
Complete axiomatization
of the stutter-invariant fragment of the linear

time µ-calculus

Amélie Gheerbrant

ILLC
Universiteit van Amsterdam

P.O. Box 94242
1090 GE AMSTERDAM

Abstract

The logic µ(U) is the fixpoint extension of the “Until”-only fragment of linear-time temporal logic. It
also happens to be the stutter-invariant fragment of linear-time µ-calculus µ(♦). We provide complete
axiomatizations of µ(U) on the class of finite words and on the class of ω-words. We introduce for this
end another logic, which we call µ(♦Γ), and which is a variation of µ(♦) where the Next time operator
is replaced by the family of its stutter-invariant counterparts. This logic has exactly the same expressive
power as µ(U). Using already known results for µ(♦), we first prove completeness for µ(♦Γ), which finally
allows us to obtain completeness for µ(U).

Keywords: Completeness, Modal fixed-point logics, µ-calculus, Temporal Logic, Stutter-invariance

1 Introduction

Stutter-invariancy is a property that is argued by some authors (see (8)) to be
natural and desirable for a temporal logic, especially in the context of concurrent
systems. Roughly, a temporal logic is stutter-invariant if it cannot detect the ad-
dition of identical copies of a state. The stutter-invariant fragment of linear-time
temporal logic LTL is known to be its “Until”-only fragment LTL(U) and is obtained
by disallowing the use of the “Next” operator (see (10)). It has been extensively
studied and it is widely used as a specification language. Nevertheless, it has been
pointed out (see in particular (3)) that LTL(U) fails to characterize the class of
stutter-invariant ω-regular languages. In order to extend the expressive power of
this framework, while retaining stutter-invariancy, some ways of extending it have
been proposed. In (3), Kousha Etessami proposed for instance the logic SI-EQLTL,

1 I am grateful to Alexandru Baltag, Balder ten Cate, Gaëlle Fontaine and Johan van Benthem for help-
ful comments on earlier drafts. This work was supported by a GLoRiClass fellowship of the European
Commission (Research Training Fellowship MEST-CT-2005-020841).

Gheerbrant

which extends LTL(U) by means of a certain restricted type of quantification over
proposition letters. He showed that SI-EQLTL characterizes exactly ω-regular lan-
guages.

In this paper, we focus on another logic, which we call µ(U) and which is the
fixpoint extension of the “Until”-only fragment of linear-time temporal logic. µ(U)
has exactly the same expressive power as SI-EQLTL (this follows from results in
(5)), which implies that it also characterizes exactly stutter-invariant ω-regular lan-
guages. It is also known that it satisfies uniform interpolation (see (5)), which is
a sign that µ(U) is a well-behaved logic. Here we further contribute to the study
of the logical properties of µ(U) by completely axiomatizing it over the class of
ω-words and over the class of finite words. We introduce for this end another logic,
which we call µ(♦Γ), and which is a variation of µ(♦) where the Next time operator
is replaced by the family of its stutter-invariant counterparts. We use this logic as
a technical tool to show completeness results for µ(U).

Outline of the paper: In Section 2, we recall basic facts and notions about
linear-time µ-calculus µ(♦). We also give a precise definition of the notion of stutter-
invariancy and introduce µ(U), the stutter-invariant fragment of µ(♦). In Section 3,
we introduce the logic µ(♦Γ) and show that µ(U) and µ(♦Γ) have exactly the same
expressive power on finite and ω-words. In section 4, we give axiomatizations of
µ(♦Γ) that we respectively show to be complete on these two classes of structures.
Finally, these results are put to use in Section 5, where we show similar completeness
results for µ(U).

2 Preliminaries

In this section, we introduce the syntax and semantics of linear time µ-calculus
µ(♦). We also recall its axiomatization on some interesting classes of linear orders
and introduce the notion of stutter-invariance.

2.1 Linear time µ-calculus

By a propositional vocabulary we mean a countable (possibly finite) non-empty set
of propositional letters σ = {pi | i ∈ I}.

Definition 2.1 [Syntax of µ(♦)] Let σ be a propositional vocabulary, and let
V = {x1, x2, . . .} be a disjoint countably infinite set of propositional variables. We
inductively define the set of µ(♦)-formulas in vocabulary σ as follows:

φ, ψ, ξ := At | > | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | ♦φ | µxi.ξ

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within the
scope of an even number of negations). We will use νxi.ξ, 2φ, φUψ, Fφ as shorthand
for, respectively, ¬µxi.¬ξ(¬xi), ¬♦¬φ, µy.(ψ ∨ (φ ∧ ♦y)) and µy.(φ ∨ ♦y). We will
also use Gφ as shorthand for ¬F¬φ.

A linear flow of time is a structure L = (W,<), where W is a non-empty set
of points and < is a linear order on W . A linear time σ-structure is a structure

2

Gheerbrant

M = (L, V) where L = (W,R) is a linear flow of time and V : σ → ℘(W) a
valuation. Whenever w ∈ W is a point, we call M, w a pointed σ-structure. Linear
time µ-calculus is usually considered over restricted classes of linear orders. In this
paper, we will only consider it over the following classes of linear flows of time:

• Lω, the class of linear orders of order type ω, i.e., flows of time (W,<) that are
isomorphic to (N, <), where N is the set of natural numbers with the natural
ordering,

• Lfin, the class of finite linear orders,
• the union Lω ∪ Lfin of these two classes

We will often refer to structures based on Lω as ω-words or Lω-structures, to struc-
tures based on Lfin as finite words or Lfin-structures and more generally, to struc-
tures based on L as L-structures.

