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Abstract It is well-known that non-standard models of Peano Arithmetic have
order type N+Z ·D where D is a dense linear order without first or last element.
Not every order of the form N+Z ·D is the order type of a model of Peano
Arithmetic, though; in general, it is not known how to characterise those D for
which this is the case. In this paper, we consider syntactic fragments of Peano
Arithmetic (both with and without induction) and study the order types of their
non-standard models. (August 4, 2017)

1 Introduction

1.1 Motivations & Results The incompleteness phenomenon for arithmetic is due to
the interaction of addition and multiplication: the theory of the natural numbers in
the full language of arithmetic with addition and multiplication is essentially incom-
plete whereas its syntactic fragments in the language with only addition (known as
Presburger arithmetic; cf. [8]) and the language with only multiplication (known as
Skolem arithmetic; cf. [13]) are complete and decidable [10, § 1.2.3]. Addition and
multiplication combined make theories sequential, i.e., they can encode the notion
of finite sequence; this in turn paves the path to Gödel’s incompleteness argument.

Non-standard models of arithmetic naturally split into archimedean classes (Def-
inition 1.1) of elements with finite distance; a standard argument using only very
basic properties of arithmetic shows that the order type of a non-standard model of
arithmetic is of the form N+Z ·D where D is a dense linear order without first or
last element (cf. [5, Theorem 6.4]). In general, it is not known which (uncountable)
dense linear orders D give rise to an order type of a non-standard model of arithmetic
(cf. [1, 2] for an overview of what is known).

The three basic properties used in the standard argument mentioned in the last
paragraph are (a) that the model is linearly ordered, (b) that addition is well-behaved
with respect to that order, and (c) that every element is either even or odd. Properties
(a) and (b) do not need induction to be proved; property (c) does. An inspection of
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the argument reveals that property (c) is essential for the density argument; so, we
have linked induction to the density of the order D in the order type of the model.

It is the aim of this paper to study in which ways properties of systems of arith-
metic constrain the possible order types occurring as order types of non-standard
models of these systems.

We consider three operations, the unary successor operation and the binary addi-
tion and multiplication operations and their associated languages: L<,s := {0,<,s},
the language with an order relation and the successor operation, L<,s,+ := {0,<,s,+},
the language augmented with addition, and L<,s,+,· := {0,<,s,+, ·}, the full lan-
guage of arithmetic. For each of the languages, we shall define the appropriate
arithmetical axiom systems and the corresponding axiom schemes of induction,
resulting a total of six theories,

SA− ⊆ SA⊆ ⊆
Pr− ⊆ Pr⊆ ⊆

PA− ⊆ PA,

where the theories in the left column are without induction and the theories in the
right column are with the axiom scheme of induction (for definitions, cf. § 1.2).

As usual, we use the following syntactic abbreviations: for n ∈ N and a variable
x, we write

sn(x) := s(. . .(s︸ ︷︷ ︸
n times.

(x)) . . .) and

nx := x+ . . .+ x︸ ︷︷ ︸
n times.

.

We shall show that SA− proves the axiom scheme of induction (Theorem 2.2) and
hence SA− and SA are the same theory, reducing our diagram to five theories. The
main result of this paper is the separation of the remaining five theories in terms of
order types: in the following diagram, an arrow from a theory T to a theory S means
“every order type that occurs in a model of T occurs in a model of S”. In § 6, we
shall show that the diagram is complete in the sense that if there is no arrow from T
to S, then there is an order that is the order type of a model of T that cannot be the
order type of a model of S.

SA

Pr−

<<zzzzzzzz
Proo

aaCCCCCCCC

PA−

OO

PA.oo

OO

1.2 Definitions In this section, we shall introduce the axiomatic systems whose order
type we shall study in this paper. The axioms come in four groups corresponding to
the order, the successor function, addition, and multiplication.
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The order axioms O1 to O4 express that < describes a linear order with least
element 0 (O1 is trichotomy, O2 is transitivity, and O3 is antisymmetry):

x < y∨ x = y∨ x > y, (O1)

(x < y∧ y < z)→ x < z, (O2)

¬(x < x), (O3)
x = 0∨0 < x. (O4)

The successor axioms S1 to S4 express that < is discrete and that s is the successor
operation with respect to <:

x = 0↔¬∃yx = s(y), (S1)

x < y→ y = s(x)∨ s(x)< y, (S2)

x < y→ s(x)< s(y), (S3)

x < s(x). (S4)

Taken together, the axioms O1 to O4 and S1 to S4 (later called SA−) constitute the
theory of discrete linear orders with a minimum and a strictly increasing successor
function.

