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Abstract

We consider problems where several individuals each need to
make a yes/no choice regarding a number of issues and these
choices then need to be aggregated into a collective choice.
Depending on the application at hand, different combinations
of yes/no may be consideredtional. We can describe such
rationality assumptions in terms of a propositional formula.
The question then arises whether or not a given aggregation
procedure willlift the rationality assumptions from the in-
dividual to the collective level, i.e., whether the collective
choice will be rational whenever all individual choices are.
To address this question, for each of a number of simple frag-
ments of the language of propositional logic, we provide an
axiomatic characterisation of the class of aggregation proce-
dures that will lift all rationality assumptions expressible in
that fragment.

Introduction

Social choice theory, the study of methods for collective de
cision making, has recently received a lot of attention in Al

(1975) and has recently been studied in depth by Dokow and
Holzman (2008). The framework gfidgment aggregation
(List and Puppe, 2009) is closely related to binary aggrega-
tion and we will occasionally refer to it.

Dokow and Holzman (2008) characterise domains of ag-
gregation over which every independent and unanimous pro-
cedure is dictatorial. This is a good example for the use of
the axiomatic method in economic theory: the aimis to iden-
tify the appropriate set of axioms (e.g., to model real-word
economies, specific moral ideals, etc.) and then to prove a
characterisation (or impossibility) result for those ar&

Al suggests an alternative approach: with every new appli-
cation the principles underlying a system may change; so
we may be more interested in devising languages for ex-
pressing a range of different axioms rather than identifyin
the “right” set of axioms; and we may be more interested in
developing methods that will help us to understand the dy-
namics of a range of different social choice scenarios rathe
than in technical results for a specific such scenario.

For this purpose we separate two parameters in the frame-

There are very good reasons for this trend. First, the meth- work of binary aggregation. On the one hand, we introduce
ods of Al (and, more generally, of Computer Science) have a propositional language to define the domain of aggrega-
turned out to be useful to deepen our understanding of so- tion by expressing a rationality assumption common to all
cial choice and, in some cases, can even suggest an entirelyindividuals. On the other, we state a list of axioms to clas-
new perspective on classical problems. Examples include sify aggregation procedures over these domains. We call an
the complexity-theoretic analysis of optimisation probte aggregation procedummllectively rationalwith respect to a
arising in social choice and the adaptation of knowledge rep language if whenever all individuals submit ballots satisf
resentation languages to support modelling of preferences ing a formula in the language, so does the outcome of ag-
Second, the methods of social choice theory have important gregation. We characterise, for several simple fragments o
applications in Al, e.g., to achieve consensus amongst the the language of propositional logic, the associated class o
autonomous software agents in a multiagent system or to collectively rational procedures as the set of proceduses s
aggregate the output of several search engines. Of particu-isfying a certain set of axioms. Towards the end of the paper,
lar interest to Al is the case @bcial choice in combinato- we relate our results to existing aggregation frameworks an
rial domains in which the space of alternatives from which  we state future directions of research.

the individuals have to choose has a multi-attribute struc-
ture (Chevaleyre et al., 2008).

In this paper, we analyse the problemtohary aggre-
gation, which is an example for social choice in (boolean)
combinatorial domains. In our model, a group of individu-
als each make a yes/no choice regarding a finite number of
issues and then these choices need to be aggregated into
collective choice. This model goes back to work of Wilson

Basic definitions

LetZ = {1,...,m} be afinite set ofssues and letD =

Dy x --- x D, be a boolean combinatoridlomain i.e.,
|D;| =2 foralli € Z (we assumé); = {0,1}). LetPS=

%pl, ...,pm} be a set of boolean variables/propositional
ymbols, one for each issue, and lets be the corre-
sponding propositional language. For apye Lps, let
Mod(y) be the set ofnodelsthat satisfyp. For example,
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A language for integrity constrainis a set of propositional
formulasC C Lps. Examples include the set bferals, the
set ofcubeg(conjunctions of literals), and the setdfuses
of size at mosk. For a given languagg, anyintegrity con-
straint IC € £ defines adomain of aggregatiodMod(1C),
which we shall often refer to ax.!

