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Abstract

The meaning of natural language expressions is usually identified with the conditions

under which this expression is true. An alternative view – the procedural approach

to meaning – identifies the meaning of an expression with an algorithm (or algo-

rithms) for judging whether the expression is true or false. However, the relationship

between meaning and verification is a complex one: as Hunter et al. (2016) argue,

identifying a verification procedure with the truth conditions of an expression is an

oversimplification. Instead, several authors have suggested that meanings come with

verification weight that makes certain verification strategies more preferable by de-

fault, even when the context of a task would make a different strategy more accurate

or efficient. An experimental study by Hackl (2009) illustrates this point by pro-

viding evidence that quantifiers most and more than half, albeit truth-conditionally

equivalent, trigger distinct default verification profiles.

The problem with this type of evidence, however, is that a number of confounding

factors can interact with the choice of a verification strategy: differences in subjects’

cognitive resources, the type of linguistic input, and the kind of task at hand, just to

name a few. In this thesis, we will present the results of two experimental studies that

partially address this problem by controlling for individual executive resources and

making explicit predictions about the strategies underlying the verification of most
and more than half. We will argue that while there are differences in how subjects

verify most and more than half, they do not result in completely distinct patterns.

Finally, we will propose a different approach to the relationship between the meaning

and verification of quantifiers. We will propose that instead of corresponding to one

default verification strategy, quantifiers are associated with a collection of strategies,

some of which overlap for different quantifiers. The choice of a strategy among those

is ultimately defined by multiple factors, such as context, the task at hand, personal

preferences and resources, and the type of input.
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1
Introduction

Connections between language and other cognitive functions are ubiquitous, but in-

tricate: the more we find out about them, the more questions we face.

Take bilingualism as one of the more prominent examples. A growing body of

research supports the claim that bilingualism has lifelong benefits: it has a positive

effect on the development of executive control in children (see Bialystok 2009 for

overview), but also offers protection against cognitive decline that sometimes occurs

at older age (Bialystok et al., 2007).

Another well-known example is the effect of color terms on color perception.

Unlike English, Russian has two main color terms for blue: siniy (dark blue) and

goluboy (light blue). A study by Winawer et al. (2007) revealed that Russian speakers

were faster to discriminate two colors that belonged to different linguistic categories

in Russian (i.e. if one color was considered siniy and the other goluboy) than colors

that were from the same linguistic category (both siniy or both goluboy). English

speakers did not show this advantage.

There are connections that appear to run even deeper, such as the apparent co-

developmental relationship between syntax and Theory of Mind. Hale and Tager-

Flusberg (2003) conducted a training study in which children were trained on com-

prehension of sentential complements (such as Mary thought that John was working
in the garden). Their performance on Theory of Mind tasks was significantly better

than before training – and better than the control group, who were trained on relative

clauses instead.

Then there is the relationship between language and number cognition. The very

fact that we can perform complex mathematical operations like multiplication and

division is due to the fact that we have number words, which help us discriminate
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between quantities that only have the slightest difference. Decimals, one thousands,

square roots and milliseconds are some of the things we can understand because we

have words for them. But the effect of language on our mathematical skills does not

end there. A growing body of research suggests that Specific Language Impairment

impacts the development of mathematical skills in children. Donlan et al. (2007)

found that children diagnosed with SLI had difficulties with counting and calcula-

tion, but they were able to grasp the logical principles underlying simple arithmetic.

Newton et al. (2010) found that SLI performance on the reduced array selection task

was above language controls.

There is a lot of uncertainty in each of these lines of inquiry. Some of this uncer-

tainty concerns itself with what feels like really big questions: if language can affect

how we perceive the colors of the world, what else about it can be different for a

German speaker and an Urdu speaker? How do we go about finding out without

repeating some of the more unfortunate mistakes of Benjamin Lee Whorf?1

Other uncertainties are relatively small, but ever the more interesting. Consider

the sentences below:

(1) a. Most Russians enjoy watching sports.

b. ??More than half of Russians enjoy watching sports.

(2) a. More than half of Russians were assigned female at birth.

b. ??Most Russians were assigned female at birth.

Intuitively, more than half does not fit into the sentence in (1b) – if it’s not infe-

licitous, it at least sounds odd. Similarly, the sentence in (2b) reads like a false, or at

least a misleading statement – but the same sentence with more than half instead of

most is fine. Yet, the logical form of these two quantifiers is indistinguishable – and

so should be their meanings.

Admittedly, postulating a profound difference between most and more than half
might be a bit audacious based on these two examples alone. Questions about exam-

ples above can be dismissed and redirected into the realm of semantics/pragmatics

interface. However, experimental results from a study by Hackl (2009) suggest that

speakers use distinct verification strategies to judge whether sentences that involve

these quantifiers are true or false. What we still don’t know is what exactly that

means.

The relationship between meaning and verification is a complex one. If knowing

the meaning of an expression is knowing the conditions that make this expression

true, does this entail knowing how to verify whether these conditions are met? We

will get into the technical details in the following section, but consider for a second

that a statement like Most A’s are B is true if there are more A’s that are B than there

are A’s that are not B. We can capture this set-theoretically as |A∩B| > |A−B|. Then,

we can suggest that when speakers verify whether Most A’s are B is true they count

the A’s that are B, count the A’s that are not be, and compare the two quantities.
1See Pullum (1991) for discussion.
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The idea we have just outlined is that there are default verification strategies as-

sociated with a meaning of an expression. According to the proponents of this idea

(Lidz et al., 2011; Pietroski et al., 2009), the meaning of an expression, in addition to

providing truth conditions, has some verification weight that makes a certain verifica-

tion procedure a more compelling choice even when circumstances make a different

strategy more precise.

However, there are multiple reasons why reasoners may prefer to consistently use

a particular strategy in a verification task. The nature of the task itself might make

this strategy convenient, or they might develop a cognitive bias by adhering to the

same strategy throughout the experiment. Finally, it is not exactly clear how default

verification strategies intersect with individual differences in cognitive control, such

as inhibition and working memory.

While there are plenty theoretical arguments to support either claim, more em-

pirical evidence is needed to provide more clarity about the relationship between

meaning and verification. In this thesis, we are going to present results of two ex-

perimental studies whose goal was twofold: 1) to compare the verification profiles

of most and more than half based on explicit predictions we formulated from prior

research, and 2) to see whether the patterns we observed would persist across dif-

ferent settings and conditions. Based on the results of these experiments, we will

argue against identifying the meaning of quantifiers with default verification proce-

dures; instead, we will propose that quantifiers are associated with a collection of

procedures, some of which may overlap for different quantifiers.

Thesis overview This thesis is structured as follows: in Chapter 2, we will lay the

theoretical groundwork for our investigation. We will give a brief overview of Gener-

alized Quantifier Theory, discuss the relationship between meaning and verification

in more detail, and summarize the predictions of semantic automata theory about

the involvement of working memory in the processing of proportional quantifiers. In

Chapter 3, we will give a synopsis of several experimental studies that shed light on

what processes underly the verification of most and more than half. We will discuss

working memory and the Approximate Number System in more detail. In Chapter 4,

we will provide the results of two experimental studies we have carried out. In the

concluding Chapter 5, we will argue that quantifiers provide multiple verification

strategies, and reasoners can switch between them.
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2
Background

Before looking into the differences between quantifiers most and more than half, we

will lay some groundwork by reiterating how two relevant semantic frameworks –

Generalized Quantifier Theory and semantic automata theory – capture the mean-

ing of these expressions. We will investigate why the indiscernibility of most and

more than half in Generalized Quantifier Theory is problematic, and discuss the re-

lationship between truth conditions of an expression and the verification strategies

competent speakers employ to make sure that these conditions are met. We will also

show that semantic automata theory sheds light on certain aspects of quantifier veri-

fication that might be crucial for inquiring into the connection between meaning and

verification.

2.1 Generalized Quantifier Theory

Consider the sentence in (3a) below that contains the universal quantificational de-

terminer every. This quantifier, along with other Aristotelean (no, some) and cardinal

(at least 3, more than 7) quantifiers, can be easily expressed as a first-order relation

between students and exams, such that for every student there is an exam that they

dread, as captured in (3b).

(3) a. Every student dreads some exam.

b. ∀x(student(x)→ ∃y(exam(y) ∧ dreads(x, y))

However, not all types of quantifiers lend themselves so easily to such a convenient

way of semantic notation. As was shown by Barwise and Cooper (1981), proportional

quantifiers such as most, more than half, two thirds, etc. are not definable in first-order
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terms – there is no meaningful expression we could form out of variables, non-logical

constants, and symbols ∃,∀,¬,∨,∧,→ to form an expression that would capture their

meaning. Yet, these quantifiers form meaningful sentences fairly frequently in natural

language1, and some solution was necessary to solve this problem – some additional

apparatus to enrich the expressive power of first-order logic.

The solution now commonly adopted in linguistics is Generalized Quantifier The-

ory (GQT), developed by Mostowski (1957) and Lindström (1966). We will give the

definition of a generalized quantifier as formulated in Szymanik (2016):

Definition 1. A generalized quantifier Q of type t = (n1, . . . , nk) is a function as-

signing to every set M a k-ary relation QM between relations on M such that if

(R1, . . . , Rk) ∈ QM, then Ri is an ni-ary relation on M , for i = 1, . . . , k. Additionally,

Q is preserved by bijections, i.e., if f : M →M ′ is a bijection, then (R1, . . . , Rk) ∈ QM

if and only if (fR1, . . . , fRk) ∈ Q′
M for every relation R1, . . . , Rk on M , where

fR = (f(x1), . . . , f(xi))|(x1, . . . , xi) ∈ R, for R ⊆M i (Szymanik, 2016).

According to this definition, a generalized quantifier is a function that maps a

model M to a relation between relations on its universe M . Importantly, these rela-

tions are assumed to be semantic primitives (cf. Hackl 2009).

One consequence of this is GTQ’s insensitivity to form: the internal composition

of a quantifier does not affect their semantic behavior – i.e., distinct specifications of

the same truth conditions are treated as equivalent. What this means is that as long as

quantifiers express the same relation between sets, they are virtually indistinguishable

in GQT. Take, for example, the expressions at least 3 and more than 2: although there

are systematic linguistic differences between the two (Geurts et al., 2010; Geurts and

Nouwen, 2007; Hackl, 2000; Solt, 2016) – which possibly affect how speakers process

sentences that involve these quantifiers – they share the same truth conditions, and

are therefore treated as the same expression in GQT.

(4) a. Jat least 3K(A)(B) = 1 iff |A ∩ B| ≥ 3

b. Jmore than 2K(A)(B) = 1 iff |A ∩ B| > 2

As Hackl (2009) observes, the same problem arises when we consider multiple

possible renditions of the truth conditions of some quantifier. As he shows for no,

there are multiple equally good descriptions in GQT that are not discernible from

each other:

(5) a. JnoK = 1 iff A ∩ B = ∅

b. JnoK = 1 iff |A ∩ B| = 0

c. JnoK = 1 iff |A ∩ B| < 1

Similarly, there are multiple ways of expressing most and more than half in GQT.