The addition axioms P1 to P5 express the fact that the + and < satisfy the axioms
of ordered abelian groups:

(x+ y)+ z = x+(y+ z), (P1)
x+ y = y+ x, (P2)
x+0 = x, (P3)
x < y→ x+ z < y+ z, (P4)

x+ s(y) = s(x+ y). (P5)

The axiom > expresses the fact that if x < y, then the difference between them exists:

x < y→∃zx+ z = y. (>)

The multiplicative axioms M1 to M6 express that · and + are commutative semiring
operations respecting <:

(x · y) · z = x · (y · z), (M1)
x · y = y · x, (M2)

(x+ y) · z = x · z+ y · z, (M3)

x · s(0) = x, (M4)

x · s(y) = (x · y)+ x, (M5)

x < y∧ z 6= 0→ x · z < y · z. (M6)

Finally we have a schema of induction axioms.

(ϕ(0, ȳ)∧∀x(ϕ(x, ȳ)→ (x+1, ȳ))→∀xϕ((x, ȳ). (Indϕ )
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When considering subsystems of these axioms, we shall denote the axiom schema of
induction restricted to the formulas of a language L by Ind(L ). We shall consider
the following systems of axioms:

SA− = O1+O2+O3+O4+S1+S2+S3+S4,

SA = SA−+ Ind(L<,s),

Pr− = SA−+>+P1+P2+P3+P4+P5,

Pr = Pr−+ Ind(L<,s,+),

PA− = Pr−+M1+M2+M3+M4+M5+M6,

PA = PA−+ Ind(L<,s,+,·);

standing for ‘Successor Arithmetic’, ‘Presburger Arithmetic’, and ‘Peano Arith-
metic’, respectively. Note that SA should not be confused with the theory Th(Q,+)
called SA in [4] and [14] (the ‘S’ there stands for ‘Skolem’).

In his original paper [8], Presburger uses a different axiomatisation of Presburger
Arithmetic that we shall call PrD. The axioms of PrD are the axioms for discretely
ordered abelian additive monoids with smallest non-zero element 1, axiom P4, and
the following axiom schema:

∀x∃yx = ny∨ x = s(ny)∨ . . .∨ x = sn−1(ny), (Dn)

for 0 < n ∈ N. (Note that D2 is the statement “every number is either even or odd”
called property (c) in our informal argument in § 1.1.) Presburger’s famous theorem
shows that PrD axiomatises the complete theory Th(N,+). Since our Pr clearly
implies PrD, it also axiomatises Th(N,+).

In this paper we do not take into consideration Skolem arithmetic SK, i.e., the
multiplicative fragment of PA. This is due to the fact that SK, usually defined as
Th(N, ·), does not carry an order structure, i.e., the order is not definable in L·.
Moreover, adding the order to Skolem arithmetic makes it much more expressive:
Robinson showed that Th(N,<, ·) = Th(N,s, ·) = Th(N,<,s,+, ·) [11]. Therefore,
an analysis of Skolem arithmetic in terms of order types is not fruitful.

1.3 Order types i
As usual, order types are the isomorphism classes of partial orders. If L is any

language containing < and M is an L -structure, we refer to the {<}-reduct of M as
its order type. In situations where the order structure is clear from the context, we do
not explicitly include it in the notation: e.g., the notation Z refers to both the set of
integers and the ordered structure (Z,<) with the natural order < on Z.

Let (A,<) be a linearly ordered set and (B,0,<) be linearly ordered set with a
least element 0. Given a function f from A to B, we shall call the set

supp( f ) = {b ∈ B ; b = 0∨ f (b) 6= 0}
the support of f . As usual, we say that a subset S ⊆ A is reverse well-founded if
it has no strictly increasing infinite sequences. Given a function f : A→ B whose
support is reverse well-founded, we call the maximum element of the support of f
the leading term of f and denote it by LT( f ).

If A and B are two linear orders, then A∗ is the inverse order of A, A+B is the
order sum, and A ·B is the product order. Moreover, if A has a least element 0 then AB
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is the set of functions with finite support from B to A ordered anti-lexicographically.
Note that in the case that A and B are ordinal numbers, then the above operations
correspond to the classical ordinal operations.

If a ∈ A, we denote the initial segment defined by a as IS(a) := {b ∈ A ; b < a}
and the final segment defined by a as FS(a) := {b ∈ A ; a < b}.

If (G,0,<,+) is an ordered abelian group (i.e., satisfies the axioms O1 to O4 and
P1 to P4), then we define G+ := {g ∈ G ; 0 < g} = FS(0) to be the positive part of
G. We call linear orders groupable if and only if there is an ordered abelian group
(G,0,<,+) with the same order type.