Integrity constraints can be used to define what tuples in
D we considerational choices. For example, as we shall
explain in our discussion of related work at the end of this
paper,D might be used to encode a binary relation, in which
case we may want to declare only those element3 itio-
nal that correspond to relations that are transitive. Irstiie
quel, we shall therefore use the terms “integrity constsiin
and “rationality assumptions” interchangeably.

Let N = {1,...,n} be a finite set oindividuals To
simplify presentation, we shall assume that the number of
individualsn is odd. Aballot B is an element o (i.e.,
an assignment to the variablgs, . .., p.,,); and arational
ballot B is an element oD that satisfies the integrity con-
straints, i.e., an element of MOC). A profile B is a vector
of (rational) ballots, one for each individual id. We write
B; for the jth element of a ballof3, and B, ; for the jth
element of balloB, within a profile B = (Bl, B

An aggregatlon procedures a functionF : DN — D,
mapping each profile to an element of the domBin We
are now ready to define one of the central concepts for this
papercollective rationalitywrt. IC:

Definition 1. An aggregation proceduré’ : DY — D is
called collectively rational (CR) fotC, if for all profiles
B € Mod(IC)" we have that'(B) € Mod(IC).

Thus, F' is CR if it canlift the rationality assumptions given
by IC from the individual to the collective level.

Axioms

In social choice theory, aggregation procedures are stud-
ied using the axiomatic method. Axioms are used to ex-

press desirable properties of a procedure. In this section,
we adapt the most important axioms familiar from standard

social choice theory, and more specifically from judgment

aggregation (List and Puppe, 2009) and binary aggregation
theory (Dokow and Holzman, 2008), to our setting. We start

with four common axioms:

Unanimity (U): For any profileB € X" and anyz €
{0,1},if B, ; =z foralli € N, thenF(B); = z.

Anonymity (A) For any profileB € X and any per-
mutations : N — N, we have that'(B,,...,B,) =
F(Eo(l)7 cee Eo‘(n))

Issue-Neutrality (N?): For any two issueg, j' € Z and
any profileB € XV, ifforall i € N we have thaB; ; =

B, ;i thenF(B); = F(B);.

Independence(l): For any issug € Z and any two profiles
B,B' € XV,it B, ; = B; ;foralli € N, thenF(B); =
F(B');.

This definition is consistent with that of Dokow and Holzman

(2008) since every subset Bfis of the form Mod ) for a certain
propositional formulay € Lps.

Unanimity postulates that, if all individuals agree on is-
suej, then the aggregation procedure should implement that
choice forj. Anonymity requires the procedure to be sym-
metric with respect to individuals. Issue-neutrality (aiaat

of the standard axiom of neutrality introduced in the litera
ture on judgment aggregation) asks that the procedure be
symmetric with respect to issues. Finally, independenee re
quires the outcome of aggregation on a certain isst@
depend only on the individual choices regarding that issue.
Combining independence with issue-neutrality, we get the
axiom of systematicity (S) = (I) + (N).

It is important to remark that all axioms are domain-
dependent. For instance, many aggregation procedurds, suc
as the majority rule, are independent over the full com-
binatorial domainD, while others, such as the one pre-
sented in the next example, are not. With two issues, let
IC = (p2 — p1) and letF be equal to the majority rule on
the first issue, and accept the second issue only if the first
one was accepted and the second one has the support of a
majority of the individuals. This procedure is not indepen-
dent on the full domain, but it is easy to see that it satisfies
independence when restrictedXd" = Mod(1C)"¥

As a generalisation of the axiom of neutrality introduced
by May (1952), we introduce the following:

Domain-Neutrality (N?): For any two issueg,j’ € 7
and any profiIeB € XN, if B,; = 1— B, forall

The two notions of neutrality are uncorrelated but dual:
issue-neutrality requires the outcome on two issues to be
the same if all individuals agree on these issues; domain-
neutrality requires it to be reversed if all the individuals
make opposed choices on the two issues.

