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Abstract

This thesis discusses the problem of logical omniscience, a defect of standard epistemic and
doxastic logics which – unrealistically – predict that agents know/believe all consequences of
their knowledge/beliefs. We first give a detailed account of the problem, argue for its impor-
tance and describe the kind of solution we are interested in. More specifically, we attach great
value to the ability of real-life agents to engage in bounded reasoning. Then, once we pro-
vide the appropriate background notions from Dynamic Epistemic Logic, we continue with a
comprehensive review of selected approaches to the problem. In doing so, certain criteria are
flagged, in order to assess these attempts on a solid ground. Keeping these remarks in mind,
we proceed with our own proposals against the problem, in hope of overcoming the challenges
emphasized in the critical survey. These proposals prioritize the need to take reasoning steps
in order to attain knowledge or belief. First, we improve step-wise solutions to the problem by
providing two frameworks, RW, that captures reasoning steps as transitions between worlds,
and IW, that employs impossible worlds. We present the main elements of RW, explain how
it refines existing attempts and escapes omniscience, and provide a sound and complete logic
with respect to a class of its models. We similarly analyze the contribution of IW, and extend
it to a quantitative system, sensitive to the idea of resource consumption. Other extended set-
tings, such as IWPA and IWp, facilitate a more elaborate study of reasoning and belief change.
Finally, we devise a method to obtain complete axiomatizations for IW-like systems, that relies
on a reduction of models with impossible worlds.
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Outline of the thesis

For the convenience of the reader, we hereafter explain the structure of the thesis:

• Chapter 1: The standard epistemic and doxastic logics are introduced in Section 1.1. We
explain how these emerged as spin-offs of Modal Logic and discuss some of their prop-
erties. In Section 1.2, we present the various forms and manifestations of the problem of
logical omniscience. The problem plagues the mainstream treatment of knowledge and
belief because this ascribes unlimited inferential power to the agents. We then empha-
size why it is important to resolve it, arguing against claims that have been put forward
to justify this sort of idealization. This discussion also hints at elements seen as desirable
for a proposed solution.

• Chapter 2: This chapter serves as the background for what follows. It introduces ele-
ments from the toolkit of Dynamic Epistemic Logic, that can help us draw a more realistic
picture of reasoning. First, we present public announcement logic (Section 2.1). Second,
we describe the contribution of plausibility models in the study of (static) belief change
(Section 2.2). Third, we briefly discuss dynamic belief change triggered by various kinds
of incoming information (Section 2.3).

• Chapter 3: In this chapter, we provide a detailed exposition and discussion on selected
proposals against the problem, as found in the literature. They are classified according
to the rationale and method they adopt. Apart from explaining their workings, we also
assess them according to specific criteria. This survey allows us to spot useful tools and
underlying ideas, but also reveals the open challenges that await.

• Chapter 4: This chapter constitutes our own attempt to resolve the problem, in a way
that improves existing approaches and accounts for the real, dynamic nature of rea-
soning. More specifically, we design two settings, dubbed Rule-based worlds (RW) and
Impossible worlds (IW), that break reasoning processes into reasoning steps. In Sec-
tion 4.1.1, we present the main elements of RW, we compare it to a similar step-wise
view and construct the complete logic ΛRW. In Section 4.1.2, we similarly present IW.
This approach additionally allows for a more detailed analysis of reasoning, further pur-
sued in Section 4.2 and Section 4.3, mainly inspired by Chapter 2. Next, Section 4.4 pro-
vides a reduction of frameworks with impossible worlds, that, combined with material
from Chapter 3, facilitates the construction of complete axiomatic systems.

• Chapter 5: Finally, we summarize our main points and suggest directions for further
investigation on the topic.
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Chapter 1

The problem of logical omniscience

1.1 Epistemic and doxastic logic

Since Hintikka’s seminal work in Hintikka (1962), Logic has been instrumental in the formal
study of propositional attitudes such as knowledge and belief. Standard epistemic and dox-
astic logics were developed as spin-offs of Modal Logic and made use of its main techniques,
in particular of the possible worlds semantics. The core of this conception is that in knowing
or believing something, one obtains a way of determining which the actual world is among a
range of possibilities. Possible worlds articulate precisely this conception: they embody these
logical possibilities. Although there is a lively debate on their metaphysical status1, given our
purposes, we content ourselves in considering possible worlds alternative scenarios, repre-
sentations of the ways the world could be or could have been.

The standard approach accounts for knowledge by supplementing the language of propo-
sitional logic with a unary operator K such that Kφ reads: “the agent knows that φ”. Follow-
ing the same fashion, we can add a unary operator B such that Bφ reads “the agent believes
that φ”. Next, the semantic interpretations are given in terms of possible worlds: an agent
knows(/believes) that φ if and only if in all possible worlds compatible with what the agent
knows(/believes), it is the case that φ.

Of course, there can be more than one operator to accommodate settings with more than
one agent. Then, by indexing the operators, we get Kiφ, read as “agent i knows that φ”, and
likewise for belief. The content of this chapter can be accordingly generalized for multi-agent
settings.

Departing from these initial remarks, we will give the concrete account of standard single-
agent epistemic logic, starting off with the constructions of Modal Logic (Blackburn et al.
(2001), Bezhanishvili and van der Hoek (2014), Fagin et al. (1995a)). We will also comment
on how this can be adapted for doxastic and combined epistemic-doxastic frameworks.

Definition 1.1.1 (Syntax). The language of single-agent epistemic logic is defined inductively
as follows:

1One may consult Berto and Plebani (2015) for a review of the several schools of thought.
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CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Kφ

with p ∈Φ andΦ a set of propositional atoms.

The language of single-agent epistemic-doxastic logic is easily obtained by supplementing
the previous definition with Bφ. The common boolean connectives are defined in terms of ¬
and ∧ as usual. It is also useful to consider the dual operators K̂ , B̂ where K̂φ ∶= ¬K¬φ and
B̂φ ∶=¬B¬φ.

Next, we elucidate the technical details that show how the relational structures of Modal
Logic are utilized in our context. More specifically, the compatibility of worlds with the agent’s
knowledge and belief is captured via primitive binary relations on possible worlds, reflecting
epistemic and doxastic accessibility. We first present the standard modal account, followed by
the discussion on the properties that furnish this fruitful adaptation.

Definition 1.1.2 (Kripke frames and models).

1. A Kripke frame is a pairF = ⟨W,R⟩, where:

• W is a non-empty set of possible worlds.

• R is a binary accessibility relation on W .

2. A Kripke model is a frame supplemented with a valuation V ∶ Φ → P(W ) assigning to
each p ∈ Φ a subset V (p) of W . Intuitively, V (p) is the set of all worlds in the model
where p is true. A pair (M , w) consisting of a model M and a designated world w of the
model is called a pointed model.

As we will see, the accessibility relation can be used to denote epistemic or doxastic ac-
cessibility. Of course, frames and models might be endowed with more than one accessibility
relation, thereby allowing for combined epistemic-doxastic settings.

We now proceed with the truth clauses and other key-definitions:

Definition 1.1.3 (Truth). For a world w in a model M = ⟨W,R,V ⟩, we inductively define that a
formula φ is true in M at world w (notation: M , w ⊧φ) as follows:

• M , w ⊧ p if and only if w ∈V (p), where p ∈Φ.

• M , w ⊧¬φ if and only if M , w /⊧φ.

• M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ

• M , w ⊧Kφ if and only if for all worlds u ∈W such that wRu we have M ,u ⊧φ .

A set Σ of formulas is true at a world w of a model M (notation: M , w ⊧ Σ) if all members of Σ
are true at w .

Regarding belief, and denoting the doxastic relation with Rb , we simply define an extended
frame F = ⟨W,R,Rb⟩ and model M = ⟨W,R,Rb ,V ⟩ as suggested above. Then the following
clause can be added:

• M , w ⊧Bφ if and only if for all worlds u ∈W such that wRbu we have M ,u ⊧φ.

3



CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

Definition 1.1.4 (Truth in a model). A formula is (globally) true (or valid) in a model if it is true
at all possible worlds of the model. A set of formulas is true in a model if all of its members are
true in the model.

Definition 1.1.5 (Validity). A formulaφ is valid at a world w in a frameF (notation: F , w ⊧φ)
if it is true at w in every model ⟨F ,V ⟩ based on F . It is valid in a frame F (notation: F ⊧φ) if
it is valid at every world w inF . It is valid on a class of frames if it is valid in every frame of the
class. It is valid if it is valid on the class of all frames. The set of all formulas that are valid on a
class of frames F is called the logic of F .

Definition 1.1.6 (Logical Implication and Equivalence).

1. A set of formulasΨ logically implies φ with respect to a class of frames F , if for all F ∈ F
and all worlds w ∈F : wheneverF , w ⊧ψ for everyψ ∈Ψ, thenF , w ⊧φ. We will also say
that φ is a logical consequence ofΨ.

2. Two formulas are logically equivalent if each logically implies the other. One is true pre-
cisely when the other is true.

Note that the definition can be restated with respect to a class of models. From the fore-
going it follows that a formula is valid if it is a logical consequence of the empty set of formulas.

The definitions above constitute the basis to illustrate the direct contribution of Modal
Logic to the construction of epistemic and doxastic frameworks. Apart from these basic el-
ements though, the contribution extends further: the use of characterization results renders
many properties of knowledge and belief amenable to formal study. In particular, the validity
of certain formulas is associated with certain properties of the accessibility relation(s). The
following definition sets the background for the investigation of these effects.

Definition 1.1.7 (Normal modal epistemic logic). A normal modal epistemic logic Λ is a set
of formulas that contains all instances of propositional tautologies, all instances of the Kripke
schema (K): K (φ→ψ)→ (Kφ→Kψ) and is closed under Modus Ponens and the Necessitation
Rule (N): from φ infer Kφ.

By suitable modifications of the operators, the (normal) doxastic counterpart is easily ob-
tained.

As a result, certain logics, built on the addition of special schemes of formulas as axioms,
induce certain algebraic properties on the accessibility relations. The classes of frames that
are determined by those properties reflect useful properties of knowledge and belief, often
revealing connections to epistemological corollaries.

To begin with, the class of all frames corresponds to the smallest normal modal logic, which
is called K. Extensions of this logic are obtained via adding axiom schemes that seem plausi-
ble according to our intuitive understanding of knowledge/belief and the epistemological dis-
cussion that has long investigated how these attitudes can be discerned. We hereafter give an
overview of properties that have been suggested for the adequate formal description of knowl-
edge and belief as well as of the results of their inclusion at the logical level. In this sense, the
standard modal constructions are transformed into epistemic and doxastic frameworks.
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CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

Veridicality

The axiom scheme that reflects the veridicality of knowledge, i.e. that if φ is known then φ
is true, is called (T): Kφ→ φ. Its addition results in the logic T. One can easily check that (T)
corresponds to the class of those frames where for every world w , wRw , i.e. the class of all
reflexive frames. Likewise, if one accepts veridicality of belief, the belief-version of the scheme
should be added, turning Rb into a reflexive relation too. It is worth noticing that most formal-
izations do not assume veridicality for belief.

Consistency

The axiom scheme that reflects the consistency of knowledge is called (D): Kφ→ ¬K¬φ. It
is equivalent to ¬K (φ∧¬φ). Its addition results in the logic D. The axiom is valid precisely on
those frames where for any world w , there is some world u such that wRu, i.e. the class of all
serial frames2. Accordingly, the belief-version of the axiom is Bφ→ ¬B¬φ and corresponds to
seriality of the doxastic accessibility relation.

Positive Introspection

The instances of the axiom (4) Kφ→ K Kφ reflect the positive introspection of knowledge.
The addition of this axiom scheme yields the logic K4. It characterizes the class of those frames
where for any worlds w,u, v , if wRu and uRv then wRv , i.e. the class of all transitive frames.
Positive introspection of belief works along the same lines.

Negative Introspection

The instances of the axiom (5) ¬Kφ→ K¬Kφ reflect the negative introspection of knowl-
edge and result in the logic K5. This axiom scheme characterizes the class of those frames
where for any worlds w,u, v , if wRu and wRv then uRv , i.e. the class of all euclidean frames.
Negative introspection of belief again works along these lines.

While veridicality is often seen as an essential property for knowledge, this is not the case
for belief; it is generally accepted that an agent might hold false beliefs. It has been argued that
this is one of the properties that can be used to distinguish knowledge and belief. As a result,
a belief-version of the axiom is not usually assumed and, in turn, doxastic accessibility need
not be reflexive. On the other hand, the intuitive appeal of positive and negative introspec-
tion is considered debatable for both knowledge and belief, as is consistency of belief, and no
absolute consensus has been reached regarding the inclusion of the respective axioms (Danto
(1967), Hintikka (1962), Lemmon (1967), Stalnaker (2006)).

The aforementioned remarks are summarized in Table 1.1. Overall, combinations of these
axioms result in logical systems of varying strength that are sound and complete with respect
to those classes of frames complying with the analogous combinations of restrictions on the
accessibility relation(s). Picking the most appropriate system depends on one’s dispositions
and goals.

We only notice that according to the received view (e.g. as in Fagin et al. (1995a)) (a) epis-
temic models are S5-models, that is models in which the (epistemic) accessibility relation is

2It is then easy to see that (D) can follow from other axioms, such as (T).
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CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

an equivalence relation (reflexive, transitive and symmetric or equivalently: reflexive and eu-
clidean) and (b) doxastic models are KD45-models, that is models in which the (doxastic) ac-
cessibility relation is serial, transitive and euclidean. These modelling choices give rise to cer-
tain additional properties regarding the interaction between knowledge and belief operators
under combined epistemic-doxastic frameworks. In other words, if we assign the proposed
qualities to the epistemic and doxastic relations, the following validities easily follow:

• Strong positive introspection of beliefs Bφ→K Bφ.

• Strong negative introspection of beliefs ¬Bφ→K¬Bφ.

• Knowledge implies belief Kφ→Bφ.

Table 1.1: Common logics
Logic Axioms Class of frames
K (K) All
T (K), (T) Reflexive
D (K), (D) Serial
K4 (K), (4) Transitive
K5 (K), (5) Euclidean
KD45 (K), (D), (4), (5) Serial, Transitive, Euclidean
S4 (K), (T), (4) Reflexive, Transitive
S5 (K), (T), (5) Reflexive, Transitive, Symmetric

This is the mainstream logical landscape drawn by the hintikkian approach, heavily influ-
enced by the machinery of normal modal logics. As we will see, the seemingly smooth integra-
tion of knowledge and belief in this picture faces serious objections.

1.2 The problem

We have seen the main properties of epistemic and doxastic logics. Despite the benefits reaped
by exploiting Modal Logic in the formal study of knowledge and belief, there is a certain cost.
The problem of logical omniscience (identified in Halpern and Pucella (2011), Hintikka (1975),
Moses (1988), Parikh (2008), among others), is an inherent defect of this treatment. It mani-
fests itself as follows:

Suppose that an agent at a world w knows all formulas in a set Ψ and that
Ψ logically implies φ. Because of the former assumption, all formulas of Ψ hold
at every world epistemically accessible from w . Due to the latter assumption, φ
holds at these worlds as well. Therefore, the agent knows φ at w .

This closure property constitutes the full problem of logical omniscience. Notice that the
problem can be easily restated for belief. Given the aim of providing a theory for actual reason-
ers, it is not difficult to spot the malignancy of the problem. The predictions of this approach
are not accurate; the brightest mathematician might know all axioms of set theory without
thereby knowing all their consequences. Or, although a winning strategy for a game might

6



CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

follow mathematically from a given state of the game and players are aware of the latter, it is
not the case that they always play according to the winning strategy; otherwise, many games
would be pointless and uninteresting. The performance of real-life agents is inhibited by their
limited memory, computational capacity, biases, faulty reasoning etc. That is to say that real-
life agents are fallible and resource-bounded, therefore not well accommodated within these
settings.

Equally alarming considerations arise from special cases of the full form. In addition, even
if certain modifications alter the kind of structures and the notion of truth in a manner that
avoids the full problem, the divergence from reality is retained through weaker problematic
closure principles. More specifically, all these special and weaker forms are given below, fol-
lowing the work of van Ditmarsch et al. (2007) and Fagin et al. (1995a).

1. If φ is valid, then the agent knows φ. (Knowledge of valid formulas)

2. If the agent knows φ and φ logically implies ψ, then the agent knows ψ. (Closure under
Logical Implication)

3. If the agent knows φ and φ is logically equivalent toψ, then the agent knowsψ. (Closure
under Logical Equivalence)

4. If the agent knows φ and also knows φ → ψ, then the agent knows ψ. (Closure under
Material Implication)

5. If the agent knows φ and φ→ ψ is valid, then the agent knows ψ. (Closure under Valid
Implication)

6. If the agent knows φ and also knows ψ, then the agent knows φ∧ψ. (Closure under
Conjunction)

7. If the agent knows φ, then the agent knows φ∨ψ. (Closure under Disjunction)

Again, the foregoing can be restated for belief.

Knowledge of all valid formulas is a special case of the full form as validity boils down to
logical consequence from the empty set. The discrepancy between the standard treatment and
real agents is once again apparent. For example, it is not realistic to expect that agents believe
or know every propositional tautology irrespective of its complexity. In the same line of rea-
soning, consider Goldbach’s Conjecture3; if it is true, then it is true at all possible worlds and if
it is false, then it is false at all possible worlds. As a result, in any case, the correct response to
the Conjecture is known by any agent, according to the possible worlds account. In contrast
to these predictions, though, Goldbach’s Conjecture remains an unsolved mathematical prob-
lem. Yet another illustration of the problem arises from the Closure under Logical Implication,
that follows immediately from the full form, as well as from the Closure under Logical Equiv-
alence, predicting that an agent knows any formula that is equivalent to a formula she knows.
Closure under Material Implication is a weaker principle not necessarily following from the full
form. However, it coincides with Closure under Logical Implication in standard modal logic.
Closure under Valid Implication is equivalent to Closure under Logical Implication because in

3Every even integer greater than 2 can be expressed as the sum of two primes.
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CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

standard modal logic φ→ψ is valid precisely when φ logically implies ψ. Closure under Con-
junction and Disjunction are special cases of full logical omniscience, if the set {φ,ψ} logically
implies φ∧ψ and if φ logically implies φ∨ψ – respectively.

Another counterintuitive quality that is nevertheless attributed to agents, at least under
systems that contain the axiom (D), is that of Consistency: agents never know/believe both φ
and ¬φ. However, in the real-world, cognitively limited reasoners often maintain inconsistent
beliefs, whether they realize it or not. More specifically, it has been claimed that agents might
even believe a contradiction explicitly and consider themselves justified in doing so, as di-
aletheists believe that a particular sentence, the liar sentence, is simultaneously true and false
(Priest (2006)).

At this point, it is worth noticing that this kind of idealization, as indicated by the afore-
mentioned list, is also observed in mainstream attempts of logical modelling on belief change.
As also observed in the next chapter, the building block of the predominant AGM approach
(Alchourrón et al. (1985)), the belief sets, also suffer from closure principles that lead to omni-
scient agents. According to this approach, the beliefs of an agent are represented by a set of
sentences in a formal language. This set is taken to be closed under logical consequence, i.e. if
p is in a belief set and q logically follows from p, then q is already in the set. But of course, this
too entails that agents are expected to believe all consequences of their beliefs, thus leading
to the undesired properties of the full form of logical omniscience. In addition, if the belief
set contains both p and ¬p, i.e. the agent holds some inconsistent belief, then her belief state
necessarily collapses to the trivial one, as she is expected to believe everything. Moreover, fol-
lowing the AGM postulates: if two sentences p and q are logically equivalent, then believing
the one amounts to believing the other. However, we often revise our beliefs influenced by the
mode of presentation and the frame under which the revision takes place. In these cases, we
might end up believing the one without believing the other.

Despite the discrepancy between logical predictions and reality, there have been attempts
to defend the standard paradigm and view its properties as inevitable or even desired tools. For
instance, Stalnaker (1991) and Yap (2014) examine reasons that could justify the extent of the
idealization. First, this is sometimes defended as the means to reach the mechanisms under-
lying the complex theory of knowledge and belief. Motivated by certain examples from other
disciplines, e.g. the use of frictionless planes in physics, it has been argued that the isolated
study of individual components of larger theories increases our understanding of them, even
if we miss out on their interconnections. For example, external forces may be ignored and the
realistic picture may be only partially drawn because the internal dynamics tend to move the
system in question towards an equilibrium. In this line of reasoning, idealization can be justi-
fied by viewing the fallibility of agents as a kind of “cognitive friction” that interferes with the
reasoning process yet the latter eventually reaches an equilibrium where perfect rationality is
attained. A second reason backing idealization lies in the need for simplification: the cost of
distortion is assessed as unimportant when compared to the benefits of simplifying. Thirdly,
another source of justification is presented by virtue of normativity: although the standard
logics draw an ideal picture, far from the actual inner workings of knowledge and belief, they
are still considered acceptable and valuable as they set the standard that rational agents ought
to comply with.

However, these arguments cannot completely alleviate the worries on logical omniscience.
To begin with, the distortion induced by the closure principles is not negligible. Resorting to
the idealized models of other disciplines seems more like a convenient analogy4. In particular,

4For all fairness, there is a large discussion on idealization and abstraction as tools for scientific investigation, in
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CHAPTER 1. THE PROBLEM OF LOGICAL OMNISCIENCE

there is no reason, theoretical or empirical, to assume that the reasoning process, constantly
influenced by external information, ever reaches an equilibrium of spotless rationality. As a re-
sult, one cannot do away with logical omniscience by merely suggesting that it poses no threat
in the long run. Moreover, considering the descriptive use of epistemic and doxastic logics, the
argument for simplicity is ineffective because the extent of the chasm between idealized and
real agents is substantial enough to obscure many of the benefits. Apart from the fact that the
closure principles are not aligned with ordinary intuitions, there is also concrete evidence that
sheds light on actual cognitive states and highlights the extent of the defect. Cognitive science
and psychology of reasoning import experimental evidence suggesting that subjects’ perfor-
mance in reasoning tasks, e.g. in the Wason selection task or the suppression task, is not always
consonant with logical predictions (Stenning and van Lambalgen (2008)). Furthermore, Parikh
(2008), prompted by Daniel Kahneman’s work on behavioural economics, argues that human
belief states are neither consistent nor usually closed under logical inference. In general, the
shift from classical to behavioural economics (Kahneman (2003), Simon (1955)) endorses the
revision of idealized models of perfect rationality so that limited resources and the framing
of decision-making are taken into account. In addition, the experiments discussed in Alxatib
and Pelletier (2011) and Ripley (2011) show that in certain cases, agents hold – at least prima
facie – inconsistent beliefs. This does not mean that they are “absurd” nor willing to believe ev-
erything, as the standard account predicts. Next, appealing to normativity to secure standard
epistemic and doxastic logics from objections also faces counterarguments: there seem to be
good reasons, for example, to account for the fact that agents do not know all consequences of
their knowledge even while aiming for a normative model of how we ought to reason. That is,
acknowledging our own fallibility is often seen as a prerequisite to rationality. Stalnaker (1991)
specifically reports on the view that rational agents should believe that some of their own be-
liefs are false. Forcing one to commit to models that are either non-normative or representing
omniscient agents might as well be a false dilemma. A normative model can still focus on a
moderately rational agent, who is able to conduct finite chains of inferences avoiding blatant
inconsistencies, despite being non-omniscient. Finally, Hintikka’s own understanding of the
problem did not presuppose any kind of defense of his standard systems due to normativity:

Logical truths are not truths which logic forces on us; they are not necessary
truths in the sense of being unavoidable. They are not truths we must know, but
truths which we can know without making use of any factual information. [...]
The fact that the so-called laws of logic are not “laws of thought” in the sense of
natural laws seems to be generally admitted nowadays. Yet the laws of logic are
not laws of thought in the sense of commands, either, except perhaps laws of the
sharpest possible thought. Given a number of premises, logic does not tell us what
conclusions we ought to draw from them; it merely tells us what conclusions we
may draw from them – if we wish and we are clever enough.5

Consequently, there is not enough support to defend the modelling of agents with infinite
inferential powers as a means to say how they ought to perform.

We have thus far presented the problem of logical omniscience and emphasized its impor-
tance. However, the intuitive considerations and the experimental evidence that dictate the
attack against logical omniscience also urge us to demarcate another feature of real agents’

general (see for example Stokhof and van Lambalgen (2011), for similar considerations). The wider study, that touches
upon philosophy of science, is beyond our scope.

5Hintikka (1962), p.37.
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epistemic/doxastic states. Although real agents are fallible and non-omniscient, they still are
logically competent; their rationality might be bounded but it is not absent. In particular, we
often fail in making complex inferences as we lack the necessary time, memory or computa-
tional power. Even if these are sufficient, incomplete reasoning or biases interfere with our
judgment. Yet, we do engage in bounded reasoning: noticing that it is (once again) raining
in Amsterdam, we would normally take our raincoats before leaving home. This is because
from our beliefs that (a) it is raining and that (b) whenever it is raining, we need a raincoat, we
infer that we should wear the coat and act accordingly. Furthermore, people seemingly hold-
ing inconsistent beliefs, are still considered (moderately) rational. We might hold false beliefs
without this preventing us from reasoning and operating in the world without much trouble.
The interdisciplinary empirical data mentioned earlier also contributes to the case for logical
competence. For instance, subjects’ performance in the Wason selection task was remarkably
improved when it was stated as imitating a familiar social norm (Griggs and Cox (1982)). In
van Benthem et al. (2016), we also encounter a defense of logical competence on the grounds
of these task-dependent fluctuations of performance.

Clearly, people are not irrational, and if they ignored logic all the time, extracting
the wrong information from the data at their disposal, it is hard to see how our
species could survive. What seems to be the case is rather an issue of representa-
tion of reasoning tasks, and additional principles that play a role there.6

In addition, the subjects of Alxatib and Pelletier (2011) were able to provide good reasons
for claiming that a certain suspect is both tall and not tall. Their responses triggered the re-
evaluation of classical logic and the extended study of phenomena of vagueness rather than
the re-evaluation of the subjects’ mental capacities. Along the same lines, the research on deci-
sion theory and economics stresses the importance of the availability of resources, the pursuit
of a satisfactory but not always optimal solution, the influence of fallacies in decision-making
etc., without suggesting that agents’ activity collapses to irrationality. Therefore, a successful
attempt to model actual epistemic/doxastic states presupposes that agents are logically com-
petent and more specifically they do not miss out on trivial consequences of what they know
or believe.

As a result, logical closure principles, either illustrated in the possible worlds semantics or
the purely syntactic belief sets, give rise to the problem of logical omniscience. It is therefore
essential to revise the current outlook on logical modelling of propositional attitudes, if we are
to capture their realistic effect.

6van Benthem et al. (2016), p. 2-35.
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Chapter 2

Dynamic Epistemic Logic

Chapter 1 discussed the paradigmatic accounts on epistemic and doxastic logic as well as the
major problem of logical omniscience. These accounts, however, are purely static; they model
knowledge and belief, as held at a particular moment. As a result, they cast aside the con-
stant changes of attitudes triggered by both our “internal” mental processes (e.g. performing
inferences) and our “external” interactions (e.g. the information exchange that takes place
during a discussion). It is therefore clear that merely focusing on a glimpse of an agent’s epis-
temic/doxastic state yields a rather limited modelling, that omits real-life actions interfering
with our reasoning. Such deficiencies can be treated by using tools from Dynamic Epistemic
Logic (DEL), that puts model change under scrutiny. The vast variety of systems designed
within this field allows for modelling of a plethora of attitudes and of multiple phenomena,
especially concerning multi-agent settings. Given our purposes though, we only review a se-
lection of these1 – more specifically those that provide the background for the content of the
next chapters – and restrict our attention to the changing states of a single agent.

The general idea is to enrich the standard language by modal operators that correspond
to the actions capable of altering an agent’s epistemic or doxastic state. Their effect is then
captured via model transformations. If a formula is of the form []φ with [] such an operator,
then it is evaluated at a particular world in a model by examining what the truth value ofφ is at
the transformed model. That is, formulas involving action operators are evaluated by utilizing
transitions from the original model, activated by the action of the corresponding operator.

2.1 Public Announcement Logic

In what follows, we summarize Public Announcement Logic (PAL) (Plaza (2007)), because it
offers a clear illustration of the above and provides the foundations to better understand more
complex actions as well as the details for some of the proposals of Chapter 3 and Chapter 4. To
begin with, its language is the extension of the standard language with modal operators [ψ!]
such that [ψ!]φ reads “after the public announcement of ψ, φ is true”. The announcement is

1For detailed surveys, one can consult Baltag and Renne (2016), van Ditmarsch et al. (2007).
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thought of as truthful and absolutely reliable; this is the motivation behind the definition of
the transformed model Mψ! as a model in which all not-ψ worlds are eliminated. Formally:

Definition 2.1.1 (Model transformation by public announcement). Given a Kripke model M =
⟨W,R,V ⟩, its transformation by !ψ is a model Mψ! = ⟨W ψ!,Rψ!,V ψ!⟩ where:

• W ψ! = {w ∈W ∣ M , w ⊧ψ}

• Rψ! =R ∩(W ψ!×W ψ!)

• V ψ!(p) =V (p)∩W ψ!

The truth clauses are then supplemented with the extra clause: M , w ⊧ [ψ!]φ if and only if
M , w /⊧ψ or Mψ!, w ⊧ φ. The first part of the clause is such to obey the restriction to truthful
announcements: if the announced sentence is false, then [ψ!]φ is vacuously true.

It can be shown that the addition of the following axioms and rule to the axioms and rules
of S5 2 results in a sound and complete axiomatic system. These axioms are often called re-
duction axioms, for they reduce the complexity of formulas with announcements. Indeed, we
can gradually end up with formulas that do not involve announcements at all, i.e. formulas
of our basic language. Subsequently, the completeness of PAL follows immediately from the
completeness of S5.

• [ψ!]p↔ (ψ→ p)

• [ψ!]¬φ↔ (ψ→¬[ψ!]φ)

• [ψ!](φ∧χ)↔ ([ψ!]φ∧ [ψ!]χ)

• [ψ!]Kφ↔ (ψ→K ([ψ!]φ))

• From φ infer [ψ!]φ

The above can be easily adapted for frameworks involving belief.
A subtle point that is worth a remark is that announced sentences do not always preserve

their truth value after the announcement. The most prominent case in point is Moore formu-
las, such as p ∧¬B p : it is not hard to see why the very announcement of this defeats its truth.
Moore formulas then indicate that PAL is not closed under substitution.

With this illustration in mind, we only emphasize that it is possible to generalize the in-
tuition behind action-induced change and thus study more sophisticated real-life scenarios.
This has been achieved due to the construction of action models and product updates, intro-
duced in Baltag et al. (1998).

2.2 Belief change and plausibility models

Dynamic Epistemic Logic also incorporates ideas from Belief Revision. According to the AGM
theory (Alchourrón et al. (1985)), an agent’s beliefs are given by a logically closed set of sen-
tences, her belief set. This belief set might be expanded, contracted or revised, in the face of

2The same holds if we substitute S5 with other appropriate systems – appropriate, in the sense of being sound
and complete with respect to a class of models closed under the announcements.
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new information, represented by a sentenceφ. The corresponding operations, expansion, con-
traction, and revision are ruled by the AGM postulates. However, their status is controversial,
as they too suffer from concerns on their adequacy in capturing realistic belief change.

Until now we have elaborated on the effect of public announcements. It is natural to think
of them as a kind of expansion, given that the elimination of worlds results in an enrichment
of the agent’s factual knowledge, an idea investigated in van Ditmarsch et al. (2004). Yet one
may come up with examples of incoming information such that the basic view of expansion
does not suffice; in particular, if the announced sentence contradicts existing beliefs, then the
agent ends up believing everything. In order to deal with changing beliefs, DEL primarily relies
on plausibility models (Baltag and Smets (2008)). These allow us to express various grades of
knowledge and belief. Importantly, conditional beliefs express what is believed, depended on
certain incoming pieces of information, and in this way, they manage to model static belief
change, that is, belief change in a non-changing situation.

Definition 2.2.1 (Plausibility model). A plausibility model M is a structure ⟨W,≥,V ⟩ where:

• W is a non-empty set of worlds.

• ≥ is a locally well-preordered relation on W , such that w ≥ u reads “w is considered no
more plausible than u”.

• V is a valuation such that each propositional atom from a given set Φ is assigned to the
set of worlds where it is true.