Let G be an ordered additive group. We define the standard monoid over G as the
ordered monoid (N+Z ·G+,<,+) where < is the order relation of N+Z ·G+ and
+ is defined point-wise, i.e.,

x+ y =


n+m if x = n, y = m and m,n ∈ N,
〈z+ x,g〉 if x ∈ N and y = 〈z,g〉 ∈ Z ·G+,
〈z+ y,g〉 if y ∈ N and x = 〈z,g〉 ∈ Z ·G+,
〈zx + zy,gx +gy〉 if x = 〈zx,gx〉 ∈ Z ·G+ and y = 〈zy,gy〉 ∈ Z ·G+.

It is easy to see that for each ordered group G the standard monoid over G is indeed
a positive monoid.

We end this section by defining a sequence of order types that will be used later
in our paper:

O0 =∅,

Oγ+1 = Oγ +Zγ ·N

Oλ =
⋃
γ∈λ

Oγ for λ limit.

If (B,<,+) is any ordered group and X is a variable, we can consider the set B[X ] of
polynomials in the variable X over B, consisting of terms f = bnXn + . . .+b1X +b0
where the degree of a polynomial is the highest occurring exponent, i.e., deg( f ) = n.
We order polynomials as follows:

bnXn + . . .+b1X +b0 < cmXm + . . .c1X + c0

if either n < m or n = m and bn < cm. This order respects addition and multiplication
of polynomials in the sense of axioms P4 and M6, respectively. A polynomial is
called positive if it is larger than the zero-polynomial in this order. Then for every
natural number n > 0, the linear order On is the order type of positive polynomials
with integer coefficients of degree n−1 and thus Oω is the order type of all positive
polynomials with integer coefficients.

1.4 Basic Properties In this section, we shall remind the reader about basic tools of
model theory of PA. We refer the reader to [5] for a comprehensive introduction to
the theory of non-standard models of PA. One of the main tools in studying the order
types of models of PA is the concept of archimedean class.

Definition 1.1 Let M be a model of SA−. Given x,y ∈M we say that x and y are
of the same magnitude, in symbols x ∼ y, if there are m,n ∈ N such that sn(y) ≥ x
and y≤ sm(x). The relation ∼ is an equivalence relation. For every x ∈M, we shall



6 L. Galeotti, B. Löwe

denote by [x] the equivalence class of x with respect to ∼ called the archimedean
class of x.

The archimedean classes of a model of SA− partition the model into convex
blocks: if y,w ∈ [x] and y < z < w, then z ∈ [x] (the reader can check that only
the axioms of SA− are needed for this). Therefore, the quotient structure M/∼ of
archimedean classes is linearly ordered by the relation < defined by [x] < [y] if and
only if x < y and [x] 6= [y]. Furthermore, [0] is the least element of the quotient struc-
ture. We refer to the classes that are different from [0] as the non-zero archimedean
classes. In particular, if A is the order type of the non-zero archimedean classes of
M, then the order type of M is N+Z ·A.

So far, everything worked in the language L<,s with just the axioms of SA−. If
we also have addition in our language, we observe:

Lemma 1.2 Let M be a non-standard model of Pr− and a ∈M be a non-standard
element of M. Then for every n,m ∈ N such that n < m we have [na]< [ma].

Proof We want to prove that [na] < [ma]. First not that there is n′ ∈ N such that
[(n+ 1)a] = [na+ n′a]. For every m ∈ N we have na+ sm(0) < na+ n′a by mono-
tonicity of + and by the fact that a and n′a are non-standard. Therefore [na]< [ma]
as desired.

Another important tool in the classical study of order types of models of PA is the
overspill property:

Definition 1.3 Let M be a model of SA−. Then I ⊂ M is a cut of M if it is an
initial segment of M with respect to < and it is closed under s, i.e., for every i ∈ I we
have s(i) ∈ I. A cut of M is proper if it is neither empty nor M itself.

Definition 1.4 Let L ⊇ L<,s be a language. A theory T ⊇ SA− has the L -
overspill property if for every model M |= T there are no L -definable proper cuts of
M.

Overspill is essentially a notational variant of induction:

Theorem 1.5 Let L ⊇L<,s be a language and T ⊇ SA− be any theory. Then the
following are equivalent:

(i) Ind(L )⊆ T and
(ii) T has the L -overspill property.

Proof “(i)⇒(ii)”. Let M |= T and I be a proper cut of M. Then 0 ∈ I. Suppose
towards a contradiction that I is definable by an L -formula ϕ . Then Indϕ implies
that I = M, so I was not proper.

“(ii)⇒(i)”. Assume that Indϕ /∈ T for some L -formula ϕ and find M |= T such
that M |= ¬Indϕ . Then ϕ defines a proper cut in M, and thus, T does not have the
L -overspill property.

In particular, SA, Pr, and PA have the overspill property for their respective lan-
guages L<,s, L<,s,+, and L<,s,+,·.