The following axiom of monotonicity is often callgubs-
itive responsivenesand is formulated as an (inter-profile)
axiom for independent aggregation procedufres:

I-Monotonicity (M!): For any iSSUEj € 7 and any

two profilesB = (Bj,... ﬁz,... ,) and B’ =
(By,...,B.,....B )mXN if B ; andB’
thenF( )j _1enta|IsF( ") _1

Every set of axioms identifies a class of aggregation pro-
cedures that satisfy these properties. A characterisation
mathematical terms can be obtained for some classes. One
example is the class @fuota rulesQR introduced by Di-
etrich and List (2007): an aggregation proceddtdor n
individuals is a quota rule if for every issyethere exists a

quota0<qj<n + 1 such that, if we denote bzwjﬁ = |{i |

B; ;=1}|, thenF'(B);=1if and only if N* g;. The fol-
lowing representation result holds:

Proposition 1 (Dietrich and List, 2007) An aggregation
procedureF satisfiesA, I, andM! if and only if it is a quota
rule.

A quota rule is callediniformif the quota is the same for all
issues. By adding the axiom of issue-neutrality to Proposi-
tion 1 we get an axiomatisation of this class. The uniform

2A variant of this axiom for issue-neutral aggregators has been
defined in previous work (Endriss, Grandi, and Porello, 2010).



quota rule withg; [5] for all issues; is the majority
rule. It is interesting to link these results with May’s Theo-
rem (1952) on the axiomatic characterisation of the majorit
rule in voting. We can obtain a more general version of his
result (which deals with the case of a single issue) by adding
the axiom of domain-neutrality: this forces the quota tatre
NEZandn— N2 symmetrically, and thus the only possibility

is to fix the quota as the majority of the individuals.

Lifting individual rationality

Definition 3. An aggregation proceduré’ satisfies a set of
axiomsAX wrt. a languagel C Lpg, if for all constraints
IC € L the restriction Fiyegqc)yy satisfies the axioms in

AX. This defines the following class:
Fr[AX] = {F:D" — D | Fjyoaacy~ sat.AX forall ICe L}

We write F[AX] as a shorthand faF;+,[AX], the class of
procedures that satisfy AX over thigl domainD. It is easy
to see that the following lemma holds:

Lemma 4. FIAX] C F.[AX] forall £L C Lps.

We now want to establish connections between aggregation we shall now seek to obtain results that link the two kinds

procedures characterised in terms of axioms and aggregatio
procedures characterised in terms of languages for ityegri
constraints for which they are collectively rational. Tasth
end, we first define the class of procedures that can lift the
integrity constraints belonging to a given languagéecall
Definition 1).

Definition 2. For any languagel C Lps, define the class
CR|[L] of aggregation procedures that lift:

CRIL]

{F:DY -~ D|FisCRforallC ¢ L}

Next, we establish some basic propertie€®&[L]. In our
framework, we have made the assumption of IC being a sin-
gle formula (rather than a set of formulas); we now provide
a formal underpinning for this choice. For agyC Lpsg, let

L be the language of conjunctions of formulasin

Lemma 2. CR[L"] = CR[L] forall £ C Lps.

Proof. CR[L"]is clearly included iR [L], sincel C L.

It remains to be shown that, if an aggregation procedure
lifts every constraint inC, then it lifts any conjunction of
formulas inL. Let A, IC; be such a conjunction, and let
B € Mod(A, IC;)" be a profile satisfying this integrity
constraint. Since Mog\,, ICy) = (), Mod(ICy), we have
that B € Mod(ICy,) for everyk. Thus, if ' € CR[L], then
F(B) € Mod(ICy,) for everyk. Therefore,F" will also be
in Mod(/\,, IC), and this concludes the proof. O

In particular, we have thafR[cube$ = CR][literals] and
CR|clause$ = CR|[Lpg]. The latter holds, because for ev-
ery propositional formula there is an equivalent formula in
conjunctive normal form (CNF).