Moreover, as these two quantifiers are truth-conditionally equivalent, all descriptions

that fit most also fit more than half.
1See Szymanik and Thorne (2017) for an estimation.
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(6) a. JmostK = 1 iff |A ∩ B| > |A− B|

b. JmostK = 1 iff |A ∩ B| > |A|/2

(7) a. Jmore than halfK = 1 iff |A ∩ B| > |A− B|

b. Jmore than halfK = 1 iff |A ∩ B| > |A|/2

However, while these renditions of truth conditions are essentially equivalent,

Hackl (2009) argues that conceptually, (7b) is a better way to capture the truth con-

ditions of more than half – as it directly calls for dividing the total number of objects

in half; and on the other hand, that (6a) is a more accurate description of most, which

Hackl (2009) suggests treating as a superlative form of many.

2.2 Truth conditions and verification strategies

According to one of the most influential ideas in natural language semantics, knowing

the meaning of any natural language expression – for instance, the sentence in (8)

below – amounts to knowing the conditions under which the sentence is true.

(8) Most of the dots are blue.

These truth conditions can be seen as functions from contexts to truth values: if

there are more blue dots than dots of other colors in a given picture or scene, the

function corresponding to the truth conditions of (8) would map this context to true.

Conversely, if a picture contains more non-blue dots than blue ones, that context

would be mapped to false.

However, while this idea is fairly straightforward, it is not apparent from the

truth conditions alone how exactly that function is executed (Pietroski et al., 2009;

Steinert-Threlkeld et al., 2015); if, after looking at an image depicting yellow and

blue dots, a competent speaker of English confirms that (8) is true, how did she

verify that the relevant truth conditions have been met? We can think of several

viable options: she could simply count all the dots and the blue dots, then subtract

the latter from the former, or she could count the blue dots and the non-blue dots and

compare those cardinalities, or try to estimate any of these number without appealing

to any arithmetical operations. As Pietroski et al. (2009) point out, even asking a

friend who is sitting nearby for a solution would count as a verification strategy. The

choice of a strategy can depend on many factors such as the type of expression being

verified (i.e. verifying a negated statement is not the same as verifying quantified

expressions), the kind of stimuli (countable objects vs. mass), and the time for which

the stimuli is presented, among others.

The important part, however, is how these strategies relate to the formal specifica-

tion of truth conditions in (6) and (7) – and this relationship is not straightforward. It

might be tempting to assume that the truth conditions in (6) correspond to particular

verification strategies: after all, they explicitly ask for subtracting the number of blue

dots from the total number of dots or dividing the total number of dots in half and
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comparing the result with the number of blue dots – which are, we have argued, both

possible strategies to verify whether the sentence Most of the dots are blue is true.

Indeed, there is evidence that the relationship between truth conditions and verifi-

cation strategies is constrained (see Dummett 1973; Horty 2007; Suppes 1980 for

discussion and Lidz et al. 2011; Pietroski et al. 2009; Steinert-Threlkeld et al. 2015

for experimental results). To make the difference between the two notions clearer,

we will follow Lidz et al. (2011); Odic (2014); Pietroski et al. (2009), among others,

in making an analogy to Marr’s levels of computation (Marr, 1982).

So far, we have discussed formal properties of natural language quantifiers. The

primary goal of formal grammars is to provide us with computational-level descrip-

tions of what we are computing: for example, dependencies and movement in the

case of syntax, truth conditions in the case of semantics. These descriptions aim

to be as abstract as possible and describe speakers’ competence without specifying

how exactly certain functions are computed. On the other hand, experimental stud-

ies concern themselves primarily with algorithmic-level questions about how certain

functions are implemented in the brain: how we perceive information and memo-

rize parts of it, process strings of sounds and translate them into sentences, perform

calculations or spatial orientation tasks (Odic, 2014).

Still, these levels of description are not essentially disparate, nor are they meant

to exist independently from each other – to the contrary, formal grammars provide

strong foundations for algorithmic-level hypotheses that can be tested experimen-

tally, and vice versa, experimental results can inform semantic theories. Even though

it is implausible that meaning could be equated with verification, there is a possibil-

ity that “meanings are individuated at least as finely as truth-procedures” (Pietroski

et al., 2009, p. 561). In other words, if abstract computational-level descriptions of

the language system provide several plausible descriptions of grammar – in our case,

equally plausible specifications of the truth conditions – these can inform algorithmic-

level hypotheses about which functions are actually implemented by human cogni-

tion.

If a function X turns out to be preferred over function Y, it does not necessarily

imply that the specification of truth conditions whose make-up follows more closely

the calculations necessary to perform function Y is not a valid option. To give an

example, if we find out that competent speakers prefer to verify (8) by dividing the

total number of (blue and non-blue) dots in half, and then comparing that numerosity

with the number of blue dots, it doesn’t mean that alternative renditions of the truth

conditions for most are incorrect, or that competent English speakers never use any

other verification strategies – where they check, for example, whether there is a non-

blue dot for every blue one. What this means, instead, is that we have grounds to

speculate that there are canonical specifications of truth conditions that constrain the

choice of a verification strategy: given other choices, speakers are more likely to pick

the verification strategy that is closely related to the canonical ways of computing the

relevant truth conditions.
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The question about capturing the truth conditions of some expression, thus, is

on a different level from the question about how the meaning of that expression is

verified in a given context. However, these two questions can inform each other,

and the relationship between truth conditions and verification procedures is likely

constrained: canonical specifications of truth conditions can be used as default veri-

fication procedures.

2.3 Quantifier verification: a view from automata theory

Semantic automata theory identifies a quantifier of the class Q with a language LQ

describing all elements (models) of the class class Q corresponding to a quantifier

and a machine MQ that computes the truth-conditions of a sentence containing a

quantifier of the class Q. In line with the procedural approach to meaning2, quan-

tifiers from Definition 1 can be alternatively seen as classes of models. Quantifiers

that are defineable in first-order logic – for instance, Aristotelean (all, some, no) and

cardinal (at most 5, at least 4) – are recognized by finite-state automata (FSA); pro-

portional quantifiers, however, are not definable in first-order logic and require a

pushdown automaton (PDA), which augments finite-state automata with a memory

stack (van Benthem, 1986; Mostowski, 1998).

FIGURE 2.1: Example of a finite state automaton

This distinction is not merely theoretical. McMillan et al. (2005) tested the idea

that pushdown automata can be viewed as verification procedures internalized by

competent speakers. The authors hypothesized that the differences in complexity be-

tween these two types of quatifiers would be reflected in processing: verifying higher-

order quantifiers associated with push-down automata would place higher demands

on reasoners’ working memory than verifying sentences with first-order definable

quantifiers, which correspond to FSAs. This hypothesis was confirmed: the authors

found that only higher-order quantifiers recruit the prefrontal cortex associated with

the executive function, which includes working memory. As we will show in Chapter

3, further experimental studies have confirmed that processing proportional quanti-

fiers requires an additional memory load.
2According to this approach, algorithms that competent speakers rely on to judge whether a natural

language expression is true or not can be identified with meanings. See Szymanik (2016) for discussion.



Chapter 2. Background 9

2.4 Conclusion

In this section, we have outlined aspects of semantic theory of quantifiers that raise

some questions about the meaning and verification of most and more than half.
We have presented Hackl’s argument that Generalized Quantifier Theory is prob-

lematic when it comes down to discerning the meaning of quantifiers with equivalent

truth conditions: in GQT, most and more than half are indistinguishable. We have

noted that this is problematic for quantifiers that are systematically different in terms

of semantics, pragmatics and verification.

We have also observed that there are several ways of specifying truth conditions

for both of these quantifiers, and argued that this difference might be cognitively

relevant for the way in which most and more than half are processed. We have

noted that although truth conditions and verification strategies are not equivalent,

it is plausible that there is a connection between the two notions.

The next cheaper builds up on the current discussion with a detailed and system-

atic overview of the verification profiles of most and more than half. We will give a

summary of several experimental studies that 1) explicitly compare how reasoners

verify sentences with most and more than half in the context of a self-paced counting

task; 2) processing proportional quantifiers; 3) verification of most is consistent with

a classic psychophysical model of the Approximate Number System.
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3
Semantics and verification profiles of most

and more than half

Having explored the relationship between meaning and verification in the previous

section, we are now equipped to tackle the verification profiles of most and more than
half in further detail. In this section, we will summarize the results of several studies

that shed some light on the problem at hand. We will do so in three stages. First,

we will reiterate the results of Martin Hackl’s 2009 self-paced counting experiment,

which explicitly investigated differences in default verification procedures underlying

the meanings of these two quantifiers. Second, we will look into the experimental ev-

idence of high working memory involvement in proportional quantifier verification.

Finally, we will look at the verification profile of most in more detail and relate ex-

perimental results that show it exhibits certain properties of Approximate Number

System. We will try to fit these three directions of research together to see what is

still missing from our picture.

3.1 Differences in verification of most and more than half :

Martin Hackl’s experiment

In his 2009 paper, Hackl explores whether there is a cognitively significant difference

in the specification of the truth conditions for most and more than half in (6) and (7),

repeated below.

(9) a. JmostK = 1 iff |A ∩ B| > |A− B|

b. JmostK = 1 iff |A ∩ B| > |A|/2
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(10) a. Jmore than halfK = 1 iff |A ∩ B| > |A− B|

b. Jmore than halfK = 1 iff |A ∩ B| > |A|/2

He argues on conceptual and linguistic grounds that (9a) is the preferred option

over (9b) for most, while (10b) is a better way to express more than half than (10a)

and that, although the two denotations are truth-conditionally equivalent, the way

in which they are specified appears to point to distinct verification procedures. More
than half explicitly calls for dividing the total number of A’s in half, while verifying

most requires comparing the total number of A’s that are B’s (e.g. the number of dots

that are blue) with the number of A’s that are not B’s (e.g. the number of dots that

are not blue)1.

In order to understand whether there is a difference in verification profiles that

are triggered by most and more than half, Hackl conducted an experiment where

participants had to verify visual scenes (pictures containing rows of dots of different

colors) against sentences like Most of the dots are blue or More than half of the dots
are blue. He applied the Self-Paced Counting paradigm, which is similar in spirit to

the widely used self-paced reading paradigm: instead of having access to the whole

scene at once, participants have to press a button to proceed through the scene in a

step-by-step fashion (see Figure 3.1).