Abbreviations such as >, ≤, < are defined as usual; for example, we will use w < u to say
that u ≥ w and w /≥ u with the slash denoting a negated relation. In order to make precise
the notion of a locally well-preordered relation, first consider the binary relation ∼ on W such
that for w,u ∈ W : w ∼ u if and only if w(≥ ∪ ≤)∗u. Then local connectedness3 amounts to: if
w ∼ u then w ≥ u or u ≥ w . Converse well-foundedness amounts to: for each non-empty set
P ⊆W , the set of its minimal elements (i.e. mi n(P) ∶= {w ∈ P ∣ ∀u ∈ P ∶ u /< w}) is non-empty.
Bringing together reflexivity, transitivity, local connectedness and converse well-foundedness,
we obtain the definition of a locally well-preordered relation. The intuitive appeal of reflexivity
and transitivity is obvious, given the reading of ≥. Local connectedness is invoked to say that
the agent should be able to assign a relative plausibility between any two worlds considered
possible. Converse well-foundedness is imposed to avoid infinite chains of more and more
plausible worlds; being able to retrieve the set of “the most plausible worlds” is instrumental
for the definitions that follow.

In order to describe other attitudes, we supplement the standard epistemic language with
a modal operator ◻ such that ◻φ stands for “φ is defeasibly known by the agent”. Defeasible
knowledge (or safe belief ) is a weaker notion distinguished from the ordinary K reading, dis-
cussed in Lehrer and Paxson (1969), Lehrer (2000) and formalized in Stalnaker (2006). While
K denotes an infallible and irrevocable kind of knowledge, that persists even in the face of
false incoming information, defeasible knowledge only persists in the face of true incoming
information4. The semantics, in terms of plausibility models, is given by:

3In simplified settings, we could simply impose connectedness on ≥, that would amount to w ≥ u or u ≥ w , for
every w, u ∈W , and thus obtain a definition of ∼ in terms of these two cases.

4Lehrer’s justification game, as in Lehrer (2000) and Fiutek (2013) is illustrative for the study of defeasible knowl-
edge. Roughly, and to connect it with our description, suppose that an agent x, the Claimant, holds a justified true be-
lief and an agent y , the Critic, who is truthful and omniscient, challenges x with several objections. For the Claimant’s
belief to count as defeasible knowledge, she should be able to overcome the Critic’s objections and pass the justifica-
tion game successfully.
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Definition 2.2.2 (Semantics-plausibility models).

• M , w ⊧ p if and only if w ∈V (p).

• M , w ⊧¬φ if and only if M , w /⊧φ.

• M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ.

• M , w ⊧Kφ if and only if M ,u ⊧φ for all u ∈W with w ∼ u.

• M , w ⊧◻φ if and only if M ,u ⊧φ for all u ∈W with u ≤ w .

Furthermore, belief can be also accommodated within this setting. As promised earlier, we
can talk about the agent’s conditional beliefs, denoted by Bψφ and interpreted as “the agent
believes φ, conditional on ψ”. Conditional belief can be given as an expression involving the
dual of K (K̂φ ∶= ¬K¬φ) and ◻ as follows: K̂ψ→ K̂ (ψ∧◻(ψ→ φ)). Its corresponding truth
clause can be obtained in a simple way by:

M , w ⊧Bψφ if and only if M ,u ⊧φ for all u ∈mi n{u ∈W ∣ w ∼ u∧u ∈ [[ψ]]}
with [[ψ]] denoting the set of worlds where ψ is true.

It is then easy to view plain belief as a special case of conditional belief, and more specifi-
cally as B⊺φ; since ⊺ is always true, Bφ amounts to unconditional belief of φ. Then naturally:

M , w ⊧Bφ if and only if M ,u ⊧φ for all u ∈mi n{u ∈W ∣ w ∼ u}
Given that conditional, and thus plain, belief is expressible in terms of K and◻, it has been

shown (Baltag and Smets (2008)) that a sound and complete axiomatization (with respect to
the class of pointed plausibility models) for this variety of notions is obtained by:

• The S5 axiom schemes and rules for K .

• The S4 axiom schemes and rules for ◻.

• Kφ→◻φ.

• K (◻φ→ψ)∨K (◻ψ→φ).

2.3 Dynamic belief change due to hard and soft information

Turning to the dynamics of plausibility models, the account of public announcements, as
sources of hard information, can be adapted for plausibility models too.

Definition 2.3.1 (Plausibility model transformation by public announcement). Given a plau-
sibility model M = ⟨W,≥,V ⟩, its transformation by ψ! is a model Mψ! = ⟨W ψ!,≥ψ!,V ψ!⟩ where:

• W ψ! = {w ∈W ∣ M , w ⊧ψ}

• ≥ψ!=≥∩(W ψ!×W ψ!)

• V ψ!(p) =V (p)∩W ψ!
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The truth clause for sentences of the form [ψ!]φ is then given in the same spirit as above.
A sound and complete axiomatization can be obtained by supplementing the axiom schemes
and rules of any static logic corresponding to the model class we are interested in, and the PAL
reduction axioms mentioned above, with a reduction axiom for defeasible knowledge5.

[ψ!]◻φ↔ (ψ→◻(ψ→ [ψ!]φ))
However, real-life interaction does not only involve truthful and absolutely reliable infor-

mation. For example, cases in which the source is partially trusted are suggestive of actions
bringing along “softer” information, that only changes our beliefs but not our knowledge. This
is why van Benthem (2007) suggested other policies of belief change. Plausibility models,
which offer a more detailed outlook to the states of the agent, enable us to study the effect of
such actions. The main idea is that soft information cannot really eliminate a world. Rather, it
changes the plausibility ordering so that the incoming information is somehow “prioritized”,
without altogether discarding the other possibilities. For our purposes, we will focus on the
revision operation of radically upgrading with ψ (ψ ⇑), that rearranges worlds in a way that
renders all ψ-worlds more plausible than all ¬ψ-worlds, and leaves intact the ordering within
these two zones6. Given that our language is suitably extended with operators [ψ ⇑], the fol-
lowing definition leads to the truth clause for [ψ ⇑]φ:

Definition 2.3.2 (Model transformation by radical upgrade). Given a plausibility model M =
⟨W,≥,V ⟩, its transformation by ψ ⇑ is a model Mψ⇑ = ⟨W ψ⇑,≥ψ⇑,V ψ⇑⟩ where:

• W ψ⇑ =W

• ≥ψ⇑= (≥∩(W × [[ψ]]))∪(≥∩([[¬ψ]]×W ))∪(∼∩([[¬ψ]]× [[ψ]])

• V ψ!(p) =V (p)

Then, M , w ⊧ [ψ ⇑]φ if and only if M[ψ⇑], w ⊧φ.
We can obtain a complete axiomatization (van Benthem (2007), van Ditmarsch et al. (2015))

for the dynamic logic of radical upgrade by augmenting any complete axiomatization on the
static models by the following reduction axioms and rule:

• [ψ ⇑]p↔ p

• [ψ ⇑]¬φ↔¬[ψ ⇑]φ

• [ψ ⇑](φ∧χ)↔ [ψ ⇑]φ∧ [ψ ⇑]χ

• [ψ ⇑]Kφ↔K [ψ ⇑]φ

• [ψ ⇑]Bχφ↔ (K̂ (ψ∧ [ψ ⇑]χ)∧Bψ∧[ψ⇑]χ[ψ ⇑]φ)∨(¬K̂ (ψ∧ [ψ ⇑]χ)∧B[ψ⇑]χ[ψ ⇑]φ)

• From φ, infer [ψ ⇑]φ

5Reduction axioms for conditional beliefs can be analogously obtained. We confined ourselves to ◻, given the
way conditional beliefs were defined in terms of K and ◻. Consult van Ditmarsch et al. (2015), Chapter 7, for logics
built on conditional beliefs.

6Radical (or lexicographic) upgrade is widely discussed in van Benthem (2007), and it is also representable with
the machinery found in Baltag and Smets (2008).
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This synopsis of elements from the influential DEL literature smooths the path towards the
discussion on the treatment of the problem of logical omniscience. This is not to come as a
surprise. The problem itself is indicative of the gap between the standard, static systems and
reality. Dynamic epistemic logic brings us closer to real-life scenarios; the foregoing hint at
some of the meaningful ways it has done so. It is therefore clear that once dynamics join forces,
the idealized, breeding ground for omniscience, gets a substantial strike. This is exactly why
material from this chapter contributes to proposals in the literature (surveyed in Chapter 3) as
well as to our own suggestions (made in Chapter 4).
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Chapter 3

Dealing with the problem: a critical survey

In this chapter, we examine prominent attempts to cope with the problem of logical omni-
science. The examination is structured according to the following classification:

• Syntactic approaches.

• Approaches that propose a distinction between implicit and explicit attitudes, invalidat-
ing the problematic closure principles with respect to the latter. These comprise aware-
ness structures, algorithmic structures, justification logics and logics of justified knowl-
edge and belief.

• Impossible-worlds frameworks, that extend the usual set of worlds with impossibilities.
Such approaches are divided into: elementary ones, involving worlds that are either not
closed by any notion of logical consequence or (only) closed under some non-classical
notion of logical consequence; Jago’s approach as described in Jago (2014), imposing a
suitable structure on the epistemic space; the attempt of Rasmussen and Bjerring (2015)
who aim at a dynamic framework that traces the evolution of an agent’s reasoning pro-
cess.

Apart from explaining each proposal’s contribution1 towards the solution of the problem,
we also comment on their adequacy according to both general criteria and proposal-specific
objections. The major general criterion of our evaluation is testing whether the avoidance of
logical omniscience is accompanied by an overall attractive modelling of agents’ bounded, but
not absent, rationality. That is, merely escaping the forms of the problem does not suffice; an
attractive approach should also reflect that agents are (moderately) logically competent. In
fact, what we want to avoid is non-omniscience collapsing into total irrationality and igno-
rance. We are hesitant to accept that one might fail in knowing even the most trivial conse-
quences of what she knows. Of course, strictly determining what can count as “trivial” con-
sequence is not an easy task, especially given that any inference can be unfolded as a chain

1In doing so, we will remain faithful to the descriptions as found in the literature. However, slight modifications
should be tolerated, in the interest of readability and notational consistency.
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consisting of “easy”steps. Despite the vague nature of the notion of moderate logical compe-
tence, we still value its integration into a proposed framework, at least from a normative point
of view: it represents how agents ought to perform. Another criterion emerges if we further
assess the explanatory power in capturing these subtle differences. In other words, we want
to see whether the approaches are intuitively plausible and aligned with our understanding of
what actually goes on whenever real agents reason. For example, a technically sufficient so-
lution that nonetheless relies on ad-hoc and not independently motivated assumptions and
modifications should not be considered entirely successful. Besides, resolving the problem
per se would not have required extreme effort if we had just tweaked the semantics of the
standard systems in accordance with the very goal of destroying the unwelcome closure prin-
ciples. However, in that case, in the absence of any (other) concrete incentive to motivate the
modification, it is doubtful whether the result would pertain to the propositional attitudes we
examine, at least in a meaningful manner. Furthermore – and unsurprisingly – finding a way
out of the problem often requires the introduction of additional machinery. The danger then
lurks in obtaining new or weaker forms of logical omniscience with respect to these newly
introduced elements. It is therefore worth checking whether logical omniscience is avoided
without simultaneously generating further problems.

3.1 Syntactic approaches

3.1.1 Syntactic structures

The main idea behind this syntactic approach, described in Eberle (1974), Fagin et al. (1995a),
Halpern and Pucella (2011), is to identify the agent’s epistemic state with the set of formulas
that she knows, at each possible world2. Indeed, we explicitly list these formulas at a primitive
level, without relying on the usual recursive definition and thus on the epistemic accessibility
relation. More concretely:

Definition 3.1.1 (Syntactic structure). A syntactic structure ⟨W,C⟩ is a pair consisting of a set
of worlds W and a valuation function C that assigns truth values to all formulas at all worlds.

The crucial difference from standard Kripke models is that the truth values of compound
formulas are determined directly from the syntactic valuation C instead of being computed
recursively, based on the valuation of atomic formulas. As a result, syntactic structures can be
considered generalizations of standard Kripke models as accessibility relations are no longer
relevant in obtaining the truth value of formulas such as Kφ. In this case, we can view each
Kripke model ⟨W,R,V ⟩ as a syntactic structure ⟨W,C⟩ such that C(w)(φ) = 1 whenever M , w ⊧
φ.

It is not hard to see how the syntactic approach deals with all forms of the problem. First
and regarding the full form, the value of Kφ is not affected by the truth values of the formulas
inΨ nor by the Logical Implication fromΨ to φ. More specifically, Knowledge of valid formu-
las fails because the construction of the valuation function could be such that the truth values
of φ and Kφ diverge. Closure under Logical Implication, Closure under Material Implication,
Closure under Valid Implication likewise fail because the value of Kψ can be suitably tailored.

2A doxastic counterpart of this approach can be easily obtained. Belief may just replace knowledge in what fol-
lows.
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The truth values of Kφ and Kψ do not have to agree, just because φ and ψ are logically equiv-
alent, therefore Closure under Logical Equivalence might fail. The values of Kφ and Kψ do
not put any constraints on the values of K (φ∧ψ) and K (φ∨ψ), thus avoiding Closure under
Conjunction and Closure under Disjunction. Finally, we can also invalidate the consistency of
knowledge, i.e. ¬K (φ∧¬φ), by considering the independence of values between φ∧¬φ and
¬K (φ∧¬φ).

Given that our prime interest lies in invalidating the closure principles, we might want to
preserve the standard account as far as propositional connectives are concerned. It is therefore
reasonable to impose constraints such as (a) C(w)(¬φ) = 1 if and only if C(w)(φ) = 0, and (b)
C(w)(φ∧ψ) = 1 if and only if C(w)(φ) = 1 and C(w)(ψ) = 1.

However, the syntactic response to the problem is not entirely satisfactory, despite avoid-
ing all forms of it. Even by imposing the constraints and given the connection to the standard
epistemic models, it cannot describe any interesting property of knowledge and belief. The
only formulas that are valid in such structures are propositional tautologies. By assigning ar-
bitrary truth values we indeed avoid the problem but our understanding of propositional atti-
tudes is not facilitated because no interesting philosophical benefits can be reaped from this
kind of formalization. More importantly, since knowledge or belief assertions are assigned
truth values arbitrarily, there is nothing to ensure that agents know or believe at least some
consequences of what they know or believe, thus the desideratum on capturing logical com-
petence is not fulfilled. Had we attempted to preserve the epistemologically interesting prop-
erties or add desired elements of a realistic portrayal via suitable modifications of the syntactic
valuation, we would have ended up with an ad-hoc, artificial and unnatural embedding of the
standard modelling device in the syntactic structures. This obviously lacks independent mo-
tivation and presupposes an acknowledgement of the superiority of the standard epistemic-
doxastic systems, which goes against the very project of proposing a fuller and more attractive
alternative.

3.1.2 Rasmussen

Another syntactic attempt, now constructing a dynamic logic whose axiomatization is such to
escape the problem, is described in Rasmussen (2015). The author emphasizes that the source
of the problem lies in the difficulty to jointly satisfy the following two requirements:

(R1) The knowledge of resource-bounded agents is not closed under any non-trivial logical
law (Non-Closure).

(R2) If a resource-bounded agent knows the premises of a valid inference and knows the rel-
evant inference rule, then, given sufficient resources, the agent can infer the conclusion
(Non-ignorance).

According to this diagnosis, any approach that solely designs a static framework is des-
tined to be inferior in terms of realistic modelling. Static systems cannot effectively approx-
imate real-life situations because they neglect the reasoning process that resulted in a par-
ticular epistemic or doxastic state. This is why Rasmussen builds on Duc’s dynamic epistemic
logic (Duc (1997)), who augments the standard epistemic language by dynamic operators ⟨Fi ⟩,
such that ⟨Fi ⟩φ reads “φ is true after some reasoning process performed by agent i ”. The main
idea is that while the necessitation rule “fromφ infer Kφ” is not derivable in this logic, thereby
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avoiding a form of omniscience, the rule “from φ infer ⟨Fi ⟩Kiφ” is derivable, thereby show-
ing that agents can indeed come to know validities but only if they think “hard enough”. Ras-
mussen expands this idea, aiming at a full description of an agent’s reasoning process. This
task boils down to accounting for (i) the specific applications of inferences rules involved in
a reasoning process, (ii) the chronology of these applications of inference rules, (iii) the cog-
nitive cost of each application of an inference rule. With this observation in mind, the logical
language LD(Φ), and the axiomatization of the proposed logic LD are defined as follows:

Definition 3.1.2 (Language LD(Φ), Rasmussen (2015)). The language LD(Φ) is defined in-
ductively from a set of atomic sentences Φ, a knowledge operator K , and a set of dynamic
operators ⟨Ri ⟩λi for 1 ≤ i ≤ n as follows:

φ ∶∶= p ∣ ¬φ ∣ φ→φ ∣ Kφ ∣ ⟨Ri ⟩λi

with p ∈Φ.

The dual modality [Ri ]λiφ is defined as ¬⟨Ri ⟩λi¬φ. Then, ⟨Ri ⟩λiφ intuitively reads “φ is
the case after some application of Ri at cognitive cost λi ”, with “any” replacing “some” for the
dual case. Cognitive costs can be thought of as natural numbers.

In order to present the axiomatization, the following abbreviations are used to denote ar-
bitrary sequences of dynamic operators3:

⟨‡⟩i ∶= ⟨Ri ⟩λi . . .⟨R j ⟩λ j

[‡]i ∶= [Ri ]λi . . .[R j ]λ j

where Ri , . . . ,R j are arbitrary inference rules and i = λi + . . .+λ j . The first abbreviation
intuitively says that “after some application of Ri at cognitive cost λi followed by . . . followed
by some application of R j at cognitive cost λ j , φ is the case. For the intuitive reading of the
second abbreviation, again replace “some” by “any”.

Definition 3.1.3 (Axiomatization of LD , Rasmussen (2015)). Letφ,ψ ∈LD(Φ), Γ ⊆LD(Φ), and
⟨‡⟩i ,⟨†⟩ j (also, [‡]i ,[†] j ) denote arbitrary sequences of dynamic operators. The logic LD has
the following axiom schemes:

• (PC) All substitution instances of propositional tautologies.

• (A1) ⟨‡⟩i Kφ→φ (Veridicality)

• (A2) ⟨‡⟩i Kφ→ ⟨‡⟩i [†] j Kφ (Persistence)

• (A3) ⟨‡⟩iφ∧ ⟨†⟩ jψ→ ⟨‡⟩i ⟨†⟩ j (φ∧ψ) (Succession)

• (A4) ⟨‡⟩i (φ∧ψ)→ ⟨‡⟩iφ (Elimination)

LD has the following inference rule:

• (MP) If Γ⊢φ and Γ⊢φ→ψ then Γ⊢ψ.

3Note that a sequence can be empty.
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It is evident that for a doxastic framework, axiom (A1) might be dropped at it only imi-
tates the veridicality axiom (T) usually adopted for standard epistemic systems. (A2) says that
known sentences remain known as reasoning progresses. This still presupposes two idealizing
assumptions (a) on agent’s infallible memory, and (b) on sentences preserving a truth value
throughout the whole reasoning process. (A3) is imposed to express that a reasoning process
can succeed another, and finally yield the conjunction of their outcomes. (A4) simply states
that φ is the case after a reasoning process if both φ and ψ are the case after it.

An extension of LD , denoted by LΛD , comprises appropriate axioms for specific inference
rules from a setΛ, with which the agent is equipped. For illustrative purposes, consider Modus
Ponens (MP ), Conjunction Introduction (C I ) and Double Negation Elimination (DN E), as the
inference rules in Λ. The main idea behind the axiomatization is that the agent can come to
know certain formulas with the additional cognitive cost of applying an inference rule. For
example, if the agent knows φ and φ → ψ then the agent can derive ψ by applying Modus
Ponens at a particular cognitive cost. Using the abbreviation∆ ∶=φ∧ . . .∧ψ to denote arbitrary
conjunctions in the language, LΛD is axiomatized as follows:

Definition 3.1.4 (Axiomatization of LΛD , Rasmussen (2015)). Let Λ = {MP,C I ,DN E} and let ∆
be an arbitrary conjunction of sentences in LD(Φ). Furthermore, let µ,κ,ν denote the cogni-
tive costs of MP,C I ,DN E respectively. LΛD extends LD with the following axiom schemes:

• (MPD ) ⟨‡⟩i (∆∧Kφ∧K (φ→ψ))→ ⟨‡⟩i ⟨MP⟩µ(∆∧Kφ∧K (φ→ψ)∧Kψ) (MP-success)

• (C ID ) ⟨‡⟩i (∆∧Kφ∧Kψ)→ ⟨‡⟩i ⟨C I⟩κ(∆∧Kψ∧Kφ∧K (φ∧ψ)) (C I -success)

• (DN ED ) ⟨‡⟩i (∆∧K¬¬φ)→ ⟨‡⟩i ⟨DN E⟩ν(∆∧K¬¬φ∧Kφ) (DN E-success)

Of course, the same pattern can be generalized for any inference rule R with premises
φ1, . . . ,φn and conclusion ψ, and a cognitive cost λ:

(RD) ⟨‡⟩i (∆∧Kφ1 . . .∧Kφn)→ ⟨‡⟩i ⟨R⟩λ(∆∧Kφ1 . . .∧Kφn ∧Kψ)
The following theorem of the extended logic essentially distinguishes Duc’s logic from LΛD

and manifests the accuracy of this framework in describing reasoning processes:

Theorem 3.1.1 (Application, Rasmussen (2015)).

K¬¬φ∧K (φ→ψ)→ ⟨DN E⟩ν⟨MP⟩µ⟨C I⟩κK (φ∧ψ)

is a theorem of LΛD .

The theorem illustrates the dynamic nature of reasoning by keeping track of the applica-
tions of the inference rules, their chronology and their cognitive costs. Additionally, it does so
by taking into account the complexity of an agent’s deduction. That is, unlike Duc’s system, we
can account for the fact that not all deductions are equally hard and the evolution of reasoning
is thus described in a more elaborate way.

We are now ready to see how this approach deals with the problem, given the two desider-
ata raised above. First, consider that Λ =∅: Non-closure is obviously satisfied because agents
are, by definition, incapable of applying any inference rules, hence knowledge cannot be closed
under any logical law. Also, Non-ignorance is trivially satisfied as there are no requirements on
the inferential abilities of the agent if she does not have any inference rules available. Next,
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consider that Λ ≠∅; taking an arbitrary inference rule R with premises φ1, . . . ,φn and conclu-
sion ψ, the R-closure Kφ1 ∧ . . .Kφn → Kψ is not a theorem of our logic because if R ∈Λ, then
its corresponding axiom is of the form:

⟨‡⟩i (∆∧Kφ1∧ . . .Kφn)→ ⟨‡⟩i ⟨R⟩λ(∆∧Kφ1 . . .Kφn ∧Kψ)
which says that the agent needs to reason to attain knowledge ofψ, unlike R-closure which

dictates that whenever the agent knows φ1, . . . ,φn , she automatically knows ψ, too. If R /∈ Λ
then the result trivially holds. On the other hand, Non-ignorance is satisfied because the axiom
does predict how, given sufficient resources, the agent can derive the relevant conclusion.

Interestingly, this approach captures both non-omniscience and non-ignorance. Of course,
syntactic manipulations, and in particular the introduction of cognitive costs, allow us to mod-
ify the system as we please. Yet the problem is usually semantically retained because it is pre-
cisely the commitment to a notion of truth that poses the challenge. By merely modifying the
axioms, without providing semantics, it seems that Rasmussen bites the bullet. In particular, it
is easy to see that no trivial possible-worlds framework could work. That is, how a model would
change as the outcome of an application of sequences of inference rules is not a trivial matter.
What can make it even more challenging is capturing what the effect of different – quantitative
– cognitive costs would be on such a model. Obtaining the validity of the proposed axioms and
theorems then remains an open issue. This renders the choice of axioms somewhat controver-
sial: why are these formulas the most appropriate to capture the desired features of reasoning?
What is more, and again in the absence of the useful properties of possible-worlds seman-
tics, we miss out on interesting properties about knowledge and belief. Moreover, the way the
desideratum on agents’ rationality is stated, i.e. Non-ignorance, raises suspicion about its ade-
quacy. Although it is tailored in a way that matches the subsequent axiomatization4, there are
reasons to assume that even when given sufficient resources, e.g. infinite time, agents will still
be fallible. For example, they might just be biased or reluctant to reason according to the logi-
cal rules. In this sense, it is worth emphasizing that Rasmussen sheds light merely on what an
agent can do – what is in principle affordable when certain resources are available – and what
the agent cannot do – when running out of those. The axiomatization, though, says little on
what an agent ought to do, in general. Despite the normative nature of the notion of compe-
tence as suggested in the beginning of this chapter, Rasmussen’s characterization and solution
remain largely descriptive. All in all, his approach only partially overcomes the problem.

3.2 Implicit versus explicit attitudes

It has been argued that the problem of logical omniscience is in fact an indication for a dis-
tinction between implicit and explicit propositional attitudes. For example, Levesque (1984)
suggests that closure principles do not refer to what we actually know or believe but rather to
another kind of concept: what is implicit in what we know or believe, even without us realizing
it.

[. . . ] if an agent imagines the world to be one where α is true and if α logically
implies β, then (whether or not he realizes it) he imagines the world to be one

4This might even exacerbate our worries on the explanatory power and motivation underlying the axioms; an
objection of ad-hocness is unavoidable.
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where β also happens to be true.5

In addition, the distinction between implicit and explicit attitudes is endorsed by results
in psychology. For example, it has been documented (Schacter (1987), Schacter and Tulving
(1994)) that implicit memory affects our performance as we resort to our accumulated experi-
ence without making a conscious recall, unlike explicit memory that usually involves a delib-
erate and conscious act of recall. One could therefore argue that there are different shades of
knowledge, corresponding to different ways it can be acquired.

In any case, we need to tell apart what is explicitly, directly known/believed by an agent and
what the world would be like if what she knows/believes was true, even if its consequences are
not consciously accessible to her. The approaches below promise to model this difference
and show that logical omniscience is overruled with respect to the former while remaining an
unproblematic, and even desired, feature with respect to the latter.

3.2.1 Awareness

One of the ways that have been proposed to formally capture this distinction is based on the
notion of awareness. According to this view, as presented in Fagin and Halpern (1987) and
Fagin et al. (1995a), agents are not logically omniscient because they cannot believe/know
things they are not aware of. In order to account for the concepts that the agent is aware of, the
standard single-agent language is supplemented with an operator A such that Aφ reads “the
agent is aware of φ” and, also, with an operator K e such that K eφ reads “the agent explicitly
knows φ”. Next, our familiar models are enriched by an additional component:

Definition 3.2.1 (Awareness structure, Fagin et al. (1995a)). An awareness structure is a Kripke
model M augmented by an awareness function A, i.e. a tuple ⟨W,R,V ,A⟩, such that A asso-
ciates a set of formulas from our extended language with each world w ∈ W . Intuitively, this
set is the set of all formulas that the agent is aware of at w .

The awareness function behaves arbitrarily; for instance, an agent might be aware of both
φ and ¬φ, or aware of φ∧ψ but unaware of φ. Once we obtain these new structures, we can
turn to the truth clauses of Aφ and K eφ.

Definition 3.2.2 (Semantics for awareness, Fagin et al. (1995a)). The definition and notation
follow that of Definition 1.1.3, only now supplemented with:

• M , w ⊧ Aφ if and only if φ ∈A(w).

• M , w ⊧K eφ if and only if M , w ⊧Kφ and M , w ⊧ Aφ.

Unsurprisingly, for the case of belief B eφ (once the operators B e and B are added to the
language to denote explicit and implicit belief) we substitute Kφwith Bφ in the last clause, i.e.
B eφ boils down to Bφ and Aφ.

Consequently, while implicit knowledge remains subject of the closure principles that yield
logical omniscience, the problem can be avoided in its explicit form. For example, if an agent
explicitly knows φ, and φ logically implies ψ, then it need not be that she explicitly knows ψ;
although Kψ still holds, it might be that ψ /∈ A(w) for some world of the model. Likewise,
not all valid formulas are explicitly known/believed as an agent might not be aware of them.

5Levesque (1984), p. 198.
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Through manipulations of the awareness function, the remaining closure principles can be
similarly destroyed.

In the face of criticisms stemming from the arbitrariness of the awareness function, and re-
sembling the considerations discussed in Section 3.1.1, it seems reasonable to impose certain
restrictions on what an agent is aware of:

1. φ∧ψ ∈A(w) if and only ifψ∧φ ∈A(w), to ensure that the awareness function is coarse-
grained enough to disregard the order of conjuncts.

2. φ ∈A(w) if and only if ¬φ ∈A(w), to ensure that an agent cannot be aware ofφwithout
being aware of its negation and vice-versa.

3. If φ ∈ A(w) and ψ is a subformula of φ then ψ ∈ A(w), to ensure that awareness of a
formula presupposes awareness of its constituent parts.

4. If φ ∈A(w), then Aφ ∈A(w), to ensure that an agent self-reflects and is therefore aware
of what she is aware of.

5. If wRu thenA(w) =A(u), to ensure that an agent knows the formulas she is aware of6.

6. A(w) contains exactly those formulas that the agent can decide on whether they follow
from the information at w , in some given period of time.

Next, it is important to note that, unlike syntactic structures, awareness logics preserve
useful results of the standard systems and uncover some interesting properties of knowledge
and belief.

Theorem 3.2.1 (Axiomatization for awareness, Fagin et al. (1995a)). By adding the axiom K eφ↔
Aφ∧Kφ to the axioms and rules of K, we can obtain a sound and complete axiomatization for
the logic of awareness 7.

Specifically, we can obtain properties for explicit knowledge corresponding to axiom (K)
and inference rule (N), once we relativize to awareness: i.e. consider K eφ∧K e(φ→ψ)∧Aψ→
K eψ and “from φ infer Aφ→ K eφ”. Analogous instances can be obtained for the Positive In-
trospection axiom and the Negative Introspection axiom, but only if we further demand that
the aforementioned restriction 5 holds.

To sum up, this approach manages to invalidate the problematic cluster of principles via
attaching the intuitively plausible requirement of awareness to (explicit) knowledge. It also
naturally preserves elements of the standard system. However, logical competence of agents
is not preserved; it can easily be the case that an agent fails to know a trivial consequence
of her knowledge merely due to the construction of the awareness function. Even if we re-
sort to restrictions listed above, e.g. the reasonable assumption of awareness closure under
subformulas, the problem is somehow retained, e.g. Closure under Material Implication per-
sists. Indeed, in this case, awareness of φ and awareness of φ→ψ yields awareness of ψ too.

6Demanding thatA(w) ⊆A(u)whenever wRu can suffice. Given that standard epistemic models are symmetric
and since this account can be preserved for (implicit) knowledge, we can immediately adopt the other inclusion as
well.

7Clarifying that this is the case for the plain awareness system, i.e. without any of the restrictions mentioned
above. Furthermore, in Fagin and Halpern (1987) we can find a similar axiomatization (for belief) building on KD45,
provided of course that the accessibility relation of the awareness structures satisfies the corresponding properties.
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Combining this with the implicit Closure under Material Implication, that ensures that Kψ, we
get that K eψ. Avoiding such plausible restrictions – that can be seen as attempts to preserve
logical competence – in the pain of logical omniscience, unveils the difficulty to generate a bal-
anced account via awareness. What is more, despite the close connection to the standard sys-
tems, awareness still forfeits desirable properties of logical modelling such as the correspon-
dence between properties of accessibility relations and propositional attitudes, as pointed out
in Konolige (1988). Suppose for example that B eφ is true and consider the introspective ex-
plicit belief B e B eφ. Its truth depends on the status of both Aφ→B Aφ and B eφ→ AB eφ, none
of which reflecting properties of doxastic accessibility. It is therefore clear that several aspects
of this approach are exposed to criticism.

3.2.2 Algorithmic Knowledge

According to the algorithmic knowledge approach (hereafter adapted from Halpern and Pu-
cella (2011), Halpern et al. (1994)), knowledge is attained via a knowledge algorithm. Given
a language formed as in the previous section, only without the awareness operator, the algo-
rithm takes a formula as input and outputs “yes”, if the agent computes that the formula is true
and “no”, if the agent computes that the formula is false (and “?” otherwise). Formally:

Definition 3.2.3 (Algorithmic knowledge structure). An algorithmic knowledge structure is a
tuple M = ⟨W,R,V , A⟩ where ⟨W,R,V ⟩ is a Kripke structure and A is a knowledge algorithm
that returns “yes”, “no” or “?”, given a formula φ.