Definition 2.2 [Semantics of µ(♦)] Given a µ(♦)-formula φ, a structure M =
((W,<), V) and an assignment g : V → ℘(W), we define a subset JφKM,g of M that
is interpreted as the set of points at which φ is true. This subset is defined by
induction in the usual way. Let ImSuc(w), be the set of direct successors of the
point w with respect to <, we only recall:

J♦φKM,g = {w ∈W : JφKM,g ∩ ImSuc(w) 6= ∅}

Jµx.φKM,g =
⋂
{A ⊆W : JφKM,g[x/A] ⊆ A}

where g[x/A] is the assignment defined by g[x/A](x) = A and g[x/A](y) = g(y) for
all y 6= x.

To understand the last clause, consider a µ(♦)-formula φ(x) and a structure
((W,<), V) together with a valuation g. This formula induces an operator F φ

taking a set A ⊆ W to the set {v : (L, V, v) |=φ (x) g[x 7→ A]}. µ(♦) is concerned
with least fixpoints of such operators. If φ(x) is positive in x, the operator F φ is
monotone, i.e., x ⊆ y implies F φ(x) ⊆ F φ(y). Monotone operators F φ always have
a least fixpoint, defined as the intersection of all their prefixpoints:

⋂
{A ⊆W : {v :

(L, V, v) |= φ(x) g[x 7→ A]} ⊆ A}. The formula µx.φ(x) denotes this least fixpoint.
If w ∈ JφKM,g, we write M, w |=g φ and we say that φ is true at w ∈ M under

the assignment g. If φ is a sentence, we simply write M, w |= φ.

Note that the ♦ operator is interpreted as the “Next” operator of temporal logic
and that the temporal operators U and F defined as shorthands have their usual
meaning:

• (L, V, w) |= Fφ iff there exists w′ such that w ≤ w′ and (L, V, w′) |= φ

• (L, V, w) |= φUψ iff there exists w′ such that w ≤ w′, (L, V, w′) |= ψ and for all
w′′ such that w ≤ w′′ < w′, (L, V, w′′) |= φ

Before we give the complete axiomatization of µ(♦) on Lω, Lfin and Lω ∪ Lfin,
let us first recall the axiomatization of the µ-calculus. In the µ-calculus, instead of
considering a linear order <, we consider and arbitrary binary relation R on W .
In this more general context, (W,R) can be an arbitrary graph and we call it a

3

Gheerbrant

frame. 2 The corresponding structures are called Kripke structures. Let RSuc(w) =
{w′ : (w,w′) ∈ R}, the semantics of ♦ is now as follows:

J♦φKM,g = {w ∈W : JφKM,g ∩RSuc(w) 6= ∅}

Definition 2.3 Let σ be a finite propositional vocabulary and φ ∈ µ(♦). We call
BV (φ) and FV (φ) respectively, the set of bound variables in φ and the set of free
variables in φ. The Kozen systemKµ consists of the Modus Ponens, the Substitution
rule, the Necessitation rule and the following axioms and rules:

(i) propositional tautologies,

(ii) ` 2φ↔ ¬♦¬φ (dual),

(iii) ` 2(φ→ ψ)→ (2φ→ 2ψ) (K),

(iv) ` φ[x/µx.φ]→ µx.φ (fixpoint axiom),

(v) If ` φ[x/ψ]→ ψ, then ` µx.φ→ ψ (fixpoint rule)

where x does not belong to BV (φ) and FV (ψ) ∩BV (φ) = ∅.

Theorem 2.4 If φ is a µ(♦)-formula, let Kµ + φ be the smallest set which contains
both Kµ and φ and is closed for the Modus Ponens, Substitution and Necessitation
rules. The following holds:

(i) Kµ is complete with respect to the class of Kripke structures.

(ii) Kµ + ♦φ↔ 2φ is complete with respect to the class of ω-words.

(iii) Kµ + ♦φ→ 2φ + µx.2x is complete with respect to the class of finite words.

(iv) Kµ + ♦φ→ 2φ is complete with respect to the class of finite and ω-words.

Proof. 1 was shown in (13) and the three other completeness results might actually
be derivable from it. But direct (and simpler) proofs for 2 and 3 can be found
respectively in (7) and (4). As regards 4, it follows from 2 and 3 that Kµ + (♦φ↔
2φ) ∨ µx.2x is complete with respect to the class of finite words and ω-words
(we can take here the disjunction of the two axioms, as µx.2x doesn’t contain any
proposition variable or formula schema). So it is enough to show that ` (2φ→ ♦φ)∨
µx.2x follows from µ(♦) + (♦φ→ 2φ). As 2⊥ → µx.2x is valid in the µ-calculus,
it is derivable here, which yields ` 2(φ∧¬φ)→ µx.2x, i.e., ` (2φ∧2¬φ)→ µx.2x

(2 distributing over conjunction), i.e., ` ¬(2φ→ ♦φ)→ µx.2x. 2

2.2 Stutter-invariancy

We will now introduce µ(U), a semantic fragment of µ(♦) extending LTL(U) (linear-
time temporal logic without the Next operator, see (5)). We also provide a precise
definition for the notion of stutter-invariancy and recall that, in terms of expressive
power, µ(U) is exactly the stutter-invariant fragment of µ(♦).