FIGURE 3.1: Sequence of events in the Self-Paced Counting paradigm

This setup allows to measure how much time participants spend processing in-

formation at each step. At the beginning of a trial subjects heard target sentences

played over the speakers and saw two rows of dots displayed on the screen. At first,

participants did not know the color of the dots, as only their outline was visible. As

subjects pressed the space bar, increments of 2 to 3 dots were uncovered, and the

previously seen dots were masked again. Subjects had to verify whether the sentence

they had heard over the speakers was true or false. They could answer at any point

during the trial by pressing the appropriate key on their keyboards, but the design of

the experiment made it impossible to determine the truth or falsity of the sentence

within the first four screens.
1Note that this is not the only way to specify truth conditions for most.
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The overall scores (accuracy and reaction times) for most and more than half
turned out not to be significantly different, which Hackl takes as evidence that par-

ticipants treat these expressions as equivalent in the context of a self-paced counting

task. The author found, however, that there was a significant screen-by-screen dif-

ference: verifying more than half took subjects consistently longer than most. Hackl

observes that this difference makes sense if most favors a kind of lead counting strat-

egy – checking whether there is a non-blue dot for every blue dot. The design of the

experiment made the task easier for such a strategy: in each screen, it was easy to

evaluate whether there were more dots in the target color than in the other color.

Moreover, the self-paced setup made it easy to keep track of the difference.

FIGURE 3.2: Item schema in Hackl (2009) showing how stimuli were
distributed between screens in the “early” and “late” conditions

To follow up on this finding and provide further support for the hypothesis that

most and more than half trigger distinct verification procedures, Hackl conducted

another experiment in which he manipulated the arrays of dots in such a way that the

verification procedure triggered by most was either facilitated or impeded, while the

verification procedure triggered by more than half remained unaffected. In particular,

the distribution of dots in the target color was manipulated: in condition (a), the

“early” condition, nearly all dots in the target color were at the beginning of the trial,

while in condition (b), the “late” condition, nearly all of them were at the end.

It was revealed that both quantifiers were affected by the distributional asym-

metries of the target items; however, the verification strategy triggered by most was

more sensitive to them. Most required more time in the “late” condition while the

difference between the two conditions was not significant for more than half.

3.2 Verification tasks and working memory

As we have seen in the previous chapter, the distinctive feature of proportional quan-

tifiers like most an more than half is that processing them requires some involvement
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of working memory. Working memory (WM) is a basic cognitive mechanism that

can temporarily store pieces of information, as well as manipulate them for process-

ing tasks (Baddeley, 2003; Miyake and Shah, 1999). A line of research has focused

specifically on the degree of working memory load in quantifier verification tasks.

Szymanik and Zajenkowski (2010) examined the effects of working memory load

in three groups of quantifiers: proportional, parity, and numerical. Based on the pre-

dictions of the automata-based quantifier verification model, they hypothesized that

asking subjects to hold arbitrary information in short-term memory would dispropor-

tionally affect the difficulty of verifying these types of adjectives. In particular, the

authors hypothesized that the difficulty would decrease in the following order: pro-

portional quantifiers, numerical quantifiers of high rank, parity quantifiers, numerical

quantifiers of low rank. The experiment consisted of two elements: the sentence ver-

ification task and the memory task. At the beginning of each trial, participants were

asked to memorize a 4- or 6-digit string of numbers. After that, subjects had to judge

the truth-value of sentences such as More than half of the cars are red or An even num-
ber of cars are blue against visual scenes presented on the screen. After completing the

sentence verification task, they were asked to recall the string they had memorized.

The authors’ hypothesis was confirmed in the 4-digit condition, and crucially, pro-

portional quantifiers proved to be the most difficult, with the highest reactions times

and the poorest accuracy. However, the differences between the considered types of

quantifiers were not significant in the 6-digit condition. The authors observed a de-

crease of accuracy in numeric recall with simultaneous increase in performance on

quantifier verification task, which they considered to be trade-off between processing

and storage.

Zajenkowski et al. (2011) compared the processing of several groups of quan-

tifiers in patients diagnosed with schizophrenia and a healthy control group. Par-

ticipants had to verify sentences that contained natural language quantifiers, and

patients with schizophrenia were consistently slower than controls on all types of

quantifiers. However, the difference in accuracy was only significant for proportional

quantifiers. Zajenkowski et al. (2011) suggested that the longer RTs allowed patients

to verify Aristotelean, parity, and numerical quantifiers almost as accurately as the

control group. However, slower processing did not result in the same match with the

controls’ accuracy. The authors suggested this is also due to the high engagement

of working memory. As there is evidence that patients diagnosed with schizophre-

nia often have impaired executive function – especially control or the supervision of

cognitive processes – it is possible that simultaneously processing and keeping stored

information was too demanding for the patient group.

Steinert-Threlkeld et al. (2015) explored the impact of different presentations of

a visual scene and working memory load on proportional quantifier sentence verifica-

tion. Subjects were presented with two types of stimuli: objects were either scattered

(i.e. spread randomly across the screen) or paired (objects appeared in pairs where

one of them was the target – for instance, a yellow dot and a blue dot). Moreover,
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there were two types of objects: yellow and blue dots, and characters ‘E’ and ‘F’.

The participants were asked three types of questions: 1) Are more than half of the
dots yellow?, 2) Are more than half of the letters ‘E’?, and 3) Are most of the dots
yellow?. The authors were interested whether distinct verification strategies can be

used to complete the same task (i.e. verifying the truth values of sentences against

a visual scene). The authors expected that paired stimuli would trigger a different

verification procedure than scattered stimuli. To test whether this is indeed the case,

Steinert-Threlkeld et al. included a digit recall task to manipulate working memory

load, expecting that if subject consistently used only one strategy, the effect of this

additional resource restriction would be consistent across all conditions.

The authors found that in the case of more than half, both the accuracy and re-

action times of the sentence verification task were affected by the type of stimulus.

Moreover, the interaction of stimulus type and working memory load had significant

effects on accuracy and RTs in the digit recall task: the difference in RTs and accuracy

between low and high working memory load conditions was greater for scenes with

scattered objects than for paired objects. Interestingly, the authors did not find the

same interaction effects for most. Accuracy and RTs in the digit recall task showed

effects of working memory condition – however, there were no significant interaction

effects of stimulus type and WM. Steinert-Threlkeld et al. concluded that working

memory demands for most are not affected by the presentation of stimulus in the

same way as more than half, and that the two quantifiers have distinct verification

profiles.

Crucially, even though this conclusion seems to mirror Hackl’s results, his inter-

pretation of the difference between most and more than half does not fit Steinert-

Threlkeld et al.’s data. If most indeed favors a verification procedure based on lead-

counting, there would be a significant difference in working memory demand be-

tween paired and random stimuli, which Steinert-Threlkeld et al. did not observe.

3.3 More about most: Approximate Number System

Pietroski et al. (2009) compared two distinct notational variants of specifying the

truth condition for most, in (11) below, to see if there is a psychological significance,

i.e. whether one of the algorithms is used as the default verification strategy. The

procedure in (11a) requires comparing two cardinalities: the number of blue dots

and the number of non-blue dots; the alternative representation in (11b) calls for

verifying whether some but not all of the blue dots can be paired off with non-blue

dots.

(11) a. GreaterThan[#{x : Dot(x)&Blue(x)},#{x : Dot(x)&¬Blue(x)}]

b. OneToOnePlus[{x : Dot(x)&Blue(x)}, {x : Dot(x)&¬Blue(x)}]

To test whether the relationship between the truth conditions in (11) and the

default verification profile triggered by the quantifier most is constrained, Pietroski
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et al. conducted an experiment, in which participants had to verify visual scenes

against statements containing most. They presented participants with scenes that

favored using OneToOnePlus (pictures in which the dots were paired) strategy and

scenes which make using this strategy difficult (pictures in which the dots were scat-

tered randomly). They predicted that if this variation does not affect participants’

accuracy, then most is probably not understood in terms of correspondence.

FIGURE 3.3: The conditions in Pietroski et al.’s experiment: (a) Scat-
tered Random, (b) Scattered Pairs, (c) Column Pairs Mixed, (d) Col-

umn Pairs Sorted

During each trial, participants saw a screen with dots of two colors (yellow and

blue) for 200ms and were asked to answer the question Are most of the dots blue?.

There were four conditions: Scattered Random, Scattered Pairs, Column Pairs Mixed,

and Column Pairs Sorted (see Figure 3.3). The authors expected that if most is indeed

understood in terms of a one-to-one correspondence, subjects would perform better

on those trials where the dots were paired. However, it turned out only performance

on the Column Pairs Sorted condition was significantly higher than on other trials;

there were no significant differences between Scattered Random, Scattered Pairs,

and Column Pairs Mixed. The authors conclude that these results suggest that the

meaning of most is not specified in terms of one-to-one correspondence.

Similarly, Lidz et al. (2011) compared the two specifications of most below. The

specification in (12a) corresponds to what Lidz et al. call a selection verification pro-

cedure that enumerates (or estimates the number of) the blue dots, then the nonblue



Chapter 3. Semantics and verification profiles of most and more than half 16

ones, and compares the two numerosities. The specification (12b) triggers a verifi-

cation procedure that estimates the overall number of dots, then the number of blue

dots, subtracts the latter from the former, and verifies that the result is smaller than

the number of blue dots.

(12) a. > (|DOT ∩ BLUE|, |DOT− BLUE|)

b. > (|DOT ∩ BLUE|, |DOT| − |DOT ∩ BLUE|)

They hypothesized that if subjects used the selection procedure, their performance

should be higher on trials where there are two colors on the screen. The motivation

behind this is that the selection procedure yields more accurate results, and would

therefore be the optimal procedure to use when it’s available. However, on screens

with multiple colors, identifying all non-blue dots, assessing their cardinality and sub-

tracting this number would have been too difficult to do in 150ms; therefore authors

expected that participants would switch to a less accurate subtraction procedure.

However, they found that there was no significant difference in accuracy between

trials with just two colors and trials with multiple colors. The authors concluded that

subtraction procedure was used throughout the experiment. Moreover, they claimed

that this result supports the Interface Transparency Thesis, which states that “the

verification procedures employed in understanding a declarative sentence are biased

towards algorithms that directly compute the relations and operations expressed by

the semantic representation of that sentence” (Lidz et al., 2011, p. 233).

More importantly, Pietroski et al. and Lidz et al. found strong evidence that par-

ticipants used a cognitive resource called the Approximate Number System to solve

the tasks. The Approximate Number System (ANS) is an evolutionary ancient system

of representing numerosity that humans share with other animals (Dehaene, 1997).

It is often contrasted with arbitrary systems of exact number representation – or,

simply put, the way counting is taught in schools: by representing number exactly.

This method involves arbitrary symbolic, discrete representations of number – num-

ber words like seven, decimal, one tenth – to perform very precise numeric operations

(Spaepen et al., 2011).