Definition 3.2.4 (Semantics for algorithmic knowledge).

• The clauses of Definition 1.1.3.

• M , w ⊧K eφ if and only if A(φ)=“yes”.

As a result, the agent attains explicit knowledge only of those facts that she can explicitly
compute. Since knowledge algorithms are not subject to any restriction, an agent can explicitly
know bothφ andφ→ψwithout explicitly knowingψ; or an agent can explicitly knowφ, which
is logically equivalent to ψ, without explicitly knowing ψ. That is, the algorithmic knowledge
approach also escapes the problem in a syntactic manner, using algorithms to capture the
notion of explicit knowledge and utilizing their arbitrariness to differentiate it from its implicit
counterpart8.

An important class of knowledge algorithms consists of sound knowledge algorithms. When
a sound algorithm outputs “yes” given an input φ, then the agent knows φ, in the standard
sense. When a sound algorithm outputs “no” given an input φ, then the agent does not know
φ, in the standard sense.

Definition 3.2.5 (Sound Algorithm). An algorithm is sound in a structure M if for any world w
in M and any formulaφ: A(φ)= “Yes” implies M , w ⊧Kφ and A(φ)=“No” implies M , w ⊧¬Kφ.

We have good reasons to restrict our attention to sound algorithms since in this case K eφ→
Kφ and thus K eφ→φ are valid, both reflecting desirable properties of explicit knowledge. But
then it can be easily seen that algorithmic knowledge structures can be reduced to instances
of awareness and thereby inherit the criticisms of the previous section.

8This strategy can be trivially extended to belief.
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3.2.3 Justification Logic

Justification Logic is another framework that focuses on explicit attitudes, developed to rea-
son about epistemic justification. The starting point for its endeavor is to supplement the lan-
guage of standard propositional logic with justification assertions t ∶ F , interpreted as “t is a
justification for F ”. In this sense, it introduces an epistemologically anticipated component of
justification to the conventional epistemic logic accounts, that solely deal with what is known,
neglecting why it is known. It is precisely in this notion of justification that the “explicitness”
lies.

Before continuing with Justification Logic, based on the paradigmatic expositions in Arte-
mov and Fitting (2016), Artemov (2011) and Artemov (2008), we first need definitions of justi-
fication terms and justification formulas. We gather these in:

Definition 3.2.6 (Language of Justification Logic). For countable sets of justification constants,
justification variables and propositional atoms, justification terms are built as follows:

t ∶∶= ci ∣ xi ∣ t ⋅ t ∣ t + t

We use ci to denote the justification constants and xi to denote the justification variables.
Formulas are built as follows:

φ ∶∶= p ∣ ¬φ ∣ φ→φ ∣ t ∶φ

where p denotes a propositional atom.

In order to grasp this definition, one should think of justification constants as unanalyz-
able justifications and of justification variables as unspecified justifications. Applying a jus-
tification term to a formula, e.g. as in t ∶ φ, can take the intuitive interpretation of t being a
justification for φ. In our case, the standard knowledge assertion “φ is known” is replaced by
“t is a justification of φ”. In this sense, justification terms may be viewed as the usual modal
operator ◻, expanded with labels. As we will see, the treatment of these terms is no different
to the treatment of the modal operators. The conceptual difference is that now the notion of
knowledge becomes more expressive, as it is reinforced with an evidence-based foundation.

Regardless of the intuitive reading, we can always define operations between justification
terms. The operation symbol ⋅ indicates an one-step deduction according to Modus Ponens,
that is, given justifications s and t , if s is a justification of φ → ψ and t a justification of φ,
then s ⋅ t is produced, as a justification of ψ. Formally this is written as s ∶ (φ→ψ)→ (t ∶ φ→
(s ⋅ t) ∶ψ). For example, Artemov (2011) remarks that if justifications are taken as Hilbert-style
proofs, then s ⋅ t can be seen as a new proof obtained by s and t by performing Modus Ponens
to all possible premises φ→ψ from s and φ from t . The operation symbol + says that, given
justifications s and t , s+ t is a justification produced for everything justified by s or t . Formally
we write s ∶ φ → (s + t) ∶ φ and s ∶ φ → (t + s) ∶ φ. For example, s + t can be thought of as a
body of evidence that “gathers” evidence without performing logical inferences. Specifically,
+ aggregates all the evidence provided by s and t so that the resulted s+ t supports everything
supported by s or t .

With this material in hand, we can continue with specific Justification Logic systems.

Definition 3.2.7 (Basic Logic, Artemov (2011)). The Basic Logic J0 is axiomatized by:

• (CP) All instances of classical propositional tautologies.
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• (Application Axiom) s ∶ (φ→ψ)→ (t ∶φ→ (s ⋅ t) ∶ψ).

• (Sum Axioms) s ∶φ→ (s + t) ∶φ and s ∶φ→ (t + s) ∶φ.

• (MP) The inference rule Modus Ponens.

In addition, if we want to postulate that an axiom A has a justification for the agent, we
postulate e1 ∶ A for some justification constant e1. Continuing in the same manner, by en ∶
en−1 ∶ . . . ∶ e1 ∶ A we postulate that en is a justification for en−1 ∶ . . . ∶ e1 ∶ A.

Definition 3.2.8 (Constant Specification, Artemov (2011)). A Constant Specification (C S) for
a given justification logic L is a set of formulas en ∶ en−1 ∶ . . . ∶ e1 ∶ A (n ≥ 1), where A is an
axiom of L and e1, . . . ,en are justification constants with indices 1, . . . ,n. We also assume that
if en ∶ en−1 ∶ . . . ∶ e1 ∶ A is in C S then en−1 ∶ . . . ∶ e1 ∶ A is in C S, that is, intermediate specifications
are included in a given C S.

Note that the justification terms of the basic system are not necessarily factive. In order
to incorporate Factivity, one has to add the relevant axiom t ∶ φ → φ, thereby getting an ex-
tension of the basic system. Of course, there can be further operations such as the Positive
Introspection operation ‘!’, with !t interpreted in such a way that if an agent accepts t as suffi-
cient justification for φ, then !t serves as sufficient justification for t ∶ φ. Subsequently, other
axioms can be added (in our example, t ∶φ→!t ∶ (t ∶φ)), resulting in further extensions. A case
in point is LP, Gödel’s Logic of Proofs, which can be seen as the extension of the basic logic
with the axioms: t ∶ φ→ φ and t ∶ φ→!t ∶ (t ∶ φ). Such extensions already hint at a particular
correspondence with the standard modal logics such as T,K4,S4,KD45,S5 etc. For example,
the extension of the basic system axiomatized by the positive introspection axiom has K4 as a
modal-logic counterpart9.

We now proceed with the semantical account of Justification Logic, based on Artemov and
Fitting (2016):

Definition 3.2.9 (Fitting model). A Fitting model is a model M = ⟨W,R,E ,V ⟩ where W is a
non-empty set of worlds, R is an accessibility relation on W and V a valuation function that
maps a propositional atom to a set of worlds (containing those worlds in which the atom is
true). E is an evidence function, which takes as arguments a justification term t and a formula
φ and maps them to a set of worlds; these are the worlds where t is admissible (or relevant)
evidence for the formula φ. This function additionally satisfies the following:

• (Application) E(s,φ→ψ)∩E(t ,φ) ⊆ E(s ⋅ t ,ψ)

• (Sum) E(s,φ)∪E(t ,φ) ⊆ E(s + t ,φ)

The first condition ensures the validity of the Application Axiom, whereas the second en-
sures the validity of the Sum Axioms. For justification logics with a constant specification, we
also require:

• (Constant Specification) If c ∶ X ∈C S then E(c, X ) =W

By virtue of the definition of Constant Specification, it is clearly understood that axioms are
justified ex officio and what is justified in this way cannot be analyzed any further; this is why

9For a detailed investigation of correspondence results, consult Fitting (2014).
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constants (or arrays of constants) are employed. This additional clause precisely manifests
what constants were introduced for: they denote the reasons for “atomic” assumptions that
are universally accepted and therefore available throughout the whole model.

Definition 3.2.10 (Semantics for justification logics). The definition of a formula φ being true
at world w in a (Fitting) model M , denoted by M , w ⊧φ, follows the usual inductive procedure
for the propositional part. Furthermore, an extra clause is added to account for the justifica-
tion terms:

M , w ⊧ t ∶φ if and only if for all v ∈W with wRv M , v ⊧φ and w ∈ E(t ,φ)

This means that t ∶φ is true at world w ifφ is true at all accessible worlds and t is admissible
evidence for φ at the world w . The first part imitates the usual hintikkian characterization.
The second part imposes another constraint: evidence t should be admissible for φ at w . It
can be therefore stated that this characterization is “explicit” in the sense that the traditional
(implicit) condition is augmented by another condition regarding the features of the available
evidence. Consequently, one might fail to know something for a particular reason at a world,
either because this is not “knowable” already in the standard sense, or because the reason that
backs it, is irrelevant.

Once we have presented the main elements of Justification Logic, we can continue with its
contribution towards the problem of logical omniscience. To do so in a most comprehensive
manner, we start with the critique facing other epistemic systems, as fired from the justifica-
tion camp; it is in these terms that its proponents then build their own solution. Specifically,
in Artemov and Kuznets (2009) the inherent defect of the standard logics is located in that they
represent knowledge without taking its origin into account. As a result, the fact that acquir-
ing knowledge is a subject of certain restrictions in the agents resources (e.g. time, memory
etc.) is underestimated. In Artemov and Kuznets (2013), the authors also locate the insuffi-
ciency of other strategies against omniscience, exemplified in sacrificing agents’ rationality, in
their qualitativeness: allowing or prohibiting knowledge assertions is determined by lists of
the known formulas, the formulas the agent is aware of etc. This is why the justification camp
argues for a quantitative method, that uses justifications to navigate in the internal inferential
process of the agents and suggests approaching the problem via proof and time complexity.
In this way, one can capture that rational agents can successfully make simple, small infer-
ences yet complex chains of inferences, despite consisting of smaller ones, might still be inac-
cessible, thereby making agents non-omniscient. To sum up, the authors set the bar of their
solution in obtaining a quantitative criterion, that (a) targets the insufficiency of having knowl-
edge assertions without accompanying feasible justifications, and (b) discerns omniscient and
non-omniscient systems based on how much information about the background reasoning is
required to avoid logical omniscience.

Let’s now delve into their own proposal. As mentioned above, it is essential to ensure that
agents are fundamentally rational. According to the current proposal, what usually prevents
them from acquiring knowledge is the boundedness of resources. In order to express bound-
edness, one has to gain an insight into the resources and quantify over them. In other words,
for succeeding in knowing φ in an epistemic system, the “cost” needed to achieve this should
be somehow measured. The size of the internal proof that allows stipulating knowledge of φ
is an adequate such measure 10. Logical omniscience then arises whenever: “for some ‘short’

10Of course, there might be several interpretations on what is meant by “proof-size”. For example, assuming
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valid knowledge assertions F is known, it is impossible to feasibly find proofs of F in E .”11

This observation and the search of a precise characterization of what “feasibly find proofs
of F ” means, fuel the design of two tests, called LOT (Logical Omniscience Test) and SLOT
(Strong Logical Omniscience Test) aiming in detecting whether a system gives rise to the prob-
lem. As the authors put it in Artemov and Kuznets (2009), p.14.:

“An epistemic system E is not logically omniscient if for any valid-in-E knowl-
edge assertion A of type F is known, there is a proof of F in E , the complexity of
which is bounded by some polynomial in the size of A.”

“We suggest a more general Strong Logical Omniscience Test (SLOT) based on
time complexity: an epistemic system E is not logically omniscient if for any valid-
in-E knowledge assertion A of type F is known, a proof of F in E can be found in
polynomial time in the size of A.”

We can already make some initial remarks. Both tests demonstrate that there is a link be-
tween the size of the knowledge assertion and the ability of the system to feasibly produce
sufficient evidence for the object of knowledge. The difference is that LOT uses the complexity
of the proof of the object of knowledge while SLOT uses the time required to find the proof.
Given that a proof found in polynomial time in the size of the assertion is of polynomial-size,
the strong test indeed entails the weak. Furthermore, both tests depend on the proof system
and the measure of the size of formulas. Yet, LOT additionally depends on the measure of the
size of proofs.

In order to clarify how the tests work, we proceed with a formal presentation. Some pre-
liminary definitions make the notions involved in the tests precise. First, let L a logic of some
language L.

Definition 3.2.11 (Preliminaries, Artemov and Kuznets (2009)).

• A proof system for L is a polynomial-time computable function E ∶Σ∗→ L from the set of
words in some alphabet, called proofs, onto the set of L-valid formulas.

• A measure of size for proofs is a function l ∶Σ∗→N.

• A measure of size for individual formulas ∣ ⋅ ∣ ∶ L→ N (e.g. number of logical symbols in
the formula).

• L is called an epistemic system if some subset rL ⊆L is taken as a set of knowledge asser-
tions. Each knowledge assertion A ∈ rL has an intended meaning “formula F is known”
for a unique formula F . The function OK ∶ rL→L that extracts the object of knowledge
from each knowledge assertion is required to be computable in polynomial time in ∣A∣
and validity-preserving: for any A ∈ rL, L ⊢ A⇒ L ⊢OK (A).

• The reflected fragment rL is the set of all valid knowledge assertions: r L = L∩ rL.

Definition 3.2.12 (LOT and SLOT, Artemov and Kuznets (2009)). For E a proof system for an
epistemic system L, or simply an epistemic proof system, we define:

Hilbert-style proof systems, the size measures can be associated with the number of proof-steps or the logical symbols
in a derivation.

11For E an epistemic system; Artemov and Kuznets (2009), p. 14.
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• (LOT): E is not logically omniscient or passes LOT, if there exists a polynomial P such
that for any valid knowledge assertion A ∈ r L, there is a proof of OK (A) in E , with the
size bounded by P(∣A∣).

• (SLOT): E is strongly not logically omniscient or passes SLOT, if there is a deterministic
algorithm, polynomial in ∣A∣, that, for any valid knowledge assertion A ∈ r L is capable of
restoring a proof of OK (A) in E .

It now becomes clearer that “feasibly find proofs in E”, according to LOT, points at using
the proof size of the assertion. This is so because LOT wants to make explicit the difference be-
tween “I know that Goldbach’s Conjecture holds” and “Such-and-such make Goldbach’s Con-
jecture hold”. In the first case, the knowledge assertion is short and as a result there is a deficit
of “raw material” to construct a proof. In the second case, the knowledge assertion contains
some array of justifications, that provide information to verify this response to the conjecture.
Accordingly, SLOT strengthens the requirements. More information on the background rea-
soning should be encoded, if we are to avoid omniscience. An increased size of a knowledge
assertion suggests that finding a proof is also fast because we already have footprints for the
construction of the proof: the justification terms. For example, knowing a winning strategy
of a game would require that the assertion encodes enough information to retrieve a proof
that narrates each of the steps necessary to reach victory. In a game like tic-tac-toe, storing
this information can be easy, assuming that the symmetries on the table are exploited to prove
that the strategy is indeed winning(or non-losing). In a game like chess, this is –as far as we
currently know– unattainable because the complexity of proving that a strategy is winning
(or non-losing) remains infeasible. A non-omniscient system would be able to discern these
cases, unlike an omniscient one.

Given these tests, we are able to make some exegetical points on why justification logics
avoid omniscience. In particular, the goal is to show that agents are logically omniscient un-
der standard epistemic systems but not under justification ones. In the former, the difficulty
and the internal effort to actually reach knowledge is not reflected in the language; no mat-
ter how hard it was for knowledge to be gained, these logics just do away with it, by using the
K operator. On the other hand, the latter provide information on why F is known: this in-
formation, if included in the assertion, is sufficient to recover feasible proofs for F . In case a
proof cannot be constructed, then knowledge acquisition fails. Overall, by employing LOT or
SLOT and the knowledge assertions with incorporated justification terms, we can maneuver
through a non-idealized agent’s proof search and then explain her non-omniscience in terms
of the resource-boundedness that affects this process.

Indeed, using these tests of (non-)omniscience, agents of modal epistemic logics, such
as S4, are proved to be omniscient with respect to both LOT and SLOT. On the other hand,
agents of justification logics are proved to be not logically omniscient. For instance, consider
LP, the Hilbert-style proof system and the size of a proof being the number of formulas in it.
According to Artemov and Kuznets (2006), for each valid knowledge assertion t ∶ F , it is shown
that there is a Hilbert-style derivation, making a linear number of steps (3∣t ∣+ 2 steps being
enough with ∣t ∣ taken as the number of symbols in t ). Even when bringing the two traditions
together under a combined framework, as in Artemov and Kuznets (2009) where a logic S4LP
which combines S4 and LP is devised, the distinction between explicit and implicit knowledge
regarding logical omniscience is still sharp. More specifically, S4LP allows for a more realistic
portrayal of knowledge, as both implicit and explicit versions of it are present. Its language
includes both the usual epistemic assertions Kφ and justification assertions t ∶φ. The former
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denotes the standard implicit kind of knowledge while the latter, as we have seen, additionally
requires feasible witnesses for the knowledge claim and it is precisely because of this that we
are able to explain and control logical omniscience. The axiomatization of this new logic is
given by the combination of S4 and LP, supplemented with:

t ∶φ→Kφ (connection principle)

It is shown that, indeed, implicit knowledge in S4LP gives rise to logical omniscience,
whereas explicit knowledge does not.

Overall, Justification Logic’s core idea to offer reasons on why something is known, pro-
vides natural ways to get closer to real agents’ mental processes and avoid logical omniscience.
In addition, this attempt succeeds in bridging rationality and non-omniscience. By focusing
on the boundedness of resources, as exemplified in the quantitative use of justification terms,
it ensures that the solution does not in any sense imply that agents are incapable of making
simple inferences. This is also why Justification Logic is aligned with our intuitions on how
reasoning actually progresses. The mere introduction of justifications resettles the notion of
knowledge and assists the distinction between implicit and explicit knowledge. The tests LOT
and SLOT complete the picture and suggest a way out while avoiding the construction of triv-
ialized logics. However, the way the tests are devised hints at a flavour of knowability in that
it presupposes that agents follow the right reasoning trajectory. As a result, it does not deliver
a full account for those situations whereby an agent simply follows the wrong track, main-
tains inconsistent beliefs etc. This can be seen as lying beyond the scope of this attempt if
we view it as a resource-sensitive proposal that provides us with an intuitive way to express
(quantitatively) the resource-boundedness without delving into determining a strict bound,
i.e. a bound more precise that merely polynomial in the size of the assertion. In addition, the
response to the problem is parameterized by the measure of the size of the formulas/proofs
and the proof system itself. For example, if we assume a Hilbert-style proof system, the size of
the proofs can be the number of steps used in the derivation or the number of logical symbols
appearing in the derivation. Likewise, the size of the formula can be thought of as the number
of logical symbols in the formulas or its word length. The margin of arbitrariness involved in
this selection deems the status of the tests, and hence of the evaluation of epistemic systems,
debatable. The authors themselves acknowledge that one should be careful in this choice as
omniscience-free systems can be artificially engineered to merely pass the tests and simply
throw out standard knowledge assertions (Artemov and Kuznets (2006)). However, it seems
more credible, from the explanatory point of view, to choose the proof system based on some
empirical indication on what the agents we are interested in usually adopt. For example, ex-
perimental evidence from psychology of reasoning (Dieussaert et al. (2000), Stenning and van
Lambalgen (2008)) suggests that certain rules, e.g. Modus Ponens, are preferred from others,
e.g. Modus Tollens, by real-life human agents. Prioritizing such remarks might allow us to
present more plausible epistemic systems, instead of following a recipe that produces systems
that might be, on one hand, omniscience-free but on the other, loosely motivated.

3.2.4 Logics of Justified Belief and Knowledge

Logics of justified belief and knowledge and their dynamic extensions build on Justification
Logic, Dynamic Epistemic Logic and Belief Revision in order to capture the difference between
implicit and explicit attitudes, while incorporating the effect of dynamical changes. As a result,
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the idea of introducing justification terms to better approximate real-world knowledge and be-
lief is extended to allow for explicit analogues of many notions from the literature on Dynamic
Epistemic Logic (such as defeasible knowledge) and for justification-sensitive dynamics. The
following definitions set the background of this attempt:

Definition 3.2.13 (Language LJB , Baltag et al. (2012)). The language LJB comprises both a
set of propositional formulas F and a set of evidence terms T . Given a set Φ of propositional
atoms:

• φ ∶∶= � ∣ p ∣ ¬φ ∣ φ∧φ ∣ Et ∣ t ≫φ ∣ ◻φ ∣ Kφ ∣ Y φ, with p ∈Φ

• t ∶∶= cφ ∣ t ⋅ t ∣ t + t

Spelling out the meaning of these constructions:

• Et means that the evidence t is available to the agent but it is not necessarily accepted
by her.

• t ≫ φ means that t is admissible evidence for φ: if accepted, this evidence supports φ.
To avoid confusion, we should clarify that, apart from a symbol of the language, ≫ will
also be used to denote the smallest binary relation on T ×F such that (a) cφ ≫ φ, (b) if
t ≫ (ψ⇒φ) and s ≫ψ, then (t ⋅ s)≫φ, and (c) if t ≫φ or s ≫φ, then (t + s)≫φ.

• ◻ means that the agent implicitly defeasibly knows φ. As explained in Chapter 2, defasi-
ble knowledge stands for a justified true belief stable under the introduction of any true
information.

• Kφ means that the agent implicitly infallibly knows φ. In this case and in line with the
the previous chapter, the incoming information is not necessarily true. It might include
false evidence, misleading testimony etc. Yet infallible knowledge survives even in the
face of this misinformation.

• Y φ is a temporal operator, meaning that “yesterday” (before the last epistemic action)φ
was true.

• cφ is an evidential certificate, a “canonical” piece of evidence in support of a sentenceφ.

• s ⋅ t is a compound piece evidence, where the operation ⋅ combines two pieces of evi-
dence s and t using Modus Ponens.

• t + s is a body of evidence, where the operation + combines two pieces of evidence by
aggregating all the evidence provided by t and s without performing logical inferences.

In addition, consider sub(φ), the set of subformulas of a formula φ: for the boolean cases,
the set is obtained in the standard way of defining subformulas; then, sub(Et) ∶= {Et}, sub(t ≫
θ) ∶= {t ≫ θ}, sub(◻θ) ∶= {◻θ}∪ sub(θ), sub(Kθ) ∶= {Kθ}∪ sub(θ), and sub(Y θ) ∶= {Y θ}∪
sub(θ). The abbreviations below will also be useful:

Definition 3.2.14 (Abbreviations, Baltag et al. (2012)).

• cont ∶=⋀{θ ∣ t ≫ θ} , i.e. the conjunction of all formulas for which t is admissible evi-
dence.
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• Bφ ∶=◇◻φ , which says that the agent implicitly believes φ.

• A(t) ∶=⋀cφ∈sub(t) Bφ, which says that the agent implicitly accepts evidence t .

• G(t) ∶=⋀cφ∈sub(t)◻φ, which says that t is good implicit evidence.

• I(t) ∶=⋀cφ∈sub(t) Kφ, which says that t is infallible implicit evidence.

• t ∶φ ∶= A(t)∧ t ≫φ, which says that t is implicit evidence for belief of φ.

• B eφ ∶=Bφ∧Ecφ, which says that the agent explicitly believes φ.

• ◻eφ ∶=◻φ∧Ecφ, which says that the agent explicitly defeasibly knows φ.

• K eφ ∶=Kφ∧Ecφ, which says that the agent explicitly infallibly knows φ.

• t ∶e φ ∶= t ∶φ∧Et , which says that t is explicit evidence for belief in φ.

Next, we present the models of this approach; notice that they bring together plausibility
models and the notion of justification.

Definition 3.2.15 (Model for justified attitudes, Baltag et al. (2012)). A model for justified atti-
tudes is a structure M = ⟨W,[[⋅]],∼,≥,↝,E⟩, where:

• W is a non-empty set of possible worlds.

• [[⋅]] is a valuation map fromΦ toP(W ).

• ≥,∼,↝ are binary relations on W , representing relative plausibility, epistemic indistin-
guishability, and immediate temporal precedence respectively. Certain conditions are
imposed on these relations.

– ∼ is taken to be an equivalence relation and ≥ a preorder.

– Indefeasibility: w ≥ u→w ∼ u.

– Local Connectedness: w ∼ u→ (w ≥ u∨u ≥ w)
– Propositional Perfect Recall: (w ↝ u ∼ u′)→ ∃w ′(w ∼ w ′↝ u′).

– Uniqueness of Past: (w ′↝w ∧w ′′↝w)→w ′ = w ′′.

– Persistence of Facts: w ↝w ′→ (w ∈ [[p]]↔w ′ ∈ [[p]]).

• E is an evidence map from W toP(T ). Further conditions are imposed regarding E .

– Evidential Perfect Recall: w ↝w ′→ {t Y ∣ t ∈ E(w)} ⊆ E(w ′).

– (Implicit) Evidential Introspection: w ∼ u→ E(w) = E(u).

– Subterm Closure: if t ⋅ t ′ ∈ E(w) or t + t ′ ∈ E(w) then t ∈ E(w) and t ′ ∈ E(w), that
is the constituent evidential pieces should be available too.

– Certification of Evidence: if t ∈ E(w) and t ≫ φ then cφ ∈ E(w), that is all explicit
knowledge can be certified.

A pointed model is a pair (M , w) consisting of a model M and a designated world w in M
called the “actual world”.
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If we require well-foundedness of ≥ and↝ (i.e. there are no infinite chains of plausibility
and temporal precedence), we get the standard models, so that truth of belief (Bφ) can be
captured in terms of “truth in the most plausible worlds”.

Definition 3.2.16 (Semantics for justified attitudes, Baltag et al. (2012)). Truth at a world w in
a model M is inductively defined for formulas φ ∈F , based on the following clauses:

• M , w /⊧ �

• M , w ⊧ p if and only if w ∈ [[p]]

• M , w ⊧¬φ if and only if M , w /⊧φ

• M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ

• M , w ⊧ Et if and only if t ∈ E(w)

• M , w ⊧ t ≫φ if and only if t ≫φ

• M , w ⊧◻φ if and only if M ,u ⊧φ for every u ≤ w

• M , w ⊧Kφ if and only if M ,u ⊧φ for every u ∼ w

• M , w ⊧ Y φ if and only if M ,u ⊧φ for every u↝w

We can now proceed with the proof system and the main results on soundness and com-
pleteness:

Definition 3.2.17 (Axiomatization of JB, Baltag et al. (2012)). The axiomatization of JB is de-
fined in Table 3.1.

Table 3.1: The theory JB
AXIOM SCHEMES

Axioms of Classical Propositional Logic
Et →K Et (Knowledge of Available Evidence)

E(t ⋅ s)→ Et ∧E s
E(t + s)→ Et ∧E s (Subterm Closure)

t ≫φ∧Et → Ecφ (Certification of Available Evidence)
t ≫φ if t ≫φ

¬(t ≫φ) if t /≫φ (Admissibility)
S5 axioms for K
S4 axioms for ◻

Kφ→◻φ (Indefeasibility)
K (φ∨◻ψ)∧K (ψ∨◻φ)→ (Kφ∨Kψ) (Local Connectedness)

Y (φ→ψ)→ (Y φ→ Y ψ) (Normality of Y )
Y Kφ→K Y φ (Propositional Perfect Recall)

Y Et ∧¬Y �→ Et Y (Evidential Perfect Recall)
¬Y φ→ Y ¬φ (Uniqueness of Past)

Y p↔ (¬Y �→ p) (Persistence of Facts)
RULES

From φ and φ→ψ infer ψ (Modus Ponens)
From φ infer ◻φ ( ◻ N)
From φ infer Kφ (K N)
From φ infer Y φ (Y N)
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Theorem 3.2.2 (Completeness of JB, Baltag et al. (2012)).

• JB is sound and strongly complete with respect to the class of all models.

• JB is sound and weakly complete with respect to the class of the standard models.

Till now, the framework is static. However, it is important to consider how explicit belief
and knowledge are practically attained. During discourse, the interlocutors share informa-
tion with one another and prompt actions in the manipulation of evidence. Depending on
whether the source is considered absolutely reliable or strongly trusted, the receiver updates
or upgrades with the given piece of evidence. During reflection, an individual might form or
become aware of some piece of evidence e.g. of the instance of an axiom or of her own implicit
beliefs and non-beliefs. Furthermore, she can perform Modus Ponens to compose previously
collected pieces of evidence and form a new one. On the whole, acquiring evidence terms and
thus explicit belief and knowledge is a dynamic process and this is why machinery from DEL
is integrated in the JB framework.

In what follows, we describe four types of epistemic actions and present the extension of
the basic language to a language with updates capable of modelling these dynamical scenar-
ios.

• Availability of evidence, t+: the evidence term t becomes available, either because the
agent becomes aware of the possibility of such evidence (e.g. awareness of an axiom
instance or introspection on her own beliefs) or because the agent forms this term. It is
useful to underline that availability does not necessarily entail acceptance of evidence.
The modal operator corresponding to t+ is denoted by [t+] and the formula [t+]φ is
informally read as “after t becomes available, φ is true”. The precondition for t+ is
pr et+ ∶= ⊺, i.e. the action can always happen and no further conditions need to be im-
posed. Its evidence set, that is the set of all the evidence terms that become available due
to the action, is Tt+ ∶= sub(t)∪{cθ ∣ s ≫ θ for some s ∈ sub(t)}.

• Combination of evidence, t ⊗ s: given two available evidence terms t and s the action
t⊗s forms a new term t ⋅s, corresponding to combining the terms by performing Modus
Ponens. The modal operator corresponding to t⊗s is denoted by [t⊗s] and the formula
[t ⊗ s]φ is informally read as “after t and s are combined through Modus Ponens, φ is
true”. The precondition for t ⊗ s is pr et⊗s ∶= Et ∧ E s. i.e. t and s should be already
available. Its evidence set is Tt⊗s ∶= {t ⋅ s}∪{cθ ∣ t ⋅ s ≫ θ}.

• Update with hard evidence, t !: this is the action of updating with some “hard” evidence
term t , that is coming from an absolutely infallible source. This notion is analogous
to the one of the standard update under DEL, only now the input is an evidence term
and not a proposition. We also note that the introduced evidence becomes available
and accepted by the agent, but in its past form as it unveils properties of the world as it
was before the update. The modal operator corresponding to t ! is denoted by [t !] and
the formula [t !]φ is informally read as “after updating with hard evidence t , φ is true”.
The precondition for t ! is pr et ! ∶= cont = ⋀{θ ∣ t ≫ θ}, i.e. t is indeed “hard” evidence
(it supports a true proposition). Its evidence set is Tt ! ∶= sub(t)∪ {cθ ∣ s ≫ θ for some
s ∈ sub(t)}.

• Upgrade with soft evidence, t ⇑: this is the action of upgrading with some “soft” evi-
dence t , that is coming from a reliable but not infallible source. This notion is analogous
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to the action of radical upgrade in DEL. The new evidence is also strongly accepted but
not infallibly known. The modal operator corresponding to t ⇑ is denoted by [t ⇑] and
the formula [t ⇑]φ is informally read as “after upgrading with soft evidence t , φ is true”.
The precondition for t ⇑ is pr et⇑ ∶= ⊺. Its evidence set is Tt⇑ ∶= sub(t)∪ {cθ ∣ s ≫ θ for
some s ∈ sub(t)}.

The dynamic account is then captured by the following:

Definition 3.2.18 (Language with updates, Baltag et al. (2012)). The basic language extended
with updatesLact ∶= (T act ,Fact) contains the new modal formulas obtained by the operators
[α] where α = {t+, t ⊗ s, t !, t ⇑}, for every t , s ∈ T 12.