Definition 2.5 [Syntax of µ(U)] Let σ be a propositional vocabulary, and let
V = {x1, x2, . . .} be a disjoint countably infinite set of propositional variables. We

2 Note that on arbitrary graphs, we do not introduce Fφ, Gφ and φUψ as shorthands for µ(♦)-formulas
anymore: as we consider frames instead of linear flows of time, this would not really map the usual meaning
of these temporal operators.

4

Gheerbrant

inductively define the set of µ(U)-formulas in vocabulary σ as follows:

φ, ψ, ξ := At | > | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | φUψ | µxi.ξ

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within the
scope of an even number of negations). We will use νxi.ξ, Fφ and Gφ as shorthand
for, respectively, ¬µxi.¬ξ(¬xi), >Uφ and ¬(>U¬φ).

Note that the temporal operators F and G defined as shorthand have their
usual meaning. We interpret µ(U)-formulas in the same type of structures as µ(♦)-
formulas, i.e., structures of the form M = (L, V) where L ∈ Lfin ∪ Lω.

Definition 2.6 [Semantics of µ(U)] Given a µ(U)-formula φ, a structure M =
((W,<), V) and an assignment g : V → ℘(W), we define a subset JφKM,g of M that
is interpreted as the set of points at which φ is true. This subset is defined by
induction in the usual way. We only recall:

JφUψKM,g = {w ∈W : ∃w′ ≥ w,w′ ∈ JψKM,g and ∀w ≤ w′′ < w,w′′ ∈ JφKM,g}

Jµx.φKM,g =
⋂
{A ⊆W : JφKM,g[x/A] ⊆ A}

where g[x/A] is the assignment defined by g[x/A](x) = A and g[x/A](y) = g(y) for
all y 6= x.

In the remaining, we always assume L ∈ {Lω,Lfin,Lfin ∪ Lω}.

Definition 2.7 [Stuttering] Let σ be a propositional signature, and M = ((W,<
), V, w), M′ = ((W ′, <), V ′, w′) L-structures in vocabulary σ. We say that M′ is a
stuttering of M if and only if there is a surjective function s : W ′ →W such that

(i) s(w′) = w

(ii) for every wi, wj ∈W ′, wi < wj implies s(wi) ≤ s(wj)
(iii) for every wi ∈W ′ and p ∈ σ,wi ∈ V ′(p) iff s(wi) ∈ V (p)

We say that a L-structure M is stutter-free relative to L whenever for all M′ such
that M is a stuttering of M′, M′ is isomorphic to M.

Let for instance M, w be an ω-word in vocabulary {p} with V (p) = W . M, w is
stutter-free relative to Lω, but it is not stutter-free relative to Lfin∪Lω. Indeed, let
M′, w′ be a finite word in vocabulary {p} containing one single point w′. Assume
V ′(p) = {w′}, then M, w is a stuttering of M′, w′ and relative to Lfin ∪ Lω, M′, w′

is stutter-free, while M, w is not.

Definition 2.8 [Stutter-Invariant Class of Structures] Let σ be a propositional
signature and K a class of L-structures in vocabulary σ. Then K is a stutter-
invariant class iff for every L-structure M in vocabulary σ and for every L-stuttering
M′ of M, M ∈ K⇔M′ ∈ K.

We say that a sentence φ is stutter-invariant relative to L whenever the class
of L-structures in which φ is satisfied is stutter-invariant. Every µ(U)-sentence is
stutter-invariant relative to L (see (5)). To see that it is not possible in µ(U) to

5

Gheerbrant

define ♦φ, it is hence enough to observe that the sentence ♦p is not stutter-invariant.
Also, considering a L-structure M, w, there is always a unique (up to isomorphism)
M′, w′ which is stutter-free relative to L and such that M, w is a stuttering of M′, w′.
Observe that it follows that if a µ(U)-formula is satisfiable in some L-structure, it
is also satisfiable in a L-structure which is stutter-free relative to L. Additionally,
on L, we can show that µ(U) is exactly the stutter-invariant fragment of µ(♦):

Theorem 2.9 Let φ be a µ(♦)-sentence which is stutter-invariant relative to L.
Then, there exists a µ(U)-sentence φ∗ which is equivalent to φ on L-structures.

Proof. The proof can be found in (5). 2

3 The logic µ(♦Γ)

In this Section, we introduce the logic µ(♦Γ) and we show that, as far as expressivity
is concerned, it is a fragment of µ(♦). More precisely, we show that µ(♦Γ) has
exactly the same expressive power as µ(U). In the last Sections, we will see that
µ(♦Γ) can be used as a very convenient tool to show completeness results for µ(U).

µ(♦Γ) is a variation of µ(♦) where instead of the regular ♦ modality, we consider
the family of its stutter-invariant counterparts. For each finite set Γ of µ(♦Γ)-
formulas, we consider a ♦Γ operator which intuitively means “at the next distinct
point with respect to Γ” (i.e., distinct with respect to the values it assigns to the
formulas in Γ). To design this operator, we took inspiration from (3), where a
“next distinct” operator was mentioned in passing. This operator was interpreted
in σ-structures as our ♦σ operator. In order to obtain a well-behaved operator, we
relativize it here to any finite set Γ of formulas. This gives rise to a better-behaved
logic, where we can define a natural notion of substitution and where the truth of
σ-formulas in σ-structures is preserved in σ+-expansions of these structures (with
σ+ ⊇ σ).