2 Successor Arithmetic

We begin our study by considering the two subsystems obtained by restricting our
language to L<,s, viz. SA− and SA. The theory SA− the theory of discrete linear
orders with a minimum and a strictly increasing successor function.
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Lemma 2.1 The theory SA− satisfies quantifier elimination.

Proof It is enough to prove that for every quantifier free formula χ(x,y) there is a
quantifier free formula ϕ such that:

SA− |= ∃yχ(x,y)↔ ϕ(x)

where y does not appear in ϕ . By induction over χ . The only interesting cases are
the atomic formulas.

If χ(x,y) ≡ sn(x) < sm(y): let ϕ ≡ x = x. Let M |= SA−, we want to show
M |= ∃yχ(x,y). First assume m ≥ n. Since SA− ` ∀xsn(x) < sm+1(x) we have
M |= ∃ysn(x)< sm(y) as desired. Otherwise if n > m since SA− ` ∀xx < s(n−m)+1(x)
then M |= ∃yχ(x,y). Hence:

SA− |= ∃yχ(x,y)↔ ϕ(x)

as desired.
If χ(x,y)≡ sn(y)< sm(x): first assume m > n then since SA− ` ∀xsn(x)< sm(x)

we have SA− ` ∃yχ(x,y)↔ x = x. If m≤ n then SA− ` ∃yχ(x,y)↔ sn(0)< sm(x).
Indeed, let M |=SA− be a model such that there is a y∈M such that M |= sn(y)< sm(x)
and M |= ¬sn(0) < sm(x). We have two cases: if M |= sn(0) = sm(x) then we
would have M |= sn(y) < sm(x) = sn(0) but since M |= ∀xsn(x) < sn(y)→ x < y
then we would have M |= y < 0. If M |= sm(x) < sn(0) again we would have
M |= sn(y) < sm(x) < sn(0) which implies M |= y < 0. On the other hand if
M |= sn(0)< sm(x) then trivially M |= ∃yχ(x,y) as desired.

If χ(x,y) does not have occurrences of y: then ∃yχ(x,y) is either equivalent to
0 = 0 or ¬(0 = 0).

If χ(x,y)≡ sn(x) = sm(y): similar to the second case.

By using quantifier elimination, it is not hard to see that SA− proves the induction
schema.

Theorem 2.2 For every formula ϕ in the language L<,s we have

SA− ` Indϕ .

Proof Since SA− satisfies quantifier elimination we can assume ϕ(x,y) is a quan-
tifier free formula. We shall proceed by induction on ϕ(x,y). The only interesting
case are the atomic formulas: if ϕ(x,y) ≡ sn(x) < sm(y): note that in this case the
implication is vacuously true. Let M |= SA− and y∈M. Assume M |= sn(0)< sm(y).
We have two cases: if M |= y = sm′(0) for some m ∈ N then n < m+m′ by mono-
tonicity of s. Take n′ = (m + m′)− n then we have M |= sn+n′(0) = Sm+m′(0)
but M |= sn+n′−1(0) < sm+m′(0) and M |= sn+n′(0) = sm+m′(0). If for all m′ ∈ N,
M |= y > sm′(0), by n+1 applications of S1 let x be such that

M |= sn+1(x) = sm(y).

Then M |= sn(x)< sm(y) and M |= sn+1(x) = Sm(y) as desired.
If ϕ(x,y)≡ sn(y)< sm(x): let M |= SA− and y ∈M. Assume M |= sn(y)< sm(0)

then trivially M |= ∀xsn(y)< sm(x). In fact if M |= x = 0 then trivially

M |= sn(y)< sm(0),



8 L. Galeotti, B. Löwe

moreover, if M |= x > 0 then by monotonicity of S we have M |= sm(0) < sm(x)
and by transitivity of < we have M |= sn(y) < sm(x). Hence by S5 we obtain
M |= ∀xsn(y)< sm(x).

If ϕ(x,y)≡ sn(x) = sm(y): as in the first case the implication is vacuously true.
If ϕ(x,y)≡ sn(x)< sm(x): as in the second case proved by monotonicity of s.
If ϕ(x,y)≡ sn(y) = sm(y) or ϕ(x,y) = sn(y)< sm(y): trivially true.
The cases for ∧ and ∨ are trivially true by induction hypothesis (note that negation

can be eliminated by trichotomy).

In particular this means that SA and SA− axiomatize the same theory:

Corollary 2.3 Let M be a structure in the language L<,s. Then M |= SA if and
only if M |= SA−.

Corollary 2.3 is related to an open question posed by Visser: is there a reasonable
finitely axiomatised theory that satisfies full induction; it is known that such a theory
cannot be sequential (cf. [9, 15] for more on sequentiality). By Corollary 2.3, SA is
a finitely axiomatised theory that satisfies full induction (and is not sequential).