The following lemma is an immediate consequence of our
definitions:

Lemma 3. CR[L1 U L]
L1,Ls C Lps.

Next we introduce notation for defining classes of aggrega-
tion procedures in terms of axioms. As mentioned earlier, a
particular axiom may be satisfied on a subdomain of inter-
est, but not on the full domain. Here, we are interested in do-
mains defined by means of integrity constraints (i.e., propo

sitional formulas). We therefore need to be able to speak

CR[L1] N CRIL,] for all

about the procedures that satisfy an axiom on the subdomain

Mod(1C)¥ induced by a given integrity constraint IC.
Let Fymod(icy~ denote the restriction of the aggregation

procedurel” to the subdomain MadC)™ .

of classes defined, i.e., results of the form
CRIL] FrlAX],

for certain languages and certain axioms AX.

Characterisation results

Our first characterisation result shows that the aggregatio
procedures that can lift all rationality constraints exgsible

in terms of a conjunction of literals (a cube) is precisely th
class of unanimous procedures:

Proposition 5. CR[cube$ = Feuped U]

Proof. One direction is easy: IX is a domain defined by

a cube, then every individual must agree on every literal in
the conjunction, and, by unanimity, so will the collective.
For the other direction, suppose thate CR[cube$. Fix

Jj € Z. Pick a profileB € D" such thatB, ; = 1 (or 0) for

alli € N. Thatis,B € Mod(p;)" (or —p;, respectively).
SinceF' is collectively rational on every domain defined by
a cube (and this includes literals), it must be the case that
F(B); = 1 (or 0, respectively), proving unanimity of the
aggregator. O

Observe that, a%cuhedU] = F[U], the explicit mentioning
of cubes on the righthand side of Proposition 5 is not needed.
The statement takes therefore the following form: an aggre-
gation procedure lifts cubes if and only if it is unanimous.
That is, this result can be interpreted as a charactenisatio
of the axiom of unanimity in terms of collective rationality
with respect to the language of cubes. But since our start-
ing point here is a logical language to express integrity- con
straints, we chose above form of presentation to focus more
on determining minimal conditions for an aggregator to lift
constraints of a certain forrh.

By Lemma 2, we also ge&tR[literals] = Fiierais[U] (it is
easy to see thafliterals[U] = fcubes{U])-

Let L., be the language of bi-implications of positive lit-
erals: L. = {p; < px | pj,px € PS}. This language
allows us to characterise issue-neutral aggregators:

Proposition 6. CR[L._] = F,_ [NZ].
Proof. To prove the first inclusionX), pick a positive bi-
implicationp; < py: issuesj andk share the same pattern

of acceptances/rejections and since the procedure isaheutr
over issues, we gef'(B);, = F(B);. The constraint is

3The same remark applies to Propositions 6 and 7 below.



therefore lifted. For the other directio), suppose that
a profile B is such thatﬁm B, ; foreveryi € N. Then
B € Mod(p; < pi)Y, andif FisinCR[L._], thenF(B);,
must be equal té'(B ) Since this holds for every sudh,
this proves thaf’ is neutral over issues. O

Let £, be the language of bi-implications of one negative
and one positive literalC.., = {p; < —pi | pj,pr € PS}.
That is, L. is the language of XOR-formulas over pairs of
positive literals. With a proof analogous to the one above we
can characterise domain-neutrality:

Proposition 7. CR[L..] = F . [NP].

Let F = {F : DV — D} be the class o#ll aggregation
procedures (for fixe® andN). The next result is an imme-
diate consequence of our definitions:

Proposition 8. CR[{L}] =CR[{T}] =F

Hence, by Lemma ;R[L U {L}] = CR[L], which shows
that unsatisfiable formulas can be omitted from languages
for integrity constraints.