ANS does not need to be learned explicitly: it is present in infants and nonver-

bal adults (Gordon, 2004; Izard et al., 2009), and it allows us to make numerical

discriminations and perform certain numeric operations, such as estimating the car-

dinality of a set. As it is apparent from its name, the ANS does not generate exact

representations of numerosity – instead, number is represented as a continuous Gaus-

sian activation of several numerical values on a mental number line (Dehaene, 1997;

Halberda et al., 2012; Odic, 2014; Piazza et al., 2004). This means that when we are

looking at a scene that contains a certain number of dots – say, seven – we will not be

able to verify that there are exactly seven dots just by using ANS. However, we will be

able to estimate that this number is somewhere around seven – maybe six or eight.

Generally, the more representations of these activations overlap, the more difficult

it is to discriminate between them (Feigenson et al., 2004; Halberda and Feigenson,
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FIGURE 3.4: Representation of numerosities on the mental number
line

2008; Odic, 2014). ANS is characterized by its compliance with Weber’s law, which

states that discriminability is determined by the ratio of the two values being com-

pared. For example, if we are comparing two sets of dots and have to pick the largest

one, it is as easy to do when there are 6 blue and 12 yellow dots as when there are

60 blue and 120 yellow dots. When the difference between two values remains the

same, but the numerosities increase (e.g. from 6 and 12 to 60 and 66), it becomes

more difficult to compare them (the size effect). When of the two values being com-

pared one remains the same but the other one increases (from 6 and 12 to 6 and 20),

the comparison becomes easier (the distance effect).

For all their differences, ANS and the system of precise number representation,

which requires rule-learning, are not completely independent from each other. Chil-

dren in numerate cultures learn how to map representations of the ANS onto discrete

number words by the time they are 5 years old (Le Corre and Carey, 2007), and

there is evidence that later in life, whenever an adult sees a precise representation of

numerosity – such as an Arabic numeral – or performs mental calculations, the ANS

gets activated (Dehaene, 1997).

Even in tasks that require precise judgments, some affects of the ANS are present.

For instance, Zajenkowski et al. (2014) compared the difficulty of proportional quan-

tifier processing under different semantic conditions. In particular, they were inter-

ested how difficult it would be for subjects to verify proportional quantifiers against a

scene depending on the number of objects present on the screen. They found that the

numerical distance between two cardinalities that must be compared was significant

for accuracy and reactions times: the bigger was this distance, the better the perfor-

mance. Moreover, this result was significant no matter the total number of objects in

a scene.

As Pietroski et al. (2009) and Lidz et al. (2011) point out, the properties of the

ANS we have discussed make it incompatible with using a OneToOnePlus strategy:
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ANS does not generate representations of unit or exact differentiations between car-

dinalities – “the ANS will not deliver a representation of something as exactly one”

(Pietroski et al., 2009, p. 567). Since the system does not represent unity or minimal

differences between discrete cardinalities (Leslie et al., 2008), they conclude speakers

cannot rely on ANS to implement a OneToOnePlus algorithm.

3.4 How it all comes together

The papers we have reviewed in this chapter all take slightly different approaches to

understanding the relationship between specification procedures and verification pro-

files of natural quantifiers in natural language. Hackl (2009) was interested in com-

paring two quantifiers whose truth conditions are identical in Generalized Quantifier

Theory, but, he suspected, were verified differently by speakers. Zajenkowski et al.

(2011), Zajenkowski et al. (2014) and Szymanik and Zajenkowski (2010) focused on

the role of working memory load in verification of different types of quantifiers. Lidz

et al. (2011) and Pietroski et al. (2009) compared multiple ways of specifying the

truth conditions for most to see if there is psychological significance.

Despite the differences in experimental paradigms, these lines of research are

mutually informative and share the same questions at their core. As we are interested

in comparing quantifiers most and more than half, we will now look in more detail at

how Hackl’s results could be informed by the studies we related in this chapter.

First of all, we will note that, based on his experimental findings, Hackl argues

that most and more than half trigger distinct verification strategies. However, from

an earlier discussion, we have seen that we cannot equate distinct renditions of truth

conditions with verification strategies. Although Hackl observed certain differences

in the verification of most and more than half, it’s not clear whether they are con-

strained by the differences in the specifications of truth conditions between the two

quantifiers, or are an artifact of the experimental setup.

For instance, Hackl reports significant screen-by-screen differences in reaction

times between most and more than half, but interestingly, they do not sum up to

significant overall difference. It is not clear why this happens, especially since there

were no explicit hypotheses about what RTs and accuracy rates are expected from

each screen.

As we have seen, one of the things that impacts the processing of proportional

quantifiers like most and more than half is working memory – and the task in Hackl’s

experiment requires significant working memory load: participants had to remember

the strings of dots they had previously seen to solve the task. However, working mem-

ory was not controlled for, and we don’t know exactly how it impacts performance.

Finally, the results of Lidz et al. and Pietroski et al., as well as Steinert-Threlkeld

et al.’s, argue against a pairing strategy for most. Lidz et al. and Pietroski et al.

in particular argue that most requires a verification strategy that is based on ANS

and is therefore incompatible with OneToOnePlus. However, it is also important
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to point out that the experimental setting used by Lidz et al., Pietroski et al. and

Steinert-Threlkeld et al. is very different from Hackl’s. So while it is convincing that

the pairing strategy was not preferred by speakers in their experiments, it could be

triggered by a different experimental paradigm, such as Self-Paced Counting.

3.5 Conclusion

In this chapter, we have overviewed a series of experimental studies that explored

the processes underlying quantifier verification. We have presented the experimen-

tal results from Hackl (2009), that show that most and more than half are indeed

processed differently, despite truth-conditional equivalence.

We have summarized the results of studies by Zajenkowski et al. (2011), Szy-

manik and Zajenkowski (2010) and Steinert-Threlkeld et al. (2015) that tested the

involvement of working memory in verification tasks and provided evidence that the

classification of quantifiers in automata theory is cognitively plausible, as propor-

tional quantifiers like most and more than half require higher working memory in-

volvement than first-order quantifiers. Finally, we have given an overview of the

verification profile of most from Lidz et al. (2011) and Pietroski et al. (2009).

However, as we pointed out, verification of most and more than half – as well as

the question about default verification profiles – are not completely settled issues; a

lot remains to be investigated. We have pointed out that several aspects of Hackl’s

study make the interpretation of their experimental results problematic. Moreover,

given the discussion about the relationship between default renditions of truth condi-

tions and default verification strategies, can we extrapolate the differences discovered

by Hackl to verification in general? Or are they a result of a particular setup?

In the following chapter we will present the results of an experimental study

which aimed to answer some of these questions.
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4
Experiments

In this section, we present the results of two experimental studies that explore dif-

ferences in verification procedures triggered by most and more than half, and try to

answer the question about whether these difference arise from distinct default veri-

fication profiles. We will show that, contrary to the results of Pietroski et al. (2009),

Lidz et al. (2011) and Hunter et al. (2016), our data do not support the claim that

there are default verification strategies for these quantifiers. Although we will observe

some distinctive features of most and more than half, we will provide evidence that

subjects in our studies varied in their choices of verification procedures, suggesting

that there is a collection of strategies associated with each quantifier.

4.1 Experiment 1

4.1.1 Motivation

As we have discussed in the previous sections, the results of Hackl’s study leave open

several questions about verificational differences between most and more than half.
First of all, there is the question of working memory load effect in the processing

and verification of quantifiers. We have presented experimental evidence from several

studies that explored the extent of WM load in proportional quantifier processing,

which all point to the fact that processing most and more than half requires additional

executive resources. We have also argued that the design of a self-paced counting

also places demands on WM load, which might affect the interpretation of observed

differences between most and more than half.
We have seen that the mode of stimuli presentation can make a difference on

how subjects verify quantified statements. For instance, in Pietroski et al. (2009),
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the Column Pairs Sorted condition (which is also visually similar to Hackl’s rows of

dots) elicited a different verification strategy compared to other conditions in the

experiment. While the differences that Hackl reports might be due to the fact that

most and more than half have distinct verification profiles, there is also a possibility

they are constrained by the way in which the stimuli were presented.

Finally, while Hackl observed several differences in the verification of most and

more than half, they are difficult to pin point: we know that the two quantifiers are

processed differently, we just don’t know how they differ. We will attempt to answer

this question by making explicit predictions about the lead counting strategy that

Hackl postulates for most.

4.1.2 Predictions

As we have seen in Chapter 3, studies such as Szymanik and Zajenkowski (2010) and

Steinert-Threlkeld et al. (2015) shed light on the involvement of working memory

in the processing of proportional quantifiers: proportional quantifiers tend to require

more working memory capacity compared with other types of quantifiers. We have

also noted that the experimental design in Hackl (2009) requires additional memory

load, as subjects have to keep track of the images they have seen. Putting these

two factors together makes the interpretation of reported results in Hackl (2009)

somewhat complicated: while the differences in RTs between more than half and

most might be due to different demands these quantifiers place on working memory

capacity, the extent of this effect cannot be readily determined. One problem is that,

to our knowledge, working memory demands have not been assessed for each of

these quantifiers separately. Although it’s true that most and more than half place

more demands on working memories than less complex quantifiers like only three or

some, it is not clear whether they place equal demands.

The other problem is that the experimental design in Hackl (2009) prompted

subjects to store and process large chunks of information in their working memory.

For example, if subjects were to verify whether More than half of the dots are blue was

true, they would have to remember that there were 2 blue dots and 1 yellow dot in the

first screen, 1 blue dot and 2 yellow dots in the second screen, etc., and later retrieve

from memory how many dots in each color they had seen. However, individuals vary

in their working memory capacity, and these differences in turn relate to differences

in linguistic processing (Bornkessel et al., 2004; Daneman and Carpenter, 1983).

These two aspects combined might affect the results of the experiment, as it is not

clear to what extent the differences between the quantifiers are due to their properties

(i.e., different demands they place on working memory), or other factors. Moreover,

the experimental setup requires subjects to verify a big number of items in a row

(60 items in Hackl’s study), which could lead them to develop cognitive strategies

that are more efficient in the context of the given task, such as trading accuracy for

time. This, again, is another reason why it’s not completely clear whether verification

strategies are triggered by particular quantifiers or the task itself. In the current study,
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we will attempt to reach some clarity by controlling for individual working memory

capacity, expecting a correlation with reaction times and accuracy.

Hackl (2009) argues that verifying most requires participant to keep track only of

the color that is leading at any given moment. Verifying more than half, on the other

hand, does not rely on lead-counting, meaning it would ostensibly require keeping

track of how many dots the subjects saw in both colors and then comparing the two

quantities – using either precise calculations or approximation. This latter procedure

is more demanding, as reasoners would have to store a bigger amount of information

in their working memory, as well as performing manipulations with it.

Given these considerations, we expect that higher working memory capacity will

result in shorter reaction times for more than half. At the same time, we expect that

subjects with higher memory scores will make fewer mistakes when verifying most.
As in Hackl’s experiment more than half had both higher accuracy and mean reaction

time compared to most, we make the following prediction:

Prediction 1. The higher working memory capacity, the smaller will be the RT effect

(the difference in reaction times between most and more than half) and the smaller

the accuracy effect (difference in accuracy).

