles A0 which we could vote on. We create a list of all agendas that
settle a certain agenda.

allAgsForAg :: Int -> Agenda -> IC -> [Agenda]
allAgsForAg m ag’ bc = filter (\ag -> settles m ag ag ’ bc)

(subsequences [0..(m-1)])

Consider Example 1. Suppose the family comes across a deal in which they can buy a cat and a dog
together. When deciding whether to take this deal or not, several agendas are possible that settle their
question.

> allAgsForAg 3 [1] q0
[[1],[0,1],[0,2],[1,2],[0,1,2]]

Of course, agenda [0,1] does not make a lot of sense. Why would they vote both for “having a cat
and a dog” and for “having a dog” when they only need to decide on the former? The reason that
this agenda is somehow strange, is that it is not minimal, that is, there is a subset of the agenda that
already settles the issues we want to decide on. We can also consider all minimal agendas that settle
our issues.

63

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

minimals :: [Agenda] -> [Agenda]
minimals ags = minimals ’ ags ags where

minimals ’ ags ’ [] = ags ’
minimals ’ ags ’ (x:xs) = let

f y = x == y || not (all (‘elem ‘ y) x)
in

minimals ’ (filter f ags ’) xs

> minimals (allAgsForAg 3 [1] q0)
[[1],[0,2]]

When setting the agenda, we might have certain restrictions on the agenda, for example that the agenda
is a minimal settling agenda for a certain set of issues. We might also have other restrictions on the
size or complexity of the agenda. For example, agents might protest if they have to vote for a hundred
issues, when their problems can also be solved by voting on two issues. To capture this, we consider a
set of feasible agendas A ✓ P(⌦). In our examples, we let A be the set of minimal agendas.

Definition 23. An aggregation system is a family (F
A

)

A2A containing an aggregation rule F
A

for
each feasible agenda A 2 A.

An aggregation system is called collectively rational with respect to an integrity constraint IC if every
aggregation rule in the system is collectively rational with respect to the restriction of IC to the agenda.

An example of a collectively rational aggregation system is the system (DB
A

)

A2A such that DB
A

is
the distance based rule on A. We call this the distance based system.

dbOnAg :: Agenda -> AR
dbOnAg ag m bc = let

bc’ = restrictIC ag m bc
m’ = length ag

in
dbRule m’ bc ’

We apply the distance based rule on two different agendas for Example 6.

> dbOnAg [0,1,2] 5 l0 exampleC
[[False,True,True]]

> dbOnAg [1,2] 5 l0 exampleC
[[False,True]]

On these different agendas, the distance based rule gives different outcomes for issue 1. This implies
that an agent could use this fact to her advantage when setting the agenda.

In Dietrich (2013) definitions for agenda-insensitivity of resolute rules are given. We will now give
definitions for non-resolute rules.

64

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

Definition 24. A collectively rational aggregation system (F
A

)

A2A is basically agenda-insensitive if
for any two feasible agendas A,A0 2 A, we have for any rational profile B,

F
A

(B�
A

)�
A

0
= F

A

0
(B�

A

0
)�

A

.

When F is resolute, this reduces to having that F
A

(B�
A

) and F
A

0
(B�

A

0
) must agree on all issues in

A \A0, which is equivalent to the definition of basically agenda-insensitivity given by Dietrich (2013).

Definition 25. A collectively rational aggregation system (F
A

)

A2A is agenda-insensitive if for any
two feasible agendas A0, A00 2 A, we have for any rational profile B, and any B 2 Mod(IC) that

P

B

02FA(B|A)
s.t. B2E({B0})

1
|E({B0})|

P

B

02FA0 (B�A0)
s.t. B2E({B0})

1
|E({B0})|

=

|F
A

(B|
A

)|
|F

A

0
(B�

A

0
)|

When the aggregation system is resolute, this reduces to having for any rational profile B that

E(F
A

(B|
A

)) = E(F
A

0
(B�

A

0
)),

which is then equivalent to the definition of full agenda-insensitivity given in Dietrich (2013).

Definition 26. An agent i with utility U
i

is said to be able to simply manipulate the agenda for
aggregation system (F

A

)

A2A on profile B if there are A,A0 2 A such that U
i

(F
A

(B�
A

)) 6= U
i

(F 0
A

(B�
A

0
)).

This means that an agent can simply manipulate the agenda on a certain profile if there are different
agendas in the feasible set of agendas such that the outcomes of the corresponding aggregation rules
give a different utility.

Example 6 - Spending money (continued). Suppose the family always uses the distance based
rule, but an agenda is not set. Suppose {0, 1, 2} and {1, 2} are both feasible agendas. Consider an
agent with utility uExHome, we calculate the utilities for the outcome on different agendas.

> restrictUtility [0..4] [0..2] 5 l0 uExHome
(dbOnAg [0,1,2] 5 l0 exampleC)

102.0
> restrictUtility [0..4] [1..2] 5 l0 uExHome
(dbOnAg [0,1,2] 5 l0 exampleC)

100.5

We see that agenda {0, 1, 2} is slightly better for this agent than agenda {1, 2}. Hence this agent can
simply manipulate the agenda. ⌅

Theorem 19. The aggregation system (F
A

)

A2A is agenda insensitive if and only if there is no agent i
and utility U

i

such that agent i with utility U
i

can simply manipulate the agenda on some profile.

Proof. Suppose (F
A

)

A2A is agenda insensitive. Let i be an agent, U
i

a utility function, B a profile,

65

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

A0, A00 2 A agendas. Now we have

U
i

�
A

(F
A

(B�
A

)) =

P
B2FA(B�A)

U
i

�
A

(B)

|F
A

(B�
A

)|

=

P
B2FA(B�A)

U
i

(E({B}))

|F
A

(B�
A

)|

=

P
B2FA(B�A)

P

B02E({B})
Ui(B

0)

|E({B})|

|F
A

(B�
A

)|
=

X

B2FA(B�A)

X

B

02E({B})

U
i

(B0
)

|E({B})| · |F
A

(B�
A

)|

=

X

B

02Mod(IC)

U
i

(B0
) ·

X

B2FA(B�A)
s.t. B

02E({B})

1

|E({B})| · |F
A

(B�
A

)| .