Corollary 2.4 A linear order L is the order type of a model of SA if and only if
there is a linear order A such that L∼= N+Z ·A.

Proof By Corollary 2.3, it is enough to show that a model satisfies SA− in order to
get full SA. We already observed that the forward direction holds in § 1.4 (the linear
order A is the quotient structure M/∼ with the least element removed). For the other
direction, if A is a linear order then N+Z ·A can be easily made into an SA− model
by defining s(n) := n+1 and s(z,a) := (z+1,a).

3 Models based on generalised formal power series

Generalised formal power series, introduced by Levi-Civita, are a generalisation of
polynomials over a ring: where polynomials only have natural number exponents,
generalised formal power series allow exponents from any ordered additive abelian
group. For an introduction to the theory of generalised formal power series, cf. [3].
In this section, we shall adapt the classical theory of generalised formal power series
to our context. In particular, we shall show how generalised power series can be used
as a tool in building non-standard models of Pr, Pr− and PA−.

Definition 3.1 Let (Γ,0,<) be a linear order with a minimum and (B,0,<,+) be
an ordered group. A function f : Γ→ B∪Z is a positive formal power series on B
with exponents in Γ if supp( f ) is reverse well-founded, for all a ∈ Γ\{0} f (a) ∈ B,
f (0) ∈ Z, and f (LT( f )) > 0. We shall denote by B(XΓ) the set of positive formal
power series with base B and exponent Γ.

Note that, by identifying f ∈ B(XΓ) with the formal sum ∑a∈supp( f ) f (a)Xa, the
set B(XΓ) can be thought as the set of formal positive polynomial with coefficients
of degree bigger than 0 in B, integer coefficient of degree 0 and exponents in Γ.
Following this intuition we can endow B(XΓ) with an order and additive structure.

Definition 3.2 Let (Γ,0,<) be a linear order with a minimum and (B,0,<,+) be
an ordered group. We define

(B(XΓ),0,<,s,+)
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to be the structure where < is the anti-lexicographic order, i.e., f < g if and only if
f 6= g and the biggest a ∈ Γ such that f (a) 6= g(a) is such that f (a) < g(a), given
f ,g ∈ Z(XΓ), we define ( f + g)(a) = f (a)+ g(a), we interpret 0 as the constant 0
function and finally we define s( f ) as f +1 where 1(0) = 1 and 1(a) = 0 if a 6= 0.

Theorem 3.3 Let (Γ,0,<) be a linear order with a minimum and (B,0,<,+) be
an ordered abelian group. Then (B(XΓ),0,<,s,+) is a model of Pr−.

Proof We want to show that (B(XΓ),0,<,s,+) is a model of Pr−. We shall first
prove the closure of B(XΓ) under +. Let f ,g ∈ B(XΓ). First of all note that by
definition of + we have supp( f +g)⊆ supp( f )∪supp(g) since supp( f ) and supp(g)
are reverse well-ordered so is supp( f )∪ supp(g) (any chain in supp( f )∪ supp(g)
contains a cofinal chain in supp( f ) or supp(g)). Therefore, supp( f + g) is reverse
well-ordered. Moreover, LT( f +g) = max{LT( f ),LT(g)}. Indeed, if LT( f )< LT(g)
then trivially LT( f + g) = LT(g), similarly for LT( f ) > LT(g) and LT( f ) = LT(g).
Note that we have f +g(LT( f +g))≥ 0. Again we have three cases LT( f )< LT(g),
LT( f )> LT(g) and LT( f ) = LT(g). If LT( f )< LT(g) then

f +g(LT( f +g))= f +g(LT(g))= f (LT(g))+g(LT(g))= 0+g(LT(g))= g(LT(g))≥ 0,

similarly for LT( f )> LT(g). If LT( f ) = LT(g) then

f +g(LT( f +g)) = f +g(LT(g)) = f (LT( f ))+g(LT(g))≥ 0.

Finally, it is routine to check that all the axioms of Pr− are satisfied by
(B(XΓ),0,<,s,+).

Let us consider a few instructive examples: If Γ = {0} = 1 and B = Z then
(Z(XΓ),0,<,s,+) is isomorphic to the natural numbers. If Γ = {0,1} = 2 and
B = Z, then (Z(XΓ),0,<,s,+) is isomorphic to the positive monomials on Z with
the standard order and operations. Similarly, if Γ = {0,1,2} = 3 and B = Z, then
(Z(XΓ),0,<,s,+) is isomorphic to the positive polynomials of degree 2 over Z with
the standard order and operations, and, more generally for every 0 < n ∈ N, if Γ = n
and B = Z then (Z(XΓ),0,<,s,+) is isomorphic to the positive polynomials of
degree n−1 over Z with the standard order and operations. Finally, by taking Γ =N
and B = Z we have that (Z(XΓ),0,<,s,+) is isomorphic to the positive polynomials
over Z with the standard order and operations. As mentioned in § 1.3, this means
that the order type of Z(Xn) is On and the order type of Z(XN) is Oω .