Definition 3.2.19 (Semantics for updates, Baltag et al. (2012)). The satisfaction relation (M , w)⊧
φ is extended to accommodate the dynamic modalities [α]φ where α ∈ {t+, t ⊗ s, t !, t ⇑} :

x ⊧M [α]φ if and only if xα ⊧M[α] φ

with xα representing the “updated” world and M[α] ∶= (W α,[[⋅]]α,∼α,≥α,↝α,Eα) where

W α
∶=W ∪{wα

∣ w ∈ [[pr eα]]}

Eα(w) ∶= E(w) for w ∈W

Eα(wα
) ∶= {uY

∣ u ∈ T (α)∪E(w)}

[[p]]
α
∶= [[p]]∪{wα

∈W α
∣ w ∈ [[p]]}

∼
α
∶=∼∪{(wα,uα) ∣ w ∼ u}

↝
α
∶=↝∪{(w, wα

) ∣ w ∈ [[pr eα]]}

≥
α
∶=≥∪{(wα,uα) ∣ w ≥ u} for α ∈ {t+, t ⊗ s, t !}

≥
t⇑
=≥∪{(w t⇑,ut⇑

) ∣ (w /∈ [[cont ]]∧u ∈ [[cont ]])∨(w /∈ [[cont ]]∧w ≥ u)∨(v ∈ [[cont ]]∧w ≥

u)}

≥
t⇑
=≥∪{(w t⇑,ut⇑

) ∣ w ≥ u} for t /∈ T e

Finally, there is a dynamic axiomatization as well:

Theorem 3.2.3 (Theory with dynamics, Baltag et al. (2012)). D JB , the theory of dynamic jus-
tified belief, is composed by Table 3.1 and Table 3.2.

Theorem 3.2.4 (Soundness and completeness of DJB, Baltag et al. (2012)). ⊢ φ if and only if
⊧φ for each φ ∈Fact .

A variant of this approach is described in Baltag et al. (2014). The newly introduced notion
is that of actual availability of “conclusive” (“good”) evidence. The main idea is that conclu-
sive evidence is fully reliable, as is the case with its constituent parts. More specifically, the
availability of good evidence t , denoted by Et in the language of this system, expresses that
(a) the agent has actually observed all basic pieces of evidence used as the building blocks
for t , and (b) the agent actually constructed the argument t . The semantics, axiomatization
and completeness results are then adapted to account for this new notion. It is worth notic-
ing that the implicit-versus-explicit distinction within this framework is extended to generate
implicit and explicit versions of the axioms of the several justification logic(s). For example,

12Note that their introduction extends both the set of formulas and the set of terms; think of cφ.
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Table 3.2: The theory DJB
AXIOM SCHEMES

Persistence of facts: [α]p↔ (pr eα→ p)
Functionality: [α]¬φ↔ (pr ea →¬[α]φ)
Distributivity of conjunction [α](φ∧ψ)↔ [α]φ∧ [α]ψ
Evidence dynamics: [α]Et Y for t ∈ T (α)

[α]Et Y ↔ (pr eα→ Et) for t /∈ T (α)
[α]E s↔¬pr eα for s /∈ {t Y ∣ t ∈ T }

Admissibility dynamics: [α](t ≫φ)↔ (pr eα→ t ≫φ)
Knowledge dynamics: [α]Kφ↔ (pr eα→K [α]φ)

[α]◻φ↔ (pr eα→◻[α]φ) for α ∈ {t+, t ⊗ s, t !}
[t ⇑]◻φ↔◻(¬cont → [t ⇑ ]φ)∧(cont →◻[t ⇑ ]φ∧K (¬cont → [t ⇑ ]φ))

Temporal dynamics; [α]Y φ↔ (pr eα→φ)

the Application Axiom t ∶ (φ→ψ)→ (s ∶ φ→ (t ⋅ s) ∶ψ) is only valid in its implicit form, since
for an explicit counterpart we would additionally require that the combined term t ⋅ s is actu-
ally available to the agent, i.e. t ∶e (φ→ ψ)→ (s ∶e φ∧E(t ⋅ s)→ (t ⋅ s) ∶e ψ) is valid whereas
t ∶e (φ→ψ)→ (s ∶e φ→ (t ⋅ s) ∶e ψ) is not.

The contribution of this kind of strategies against the problem of logical omniscience con-
sists in that explicit knowledge(/belief) avoids the closure principles as availability of the rele-
vant pieces of evidence is not always guaranteed, but it rather depends on the value of E(w) at
each world. Similar to Justification Logic, the problem persists for implicit knowledge(/belief),
which is viewed, according to this framework, as mere potential knowledge(/belief) whereas
explicit knowledge requires that agents actually go through the trouble of collecting evidence
and correctly validating the needed certificates. In addition, the dynamic extension provides
the tools to spell out how actions affect the construction of our evidential stack. As a result, it
sheds light on our actual reasoning processes and their interactive features. It is worth notic-
ing that it does so while still alluding to the results of standard (dynamic) epistemic systems
and their explanatory power. Besides, the merge of justification and plausibility facilitated the
introduction of other evidence-based notions of knowledge and belief, thereby allowing us to
capture a wider range of phenomena.

However, the treatment of the problem of logical omniscience can be reduced to the one
pursued via awareness functions; the function E can be thought of as an awareness function,
as this determines which formulas are explicitly known/believed. In that sense, the agent is
aware of only those formulas that are evidenced by a term in E(w). The difference is that
the value of E(w) actually unpacks the explicit justifications for those formulas that the agent
knows/believes and their structure is suitable to reflect these properties. Yet, it still inher-
its the drawbacks of the awareness structures. Logical competence cannot be guaranteed for
the same reasons. In addition, Baltag et al. (2014) discusses another kind of “omniscience”
emerging within such frameworks, that can be seen as equally alarming as the ones hitherto
discussed. Essentially, it extends the effect of closure principles, generating analogous prob-
lematic instances but now with regard to the justification terms. Consider a property P that the
set of evidence available to the agent E(w) satisfies, such as “E(w) is closed under any cor-
rect application of the Modus Ponens operation s ⋅t” or “E(w) is not finite”. Then, on the same
line of reasoning followed for standard omniscience forms, one can doubt whether resource-
bounded agents can actually acquire all evidence terms predicted by the property P . It is
only via suitably modifying the function E that we can prevent such occasions13, again though

13At this point and despite the similarities highlighted above, we should note that under awareness frameworks,
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stumbling across the challenge of striking a balance between competence and fallibility, now
regarding the management of evidence. Finally, the otherwise fruitful integration of actions
in a justification-involving framework does not directly influence the escape from logical om-
niscience. That is, it is not itself responsible for destroying the closure principles, e.g. due to
capturing the complexity of reasoning, but it rather suggests ways the range of the function E
can change, which can in turn (indirectly) lead to the desired effect.

3.3 Impossible worlds

3.3.1 Elementary approaches

Another popular approach to address the problem suggests expanding the set of worlds with
worlds that “look possible and hence must be admissible as epistemic alternatives but which
none the less are not logically possible”14. Indeed, a world where Fermat’s Last Theorem fails
to hold is impossible but it might not be identified as such by a limited agent, that lacks, for
example, the appropriate mathematical background. As a result, this world still is a doxastic
possibility for her. By extending the characterization of belief and knowledge to all doxasti-
cally/epistemically accessible worlds, both possible and impossible, we obtain a way out of
the problem. Indeed, if an agent knows that φ, then φ is the case at all worlds epistemically
accessible to her, possible and impossible. If, in addition, φ logically entails ψ, ψ must be the
case at the possible worlds yet there can be an impossible world that does not validate it. Due
to the new characterization, we conclude that the agent does not know ψ. We can destroy the
other closure properties in a similar fashion. In what follows, we examine concrete proposals
that exemplify this idea.

Definition 3.3.1 (Rantala interpretation, Berto (2013)). A Rantala interpretation is a structure
⟨W, N ,R,V ⟩, where

• W is the non-empty set of all worlds.

• N is the subset of (normal) possible worlds. Therefore, W −N is the set of impossible
worlds.

• R is the accessibility relation.

• The valuation function V assigns truth values in the standard, recursive way at possible
worlds. However, at the impossible worlds of W −N , all formulas are assigned a truth
value by V directly.

As a result of the arbitrariness of V when it comes to worlds in W −N , these become com-
pletely anarchic and not closed under any non-trivial consequence relation. By allowing such
worlds to be epistemically/doxastically accessible, we can cope with any problematic closure
principle. For example, an agent might not know all propositional tautologies because a world
where a tautology fails is epistemically accessible for her.

The obvious shortcoming of this initial approach to utilize impossible worlds in epistemic-
doxastic settings is that logical competence is not preserved. On the contrary, the setting is
trivialized and agents appear as subjects of full ignorance. That is, they fail even in conducting

this form of omniscience could not have been expressed, in the absence of appropriate machinery.
14Hintikka (1975).
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trivial inferences as the ill-behaved assignment allows for worlds verifying φ but not ψ, even
when ψ is a trivial consequence of φ. In addition, there is no independent motivation behind
tailoring the valuation function in this way. It only seems relevant as a means to tackle logical
omniscience but it does not reveal any interesting property nor an intuitive explanation on
failures of reasoning.

Of course, one might suggest that partially closing the worlds, via imposing certain re-
strictions on the ill behaviour of the assignment could alleviate these worries. Suppose, for
example, that we require that each world that verifies φ also verifies at least some “easy” logi-
cal consequences of φ. Then it can be shown (Bjerring (2013), Jago (2014), Rasmussen (2015))
that this closure under “easy” logical consequence collapses into closure under full logical con-
sequence, since any inference can be spelled out as a chain of trivial inferences.

Another elementary approach to the problem consists in interpreting the “impossibility”
of impossible worlds in terms of non-classicality. Impossible worlds are then closed under
logical consequence in some (weaker) non-classical logic L. While this approach manages to
avoid logical omniscience with respect to classical logic – as the weaker logic L will obviously
prevent the agents from drawing all classical consequences – it fails with respect to the non-
classical logic. Taking, for instance, a paraconsistent logic, agents still end up knowing all
paraconsistent consequences of what they know. However, there is no reason to assume that
this conclusion is less problematic. The same arguments making the treatment of (classical)
logical omniscience a worthwhile task, can be replicated to show why a new cluster of non-
classical closure results is equally problematic. Thus, this approach is also inadequate.

It is therefore clear that the mere introduction of impossible worlds cannot provide a full
alternative to realistic logical modelling of knowledge and belief, mainly because the problem
is retained in another form and logical competence is completely overlooked.

3.3.2 Jago

In Jago (2014) we find another system in which worlds not closed under logical consequence
can still be accessible. However, the set of worlds is structured in a way that distinguishes
subtle and obvious impossibilities. The underlying motivation is that there are blatantly in-
consistent worlds (containing obvious contradictions that agents easily unveil with limited
reasoning) and subtly inconsistent worlds (containing hidden contradictions, that agents with
limited resources cannot spot). This latter kind cannot be easily ruled-out by a priori reason-
ing. So such worlds might be epistemically accessible despite their impossibility and agents’
rationality.

To begin with, the worlds of this framework are not necessarily complete and consistent.
For instance, an incomplete world can represent neither that A nor that ¬A while an incon-
sistent world can represent both. That is, A and ¬A are not the only options there are, nor are
they mutually exclusive, contrary to the mainstream view of logically possible worlds. This is
why it is useful to consider double worlds, pairs of sets of sentences, i.e. w = ⟨w+, w−⟩ with
w+, w− representing what holds and what fails in w respectively.

Then, the domain of worlds, called epistemic space, is structured in such a way that epis-
temic possibility is captured in terms of the normative relations among worlds and not in terms
of intra-world normative relations. By making the epistemic space, and not worlds themselves,
admitting the normative principles, respect to the logical deductive links is reflected on the
way worlds are linked with one another.
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We hereafter discuss step-by-step the construction and the notions involved in the epis-
temic space.

• The proof-rules
The set of worlds is structured via proof-rules corresponding to the logical connectives.
The steps taken in the construction of a proof are translated into connections between
worlds. Suppose, for example, that a world w represents A and B but not A ∧B while
another world w ′ does represent A∧B . Since A∧B is obtainable through Conjunction
Introduction, an arrow is drawn from w to w ′. In this way, the normative relations are
indeed reflected on the structure of the space. Of course, a strict method presupposes
that there is a specific rule system of use (in our case, a version of Gentzen’s intuitionistic
calculus). According to this, there are sequents of the form Γ ⊧ ∆, meaning that the
conjunction of all sentences in Γ entails the disjunction of all sentences in∆. The proof-
rules are the ones involving the logical connectives and the structural rule of Identity,
as presented in Buss (1998). Proofs are practically constructed in tree-form, beginning
with the sequent to be proved, as a root. Then we proceed backwards applying the rules,
aiming for an instance of Identity. Once this point is reached, the sequent is deemed
valid due to the soundness of the rules.

In addition, and to anticipate the discussion that follows, structure in terms of proof-
rules is suggestive of a criterion to scale worlds in terms of their inconsistency. The more
steps needed to unveil a contradiction, the subtlier it is; therefore the corresponding
world becomes an epistemic possibility. However, what constitutes enough steps and
thus what draws the line between epistemic (im)possibilities is vague.

• From proofs to world-graphs
Continuing our description, if Γ ⊧ ∆ is valid, a world in which all sentences in Γ are
true and all sentences in ∆ are false is an inconsistent world. Double-worlds, which can
precisely represent what is the case and what is not the case, can be structured imme-
diately due to the proof-rules and this observation. In other words, by considering a
double-world ⟨Γ,∆⟩, the corresponding sequent is valid if and only if the world is incon-
sistent. This correspondence allows for sequent-calculus trees to be transformed into
world-graphs, such that the inconsistent world w is, as its sequent, placed at the bottom
of a“world-proof” and then leaves are similarly built, based on their sequent counter-
parts. World-inconsistency is therefore captured in terms of the structure induced by
proof-rules.

• The rank
The next goal is to determine the degree of inconsistency. Intuitively, this is illustrated
in the size of the world-proof: small world-proofs indicate that the world’s contradiction
can be easily retrieved, so the world is blatantly inconsistent. On the other hand, large
world-proofs indicate the difficulty to uncover the contradiction, so the world is subtly
inconsistent. More concretely, we define the size of a proof as the number of its non-leaf
nodes. Then, we collect the proofs corresponding to a world w in a set Gw . If there are
such proofs, i.e. Gw ≠∅, then the rank is given by r(w) = mi n{∣G ∣ ∣ G ∈Gw}, otherwise
r(w) =ω. Next, we order worlds according to r(w): w ≤ w ′ if and only if r(w) ≤ r(w ′).
In this way, we obtain a full account for all worlds: the most blatantly inconsistent worlds
are the ones with small proof size. Worlds that never appear in the root of a world-proof
are the possible worlds. The rest are inconsistent in some way or another, but not of the
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same degree since they might have different ranks, therefore different levels in the ease
one uncovers their contradiction. According to the ordering, if w ≤ w ′ the contradictions
of w ′ are at least as difficult to uncover as w ’s ones. So if one accepts w as epistemically
possible, one should also accept w ′. A converse statement holds for w ′ ≤ w when w
is not epistemically possible. In this way, the set of epistemically possible worlds only
contains those impossible worlds for which no obvious a priori impossibilities can be
discovered. Of course, where the line is drawn in what is considered small/large rank is
not sharply determined.

• The epistemic space
We can now strictly define the epistemic space E :

Definition 3.3.2 (Epistemic space). Fixing an object language L as a set of logically prim-
itive sentences P closed under¬,∧,∨ and→, an epistemic space E is a tuple ⟨W,V +,V −,r ⟩
where W is the set of all worlds, the functions V + , V − are labelling functions of type W →
P(L), assigning a set of sentences to each world (practically determining what is true
and false at each world, respectively) and r is a ranking function of type W → N ∪{ω},
as described above.

We also define the rank of E as mi n{r(w) ∣ w ∈W }. This is an indicator of how trivial the
most trivially impossible world is. It is useful as it also conveys a measure of epistemic
possibility for the worlds, i.e. a relatively large space-rank indicates that no world is
trivially impossible thus all worlds can be considered epistemically possible. In these
cases, we get a genuine epistemic space. In general, for different integers n with r(w) > n
– n encoding the different intuitions on what constitutes a “large” rank – we say that we
obtain different sharpenings of the epistemic space.

The epistemic space, as constructed above, and the fine-grained worlds that comprise
it, allow for an account of epistemic content 15 capable of overcoming the shortcomings
of the standard approach. In particular, the epistemic content of ‘A’ is identified with the
pair ⟨∣A∣+, ∣A∣−⟩ where the first component includes the epistemically possible worlds
according to which ‘A’ is true and the second those according to which ‘A’ is false. Of
course, since epistemic possibility is, as we have seen, indeterminate, the indeterminacy
is also inherited by content membership.

In order to formally incorporate this view of content under his framework, Jago defines
the pointed space and the epistemic n-entailments.

Definition 3.3.3 (Pointed space, Jago (2014)). A pointed space is a pair ⟨E , w⟩ where w ∈
W in E . Its rank is the rank of E . We will say that E , w ⊧ A if and only if A ∈V +w in E and
E , w â A if and only if A ∈V −w in E . For a pointed space E , E ⊧ Γ if and only if E ⊧ A for
each ‘A’ ∈ Γ and E â Γ if and only if E â A for at least one ‘A’ ∈ Γ.

Definition 3.3.4 (Epistemic n-entailment, Jago (2014)). For any integer n ∈ N ∪{ω}, a
set of premises Γ epistemically n-entails ‘A’ , Γ⊧e

n A if and only if for all pointed spaces E
of rank r > n, E ⊧ Γ only if E /â A.

For sufficiently large n, the epistemic n-entailments include all the inferences we would
like to count as trivial. Epistemic n-entailments, with n ranging in some admissible val-
ues, provide sharpenings of trivial inferences: an inference from Γ to A is determinately

15That is, notions of content related to knowledge, belief, information etc.
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trivial if and only if Γ ⊧e
n A for all n in the range, determinately non-trivial if and only if

Γ /⊧e
n A and it is indeterminate if it is trivial, otherwise.

• Agents’ epistemic states
Next we proceed with the modelling of an agent’s epistemic state, using an epistemic
accessibility relation R. Yet since it is indeterminate which worlds are epistemically pos-
sible, it might be indeterminate whether two worlds w and v are connected via Ri and
accordingly whether the agent i knows a statement becomes in turn indeterminate. In
other words, if we consider the set of worlds Ri -accessible from a fixed world w , i.e.
fi w = {u/wRi u} (called projection function of agent i ), then membership in this set is
indeterminate. We will say that the agent i knows that A, according to w , just in case
fi w ⊆ ∣A+∣.
Epistemic Models
Now, the goal is to build epistemic models, augmenting the spaces with epistemic acces-
sibility relations. Then, roughly speaking, truth in a model will be truth in a particular
sharpening of the epistemic space and determinate truth will require truth in all sharp-
enings. Before we put this account forward, we need some preliminary tools:

– The language is extended with a determinacy operator △ such that△A abbreviates
“it is determinate that A is the case” and accordingly an indeterminacy operator ▽
with ▽A standing for ¬△ A∧¬△¬A.

– Instead of the standard epistemic accessibility relations Ri , fi w will be used, de-
noting the set of worlds epistemically accessible from world w for agent i .

Definition 3.3.5 (Epistemic model, Jago (2014)). An epistemic model is a tuple
M = ⟨W P ,W I ,V +,V −,r, f1, . . . , fk⟩, where W P and W I are sets of worlds (possible/impossible),
V +, V −,r are as in Definition 3.3.2 and fi the projection function for agent i . Addition-
ally: W ∪ ∶=W P ∪W I and the rank of M is mi n{r(w) ∣ w ∈W ∪}.

Definition 3.3.6 (‘A’-variant, Jago (2014)). Suppose f is a projection function in an epis-
temic model M and ‘A’ ∈ L a sentence. Then the ‘A’-variant of f , f A is defined as :

f A
i w ={( fi w ∩{w/‘A’∈V +w})∪( fi w ∩W P) if fi w ⊆ {w/‘A’/∈V −w}

fi w otherwise

Let f L
i = { fi}∪{ f A

i /‘A’∈ L}.

The following notion suggests formal means to capture the vagueness for epistemic ac-
cessibility.

Definition 3.3.7 (Sharpening, Jago (2014)). For an epistemic model M , let aM = {⟨g1, . . . , gk⟩ ∣
gi ∈ f L

i , i ≤ k}. Each sequence g ∈ aM is a sharpening of epistemic accessibility for that
model.

We can now give the truth clauses. Based on the above, ⟨ f1, . . . , fk⟩ provides truth sim-
pliciter whereas for what is determinately true, we demand truth in all alternatives in
aM .
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Definition 3.3.8 (Relative truth/falsity, Jago (2014)). Let epistemic model M and alter-
native sequence g ∈ aM as above. Then we define g -relative truth and g -relative falsity
in M , ⊧g and âg respectively, as follows: For w ∈W P :

– w ⊧g p if and only if p ∈V +w

– w ⊧g ¬A if and only if w /⊧g A

– w ⊧g A∧B if and only if w ⊧g A and w ⊧g B

– w ⊧g A∨B if and only if w ⊧g A or w ⊧g B

– w ⊧g A→B if and only if w /⊧g A or w ⊧g B

– w ⊧g Ki A if and only if u ⊧g A for all u ∈ g i w

– w ⊧g △A if and only if w ⊧h A for all h ∈ aM

– w âg A if and only if w /⊧ A

For w ∈W I :

– w ⊧g A if and only if A ∈V +w

– w âg A if and only if A ∈V −w

Definition 3.3.9 (n-entailment, Jago (2014)). A pointed model is a pair M ′ = ⟨M , w⟩
where M is as above and w ∈ W P in M . We define truth relative to M ′ as : M ′ ⊧ A if
and only if M , w ⊧⟨ f1... fn⟩ A where f1 . . . fn are the projection functions in M . For sets of
sentences we say that: M ′ ⊧ Γ if and only if M ′ ⊧ A for all ‘A’∈ Γ. For any n ∈ N ∪{ω},
logical n-entailment is then defined as: Γ⊧n A if and only if, for every pointed model M
of rank at least n, M ⊧ Γ only if M ⊧ A.

Based on the above, Jago proposes his solution of what he calls the problem of rational knowl-
edge. The framework allows for epistemic blindspots: since knowledge is not deductively closed,
an agent might fail to know a trivial consequence of what she knows. But, as noted by Bjerring
in Bjerring (2013), allowing for highly incomplete worlds delivers not only non-omniscient but
also utterly irrational agents. Jago defends the existence of epistemic blindspots yet argues
that they cannot be rationally precisified in one’s reasoning. The philosophical discussion on
vagueness and the sorites paradox might illuminate this insight: one cannot explicitly pin-
point the epistemic blindspot but there must surely be one, based on our conclusion. Such
phenomena of unassertibility at the borderline support this stance on blindspots: they exist
but they cannot be determinately asserted. If ‘A’ is a trivial truth, either agent i knows that A or
it is indeterminate whether she knows. With A being trivial, it is never rational to say that de-
terminately i does not know that A. Therefore, if A follows trivially from what i determinately
knows then it is never determinate that i does not know that A. In what follows and based on
the aforementioned framework, we obtain formal results to back this portrayal of rational but
imperfect agents.

Theorem 3.3.1. (Main result, Jago (2014)) For any n ∈ N ∪ {ω}, if Γ ⊧e
n A then {△Ki B ∣ ‘B ’

∈ Γ}⊧n ¬△¬Ki A.

Thus, no matter the sharpening, if Γ trivially infers A, then determinate knowledge of Γ
entails that the agent i does not determinately lack knowledge that A.

As a result:
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Corollary 3.3.1.1. For any n ∈ N ∪{ω}, if Γ⊧e
n A then { ‘△Ki B ’ ∣ ‘B ’ ∈ Γ}∪{‘¬Ki A’ }⊧n ▽Ki A.

Assuming n ≥ 2, we get ⊧n ¬△¬Ki (A∨¬A) and ¬Ki (A∨¬A)⊧n ▽Ki (A∨¬A).

Therefore, if an agent i does not know some trivial consequence ‘A’ of what she knows,
then it is indeterminate whether she knows that A. This is in line with our original goal: a
non-omniscient agent has epistemic blindspots; but we can never rationally pinpoint them.
Indeed, according to the presented approach, if the agent is in an epistemic blindspot, it is
indeterminate whether she is in that blindspot. This reflects how epistemic blindspots are
analogous to the counterexamples of tolerance principles for vague predicates. Just as we ob-
tain the failure of tolerance principles in instances of the sorites paradox, we obtain epistemic
blindspots for agents’ knowledge. But just as we cannot pinpoint sharp cut-offs in the sorites
paradox, we cannot pinpoint where the blindspot lies. Overall, it is showed that the agents face
some kind of failure and are indeed non-omniscient; but in order to respect the logical princi-
ples, as we would expect from rational agents, it is also showed that concrete counterexamples
to them are disallowed.

Jago’s take on the problem indeed balances between the two extremes. It also provides a
plausible way of structuring the epistemic space and (carefully) discussing epistemic acces-
sibility on these grounds. However, extensive criticisms against this attempt are suggested in
Rasmussen and Bjerring (2015), mostly focusing on the notion of Indeterminacy, as employed
by Jago. To begin with, the notion lacks motivation: there are no independent reasons, i.e. not
related to avoiding logical incompetence, to accept the indeterminacy of blindspots. What
Jago suggests is a structural similarity between the problem of rational knowledge and the
sorites paradox. The authors of Rasmussen and Bjerring (2015) argue that structural similar-
ity presupposes rather than motivates Jago’s indeterminacy. What is more, there are potential
counterexamples: consider a non-omniscient agent who knows just the following proposi-
tions: p1, p1→ p2, . . . , pk−1→ pk . Consider that the agent is logically competent in the minimal
sense of applying MP just once. Given the collapse result and that p2 is the only trivial con-
sequence of the agent’s knowledge, it follows that the agent fails to know p2. But then we end
up with a logically competent agent who suffers from a determinate blindspot, that is, a rather
unnatural result. Finally, this proposal lacks explanatory power: due to logical competence,
the agent from the previous example should be able to realize that p2 follows from p1. But
this, in combination with the fact that she does not know p2, might seem strange. According
to the current strategy, the agent’s lack of knowledge in p2 should be indeterminate. Even if it
were, there is no explanation on why the agent assents to p2 while not knowing it. General-
izing this point, there is no independently plausible story – i.e. other than the existence of a
blindspot – on why we are not justified in attributing at least one piece of knowledge from the
trivial consequences of an agent’s knowledge to her. To sum up, the shortcomings of adopting
indeterminacy as a means to tackle the issue might overshadow the explanatory potential of
Jago’s attempt.

3.3.3 Rasmussen & Bjerring

Another approach is suggested in Rasmussen and Bjerring (2015). It builds a dynamic doxastic
impossible-worlds framework. Again, the diagnosis of the problem is as in Rasmussen (2015),
and the goal is to reach a balance between non-omniscience and logical competence. Unlike
Section 3.1.2 though, this response to the problem is not syntactic but it is rather based in the
(dynamic) semantics provided through the impossible-worlds framework.

44



CHAPTER 3. DEALING WITH THE PROBLEM: A CRITICAL SURVEY

To begin with, and in order to suggest a solid criterion on what competence amounts to, a
behavioural test for logical competence is established: for any p and q , with q a trivial conse-
quence of p, if the agent believes p, then when asked whether q , she responds “yes” immedi-
ately. Logical competence seen as successful performance in the test, is attributed to the fact
that the agent performs trivial chains of logical reasoning –namely, the trivial inference from
p to q . It is not because a belief in q was in her belief state prior to being asked about it; in
which case we would again face a collapse result as in Section 3.3.1. It is a reasoning process
that updates her belief state with q , and this is why a dynamic impossible-worlds framework
is needed. Next, in order to precisify the intended meaning of trivial reasoning, given a setR
of inference rules, we characterize it in a step-wise manner:

Definition 3.3.10 (Trivial logical reasoning, Rasmussen and Bjerring (2015)). A chain of logical
reasoning is trivial if and only if it involves at most n steps of logical reasoning using the rules
inR.

Next, the notation Γ ⊢n
R Γ

′ reads: Γ proves Γ′ within n steps of logical reasoning using the
rules inR. The varying value on n is such to reflect that the available computational resources
determine what can count as “trivial”. In addition, the following condition is imposed to ex-
press that addition of premises leaves the inference intact.

(Monotonicity) If Γ ⊆ Γ′ and Γ⊢n
R p, then Γ′ ⊢n

R p.

We continue with the main elements of this approach:

Definition 3.3.11 (LanguageLR , Rasmussen and Bjerring (2015)). The languageLR is defined
inductively from a set of atomic sentencesΦ, the doxastic operator B , and a countably infinite
set of dynamic operators ⟨n⟩ and [n]:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Bφ ∣ ⟨n⟩φ ∣ [n]φ

with p ∈Φ, n = 0,1,2, . . ..

The operators inLR read as follows:

• Bφ: The agent believes φ.

• ⟨n⟩φ: After some n steps of logical reasoning, φ is the case.

• [n]φ: After any n steps of logical reasoning, φ is the case.

Definition 3.3.12 (Doxastic model, Rasmussen and Bjerring (2015)). Let W P and W I be non-
empty sets of possible and impossible words respectively, and let W ∶= W P ∪W I . A doxastic
model for a single agent is a structure:

M = ⟨W P ,W I , f ,V ⟩

where f ∶W →P(W ) is an accessibility function, assigning to each world in W a set of worlds
in W , and V ∶W →P(LR) is a function, assigning to each world in W a set of sentences inLR .

Two useful remarks are necessary, regarding these definitions: (a) the valuation function
V assigns the set of atomic sentences true at each possible world, while assigning the set of
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all sentences, atomic or not, at each impossible world, (b) Unlike possible worlds, which are
complete and logically consistent, impossible worlds need neither be complete nor subject to
any non-trivial closure conditions. However, they are considered minimally consistent, i.e. for
any world w ∈W I and sentence φ ∈LR , {φ,¬φ} /⊆ V (w). As a result, an agent cannot believe
in explicit contradictions.

Now, the gist of the truth clauses, that eventually leads to the solution of the problem,
is that those of ⟨n⟩Bφ, i.e. of sentences that encompass the dynamic process that resulted
in a belief, should be weaker than of Bφ: the latter requires that φ is true at all doxastically
accessible worlds while the former will merely require that φ follows from each doxastically
accessible world within n steps of logical reasoning. Then and in order to capture the model
change induced by reasoning processes, the following auxiliary definitions are introduced:

Definition 3.3.13 (n-radius, Rasmussen and Bjerring (2015)). The n-radius wn of a world w ∈
W is defined as:

wn = {w ′ ∣V (w)⊢n
R V (w ′)}

A member of wn is called an n-expansion of w .

Then, given the remarks above:

• For w ∈W P : wn = {w} since possible worlds are deductively closed.

• For w ∈W I , the n-radius of w might contain many different n-expansions of w .

Definition 3.3.14 (Choice function, Rasmussen and Bjerring (2015)). Let C ∶ P(P(W )) →
P(P(W )) be a choice function that takes a set W = {W1,⋯,Wn} of sets of worlds as input
and returns the set C(W) of sets of worlds which results from all the ways in which exactly one
element can be picked from each Wi ∈W . A member of C(W) is called a choice ofW .

Based on these definitions, the authors construct a relation ∼n between pointed models
(M , w) and (M ′, w ′), capturing the transition from an agent’s belief state characterized by
(M , w) to a belief state characterized by (M ′, w ′), that the agent enters after n-steps of logical
reasoning. Therefore, we say that (M ′, w ′) is n-accessible from (M , w) just in case the set of
doxastically accessible worlds from w in M is replaced in M ′ by a choice of n-expansions of
w ’s accessible worlds in M . This update of doxastic accessibility is captured via:

Definition 3.3.15 (n-variation, Rasmussen and Bjerring (2015)). Let M = ⟨W P ,W I , f ,V ⟩ be a
model. Fn (n = 0,1,2, . . .) is a function from pointed models to sets of accessibility functions
defined as:

Fn(M , w) ={g ∣ g(v) ={c, for v = w

f (v), for v ≠ w
}

where c ∈ C({w ′n ∣ w ′ ∈ f (w)}). A member ofFn is called an n-variation of f .

In order to capture that an agent’s doxastic state changes as a result of performing n steps
of logical reasoning, we finally need the following definition:

Definition 3.3.16 (n-accessibility, Rasmussen and Bjerring (2015)). Let M = ⟨W P ,W I , f ,V ⟩
and M ′ = ⟨W P ′ ,W I ′ , f ′,V ′⟩ be models. (M , w) ∼n (M ′, w ′) if and only if w ′ = w , W = W ′,
V ′ =V , and f ′ ∈Fn(M , w).
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Figure 3.1: First, we have the pointed model (M , w) where f (w) = {u1, . . . ,ur } is the set of w’s
doxastically accessible worlds, represented by solid arrows. Dashed arrows represent that each
vi is an n-expansion of ui . Then, a choice of n-expansions of ui ’s replaces w ’s doxastically
accessible worlds. Therefore, (M ′, w) is n-accessible from (M , w).