And since the system is agenda insensitive, this equals

=

X

B

02Mod(IC)

U
i

(B0
)

X

B2FA0 (B�A0)
s.t. B

02E({B})

1

|E({B})| · |F
A

0
(B�

A

0
)|

which then by similar steps back equals

= U
i

�
A

0
(F

A

0
(B�

A

0
)).

Thus U
i

�
A

(F
A

(B�
A

)) = U
i

�
A

0
(F

A

0
(B�

A

0
)), hence agent i cannot manipulate the agenda on profile B.

Thus since i, U
i

, B were arbitrary, no agent can simply manipulate the agenda.

Now suppose (F
A

)

A2A is not agenda insensitive, hence there are A0, A00 2 A, a profile B, and a ballot
B 2 Mod(IC) such that

P

B

02FA(B|A)
s.t. B2E({B0})

1
|E({B0})|

P

B

02FA0 (B�A0)
s.t. B2E({B0})

1
|E({B0})|

6= |F
A

(B|
A

)|
|F

A

0
(B�

A

0
)| .

This implies

X

B

02FA(B|A)
s.t. B2E({B0})

1

|E({B0})| · |F
A

(B|
A

)| 6=
X

B

02FA0 (B�A0)
s.t. B2E({B0})

1

|E({B0})| · |F
A

0
(B�

A

0
)| .

Now let U
i

be given by U
i

(B) = 1 and U
i

(B0
) = 0 for any B0 6= B. Now we have, using the derivation

66

Chapter 3. Manipulating decision making 3.3. Setting the aggregation procedure

made before in this proof, that

U
i

�
A

(F
A

(B�
A

)) =

X

B

02Mod(IC)

U
i

(B0
)

X

B

002FA(B�A)
s.t. B

02E({B00})

1

|E({B00})| · |F
A

(B�
A

)|

= 1 ·
X

B

002FA(B�A)
s.t. B2E({B000})

1

|E({B00})| · |F
A

(B�
A

)|

6=
X

B

002FA0 (B�A0)
s.t. B2E({B00})

1

|E({B00})| · |FA

0
(B�

A

0
)|

= U
i

�
A

0
(F

A

0
(B�

A

0
))

Hence agent i can simply manipulate the agenda on profile B. ©

Combining agenda manipulation and rule manipulation

The above definition assumes that an agent will not lie about her preferences and chooses an agenda
that gives an optimal outcome for her true preferences. However, if an agent is willing to manipulate the
agenda, she will most likely have no problem with manipulating the aggregation rule as well. Therefore
it is much more likely that she will not specifically want an agenda such that the outcome for her true
preferences will be maximal, but that she would like to have an agenda that will maximize her utility
considering that she would manipulate the rule after that.

Definition 27. An agent i with utility U
i

is said to be able to manipulate the agenda for aggregation
system (F

A

)

A2A on profile B if there are A,A0 2 A, and a ballot B0
i

such that U
i

(F
A

((B0
i

,B�i

)�
A

)) >
U
i

(F 0
A

((B00
i

,B�i

)�
A

0
)) 8B00

i

2 Mod(IC).

This means that an agent can manipulate the agenda on a certain profile B if there are two agendas
A,A0 2 A, and some ballot B0

i

such that the utility of the outcome of F
A

when casting B0
i

is higher
than all utilities of the possible outcomes for F

A

0 . The difference with a simple manipulation is that
the ballot of the manipulating agent is not fixed. The agent is expected to manipulate the agenda in
such a way that she can cast a ballot that would give her an optimal outcome. Note that it is possible
that an agenda is simply manipulable but not manipulable by some agent. However this implies that
the rules in the aggregation system are manipulable for this agent.

Agenda setting under partial knowledge

We investigated when agenda manipulation would be possible for agents having full knowledge about
the preferences of the others. We can now easily extend this to the case in which we have only partial
knowledge on the preferences of the other agents.

Definition 28. An agent i with utility U
i

is said to be able to manipulate the agenda under knowledge k
for aggregation system (F

A

)

A2A if there are A,A0 2 A, and a ballot B0
i

such that E
FA(Ui

�
A

, B0
i

�
A

, k) >
E

FA(Ui

�
A

, B00
i

�
A

, k) 8B00
i

2 Mod(IC).

This means that an agent can manipulate the agenda under knowledge k if there are two agendas
A,A0 2 A, and some ballot B0

i

such that the expected utility for F
A

when casting B0
i

is higher than the
expected utility for F

A

0 for any cast ballot B00
i

.

67

Chapter 3. Manipulating decision making 3.4. Summary

In the section on manipulation of the aggregation rule we encoded a function that enables us to calculate
an expected utility given the rule, our knowledge, the agenda, and our own ballot. We used this to
find a maximal expected utility (given by the function bestExpectation). If we calculate this best
expectation for multiple agendas, we can find out which agenda maximizes this best expectation. In
this way we combine agenda manipulation with manipulation of the aggregation rule.

We encode this for the distance based system. We assume that A is the full set of agendas that settle a
given agenda. Now we can pick the best agendas for this system, given our utility, integrity constraint
and knowledge over ⌦. For each agenda, we calculate what ballot gives us the best expected utility.
We choose the agendas for which this is maximal.

bestAgendasDB :: Int -> Agenda -> IC -> UtilitySet ->
Knowledge -> [Agenda]

bestAgendasDB m ag ’ bc ui kn = let
ags = allAgsForAg m ag’ bc
ag1 = [0..(m-1)]
f ag = bestExpectation (length ag) (restrictUtility ag1 ag m bc ui)

(restrictKnowledge ag1 ag kn)
(restrictIC ag m bc) (dbOnAg ag)

in
maximaBy (comparing f) ags

We apply this to some of our examples. We calculate an optimal agenda, given our knowledge.