We interpret µ(♦Γ)-formulas in the same type of structures as µ(♦)-formulas,
i.e., structures of the form M = (L, V) where L ∈ Lfin ∪ Lω. For any finite set of
µ(♦Γ)-formulas and for any points w,w′, we write w ≡Γ w

′ if w and w′ satisfy the
same formulas in Γ.

Definition 3.1 Let σ be a finite propositional signature, and let V = {x1, x2, . . .}
be a disjoint countably infinite stock of propositional variables. We inductively
define the set of µ(♦Γ)-formulas as follows:

φ, ψ, ξ := At | > | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | ♦Γφ | µxi.ξ

where At ∈ σ ∪ V, Γ is a finite set of µ(♦Γ)-formulas and, in the last clause, xi
occurs only positively in ξ (i.e., within the scope of an even number of negations).
We use 2Γφ and νxi.ξ(xi) as shorthand for ¬♦Γ¬φ and ¬xiµ¬ξ(¬xi), respectively.
We interpret µ(♦Γ)-formulas as µ(♦)-formulas, except that:

(L, V, w) |= ♦Γφ if ∃w′ > w such that w 6≡Γ w
′, ∀w′′ with w < w′′ < w′, w′′ ≡Γ w

and (L, V, w′) |= φ

We write V oc(φ) for the vocabulary of φ and V oc(Γ) for
⋃
φ∈Γ V oc(φ). Note

6

Gheerbrant

that we include in the vocabulary of a formula all the proposition letters occurring
in it, including those which occur in the formulas contained in the sets Γ indexing
its modalities. This remark particularly matters for the notion of substitution,
as whenever a formula is to be uniformly substituted for a proposition letter, the
operation has to be done everywhere, including in the formulas contained in the sets
indexing the modalities. Otherwise, validity would not be preserved by uniform
substitution. Consider for instance (p ∧ ♦{p}>) → ♦{p}¬p. It is clear that this
formula is valid and that for any µ(♦Γ)-formula φ, |= (φ ∧ ♦{φ}>) → ♦{φ}¬φ also
holds. But it is also very clear that 6|= (φ ∧ ♦{p}>)→ ♦{p}¬φ.

We will now provide a way to compare µ(♦Γ) and µ(U), by defining two recursive
procedures transforming each formula from one language into an equivalent formula
from the other language.

Definition 3.2 Let Γ = {φ0, . . . , φn−1} be a finite set of µ(♦Γ)-formulas. Whenever
Γ 6= ∅, we define BΓ as the set of all possible mappings Γ → {⊥,>}, and for each
g ∈ BΓ, we let βg be the formula α0 ∧ . . . ∧ αn−1 where αj = φj if g(φj) = > and
αj = ¬φj if g(φj) = ⊥. By convention, we set {βg|g ∈ B∅} = {⊥,>}. 3

Definition 3.3 [µ(U)-translation of a µ(♦Γ)-formula] Let φ be µ(♦Γ)-formula, we
recursively define its µ(U)-translation φµ(U) via the following procedure. Atµ(U) =
At, (¬φ)µ(U) = ¬φµ(U), (φ ∧ ψ)µ(U) = φµ(U) ∧ ψµ(U), (µx.φ)µ(U) = µx.φµ(U), and
(♦Γφ)µ(U) =

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ φµ(U))).

Proposition 3.4 Let L ∈ {Lω,Lfin,Lω ∪ Lfin} and φ be a µ(♦Γ)-formula, φ and
φµ(U) are equivalent on L-structures.

Proof. We show that a class of σ-structures based on Lfin ∪ Lω, is definable by a
µ(♦Γ)-formula if and only if it is definable by its µ(U)-translation. As µ(U) and
µ(♦Γ)-formulas define only stutter-invariant classes of structures, it is enough to
show that ♦Γφ and

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ φµ(U))) are satisfied in the same stutter-
free σ-structures. So let ((W,<), V, w) be a stutter-free σ-structure (by induction
hypothesis, we assume the property holds for φ, φµ(U)).

Assume ((W,<), V, w) |= ♦Γφ, i.e., there exists w′ > w such that w 6≡Γ w
′ and

∀w′′ with w < w′′ < w′, w′′ ≡Γ w and ((W,<), V, w′) |= φ. So there are g 6= g′ ∈ BΓ

such that M, w |= βg and there exists w′ > w with ((W,<), V, w′) |= βg′ ∧φµ(U) and
for all w′′ such that w ≤ w′′ < w′, ((W,<), V, w′′) |= βg. By induction hypothesis,
((W,<), V, w) |=

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ φµ(U))).
Assume ((W,<), V, w) |=

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ φµ(U))). So there are g 6= g′

such that βgU(βg′ ∧ φµ(U)), i.e., there exists w′ such that w ≤ w′, ((W,<), V, w′) |=
βg′ ∧ φµ(U) and for all w′′ such that w ≤ w′′ < w′, ((W,<), V, w′′) |= βg. As g 6= g′,
also w 6≡Γ w

′. By induction hypothesis, ((W,<), V, w) |= ♦Γφ. 2

Definition 3.5 [µ(♦Γ)-translation of a µ(U)-formula] Let φ be µ(U)-formula in
vocabulary σ, we recursively define its µ(♦Γ)-translation φµ(♦Γ) via the following
procedure. Atµ(♦Γ) = At, (¬φ)µ(♦Γ) = ¬φµ(♦Γ), (φ ∧ ψ)µ(♦Γ) = φµ(♦Γ) ∧ ψµ(♦Γ),
(µx.φ)µ(♦Γ) = µx.φµ(♦Γ), and (φUψ)µ(♦Γ) = µx.(ψµ(♦Γ) ∨ (φµ(♦Γ) ∧ ♦σx)).