The semantics is then given as follows:

Definition 3.3.17 (Semantics for Section 3.3.3, Rasmussen and Bjerring (2015)). We use M , w ⊧
φ to say that φ is true at w in M , and M , w â φ to say that φ is false at w in model M . For
w ∈W P :

P1 M , w ⊧ p if and only if p ∈V (w), where p ∈Φ.

P2 M , w ⊧¬φ if and only if M , w /⊧φ.

P3 M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ.

P4 M , w ⊧Bφ if and only if M , w ′ ⊧φ for all w ′ ∈ f (w).

P5 M , w ⊧ ⟨n⟩φ if and only if M ′, w ′ ⊧φ for some (M ′, w ′) ∶ (M , w) ∼n (M ′, w ′).

P6 M , w ⊧ [n]φ if and only if M ′, w ′ ⊧φ for all (M ′, w ′) ∶ (M , w) ∼n (M ′, w ′).

P7 M , w âφ if and only if M , w /⊧φ.

For w ∈W I :

I1 M , w ⊧φ if and only if φ ∈V (w)

I2 M , w âφ if and only if ¬φ ∈V (w)

Validity is defined with respect to possible worlds only. That is, a formula is valid if and
only if it is valid at all possible worlds in all models.

Back to the clauses, ⟨n⟩Bφ is satisfied by (M , w) just in case Bφ is satisfied by some n-
accessible pointed model from (M , w). An agent comes to believe φ after a trivial chain of
logical reasoning whenever there is a transition from the agent’s doxastic state through n ap-
plications of the rules inR to a state in which she believes φ.

The key-point of these constructions is the next theorem:

Theorem 3.3.2 (Main result of Section 3.3.3, Rasmussen and Bjerring (2015)). If {φ1, . . . ,φk}⊢n
R

ψ and ⟨mi ⟩Bφi for 1 ≤ i ≤ k, then ⟨ω+n⟩Bψ, where ω =m1+ . . .+mk .
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That is, if a conclusionψ follows within n steps of reasoning from a set of premises {φ1, . . . ,φk},
and the agent can come to believe the i -th premise within mi steps of reasoning (1 ≤ i ≤ k),
then the agent can come to believeψwithin n+m1+ . . .+mk steps of reasoning. Two immedi-
ate consequences of this theorem provide the arguments for a balanced solution:

Corollary 3.3.2.1.

• If {φ1, . . . ,φk}⊢n
R ψ and Bφi , for 1 ≤ i ≤ k, then ⟨n⟩Bψ.

• If ⊢n
R φ, then ⊧ ⟨n⟩Bφ.

Comparing the two statements with (K): Bφ∧B(φ→ψ)→ Bψ. and (N): if ⊧φ, then ⊧ Bφ,
we locate the crucial difference. The corollary merely says that the agent can come to believe
anything that follows within n steps of reasoning from what she already believes, and she can
also come to believe any logical truth that can be inferred within n steps of reasoning using the
rules inR.

To sum up: the desideratum on avoiding logical omniscience is satisfied; by simply allow-
ing impossible worlds to be doxastically accessible and given the quantification on the truth
clause of Bφ, it is easy to see how the closure principles can be destroyed. Also, the seman-
tics for ⟨n⟩Bφ does not commit us to the implausible claim that agents can trivially come to
believe all logical consequences of what they believe, given the restrictive role of n. However,
agents are still competent. Suppose Bφ is true at w , for some w ∈W P , and consider anyψ that
follows fromφwithin n steps of logical reasoning. By Corollary 3.3.2.1, ⟨n⟩Bψ is true at w , and
given the characterization of trivial reasoning, it follows that the agent can immediately come
to believe any trivial logical consequence of what she believes.

Although this proposal seems to overcome the challenge of bridging non-omniscience and
rationality, there are several remarks suggestive of improvements. To begin with, the estab-
lishment of the behavioural test and the characterization of trivial reasoning cast doubt on
the proposal. It is natural to wonder how they can be independently motivated and on what
empirical grounds they are based. For example, the non-specification of the n-steps that com-
pose the definition of trivial reasoning, which the authors attribute to our choice of available
computational resources, invites suspicion on how that number could have been sufficiently
specified. In the absence of a determinate deciding method, such as an empirical indication,
it is natural to wonder what differentiates n and n+1 steps in picking out a chain of reasoning
as “too big” and thus what renders a belief unattainable. Inevitably, the vague parameter that
Jago emphasized emerges here as well, although the authors have argued against it. In addi-
tion, there seems to be a discrepancy between the behavioural test and the result on which
the authors rely for their way out of the problem. As we have already highlighted, (moderate)
logical competence is a normative notion, thus the behavioural test argues on what should be
expected from an agent. The main result in Theorem 3.3.2 (and its corollaries), though, does
not represent the type of agent who satisfies the normative constraint but only describes the
type of agent who can do it: it is possible to come to believe the conclusion after n steps of rea-
soning because this follows from the premises via n applications of inference rules. It therefore
seems that along the way, the initial point for which the authors argued diverges from the goal
they actually attain. Next, it is not clear how this proposal would deal with agents who believe
in explicit contradictions. Of course, even belief in implicit contradictions, in combination
with logical competence, is unaccommodated in this setting, given the definitions of the up-
dated model and the behavioural test. Consider the combined beliefs in p, p → q and ¬q , i.e.
an implicit contradiction: since no world can simultaneously verify both q and ¬q and given
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the agent’s belief in ¬q , no n-expansion of a doxastically accessible would verify q . As a result,
the agent cannot come to believe q and would therefore not pass the behavioural test upon
being asked whether q ; she is considered logically incompetent, merely due to (indirectly) be-
lieving a contradiction. A full description of a rational, albeit fallible, agent should therefore
engage in these questions as well.

3.4 Other remarks

We have discussed some prominent approaches to cope with the problem but the list is by no
means exhaustive. It is therefore important to justify this selection. To be more specific, we
focused on frameworks that target the problem of logical omniscience on its whole, instead of
isolating particular special or weaker forms. Moreover, the emphasis is put on the approaches’
potential to model knowledge and belief rather than to merely represent them. While still ac-
knowledging the contribution of representation, it is in fact easier to accommodate real-life
agents within such frameworks; however, no benefits can be reaped in the realm of prediction
or philosophical investigation of propositional attitudes. Finally, it is reasonable to choose the
most developed and fully unfolded variant(s) of a particular perspective to the problem.

In any case, though, it is useful to briefly summarize and comment on some other ap-
proaches. Besides, this discussion may be indicative of the remark made above. To begin
with, non-standard structures are proposed in Fagin et al. (1995a). The gist of this proposal
is the independence of truth values between a formula and its negation, that allows for in-
coherent worlds where both φ and ¬φ hold and incomplete worlds where neither holds. Al-
though Closure under Material Implication fails, the problem persists (or can be retained) in
other forms; additionally, logical competence is not secured. The structures for implicit and
explicit beliefs constitute Levesque’s own response to this decoupling (Levesque (1984)) and
include two valuations, taking care of truth and falsehood. Criticisms on whether real, ratio-
nal agents fit this setting (Fagin and Halpern (1987)) as well as on how the problem is unsolved
with respect to relevance logic (Vardi (1986)), render other implicit-versus-explicit approaches,
that build on this, more attractive. Local reasoning structures, presented in Fagin and Halpern
(1987), modify the set of accessible worlds, by relativizing it to a frame of reference. However,
forms of the problem, like Closure under Valid Implication and Closure under Logical Equiva-
lence are not treated. In Fagin et al. (1995a), we find a discussion of Montague-Scott semantics
that substitute the standard relational structures with neighborhood structures – a set of sets of
worlds is assigned to each world by a neighborhood function. The modal truth clause is mod-
ified accordingly, yet Closure under Logical Equivalence eventually persists. Finally, it is worth
mentioning Wansing’s work in Wansing (1990), whereby it is shown that alternative logics for
knowledge and belief boil down to special cases of impossible-worlds frameworks.
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Chapter 4

Proposals for real-life agents

This chapter explores alternative ways out of the problem of logical omniscience that – among
others – fix shortcomings revealed in Chapter 3. In addition, as we wish to approximate the
real nature of reasoning, we propose solutions that explicitly account for the factors affect-
ing it. More specifically, this attempt is grounded on the construction of a semantics for a
dynamic epistemic logic of reasoning steps, in the spirit of Section 3.1.2. Two proposals –
rule-based worlds (RW) and impossible worlds (IW) – emerge out of this investigation. These
full frameworks will no longer be susceptible to the criticisms of partiality and ad-hocness,
that appeared in the critical discussion of the previous chapter. Apart from alleviating such
concerns, IW additionally allows us to gain a more concrete unraveling of a reasoning pro-
cess and to also capture the (indirect) motivation of resource depletion behind, for instance,
Section 3.3.3. This is better exemplified by IWe, a quantitative extension of IW, with which
we avoid worries about the non-determination of the number of reasoning steps. What is
more, these considerations are squared with the requirements of Artemov and Kuznets (2013)
and their work on Justification Logic; they too stressed out the importance of having knowl-
edge assertions equipped with indicators for the steps and the effort that resulted in them.
The explanatory power of IWe also hints at the potential fix for another problem previously
highlighted: reconciling a competent agent and beliefs in implicit contradictions. Next, and
inspired by Chapter 2 and the dynamic extension in Section 3.2.4, we furnish IW with actions
of external information, to draw an even more realistic picture of reasoning. To that end, we
first integrate public announcements into the existing setting (IWPA). These developments
are then translated into an impossible-worlds framework with plausibility models (IWp). This
leaves room for softer actions such as radical upgrades, that can alter weaker attitudes, such
as defeasible knowledge and belief, which are also accommodated in IWp. Finally, we suggest
a reduction of models with impossible worlds to “awareness-like” structures, starting off with
Rasmussen & Bjerring. It is then shown that the reduction illuminates how a complete logic
for such frameworks can be built. Overall, many sub-tasks indicated by the critical survey are
hereafter accommodated. In doing so, we bring together ideas from the literature and analyze
real reasoning while, of course, avoiding the problem of logical omniscience.
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Figure 4.1: A guide to the content of the chapter and the tasks it undertakes.

4.1 A full framework for Rasmussen’s dynamic epistemic logic

In this section, we aim at a detailed investigation of an agent’s reasoning process, adopting the
step-wise fashion, such as the one described in Section 3.1.21. To achieve this, we too focus on
(i) the inferences rules applied by the agent and (ii) the chronology of the applications. More
specifically, we suggest two refinements of Rasmussen (2015), which we supplement with se-
mantics that consequently allows for a richer study of the axioms proposed to escape the prob-
lem of logical omniscience. The first approach is inspired by Velázquez-Quesada (2011) and
Jago (2009), while the second suggests rule-specific counterparts of the notions in Rasmussen
and Bjerring (2015). In both cases the main exposition is concerned with epistemic systems.
However, we also discuss how the constructions can be fine-tuned to yield doxastic settings.

1Henceforth, we might simply use “Rasmussen” to refer back to this description.
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4.1.1 Rule-based worlds (RW)

Basic elements

To begin with, we modify Definition 3.1.2 and construct the language of this first approach,
building on the following definitions:

Definition 4.1.1 (Propositional language and inference rules). Given a countable set Φ of
propositional atoms, the propositional language LP is defined inductively as:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ
Givenφ1, . . . ,φn ,ψ ∈LP , an inference rule Rk is a formula of the form {φ1, . . . ,φn}↝ψ, read

as “whenever every formula in {φ1, . . . ,φn} is true, ψ is also true”.
We then use:

• pr(Rk) and co(Rk) as abbreviations for the set of premises and the conclusion of Rk .

• R to denote the set of inference rules ofLP .

• L ∶=LP ∪R.

Definition 4.1.2 (Translations for elements of L). For φ ∈ LP , its translation is defined as
Tr(φ) ∶=φ. For Rk ∈R, its translation is defined as Tr(Rk) ∶= ⋀

φ∈pr(Rk)
φ→ co(RK ).

We now define the language of this approach:

Definition 4.1.3 (Language LRW). Given a countable set of propositional atoms Φ, the lan-
guage LRW is defined inductively as follows:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Kχ ∣ ⟨Rk⟩φ

with p ∈Φ, χ ∈L and Rk ∈R.

Apart from the standard propositional language, LRW contains knowledge assertions of
the form Kχ, with χ being either a propositional formula or an inference rule. The former case
serves as a means to express knowledge of facts, whereas the latter is to say which rules the
agent knows (and is therefore capable of applying). Moreover, LRW comprises formulas of the
form ⟨Rk⟩φ, with ⟨Rk⟩ seen as an operator for the application of the inference rule. Therefore,
such formulas read “after some application of inference rule Rk , φ is true”2. Dual modalities
of the form [Rk] are defined as usual, as is the case with the remaining boolean connectives.

Next, the motivation behind our definition of a semantic model is that the reasoning steps,
expressed through applications of inference rules, should be reflected within the model. This
is why we introduce rule-based worlds, that are connected according to the effect of inference
rules. These worlds practically work as sets of formulas. However, since reasoning steps af-
fect our own understanding of the world (rather than factual truths), the usual valuation on
(im)possible worlds is accompanied by another valuation that essentially yields the set of for-
mulas that the agent knows at each such world. In this sense, the double function of rule-based

2At this point, it is worth mentioning that unlike Rasmussen (2015), we do not attach cognitive costs to the lan-
guage.
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worlds differentiates them from the usual manifestations of possible and impossible worlds3.
Keeping this in mind, the formal definition is:

Definition 4.1.4 (RW-model). An RW-model is a tuple M = ⟨W,T,V1,V2⟩ where

• W is a non-empty set of rule-based worlds.

• T ∶R→ P(W ×W ) is a function such that a binary relation on W is assigned to each
inference rule inR. That is, for Ri ∈R, T (Ri ) = Ti ⊆W ×W , standing for the transition
between worlds induced by the rule Ri .

• V1 ∶ W → P(Φ) is a labelling function assigning a set of propositional atoms to each
world; intuitively those that are true at the world.

• V2 ∶ W → P(L) is a labelling function assigning a set of formulas of L to each world;
intuitively those that the agent knows at the world.

It is now clear that the function V2 renders the worlds representations of the formulas that
the agent knows, while V1 works as usual. Each inference rule then triggers transitions between
worlds. The idea, to anticipate what follows, is to structure the worlds in a way that captures
the effect of applying inference rules. By performing an inference using Rk , its conclusion is
added to the epistemic state of the agent, therefore a connection is established between the
initial world and another world that contains this additional formula. These points allow us
to think of the valuation V2 as an indicator of “explicit knowledge”, especially in combination
with the factors that supported the introduction of this notion in some of the approaches in
Chapter 3. In short, we want V2 to progress in a step-wise manner across worlds, so that its
elements are directly associated with the real knowledge the agent gains by reasoning.

Paving the way for the truth conditions, we emphasize that the language LRW can be seen
as including (a) the standard propositional part LP , whose primitive elements are the atoms
of Φ, and (b) an epistemic part, whose primitive elements are of the form Kχ with χ ∈ L. In-
troducing two labelling functions V1, V2 in the model is on a par with this distinction. The
latter determines which primitive epistemic assertions are true (i.e. which propositional for-
mulas/rules the agent knows) at each world, while the former determines which propositional
atoms are true at each world. Then, indeed, each world does not only represent what is true
at it, but also what the agent knows. Viewing worlds as enumerations of the known formulas
naturally adds a syntactic flavour to our treatment of knowledge. Unlike other syntactically-
oriented restrictions to escape the omniscience problem, we will see that this setting respects
the expectation for rational and resource-bounded agents. Based on these remarks, we pro-
ceed with the truth clauses:

Definition 4.1.5 (RW-semantics).

• M , w ⊧ p if and only if p ∈V1(w) for p ∈Φ.

• M , w ⊧Kφ if and only if φ ∈V2(w).

• M , w ⊧¬φ if and only if M , w /⊧φ.

3Although, conceptually, one might argue that they fit under the spectrum of frameworks with both possible and
impossible worlds, by appealing to whether they fulfill closure properties. Still, to avoid terminological misunder-
standings, we resort to this new characterization.
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• M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ.

• M , w ⊧ ⟨Ri ⟩φ if and only if there exists some u ∈W such that wTi u and M ,u ⊧φ.

Validity is defined as usual.
Of course, the two fragments of the language are not exhaustive. For example, p ∧K p is

well-formed in the languageLRW, yet it is not contained in either of the fragments. In fact, the
first conjunct is part of the propositional fragment, and its truth is determined by V1, while the
second conjunct is part of the epistemic fragment, and its truth is determined by V2. Providing
meaningful interpretation to such combinations is indicative of the double function of worlds
under the current RW-approach.

For notational convenience, also consider the abbreviation below:

For given rules of inference R1, R2, . . . , Rn , the n-step sequence4 ⟨R1⟩ . . .⟨Rn⟩ is denoted
by ⟨‡⟩n . The symbol ⟨†⟩m is also used to avoid confusion whenever two sequences are
involved in one of the subsequent claims. The indices of the inference rules indicate
their order of application. Sequences of the dual case work in the same way.

With these first building blocks in hand, it is not hard to see that certain conditions have to
be imposed on this initial, general class of RW-models, if they are to capture properties of real
reasoners. At this level, the labelling functions are allowed to behave arbitrarily so they do not
necessarily reflect the motivation sketched above. Furthermore, formulas such as ⟨‡⟩nKφ→φ

turn out to be invalid5. Indeed:

Example 1. Let MP be an instance of Modus Ponens. Suppose M , w ⊧ ⟨MP⟩K p, for some RW-
model M and world w of the model. Then there is v ∈W such that wTMP v with M , v ⊧K p, i.e.
p ∈V2(v). Consider the following counterexample:

V1 = {q}
V2 = {q, q→ p}

w

V1 = {q}
V2 = {p}

v

Obviously, M , w /⊧ p as p /∈V1(w). As a result, ⟨‡⟩nK p→ p is not valid.

4It is important to clarify why we deviate from the reading of sequence given in Rasmussen. The first, obvious
difference is that cognitive costs are missing, which is a direct consequence of our choice of language and model.
Secondly, one should keep in mind that the notion of an n-step sequence in ⟨‡⟩nφmight stand for a purely existential
claim (i.e. there is some sequence of n-steps following which, φ is the case) or a claim involving a specific, determined
array of rules (i.e. following some application of each rule that the sequence contains, in the intended order, φ is the
case). It seems that the reading adopted by Rasmussen is the former, but it is not clear whether his axioms are best
motivated by this. In the absence of semantics, these considerations were left aside. But since we are now augmenting
an analogous step-wise approach with a semantical account, an ambiguity would not be constructive at all. Both
our intuition on how to break down a reasoning process and the technical ramifications of our semantics call for the
specific reading of a sequence. Finally, we only consider non-empty sequences, i.e. of length greater than 0. However,
this difference is not substantial, as we will simply comment on the “empty” cases separately.

5This is in fact an analogue of Rasmussen’s (A1) axiom. The difference, as observed, lies in the absence of cognitive
costs in our setting and our diverging notation – and possibly intended meaning – of a sequence of reasoning.
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Therefore, certain restrictions should be imposed on the plain semantic model to ensure
that the set of worlds is structured in a way that does convey the original idea of transitions as
enhancements of the epistemic state. Only then will we be in a position to argue for a full step-
wise framework that preserves the attack to the problem, without denying the capabilities of
real reasoners.

Definition 4.1.6 (Propositional truths). Let M be an RW-model and w ∈ W a world of the
model. Its set of propositional truths is V ∗

1 (w) = {φ ∈LP ∣ M , w ⊧φ}.

Given the boolean clauses, it is safe to say that V ∗
1 is entirely determined by V1.

We are now ready to fix an appropriate class of models, denoted by M. For any RW-model
M , M ∈M if and only if:

1. For any inference rule Ri = {φ1, . . . ,φn} ↝ ψ, if w ∈ W is such that Ri ∈ V2(w) and
φ1, . . . ,φn ∈V2(w), then there exists a world u ∈W such that wTi u and V2(u) =V2(w)∪
{ψ}.

2. For any w,u ∈ W and inference rule Ri = {φ1, . . . ,φn} ↝ ψ, if wTi u then Ri ∈ V2(w),
φ1, . . . ,φn ∈V2(w) and V2(u) =V2(w)∪{ψ}.

3. For any w ∈W and φ ∈L, if φ ∈V2(w) then Tr(φ) ∈V ∗
1 (w).

4. For any w,u ∈W and inference rule Ri , if wTi u then V ∗
1 (w) =V ∗

1 (u).

The first condition says that if a world represents an epistemic state containing the premises
of a known rule Ri , then this world is connected by the corresponding Ti with a world that ex-
tends it exactly by the conclusion. In this sense, it captures that transitions correspond to the
ways an epistemic state is enriched by applications of inference rules. The second condition
says that if w is connected to u via Ti , then it must be the case that u enriches the epistemic
state of w in terms of Ri . This is to capture that each arrow drawn is indeed associated with
some addition of a conclusion to an epistemic state. The third condition is imposed to guar-
antee the veridicality of knowledge within a world and the soundness of the known rules. The
fourth condition states that Ti -connected worlds are propositionally indiscernible, therefore
transitions stand for purely epistemic actions.

Comparison to Rasmussen

Once the foundations of this first attempt are laid, we compare its workings with Rasmussen.
As commented in Section 3.1.2, providing alternative axioms is not itself sufficient to over-
come the problem. It is in the face of a semantic model that this enterprise contributes to the
solution as only then do we obtain a hands-on understanding on the credibility of axioms and
therefore on the adequacy of the proposed solution. To be more precise on the grounds of the
comparison, we test whether our interpretation matches Rasmussen-like axiomatizations, i.e.
we examine the validity of analogues to the axioms of Definition 3.1.3 and Definition 3.1.4 with
respect to M.

Theorem 4.1.1 (M-validity test of proposed axioms).

1. ⟨‡⟩nKφ→φ is valid in the class M.

2. ⟨‡⟩nKφ→ ⟨‡⟩n[†]mKφ is valid in the class M.
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3. ⟨‡⟩nφ∧ ⟨†⟩mψ→ ⟨‡⟩n⟨†⟩m(φ∧ψ) is not valid in the class M.

4. ⟨‡⟩n(φ∧ψ)→ ⟨‡⟩nφ is valid in the class M.

Proof.

1. Let arbitrary model M ∈ M and arbitrary world w ∈ W of the model. Suppose M , w ⊧
⟨‡⟩nKφ. Unpacking the sequence according to the abbreviation, M , w ⊧ ⟨R1⟩ . . .⟨Rn⟩Kφ,
for the inference rules R1, . . . ,Rn . Following Definition 4.1.5, there is a world u1 ∈W such
that wT1u1 and M ,u1 ⊧ ⟨R2⟩ . . .⟨Rn⟩Kφ. Continuing like that, there is a world un ∈ W
such that un−1Tnun and M ,un ⊧ Kφ, which in turn amounts to φ ∈ V2(un). Then, by
condition 3, φ ∈ V ∗

1 (un). From condition 4, φ ∈ V ∗
1 (un−1). Continuing this process

backwards,φ ∈V ∗
1 (w). Therefore M , w ⊧φ. Given the arbitrariness of M ∈M and w ∈W ,

we finally conclude that the formula is valid in the class M.

2. Let arbitrary model M ∈ M and arbitrary world w ∈ W of the model. Suppose M , w ⊧
⟨‡⟩nKφ. Unpacking the sequence according to the abbreviation, this amounts to M , w ⊧
⟨R1⟩ . . .⟨Rn⟩Kφ. As in the previous case, we obtain a chain wT1u1 . . .un−1Tnun such
that M ,un ⊧ Kφ, which in turn amounts to φ ∈ V2(un) [1]. It suffices to show that
M ,un ⊧ [†]mKφ, i.e., by repeating the unpacking, now for [†]m = [R′1] . . .[R′m], that for
every world v1 ∈W such that unT ′

1v1, . . ., for every world vm ∈W such that vm−1T ′
m vm ,

M , vm ⊧ Kφ, i.e. φ ∈ V2(vm). Let arbitrary such v1, . . . , vm . Then due to condition 2
and [1], φ ∈ V2(v1) and continuing in the same fashion φ ∈ V2(vm). Therefore, M , w ⊧
⟨‡⟩n[†]mKφ, hence M , w ⊧ ⟨‡⟩nKφ→ ⟨‡⟩n[†]mKφ, as desired.

3. Consider the following counterexample. Let a model M = ⟨W,T,V1,V2⟩ in the class M,
as depicted in 4.2, and with every V2(w) containing all instances of Double Negation
Introduction and Modus Ponens.

It is easy to check that M , w ⊧ ⟨DN I⟩(¬K q), M , w ⊧ ⟨MP⟩K q . However, we cannot
obtain M , w ⊧ ⟨DN I⟩⟨MP⟩(¬K q ∧K q) as this would have meant that there is some
world z with q ∈V2(z) and q /∈V2(z).

4. Let arbitrary model M ∈ M and arbitrary world w ∈ W of the model. Suppose M , w ⊧
⟨‡⟩n(φ∧ψ). It follows, as above, that there is a chain wT1u1 . . .un−1Tnun such that
M ,un ⊧φ∧ψ, so M ,un ⊧φ. It then immediately follows that M , w ⊧ ⟨‡⟩nφ, as desired.

Note that the validities obtained above also hold in case each of the sequences involved is
taken as “empty” (i.e. if we simply delete its occurrences from the claims). The proof for these
cases is either completely straightforward or follows as a special case of the given proofs.

We continue by checking whether analogues of the axioms envisaged by Rasmussen in Def-
inition 3.1.4, and the result of Theorem 3.1.1, alluding to specific rules the agent is supplied
with, correspond to M-valid sentences. As far as the former is concerned, we want to evaluate
the general case, dubbed (RD) (Definition 3.1.4). But first, we need to build our version of it.
Apart from the standard, by now, modifications regarding sequences, we substitute the “arbi-
trary conjunction of sentences” ∆ with an arbitrary single sentence φ. Given the semantics,
this modification does not alter the purpose of ∆; it is just more economical in terms of pre-
sentation. In addition, we have to account for the fact that the rule is available to the agent.
Specifically: let rule Rk = {φ1, . . . ,φn}↝ψ and φ any sentence in our languageLRW. Then, it is
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V1 = {p, q}
V2 = {p, p→ q}

w

V1 = {p, q}
V2 = {p, p→ q,¬¬p}

vDNI

V1 = {p, q}
V2 = {p, p→ q, q}

u

M
P

Figure 4.2: We use DN I and MP to talk about Double Negation Introduction and Modus Po-
nens respectively. We only write down the propositional elements of V2 for brevity. Of course,
given the conditions of M, more worlds and arrows should have been drawn but we omit those
irrelevant for the purposes of the example for simplicity.

easy to see that ⟨‡⟩n(φ∧K Rk∧Kφ1 . . .∧Kφn)→ ⟨‡⟩n⟨Rk⟩(φ∧Kφ1 . . .∧Kφn∧Kψ) is not valid in
the class M; simply considerφ ∶=¬Kψ. Given that the motivating idea behind the introduction
of such an axiom is to capture the effect of applying an inference rule Rk , this result should not
come as a surprise. Not everything will survive the application of the inference rule. If we did
not know ψ prior to this reasoning step, it is unnatural to ask that ψ remains to be unknown:
this contradicts the very point of applying the inference rule. However, by imposing restric-
tions on φ, we can eventually reach a validity that captures the effect of applying the rule Rk .
Similarly, we can “fix” the third case of the previous theorem and provide a validity that cap-
tures the effect of Succession, in terms of knowledge acquisition. We can additionally capture
the desirable trait of a sequence of reasoning involving the rules Double Negation Elimination,
Modus Ponens and Conjunction Introduction (as in Theorem 3.1.1). The next theorem gathers
these results:

Theorem 4.1.2 (M-validities).

1. ⟨‡⟩nKφ∧ ⟨†⟩mKψ→ ⟨‡⟩n⟨†⟩m(Kφ∧Kψ) is valid in the class M.

2. Let rule Rk = {φ1, . . . ,φn}↝ψ andφ any sentence that is either propositional or a knowl-
edge assertion of the form Kχ. Then:
⟨‡⟩n(φ∧K Rk ∧Kφ1 ⋅ ⋅ ⋅∧Kφn)→ ⟨‡⟩n⟨Rk⟩(φ∧Kφ1 ⋅ ⋅ ⋅∧Kφn ∧Kψ) is valid in the class M.

3. Let the following instances of Double Negation Elimination, Modus Ponens and Con-
junction Introduction denoted by DN E , MP and C I : {¬¬φ}↝φ, {φ,φ→ψ}↝ψ,{φ,ψ}↝
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φ∧ψ. Then:

⋀
Rk=DN E ,MP,C I

K Rk ∧K¬¬φ∧K (φ→ψ)→ ⟨DN E⟩⟨MP⟩⟨C I⟩K (φ∧ψ) is valid in the class

M.

Proof.

1. Let arbitrary model M ∈ M and arbitrary world w ∈ W of the model. Suppose M , w ⊧
⟨‡⟩nKφ∧ ⟨†⟩mKψ. So M , w ⊧ ⟨‡⟩nKφ and M , w ⊧ ⟨†⟩mKψ. As above, we obtain a chain
wT1u1 . . .un−1Tnun such that M ,un ⊧Kφ, i.e. φ ∈V2(un), and a chain wT ′

1v1 . . . vm−1T ′
n vm

such that M , vm ⊧Kψ, i.e. ψ ∈V2(vm). The rough idea of the proof is to make use of the
conditions of M to merge the two chains. By condition 2, we know that V2(w) ⊆V2(un)
and that V2(w) contains all the premises of rule R′1, as well as the rule itself. Therefore,
V2(un) in turn contains all the premises of rule R′1 and the rule itself. By condition 1,
there is a world z1 such that unT ′

1z1 and V2(z1) = V2(un)∪ {co(R′1)}. Now again, by
condition 2, V2(v1) = V2(w)∪ {co(R′1)} and since V2(w) ⊆ V2(un): V2(v1) ⊆ V2(z1),
so we know that z1 contains the premises for R′2 and the rule itself. Again by condi-
tion 1, there is a world z2 such that z1T ′

2z2 and V2(z2) =V2(z1)∪{co(R′2)}. Continuing
like that, the alternations of condition 2 and condition 1, based on the initial assump-
tions, yield a world zm such that zm−1T ′

m zm and V2(zm) = V2(zm−1)∪ {co(R′m)} with
V2(vm) ⊆ V2(zm). Therefore ψ ∈ V2(zm). In addition, as the constructed chain is of the
form unT ′

1z1T ′
2z2 . . .T ′

m zm and due to condition 2, φ ∈V2(zm). So M , zm ⊧ Kφ∧Kψ, i.e.
M ,un ⊧ ⟨†⟩m(Kφ∧Kψ). So finally M , w ⊧ ⟨‡⟩n⟨†⟩m(Kφ∧Kψ), as desired.

2. Let arbitrary model M ∈ M and arbitrary world w ∈ W of the model. Suppose M , w ⊧
⟨‡⟩n(φ∧K Rk ∧Kφ1 ∧ . . .∧Kφn). Then, repeating the unpacking of the sequence as in
the earlier examples, there is a chain wT1u1 . . .Tnun such that M ,un ⊧ φ∧K Rk ∧Kφ1 ∧
. . .∧Kφn . But then M ,un ⊧ φ and Rk ,φ1, . . . ,φn ∈ V2(un). Next, from condition 1, there
is v ∈ W such that unTRk v and V2(v) = V2(un)∪ {ψ}. As a result, M , v ⊧ Kφ1 ∧ . . .∧
Kφn ∧Kψ. If φ is propositional, then by condition 4, φ ∈ V ∗

1 (v), i.e. M , v ⊧ φ too. If
φ ∶= Kχ, then χ ∈ V2(un) so immediately again χ ∈ V2(v), i.e. M , v ⊧ Kχ. Indeed, in
both these cases M , v ⊧ φ∧Kφ1 ∧ . . .∧Kφn ∧Kψ. Finally, wrapping this up backwards
M , w ⊧ ⟨‡⟩n⟨Rk⟩(φ∧Kφ1∧ . . .∧Kφn ∧Kψ), as desired.