So far, we have followed Hackl’s argument that the rendition of truth conditions

in (10b) would be a more accurate way to capture the meaning of more than half, as

the algorithm specifically mentions dividing the bigger set in half; conversely, (9a) is

more desirable for most. We have also seen some evidence in favor of distinct verifi-

cation profiles that these quantifiers trigger; but is the choice of a verification strategy

constrained by the default specification of truth condition for each quantifier?

Suppose a speaker is asked to verify whether the sentence More than half of the
dots are blue is true, and they are presented with a visual scene in which dots are

scattered across a picture – or placed neatly in rows, for that matter. As we have

discussed earlier, we cannot guarantee, even if we know that all competent speakers

interpret most as in (9a) what strategy our speaker would choose1: the questions

about what abstract rules are captured by a speaker’s linguistic competence and what

functions implement this competence in their brain are at different cognitive levels.

For whatever reason, the speaker might decide to settle the issue by rolling a dice,

and there is no way we could predict their choice of dice-rolling as a strategy based

on the default meaning of most.
Suppose, however, that as per suggestion of Hackl (2009) the speaker is biased to

use an algorithm that is associated with the specification in (10b) – that is, that the

choice of a verification strategy is constrained by the form of the expression in (10b).

Then we would expect our speaker to solve the task by following these steps for more
than half :

1. Calculate or approximate the total number of dots.
1Although there are some cognitive factors that could make the choice of one strategy more likely

than others.
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2. Divide that number in half.

3. Calculate or approximate the number of blue dots.

4. Compare the cardinalities of (2) and (3).

For most, the verification procedure might go something like this2:

1. Calculate or approximate the number of blue dots in the current screen.

2. Calculate or approximate the number of nonblue dots in the current screen.

3. Verify that the number in (1) is leading. If (2) is leading instead, switch the

leading color.3

Note, however, that it would make a difference, when verifying more than half,
whether the total number of dots is odd or even. If this number is even, the second

verification step should be relatively easy: for instance, if there are 12 dots on the

screen, it becomes immediately obvious that 12 divided by 2 is 6, and so there should

be 7 blue dots for the sentence More than half of the dots are blue to be true. If there

are 13 dots on the screen, however, performing the verification steps we sketched

above becomes more difficult. Crucially, the verification procedure for most should

not be affected by this variation: the oddness or evenness of the total number of

dots is irrelevant for enumerating nonblue and blue dots. We can make the following

prediction:

Prediction 2. Solving a verification task for the quantifier more than half would result

in a longer reaction time and lower accuracy when the total number of dots is odd.

Finally, Hackl (2009) observed that there was a screen-by-screen difference in

reaction times between most and more than half. He argued that this is indicative of

most using a lead-counting strategy (i.e. a similar strategy to OneToOnePlus) which

requires speakers to consistently check what the leading color is. Hackl’s rationale

behind this explanation is that the lead-counting strategy is particularly well-suited

for the Self-Paced Counting paradigm. Still, we have to verify that using distinct

strategies leads to different screen-by-screen reaction times.

Consider the following scenario. As before, subjects are asked to verify sentences

like Most of the dots are blue and More than half of the dots are blue. On screen 2, two

dots are blue and one is yellow. On screen 3, two dots are yellow and one is blue.

Then on screen 4, again, two dots are yellow and one is blue. If subjects are using a

lead-counting strategy, it would be easy for them to react on screen 4 (let’s call it the

target screen), as it is very clear that the target color is leading. However, screen 4
2As we have seen, this is not the only possible verification procedure for most: in fact, Lidz et al.

(2011) argue against a selection procedure, which requires speakers to select all non-blue dots. How-
ever, for the sake of the current argument, it does not matter which procedure for most we compare
more than half with, as none of the procedures for most require dividing the total number of dots in half.

3The change in the leader would probably lead to an increase in reaction time.
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does not facilitate the verification strategy triggered by more than half – if reasoners

rely on a more precise strategy and keeping track of how many dots in each color they

have seen, paying attention to which color is leading in which screen seems excessive.

Then, we would expect that the RTs for most would be lower than for more than half
on screen 4 (the target screen).

Prediction 3. Reaction times on the target screen for most will be significantly lower

than reaction times on the leading screen for more than half.

4.1.3 Participants

Thirty five (8 female, 24 male, 1 genderfluid) subjects were initially recruited for

the study via Prolific.ac, all native speakers of English. They viewed the experiment

in their web browsers, and the average completion time was 14 minutes. Subjects

received £2.50 as compensation. Subsequently, we removed the subjects who spent

less than 10 seconds reading the instructions, resulting in a pool of 33 subjects. Par-

ticipants who had failed to answer correctly on at least 70% of catch trials (trials with

unambiguous answers) had been removed from the study at an earlier stage and did

not receive compensation.

4.1.4 Materials

The experiment consisted of two sections. In the first section, the digit span task

(Schroeder et al., 2012), subjects had to memorize sequences of digits and reproduce

them in reverse order. In the second section, the quantity judgment task, participants

had to compare statements such as Most of the dots are blue and More than half of the
dots are blue against visual stimuli, as in Hackl (2009).

The first task consisted of 14 sequences of digits, ranging from 3 to 9 digits.

Each number of digits appeared twice: there were two 3-digit sequences, two 4-digit

sequences, etc. The sequences were created using a random number generator, but

were the same for all participants. Subjects also saw two practice trials, one consisting

of 2 digits and the other of 3 digits.

The second section consisted of 24 target items: 12 sentences with the quantifier

most and 12 with the quantifier more than half. In each group, 6 of the statements

were true (i.e., when the subjects saw the statement Most of the dots are blue, it was

followed by a visual stimulus that matched that description) and 6 were false. The

visual stimuli consisted of pictures of dots scattered across the screen. All dots had a

radius of 20 pixels and were situated within a grid with 10 rows and 10 columns. Grid

spacing was set to 50 pixels. Dots were scattered in chunks of two or three dots with

their location generated randomly. The number of dots that appeared on the screen

varied between 10, 11, and 12 dots; there were 8 target items in each category (2

false most, 2 true most, 2 false more than half and 2 true more than half). On target

trials, it was never clear whether the statement was true or false until screen 5, the

last screen.
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The color of the dots varied across trials; altogether, four different colors were

used (yellow, blue, red, and green). Each trial only featured dots of two different

colors: for example, if the sentence the subject had to verify was Most of the dots
are yellow, the image would feature dots in yellow and one other color (for instance,

blue). The difference between the true and false conditions was always kept to one

or two dots (depending on whether the total number of dots was odd or even). In

the true condition, if a trial had 12 dots in total, there would be 7 dots in the target

color and 5 in the other color, and vice versa in the false condition. If a trial had 11

dots, there would be 6 dots in the target color and 5 dots in the other color in the

true condition, and vice versa in the false condition. Screen 4 was consistently the

“target” screen on all trials: on this screen, the target color always had an advantage.

For instance, if blue was the target color, and there were 2 blue dots and 1 yellow dot

in the second screen, followed by 1 blue and 2 yellow dots in the third screen, then

the fourth target screen would contain 2 blue and 1 yellow dots.

The experiment also included thirty six fillers – sentences with non-proportional

quantifiers such as At most six of dots are yellow, Some dots are blue, Few dots are green,

etc. There were 18 true and 18 false fillers, and, as with the target items, the total

number of dots varied between 10, 11 and 12 dots, with 12 dots in each category. Of

the 36 fillers, 13 were “catch” trials – unambiguous sentences, for which it was easy

to judge whether they were true or false. Some examples of the catch items are in

(13). Subjects also received three practice items similar to the fillers to familiarize

themselves with the task.

(13) a. More than three dots are yellow.

b. Only six dots are red.

c. Only four dots are blue.

All stimuli were created using the JsPsych library for JavaScript (de Leeuw, 2015)4,

and the circles were drawn using the Snap.svg library.

4.1.5 Procedure

Digit span task

Subjects views stimuli and solved the tasks in their web browsers, answering with

keyboard keys or entering responses into text fields where necessary. In the digit

span task, sequences of digits appeared on their screens, with each digit appearing

on a separate screen for 1000 milliseconds. The break between digits was set to

200 milliseconds. Every sequence was preceded by the “+” sign presented for 250

milliseconds to draw participants’ attention to the upcoming sequence. After seeing

the sequences, subjects were asked to enter it into a text field in reverse order. If they
4See de Leeuw and Motz (2016) for discussion on the reliability of response time measurements

collected using JavaScript relative to standard laboratory software.
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made three mistakes in a row, the task stopped and they proceeded to the quantity

judgment task.

(A) Screen 1 (B) Screen 2 (C) Screen 3

(D) Screen 4 (E) Screen 5

FIGURE 4.1: Sequence of events in a trial

Quantity judgment task

At the beginning of each trial, subjects saw the sentence that they had to verify in

24pt font on their screen. The time of presentation wasn’t limited, and the subjects

had to press the space bar to proceed to the image. In the first screen (see Figure

4.1), only the outlines of the dots were visible. The subjects had to press the space

bar to move through the screens.

When subjects uncovered a new screen, the dots they had previously seen were

covered again. They also weren’t allowed to go back between screens. Participants

were informed that they could respond during any part of the trial by pressing the

“Y” key (for “yes”) on their keyboard if they thought the statement was true or the

“N” key (for “no”) if they thought the statement was false. On some filler trials, they

could indeed answer before reaching the final screen, as the answer became clear

after the second or third screen.

We recorded the information about the time it took the subjects to press a key on

every screen, which key was pressed, and whether their response on every trial was

correct.
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4.1.6 Results

As in Hackl (2009), we only analyzed data from subjects who had at least an 80%

correct response rate; however, no subjects were excluded according to this criterion.

When analyzing reaction times, we only used data from correctly answered trials. We

also followed Hackl in excluding the fifth screen – the screen that varied between the

true and false conditions – from our analysis.

FIGURE 4.2: Overall RTs and percentage of errors per quantifier

Following Hackl (2009), we first analyzed the data in terms of overall accuracy

and reaction times. As can be seen from Figure 4.2, subjects made slightly more

mistakes with most (in 17.9% of all most items) than with more than half (in 13.8%

of all more than half items) – however, this difference was not significant (t(781.66) =

1.5548, p = 0.12). The difference in overall reaction times, on the other hand, was

significant (t(2568.6) = −3.7445, p < 0.01): as shown in Figure 4.2, subjects took

longer to verify more than half than most.
A 2 (Quantifier) × 4 (Screen) repeated-measures ANOVA yielded a significant

main effect of Quantifier (F (1, 32) = 16.14, p < 0.01). No other significant effects

were found, suggesting that on all screens, quantifier more than half took subjects

longer to process than most (see Figure 4.3).