We now move on to characterising two extreme cases
of languages for integrity constraints: the case of formu-
las with a single model and the case of constraints in the
full propositional language. Mictatorshipis an aggregation
procedure that copies in every profile the ballot of a certain
fixed individual, the dictator. The class.;[DIC] is com-
posed by all functions that are dictatorships when restlict
to Mod(IC)¥ for all IC € £. Note that on restricted do-
mains this notion can differ significantly from the usual in-
tuition of dictatorship. Now, let us call a languageC Lps
trivial, if it is composed only of formulas having a single
model each. Clearly:

Proposition 9. If L is trivial, thenCR[L] = F,[DIC].

We propose the following definition of a class of aggregators
that generalises the notion of dictatorship:

Definition 4. An aggregation proceduré : DV — Dis a
generalised dictatorship, if there exists a mppD~ — N
such thatF'(B) = B, for everyB € DN,

Thatis, a generalised dictatorship copies the ballot oba{p
sibly different) individual in every profile. Call this clas
F[GDIC]. This class fully characterises the aggregators that
can lift anyintegrity constraint:

Proposition 10. CR[Lps] = F[GDIC].

Proof. Clearly, every generalised dictatorship lifts any ar-
bitrary integrity constraint ICe Lpg. To prove the other
direction, suppose that ¢ F[GDIC]. Then there exists
a profile B € DY such thatF(B) # B, for alli € N.
This means that for everythere exists an issug such that
F(B);, # B, ; . Define now a literal;, to be equal tg;, if
B, ;. =1, and tO—\p]7 otherwise. Consider as integrity con-
straint IC the following formula/, £;,. Clearly, B; = I1C
for everyi € N,i.e.,Bisa rational profile for the integrity
constraint IC. Sincé'(B) [~ IC by construction/F is not
in CR[{IC}] and therefore also not BYR [Lps]. O

All of the characterisation results presented thus far-char
acterise a class of procedures determined tgingle ax-
iom (or apply to a very specific class of procedures) and
by a uniform description of the language. So we might
ask to what extent such results can be combined to al-
low us to make predictions regarding the collective ratio-
nality of procedures satisfying several such axioms, or in
the case where the integrity constraints can be chosen from
a more complex language. To illustrate the application of
our results to such cases, suppd@$R[L,] = Fr,[AX]
andCR[Ls] = Fr,[AX3]. Then Lemma 3 and the fact
that Fr,ur, [AXl, AXQ} C Fr, [AXl] N Fr, [AXQ] entail
Friooc,[AX1,AXs] € CR[Ly U Lo]. (But note that the
other inclusion is not always true.) Now, if we start from the
languageC; U L, or any of its sublanguages, then this shows
that picking procedures frotfi., ., [AX;, AXo] is a suffi-
cient condition for collective rationality. If, instead evgtart
from the axioms in AX and AXy, then we can infer that the
procedures we obtain will lift any languade C £ U Lo,
since by Lemma 4F[AX1, AXs] C Fryuc,|[AXy, AX,]
which in turnis included irc CR[L£; U Lo] C CR[L].

Negative results

For two important classes of aggregators, it is not possible
to obtain a characterisation result:

Proposition 11. There is no languag€ C Lpg such that
CR[L] = F.[1).

Proof. We prove this proposition by constructing, for any
choice of a languagg€, an independent function that is not
collectively rational for a certain I& L. Fix a languageC.
This language will contain a falsifiable formuta(otherwise
CR[L]=F by Proposition 8 and we are done,/as# F.[I)).
Choose a ballot/moddé* € D such thatB* [~ ¢. Then the
constant functionf” = B* is an independent function (on
the full domain) that is not collectively rational. O

Proposition 12. There is no languag€ C Lpgs such that
CRIL] = F]A].