> bestAgendasDB 5 [0,1] l0 uExHome (noKnowledge 5 3 2 l0)
[[0,1,2]]

> bestAgendasDB 3 [0] q0 (uSet (uHW w1 (i2b 3 7) 3)) (noKnowledge 3 3 1 q0)
[[0,2]]

Thus, in Example 1, under full ignorance an agent with utility uExHome should put the issues “cat” and
“dog” on the agenda to obtain an optimal decision on the issue “dog”. In Example 6, to settle the first
two issues the best agenda for an agent with no knowledge and utility uSet (uHW w1 (i2b 3 7) 3) is
the agenda consisting of the first three issues.

3.4 Summary

Utility functions can capture the satisfaction that agents will have with the outcome of the aggregation
procedure. Examples show that we should not make too many assumptions on utility functions. Using
these utilities, we generalized some definitions and results on manipulability. Agents can manipulate
a rule onder a certain amount of knowledge, by trying to maximize their expected utility. They can
also influence the choice of a rule or the setting of the agenda in order to obtain a better outcome
for themselves. Manipulability is almost unavoidable. Even full ignorance often does not ensure
non-manipulability.

68

4 | Quantifying manipulability of

aggregation rules

As we have seen, with or without knowledge, possible manipulability is almost unavoidable. However,
these results say nothing about the frequency and impact of the possible manipulations. We would
like to be able to quantify how susceptible a rule is to manipulability. For this we consider several
approaches. First we look at manipulability under full knowledge. All code used in this section can be
found in Appendix B. In this section we will apply all techniques to Example 6 (for some different n),
however, the implementation can be used to calculate manipulative powers of rules for several different
aggregation problems.

4.1 Basic manipulative power

A natural approach for quantifying manipulability of social choice functions was taken in Friedgut et al.
(2011). In this method, any social choice function is associated with a manipulative power, which is
given by the percentage of the profiles in which a manipulation is possible. When we assume every
agent has full knowledge, this is quite straightforward, since ballots give the order of preference of the
alternatives. This is all the information we need to be able to calculate whether certain agents can
manipulate under full knowledge. However under partial knowledge, we would need to know the full
utility function of the agents and not just the preference order.

For binary aggregation rules it is somewhat less straightforward, since we only know the judgement of
the agents on the separate issues, hence we do not know their preference ordering on possible outcomes.
This said, we can calculate the percentage of the profiles in which a possible manipulation might happen,
that is, agents can force another outcome that they might prefer.1

Definition 29. The basic manipulative power of an aggregation rule F (for a fixed m, n, IC) for an
i 2 N with respect to a class of utility functions C is the percentage of rational profiles on which there
exists a utility function U

i

2 C such that agent i can manipulate F . The basic manipulative power of an
aggregation rule F with respect to a class of utility functions C is the average of the basic manipulative
powers for F with respect to C for all i 2 N .

We will investigate the manipulative power of certain aggregation rules for the class of top-respecting
utility functions. We use the characterization of manipulability we proved in Theorem 14.2

1Clearly this definition of manipulative power relies on the assumption that every rational profile might occur with
the same probability. If this is not the case, we could use our prior on the probability distribution of the profiles, to
obtain a weighted version of the manipulative power.

2Note that this characterises all cases in which an agent might have a utility which allows her to manipulate. Since

69

Chapter 4. Quantifying manipulability of aggregation rules 4.2. Manipulative power

In Appendix B a function can be found that calculates the manipulative power of a given agent. For
any anonymous aggregation rule, this percentage will be equal for all agents, hence the manipulative
power of the rule will equal the manipulative power of an arbitrary agent for that rule. We compare
some rules for Example 6, in the case of five family members, for this measure of manipulability.

Rule Percentage

Priority 69.8
Distance based 70.3
Average voter 68.0
Maximin 94.6
Least squares 85.2

Table 4.1: Basic manipulative powers of different rules for m = 5, n = 5, integrity constraint l0, for
top-respecting agents

These manipulative powers seem very high. This has several reasons. As noted before, we measure only
the cases in which an agent could manipulate for some utility function. For a lot of utilities she might
not be able to manipulate. Also this measure is for 5 agents. When the number of agents increases,
individual agents have less influence on the outcome, hence these numbers will decrease for higher n.

4.2 Manipulative power

Above we calculated the percentage of the profiles in which an agent might have an incentive to
manipulate. However, whether an agent can actually manipulate depends on the agent’s utility function.
Now we will present a method that does not only take into account the number of cases in which
manipulation might be possible, but also considers the likeliness and profitability of the manipulation.
Given a fixed utility function, we determine the average win in utility, for a manipulating agent as a
percentage of the average utility.

Definition 30. The manipulative power of an aggregation rule F (for a fixed m, n, IC) for an i 2 N
with respect to a utility function U

i

under knowledge k is

max

B2Mod(IC) EF

(U
i

, B, k)�max

B2Top(Ui) EF

(U
i

, B, k)
P

B2Mod(IC) Ui(B)

|Ui(B)|

The manipulative power of an aggregation rule F (for a fixed m, n, IC) for an i 2 N with respect to a
class of utility functions C is the expected manipulative power of F for a random U

i

2 C.

Clearly we can take the average over all i to obtain a measure for the manipulability of the rule.
However, if the rule is anonymous this does not need to be done.

4.2.1 Under full knowledge

We can try this for full knowledge for a specific weighted Hamming utility we used before.

> manipMeas 5 3 1 (uSet (uHW w2 (i2b 5 8) 5)) l0 dbRule

there might also be a lot of utilities that do not allow for manipulation, this method only provides us with some worst
case scenario.