3 We adopt this convention because we allowed Γ to be empty (see the instantiation of Axiom 7 where
Γ = ∅, our convention will guaranty that ♦∅φ, which is not satisfiable, is also inconsistent), but we could
also have required that Γ 6= ∅.

7

Gheerbrant

Proposition 3.6 Let L ∈ {Lω,Lfin,Lω ∪ Lfin} and φ be a µ(U)-formula, φ and
φµ(♦Γ) are equivalent on L-structures.

Proof. We show that a class of σ-structures based on Lfin ∪ Lω, is definable by a
µ(U)-formula if and only if it is definable by its µ(♦Γ)-translation. As µ(U) and
µ(♦Γ)-formulas define only stutter-invariant classes of structures, it is enough to
show that φUψ and µy.(ψµ(♦Γ) ∨ (φµ(♦Γ) ∧ ♦σy)) are satisfied in the same stutter-
free σ-structures. So let ((W,<), V, w) be a stutter-free σ-structure (by induction
hypothesis, we assume the property holds for φ, φµ(♦Γ) and ψ, ψµ(♦Γ) respectively).

Assume ((W,<), V, w) |= φUψ. This means either that w satisfies ψ, or w

satisfies φ and it is separated from some subsequent w′ satisfying ψ by a finite
sequence of points which all satisfy φ. As the model is stutter-free, each point in the
sequence which follows w is the next distinct point from its immediate predecessor
relative to the whole vocabulary σ. For suppose v is a non immediate successor of
v′ and v′ is the next distinct point from v relative to σ. Then for every v′′ satisfying
v < v′′ < v′, v and v′ satisfy the same proposition letters in τ , which contradicts
the stutter-freeness of the model. So, by induction hypothesis, ((W,<), V, w) |=
µx.(ψµ(♦Γ) ∨ (φµ(♦Γ) ∧ ♦σx)), because µx.(ψµ(♦Γ) ∨ (φµ(♦Γ) ∧ ♦σx)) states that the
current state belongs to the least fixpoint which contains all the points satisfying
ψµ(♦Γ), together with all the points that satisfy φµ(♦Γ) and which are immediate
predecessors of a point which is already in the fixpoint.

Assume µx.(ψµ(♦Γ) ∨ (φµ(♦Γ) ∧ ♦σx)), i.e., w belongs to the least fixpoint which
contains all the points satisfying ψµ(♦Γ), together with all the points that satisfy
φµ(♦Γ) and which are immediate predecessors of a point which is already in the
fixpoint. This means that either w satisfies ψµ(♦Γ), or it satisfies φµ(♦Γ) and it is
separated from some subsequent w′ satisfying ψµ(♦Γ) by a finite sequence of successor
points which all satisfy φµ(♦Γ) and by induction hypothesis, ((W,<), V, w) |= φUψ.2

Corollary 3.7 µ(U) and µ(♦Γ) have the same expressive power on the class of
finite and ω-words.

Proof. Follows from Propositions 3.4 and 3.6. 2

Remark 3.8 It follows that ♦Γ can be used as shorthand either in µ(♦) or in µ(U),
that U can be used as shorthand in µ(♦Γ) and that µ(♦Γ) is definable as a semantic
fragment of µ(♦). In the remaining of the paper, this will be assumed.

4 Complete axiomatization of µ(♦Γ)

In this Section, we show some completeness results for the logic µ(♦Γ). We will use
them in the next Section as a tool to obtain similar results for the logic µ(U).

Proposition 4.1 Let φ be a µ(♦Γ)-formula in vocabulary σ containing no free oc-
currence of the variable x. On the class of finite and ω-words, the following formulas
are equivalent:

•
∨
g∈Bσ

(βg ∧ µx.((¬βg ∧ φ) ∨ (βg ∧ ♦σx))
•

∨
g∈Bσ

(βg ∧ µx.((¬βg ∧ φ) ∨ (βg ∧ ♦x))
• ♦σφ

8

Gheerbrant

Proof. Recall that U can be defined as shorthand in µ(♦Γ). We already noted in
Section 2 and in Proposition 3.6 that on linear orders, the formulas φUψ, µx.(ψ ∨
(φ ∧ ♦x)) and µx.(ψ ∨ (φ ∧ ♦σx)) are equivalent. We also noted in Proposition 3.4
that in this context, the formulas ♦σφ and

∨
g∈Bσ

(βg∧βgU(¬βg∧φ)) are equivalent.
The Proposition follows. 2

Definition 4.2 Kµ(♦Γ) consists of the Modus Ponens, for each Γ, the corresponding
Necessitation rule (i.e., if ` φ, then ` 2Γφ), the Modus Ponens, the Substitution
rule and the following axioms and rules:

(i) propositional tautologies,

(ii) ` 2Γφ↔ ¬♦Γ¬φ (dual),

(iii) ` ♦Γφ→ 2Γφ (linearity),

(iv) ` 2Γ(φ→ ψ)→ (2Γφ→ 2Γψ) (K),

(v) ` φ[x/µx.φ]→ µx.φ (fixpoint axiom),

(vi) If ` φ[x/ψ]→ ψ, then ` µx.φ→ ψ (fixpoint rule)

(vii) ` ♦Γφ ↔
∨
g∈BΓ

(βg ∧ µx.((¬βg ∧ φ) ∨ (βg ∧ ♦σx))), where V oc(♦Γφ) ⊆ σ

(inductive meaning of ♦Γ),

for each finite set Γ = {φ0, . . . , φn−1} of µ(♦Γ)-formulas and where in the three last
Axioms, x does not belong to BV (φ) and FV (ψ) ∩BV (φ) = ∅.

Lemma 4.3 Axiom 7 is sound on the class of finite and ω-words.

Proof. Let σ be a finite vocabulary, Γ a finite set of µ(♦Γ)-formulas and φ a µ(♦Γ)-
formula with V oc(♦Γφ) ⊆ σ and x /∈ FV (φ). As µ(♦Γ) define only stutter-invariant
classes of structures, we can consider a stutter-free σ-model M with w ∈M and it
is enough to show that the following are equivalent:

(i) M, w |= ♦Γφ

(ii) M, w |=
∨
g∈BΓ

(βg ∧ µx.((¬βg ∧ φ) ∨ (βg ∧ ♦σx)))

As for Lemma 4.1, this follows from what was observed in Section 2 and 3.
2

Theorem 4.4 Kµ(♦Γ) is complete for µ(♦Γ) with respect to the class of ω-words
and with respect to the class of finite and ω-words.

Proof. Let φ be a Kµ(♦Γ)-consistent formula in vocabulary σ. By Axiom 7, we can
restrict our attention to σ-formulas containing only ♦σ modalities. Again by Axiom
7, we can define a recursive procedure transforming φ into a Kµ(♦Γ)-equivalent
formula φ′. We set At′ = At, (¬φ)′ = ¬φ′, (φ ∧ ψ)′ = φ′ ∧ ψ′, (µx.φ)′ = µx.φ′, and
(♦σφ)′ =

∨
g∈Bσ

(βg∧µy.((¬βg∧φ′)∨(βg∧♦σy))). Consider now the µ(♦)-formula φ′′,
which we define as the result of removing in φ′ all the subscripts of the modalities.
We claim that φ′′ is Kµ + ♦φ → 2φ-consistent. For suppose not. Then, there
exists a proof of ¬φ′′ using the axioms and rules of Kµ + ♦φ→ 2φ. Now, replace
every occurrence of the operator ♦ by ♦σ in each axiom and rule used in the proof.
The result is a correct Kµ(♦Γ)-proof, where only correct axioms and rules of Kµ(♦Γ)

are used (because the Kµ + ♦φ→ 2φ axioms and rules can be obtained from the

9

Gheerbrant

Kµ(♦Γ) ones simply by removing the indexes of the modalities). Additionally, this
is a proof of the formula ¬φ′ (as the original φ′ can also be obtained from φ′′ by
adding the subscript σ to every ♦ in φ′′). But this contradicts the fact that φ′ was
Kµ(♦Γ)-consistent. So φ′′ is Kµ + ♦φ→ 2φ-consistent. By Theorem 2.4, there is an
ω-word or a finite word M such that M, w |= φ′′ and it follows from Proposition 4.1
that M, w |= φ′, i.e., M, w |= φ. Completeness with respect to the class of ω-words
follows too, because every finite word has an ω-word stuttering. 2

Theorem 4.5 Kµ(♦Γ) + µx.2Γx is complete for µ(♦Γ) with respect to the class of
finite words.

Proof. We can apply the same reasoning as for the proof of Theorem 4.5, using
completeness of Kµ + ♦φ→ 2φ + µx.2x on finite words, instead of completeness
of Kµ + ♦φ→ 2φ on finite and ω-words. 2

Let M be an ω-word. We say that M is a pseudo-finite word whenever there
exists a finite word M′ such that M is a stuttering of M′. Note thatKµ(♦Γ) + µx.2Γx

is also complete for µ(♦Γ) with respect to the class of finite and pseudo-finite words,
as every pseudo-finite word is the stuttering of a finite word.

Remark 4.6 Axiom 7 is not derivable from the other axioms and rules. Otherwise,
every 2Γ would simply be interpreted as the regular 2 operator of µ(♦). Now, more
precisely, let K−7

µ(♦Γ) be the smallest set of µ(♦Γ)-formulas which is closed under all
axioms and rules in Kµ(♦Γ), except Axiom 7. Suppose Axiom 7 is derivable in
K−7
µ(♦Γ). Then, K−7

µ(♦Γ) would be complete with respect to the class of ω-words.

Therefore, as on ω-words |= (p ∧ ♦{p}>)→ ¬p, also in K−7
µ(♦Γ), ` (p ∧ ♦{p}>)→ ¬p

and there would exists a K−7
µ(♦Γ)-proof of this formula. But now we could replace in

that proof, every modal operator by the regular ♦ operator. This would be a correct
Kµ + ♦φ→ 2φ-proof of (p∧♦>)→ ¬p. But as on ω−words, 6|= (p∧♦>)→ ¬p,
this contradicts the completeness of Kµ(♦) + ♦φ→ 2φ. It follows that Axiom 7 is
not derivable in K−7

µ(♦Γ).