Let (Γ,0,<,+) be an ordered commutative additive positive monoid and
(B,0,1,<,+, ·) be an ordered ring. We define a multiplicative structure over
B(XΓ) as follows: for f ,g ∈ B(XΓ) let f ·g be the following function: if a ∈ Γ, then

( f ·g)(a) := ∑
b+c=a

f (b) ·g(c).

We need to prove that this operation is well-defined:

Lemma 3.4 Let (Γ,0,<,+) be an ordered commutative additive positive monoid
and (B,0,1,<,+, ·) be an ordered commutative ring. The multiplication over B(XΓ)
is well-defined.

Proof It is enough to show that for each a ∈ Γ and there are only finitely many
c,b ∈ Γ such that c + b = a and f (b) > 0 and g(c) > 0. This follows from the
fact that supp( f ) and supp(g) are reversed well-ordered. Indeed, assume there is an
infinite sequence 〈cn,bn〉n∈N such that cn +bn = a, f (bn) 6= 0, g(cn) 6= 0, cn 6= cn+1
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and bn 6= bn+1 for all n ∈ N. We can build strictly increasing sequence either in
supp( f ) or in supp(g). Given a sequence (sn)n∈N we call spike an element sn of the
sequence such that for all m> n we have sn > sm. Now consider the sequence (cn)n∈N
either it has infinitely many spikes or there is n such that there are no spikes after n.
If there are ω many spikes (cnm)m∈N in (cn)n∈N then they form an infinite strictly
decreasing subsequence of (cn)n∈N. Therefore, since cnm +bnm = a and cnm < cnm+1 ,
the sequence (bnm)m∈N is a strictly increasing sequence in supp(g). If there are only
finitely many spikes there is trivially a strictly increasing subsequence in (cm)m∈N.
In both cases we obtain a contradiction since supp( f ) and supp(g) are reversed well-
ordered.

The following theorem is the PA−-analogue of Theorem 3.3:

Theorem 3.5 Let (Γ,0,<,+) be an ordered commutative additive positive
monoid and (B,0,1,<,+, ·) be an ordered commutative ring. Then (B(XΓ),0,<,s,+, ·)
is a model of PA−.

Proof Since (B(XΓ),0,<,s,+) is a model Pr−, we only need to prove that B(XΓ)
is closed under · and that it satisfies the axioms M1 to M6. Let f and g be two
functions in B(XΓ). We want to show f · g ∈ V (XΓ). First of all note that since
supp( f ·g) = {a+b ; a ∈ supp( f ) and b ∈ supp(g)} then supp( f ·g) is reverse well-
founded (by a similar argument as the one in the proof of Lemma 3.4). Now triv-
ially since the LT( f · g) = LT( f ) + LT(g) then ( f · g)(LT( f · g)) > 0. Therefore
f ·g ∈ B(XΓ).

It is again routine to check that the axioms M1 to M6 are satisfied by B(XΓ).

Again, if we set Γ = N with the usual addition and B = Z with the usual operations,
then (Z(XΓ),0,<,s,+, ·) is isomorphic to the positive polynomials with integer co-
efficients.

We end this section by showing that if we require that B is divisible, then the
resulting formal power series construction will give a non-standard model of Pr. This
fits very well with the folklore result Theorem 4.1 mentioned in the next section.

Theorem 3.6 Let (Γ,0,<) be a linearly ordered set with a minimum and
(B,0,<,+) be a ordered divisible abelian group. Then (B(XΓ),0,<,s,+) is a
model of Pr.

Proof We already know that (B(XΓ),0,<,s,+) is a model of Pr−. We shall ac-
tually show that (B(XΓ),0,<,s,+) is a model of PrD. it is enough to show that
for every natural number n > 0, the structure (B(XΓ),0,<,s,+) satisfies Dn. Let
f ∈ B(XΓ) and 0 < n ∈ N. First note that Z satisfies Dn for every n > 0 therefore
there is z ∈ Z and a natural number 0 < m < n such that f (0) = zn+m. Moreover
by divisibility of B for every a ∈ Γ there is ba ∈ B such that f (a) = ban. Now, define
g ∈ B(XΓ) as follows:

g(x) =

{
z if x = 0,
bx if x > 0.

It is not hard to see that f = sm(g ·n) as desired.