70

Chapter 4. Quantifying manipulability of aggregation rules 4.2. Manipulative power

1.7793635e-2
> manipMeas 5 3 1 (uSet (uHW w2 (i2b 5 8) 5)) l0 priority

9.708025e-2

These outcomes represent the expected win in utility when manipulating for this specific utility function.
For this, both the distance based rule and the priority rule are not very easy to manipulate (2% and
10% average win in utility respectively). The reason that these numbers are quite small might be that
the utility is a (weighted) Hamming utility. Later we will see that for other utilities, these numbers
might be much higher.

We are not only interested in the manipulability for a specific utility, but also in the manipulability for a
class of utilities. To study that, we will now consider random utilities. We determine a random average
respecting utility function by assigning to each ballot a random number and we take the corresponding
average respecting utility. We can apply our function to a large number of random utility functions,
the average of this will provide us with a more general quantification of the manipulability of the
rule under average respecting functions. We compare the manipulability of the priority rule and the
distance based rule. The results of this can be found in Table 4.2.2. Here we also compare the two
rules for random average respecting weighted Hamming utilities, since these intuitively describe the
most rational utilities. To obtain a random average respecting weighted Hamming utility we assign
random weights.

4.2.2 Under full ignorance

If we assume that agents are fully ignorant about the preferences of other agents, we would like to know
how manipulable our rules are for agents that do not have any knowledge about the preferences of the
other agents. With this assumption, the percentage of cases on which manipulation might happen is
not very interesting, since this will just equal the percentage of profiles in which the agent can actually
influence the outcome. Therefore we once again consider the profitability of manipulation. Here we
calculate the expected win in utility for manipulation. We divide by the average utility. We compare
the priority rule and the distance based rule.

Utility Knowledge Priority rule Distance based rule

Random avg. resp. Full 42.2 41.9
Random avg. resp. No 8.0 7.8

Random avg. resp. Weighted Hamming Full 2.3 1.4
Random avg. resp. Weighted Hamming No 2.4 0.0

Table 4.2: Manipulative powers for m = 5, n = 3, IC = l0 for different classes of utility functions and
different amounts of knowledge. Average over 100 random utilities.

We see that the distance based rule is somewhat less manipulable than the priority rule for all measures
of manipulability.

4.2.3 Worst-case scenario

In the above we looked at the average profitability of manipulating. Now we will look at the peaks.
Can manipulations be really bad? How much utility could somebody win? We measure the expected
percentual win for a large number of random utilities and we take the maximal one.

71

Chapter 4. Quantifying manipulability of aggregation rules 4.3. Summary

> testMWC Full 5 3 0 l0 100
(39.481613,39.45482)

> testMWC No 5 3 0 l0 100
(6.1366763,6.011521)

Even when the average percentual win might not be very high, with full knowledge it might happen
that an agent can increase her satsifaction with the outcome 39-fold for both the priority and the
distance based rule. Without any knowledge, this number is lower, however, for these 100 random
utilities, still one agent could increase expected utility 6-fold by manipulating. Of course this is not an
absolute maximum, since we took the maximum of a certain number of outcomes. However this does
show that even when average manipulations do not seem very problematic, on occasion manipulations
can be very lucrative.

4.3 Summary

The standard approach for quantifying manipulability of aggregation rules lacks to take into account
the profitability of a manipulation. Using utility functions, we can calculate the manipulative power of
a certain rule for a specific utility function, but also for a class of utility functions. This can be used to
compare rules for certain situations and to determine which rule is more suitable.

72

5 | Conclusions and suggestions for

future research

Summary and conclusions

In this thesis we studied binary aggregation with integrity constraints. We extended a functional
implementation which we used to study aggregation rules and the manipulability of these rules. We
suggested a new rule, namely the priority rule. This has some advantages over the premise-based rule,
for example that this will also work if there is no possible feasible set of premises. Another suggested
rule, the least squares rule, is a rule that we can use in situations in which minorities should have a say
as well. The priority rule and the distance based rule have the nice property that they are majority
respecting.

We can translate a preference aggregation problem to a binary aggregation problem with a specific
integrity constraint. The implementation in this thesis uses this translation to also deal with social
choice functions.

Utility functions can capture the satisfaction that agents will have with the outcome of the aggregation
procedure. Examples show that we should not make too many assumptions on utility functions. Using
these utilities, we generalized some definitions and results on manipulability. Agents can manipulate a
rule onder a certain amount of knowledge, by trying to maximize their expected utility. They can also
influence the choice of a rule or the setting of the agenda and combine these to obtain a better outcome
for themselves. One might hope that with less than perfect knowledge, we could prevent manipulations.
A main conclusion of this thesis is that this is true in some nontrivial cases, however not in many. Also,
our simulations suggest that it pays off to know the preferences of the other agents.

We investigated how manipulable certain aggregation rules are. Quantification of manipulability of
aggregation rules is usually calculated as the percentage of the profiles in which there is an agent that
could manipulate. We suggested a different method that also takes into account how much agents can
win by manipulating. This method can be used to determine which aggregation rules we should use in
different cases. We also provided a measure for manipulability under full ignorance. In cases where we
know agents have little knowledge, this measure is much more useful than the standard measure for
manipulability.

From this thesis a lot of suggestions and possibilities for further research arise. We will discuss some of
them below.

73

Chapter 5. Conclusions and suggestions for future research

Possible future research

Improve efficiency of the implementation

Our implementation uses the full profile. Most aggregation rules can already be applied on a “compressed
profile”, that is, we only need to know the ballots that appear in the profile and the number of times
they appear. For large n, this would increase the efficiency of the implementation. The implementation
could be adapted and improved to make it suitable for more simulations.

Manipulation with non identically distributed beliefs

We only considered identically distributed beliefs. That is, an agent has a belief about what the ballots
of the other agents could be, and her ignorance about the remaining possibilities is given by a uniform
distribution. For example, she might know that her neighbour will vote True for issue 1, therefore
she knows that all profiles in which her neighbour votes False for issue 1 are not possible. Thus, the
knowledge of an agent consists of a list of possible partial profiles. However, in real life it might be
that an agent does not only have certain knowledge about ballots of other agents, but also has beliefs.
For example she might think it is highly likely that some agent casts some vote. We can easily extend
our approach by adding probabilities to our knowledge. In this case, knowledge (or belief) of an agent
can be represented by a probability function mapping each (rational) profile to a probability that
reflects how likely the agent thinks this profile is the true profile. Using this, we can calculate a more
realistic expected utility and thus a better manipulation. This can help us in a similar way for agenda
manipulation.