3. Let arbitrary model M ∈ M and arbitrary world w ∈ W of the model. Suppose M , w ⊧
⋀

Rk=DN E ,MP,C I
K Rk ∧K¬¬φ∧K (φ→ ψ). Then DN E , MP,C I ∈ V2(w), ¬¬φ ∈ V2(w) and

φ → ψ ∈ V2(w). By condition 1, we get that there is u ∈ W with wTDN E u and M ,u ⊧
K (C I)∧K (MP)∧K (φ → ψ)∧Kφ. Likewise, there is v ∈ W with uTMP v and M , v ⊧
K (C I)∧Kφ∧Kψ. Finally, there is z ∈W with vTC I z and M , z ⊧K (φ∧ψ). It is now easy
to see that M , w ⊧ ⟨DN E⟩⟨MP⟩⟨C I⟩K (φ∧ψ), as desired.

Again, the claims persist as special cases of the above, if we allow for “empty” sequences,
as Rasmussen does.

We have thus far presented a semantics that improves Rasmussen-style syntactic proposals
and demonstrates how knowledge is attained as the course of reasoning evolves. As a result,
we managed to find a remedy from what was pointed out as a deficiency of this otherwise
balanced conception, while explicitly spelling out reasoning steps in an intuitively plausible
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way. It is therefore expected that this fuller framework preserves (and in fact, completes) the
attack against logical omniscience. Indeed, the closure principles are invalidated, without a
simultaneous collapse to a state of utter ignorance. At the same time, suitable applications of
inference rules, reflecting the effort to eventually reach a conclusion, ensure that an agent can
come to know consequences of her knowledge.

These claims are justified as follows: both the full and weaker forms of omniscience are
avoided because the values of knowledge assertions are essentially determined by the valua-
tion V2, which need not obey any closure principle. In any case, actual knowledge at a par-
ticular point of time carries no commitments for the agent. On the other hand, this does not
mean that the agent is ignorant or incapable of acquiring knowledge. Once she follows the
appropriate reasoning track, she can draw the consequences from what she already knows.
Moreover, rationality standards are preserved because we unfold the actual process that re-
sulted in knowledge and account for its dynamic nature. Thus ignorance is ruled out because
of a more realistic modelling, and not because of additional restrictions imposed on an inflex-
ible conception of knowledge. In fact, validities like the ones of Theorem 4.1.2 exemplify the
importance of reasoning and help us avoid the implausible commitment to an automatic and
effortless way to expand one’s epistemic state, as the mainstream validity Kφ1∧. . .∧Kφn →Kψ
would dictate. Overall, we have completed the picture of Rasmussen, formally explaining how
a real, resource-bounded agent, is able to exploit the available resources and acquire knowl-
edge via reasoning.

A sound and complete axiomatization

Departing from the comparison with Rasmussen’s approach and the interesting validities, we
develop the logic ΛRW. We can therefore argue for the superiority of this fuller framework in
terms of explaining real reasoning processes, via logical modelling.

Definition 4.1.7 (Axiomatization ofΛRW). The logicΛRW is axiomatized by the following axiom
schemes:

(PC) All instances of classical propositional tautologies.

(T’) Kφ→ Tr(φ).

(AX1) [Rk](φ→ψ)→ ([Rk]φ→ [Rk]ψ).

(AX2) ⋀
φ∈pr(Rk)

Kφ∧K (Rk)→ ⟨Rk⟩( ⋀
φ∈pr(Rk)

Kφ∧K co(Rk)).

(AX3) ⟨Rk⟩Kχ→ ⋀
φ∈pr(Rk)

Kφ∧K Rk ∧Kχ, for χ ≠ co(Rk).

(AX4) [Rk]K co(Rk).

(AX5) ⟨Rk⟩φ→φ, for φ ∈LP .

(AX6) φ→ [Rk]φ, for φ ∈LP .

(AX7) Kχ→ [Rk]Kχ.

and the rules:

(MP) From φ and φ→ψ, infer ψ.

59



CHAPTER 4. PROPOSALS FOR REAL-LIFE AGENTS

(Rk -N) From φ infer [Rk]φ.

Theorem 4.1.3 (Soundness). The logicΛRW is sound with respect to the class M.

Proof. It suffices to show that the axioms of Definition 4.1.7 are valid in the class M, as our
rules preserve validity as usual.

(PC) Trivial.

(T’) Follows immediately from condition 3.

(AX1) Let arbitrary model M ∈M and world w ∈W of the model such that M , w ⊧ [Rk](φ→ψ)
and M , w ⊧ [Rk]φ. Then, for every u ∈ W with wTk u: M ,u ⊧ φ→ ψ and M ,u ⊧ φ. It
immediately follows that M ,u ⊧ψ, so M , w ⊧ [Rk]ψ, as desired.

(AX2) Follows as a special case of Theorem 4.1.2.

(AX3) Let any model M ∈ M and world w ∈W of the model such that M , w ⊧ ⟨Rk⟩Kχ, for Rk =
{φ1, . . . ,φn} ↝ ψ. So there is u ∈ W such that wTk u and χ ∈ V2(u). By condition 2,
φ1, . . . ,φn ,Rk ∈ V2(w) and since V2(u) = V2(w)∪ {ψ}, χ ∈ V2(w)∪ {ψ}. So either χ ∈
V2(w) or χ =ψ. Finally, M , w ⊧Kφ1∧ . . .∧Kφn ∧K Rk ∧Kχ, for χ ≠ψ.

(AX4) Immediate due to condition 2.

(AX5) Let any model M ∈ M and world w ∈W of the model such that M , w ⊧ ⟨Rk⟩φ for φ ∈LP .
Then, there is u ∈ W such that wTk u and M ,u ⊧ φ, i.e. φ ∈ V ∗

1 (u). By condition 4,
φ ∈V ∗

1 (w), i.e. M , w ⊧φ as desired.

(AX6) Let any model M ∈ M and world w ∈W of the model such that M , w ⊧ φ. Let any u ∈W
such that wTk u. Then by condition 4, φ ∈ V ∗

1 (u), i.e. M ,u ⊧ φ so M , w ⊧ [Rk]φ, as
desired.

(AX7) Let any model M ∈M and world w ∈W of the model such that M , w ⊧Kχ, i.e. χ ∈V2(w).
Let any u ∈ W such that wTk u. From condition 2, χ ∈ V2(u), i.e. M ,u ⊧ Kχ. But then
indeed M , w ⊧ [Rk]Kχ.

Aiming at completeness, we follow the procedure of Blackburn et al. (2001)6. That is, we
are going to show thatΛRW is (strongly) complete with respect to M, through the construction
of a canonical model.

Theorem 4.1.4 (Lindenbaum’s Lemma). If Γ is a ΛRW-consistent set of formulas, then it can
be extended to a maximalΛRW-consistent set Γ+.

Proof. The proof goes as usual in these cases. After enumerating φ0,φ1, . . ., the formulas of
our language, one constructs the set Γ+ as ⋃n≥0Γ

n where: Γ0 = Γ, Γn+1 = Γn ∪{φn}, if this is
ΛRW-consistent and Γn ∪{¬φn} otherwise. The desired properties are easily obtained due to
this construction.

6The reader may consult the book for background details.
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Definition 4.1.8 (Canonical Model). The canonical modelM forΛRW is a tuple ⟨W ,T ,V1,V2⟩
where:

• W = {w ∣ w a maximalΛRW-consistent set}.

• T ∶R→P(W ×W), such that for Ri ∈R, T (Ri ) = Ti , where wTi u if and only if {⟨Ri ⟩φ ∣
φ ∈ u} ⊆ w .

• V1 ∶W →P(Φ) such that V1(w) = {p ∈Φ ∣ p ∈ w}.

• V2 ∶W →P(L) such that V2(w) = {φ ∈L ∣ Kφ ∈ w}.

It is easy to see that an equivalent formulation for the definition of Ti is {φ ∣ [Ri ]φ ∈ w} ⊆ u.
Given the definition of the canonical model and our languageLRW, we show:

Lemma 1 (Existence lemma). For any formula φ in our language and w ∈W , if ⟨Ri ⟩φ ∈ w then
there is a world u ∈W such that wTi u and φ ∈ u.

Proof. Suppose ⟨Ri ⟩φ ∈ w . Take S = {φ}∪{ψ ∣ [Ri ]ψ ∈ w}. This set is consistent. Were it incon-
sistent, there would be ψ1, . . . ,ψn such that ⊢ΛRW ψ1∧ . . .∧ψn →¬φ. Using [Ri ]-necessitation,
distribution and propositional tautologies we obtain ⊢ΛRW ([Ri ]ψ1 ∧ . . .∧ [Ri ]ψn)→ [Ri ]¬φ.
By the property of w as maximal consistent set and since [Ri ]ψ1, . . . ,[Ri ]ψn ∈ w : [Ri ]¬φ ∈ w .
Therefore ¬⟨Ri ⟩φ ∈ w . Indeed, we have reached a contradiction. Next, we extend S to S+ ac-
cording to Lindenbaum’s lemma. Then, φ ∈ S+ and [Ri ]ψ ∈ w implies ψ ∈ S+. Take u ∶= S+. As
a result, wTi u and φ ∈ u.

Lemma 2 (Truth lemma). For any formula φ in our language and world w ∈W : M, w ⊧ φ if
and only if φ ∈ w .

Proof. The proof is by induction on the complexity of φ.

• Base cases: Consider φ ∶= p with p ∈ Φ. ThenM, w ⊧ p if and only if p ∈ V1(w), and
by definition, this is the case if and only if p ∈ w . Next, take φ ∶= Kψ with ψ ∈ L. Then
M, w ⊧ Kψ if and only if ψ ∈ V2(w), and by definition, this is the case if and only if
Kψ ∈ w .

• Considerφ ∶=¬ψwith Induction Hypothesis that the result holds forψ. ThenM, w ⊧¬ψ
if and only ifM, w /⊧ψ and by I.H. this is the case if and only ifψ /∈ w . Since w is maximal
consistent, this is the case if and only if ¬ψ ∈ w .

• Consider φ ∶= ψ∧χ with Induction Hypothesis that the result holds for ψ and χ. Then
M, w ⊧ψ∧χ if and only ifM, w ⊧ψ andM, w ⊧ χ. By I.H. this is the case if and only if
ψ ∈ w and χ ∈ w and again by the maximal consistency of w , ψ∧χ ∈ w .

• Consider φ ∶= ⟨Ri ⟩ψwith Induction Hypothesis that the result holds forψ. ThenM, w ⊧
⟨Ri ⟩ψ if and only if there is u ∈W such that wTi u andM,u ⊧ψ. By I.H. this is the case
if and only ifψ ∈ u, and by definition of Ti , we get ⟨Ri ⟩ψ ∈ w . The other direction follows
immediately from the existence lemma.

Theorem 4.1.5 (Completeness). For any set of formulas Γ and formula φ in our language:
Γ⊧M φ only if Γ⊢ΛRW φ.
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Proof.

• We first expand Γ to a maximalΛRW-consistent set Γ+. Then, let the canonical modelM
as constructed according to Definition 4.1.8. Then by Lemma 2,M,Γ+ ⊧ Γ. It suffices to
show thatM fulfills the conditions of M.

• Condition 1 is satisfied.

Let inference rule Ri = {φ1, . . . ,φn}↝ψ and w ∈W with Ri ,φ1, . . . ,φn ∈V2(w), i.e. K (Ri ),
Kφ1, . . . ,Kφn ∈ w [1]. We want to show that there is a world u ∈W such that wTi u and
V2(u) = V2(w)∪ {ψ}. From [1], K (Ri )∧Kφ1 ∧ . . .∧Kφn ∈ w . But from (AX2), we also
get that ⟨Ri ⟩(Kφ1∧ . . .∧Kφn ∧Kψ) ∈ w . Now, using the existence lemma, there is u ∈W
such that wTi u and Kφ1 ∧ . . .Kφn ∧Kψ ∈ u. It follows that Kφ1, . . ., Kψ ∈ u, therefore
φ1, . . . ,φn ,ψ ∈V2(u). Then, take any χ ∈V2(w), so Kχ ∈ w . By (AX7), [Ri ]Kχ ∈ w and by
definition of T we get Kχ ∈ u, i.e. χ ∈ V2(u). Hence, V2(w)∪{ψ} ⊆ V2(u). Finally, take
any χ ∈V2(u) with χ ≠ψ. Then ⟨Ri ⟩Kχ ∈ w , by definition of T , and by (AX3): Kχ ∈ w , i.e.
χ ∈V2(w) too. So indeed, ifφ ∈V2(u) thenφ =ψ orφ ∈V2(w), i.e. V2(u) ⊆V2(w)∪{ψ}.
Therefore, V2(u) =V2(w)∪{ψ}.

• Condition 2 is satisfied.

Suppose that wTi u with Ri = {φ1, . . . ,φn}↝ψ, i.e. if φ ∈ u then ⟨Ri ⟩φ ∈ w . Let arbitrary
χ ∈ V2(u). That is, Kχ ∈ u. Therefore, ⟨Ri ⟩Kχ ∈ w . From (AX3), indeed φ1, . . . ,φn ,Rk ∈
V2(w). From (AX4) and definition of Ti , Kψ ∈ u, i.e. ψ ∈ V2(u). Furthermore again by
this definition and (AX7) we obtain thatV2(w) ⊆V2(u). Therefore,V2(w)∪{ψ} ⊆V2(u).
Next suppose that there is φ ∈ V2(u) and φ ≠ψ. Then ⟨Rk⟩Kφ ∈ w . From (AX3), Kφ ∈ w .
As a result, φ ∈V2(w). Clearly then, V2(u) =V2(w)∪{ψ}.

• Condition 3 is satisfied.

Let φ ∈L. Suppose that φ ∈ V2(w). That is, Kφ ∈ w . Then by (T’) we obtain, Tr(φ) ∈ w ,
that isM, w ⊧ Tr(φ) and therefore Tr(φ) ∈V∗1 (w).

• Condition 4 is satisfied.

Take w,u ∈W and wTi u. By definition of Ti , if φ ∈ u then ⟨Ri ⟩φ ∈ w . Now take arbitrary
φ ∈ LP such thatM,u ⊧ φ, i.e. φ ∈ V∗1 (u). This means that φ ∈ u, therefore ⟨Ri ⟩φ ∈ w .
From (AX5), we obtain φ ∈ w , i.e. M, w ⊧ φ so φ ∈ V∗1 (w). As φ was arbitrary, V∗1 (u) ⊆
V∗1 (w). For the other inclusion, take arbitraryφ ∈LP such thatM, w ⊧φ, i.e. φ ∈V∗1 (w).
This means that φ ∈ w . From (AX6), we get that [Ri ]φ ∈ w too. Then we exploit the
alternative definition of Ti ; since [Ri ]φ ∈ w , φ ∈ u, i.e. M,u ⊧ φ so φ ∈ V∗1 (u). As φ was
arbitrary, V∗1 (w) ⊆V∗1 (u). Overall, V∗1 (w) =V∗1 (u).

On a final note, we describe how this attempt can be adjusted for doxastic frameworks.
Given that worlds are representations of knowledge and also given the (indirect) syntactic
flavour of the resulting framework, we simply propose an analogous idea: worlds are utilized as
representations of belief as well, via attaching another labelling function to the model, which
fixes what the agent believes. Nevertheless, not everything works in complete analogy. It is
usually assumed that belief is not factive and as a result the status of the third condition sug-
gested for the class M is debatable. In addition, we may not impose that doxastic states are
preserved after each step, because the agent’s beliefs are revizable. Given our purposes, it is
indeed reasonable to drop these conditions under a realistic doxastic framework.
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4.1.2 Impossible worlds (IW)

This second approach introduces an impossible-worlds framework, similar to the one of Sec-
tion 3.3.3 (henceforth, Rasmussen&Bjerring). This enables us to reap the harvest of destroying
closure principles via allowing impossible worlds to be epistemically accessible. Yet instead
of abstracting away from the inner details of the reasoning process, substituting the arrays of
inference rules with generic “inference steps”, this approach captures the effect of the appli-
cation of specific inference rules, their order and their cognitive significance. By spelling out
the reasoning process in a more elaborate way, we do not have to rely on a debatable initial
cutoff of n steps. Rather, our goal is to make explicit the intuition underlying the existence of
this cutoff: it is the depletion of resources that eventually brings the pursuit of knowledge to a
halt.

We present our full-fledged account in a gradual manner. First, we provide the basic ma-
terial of this second approach and the comparison to the syntactic view, and only then do we
reveal a quantitative extension that encapsulates the motivation given above.

Basic elements

To begin with, we define the language in the spirit of Rasmussen&Bjerring:

Definition 4.1.9 (Language LIW). The language LIW is defined inductively from a countable
set of propositional atoms Φ, the epistemic operator K and dynamic operators ⟨Rk⟩ and [Rk]
as:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Kχ ∣ ⟨Rk⟩φ ∣ [Rk]φ
with p ∈ Φ, χ ∈ LP where LP is the standard propositional language, and Rk ∈ R, for a given
countable set R.

Intuitively, R is a countable set of inference rules available to the agent7. Then, ⟨Rk⟩φ
stands for “after some application of inference rule Rk , φ is true”, while “any” replaces “some”
for [Rk]φ. It is worth noticing that unlike Rasmussen, we do not attach cognitive costs to the
language. Still, we deal with the part cognitive effort plays through the updates of the models,
which we now define:

Definition 4.1.10 (IW-model). An IW-model is a tuple M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩ where:

• W P ,W I , f ,V are as in Definition 3.3.12; note that f now reflects epistemic accessibility.

• R is the countable set of inference rules available to the agent.

• Res is a finite set of resources, such as memory, time etc. Let r ∶= ∣Res∣.

• C ∶ R → Nr is a function such that every inference rule Rk ∈ R is assigned a particular
cognitive cost for each resource.

• cp denotes the agent’s cognitive capacity, i.e. cp ∈ Nr , intuitively standing for what the
agent is able to afford with regard to each resource.

7It is natural to think of R containing sound rules, at least in a purely epistemic system. In particular, R can be
thought as a set of schemes in the context of this attempt.
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Again, impossible worlds only comply with (Minimal Consistency) while possible worlds
are complete and consistent entities. In addition, the valuation V from W ∶= W P ∪W I to
P(LIW) assigns the set of true atomic sentences at possible worlds, whilst assigning the set
of all true sentences, atomic or composite, at impossible worlds. Furthermore, Γ⊢Rk Γ

′ means
that Γ proves Γ′ within an application of Rk (recall Γ ⊢n

R Γ
′, meaning that Γ proves Γ′ within

n-steps of reasoning fromR, in Section 3.3.3 8). Next, we adapt several definitions to account
for individual and rule-specific changes of our models.

Definition 4.1.11 (Rule-specific radius). Given an inference rule Rk ∈ R, the Rk -radius of a
world w ∈W is wRk = {w ′ ∣V (w)⊢Rk V (w ′)}.

Then, a member of wRk is an Rk -expansion of w . In our view, ⊢Rk then requires that V (w ′)
preserves V (w) and extends it just by a conclusion of Rk . This is also how we capture the
monotonic property: Rk -expansions, as the name indicates, enrich the state from which they
originate, in terms of Rk . In this sense, inferences are not defeated as reasoning steps are
taken, thereby providing (Monotonicity), in our reading too. As before, wRk = {w} for w ∈W P

(due to the deductive closure of possible worlds9) while the Rk -radius of impossible worlds
can contain different Rk -expansions. Analogously:

Definition 4.1.12 (Rule-specific variation). Let an IW-model M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩
and inference rule Rk ∈ R. Then FRk is a function from pointed models to sets of accessibility
functions defined as:

FRk (M , w) ={g ∣ g(v) ={c, for v = w

f (v), for v ≠ w
}

where c ∈ C({w ′Rk ∣ w ′ ∈ f (w)}). A member ofFRk is called an Rk -variation of f .

In other words, for an IW-model M and world w , an accessibility function g is an Rk -
variation if g(w) is the outcome of a choice, originating from the Rk -radii of w ’s accessible
worlds.

Definition 4.1.13 (rule-specific accessibility). Let M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩ and

M ′ = ⟨W P ′ ,W I ′ , f ′,V ′,R′,Res′,C ′,cp′⟩ be IW-models and Rk ∈ R. Then, (M , w) ∼Rk (M ′, w ′)
if and only if w ′ = w , W = W ′, V ′ = V , Res′ = Res, R = R′, C = C ′, f ′ ∈ FRk (M , w) and cp′ =
cp−C(Rk).

That is, (M ′, w ′) is Rk -accessible from (M , w), just in case (a) the set of all epistemically
accessible worlds from w in M is replaced in M ′ by a choice of Rk -expansions of w ’s accessible
worlds in M and (b) the cognitive capacity is reduced by the cost of performing an Rk -step.

The semantics is then given by:

Definition 4.1.14 (IW-semantics). We use M , w ⊧φ to say thatφ is true at w in M , and M , w â
φ to say that φ is false at w in model M . For w ∈W P :

8At this point, a clarification may be needed. In Section 3.3.3, we did not explicitly write down a precise char-
acterization of what is meant by the last sentence, to remain faithful to the presentation of the authors, who did not
provide an explicit definition. Of course, given the context of their work, one can imagine what is meant by it, i.e.
there seem to be some implicit assumptions on their understanding of the notation. In any case, it does no harm for
us to explicitly state such assumptions, as we continue, at least regarding our own system (that is, on the properties of
⊢Rk

) and prevent any possible confusion.
9Again, accepting this in the lines of Rasmussen&Bjerring seems to imply that possible worlds are valuation-wise

unique.
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1. M , w ⊧ p if only if p ∈V (w), where p ∈Φ.

2. M , w ⊧¬φ if and only if M , w /⊧φ.

3. M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ.

4. M , w ⊧Kφ if and only if M , w ′ ⊧φ for all w ′ ∈ f (w).

5. M , w ⊧ ⟨Rk⟩φ if and only if M ′, w ′ ⊧φ for some (M ′, w ′) ∶ (M , w) ∼Rk (M ′, w ′).

6. M , w ⊧ [Rk]φ if and only if M ′, w ′ ⊧φ for all (M ′, w ′) ∶ (M , w) ∼Rk (M ′, w ′).

7. M , w âφ if and only if M , w /⊧φ.

For w ∈W I :

1. M , w ⊧φ if and only if φ ∈V (w).

2. M , w âφ if and only if ¬φ ∈V (w).

Validity is defined as usual, with respect to the possible worlds.
Again, for notational convenience, it is useful to abbreviate sequences of inference rules as

in the first approach: namely, we will use ⟨‡⟩nφ instead of ⟨R1⟩ . . .⟨Rn⟩. Based on our seman-
tics, we now give the truth conditions for sentences prefixed by a sequence10, given through
successive model changes activated by the inference rules involved.

Let model M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩ and world w of the model, such that M , w ⊧
⟨‡⟩nφ. Unpacking the sequence: M , w ⊧ ⟨R1⟩ . . .⟨Rn⟩φ. According to Definition 4.1.14, M ′, w ′ ⊧
⟨R2⟩ . . .⟨Rn⟩φ, for some (M ′, w ′): (M , w) ∼R1 (M ′, w ′). According to Definition 4.1.13, this
means that M ′, w ⊧ ⟨R2⟩ . . .⟨Rn⟩φ for some ⟨W P ,W I , f ′,V ,R,Res,C ,cp′⟩, where f ′ ∈FR1(M , w)
and cp′ = cp−C(R1). By Definition 4.1.12, f ′(w) = c′ for some choice c′ ∈C({vR1 ∣ v ∈ f (w)}).
Likewise, there is (M ′′, w) where f ′′ ∈ FR2(M ′, w) and cp′′ = cp′ −C(R2) such that M ′′, w ⊧
⟨R3⟩ . . .⟨Rn⟩φ. That is, there is model M ′′ with f ′′(w) = c′′ for some choice c′′ ∈ C({vR2 ∣
v ∈ f ′(w)}) such that M ′′, w ⊧ ⟨R3⟩ . . .⟨Rn⟩φ. Continuing like that we get a model M n with
f n(w) for some cn ∈ C({vRn ∣ v ∈ f n−1(w)}) and M n , w ⊧ φ. Bringing these steps together,
we get that there is a model M∗ with f ∗(w) = c∗ for some c∗ ∈ C({vR1,...,Rn ∣ v ∈ f (w)}) and
M∗, w ⊧φ. Note that: vR1,...,Rn = {w ′ ∣ V (v)⊢R1,...,Rn V (w ′)} with V (v)⊢R1,...,Rn V (w ′) denot-
ing that V (w ′) follows by successive applications of R1, . . . ,Rn (in this order) from V (v). This
sort of notation, involving an array of rules, can be generalized accordingly forF and thus ∼.

Comparison to Rasmussen

As with the first RW approach, we adapt the axioms put forward by Rasmussen to our language
and check their compatibility with IW-semantics.

10This analysis is spelled out here as it is useful for the subsequent sections, where, for brevity, its outcome will be
directly retrieved. That is, we will not write down the whole procedure that gives rises to an updated model M∗. Nor
will we write down every component of it, other than specifying the value of f ∗(w), which, at this level, monopolizes
our interest in the updated model. Finally, note that for cases of “empty” sequences, the claims that follow can be
simply obtained as special cases.
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Theorem 4.1.6 (IW-validity test of proposed axioms).

1. ⟨‡⟩nKφ→φ is not valid in the class of all models.

2. ⟨‡⟩nKφ→ ⟨‡⟩n[†]mKφ is valid in the class of all models.

3. ⟨‡⟩nφ∧ ⟨†⟩mψ→ ⟨‡⟩n⟨†⟩m(φ∧ψ) is not valid in the class of all models.

4. ⟨‡⟩n(φ∧ψ)→ ⟨‡⟩nφ is valid in the class of all models.

Proof.

1. If the choice c∗, obtained from the analysis above, does not contain the world of evalu-
ation itself, constructing counterexamples is a trivial task11.

2. Let arbitrary model M and world w ∈W P of the model. Suppose M , w ⊧ ⟨‡⟩nKφ. Then,
there is a model M∗ with f ∗(w) = c∗ for some choice c∗ ∈ C({vR1,...,Rn ∣ v ∈ f (w)})
such that M∗, w ⊧ Kφ. As a result, M∗,u ⊧ φ for all u ∈ c∗ [1]. We want to show that
M , w ⊧ ⟨‡⟩n[†]mKφ. So it suffices to show that M∗, w ⊧ [†]mKφ, i.e. that for all (M∗∗, w)

with f ∗∗(w) = c∗∗ ∈C({vR′1,...,R′m ∣ v ∈ f ∗(w)}): M∗∗, w ⊧ Kφ. Let arbitrary such M∗∗.
From [1] and (Monotonicity), M∗∗, w ⊧Kφ. As a result, M∗, w ⊧ [†]mKφ, as desired.

3. Consider the following counterexample. Let model M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩ and
world w ∈W P such that M , w ⊧ ⟨Rk⟩K p [1] and M , w ⊧ ⟨Rl ⟩K¬p [2] for inference rules
Rk and Rl . Due to the semantics, from [1] we obtain that there is M ′ with f ′(w) = c′

for some choice c′ ∈ C({vRk ∣ v ∈ f (w)}) such that M ′, w ⊧ K p, i.e. M ′,u ⊧ p for all
u ∈ c′. Likewise, from [2], there is M ′′ with f ′′(w) = c′′ for some choice c′′ ∈ C({vRl ∣
v ∈ f (w)}) such that M ′′, w ⊧ K (¬p), i.e. M ′′,u ⊧ ¬p for all u ∈ c′′. But then, it cannot
be that there is a choice c∗ ∈ C({vRl ∣ v ∈ f ′(w)}) such that for M∗ with f ∗(w) = c∗,
M∗, w ⊧ K p ∧K¬p, because then M∗,u ⊧ p and M∗,u ⊧ ¬p for all u ∈ c∗ which violates
(Minimal Consistency).

4. Let arbitrary model M and world w ∈ W P of the model. Suppose M , w ⊧ ⟨‡⟩n(φ∧ψ).
Then, there is a model M∗ with f ∗(w) = c∗ for some c∗ ∈C({vR1,...,Rn ∣ v ∈ f (w)}) such
that M∗, w ⊧φ∧ψ and thus M∗, w ⊧φ. But then clearly M , w ⊧ ⟨‡⟩nφ.

Again, we continue by checking whether analogues of (RD ) axiom and Theorem 3.1.1 are
valid under the semantics of this approach. It is easy to see that for ∆ ∶= K¬ψ, from (Minimal
Consistency), we obtain a counterexample for (RD). In addition, we can fix the cases of failure
demonstrated in the previous theorem, by modifying Rasmussen’s axioms, arguing on why
the new view constitutes a more credible reading. In particular, we will see that imposing
reflexivity secures veridicality of knowledge. Since this is a desirable trait, as in our familiar
systems, we will give the other validities with respect to the class of reflexive models. Overall,
our results will naturally hint at a remarkable consonance of RW- and IW- results, in terms of
the validity of the axioms in question.

Theorem 4.1.7 (IW-validities).

1. ⟨‡⟩nKφ→φ is valid in the class of all reflexive models.

11Counterexamples can be easily constructed for the “empty” case.
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2. ⟨‡⟩nKφ∧⟨†⟩mKψ→ ⟨‡⟩n⟨†⟩m(Kφ∧Kψ), with φ ≠¬ψ, is valid in the class of all reflexive
models.

3. If {φ1, . . . ,φn}⊢Rk ψ then: ⟨‡⟩n(φ∧Kφ1 ⋅ ⋅ ⋅∧Kφn)→ ⟨‡⟩n⟨Rk⟩(φ∧Kφ1 ⋅ ⋅ ⋅∧Kφn ∧Kψ) is
valid in the class of all reflexive models, for φ ∈LP .

4. K¬¬φ∧K (φ→ψ)→ ⟨DN E⟩⟨MP⟩⟨C I⟩K (φ∧ψ) is valid in the class of all reflexive mod-
els.

Proof.

1. Let arbitrary reflexive model M and world w ∈W P of the model. Suppose M , w ⊧ ⟨‡⟩nKφ.
Then, there is a model M∗ with f ∗(w) = c∗ ∈C({vR1,...,Rn ∣ v ∈ f (w)}) such that M∗, w ⊧
Kφ. As a result, M∗,u ⊧ φ for all u ∈ c∗ [1]. Due to reflexivity, w ∈ f (w) and since w is
a possible world, any expansion of it would amount to itself, i.e. wR1,...,Rn = {w}. As a
result, in any case, w is contained in the choice c∗, that is w ∈ f ∗(w). Then, from [1] we
conclude M∗, w ⊧ φ. Finally since φ ∈LP and M∗ deviates from M only in terms of the
accessibility relation, M , w ⊧φ.

2. Let arbitrary model M and world w ∈ W P of the model. Suppose M , w ⊧ ⟨‡⟩nKφ∧
⟨†⟩mKψ. Then M , w ⊧ ⟨‡⟩nKφ and M , w ⊧ ⟨†⟩mKψ. That is, there is a model M∗ with
f ∗(w) = c∗ for some choice c∗ ∈ C({vR1,...,Rn ∣ v ∈ f (w)}) such that M∗, w ⊧ Kφ and

there is M∗∗ with f ∗∗(w) = c∗∗ for some c∗∗ ∈C({vR′1...R′m ∣ v ∈ f (w)}) such that M∗∗, w ⊧
Kψ. This means that M∗,u ⊧ φ for all u ∈ c∗ and M∗∗, v ⊧ ψ for all v ∈ c∗. But then

by (Monotonicity), there is a choice c∗∗∗ ∈ C({vR1,...,Rn ,R′1,...,R′m ∣ v ∈ f (w)}) such that
if M∗∗∗ has f ∗∗∗ where f ∗∗∗(w) = c∗∗∗, then M∗∗∗, z ⊧ φ and M∗∗∗, z ⊧ ψ for all

z ∈ c∗∗∗. This amounts to M∗∗∗, w ⊧ Kφ∧Kψ. Since f ∗∗∗ ∈ FR1,...,Rn ,R′1,...,R′m(M , w),

(M , w) ∼R1,...,Rn ,R′1,...,R′m (M∗∗∗, w). So for some model (M∗∗∗, w): (M , w) ∼R1,...,Rn ,R′1,...,R′m

(M∗∗∗, w): M∗∗∗, w ⊧Kφ∧Kψ, hence M , w ⊧ ⟨‡⟩n⟨†⟩m(Kφ∧Kψ), as desired.