In particular note that if B =Q and Γ = 2 then Q(X2) is a model of Pr of order type
N+Z ·Q. This model is well-known in the literature, cf., e.g., [16].
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4 Presburger Arithmetic

Presburger arithmetic, the additive fragment of arithmetic, is closely related to or-
dered abelian groups. In [6], Llewellyn-Jones considers an integer version of Pres-
burger arithmetic, allowing for additive inverses and gives an axiomatisation for this
theory that we shall call PrZ. If (M,0,<,s,+) |=PrZ, then (M,0,<,+) is an ordered
abelian group; Llewellyn-Jones calls these groups Presburger groups. Llewellyn-
Jones proves in his integer setting that G is a Presburger group if and only if G is
isomorphic to Z ·H where H is an ordered divisible abelian group [6, §§ 3.1 & 3.2].
In the following, we reformulate Llewellyn-Jones’s approach in the standard setting
of arithmetic (i.e., without additive inverses).

Theorem 4.1 Let M be an L<,s,+-structure.

(i) The structure M is a model of Pr− if and only if there is an ordered abelian
group G such that M is isomorphic to the standard monoid over G, and

(ii) the structure M is a model of Pr if and only if there is an ordered divisible
abelian group G such that M is isomorphic to the standard monoid over G.

Proof This proof is a reformulation of the characterisation of Presburger groups in
[6] to the standard setting.

For the forward direction of (i), it is enough to see that in N+Z ·G+ all the axioms
of Pr− are trivially satisfied. For the other direction, if M |= Pr− then by (the proof
of) Corollary 2.4, the order type of M is N+Z ·A for a linear order A consisting of
the non-zero archimedean classes of M. For each a ∈ A, we define a formal negative
element−a such that the negative elements are all distinct from the elements of A and
pairwise distinct. Then we define −A := {−a ; a ∈ A} and G :=−A∪{[0]}∪A. For
notational convenience, we define −[0] := [0]. We define an abelian group structure
on G as follows:

1. For any g ∈ G, g+[0] := [0]+g := g.
2. If a,b ∈ A are non-zero archimedean classes of M, then there is a unique

c ∈ A such that for all x ∈ a and y ∈ b, we have that x + y ∈ c; define
a+b := b+a := c and (−a)+(−b) := (−b)+(−a) :=−c.

3. If a,b ∈ A, x ∈ A, and y ∈ b with x < y, then by >, we find z such that
x + z = y. Let c be the archimedean class of z, i.e., c ∈ A∪ {[0]}. Then
(−a)+b := b+(−a) := c and a+(−b) := (−b)+a :=−c.

It is routine to check that (G,0,<,+) is an ordered abelian group and that M isomor-
phic to N+Z ·G+. For (ii), all that is left to show that that divisibility of the group
corresponds to the additional axioms Dn of PrD.

Corollary 4.2 (Folklore) There is a model of Pr with order type N+Z ·R.

Proof The real numbers R are an ordered divisible abelian group, so by Theorem
4.1 (i), there is a model of Pr with order type N+Z ·R+. The claim follows from
the fact that R+ and R have the same order type.

Corollary 4.3 Let M be a non-standard model of Pr. Then M has order type
N+Z ·A where A is a dense linear order without endpoints.

Proof It is enough to observe that divisibility implies density and use Theorem
4.1.



12 L. Galeotti, B. Löwe

We can use Theorem 4.1 and the general theory of groupable linear orders to get a
characterisation theorem for the order types of models of Pr−. First let us recall a
classical result about groupable linear orders; cf., e.g., [12, Theorem 8.14]:

Theorem 4.4 A linear order (L,<) is groupable if and only if there is an ordinal
α and a densely ordered abelian group (D,0,<,+) such that L has order type Zα ·D.

Corollary 4.5 A structure M is a model of Pr− if and only if there is an ordi-
nal α and a densely ordered abelian group (D,0,<,+) such that M has order type
N+Z · (Zα ·D)+.

Proof Follows trivially by Theorem 4.1 and Theorem 4.4.

As we have seen in § 3 the positive formal power series on Z with exponent 2 are
isomorphic to the ordered abelian monoid of monomials with integer coefficients.
Moreover, by Theorem 3.3 (or Theorem 4.1), (Z(X2),0,<,s,+) |= Pr−. The next
theorem shows that this is the minimal non-standard model of Pr−.

Theorem 4.6 Let M be a non-standard model of Pr−. Then (Z(X2),0,<,s,+) is
isomorphic to a submodel of M.

Proof Let M be a non-standard model of Pr− and a∈M be a non-standard element
of M. define the following mapping ϕ : Z(X2)→M:

ϕ( f ) =


sn(0) if LT( f ) = 0 and f (0) = n,
sm(na) if LT( f ) = 1 and f (1) = n, f (0) = m≥ 0,
b if LT( f ) = 1 and f (1) = n, f (0) = m < 0 and s−m(b) = na.