Manipulation under full ignorance

We characterized the class of aggregation rules that are not manupulable under full ignorance in
Theorem 17. This characterisation does seem strict. A possibility for future research is to study these
rules and to investigate whether there are cases in which these rules are suitable.

More results on combined agenda, rule choice and rule manipulation

We provided an implementation for combined agenda and rule manipulation, however we did not give
any characterization results for this. When are these kinds of manipulations possible, what do the
set of feasible agendas and the aggregation system need to satisfy for such manipulations to exist?
Another interresting subject to focus on is the combination of all possible manipulations. We provided
an implementation that combined choosing a rule and manipulating it. How would one choose the best
aggregation system?

Quantification of manipulation rules

In this thesis we investigated a specific example. The implementations provided can be used to analyse
other examples and to study the manipulability of several rules in general (i.e. not for a specific n, m,
IC).

74

Chapter 5. Conclusions and suggestions for future research

Manipulative power with prior on profile distribution

Similarly to the previous suggestion, we could use our prior on the probability distribution of profiles to
determine which rules are more and which are less manipulable. When quantifying manipulability, in
this thesis we took the average over all possible profiles, assuming they are all equally likely. When we
use our prior to calculate a weighted average, this could give us a much better estimate of the likeliness
and profitability of possible manipulations.

Towards analyzing aggregation as a Bayesian game

In this thesis we have assumed that the only knowledge agents can have is whether some profiles are
possible or not. However, one could also have knowledge about the probability on a certain profile,
about the utilities of individual agents, the knowledge of individual agents, and whether the agents are
also manipulating or not. In this case, the voting procedure can be seen as a game with incomplete
knowledge, a so called Bayesian game. Indeed, it would be fascinating to continue the present study
using tools from the theory of Bayesian games.

75

Bibliography

Brams, S., Kilgour, D., and Sanver, R. (2007). A minimax procedure for electing committees. Public
Choice, 132(3):401–420.

Copeland, A. (1951). A ‘reasonable’ social welfare function. In Seminar on Mathematics in Social
Sciences. University of Michigan.

Dietrich, F. (2006). Judgment aggregation: (im)possibility theorems. Journal of Economic Theory,
126(1):286–298.

Dietrich, F. (2013). Judgment aggregation and agenda manipulation. Technical report, University
Library of Munich, Germany.

Dietrich, F. and List, C. (2007a). Judgment aggregation by quota rules. Journal of Theoretical Politics,
19(4):391–424.

Dietrich, F. and List, C. (2007b). Strategy-proof judgment aggregation. Political Economy and Public
Policy Series.

Doets, K. and van Eijck, J. (2012). The Haskell Road to Logic, Maths and Programming, Second
Edition, volume 4 of Texts in Computing. College Publications, London. First Edition: 2004.

Eijck, J. v. (2016). Aggregation of preferences. http://homepages.cwi.nl/~jve/papers/16/
aggregation/Aggregation.html.

Endriss, U. and Grandi, U. (2014). Binary aggregation by selection of the most representative voter.
In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14, pages
668–674. AAAI Press.

Friedgut, E., Kalai, G., Keller, N., and Nisan, N. (2011). A quantitative version of the Gibbard-
Satterthwaite theorem for three alternatives. CoRR, abs/1105.5129.

Grandi, U. (2012). Binary aggregation with integrity constraints. PhD thesis, Institute for Logic,
Language and Computation.

Grandi, U. and Endriss, U. (2011a). Binary aggregation with integrity constraints. In Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelligence - Volume One, IJCAI’11,
pages 204–209. AAAI Press.

Grandi, U. and Endriss, U. (2011b). Binary aggregation with integrity constraints. In Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011).

Grandi, U. and Endriss, U. (2013). Lifting integrity constraints in binary aggregation. Artificial
Intelligence, 199-200:45–66.

76

http://homepages.cwi.nl/~jve/papers/16/aggregation/Aggregation.html
http://homepages.cwi.nl/~jve/papers/16/aggregation/Aggregation.html

Bibliography Bibliography

Khan, A. (2014). Grokking functional programming.

Knuth, D. (1992). Literate Programming. CSLI Lecture Notes, no. 27. CSLI, Stanford.

Lang, J., Pigozzi, G., Slavkovik, M., and van der Torre, L. (2011). Judgment aggregation rules based
on minimization. In Proceedings of the 13th Conference on Theoretical Aspects of Rationality and
Knowledge, TARK XIII, pages 238–246, New York, NY, USA. ACM.

Lang, J., Pigozzi, G., Slavkovik, M., van der Torre, L. W. N., and Vesic, S. (2015). Majority-preserving
judgment aggregation rules. CoRR, abs/1502.05888.

Leininger, W. (1993). The fatal vote: Berlin versus Bonn. FinanzArchiv / Public Finance Analysis,
50(1):1–20.

List, C. (2002a). A model of path-dependence in decisions over multiple propositions. Economics
Papers 2002-W15, Economics Group, Nuffield College, University of Oxford.

List, C. (2002b). A model of path-dependence in decisions over multiple propositions. Economics
Papers 2002-W15, Economics Group, Nuffield College, University of Oxford.

List, C. (2012). The theory of judgment aggregation: An introductory review. Synthese, pages 179–207.

List, C. and Pettit, P. (2002). Aggregating sets of judgments: An impossibility result. Economics and
Philosophy, 18(01):89–110.

List, C. and Puppe, C. (2009). Judgment aggregation: A survey. In Anand, P., Pattanaik, P., and
Puppe, C., editors, Handbook of Rational and Social Choice. Oxford University Press.