3. Let arbitrary model M and world w ∈W P of the model. Suppose M , w ⊧ ⟨‡⟩n(φ∧Kφ1 . . .∧
Kφn) [1] and {φ1, . . . ,φn}⊢Rk ψ [2]. We want to show that M , w ⊧ ⟨‡⟩n⟨Rk⟩(φ∧Kφ1 . . .∧
Kφn ∧Kψ). From [1]: there is a model M∗ with f ∗(w) = c∗ for some c∗ ∈C({vR1,...,Rn ∣
v ∈ f (w)}) such that M∗, w ⊧ (φ∧Kφ1 . . .∧Kφn). Then it easily follows that M∗,u ⊧φ1∧
. . .∧φn for all u ∈ c∗. But from [2], we get that there will be a choice c∗∗ ∈C({vR1,...,Rn ,Rk ∣
v ∈ f (w)}) such that if M∗∗ has f ∗∗(w) = c∗∗ then M∗∗,u ⊧ ψ for all u ∈ c∗∗. As a
result, M∗∗, w ⊧ Kψ. By (Monotonicity), M∗∗, w ⊧ Kφ1 ∧ . . .∧Kφn , too. Finally, since
φ is propositional, it is not affected by the change of the accessibility relation, therefore
M∗∗, w ⊧φ. As a result, M∗∗, w ⊧ (φ∧Kφ1 . . .∧Kφn ∧Kψ). By the construction of M∗∗,
M , w ⊧ ⟨‡⟩n⟨Rk⟩(φ∧Kφ1 . . .∧Kφn ∧Kψ), as desired.

4. Let arbitrary model M and world w ∈W of the model. Suppose M , w ⊧ K¬¬φ∧K (φ→
ψ). We also have that {¬¬φ} ⊢DN E φ, {φ,φ→ψ} ⊢MP ψ, {φ,ψ} ⊢C I φ∧ψ. We get that
M , w ⊧ ⟨DN E⟩Kφ as a corollary from the previous validity. By this result, (Monotonicity)
and assumption we get that M , w ⊧ ⟨DN E⟩(Kφ∧K (φ→ψ)). Then again as a corollary
of the previous validity, we obtain M , w ⊧ ⟨DN E⟩⟨MP⟩Kψ. By this, (Monotonicity) and
assumption, M , w ⊧ ⟨DN E⟩⟨MP⟩(Kψ∧Kφ). A final application of the previous validity
results in M , w ⊧ ⟨DN E⟩⟨MP⟩⟨C I⟩K (φ∧ψ), as desired.
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The second validity and the fourth validity of Theorem 4.1.6 and Theorem 4.1.1 allow us
to spot an initial convergence between Rasmussen and the two semantic interpretations (RW
and IW). This can be said regarding the first validity as well; imposing reflexivity under the
second approach should not be thought as a radical intervention that hints at some kind of
substantial divergence between the core of the two interpretations. On the contrary, reflex-
ivity is the standard veridicality-preserving condition in frameworks that employ accessibil-
ity relations. As these were simply absent in the first approach, no reflexivity condition was
needed to ensure veridicality. In fact, this was accommodated via condition 3 of the class M.
Interestingly, ⟨‡⟩nφ∧⟨†⟩mψ→ ⟨‡⟩n⟨†⟩m(φ∧ψ) fails to be valid both under RW-semantics and
IW-semantics. The fact that these results coincide, along with the counterexamples provided,
can be seen as indicative of a problematic motivation behind the inclusion of the analogous
axiom in Rasmussen. The similarity extends further; consider the limited version of (RD) as in
Theorem 4.1.2 and Theorem 4.1.7. We can thus speculate that what was called (RD)-Success
does not really deliver the expected result.

The way out of the problem of logical omniscience under this new, full framework can be
additionally reflected on the next theorem:

Theorem 4.1.8 (Reasoning from rules). If {φ1, . . . ,φk} ⊢R1,...,Rn ψ and ⟨‡⟩mi Kφi for 1 ≤ i ≤ k,
where each ⟨‡⟩mi is a sequence of mi -many inference rules, then ⟨‡⟩m1 . . .⟨‡⟩mk ⟨‡⟩nKψ.

Proof. Let arbitrary model M and world w ∈W P of the model. Suppose M , w ⊧ ⟨‡⟩mi Kφi , for
1 ≤ i ≤ k. As a result, for each i , there is M∗

i with f ∗i (w) = c∗i for some c∗i ∈C({vRi 1,...,Ri mi ∣ v ∈
f (w)}) such that M∗

i , w ⊧ Kφi . That is, for all v ∈ f ∗i (w), M∗
i , v ⊧φi . Due to (Monotonicity),

there is c∗ ∈ C({vRi j ∣ v ∈ f (w)}) with Ri j abbreviating R11, . . . ,R1m1 , . . . ,Rk1, . . . ,Rkmk
such

that if a model M∗ has f ∗(w) = c∗, then M∗,u ⊧ φi for all u ∈ c∗. Since {φ1, . . . ,φk} ⊢R1,...,Rn

ψ, there will be c⊛ ∈ C({vRi j ,R1,...,Rn ∣ v ∈ f (w)}) such that if a model M⊛ has f ⊛(w) = c⊛,
then M⊛,u ⊧ ψ for every u ∈ c⊛. This immediately results in M⊛, w ⊧ Kψ. But then due to
construction of M⊛, M , w ⊧ ⟨‡⟩m1 . . .⟨‡⟩mk ⟨‡⟩nKψ.

This second approach naturally extends both Rasmussen and Rasmussen&Bjerring. It ex-
tends Rasmussen by importing semantics, thereby offering a concrete insight on the adequacy
of the axioms. It extends Rasmussen&Bjerring by unraveling the reasoning process and for-
mally introducing the effect of cognitive effort. These results enable us to overcome the prob-
lem of logical omniscience, while still preserving an account of how reasoning ensures that
we can perform inferences lying within suitable applications of rules. In particular, the argu-
ment of impossible worlds suffices to invalidate the closure principles: since the clause for
knowledge quantifies over both possible and impossible worlds, it can easily be the case that
an agent knows φ but not ψ, even though the latter is logically entailed by the former. In addi-
tion, the truth clause for ⟨Rk⟩Kφ, and subsequently Theorem 4.1.8, demonstrate that an agent
can only come to know ψ via suitable applications of inference rules. This also manifests how
logical competence is preserved.

In fact, the rule-sensitivity, the measure on cognitive capacity and the way it is updated
allow us to practically witness to which extent reasoning evolves and thus to which extent
consequences of what we already know can come to be in turn known. Besides, running out
of resources depends not only on the number but also on the kind and chronology of rules.
The IW-approach takes these factors into account and can therefore explain that the agent
exhausts her resources while reasoning. Overall, it does justice to the idea that consumption of
specific resources is responsible for the failure to acquire knowledge from some point onwards.
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In the next section, we will actually incorporate this explanation into the logical framework
itself.

Before delving into the anticipated extension of IW, it is useful to make some compara-
tive remarks between our two approaches. As we have already observed, despite the use of
different equipment, the two views converge substantially in (in)validating certain suggested
axioms. This serves as a strong indication on the adequacy of the axioms and as a criterion
on what actually is credible enough to formally describe a reasoning process. Yet it is straight-
forward to see that RW-semantics is more syntactically inclined; worlds essentially constitute
a convenient way to talk about (factive) truths and epistemic states in tandem with transi-
tions among the latter, triggered by reasoning steps. The second view is still committed to the
mainstream (im)possible worlds semantics, only now augmented by dynamic clauses. More
specifically, it still employs accessibility relations and model transformations (in the sense of
DEL) to account for the progress of reasoning, taking note of, among others, the agent’s cogni-
tive effort. The first attempt eluded the need of model change due to its “temporal” portrayal
of reasoning and the way the set of rule-based worlds got itself structured in accordance with
the inference rules. This is why we observed that differences in the obtained validities can be
attributed to technical ramifications; they do not really affect the gist of the line of argumen-
tation on escaping the problem – besides, both approaches provide the semantics underlying
the very same conception. An important difference that will manifest itself more clearly in
what follows is that the second approach offers the breeding ground to talk about resource
depletion in a quantitative manner and adopt mainstream techniques regarding external in-
formation. To summarize, both approaches strike the balance between non-omniscience and
ignorance and manage to do so by acknowledging that the progress of reasoning is the distin-
guishing factor. Capturing this characteristic, albeit in different ways, is what increases their
explanatory power and successfully addresses the criticisms against existing attempts.

A quantitative extension of IW

This section elucidates the idea of resource consumption, incorporated into the logical lan-
guage and the IW-semantics. The goal is to show that a suitable quantitative fragment, once
appended to these basic elements, yields a thorough account of how real-life agents expand
their epistemic states, given certain preconditions, and why this eventually stops. By estab-
lishing a concrete connection between resource consumption and the evolution of reasoning,
we wish to soothe the objections about the broad use of n reasoning steps, as discussed in
Section 3.3.3. Instead of relying on some vague impression of some reasoning steps as “too
many”, one may now gain insight on the agent’s inferential ability, by looking at “snapshots” of
the available resources following the applications of inference rules.

To begin with, the new language includes an additional component (along the lines of Fa-
gin and Halpern (1994)):

Definition 4.1.15 (Language LIWe). Let Φ be the standard set of propositional atoms and R, I
countable sets. The language LIWe consists of a set T of constants and a set F of formulas. In
particular, T = {cRk ∣ Rk ∈ R}∪{cpi ∣ i ∈ I}. Then, the set of formulas is defined inductively as
follows:

φ ∶∶= p ∣ s ≥ t ∣ ¬φ ∣ φ∧φ ∣ Kχ ∣ ⟨Rk⟩φ ∣ [Rk]φ
where s, t ∈ T , and as before p ∈Φ, χ ∈LP and Rk ∈R.

The intended reading of the constants is that those of the form cRk correspond to the cog-
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nitive costs of inference rules whereas those of the form cpi correspond to the agent’s cognitive
capacity at the several stages of reasoning. The inequalities are then introduced to express the
comparisons between costs and capacity.

Definition 4.1.16 (Interpretation of constants). Given a model M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩,
the constants of T are interpreted as follows: cpM

i = cp and cM
Rk
=C(Rk).

Leaving aside the logical language, it is important to clarify our intended reading of ≥. Keep
in mind that, given M , both cp and C(Rk) are ordered r -tuples. Then for α, β such tuples, our
reading of α ≥β is that every i -th component of α is greater or equal than the i -th component
of β 12. Now, the motivation behind the new clauses is that an application of an inference rule
should be “affordable”; the agent’s cognitive capacity must be enough to “endure” the resource
consumption caused whenever some inference rule is fired. Otherwise, the action of applying
the inference rule is not executable. In short, the agent’s capacity with regard to each resource
should be greater or equal than the cost of the rule with regard to the respective resource.

With our new extended languageLIWe, we can formally express this requirement.

Definition 4.1.17 (IWe-semantics). For w ∈W P :

1. M , w ⊧ p if and only if p ∈V (w), where p ∈Φ.

2. M , w ⊧ s ≥ t if and only if sM ≥ t M .

3. M , w ⊧¬φ if and only if M , w /⊧φ.

4. M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ.

5. M , w ⊧Kφ if and only if M , w ′ ⊧φ for all w ′ ∈ f (w).

6. M , w ⊧ ⟨Rk⟩φ if and only if M , w ⊧ (cpi ≥ cRk ) and M ′, w ′ ⊧φ for some (M ′, w ′) ∶ (M , w) ∼Rk

(M ′, w ′).

7. M , w ⊧ [Rk]φ if and only if M , w ⊧ (cpi ≥ cRk ) implies M ′, w ′ ⊧ φ for all (M ′, w ′) ∶
(M , w) ∼Rk (M ′, w ′).

8. M , w âφ if and only if M , w /⊧φ.

For w ∈W I :

1. M , w ⊧φ if and only if φ ∈V (w).

2. M , w âφ if and only if ¬φ ∈V (w).

It is important to mention that viewing values of resources as natural numbers is not the
only option. While it does seem as an adequate way to express the availability and cost of
–for instance– time, other resources might be better captured via other quantitative assign-
ments. The modelling choices behind C(Rk) and cp and the reading of ≥ are mostly indica-
tive of a simple way to formalize the idea of resource consumption, that bounds real agents’
performance. Of course, it is empirical research that sheds light on the units that best de-
scribe resources, the values corresponding to each inference rule etc. Once we have the tools

12This can be easily expressed with the help of projection functions proji for i ∈ r . Each proji maps a tuple α to its
i -th component.
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to formalize the core idea, it is possible to manipulate the relevant components and fit other
modelling choices. What we have showed is that it is altogether achievable to spell out the cog-
nitive effort under such step-wise proposals, without claiming that our own numerical way of
evaluating resources must monopolize this line of investigation.

Next, we give an example to illustrate the subtleties of this new extension, and then point
towards a potential application.

Example 2.
Recall Theorem 4.1.7. We will now construct a model that demonstrates a failure to ap-

ply Conjunction Introduction, following any application of Double Negation Elimination and
Modus Ponens, attributed to the fact that time expires before the agent manages to apply this
last step.

- Let model M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩with R = {DN E , MP,C I}, Res = {time,memory}
C(MP) = C I = (2,2),C(DN E) = (3,1) while cp = (5,10). In addition, suppose that for
world w ∈W P : M , w ⊧K¬¬φ∧K (φ→ψ).

- Then, M ,u ⊧ ¬¬φ and M ,u ⊧ φ→ ψ for all u ∈ f (w). First, we get M , w ⊧ cpi ≥ cDN E .
Second, there is a choice c′ ∈ C({uDN E ∣ u ∈ f (w)}) such that if f ′(w) = c′ and cp′ =
cp−C(DN E) = (2,9) for a model M ′, then M ′, w ⊧Kφ.

- Following the same procedure for MP : M ′, w ⊧ cpi ≥ cMP and there is a choice c′′ ∈
C({v MP ∣ v ∈ f ′(w)}) such that if f ′′(w) = c′′ and cp′′ = cp′ −C(MP) = (2,9)− (2,2) =
(0,7) for a model M ′′, then M ′′, w ⊧Kψ.

- But then M ′′, w /⊧ cpi ≥ cC I .

So finally, M ′′, w /⊧ ⟨C I⟩K (φ∧ψ), therefore M ′′, w ⊧¬⟨C I⟩K (φ∧ψ). But this means that
M ′, w ⊧ ⟨MP⟩¬⟨C I⟩K (φ∧ψ).

In turn M , w ⊧ ⟨DN E⟩⟨MP⟩¬⟨C I⟩K (φ∧ψ).

As a result, indeed M , w /⊧ [DN E][MP]⟨C I⟩K (φ∧ψ).

Remark:(Doxastic setting and the challenge of implicit contradictions). Unsurprisingly, the
doxastic analogue of the system hitherto discussed can be obtained by adjusting the con-
structions of Definition 4.1.9, Definition 4.1.10, Definition 4.1.11, Definition 4.1.12, Defini-
tion 4.1.13 and Definition 4.1.14, now based on an initial doxastic accessibility function f .
However, it is worth emphasizing some other potential changes, that better embody the no-
tion of belief and differentiate the propositional attitudes. For instance, we hinted at the suit-
ability of reflexive models to grasp properties of knowledge, such as veridicality. It is natural
to drop this requirement in a doxastic setting. Most importantly, in Section 3.3.3, we under-
lined the insufficiency of Rasmussen’s doxastic framework to accommodate belief in implicit
contradictions, an unwelcome side-effect of (Monotonicity), (Minimal Consistency) and the
way the updated model of Definition 3.3.16 is defined. Should we stick to a purely epistemic
framework, we actually escape this worry, given the veridicality of knowledge. The objection
persists with belief, though; a real-life, fallible agent might believe an implicit contradiction,
therefore our doxastic alternative should do justice to such cases too.

The solution to this sub-task, as given below, focuses on memory, a resource that always
seems a plausible candidate-element of the set Res and crucial for failures such as belief in
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implicit contradictions13. It is natural to assume that the more information stored, the larger
the chances of ending up believing something that contradicts an existing belief. As a result,
with memory wearing out, (Monotonicity) may be dropped.

Of course, the extension IWe puts forward an extra constraint that disallows action once at
least one resource is completely exhausted. Therefore, dropping (Monotonicity) takes place at
some intermediate point. Given that the agent’s capacity regarding memory gets its maximum
value at the initial model, and is completely depleted after some updates, then (Monotonicity)
must be dropped at some prior point. The idea is that before the resource is totally exhausted,
the increasing burden forces the agent’s performance to gradually decline. This can be even
formally expressed by equipping our model M with a threshold for this “intermediate” failure
and comparing it with the value of the agent’s memory capacity. More specifically, the latter
may be formalized and interpreted by (a) introducing a new kind of constants and (b) assign-
ing the appropriate projection of the ordered pair cp to each such constant, as interpretation
at the model M . This is then compared to the value of the threshold. If the memory capacity
has fallen below the acceptable limit, then (Monotonicity) is dropped and belief in implicit
contradictions is not in principle disallowed.

4.2 Impossible worlds and public announcements (IWPA)

Knowledge is acquired not only because of internal mental processes, but also due to external
information. For example, truthful public announcements supply additional pieces of infor-
mation and these are actually obtained for “free”, in terms of cognitive effort. We therefore
enrich the repertoire of actions to account for these cases. Truthful public announcements
and their effect on our models are hereafter examined:

Definition 4.2.1 (Language LIWPA). The language LIWPA is defined inductively from a count-
able set of propositional atomsΦ:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Kψ ∣ ⟨Rk⟩φ ∣ [Rk]φ ∣ [ψ!]φ

with p ∈ Φ, ψ ∈ LP , where LP is the usual propositional language14, and Rk ∈ R for a given
countable set R.

Then, [ψ!]φ reads “after the public announcement ofψ, φ is true”, all else being as in Defi-
nition 4.1.9. We extend our semantics to account for the truth of such sentences. To do so, the
following definition (along the lines of Section 2.1) is needed to establish the change generated
by the announcement.

Definition 4.2.2 (IW-model transformation by public announcement). Given an IW-model
M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩, its transformation by ψ! is
Mψ! = ⟨(W P)ψ!,(W I )ψ!, f ψ!,V ψ!,Rψ!,Resψ!,Cψ!,cpψ!⟩ where:

• (W P)ψ! = {w ∈W P ∣ M , w ⊧ψ}

• (W I )ψ! = {w ∈W I ∣ M , w ⊧ψ}
13Although we do stress the part memory plays, the solution can be adapted for other resources too. In this sense,

the sketch is independent of the choice of resource and employing memory is mostly due to illustrative purposes.
14As we have so far focused on the agent’s knowledge about the world, rather than, for example, higher-order

knowledge or knowledge of her own reasoning processes, a restriction on announcements seems reasonable.
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• f ψ!(w) = f (w)∩W ψ!, for w ∈W ψ! ∶= (W P)ψ!∪(W I )ψ!

• V ψ!(w) =V (w), for w ∈W ψ!

• Rψ! =R

• Resψ! =Res

• Cψ! =C

• cpψ! = cp

Then:

Definition 4.2.3 (IWPA-semantics).

1. The clauses of Definition 4.1.14.

2. For w ∈W P : M , w ⊧ [ψ!]φ if and only if M , w /⊧ψ or Mψ!, w ⊧φ.

A full-scale analysis of a real agent’s reasoning should encompass the effect of both exter-
nal and internal information as well as of their combination. Theorem 4.1.8 provided us with
a result indicating how purely internal reasoning progresses by drawing on successive appli-
cations of inference rules. The next goal is to show how external information, in the form of
public announcements, can enhance our epistemic state. Finally, we combine these to ac-
count for the result of both applying inference rules and utilizing interaction, as usually is the
case in the real world.

Theorem 4.2.1 (Reasoning from announcements). If {φ1, . . . ,φk} ⊢R1,...,Rn χ and [ψ!]Kφi for
1 ≤ i ≤ k, then [ψ!]⟨‡⟩nKχ.

Proof. Let arbitrary model M and world w ∈W P of the model. Suppose that M , w ⊧ [ψ!]Kφi

for all 1 ≤ i ≤ k. Then, it follows from Definition 4.2.3 that M , w ⊧ψ implies Mψ!, w ⊧ Kφi for
all 1 ≤ i ≤ k. Suppose M , w ⊧ψ. Then Mψ!,u ⊧φi for all 1 ≤ i ≤ k and all u ∈ f ψ!(w). But since
{φ1, . . . ,φk}⊢R1,...,Rn χ, there is a choice c∗ ∈C({uR1,...,Rn ∣ u ∈ f ψ!(w)}) such that if f ∗(w) = c∗

for a model M∗ then M∗, v ⊧ χ for all v ∈ c∗. Therefore, M∗, w ⊧ Kχ. As a result, if M , w ⊧ψ
then Mψ!, w ⊧ ⟨‡⟩nKχ. Overall, M , w ⊧ [ψ!]⟨‡⟩nKχ, as desired.

Theorem 4.2.2 (Reasoning from announcements and rules).

1. If {φ1,φ2}⊢R1,...,Rn χ and [ψ!](Kφ1∧ ⟨‡⟩mKφ2), then [ψ!]⟨‡⟩m⟨†⟩nKχ.

2. If {φ1,φ2}⊢R1,...,Rn χ and ⟨‡⟩m(Kφ1∧ [ψ!]Kφ2), then ⟨‡⟩m[ψ!]⟨†⟩nKχ.

Proof.

1. Let arbitrary model M and world w ∈W P of the model. Suppose that M , w ⊧ [ψ!](Kφ1∧
⟨‡⟩mKφ2). Then M , w ⊧ ψ implies Mψ!, w ⊧ (Kφ1 ∧ ⟨‡⟩mKφ2), i.e. Mψ!, w ⊧ Kφ1 and
Mψ!, w ⊧ ⟨‡⟩mKφ2. That is, Mψ!,u ⊧ φ1 for all u ∈ f ψ!(w). Additionally, there is model
M∗ such that f ∗(w) = c∗ for some c∗ ∈C({vR1,...,Rm ∣ v ∈ f ψ!(w)}) and M∗,u ⊧φ2 for all
u ∈ c∗. Due to (Monotonicity), for all u ∈ c∗, M∗,u ⊧ φ1 ∧φ2. Since {φ1,φ2} ⊢R1,...,Rn χ,
there is a choice c∗∗ ∈ C({vR1,...,Rn ∣ v ∈ f ∗(w)}) such that if f ∗∗(w) = c∗∗ for a model
M∗∗ then M∗∗,u ⊧χ for all u ∈ c∗∗. But then M∗∗, w ⊧Kχ, and in turn M∗, w ⊧ ⟨†⟩nKχ.
Likewise Mψ!, w ⊧ ⟨‡⟩m⟨†⟩nKχ. Overall, M , w ⊧ψ implies Mψ!, w ⊧ ⟨‡⟩m⟨†⟩nKχ, so we
finally conclude M , w ⊧ [ψ!]⟨‡⟩m⟨†⟩nKχ.
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2. Let arbitrary model M and world w ∈W P of the model. Suppose that M , w ⊧ ⟨‡⟩m(Kφ1∧
[ψ!]Kφ2). So there is model M∗ such that f ∗(w) = c∗ for some c∗ ∈ C({vR1,...,Rm ∣ v ∈
f (w)}) and M∗, w ⊧Kφ1∧[ψ!]Kφ2, i.e. M∗, w ⊧Kφ1 and if M∗, w ⊧ψ then (M∗)ψ!, w ⊧
Kφ2. It then follows that M∗, w ⊧ ψ implies (M∗)ψ!, w ⊧ (Kφ1 ∧Kφ2), i.e. for all u ∈
( f ∗)ψ!, we get (M∗)ψ!,u ⊧ φ1 ∧φ2. Since {φ1,φ2} ⊢R1,...,Rn χ, there is a choice c∗∗ ∈
C({vR1,...,Rn ∣ v ∈ ( f ∗)ψ!(w)}) such that if f ∗∗(w) = c∗∗ for a model M∗∗ then M∗∗, v ⊧
χ for all v ∈ c∗∗. But then M∗∗, w ⊧ Kχ and in turn (M∗)ψ!, w ⊧ ⟨†⟩nKχ. Therefore,
M∗, w ⊧ψ implies (M∗)ψ!, w ⊧ ⟨†⟩nKχ, that is M∗, w ⊧ [ψ!]⟨†⟩nKχ. So finally, M , w ⊧
⟨‡⟩m[ψ!]⟨†⟩nKχ.

The foregoing can be accordingly generalized for more announcements, applications of
rules and thus number of premises. Theorem 4.2.2 also exemplifies the order-sensitivity of
a reasoning orocess that is assisted by a combination of external and internal tools. The ex-
planatory power of the theorems is also evident in the restaurant scenario:

Example 3.
Consider the restaurant scenario from van Benthem (2008):

You are in a restaurant with your parents, and you have ordered three dishes: Fish,
Meat, and Vegetarian. Now a new waiter comes back from the kitchen with three
dishes. What will happen?

Drawing on our experience, we expect that the waiter only needs two announcements and
one inference to distribute the dishes correctly. We use atoms of the form fi (i = 1,2,3) to
express “fish to person i” and likewise for atoms mi and vi . Let R be the set of rules containing
C I and MP . We can now see the contribution of our constructions in sketching the waiter’s
reasoning. For instance, assume that [v1!][ f2!](K v1∧K f2) and K ((v1∧ f2)→m3). Then, since
{v1, f2}⊢C I v1∧ f2, following the method of Theorem 4.2.1 we obtain [v1!][ f2!]⟨C I⟩K (v1∧ f2).
Next, due to {v1 ∧ f2 → m3, v1 ∧ f2} ⊢MP m3 and the methods of Theorem 4.2.2, we obtain
[v1!][ f2!]⟨C I⟩⟨MP⟩K m3, as expected.

On a final note, the construction of a doxastic counterpart of this new system should com-
ply with the considerations of the Remark. An extension of the language and the model to for-
malize the idea of resource depletion follows directly from Definition 4.1.15, Definition 4.1.16
and Definition 4.1.17.

4.3 Impossible worlds and plausibility (IWp)
Until now, the only tools that an agent can employ are inference rules and public announce-
ments. Still, there are other actions influencing the progress of reasoning. Merging our attempt
with the considerations of Chapter 2 allows us to bring several grades of knowledge and belief
under the same roof, and include events of incoming information, softer than the public an-
nouncement. To that end, we combine the plausibility models and IWPA in a new setting,
called IWp. In particular, we will now develop a plausibility-sensitive counterpart of the previ-
ous IWPA setting and incorporate the action φ ⇑ of (radically) upgrading with φ.
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Definition 4.3.1 (LanguageLIW p ). The languageLIWp is defined inductively from a countable
set of propositional atomsΦ:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Kψ ∣ Bψ ∣ ◻ψ ∣ ⟨Rk⟩φ ∣ [ψ!]φ ∣ [ψ ⇑]φ

with p ∈ Φ, ψ ∈ LP , where LP is the propositional language, and Rk ∈ R for a given countable
set R.

The intended reading of [ψ ⇑]φ is “after (radically) upgrading with ψ, φ is true”, while B
and ◻ correspond to belief and defeasible knowledge respectively.

Next, we build our own IWp-plausibility models. Unlike the standard plausibility models,
we use a mapping to the class of ordinals Ω to derive the plausibility ordering, inspired by
Spohn (1988). This is instrumental for a sharp account on model-transformation induced by
applications of inference rules.

Definition 4.3.2 (IWp-plausibility model). An IWp-plausibility model is a tuple
M = ⟨W P ,W I ,or d ,V ,R,Res,C ,cp⟩ where:

• W P ,W I are countable non-empty sets of possible and impossible worlds respectively.

• or d is a function from W ∶= (W P ∪W I ) to the class of ordinals Ω such that an ordinal
number is assigned to each world. Intuitively, the smallest this ordinal is, the more plau-
sible the world.

• V ,R,Res,C ,cp are as in Definition 4.1.10.

We can see that the function suffices to extract a plausibility ordering in the usual sense.
Specifically, for w,u ∈ W : w ≥ u if and only if or d(w) ≥ or d(u). Hence, indeed, the rank-
ing of worlds is reflected upon the ordering of ordinals. Based on the definition, it is easy
to verify that the intended reading is “w is no more plausible than u”. In addition, reflexiv-
ity, transitivity, connectedness and converse well-foundedness directly follow from this sort
of definition. Finally, we can retrieve the usual equivalence relation ∼, representing epistemic
indistinguishability, as follows: w ∼ u if and only if either w ≥ u or u ≥ w . Furthermore, the
following abbreviations are still used (a) C≥(w) = {u ∈W ∣ w ≥ u or u ≥ w} (which amounts to
W , given the properties of ≥),and (b)mi n(C≥(w)) = {u ∈C≥(w) ∣ for every v ∈C≥(w) ∶ v ≥ u}.

Once the model is devised, the wider project is to fully break down a reasoning process that
involves (i) applications of inference rules, (ii) public announcements (as actions of hard in-
formation), and (iii) upgrades (as actions of softer information). While the effect of (ii) and (iii)
may be captured based on the literature of Chapter 2, this is not the case for (i), whose account
we have thus far explored only under the relational scope. In particular, the challenge lies in
unveiling what ⟨Ri ⟩φmeans in terms of plausibility, and ensuring that this interpretation does
not inhibit our familiar modelling of (ii) and (iii). Essentially, to bring together the impossible-
worlds, rule-sensitive setting and its perks (avoiding logical omniscience while still securing
that agents are non-ignorant) and the rich insights provided by plausibility models, we have
to revisit the notion of rule-specific accessibility (as presented in Definition 4.1.13).

First, we give the account of model transformation regarding (ii) and (iii):

Definition 4.3.3 (IWp-plausibility model transformation by public announcement). Given an
IWp-model M = ⟨W P ,W I ,or d ,V ,R,Res,C ,cp⟩, its transformation by ψ! is a model
Mψ! = ⟨(W P)ψ!,(W I )ψ!,or dψ!,V ψ!,Rψ!,Resψ!,Cψ!,cpψ!⟩ where:
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• (W P)ψ! = {w ∈W P ∣ M , w ⊧ψ}

• (W I )ψ! = {w ∈W I ∣ M , w ⊧ψ}

• or dψ!(w) = or d(w), for w ∈W ψ! ∶= (W P)ψ!∪(W I )ψ!

• V ψ!(w) =V (w), for w ∈W ψ!

• Rψ! =R

• Resψ! =Res

• Cψ! =C

• cpψ! = cp

Definition 4.3.4 (IWp-plausibility model transformation by radical upgrade). Given an IWp-
model M = ⟨W P ,W I , f ,V ,R,Res,C ,cp⟩, its transformation by ψ ⇑ is a model
Mψ⇑ = ⟨(W P)ψ⇑,(W I )ψ⇑,or dψ⇑,V ψ⇑,Rψ⇑,Resψ⇑,Cψ⇑,cpψ⇑⟩ where:

• (W P)ψ⇑ =W P

• (W I )ψ⇑ =W I

• or dψ⇑ can be every function from the set15 { f ∶ W → Ω ∣ for any w,u ∈ W ψ⇑ ∶ f (w) ≥
f (u) if and only if w ≥ψ⇑ u}

• V ψ⇑ =V

• Rψ⇑ =R

• Resψ⇑ =Res

• Cψ⇑ =C

• cpψ⇑ = cp

While the definition dealing with public announcements is quite straightforward, an ex-
planation might be useful regarding the transformation by upgrades. More specifically, our
interest is to preserve the original intuition of all ψ-worlds becoming more plausible than ¬ψ
ones, keeping the previous ordering within the two zones. The characterization via ordinals
does not interfere with radical upgrades, but rather, as will see, with inference rules. In all
cases, we will not be interested in the assigned number per se, but on the action-induced re-
arrangement (i.e. plausibility of worlds relative to other worlds). This is why all functions from
{ f ∶W →Ω ∣ for any w,u ∈W ψ⇑ ∶ f (w) ≥ f (u) if and only if w ≥ψ⇑ u} work for our purposes.

Now, we move to the effect of applying inference rules. The backbone of this new account
is that a pointed IWp-plausibility model (M ′, w ′) is Rk -accessible from a given pointed IWp-
plausibility model for an inference rule Rk , whenever the set P≥(w) = {u ∈W ∣ w ≥ u} of worlds
at least as plausible as w is replaced by a choice of worlds reachable by an application of Rk

from the elements of P≥(w), while the remaining ordering is accordingly adapted. That is,

15To determine or dψ⇑, first consider the relation ≥ that can be derived from it. As an auxiliary step take: ≥ψ⇑= (≥

∩(W ×[[ψ]]))∪(≥∩([[¬ψ]]×W ))∪(∼∩([[¬ψ]]×[[ψ]])), that is our familiar re-arrangement due to the upgrade.
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we focus on the more (or equally) plausible worlds, as these would be the prioritized cases
whenever one applies an inference rule. From Chapter 2, we know that the set of worlds at
least as plausible as w is what determines defeasible knowledge at w . Given that our attention
is restricted to what follows from this set (in terms of Rk ), one can safely say that applications of
inference rules are viewed as potential modifiers of (at least) the agent’s defeasible knowledge.