However, parametric tests like the t-test and ANOVA cannot be reliably applied to

our data: we found big differences in mean RTs between subjects and high standard

deviations throughout the experiment (see the Appendix for details).5 For our cur-

rent purposes, we repeated the analysis with non-parametric tests to take the high

variance of our data into account; however, we will explore possible reasons behind

it in section 4.1.7.

Wilcoxon rank-sum test confirmed that reaction times were significantly affected

by quantifier, W = 957740, p < 0.001. We also confirmed that there were no signifi-

cant overall differences in accuracy, W = 81576, p = 0.1204.

We conducted a Kruskal-Wallis test to explore whether there were significant

differences in reaction times per screen. RTs were significantly affected by screen,

H(3) = 140.39, p < 0.001. Focused comparisons of the mean ranks between screens

5This also raises the question about whether the data in Hackl 2009 followed the normal distribution,
and if so, why the subjects behaved differently in our experiment.
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FIGURE 4.3: Reaction times per screen

showed that RTs were not significantly different when screens 2 and 3 were compared

(difference = 103). However, RTs in screen 1 were significantly higher than in screen

2 (difference= 224), screen 3 (difference = 327) and screen 4 (difference = 484). We

also found significant differences in RTs between screen 4 and screen 2 (difference =

260) and between screen 4 and screen 3 (difference = 156).

We further investigated whether there were significant differences in reaction

times between most and more than half on each screen. To do so, we collected

mean reaction times for every subject per every screen, and calculated the difference

between most and more than half. However, no significant results were found (see

table 4.1 for details).

TABLE 4.1: Differences in mean RTs between most and more than half
per screen.

screens result
1-2 W = 551, p = 0.9391
1-3 W = 602, p = 0.4673
1-4 W = 521, p = 0.7695
2-3 W = 618, p = 0.3515
2-4 W = 492, p = 0.5074
3-4 W = 414, p = 0.09565

To investigate the relationship between working memory capacity and accuracy

and RT effects, we assigned a memory score to every subject. The memory score was

equal to the number of digits a subject could reliably remember – i.e., the maximal

number of digits a subject remembered on each trial. If, for instance, she remem-

bered both sequences of 7 digits, and only one sequence of 8 digits, she would re-

ceive score 7. In some cases, subjects were able to remember longer sequences of

digits than their reliable score: for example, they would reliably remember 5-digit

sequences, but could also reproduce one of the two 7-digit strings, one of the two
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8-digit strings, and one of the two 9-digit strings (i.e. one or more sequences in each

category). In these cases, we boosted their memory score by 1 point.

To calculate accuracy effect, we subtracted the number of errors subjects made

when verifying most from the number of errors with more than half. Likewise, to

calculate RT effect, we subtracted each subject’s mean RT for most from their mean

RT for more than half. We found some negative correlation between memory score

and accuracy effect (Pearson’s r = −0.22), suggesting that a higher memory score is

related to lower difference in accuracy between more than half and most. Similarly,

there was some negative correlation between memory score and RT effect (Pearson’s

r = −0.2), which also points to a connection between working memory capacity and

lower processing times for more than half, in line with our predictions.

Further, we found that the total number of dots was a significant factor for overall

accuracy (H(2) = 8.54, p = 0.01398) as well as for reaction time (H(2) = 12.104, p =

0.0023).

FIGURE 4.4: RTs with respect to the number of dots

Subsequently, we analyzed whether the odd condition was significantly different

from the even condition – i.e., whether oddness or evenness of the overall dot number

in a trial affected subjects’ accuracy and RTs. As the distribution of trials between

these two conditions was uneven in our dataset, we first analyzed a subset of our

data that excluded the trials in the 10-dot condition. We found no effects on accuracy

or RTs neither for most, nor for more than half.
We further analyzed a subset of our dataset that only included the 10-dot and

the 11-dot arrays. For more than half, we found an effect of dot number on accuracy

(W = 7854, p = 0.0186) such that subjects made fewer errors in the 10-dot condition;

no effect on reaction time was found. We found no significant effects on accuracy for

most (W = 8052, p = 0.0995). Reaction time was significantly affected by the number
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(A) Accuracy

(B) RTs

FIGURE 4.5: Accuracy and reactions times with respect to dot number
for MOST

of dots (W = 82800, p = 0.0016), as participants verified most faster in the screen

where there were 10 dots. However, there was a confound with the difficulty due to

a higher number of dots in the odd condition; see Discussion for more.

4.1.7 Identifying strategies

We have noted that there is a wide spread of means across of our data, as well as

high standard deviations throughout (see Appendix for mean RTs per participant). At

the same time, the selection procedures we described in this section precluded any

dishonest participants who solved the task at random or didn’t follow the instructions.

This leads us to suspect that the observed differences are actually an indication that

participants did not adhere to one particular strategy while solving the task; instead,

it looks like different subjects approached the problem in different ways. The question

remains whether these differences boil down to distinct verification strategies subjects

used (that is, subjects consistently used one of several possible strategies) or they

mixed and matched strategies as they went through the task.
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(A) Accuracy

(B) RTs

FIGURE 4.6: Accuracy and reactions times with respect to dot number
for MORE THAN HALF

We have noted that the reaction times in the first screen were considerably higher

than in other screens (or than RTs in the first screen in Hackl 2009); we suggested this

might be explained by subjects attempting to estimate the total number of dots (or

count them) before proceeding with the task. However, as we can see from Figure 4.7,

not all participants behaved in this way: while some spent over 3000 milliseconds

looking at the screen, others were fast and took around 500 milliseconds to proceed

to the next screen. Another group was in the middle: subjects who spent around

1000 milliseconds in the first screen on average.

As we’ve argued before, estimating the total number of dots requires additional

executive resources, and is most likely justified when participants need to know pre-

cisely how many blue dots there need to be for a statement like More than half of the
dots are blue to be true. In other words, people who look at the first screen for longer

are probably going to use a more precise strategy.

To explore this intuition, we divided our subjects into three groups based on av-

erage time spent on the first screen: the “counting” group (> 2000 ms) who we

suspect used a precise strategy throughout the whole experiment, the “mixed” group
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FIGURE 4.7: Mean RTs by participant in the first screen

(1000− 2000 ms) who we believe used a mixture of precise and approximative tech-

niques, and the “fast” group (< 1000 ms) who were likelier to use an approximative

strategy.

In the “counters” group (5 subjects), we found that there was a significant differ-

ence in accuracy between most and more than half (W = 2100, p = 0.0148), but no

difference in reaction time (W = 20757, p = 0.4057). Further, no significant effect

of dot number was found either on RT (H(2) = 0.9656, p = 0.6171) or on accuracy

(H(2) = 0.119, p = 0.9422). Note, however, that due to the low number of partic-

ipants, these results are not conclusive, but rather exploratory and indicative of a

potential effect.

In the “mixed” group (9 subjects), we found no effect of quantifier on overall

accuracy (W = 4608, p = 1), but most and more than half differed significantly

in reaction times (W = 81854, p = 0.012). We also found a significant effect of

dot number on overall reaction times (H(2) = 8.9493, p = 0.0113) and accuracy

(H(2) = 7.6839, p = 0.0214).

In the “fast group” (19 subjects), there was no effect of quantifier on accuracy

(W = 26676, p = 0.4694), but it was a significant factor for reaction times (W =

298730, p = 0.00042). We also found that dot number was not significant neither for

accuracy (H(2) = 4.2809, p = 0.1176), nor for reaction time (H(2) = 4.2679, p =

0.1184).
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FIGURE 4.8: Number of errors per quantifier in the “counters” group

4.1.8 Discussion

The results of the present experiment differ in a number of respects from Martin

Hackl’s study. First of all, recall that in Hackl’s 2009 experiment no significant dif-

ferences in RTs and accuracy between most and more than half were found, which,

the author suggested, served as evidence that subjects “treat the two expressions as

essentially equivalent” when they are faced with a self-counting task. In the present

study, however, we have found that overall difference in RTs between the two quanti-

fiers was significant. While this fact alone is not enough to claim that most and more
than half have distinct default verification profiles, it is a starting point to look into

some differences between the verification strategies subjects used in our experiment.

As we have have mentioned previously, there was a consistent increase in reaction

times throughout a trial in Hackl’s experiment: the further subjects went through

screens, the longer it took them to press the relevant key (the space bat or one of the

response keys). In the present study, the picture is quite different: mean reaction time

for all participants together was highest in the first screen, then dropped in screen 2

and remained stable on screen 3, increasing again in screen 4. Although this pattern

is quite different, we will argue that it can be explained by underlying differences

in verification profiles of most and more than half that became more relevant in our

design.

The first screen is particularly interesting not only as the screen on which sub-

jects spent the longest time; it is also characterized by the biggest difference in RTs

between the two quantifiers. One of the possible reasons for this is the presentation

of visual stimuli in our experiment. As we have noted, contrary to Hackl’s setup, the

dots in our study were not located in rows next to each other, but spread around the
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FIGURE 4.9: Reaction times per number of dots in the “mixed” group

screen in chunks of 2-3 dots. This design makes it easier for subjects to count or esti-

mate the total number of dots: to do so in Hackl’s experiment, subjects would have to

visually discern every dot in a row, which would be time-consuming and error-prone,

while estimating that two chunks of 3 dots and two chunks of 2 dots would yield 10

dots is relatively easy. This extra step, however, is not effortless, and the fact that

subjects chose to take it when verifying more than half suggests that this quantifier

employs a more precise verification strategy compared to most.6

Hackl has also argued that the difference in screen-by-screen RTs for most and

more than half is related to the way in which stimuli is presented in the experiment,

with the information being uncovered gradually. Hackl argues that this mode of

presentation is particularly well suited for a lead counting strategy, which he believes

is triggered by most. However, as we have argued above, if indeed such a strategy

is employed, subjects would take advantage of additional cues about the leading

color that we have supplied in the target screen. As we have found no no difference

between the presence or absence of the RT effect (the difference in mean RTs between

most and more than half) on the target screen compared to other screens, it is difficult

to explain why the presentation mode would help subjects implement a lead-counting

strategy, but they would ignore other cues. We will also note that the leading strategy

described by Hackl is reminiscent of the OneToOnePlus strategy that Pietroski and

colleagues discussed among other possible default verification for most. Pietroski

et al. (2009) concluded that it is unlikely that reasoners rely on the OneToOnePlus

strategy, as it would be incompatible with the ANS effects they have found.

The tendency for negative correlation between a subject’s memory score and the

accuracy effect (the difference between how many errors a subject made when verify-

ing more than half and the number of errors she made when verifying most) suggests

6Alternatively, the spike in reaction times in the first screen could have been a spill over, as subjects
were processing the statement they had seen in the previous screen. This, however, is unlikely: no such
effect was found in Experiment 2, even though the designs of the experiments were almost identical.
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that the higher a subject’s working memory capacity was, the fewer mistakes they

made when verifying most. Higher working memory capacity possibly allowed par-

ticipants to use a more precise strategy when verifying most. Similarly, it allowed

reasoners to process more than half faster.