Miller, M. and Osherson, D. (2009). Methods for distance-based judgement aggregation. Social Choice
and Welfare, 32(4):575–601.

Miller, M. K. and Osherson, D. (2008). Methods for distance-based judgment aggregation. Social
Choice and Welfare, 32(4):575.

O’Sullivan, B., Goerzen, J., and Stewart, D. (2009). Real World Haskell. O’Reilly.

Peterson, J. and Hammond, K. (1997). Report on the programming language Haskell,Version 1.4.
Available from the Haskell homepage: http://www.haskell.org.

Pigozzi, G. (2006). Belief merging and the discursive dilemma: an argument-based account to paradoxes
of judgment aggregation. Synthese, 152(2):285–298.

Taylor, A. D. (2005). Social Choice and the Mathematics of Manipulation. Cambridge University Press.

Terzopoulou, Z. (2017). Manipulating the manipulators: Richer models of strategic behavior in judgment
aggregation. Master’s thesis, ILLC, University of Amsterdam.

Zwicker, W. S. (2016). Introduction to the theory of voting. In Handbook of Computational Social
Choice, chapter 2.

77

http://www.haskell.org

Appendices

78

A | Some useful functions

A.1 Functions that are not specific to aggregation

module MyBasics where
import Data.List

We start with some basic useful functions. We use the following notation for material implication.

infix 1 -->
(-->) :: Bool -> Bool -> Bool
x --> y = not x || y

We use an assertion wrapper for writing spec checking code.

assert :: (a -> b -> Bool) -> (a -> b -> String) -> (a -> b) -> a -> b
assert p warning f x = let y = f x in

if p x y then y else error (warning x y)

We can convert a binary number to a decimal integer. We represent the binary number by a list of
zeroes and ones.

bin2int :: [Bool] -> Int
bin2int = bin . reverse where

bin [] = 0
bin [False] = 0
bin [True] = 1
bin (False:bs) = 2 * bin bs
bin (True:bs) = 2 * bin bs + 1

79

Appendix A. Some useful functions A.2. Functions that are specific to aggregation

We can convert an integer back to a list of bits.

int2bin :: Int -> [Bool]
int2bin j = reverse (int2bin ’ j) where

int2bin ’ 0 = []
int2bin ’ 1 = [True]
int2bin ’ n = odd n : int2bin ’ (div n 2)

We make functions minimaBy and maximaBy, that are like minimumBy and maximumBy, but give a list of
all elements that are minimal or maximal respectively.

groupOrder :: (a -> a -> Ordering) -> [a] ->
([a] -> [a] -> Ordering , [[a]])

groupOrder f xs = let
g a b = f a b == EQ
grouped = groupBy g (sortBy f xs)
h ys1 ys2 = f (head ys1) (head ys2)
in (h, grouped)

minimaBy :: (a -> a -> Ordering) -> [a] -> [a]
minimaBy f xs = let

(h, grouped) = groupOrder f xs
in minimumBy h grouped

maximaBy :: (a -> a -> Ordering) -> [a] -> [a]
maximaBy f xs = let

(h, grouped) = groupOrder f xs
in maximumBy h grouped

We write a function to get user input.

get :: String -> IO String
get str = do putStr str

getLine

A.2 Functions that are specific to aggregation

module AgHelpFun where
import Aggregation
import Control.Monad

80

Appendix A. Some useful functions A.2. Functions that are specific to aggregation

We can create a list of all possible profiles with m issues and n agents.

allProfiles :: Int -> Int -> IC -> [Profile]
allProfiles m n bc = replicateM n (models m bc)

We make a general function that sums integer values over a profile

profileSum :: Num a => (Ballot -> a) -> Profile -> a
profileSum fn profile = sum (map fn profile)

We implement a changeOnIss function that changes a ballot on a certain issue and a changeBal function
that changes a ballot in a profile.

changeOnIss :: (Issue ,Bool) -> Ballot -> Ballot
changeOnIss (i,b) ballot = let

pairs = zip [0..] ballot
f (j,e) = if i==j then (i,b) else (j,e)
newpairs = map f pairs

in
map snd newpairs

changeBal :: Profile -> Agent -> Ballot -> Profile
changeBal prof i b = take i prof ++ [b] ++ drop (i+1) prof

Quota voting on an issue

Let’s assume we have an odd number of voters. Then majority voting on one issue can be modeled as
a map from profiles to profiles, where the minority changes its vote to the vote of the majority. To
generalize this we will first implement quota voting for any quota. We distinguish weak and strict
majorities.

data Quotkind = Strict | Weak
deriving(Eq)

quota :: Quotkind -> Float -> Int -> Issue -> Profile -> Bool
quota kind qu _ i profile = let

n = length profile
q = fromIntegral n * qu
decision | kind == Weak =

fromIntegral (length (coalition i profile)) >= q
| otherwise =

fromIntegral (length (coalition i profile)) > q
in

81

Appendix A. Some useful functions A.3. Representative voter rules

decision

Majority voting can be done by using a quota of 0.5.

majority :: Quotkind -> Int -> Issue -> Profile -> Bool
majority kind = quota kind 0.5

We encode an error for updating knowledge.

checkIndices :: (Int ,Int ,Agent ,Agent ,Issue) -> [String]
checkIndices (m,n,j,a,i) =

["Agent index too large" | a >= n]
++ ["Agent index too small" | a < 0]
++ ["Cannot update knowledge about self" | a == j]
++ ["Issue index too large" | i >= m]
++ ["Issue index too small" | i < 0]

A.3 Representative voter rules

module MoreRules where
import Aggregation
import AgHelpFun
import Rules
import Data.List

Average-voter rule

Definition 31. The average-voter rule is the aggregation rule that selects from a profile the individual
ballots that mimimise the Hamming distance to the profile.

avRule :: AR
avRule _ _ profile = let

f x = profileSum (hamming x) profile
mindist z = f z == minimum (map f profile)

in
nub (filter mindist profile)

82

Appendix A. Some useful functions A.3. Representative voter rules

Example 11. The profile in Table 11 was also used as an example in Endriss and Grandi (2014). This
coincides with the profile exampleB.