Proof. Employing a different technique than in the previous
proof, we show that for every languagahere exists a pro-
cedure that is collectively rational but not anonymoussti-ir
in caseL is trivial, by Proposition 9CR[L] = F.[DIC],
which is strictly included in the class of all anonymous func
tions. Second, i€ is not trivial, then a dictatorship is always
collectively rational (cf. Proposition 10), and it is notoay-
mous since due to nontriviality there is an KC £ that al-
lows for at least two different rational ballots. O

These results are coherent with the intuition that any as-
sumption of collective rationality of an aggregator canyonl
condition the outcome in view of a single profile at a time,
without being able to express inter-profile requirementfisu
as anonymity and independence. Similar remarks apply to
the axiom of monotonicity (note that! is meaningful only

in connection with).



Results for clauses
In view of the negative results proved above, we now fo-

cus on procedures satisfying anonymity, independence and

monotonicity, and analyse the ability of procedures to lift

rationality assumptionithin that class. This enables us to

obtain interesting results concerning languages of ckause
Recall from Proposition 1 that the independent, anony-

mous and monotone procedures are exactly the quota rules

i.e., procedures that assign a qugjeo every issug such
that F(B); = 1 < [{i | B, = 1}| > ¢;. Thatis, in our
notation,QR = F[A,|,M1].

By Proposition 10 and Lemma 2, we know that
CR|clauses] is the collection of generalised dictatorships.
Therefore, to obtain results for more attractive classes of
procedures, we restrict attention to clauses of limitedtlen
Fork > 1, letk-clausesde the set of clauses of lengthk,
k-pclausesthe set of positivek-clauses, i.e., disjunctions
where all literals are positive, ardnclauseghe language
of negativek-clauses, where all literals are negative.

Given a clause = ¢, V - -- V £, we say that an issug
occurs iny if one and only one op; and—p; is one of the
disjuncts ofp.

Lemma 13. If IC € k-pclauses and is the number of indi-
viduals, then every quota rule with < [ 7] for every issue
j that occurs inlC is collectively rational.

Proof. Since the clause IC is accepted by every individual,
there exists a literal that is accepted by at I¢&sit of them.

IC is made of positive literals, therefore by restricting th
quotag; to be at most 7 |, we guarantee that that literal
(and the disjunction) will be lifted. O

The analogous version for negative clauses holds too:

Lemma 14. If IC € k-nclauses and is the number of indi-
viduals, then every quota rule with > n — [ 7] for every
issuej that occurs inlC is collectively rational.

If we denote withQR..,;) the set of quota rules such that
the quotagy; satisfy the constraint in the subscript for all is-
suesj, then by the previous lemmas we obtain the following
characterisations:

Proposition 15. CR[k-pclausesn QR 2 QR <.
Proposition 16. CR[k-nclausepn QR 2 QR ~p ).

As may easily be checked, in Propositions 15 and 16 above

the inclusion is strict (only) fok > 1.

Let us now turn to the general case of arbitrarglauses.
We say that an issugoccurs positively in a clause, if it does
occur in that clause and the corresponding literal is pasiti
otherwise we say that it occurs negatively. With a similar
proof as above, we can show:

Lemma 17. SupposdC < k-clauses and: is the number
of individuals. A quota rule is collectively rational fo€, if
q; < [%] for every issug that occurs positively inC and
q; > n— [ ] for every issug that occurs negatively ifC.

In the special case df = 2, we get the following:

“Recall the assumption that the set of individuals is odd.

Proposition 18. The majority rule is irCR [2-clausek

Proof. The quota relative to every issue has to satisfy both
types of constraints from Lemma 17. But these are incom-
patible unlesg = 2, in which casey; = [4]. O

If there are only two issues, then the majority rule can lift
any kind of rationality assumption:

'Corollary 19. If there are at most two issuel( < 2), then
the majority rule is iCR[Lpg).

Proof. This follows immediately from Proposition 18 and
Lemma 2, together with the observation that the CNF of any
formula involving at most two distinct propositional sym-
bols is a conjunction of 2-clauses. O

From Lemma 17, we can also extract a general method for
constructing a collectively rational quota rule (if onests),
given an arbitrary constraint |I€ Lpg:

e Rewrite IC in CNPF call the result IGy.
e For each issug, write down these two constraints:

- q; < [%], wherek is the size of the longest clause in
ICcne in Which j occurs positively.