5 Complete axiomatization of µ(U)

Recall that LTL(U) is the fragment of µ(U) where the µ-operator is disallowed.
In (9), the authors propose an axiomatization of LTL(U) which is complete on
the class of ω-words and finite words. In order to axiomatize µ(U), we extend
here the Axioms and rules in (9) with the usual fixpoint rule and Axiom, together
with an additional axiom accounting for the way the Until operator and the µ-
operator can interact together. Using the completeness result in (9), together with
the completeness of Kµ(♦Γ), this allows to derive a similar completeness Theorem
for µ(U). Recall that, in µ(U), we use Gφ as shorthand for ¬(>U¬φ) and ♦τ as
shorthand for

∨
g∈Bτ

βg ∧ (βgU(¬βg ∧ φ)).

Definition 5.1 The Kµ(U) system consists of the Modus Ponens, the G Necessita-
tion rule (i.e., if ` φ, then ` Gφ) the Substitution rule and the following axioms and
rules (these rules, as well as Axioms 1 to 9, are borrowed from (9)):

(i) propositional tautologies,

10

Gheerbrant

(ii) The Until operator is non strict:
` φ→ ⊥Uφ,

(iii) For any consistent formula there exists a model that is a discrete linear order:
• ` Fφ→ ¬φUφ,
• ` φ ∧ Fφ→ ¬ψU(φ ∧ φU(¬φUψ)),

(iv) Properties that hold throughout a computation hold at the initial state:
` Gφ→ φ,

(v) Conventional logical deduction holds within individual states (K axiom):
• ` (G(φ→ ψ)→ (φUξ → ψUξ))
• ` (G(φ→ ψ)→ (ξUφ→ ξUψ))

(vi) Persistence of an Until formula until its second argument is satisfied:
` φUψ → (φUψ)Uψ

(vii) Immediacy of satisfaction of an Until formula at the current state:
` φU(φUψ)→ φUψ

(viii) States of the time line are not skipped over in evaluating an Until formula:
` φUψ ∧ ¬(ξUψ)→ φU(φ ∧ ¬ξ)

(ix) Models are linearly ordered:
` φUψ ∧ ξUθ → ((φ ∧ ξ)U(ψ ∧ θ) ∨ (φ ∧ ξ)U(ψ ∧ ξ) ∨ (φ ∧ ξ)U(φ ∧ θ))

(x) ` φ[x/µx.φ]→ µx.φ, (fixpoint axiom),

(xi) If ` φ[x/ψ]→ ψ, then ` µx.φ→ ψ (fixpoint rule),

(xii) ` µx.(ψ ∨ (φ∧♦σx))↔ φUψ, where V oc(φ)∪ V oc(ψ) ⊆ σ (inductive meaning
of U),

where in the three last Axioms, x does not belong to BV (φ)∪BV (ψ) and FV (ψ)∩
BV (φ) = ∅.

Lemma 5.2 The µ(U)-translations of the axioms and rules of Kµ(♦Γ) are derivable
in Kµ(U).

Proof. Except for the µ(U)-translation of the fixpoint Axiom and of the fixpoint
rule (which are both trivially derivable from Kµ(U), as they also belong to it), as well
as Axiom 7, there is no explicit occurrence of the µ-operator in the µ(U)-translation
of the Axioms and rules of Kµ(♦Γ). As they are sound on the class of ω-words
and finite words, by the completeness Theorem in (9), together with Proposition
3.4, they are derivable in LTL(U). It follows that they are also derivable in Kµ(U),
because the Axioms and rules of Kµ(U) simply extend those of LTL(U).

Now consider the µ(U)-translation of Axiom 7:∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ φ))

↔∨
g∈BΓ

(βg ∧ µy.((βg ∧ φ) ∨ (¬βg ∧
∨

g′∈Bσ

(βg′ ∧ βg′U(¬βg′ ∧ y)))))

This formula is derivable from propositional tautologies, together with the sub-
stitution rule and Axiom 12 of Kµ(U) ` µy.(ψ∨(φ∧♦σx))↔ φUψ (which is actually

11

Gheerbrant

shorthand for ` µy.(ψ ∨ (φ ∧
∨
g∈Bσ

(βg ∧ βgU(¬βg ∧ y)))) ↔ φUψ). Finally, let us
point out that the restriction of our axioms and rules to LTL(U)-formulas is actu-
ally slightly stronger than the axiomatization proposed in (9). The authors chose
to prefix all their modal axioms and rules by G and to allow the generalization rule
only on propositional tautologies (our generalization rule is a derived rule in their
framework). But our axioms and rule being sound, it is safe to use the completeness
of their system as we do here. 2

Corollary 5.3 Kµ(U) is complete for µ(U) with respect to the class of ω-words.

Proof. Let φ be a Kµ(U)-consistent formula. Now let φ′ be the µ(♦Γ)-translation of
φ. By Lemma 5.2, φ′ is Kµ(♦Γ)-consistent and so, by Theorem 4.4, φ′ is satisfied in
some ω-word M, w. By Proposition 3.6, φ and φ′ are equivalent on ω-words. Hence
also M, w |= φ. 2

Corollary 5.4 Kµ(U) + µy.2Γy is complete for µ(U) with respect to the class of
finite words.