Although the correlation effect is not big enough to make any strong conclusion

about the role of working memory in verification profiles, it is important to note

that the memory scores our subjects received were not consistently reflective of their

working memory capacity. As we did not have control over how honestly participants

followed our instructions, they were free to employ whatever strategy they found

the most efficient when solving the task, including remembering the sequence in

the order that it appeared, putting it into a text field and only then changing the

order, or not even attempting to memorize the sequence and instead writing down

the numbers as they appeared on the screen. To estimate whether any such practices

could have impacted the relationship between memory score and accuracy effect, we

punished the subjects whom we suspected of solving the digit span task dishonestly

by assigning them a score of 5, the mean memory score in our pool. The subjects

we picked solved the entire task without making any errors and initially received

the highest score of 9. This resulted in an even higher negative correlation between

memory and accuracy effect (Pearson’s r = −0.36), on the one hand, and between

memory and RT effect, on the other (Pearson’s r = −0.39).

More investigation into the relationship between working memory and verifica-

tion is needed before any conclusions can be made, but if indeed, as our preliminary

results suggest, higher WM capacity allows for a more precise verification for most,
this would add further evidence that the two quantifiers have different default ver-

ification profiles. If subjects pursue a more thorough strategy for most only when

they have sufficient executive resources, but consistently rely on it when verifying

more than half, we have reasons to believe that precision is not part of the default

verification strategy for most.
Significant differences in accuracy between the odd and even condition suggest

that it’s indeed easier for subjects to verify statements involving most and more than
half when the total number of dots is even. We hypothesized that the total number

of dots is divisible by two, judging how many dots in the target color there need to

be in order for the statement to be true becomes more straightforward. Although

we expected this difference to be relevant only for more than half, it turned out to be

important for verifying most as well. This finding, however, is not conclusive, as there

is a confound of the number of objects subjects had to process: it is possible that the

high accuracy we have observed is simply due to the fact that 10 objects are easier to

count than 11 or 12.

What we can say for sure is that reducing the number of objects makes judg-

ments about truth or falsity of statements about both most and more than half much

easier. In turn, this leads us to suggest that verifying most may also involve precise

techniques, when the conditions are favorable. Indeed, although we suggested that
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more than half requires more precise verification, a perfectly strict division of labor

between the two quantifiers is unlikely – while most exhibits more approximative

patterns and more than half relies more on counting, subjects probably use a combi-

nation of these strategies when they are presented with a quantity judgment task.

We have provided evidence that reasoners in our study did not consistently use

one specific strategy, but instead relied on several possible options. The three main

strategies where we have outlined also have distinct patterns:

1. The “counting” strategy takes equally long to verify most and more than half, as

speakers seem to be precise when verifying both of these quantifiers.

2. The “mixed” strategy requires a longer time to verify more than half, suggesting

that this quantifier is verified with higher precision.

3. The “fast” strategy is also characterized by different reaction times for most and

more than half.

In summary, only Prediction 1 (the effect of working memory capacity on accu-

racy and RT effects) got confirmed. According to Prediction 2, only more than half
would have been affected by the oddness or evenness of the total number of dots,

but instead, we found an effect on both quantifiers. Prediction 3 wasn’t confirmed, as

we found no significant differences in RTs between most and more than half on the

target screen.

While we have discerned some verification patterns that distinguish most and

more than half, it is unlikely that they sum up to default verification profiles. Through-

out our experiment, subjects used a number of different strategies that could have

been chosen based on multiple factors, such as cognitive resources, the type of lin-

guistic input and personal preferences.

Given these considerations, we propose that instead of triggering a default veri-

fication strategy, quantifiers trigger a collection of strategies that can overlap for most
and more than half. This idea has been previously put forward by Suppes (1982),

among others, who proposed treating the meaning of a sentence not just as one

procedure, but as a collection of those. In the next section, we will show that manip-

ulations with the design of the experiment trigger both most and more than half to

rely more on approximation, which further supports our intuition.

4.2 Experiment 2

4.2.1 Motivation

The results of Experiment 1 have provided some support for the claim that most and

more than half trigger different verification strategies. However, as we have discussed

earlier, this does not necessarily imply that the predictions of GQT are incorrect and

that their meanings are inherently different: the relationship between meaning and



Chapter 4. Experiments 37

verification is a complex one. It could imply that most and more than half have

default verification profiles that are distinct from each other – but before we can make

any conclusions about it, we need to ascertain that the differences we discovered in

Experiment 1 are not conditioned on the type of the task the subjects had to solve.

(A) Screen 1 (B) Screen 2 (C) Screen 3

(D) Screen 4 (E) Screen 5

FIGURE 4.10: Sequence of events in the “high” condition.

To follow up on the results of the first study, we will investigate whether the

differences we observed between most and more than half will persevere in a slightly

modified experimental setup that is designed to elicit more ANS-like effects. More

specifically, we will compare the processing of most and more than half against two

conditions: the “low” condition, in which stimuli will contain 11- and 12-dot arrays,

and the “high” condition, in which the total number of dots will vary between 25 and

30 dots (see Figure 4.10).

4.2.2 Predictions

One of the biggest differences between our results from Experiment 1 and Hackl’s

study was the spike in reaction times on the first screen. We suggested this could be

explained by subjects relying on a more precise strategy in our experiment and trying

to estimate or count the total number of dots. In the present study, however, doing so

in the “high” condition would be difficult, and we would expect subjects not to rely

on this strategy systematically.

Prediction 4. We will not observe a spike in RTs in the first screen.
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We have also argued that both most and more than half warrant a combination

of precise and approximative strategies. The former are easier to apply when the

total number of objects subjects have to count is relatively low – recall we have ob-

served that accuracy was significantly higher in the 10-dot condition in the previous

experiment. As the results of Experiment 1 suggest that more than half triggers a

more precise strategy, we expect that reasoners would tend to use it when conditions

are favorable, as it yields more accurate results. At the same time, we expect that

accuracy will be higher in the “high” condition for both quantifiers, as the 3:2 ratio

of colors makes it easier to discriminate and estimate the number of dots. On the

other hand, we have argued that most relies more on approximation even when the

number of dots is relatively small, and we would not expect a significant effect of the

“high”/“low” condition on accuracy in this case.

Prediction 5. Accuracy will be higher in the “high” condition. The difference in

accuracy between “high” and “low” conditions would be greater for more than half.

4.2.3 Participants

Thirty two subjects (11 female, 21 male) were recruited via Prolific.ac. Participants

were native speakers of English and received a compensation of £2.50. All of them

also had success on at least 70% of catch trials. All participants spent over 10 seconds

on the instructions page, and their overall success rate was at least 80%.

4.2.4 Materials

The experiment did not measure subjects’ working memory and only consisted of one

section – the quantity judgment task. Materials were similar to Experiment 1, but the

trial items varied between two conditions: in the “high” condition, trials contained

25 or 30 dots, and in the “low” condition, there were 11 or 12 dots.

There were 32 trial items overall (16 most and 16 more than half), with 8 target

items in each dot array (2 false most, 2 true most, 2 false more than half and 2 true

more than half). As before, the difference between true and false conditions was 1-2

dots in the 11- and 12-dot arrays. In the “high” condition, the ratio of dots in the

target to the dots in the nontarget color (or vice versa when the statement was false)

was 3:2, which is a much easier ratio than the minimum that adults can discriminate

(cf. Pietroski et al. 2009). As before, it wasn’t clear whether the statement was true

or false in the first four screens.

4.2.5 Procedure

As in Experiment 1, subjects viewed the experiment in their web browsers. They had

to press the space bar to uncover the dots. In the “low” condition, two or three dots

were uncovered at a time. In the “high” condition, they were uncovered in chunks

of 6 to 8 dots. When subjects uncovered a new screen, the dots they had previously
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seen were covered again. Participants could respond during any part of the trial by

pressing the “Y” key (for “yes”) on their keyboard if they thought the statement was

true or the “N” key (for “no”) if they thought the statement was false.

4.2.6 Results

FIGURE 4.11: Mean RTs per screen in Experiment 2

As before, all subjects performed successfully on more than 80% of trials, and

none of them needed to be excluded from the analysis.

We found there was no significant difference in overall accuracy between most and

more than half (W = 133910, p = 0.2109), but the quantifiers differed with respect to

overall reaction time (W = 834020, p < 0.001), as most was consistently faster. There

was also a significant effect of screen (H(3) = 316.59, p < 0.001) such that reaction

times increased the further subjects proceeded with the trial (see Figure 4.11).

Next, we looked at the differences in RTs and accuracy between the low and high

conditions. We found that the two conditions differed significantly with respect to

accuracy (W = 146190, p < 0.001) as well as overall reaction time (W = 749240, p <

0.001). Reaction times were higher in trials with the 25- and 30-dot arrays (see Figure

4.13); accuracy, however, was higher in the “low” condition (see Figure 4.12).

Further, we took a closer look at differences in the “low” and “high” conditions

for each quantifier separately. For most, there was a significant difference in accuracy

(W = 28282, p < 0.001), but not in reaction time (W = 459420, p = 0.096). Subjects

made fewer mistakes in the “high” condition.

For more than half, we found a significant difference in accuracy and reaction

time. As in the case with most, accuracy was higher in the “high” (W = 29440, p <
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FIGURE 4.12: Accuracy with respect to overall number of dots in Ex-
periment 2

0.001) conditions, and reaction times were shorter in the “low” condition (W =

502860, p = 0.0032).

To investigate whether gaps in RTs between most and more than half were dif-

ferent across screens in each condition, we collected mean reaction times for every

subject per every screen, and calculated the difference between most and more than
half. We followed this procedure for the “high” and “low” conditions separately. In

the “high” condition, no significant differences were found (H(3) = 2.4547, p = 0.5).

However, in the “low” condition we found that the gaps in RTs across screens were sig-

nificantly different from each other (H(3) = 10.999, p = 0.0117). As shown in Figure

4.15, the difference in RTs between most and more than half was bigger in screen 1

than in other screens, which mirrors our finding from the previous experiment.

4.2.7 Discussion

In line with our prediction, there was no increase in reaction time in the first screen.

Instead, the distribution of RTs per screen was similar to the pattern observed by

Hackl (2009). As Hackl explicitly claims that subjects in his study did not count the

total number of dots in the first screen, our results also suggest that subjects did not

count the total number of dots while solving the tasks. This implies that a more

approximative procedure was used throughout the experiment.

Generally, it appears that the difference between the “high” and “low” conditions

impacted verification of most and more than half to the same extent: the differences
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FIGURE 4.13: RTs with respect to overall number of dots in Experi-
ment 2

we have found between the two conditions were there systematically for both quan-

tifiers. We have observed that both most and more than half took subjects longer

to verify in the “high” condition. Likewise, success rates were higher in the “high”

condition for both quantifiers.