- q; > n—[47], wherek' is the size of the longest clause
in ICcne inWhich j occurs negatively.

e Every solution to this system defines a quota rule that is
collectively rational for IC.

See Dietrich and List (2007) for further discussion of quota
rules.

Related work

The framework of binary aggregation was introduced by
Wilson (1975) and further developed by Rubinstein and
Fishburn (1986) and Dokow and Holzman (2008). As al-
ready mentioned, this work relates closely to the results we
proved here, and we already explained the novelty of our
results, pertaining to a language for the syntactic speeific
tion of rationality assumptions, with respect to that lirfe o
research. In this section we review some of the most im-
portant frameworks for aggregation, and we show a natural
translation between the paradoxical behaviour described i
these contexts and the notion of collective rationality of a
aggregation procedure.

In preference aggregatioimdividuals express a linear or-
der over a set of alternatived. We can go back to the
work of Condorcet in the 18th century to find the first oc-
currence of the following paradoxical situation (calledn€o
dorcet cycle). For three individuals, let their preferenbe
a>b>c, b>c>a and c>a>b. Pairwise majority aggrega-
tion leads to accepting>b andb>c but alsoc>a, i.e, an
intransitive (hence irrational) outcome. A linear ordenca
be encoded as a rational ballot in binary aggregation in the
following way: given a set of alternatived, introduce a
boolean variable,;, for every ordered pair of alternatives
a # b. The condition of antisymmetry can be enforced with

SNote that this step may give rise to an exponential growth in
the size of the formula.



the formulasp,, < —py, for all a # b and transitivity with
DPab A Poe — Pac fOr all a, b, c. The conjunction of these for-
mulas form the integrity constraint IC. The Condorcet cycle
presented above forms a profil® that yields an outcome
where all three variables,;,, p,. andp., are accepted. This
outcome does not satisfy IC, therefore the pairwise magjorit
rule is not collectively rational for this I€.

Not only can we express the framework of preference ag-
gregation, but we can also write classical impossibiligath
rems (and potentially devise new proofs) in terms of collec-
tive rationality of aggregation. Arrow’s Theorem (1963) f
instance, takes the following form:

CR[Lpref] N Fr,y[U,LNDIC] = 0,

whereLyer denotes the language representing the set of lin-
ear orders and NDIC the axiom of non-dictatorship. An-
other example is Wilson’s Theorem (1975), which states that
Fr,«[1] consists only of dictatorships, antidictatorships, and
constant functions. Moreover, integrity constraints cen b
seen as domain restrictions: while it is likely that a pos-
sibility result can be proved by restricting the domain us-
ing propositional formulas, classical restrictions likegie-
peakedness are difficult to express in our framework in view
of the fact that they usually are inter-profile conditions.

The model we presented is clearly very expressive in sit-
uations ofvoting in boolean combinatorial domair(e.g.,
Brams, Zwicker, and Kilgour, 1998; Lang, 2007). To cite an

translation using our definitions, and we pointed out the po-
tential of such a unified treatment.

The use of logic in this work is limited to its expressiv-
ity as a language interpreted on boolean combinatorial do-
mains. A promising direction is to develop this use further,
enabling us to exploit all the power of the logical formalism
to devise new proofs of (im)possibility results in the area.
This work can also be seen as a first step in the construction
of a model for the more complex problem of combinato-
rial aggregation (Lang, 2004) where the aggregation is per-
formed over a product of arbitrary domains. Sequential vot-
ing (Lang, 2007) represents a clear trend in this area: given
an integrity constraint, we might be able to devise an order
of aggregation over the set of issues that will guarantee the
rationality of the outcome. Finally, by using more powerful
languages to express rationality assumptions we can move
towards more complex logical models of artificial agents.
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