Proof. Similarly follows from Proposition 3.6, Theorem 4.5 and Lemma 5.2. 2

Remark 5.5 Let K−12
µ(U) be the smallest set of µ(U)-formulas which is closed under

all axioms and rules in Kµ(U) except Axiom 12. Axiom 12 is not derivable in
K−12
µ(U). Observe that the µ(♦)-translation of every axiom and rule of K−12

µ(U) is sound
when instantiated by µ(♦)-formulas and that, by completeness of µ(♦), their µ(♦)-
translations are also derivable in µ(♦). So if Axiom 12 was derivable in K−12

µ(U), its
µ(♦)-translation would be also derivable (and hence, valid) in Kµ + ♦φ → 2φ.
But let M be a finite word in vocabulary {p} with W = {w0, w1, w2}, wi < wi+1

and V (p) = w2. Obviously M, w0 |= µx.(p∨ (♦♦p∧♦{p}x)), but M, w0 6|= (♦♦p)Up,
i.e., M, w0 6|= µx.(p ∨ (♦♦p ∧ ♦{p}x))↔ (♦♦p)Up.

6 Complexity

It is known that LTL(U) is PSPACE complete both for model checking and for
satisfiability (c.f. (2)). It is also know that µ(♦) is PSPACE complete both for
model checking and for satisfiability (c.f. (12)). So PSPACE completeness follows
for µ(U) in both cases. This is another argument in favor of µ(U): while much more
expressive than LTL(U), it has the same complexity.

7 Conclusions and future works

In this paper, we studied the logic µ(U). We introduced for that purpose the logic
µ(♦Γ) as a technical tool in order to easily obtain completeness results for µ(U). In
(5), we used an even simpler trick to show that µ(U) satisfies uniform interpolation.
A number of other interesting logical properties of µ(U) remain to be investigated.
In particular, we could examine counterparts of the Los Tarski Theorem and of the
Lyndon Theorem, which the µ-calculus was shown in (1) to satisfy.

The method that we used here in order to show completeness results could also
be reused in other contexts. It could for instance be applicable to the extension

12

Gheerbrant

of µ(U) with past tense operators or to the µ-calculus on trees (either finite or
infinite). It should be noted, though, that on (especially infinite) trees, there is
still no general consensus on the appropriate notion of stuttering and that it is
questionable whether the “Until only” fragment and the stutter-invariant fragment
of the µ-calculus actually coincide (see (6)). Still, the situation is simpler with
respect to stuttering in the case of finite trees than in the case of infinite trees. A
further generalization would be to consider finite game trees, which actually carry
a bit more structure than plain finite trees. In the context of game equivalence, the
notion of stuttering could indeed constitute an interesting alternative to the notion
of bisimulation (for a discussion see (11)).

References

[1] D’Agostino, G. and M. Hollenberg, Logical Questions Concerning the µ-
Calculus: Interpolation, Lyndon and Lös-Tarski, Journal of Symbolic Logic
65 (2000), pp. 310–332.

[2] Demri, S. and P. Schnoebelen, The complexity of propositional linear temporal
logics in simple cases, Information and Computation 174 (2002), pp. 84–103.

[3] Etessami, K., Stutter-Invariant Languages, omega-Automata, and Temporal
Logic, in: N. Halbwachs and D. Peled, editors, Proceedings of CAV (1999), pp.
236–248.

[4] Fontaine, G. and B. ten Cate, An easy completeness proof for the modal µ-
calculus on finite trees, in: Proceedings of FICS09, 2009.

[5] Gheerbrant, A. and B. ten Cate, Interpolation for Linear Temporal Languages,
in: E. Grädel and R. Kahle, editors, Proceedings of CSL09 (2009), pp. 287–301.

[6] Gross, R., “Invariance under Stuttering in Branching-Time Temporal Logic,”
Master’s thesis, Israel Institute of Technology, Haifa (2008).

[7] Kaivola, R., “Using Automata to Characterise Fixed Point Temporal Logics,”
Ph.D. thesis, University of Edinburgh (1997).

[8] Lamport, L., What Good is Temporal Logic?, in: R. E. A. Mason, editor,
Proceedings of the IFIP 9th World Computer Congress (1983), pp. 657–668.

[9] Moser, L. E., P. M. Melliar-Smith, G. Kutty and Y. S. Ramakrishna, Com-
pleteness and soundness of axiomatizations for temporal logics without next,
Fundamenta Informatica 21 (1994), pp. 257–305.

[10] Peled, D. and T. Wilke, Stutter-invariant temporal properties are expressible
without the next-time operator, Inf. Process. Lett. 63 (1997), pp. 243–246.

[11] van Benthem, J., Extensive games as process models, Journal of Logic, Lan-
guage and Information 11 (2002), pp. 289–313.

[12] Vardi, M. Y., A temporal fixpoint calculus, in: Proceedings of POPL, 1988, pp.
250–259.

[13] Walukiewicz, I., A note on the completeness of Kozen’s axiomatization of the
propositional µ-calculus, The Bulletin of Symbolic Logic 2 (1996).

13

	Introduction
	Preliminaries
	Linear time -calculus
	Stutter-invariancy

	The logic ()
	Complete axiomatization of ()
	Complete axiomatization of (U)
	Complexity
	Conclusions and future works