FIGURE 4.14: RTs per screen in the “high” condition of Experiment 2
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The latter finding suggests that subjects were more error-prone when there were

only 11 or 12 dots on the screen (although in both conditions, more than half had

higher accuracy than most). This adds further support to the claim that subjects

adhered to an approximative verification strategy throughout the experiment: in the

“low” condition, the difference between target and non-target color was limited to

one or two dots, while in the “high” condition, the colors were always in a 3:2 ratio –

a ratio that can be reliably discerned by subjects using ANS (cf. Pietroski et al. 2009).

This does not, however, explain the higher reaction times in the “high” condition:

if subjects approximated more, wouldn’t it have take a shorter time to go through

trials? A possible explanation is that, as we have argued in the Discussion section

following Experiment 1, subjects most likely switch between strategies, combining

both precise and approximative techniques. The increased RTs and accuracy in the

“high” condition could be the result of subjects doing just that.

FIGURE 4.15: RTs per screen in the “low” condition of Experiment 2

Finally, we have found that only in the “low” condition the gaps in RTs between

most and more than half were significantly different screen by screen. This offers

further support to our previous conjecture that reasoners tend to use a combination

of precise and approximative strategies when solving a self-paced counting task. If

subjects used a more precise verification strategy in the “low” condition, knowing the

exact number of dots would be more relevant for verifying the meaning of more than
half. That, in turn, would contribute to the differences in RTs between most and more
than half. Conversely, relying on more approximative strategies would make counting

less preferable, which would contribute to the more even distribution of RTs between

most and more than half that we have observed in the “high” condition.

Although further investigation is required to compare strategies triggered by most
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and more than half in each condition, our current results suggest that in Experi-

ment 2, manipulating the total number of dots affected both quantifiers in the same

way: by pushing participants to approximate more. This result provides further ev-

idence to our intuition that most and more than half do not trigger distinct default

verification profiles, and a collection of procedures is available instead.
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5
Conclusion

One of the core issues we have raised in this thesis is the relationship between mean-

ing and verification. According to the procedural approach to semantics, meanings

can be identified with algorithms for determining whether a given natural language

expression is true or not. We have shown that this approach has some empirical

weight: we have summarized results from several experimental studies that support

predictions of semantic automata theory about the involvement of working memory

in proportional quantifier verification.

Still, a growing body of research points to the fact that meaning cannot be com-

pletely equated with verification. Given a particular rendition of truth conditions for

a natural language expression, we cannot guarantee reasoner will always verify that

these conditions are met in a unified way. For instance, the meaning of the quantifier

most can be formalized in Generalized Quantifier Theory as |A∩B| > |A−B|. Even if

this is exactly how all competent speakers interpret most, it’s unlikely that every time

they hear a sentence like Most of the guests brought gifts, they would count the guests

who brought gifts, count those who came empty-handed, and subtract the latter from

the former. Especially since the choice of a verification procedure can depend on so

many factors: the cognitive resources of a reasoner, the nature of the task, even the

mood of the reasoner.

Lidz et al. (2011) and Hunter et al. (2016) propose a compromise between iden-

tifying meaning with verification and completely divorcing the two. They argue that

truth conditions associated with a natural language expression trigger default ver-

ification procedures best suited for judging whether the conditions in question are

met. In line with this idea, Hackl (2009) argues based on experimental evidence that

quantifiers most and more than half have distinct verification profiles. We have noted,
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however, that the interpretation of these results is not that straightforward, as several

confounding factors can interact with the choice of a verification strategy.

As the results of our experiments suggest, there are indeed some differences be-

tween most and more than half – the former tends to rely more on approximation,

and the latter tends to trigger a more precise strategy, but tendency is the key notion

here. These differences do not prevail over the overall patterns we have observed –

instead, the choice of a particular strategy in our task depended on various factors.

We have shown, for example, that both most and more than half were impacted by

individual working memory capacity, the overall number of dots, and the changes in

experimental setup that elicited more approximative procedures.

More importantly, our exploratory analysis of three groups of participants based

on their preferred strategy points to the fact that verification procedures are individ-

ualized and flexible – they depend on the type of the task and input, as well as on

cognitive resources of subjects.

All of these considerations lead us to suggest that instead of triggering a partic-

ular default procedure, each quantifier is associated with a collection of verification

strategies. Among others, this idea has been previously proposed by Suppes (1982),

who made the point that the meaning of a sentence can be treated not just as one

procedure, but as a collection of those. We can expect, then, that some of these

procedures overlap for most and more than half.
Further work needs to be carried out to understand whether this intuition is cor-

rect. One of the motivations for the experiments we have presented was the effect

context could have on the choice of verification strategy: we have argued that, since

subjects had to solve a big number of similar tasks in a row, they could have devel-

oped a cognitive strategy that was the most efficient for the type of task at hand, such

as trading time for accuracy. Although we have changed the original design of Hackl’s

study and manipulated it to elicit more approximation in Experiment 2, both of our

studies were still part of the Self-Paced Counting paradigm. A possible direction for

future research would be to collect empirical evidence from studies that involve mul-

tiple tasks and paradigms. Discerning verification patterns and procedures in this

context would shed more light on what aspects of verification are intrinsic to mean-

ing. Finally, comparing multiple quantifiers within the context of a verification study

would add more clarity as to which verification patterns are shared, and which are

triggered by the meanings of particular quantifiers.
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6
Appendix

Means and standard deviations of participants’ reactions times in Experiment 1

subject quantifier mean sd

101.csv more than half 2860.09 793.31

101.csv most 2807.91 756.53

102.csv more than half 7866.00 702.80

102.csv most 6952.80 1579.63

103.csv more than half 4158.75 1034.06

103.csv most 3663.90 832.24

104.csv more than half 4260.00 2220.21

104.csv most 2485.45 566.21

105.csv more than half 2239.43 330.07

105.csv most 2411.83 715.27

106.csv more than half 1287.33 355.92

106.csv most 1145.00 227.91

107.csv more than half 3071.64 1639.12

107.csv most 2179.50 294.97

108.csv more than half 5074.80 1091.70

108.csv most 3775.00 920.69

109.csv more than half 4168.92 568.62

109.csv most 4732.58 1364.24

110.csv more than half 3180.92 1255.20

110.csv most 2746.17 1234.87

111.csv more than half 10356.09 3042.10
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111.csv most 9835.14 1385.85

112.csv more than half 4716.92 1794.00

112.csv most 4102.64 1486.04

113.csv more than half 3487.25 623.94

113.csv most 3055.38 419.54

114.csv more than half 1683.00 1054.53

114.csv most 2675.43 1095.10

115.csv more than half 4712.50 1626.09

115.csv most 4584.40 1975.22

116.csv more than half 3491.57 1093.69

116.csv most 2857.33 926.75

117.csv more than half 3028.75 700.77

117.csv most 3051.80 643.29

118.csv more than half 2013.00 557.39

118.csv most 2006.73 430.04

119.csv more than half 3816.00 991.01

119.csv most 2867.90 674.95

120.csv more than half 2778.00 746.21

120.csv most 2218.56 183.18

121.csv more than half 4642.55 1121.63

121.csv most 4465.50 953.77

122.csv more than half 4878.40 1828.07

122.csv most 3736.33 1034.45

123.csv more than half 7407.27 3026.72

123.csv most 6846.20 2800.11

124.csv more than half 3790.33 1257.43

124.csv most 3094.09 657.64

125.csv more than half 5039.60 3751.65

125.csv most 3628.30 1279.73

126.csv more than half 2635.11 1760.46

126.csv most 3002.90 1127.80

127.csv more than half 3464.30 522.12

127.csv most 2917.56 386.05

128.csv more than half 2157.50 323.17

128.csv most 1999.91 297.78

129.csv more than half 7620.83 4337.45

129.csv most 5024.11 4547.12

130.csv more than half 2613.33 533.80

130.csv most 2346.75 536.20

131.csv more than half 7414.36 2461.90

131.csv most 6817.00 2676.58

132.csv more than half 4671.18 1960.84
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132.csv most 3579.92 1144.07

133.csv more than half 10733.50 3079.60

133.csv most 11564.00 5460.21

Means and standard deviations of participants’ reactions times in Experiment 2

subject quantifier mean sd

101.csv more than half 2249.52 1725.73

101.csv most 1763.40 1105.68

102.csv more than half 1116.79 845.35

102.csv most 647.80 517.44

103.csv more than half 238.00 119.45

103.csv most 790.81 522.29

104.csv more than half 714.00 441.84

104.csv most 821.08 778.09

105.csv more than half 2863.34 3832.73

105.csv most 2160.80 2065.67

106.csv more than half 436.83 247.03

106.csv most 616.08 321.95

107.csv more than half 1138.36 840.04

107.csv most 1110.77 1185.12

108.csv more than half 854.94 304.93

108.csv most 769.11 368.76

109.csv more than half 828.66 550.47

109.csv most 673.40 293.28

110.csv more than half 803.75 413.55

110.csv most 653.87 202.00

111.csv more than half 1109.82 525.85

111.csv most 2657.73 5360.20

112.csv more than half 798.66 444.66

112.csv most 618.36 243.86

113.csv more than half 1335.47 1782.83

113.csv most 836.93 477.09

114.csv more than half 463.63 137.21

114.csv most 505.61 84.07

115.csv more than half 765.07 739.02

115.csv most 781.82 905.07

116.csv more than half 895.39 404.01

116.csv most 775.43 362.18

117.csv more than half 4885.95 4927.97

117.csv most 4178.63 4560.29

118.csv more than half 1014.04 535.43

118.csv most 930.17 511.55
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119.csv more than half 1661.48 913.65

119.csv most 1564.14 893.65

120.csv more than half 1881.92 1748.27

120.csv most 1327.05 554.46

121.csv more than half 918.29 1069.05

121.csv most 633.75 279.41

122.csv more than half 649.79 292.06

122.csv most 639.96 360.82

123.csv more than half 819.04 363.02

123.csv most 753.50 297.70

124.csv more than half 1071.85 603.95

124.csv most 780.33 487.99

125.csv more than half 1108.15 609.69

125.csv most 1094.41 1960.29

126.csv more than half 1180.05 1986.50

126.csv most 1235.70 1986.09

127.csv more than half 687.28 313.86

127.csv most 651.84 322.32

128.csv more than half 1635.25 1320.93

128.csv most 1066.07 430.50

129.csv more than half 924.13 450.26

129.csv most 966.71 490.83

130.csv more than half 1379.28 740.86

130.csv most 1129.35 727.45

131.csv more than half 751.97 316.56

131.csv most 725.88 324.00

132.csv more than half 1178.23 734.09

132.csv most 1145.13 701.91
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