Issue: 0 1 2 3 4 5

1 voter: > ? ? ? ? ?
10 voters: ? > > ? ? ?
10 voters: ? ? ? > > >

Table A.1: Consider m = 6 issues and n = 21 voters.

exampleB :: ProfInt
exampleB = [32,24,24,24,24,24,24,24,24,24,24,7,7,7,7,7,7,7,7,7,7]

For this example we obtain the following majority winner.

> majResolve Strict 6 n0 exampleB
[[False,False,False,False,False,False]]

⌅

For Example 11, we get the following average voter outcome.

> avRule 6 n0 exampleB
[[False,True,True,False,False,False]]

Majority-voter rule

Definition 32. The majority-voter rule is the aggregation rule that selects from a profile the individual
ballots that mimimise the Hamming distance to one of the majority outcomes.

mvRule :: AR
mvRule m _ profile = let

f x = minimum (map (hamming x) (majResolveAll m n0 profile))
mindist z = f z == minimum (map f profile)

in
filter mindist profile

For Example 11, we get the following majority-voter outcome.

> mvRule 6 n0 exampleB
[[True,False,False,False,False,False]]

83

Appendix A. Some useful functions A.3. Representative voter rules

Ranked-voter rule

For the ranked-voter rule we first need some more notation.

Definition 33. For a given profile B, the majority strength MSB
(j) of an issue j is given by

MSB
(j) = max{|NB

j:0|, |NB
j:1|}

majStrengt :: Profile -> Issue -> Int
majStrengt profile i = let

numb1 = length (coalition i profile)
n = length profile

in
maximum [numb1 , n - numb1]

This induces an ordering �B
⌧

on issues, with ties broken using a permutation ⌧ : I ! I.

allPerm :: Int -> [[Issue]]
allPerm m = permutations [0..(m - 1)]

sortIssues :: [Issue] -> Profile -> Issue -> Issue -> Ordering
sortIssues perm profile i j = let

stronger = compare (majStrengt profile i)
(majStrengt profile j)

higherorder = compare (elemIndex i perm) (elemIndex j perm)
in

case stronger of
EQ -> higherorder
LT -> LT
GT -> GT

Now we fix a BMaj 2 Maj(B) (so BMaj is the weak or strict majority outcome). Then we define the
function `B

⌧

: I ! 0, 1 inductively on the ordering �B
⌧

as follows

`B
⌧

(j) =

(
bMaj

j

if 9i 2 N such that bMaj

j

= b
i,j

and 8k �B
⌧

j, b
i,k

= `B
⌧

(k)

1� bMaj

j

otherwise.

We have that `B
⌧

defines a ballot. We can also implement this.

ltaub :: Quotkind -> Int -> Profile -> [Issue] -> Ballot
ltaub kind m profile perm = let

beginBallot = head profile
issues = sortBy (sortIssues perm profile) [0..(m-1)]
agreeto j b1 b2 = all (agree b1 b2) (take (j+1) issues)
existsB b j = any (agreeto j b) profile
majB = head (majResolve kind m n0 profile)
lpart ballot j

84

Appendix A. Some useful functions A.3. Representative voter rules

| j == m = ballot
| existsB (changeOnIss (issues !!j, majB !!(issues !!j))

ballot) j =
lpart (changeOnIss (issues !!j, majB !!(issues !!j))

ballot) (j+1)
| otherwise =

lpart (changeOnIss (issues !!j, not (majB !!(issues !!j)))
ballot) (j+1)

in
lpart beginBallot 0

Definition 34. A ranked-voter rule is an aggregation rule that selects the individual ballots `B
⌧

(for
either weak or strict majority outcomes) such that ⌧ is some permutation on I.

rvRule :: Quotkind -> AR
rvRule kind m _ profile = nub (map (ltaub kind m profile) (allPerm m))

For Example 11, we get the following strict ranked-voter outcome.

> rvRule Strict 6 n0 exampleB
[[True,False,False,False,False,False]]

We see that for this example, it coincides with the majority-voter, however this is not always the case.

85

B | Quantifying manipulation

functions

Here you can find the code used in section 4.

module Quantify where
import Manipulation
import Rules
import AgHelpFun
import Aggregation
import System.Random
import Control.Monad
import Data.List
import Control.Arrow

We first encode whether a certain agent might be able to manipulate at a certain profile.

manipProfTR :: Int -> Int -> IC -> AR -> Profile -> Bool
manipProfTR m i bc rule prof = let

bs = models m bc
x = prof !! i
u = rule m bc prof
(y1 ,y2) = splitProfile i prof
in u /= [x] &&

any (\z -> u /= rule m bc (y1 ++ [z] ++ y2))
bs

We can use this to calculate the percentage of profiles on which a certain agent can manipulate. For
this we use the characterization of Theorem 14.

manipMeasTR :: Int -> Int -> Int -> IC -> AR -> Float
manipMeasTR m n i bc rule = let

profs = allProfiles m n bc
manipks = filter (manipProfTR m i bc rule) profs

86

Appendix B. Quantifying manipulation functions

in fromIntegral (length manipks) /
fromIntegral (length profs)

We can also measure only the cases in which a closeness-respecting agent might be able to manipulate.
For this we use the characterization of Theorem 12.

manipMeasCR :: Int -> Int -> Int -> IC -> AR -> Float
manipMeasCR m n i bc rule = let

bs = models m bc
ks = map (\x -> (x !! i, rule m bc x,

splitProfile i x))
(allProfiles m n bc)

manipl (x, u, (y1,y2)) = any (\z -> ([0..(m-1)] \\
agreeSet (head u) x) ‘intersect ‘
agreeSet x
(head (rule m bc (y1 ++ [z] ++ y2))) /= [])

bs
manipks = filter manipl ks
in fromIntegral (length manipks) /

fromIntegral (length ks)