This initial description on the effect of Rk continues as follows: if a world u was considered
more (or equally) plausible than w , but after an application of Rk does not “survive” as such,
then it is natural to eliminate it. This world must have been an impossible world16 and now its
impossibility has been uncovered; there is no reason to keep it in our set of worlds.

Once we rule out such worlds, if any, the question arises: how are the remaining worlds
ordered? A simple response is that the initial ordering should be preserved to the extent that it
is unaffected by the application of the inference rule.

To be more precise, we use the ordinal function. Note that the notion of rule-specific ra-
dius, introduced in Definition 4.1.11, is adopted as it is. Let M = ⟨W P ,W I ,or d ,V ,R,Res,C ,cp⟩
an IWp-plausibility model. We spell out the attempt in steps:

Step 1 Let (M , w) be a pointed model. Then, given an inference rule Rk , let P Rk (w) ∶= c where
c is some choice in C({vRk ∣ v ∈ P≥(w)}). In words, a choice of Rk -expansions of the
worlds initially considered at least as plausible as w .

Step 2 Based on the argument used above, if u ∈ P≥(w) but u /∈ P Rk (w), then u must be ex-
cluded from the new model. So in any case, the Rk -accessible pointed model (M ′, w ′)
should be such that its set of worlds is W Rk = W ∖ {u ∈ W ∣ u ∈ P≥(w)∖P Rk (w)} and
w ′ = w . As observed above, this elimination of worlds is in fact an elimination affecting
the set W I .

Step 3 We now develop the new ordering or d Rk following the application of the inference rule.
Let u ∈W Rk :

(a) If u /∈ P≥(w)∪P Rk (w), then or d Rk (u) = or d(u), i.e. the assigned ranking remains
the same, for worlds that were less plausible than w and are not contained in the
choice.

(b) Next consider u ∈ P Rk (w). This means that there is at least one v ∈ P≥(w) such
that u ∈ vRk for the particular choice c that gave rise to P Rk (w). Denote the set of
such v ’s by T . Then or d Rk (u) = or d(z) for z ∈ mi n(T ). Therefore, if a world is in
P Rk (w), then it takes the position of the most plausible of the worlds from which
it originated.

Step 4 Finally, for worlds u, v ∈ W Rk : u ≥Rk v if and only if or d Rk (u) ≥ or d Rk (v), therefore
again all the required properties are preserved.

Step 5 The other components of the model remain unchanged, expect from V which is simply
restricted to the worlds in W Rk and cpRk ∶= cp−C(Rk).

This kind of model-transformation in terms of ≥ becomes clearer below.

16A possible world will always survive following applications of inference rules, as its radius amounts to itself.

77



CHAPTER 4. PROPOSALS FOR REAL-LIFE AGENTS

Example 4.
Let model M as in 4.3, with or d(w4) = 4,or d(w3) = 3,or d(w2) = 2,or d(w1) = 1,or d(w0) =

0. In search of all the ways the pointed model (M , w2) can change following an application of
MP , we follow the procedure sketched above.

Step 1 First, we compute {v MP ∣ v ∈ P≥(w2)}. According to 4.3, it amounts to

{{w2},{w3, w2},{w0}}.

• As a result, C({{w2},{w3, w2},{w0}}) = {{w2, w3, w0},{w2, w0}}.

So P MP(w) = {w2, w3, w0} or P MP(w) = {w2, w0}.

• 1. In case P MP(w2) = {w2, w3, w0}:

Step 2 W MP =W ∖{u ∈W ∣ u ∈ {w2, w1, w0}∖{w2, w3, w0}} = {w4, w3, w2, w0}.

Step 3 Since w4 /∈ P MP(w2)∪P≥(w2), or d MP(w4) = or d(w4) = 4. Then w3 ∈ P MP(w2)
and, checking from which world(s) it originated in the particular choice, we get
that w3 ∈ w MP

1 , therefore or d MP(w3) = or d(w1) = 1. Likewise, w2 ∈ P MP(w2)
and w2 ∈ w MP

2 , so or d MP(w2) = or d(w2) = 2. Finally, w0 ∈ P MP(w2) and
w0 ∈ w MP

0 , so or d MP(w0) = or d(w0) = 0.

2. In case P MP(w2) = {w2, w0}:

Step 2 W MP =W ∖{u ∈W ∣ u ∈ {w2, w1, w0}∖{w2, w0}} = {w4, w3, w2, w0}.

Step 3 As above, or d MP(w4) = or d(w4) = 4. For the same reasons, or d MP(w3) =
or d(w3) = 3. Then, w2 ∈ P Rk (w2) and, checking from which world(s) it orig-
inated in the particular choice, we find w2 ∈ w MP

2 , w2 ∈ w MP
1 . But or d(w2) ≥

or d(w1) so or d MP(w2) = or d(w1) = 1. Again, w0 ∈ P MP(w2) and w0 ∈ w MP
0 ,

so or d MP(w0) = or d(w0) = 0.

w4 w3 w2

MP

w1

MP

MP w0

MP

w4 w2 w3 w0 w4 w3 w2 w0

Figure 4.3: The first figure depicts the model M , with an MP-dashed arrow from w to w ′ de-
noting that w ′ is an MP-expansion of w . Then, we obtain two potential transformations of
the pointed model (M , w2), i.e. two MP-accessible pointed models, based on the two ways
the set of w2’s more (or equally) plausible worlds can change due to MP .

Overall, we have developed the ways an initial model changes after public announcements,
radical upgrades and applications of inference rules. The semantics is finally given by:
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Definition 4.3.5 (IWp-semantics). For w ∈W P :

• M , w ⊧ p if and only if p ∈V (w), where p ∈Φ.

• M , w ⊧¬φ if and only if M , w /⊧φ.

• M , w ⊧φ∧ψ if and only if M , w ⊧φ and M , w ⊧ψ.

• M , w ⊧Kφ if and only if M , w ′ ⊧φ for all w ′ ∈C≥(w).

• M , w ⊧◻φ if and only if M , w ′ ⊧φ for all w ′ ∈ P≥(w).

• M , w ⊧Bφ if and only if M , w ′ ⊧φ for all w ′ ∈mi n((C≥(w)).

• M , w ⊧ ⟨Rk⟩φ if and only if M ′, w ′ ⊧ φ for some (M ′, w ′) which is Rk -accessible from
(M , w).

• M , w ⊧ [ψ!]φ if and only if M , w /⊧ψ or Mψ, w ⊧φ.

• M , w ⊧ [ψ ⇑]φ if and only if M⇑ψ, w ⊧φ.

• M , w âφ if and only if M , w /⊧φ.

For w ∈W I :

• M , w ⊧φ if and only if φ ∈V (w)

• M , w âφ if and only if ¬φ ∈V (w)

Given the distinction between K and ◻ in Section 3.2.4, hard attitudes (like K ) change
only in the face of hard information and of those applications of inference rules that result in
world-elimination. Softer attitudes (like ◻ and B) might additionally change following radical
upgrades.

As a result, we have provided the means to extend the step-wise impossible worlds ac-
count, that escapes logical omniscience, whilst illuminating internal mental processes and
external information of various sorts. Besides, IWp models and semantics allow us to com-
bine results on epistemic and doxastic notions. We only note that, in accordance with the rich
literature of plausibility models, this account can be extended to incorporate more actions and
attitudes; consider for example that conditional beliefs of Chapter 2 can be utilized in IW p,
too. In this way, we can provide more and more detailed investigations on belief change un-
der omniscience-free, rule-sensitive systems. Finally, a quantitative flavour on the shortage of
resources may be added simply by referring back to Section 4.1.2.

4.4 Reducing frameworks with impossible worlds

We have seen how IW and its extensions refined existing frameworks and overcame barriers to
a realistic modelling of knowledge and belief. The key factor was the adoption of a dynamic
framework with impossible worlds. Prompted by the work of Wansing (1990), and in search of
a (complete) logic for such frameworks, we aim at a reduction to static frameworks involving
solely possible worlds. In particular, Wansing showed how various models for knowledge and
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belief, for instance structures for awareness, can be viewed as Rantala ones that validate pre-
cisely the same formulas (given, of course, a fixed background language). This section’s goal
is to, roughly speaking, explore the other direction. More concretely, we want to show that
impossible-worlds frameworks, but now in the sense of Rasmussen&Bjerring, IW, etc., can be
reduced to awareness-like ones, thereby opening the way for a wider exploitation of the fruitful
techniques and properties of the latter.

This investigation poses no threats for the status of the settings discussed earlier. We view
its contribution as largely technical. That is, there is no reason to assume that the intro-
duction of dynamic settings with impossible worlds is redundant in the face of a reduction
that resembles awareness structures. As we will see, the components of the reduced mod-
els have no (obvious) intuitive reading nor can they possibly explain all the phenomena and
ways out of the problem as the previous settings did. In other words, Rasmussen&Bjerring, IW,
IWe,IWPA,IWp, explain properties of real reasoning in a balanced and intuitive way, while any
attempt of a reduction merely constitutes a detour to obtain useful results, such as complete-
ness. In addition, it is precisely because of this balance and superiority in terms of explanatory
power that criticisms directed against awareness structures cannot be hereby replicated.

In what follows, we present a reduction and its consequences under an epistemic setting
for the Rasmussen&Bjerring view. We also describe how this general method can be used for
IW too. We expect that this first attempt provides the building blocks for complete logics under
IWe, IWPA and IWp too. For example, once we build a suitable static, possible-worlds frame-
work and a complete logic for it, then it suffices to provide reduction axioms for the additional
actions.

1. The first challenge is, as implied above, the appropriate choice of a language that es-
tablishes the common ground17 on which we will show that the reduction is indeed
successful – i.e. that the same formulas are valid under the original and the reduced
models. Of course, we seek a language that facilitates the crossing from a dynamic and
impossible-worlds framework to a static one that only involves possible worlds, while
still preserving the core of former. To that end:

Definition 4.4.1 (Language for the reduction). The language Lr is defined inductively
from a countable set of propositional atomsΦ as:

φ ∶∶= p ∣ ¬φ ∣ φ∧φ ∣ Kχ ∣ ⟨n⟩ψ ∣ Lφ ∣ Iφ ∣ Jn

with p ∈Φ, χ ∈LP , n = 0,1, . . ., and ψ a knowledge assertion of the form Kχ.

It is evident that part of the language is essentially an epistemic version of the one found
in Section 3.3.3. We only note that we have restricted our attention to operators ⟨n⟩ pre-
fixing only knowledge assertions, as the change they induce (on the accessibility func-
tion) essentially affects the acquisition of knowledge. Besides what the agent comes to
know is the core of our interest, when studying the outcome of a reasoning process.
Then, given a model of ⟨W P ,W I , f ,V ⟩ as in Rasmussen&Bjerring, all the clauses, other

17This was straightforward for the direction of Wansing’s work (simply using the language of Section 3.2.1). Since
the set of impossible worlds in the induced Rantala model was associated with the awareness function of the original
model, the truth clauses could be given without further machinery. In our case this is inevitable due to the dynamic
effect of ⟨n⟩.
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than those for Lφ, Iφ, Jn with regard to a possible world w18, are given along the lines of
Section 3.3.3). In fact, we only have to account for the additional formulas. Giving their
truth clauses also shows the utility of the new operators:

• M , w ⊧ Lφ if and only if for all u ∈ f (w)∩W P : M ,u ⊧φ.

• M , w ⊧ Iφ if and only if for all u ∈ f (w)∩W I : M ,u ⊧φ.

• M , w ⊧ Jnφ if and only if for all u ∈ f (w)∩W I such that un ≠∅, there is some v ∈ un :
M , v ⊧φ.

That is, Lφ provides the standard quantification over the possible, epistemically acces-
sible worlds. The point of Iφ is similar, only now isolating the impossible, epistemically
accessible words. The distinction is necessary to transform a setting involving both sorts
of worlds to one that merely comprises possible worlds. Finally, the truth clause for Jnφ

says: for every world in f (w)∩W I , if its n-radius is not empty, then there is at least one
n-expansion of it validating φ. This will be instrumental for the shift from a dynamic to
a static interpretation for ⟨n⟩Kφ.

2. We can now show that there is an equivalent, static formulation for the truth clause of
⟨n⟩Kφ, by utilizing this richer language.

Lemma 3 (Reducing ⟨n⟩Kφ). ⟨n⟩Kφ is logically equivalent to Lφ∧ Jnφ.

Proof. Let a model M = ⟨W P ,W I , f ,V ⟩ and world w ∈ W P . Suppose M , w ⊧ ⟨n⟩Kφ.
Then there is model (M ′, w) ∼n (M , w) such that M ′, w ⊧ Kφ. That is, M ′, w ⊧ Kφ for
a model M ′ with f ′(w) = c′ for some c ∈ C({vn ∣ v ∈ f (w)}) and, in turn, M ′,u ⊧ φ
for all u ∈ c′ [1]. By definition of choice, c′ is just one way in which only one element
can be picked from each vn , for v ∈ f (w). Because of this, [1] precisely means that for
every v ∈ f (w) whose n-radius vn is not empty, there must be some u ∈ vn such that
M ,u ⊧φ. Let any such v . If v ∈W P , then v ∈ f (w)∩W P and since vn = {v}, the previous
argument boils down to M , v ⊧ φ. Therefore, M , w ⊧ Lφ. In the case that v ∈ W I , the
clause boils down to M , w ⊧ Jnφ, by the way the clause for Jn was constructed. Finally,
M , w ⊧ Lφ∧ Jnφ.

For the other direction, suppose that M , w ⊧ Lφ∧ Jnφ, i.e. M , w ⊧ Lφ and M , w ⊧ Jnφ.
The former gives us that for all u ∈ f (w)∩W P : M ,u ⊧ φ [1]. The latter gives us that for
all z ∈ f (w)∩W I , with zn ≠∅ there is some v ∈ zn : M , v ⊧φ [2]. Of course, each world is
either in W P or W I . Then, by [1], [2] and the fact that un = {u} for u ∈W P , we get that
there is a choice c′ ∈C({un ∣ u ∈ f (w)}) such that if M ′ has f ′(w) = c′ then M ′, v ⊧φ for
all v ∈ c′. Therefore, M ′, w ⊧Kφ. So finally, M , w ⊧ ⟨n⟩Kφ.

3. Now we construct the candidate for a reduced model M = ⟨W,f,V,I, Jn⟩, given the original
model M = ⟨W P ,W I , f ,V ⟩, where:

• W =W P

• f(w) = f (w)∩W, for w ∈W

18For impossible worlds, the clauses remain the same. Keep in mind that validity is defined in terms of possible
worlds only.
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• V(w) =V (w) for w ∈W.

• I ∶W→P(Lr ) such that I(w) = ⋂
v∈ f (w)∩W I

V (v). Intuitively, I takes a possible world

w and yields the set of those formulas that are true at all impossible worlds acces-
sible from w .

• Jn ∶ W→ P(Lr ) such that Jn(w) = ⋂
{v∈ f (w)∩W I ∣vn≠∅}

⋃
u∈vn

V ∗(u). Note that V ∗(u)

denotes the set of all formulas true at u19. Intuitively, Jn takes a possible world w
and yields the set of formulas that are true at some n-expansion of a world v , for
every impossible world v accessible from w , with non-empty n-radius.

The semantics based on M is given as follows:

• M, w ⊧ p if and only if p ∈V(w).

• M, w ⊧¬φ if and only if M, w /⊧φ.

• M, w ⊧φ∧ψ if and only if M, w ⊧φ and M, w ⊧ψ.

• M, w ⊧ Lφ if and only if for all u ∈ f(w): M,u ⊧φ.

• M, w ⊧ Iφ if and only if φ ∈ I(w).

• M, w ⊧ Jnφ if and only if φ ∈ Jn(w).

• M, w ⊧Kφ if and only if M, w ⊧ Lφ and M, w ⊧ Iφ.

• M, w ⊧ ⟨n⟩Kφ if and only if M, w ⊧ Lφ and M, w ⊧ Jnφ.

Let’s now show that this candidate M indeed reduces M .

Theorem 4.4.1 (Reduction). Given a model M = ⟨W P ,W I , f ,V ⟩, construct its (candi-
date) reduced model M according to the previous definition. Then M is indeed a reduc-
tion of M , i.e. for any w ∈W P and formula φ ∈Lr : M , w ⊧φ if and only if M, w ⊧φ.

Proof. The proof goes by induction on the complexity of φ.

• Base case: for φ ∶= p we get M , w ⊧ p if and only if p ∈V (w) if and only if p ∈ V(w)
if and only if M, w ⊧ p.

• For φ ∶= ¬ψ and Induction Hypothesis that the result holds for ψ. Then M , w ⊧ ¬ψ
if and only if M , w /⊧ψ if and only if (by I.H.) M, w /⊧ψ if and only if M, w ⊧¬ψ.

• For φ ∶= χ∧ψ with Induction Hypothesis that the result holds for χ and ψ. Then
M , w ⊧ χ∧ψ if and only if M , w ⊧ χ and M , w ⊧ψ if and only if (by I.H.) M, w ⊧ χ
and M, w ⊧ψ if and only if M, w ⊧χ∧ψ.

• For φ ∶= Lψ with Induction Hypothesis that the result holds for ψ. Then M , w ⊧ Lψ
if and only if for all u ∈ f (w)∩W P : M ,u ⊧ψ if and only if (by I.H.) for all u ∈ f(w):
M,u ⊧ψ if and only if M, w ⊧ Lψ.

• For φ ∶= Iψ with Induction Hypothesis that the result holds for ψ. Then M , w ⊧ Iψ
if and only if for all u ∈ f (w)∩W I : M ,u ⊧ ψ if and only if for all u ∈ f (w)∩W I :
ψ ∈V (u) if and only if ψ ∈ I(w) if and only if M, w ⊧ Iψ.

19While V (v), V ∗(v) coincide for impossible worlds, this is not the case for the possible ones, hence the need for
new notation.
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• For φ ∶= Jnψ with Induction Hypothesis that the result holds for ψ. Then M , w ⊧
Jnψ if and only if for all u ∈ f (w)∩W I such that un ≠ ∅ there is some v ∈ un :
M , v ⊧ψ. This is the case if and only if for all u ∈ f (w)∩W I such that un ≠∅ there
is some v ∈ un : ψ ∈V ∗(v). By construction, this is the case if and only if ψ ∈ Jn(w)
if and only if M, w ⊧ Jnψ.

• Forφ ∶=Kψwith Induction Hypothesis that the result holds forψ. Then M , w ⊧Kψ
if and only if for all u ∈ f (w): M ,u ⊧ψ. Since u ∈ W P ∪W I , this is the case if and
only if M , w ⊧ Lψ and M , w ⊧ Iψ. Given the previous steps of the proof, this is the
case if and only if M, w ⊧ Lψ and M, w ⊧ Iψ, if and only if M, w ⊧Kψ.

• For φ ∶= ⟨n⟩Kψ with Induction Hypothesis that the result holds for Kψ. Then
M , w ⊧ ⟨n⟩Kψ if and only if (by Lemma 3), M , w ⊧ Lψ∧ Jnψ if and only if M , w ⊧ Lψ
and M , w ⊧ Jnψ if and only if (by previous steps) M, w ⊧ Lψ and M, w ⊧ Jnψ, if and
only if M, w ⊧ ⟨n⟩Kψ.

4. Next, we turn to why this reduction resembles awareness structures and exploit this ob-
servation to construct a sound and complete axiomatic system. Recall that awareness
structures have the form ⟨W,R,V ,A⟩. Therefore, an awareness structure is composed by
a set of possible worlds, an epistemic accessibility relation, a valuation on the set of pos-
sible worlds and a function assigning a set of formulas to each world. Abstracting away
from the conceptual reading of this last component under awareness, we can draw the
analogy to M. Again, we have a set of possible worlds W, an accessibility function to
denote which worlds are considered epistemically accessible, a valuation on the set of
possible worlds and two functions that assign a set of formulas to each possible world.
For simplicity, these functions are called awareness-like. Now, recall, Theorem 3.2.1. The
key axiom is the one that reduces explicit knowledge to implicit knowledge and aware-
ness (whose semantic clause is determined by the awareness function). We can obtain
similar axioms for Kφ and ⟨n⟩Kφ reducing these formulas to formulas involving Lφ and
Iφ, Jnφ – with Lφ essentially capturing the possible-worlds interpretation of knowledge
and the other two formulas being determined by the awareness-like functions. With
these comments in mind, we proceed to our claim for a sound and complete logicΛr .

Definition 4.4.2 (Axiomatization ofΛr ). Λr is axiomatized by:

(PC) All instances of propositional tautologies.

(L) L(φ→ψ)→ (Lφ→ Lψ)
(AX1) Kφ↔ (Lφ∧ Iψ)
(AX2) ⟨n⟩Kφ↔ (Lφ∧ Jnφ)

and the rules:

(MP) From φ and φ→ψ, infer ψ.

(L-N) From φ infer Lφ.

5. We are now going to show that Λr is indeed sound and complete with respect to the
awareness-like structures.
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Theorem 4.4.2 (Soundness for Λr ). Λr is sound with respect to awareness-like struc-
tures.

Proof. The usual arguments suffice regarding (PC), (L), (MP), (L-N). The validity of (AX1)
and (AX2) is a direct consequence of their construction.

Towards completeness, we need the following preliminaries. We stick to the procedure
employing a canonical model. Taking (maximal)Λr -consistent sets and showing Linde-
baum’s lemma follow the standard paradigm. Then the canonical model in our case is
given by:

Definition 4.4.3 (Canonical Model for the awareness-like structures). The canonical
model for the logicΛr is the tupleM = ⟨W ,F ,V ,I ,Jn⟩ where:

• W is the set of allΛr-maximal consistent sets.

• F is a function fromW toP(W) such that u ∈F(w) if and only if {φ ∣ Lφ ∈ w} ⊆ u.

• V(w) = {p ∣ p ∈ w}, with w ∈W .

• I(w) = {φ ∣ Iφ ∈ w}, with w ∈W .

• Jn(w) = {φ ∣ Jnφ ∈ w} with w ∈W .

Unsurprisingly, there is an alternative but equivalent definition ofF in terms of the dual
L̂, i.e. L̂φ ∶= ¬L¬φ. Then u ∈F(w) if and only if {L̂φ ∣ φ ∈ u} ⊆ w . The existence lemma
is then obtained by the traditional routine. That is, for any world w ∈W , if L̂φ ∈ w then
there is some v ∈W such that v ∈F(w) and φ ∈ v . We will also use the dual modality in
showing the truth lemma that follows. Finally:

Theorem 4.4.3 (Completeness forΛr). Λr is (strongly) complete with respect to awareness-
like structures.

As we have seen earlier, and as one can verify in Blackburn et al. (2001), it is enough
to show the truth lemma. We perform induction on the complexity of φ to show that
M, w ⊧φ if and only if φ ∈ w .

Proof.

• The claim for propositional atoms and the boolean cases clearly holds, due to the
construction of the canonical model and the properties of maximal consistent sets.

• Let φ ∶= L̂ψwith Induction Hypothesis that the claim holds forψ. ThenM, w ⊧ L̂ψ
if and only if for some u ∈F(w): M,u ⊧ψ. From I.H. ψ ∈ u. From the definition
of F : L̂ψ ∈ w . For the other direction, suppose that L̂ψ ∈ w . Then by the existence
lemma, there is some u ∈W such that u ∈F(w) and ψ ∈ u, therefore using the I.H.
we get,M, w ⊧ L̂ψ.

• Let φ ∶= Iψ with Induction Hypothesis that the claim holds for ψ. ThenM, w ⊧ Iψ
if and only if ψ ∈ I(w) if and only if Iψ ∈ w .

• φ ∶= Jnψ with Induction Hypothesis that the claim holds for ψ. ThenM, w ⊧ Jnψ

if and only if ψ ∈Jn(w) if and only if Jnψ ∈ w .
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• φ ∶= Kψ with Induction Hypothesis that the claim holds for ψ. ThenM, w ⊧ Kψ if
and only ifM, w ⊧ Lψ andM, w ⊧ Iφ if and only if (from previous steps) Lψ ∈ w
and Iψ ∈ w if and only if Lψ∧ Iψ ∈ w if and only if (from AX1) Kψ ∈ w .

• φ ∶= ⟨n⟩Kψ with Induction Hypothesis that the claim holds for Kψ. ThenM, w ⊧
⟨n⟩Kψ if and only ifM, w ⊧ Lψ andM, w ⊧ Jnψ if and only if (as above) Lψ ∈ w
and Jnψ ∈ w if and only if Lψ∧ Jnψ ∈ w if and only if (from AX2) ⟨n⟩Kψ ∈ w .

Overall, we have provided a sound and complete logic with respect to the awareness-like
structures, which are nothing but reductions of our familiar impossible-world models.

This has been a “detour to completeness” for Rasmussen&Bjerring. At the beginning, we
promised that with this first attempt available, analogous results can be obtained for IW. The
procedure can be followed with some minor, but crucial, modifications. Most importantly, as
far as the language for the reduction is concerned, it is better to employ sequences of rules,
rather than individual rules, as primitives (with the semantic clause given by the analysis we
performed in Section 4.1.2; then individual applications are simply special cases). This is be-
cause, for the evaluation of arrays of reasoning, both the special operator J and the awareness-
like function J of the reduction need to “scan” for worlds that follow from epistemically acces-
sible worlds after all reasoning steps are taken (this is why they should be now indexed by
sequences). Resorting to sequences ⟨‡⟩n , as well as tailoring the truth clause of J⟨‡⟩n and con-
struction of J⟨‡⟩n – so that n is replaced by the rules whose application comprise the sequence
– allows for similar results according to the foregoing method. Of course, one might simply
follow another way and develop simple, indexed “step-logics”. For instance, by allowing only
one application of rules, i.e. ⟨Rk⟩Kψ in the language20, it becomes clear that Rk might simply
replace n throughout the procedure. Then we get an axiomatization like the one in Defini-
tion 4.4.2, where again we have Rk instead of n.

On a final note and in connection with IWe, IWPA and IWp: irrespective of the route, a
reduction for IW, and the appropriate axiomatic system it generates, seem to us essential for
analogous results within these systems too. It certainly paves the way to a logic for resource de-
pletion. Then, the task seems easier for IWPA, given the reduction axioms of PAL (Section 2.1).
However, obtaining a complete system for IWp is trickier; it any case, though, we need reduc-
tion axioms, utilizing conditional beliefs, on top of the “basic” system supplied for IW. Apart
from these potential applications, we hope that the detour provides a general method to re-
duce and further explore the properties of frameworks with impossible worlds.

20Noticing ,though, that this is a point where objections might be easily raised.

85



Chapter 5

Conclusions and further research

To sum up, we first presented the standard epistemic and doxastic logics and explained where
the problem of logical omniscience lies. We continued by describing how tools from DEL en-
hance the potential of a realistic logical modelling. With these in hand, we discussed leading
attempts to resolve the problem, noticing their useful insights while still critically evaluating
their performance. The remarks on the advantages and the disadvantages of the existing ap-
proaches paved the way for our own proposals against the problem. In particular, we provided
a range of frameworks that take up the highlighted challenges, attacking the problem by pri-
oritizing the investigation of an agent’s reasoning steps. In this spirit, we hope that we have
taken a first step towards a realistic and detailed solution.

More specifically, Chapter 1 described how systems of modal logic facilitated the formal
study of knowledge and belief, but also generated logical omniscience. We then argued on
why resolving the problem is a worthwhile task and gleaned properties seen as necessary for
an attractive solution. Chapter 2 then briefly discussed how the simple account can be brought
closer to real-life phenomena by introducing machinery from DEL and Belief Revision.

The examination of Chapter 3 began with syntactically-oriented attempts; Syntactic struc-
tures involve a valuation divorcing the evaluation of sentences from the usual recursive com-
putation. Yet they fall short in conveying any property of propositional attitudes and of real,
moderately competent agents. Next, Rasmussen’s setting, taking its cue from Duc’s dynamic
epistemic logic, argues for a dynamic logic focusing on the agent’s effort to apply inference
rules. However, the lack of semantics limits the strength of this approach and undermines the
adequacy of the designed logic. We continued with a large cluster of logical frameworks that
promise to escape omniscience by discerning explicit and implicit attitudes. Awareness and
algorithmic knowledge respectively employ an awareness function and an algorithm to locate
the distinguishing factor. They too suffer criticisms, though, due to the arbitrariness of these
components and the threat of retaining forms of the problem. Justification Logic and logics of
justified knowledge and belief integrate the much anticipated notion of justification into the
discussion and better approximate real-life situations. Concerns are then raised as these ap-
proaches might yield rather contrived ways out of the problem, or simply inherit the remarks
made for awareness. The third family of proposals suggests the inclusion of impossible worlds.
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Although initial attempts, solely resorting to their anarchic nature, were unsuccessful in terms
of realistic and balanced modelling, this line of research still produced more sophisticated set-
tings. Jago, who uses impossible worlds and puts forward an argument of Indeterminacy to
explain the fallibility of agents, while still respecting normative standards, faces opposition
on the motivation and adequacy of this notion. Finally, Rasmussen&Bjerring build a dynamic
framework that merges a step-wise analysis of reasoning and the benefits from the introduc-
tion of impossible worlds. Despite their balanced response to the problem, doubts arise due
to modelling choices that subvert its explanatory power.

Both the virtues and the shortcomings of these attempts fueled the enterprise of Chapter 4.
In order to face open challenges and give an accurate idea of how we attain knowledge and be-
lief, we first supplied a step-wise proposal with semantics. Specifically, we built two families
of refinements. First, Rule-based worlds, eventually leading to the sound and complete logic
ΛRW, capture reasoning processes by structuring the domain of worlds according to inference
rules. This allowed for a closer examination of Rasmussen’s axioms and subsequently for a
fuller attack against logical omniscience. The second approach, dubbed Impossible worlds,
worked towards the same direction, only now capturing the effect of inference rules in a dy-
namic impossible-worlds framework that incorporates cognitive costs too. A quantitative ex-
tension exemplified the importance of cognitive effort and formally introduced what mostly
was the informal motivation of some approaches in Chapter 3. Afterwards, we furnished this
approach with actions of hard and soft information (public announcements, radical upgrades)
and gave a detailed analysis of reasoning, by merging impossible worlds and ideas from the
rich DEL literature. Finally, we showed how models with impossible worlds can be reduced to
awareness-like ones. This “detour” is important in constructing sound and complete logics,
withΛr being our case in point.

Throughout the thesis, we have hinted at several topics suggestive of further investiga-
tion. There are, at least, three directions one could follow: (a) enrich/refine the frameworks of
Chapter 4, (b) obtain complete axiomatizations for the DEL-inspired extensions of impossible-
worlds settings, and (c) use empirical research towards a stronger view on the quantification
of resources.

To begin with (a), we have already mentioned that systems accounting for external infor-
mation are still compatible with the method followed towards a quantitative extension. There-
fore, we can easily fit the formal portrayal of resource consumption under these too. It is less
easy, albeit interesting, to study how other actions and, in general, insights from DEL and Be-
lief Revision can be combined with our impossible-worlds settings; till now we have confined
ourselves to inference rules, public announcements and radical upgrades. In addition, the
multi-agent case, and therefore the study of the agents’ interaction, common knowledge etc.
poses another natural line of research. We also emphasize that while higher-order assertions
(e.g. the agent’s knowledge/beliefs about her own knowledge/beliefs or reasoning tracks) are
prohibited in our settings, it would be interesting to allow for introspective agents – and still
treat idealization in this respect. For now, we only suggest that under Rule-based worlds, in-
trospective agents may be allowed, given that a new class of models is specified so that its
transitions additionally reflect the outcome of introspection.

On the more technical side of (b), our first attempt towards a reduction is indicative of
the path one might follow. In particular, we expect that, given the usual reduction axioms for
public announcements, completeness results for the corresponding extension may be easily
obtained. On the other hand, it is not as straightforward to speculate on a logic with respect to
our plausibility models, due to the intricate effect of the actions.
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The last direction requires an interdisciplinary point of view. Our own attempt to explain
that the agent’s insufficiency of resources perturbs reasoning offered the formal equipment to
compare her cognitive capacity and the costs for each reasoning step. We did not delve into
questions regarding the most appropriate system of units or the most precise way to quantify
over these, with respect to memory, time etc. For this, we crucially rely on empirical indica-
tions and, in particular, on results from cognitive science and psychology of reasoning. The
import of these disciplines, once assimilated by the logical system, may result in a more accu-
rate modelling device.
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