Given a fixed utility function, we determine the average win in utility, for a minpulating agent as a
percentage of the average utility.

manipMeas :: Int -> Int -> Int -> UtilitySet -> IC ->
AR -> Float

manipMeas m n i ui bc rule = let
bs = models m bc
avgU = sum (map (uSingle ui) bs) / fromIntegral (length bs)
ps = [(p1 ,p2)| p1 <- replicateM i bs, p2 <- replicateM (n-i-1) bs]
manipl p = let

a = maximum (map (\b2 -> ui (
rule m bc (fst p ++ [b2] ++ snd p))) bs)

b = maximum (map (\b1 -> ui (
rule m bc (fst p ++ [b1] ++ snd p)))

(truePrefs m (uSingle ui) bc))
in a - b

manipks = sum (map manipl ps)
in (manipks /

fromIntegral (length ps)) / avgU

We can use this to run a simulation with a large number of random utilities to quantify the manipulability
of aggregation rules. We will later do this without any knowledge as well, hence we will use the following
data type.

87

Appendix B. Quantifying manipulation functions

data KnKind = Full | No
deriving (Eq ,Show)

To be able to determine which rule is least manipulable for a fixed constraint, m and n, we can generate
random utility functions and determine the average win in utility for multiple rules. Here we will
compare DB and PR. We take an average over num random utility functions.

testWithUi :: KnKind -> Int -> Int -> Int -> IC -> Int ->
[Float] -> (Float ,Float)

testWithUi _ _ _ _ _ 0 _ = (0,0)
testWithUi kind m n i bc num uinum =

let
ui b = uinum !! b2i b
meas | kind == Full = manipMeas

| otherwise = manipMeas0k
in ((+) (meas m n i (uSet ui) bc priority)

*** (+) (meas m n i (uSet ui) bc dbRule))
(testWithUi kind m n i bc (num - 1) (drop (2 ^ m) uinum))

testM :: KnKind -> Int -> Int -> Int -> IC ->
Int -> IO ()

testM kind m n i bc num = do
r <- newStdGen
print ((\(x,y) -> (x/fromIntegral num , y/fromIntegral num))

(testWithUi kind m n i bc num (take (2^m * num)
(randoms r :: [Float]))))

We now do the same but then with a random Hamming utility instead of just a random utility.

testWithUiWH :: KnKind -> Int -> Int -> Int -> IC -> Int ->
[Float] -> [Bool] -> (Float ,Float)

testWithUiWH _ _ _ _ _ 0 _ _ = (0,0)
testWithUiWH kind m n i bc num weights ballots =

let
w j = weights !! j
tb = take m ballots
ui = uHW w tb m
meas | kind == Full = manipMeas

| otherwise = manipMeas0k
in ((+) (meas m n i (uSet ui) bc priority)

*** (+) (meas m n i (uSet ui) bc dbRule))
(testWithUiWH kind m n i bc (num - 1) (drop (2 ^ m) weights)
(drop m ballots))

testMWH :: KnKind -> Int -> Int -> Int -> IC -> Int -> IO ()
testMWH kind m n i bc num = do

r <- newStdGen
print ((\(x,y) -> (x/fromIntegral num , y/fromIntegral num))

88

Appendix B. Quantifying manipulation functions

(testWithUiWH kind m n i bc num (take (2^m * num)
(randoms r :: [Float])) (take (m * num)
(randoms r :: [Bool]))))

Here we calculate the expected win in utility for manipulation. We divide by the average utility.

manipMeas0k :: Int -> Int -> Int -> UtilitySet -> IC ->
AR -> Float

manipMeas0k m n i ui bc rule = let
tps = truePrefs m (uSingle ui) bc
bs = models m bc
avgU = sum (map (uSingle ui) bs) / fromIntegral (length bs)
kn = [(p1 ,p2)| p1 <- replicateM i bs, p2 <- replicateM (n-i-1) bs]
expU b = expectedUBinA (head (bestBallots bs ui kn m bc rule))

ui kn m bc rule -
expectedUBinA b ui kn m bc rule

maniptot = sum (map expU tps)
in (maniptot /

fromIntegral (length tps)) / avgU

Get the largest win in utility for several random utilites.

testWithUiWC :: KnKind -> Int -> Int -> Int -> IC -> Int ->
[Float] -> (Float ,Float)

testWithUiWC _ _ _ _ _ 0 _ = (0,0)
testWithUiWC kind m n i bc num uinum =

let
ui b = uinum !! b2i b
meas | kind == Full = manipMeas

| otherwise = manipMeas0k
old = testWithUi kind m n i bc (num - 1) (drop (2 ^ m) uinum)
in (maximum [meas m n i (uSet ui) bc priority , fst old],

maximum [meas m n i (uSet ui) bc dbRule , snd old])

testMWC :: KnKind -> Int -> Int -> Int -> IC -> Int -> IO ()
testMWC kind m n i bc num = do

r <- newStdGen
print (testWithUiWC kind m n i bc num (take (2^m * num)

(randoms r :: [Float])))

89

	Introduction
	Motivation
	Outline of thesis

	List of Symbols
	Binary aggregation with integrity constraints
	Basic definitions
	Aggregation rules
	Preference aggregation

	Manipulating decision making
	Measuring satisfaction
	Manipulation of the aggregation rule
	Manipulating rules under full knowledge
	Manipulating rules under partial knowledge
	A manipulation tool
	Manipulating social choice functions
	How much knowledge is needed for manipulation of the aggregation rule?

	Setting the aggregation procedure
	Choosing an aggregation rule
	Agenda setting

	Summary

	Quantifying manipulability of aggregation rules
	Basic manipulative power
	Manipulative power
	Under full knowledge
	Under full ignorance
	Worst-case scenario

	Summary

	Conclusions and suggestions for future research
	Bibliography
	Appendices
	Some useful functions
	Functions that are not specific to aggregation
	Functions that are specific to aggregation
	Representative voter rules

	Quantifying manipulation functions