It is easy to see that ϕ is an orderpreserving bijection.

Corollary 4.7 Let M be a non-standard model of Pr− then the order N+Z ·N can
be embedded in the order type of M.

Proof As mentioned, Z(X2) is the set of positive monomials over Z and clearly
has order type N+Z ·N. The result then follows from Theorem 4.6.

Corollary 4.8 Every non-standard model of Pr− has a proper non-standard sub-
model.

Proof By Theorem 4.6, it is enough to show that Z(X2) has a non-standard sub-
model. Consider the monomials with even coefficients, i.e.,

M := { f ∈ Z(X2) ; LT( f ) = 0∨∃n ∈ N f (1) = 2n}.

Clearly, this set is closed under s and +, so it is a substructure of Z(X2). Since
the only existential axiom of Pr− is > it is enough to prove that M satisfies it. Let
f ,g ∈M such that f < g. Define h(a) = g(a)− f (a). We want to show that h ∈M.
If LT( f ) = 0 this is trivially true since h(1) = g(1). If LT( f ) = 1 then f (1) = 2n and
g(1) = 2n′ for some n,n′ ∈ N such that n < n′. Then h(1) = 2n′− 2n = 2(n′− n),
therefore h ∈M. The the fact that f +h = g follows trivially by the definition of +
in Z(X2).



Order types of models of arithmetic 13

5 Peano Arithmetic

Theorem 4.1 tells us that every model M |= PA− (M |= PA) must have the order type
N+Z ·G+ where G is an ordered (divisible) abelian group. However, in the case of
Peano Arithmetic, this cannot be a complete characterisation since Potthoff proved
that no model of PA can have the order type N+Z ·R [7]. The proof of Potthoff’s
theorem given in [2, p. 5] easily generalises to PA−:

Theorem 5.1 Let M be a non-standard model of PA− with order type N+Z ·A.
If A is dense then there are |A| many non empty disjoint intervals in A. In particular
A 6= R.

Proof Let a ∈ M be non-standard. Consider the sequence (am)m∈M where
am = a ·m for every m ∈ M. We want to prove that for every m,m′ ∈ M such
that m < m′ we have (am,as(m)) 6= ∅ and ([am], [as(m)])∩ ([am′ ], [as(m′)]) = ∅. First
note that [a ·m]< [a · s(m)] for every m ∈M. In fact, a · s(m) = a ·m+a and since a
is non-standard for every n ∈ N we have a ·m+n < a ·m+a as desired. By density
of A, the interval ([am], [am+1]) is not empty in A. Now since m < m′ and 0 < a,
by monotonicity of · we have a · s(m) < a ·m′ and [a · s(m)] ≤ [a ·m′]. Therefore
([am], [as(m)])∩ ([am′ ], [as(m′)]) =∅ as desired.

Theorem 5.1 shows that the closure under multiplication adds more requirements on
the order type of models of PA−. One natural such requirement is the following:

Definition 5.2 Let L be a linear order. We say that L is closed under finite products
of initial segments if for every ` ∈ L the order IS(`)ω embeds into FS(`).

Theorem 5.3 Let M be a non-standard model of PA− with order type N+Z ·L.
Then L is closed under finite products of initial segments.

Proof As before, we assume that L is the set of non-zero archimedean classes of
M. For every ` ∈ L choose a representative r` ∈M such that r` ∈ ` and r` > 0. Let
` ∈ L be an element of the linear order L. We want to define an order embedding of
IS(`)ω into FS(`). Fix some non-standard a ∈M such that `≤ [a].

Clearly, IS(`)ω is order isomorphic to the functions from ω to IS(`) with finite
support ordered anti-lexicographically. Consider the following function:

ϕ( f ) = [ ∑
i≤LT( f )

r f (i) ·ai+1],

for every f ∈ IS(`)ω . Note that since f has finite support, ϕ is well defined. Now we
want to prove that ϕ is orderpreserving. First we prove the following claim:

Claim 5.4 For every n > 0 and every finite sequence 〈`0, . . . , `n−1〉 of elements of
IS(`) we have

∑
i<n

r`i ·a
i+1 < an+1.
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Proof By induction on n. For n = 1 we have r`0 ·a < a ·a. For n = n′+1 > 1 we
have

∑
i<n′+1

· r`i ·a
i+1

= ∑
i<n′

r`i ·a
i+1 + r`n′

·an′+1

< an′+1 + r`n′
·an′+1

= an′+1 · (s(0)+ r`n′
)< an′+2.

We want to prove that if f < f ′ are two elements of IS(`)ω then ϕ( f )< ϕ( f ′). Let
n ∈ N be the biggest natural number such that f (n) 6= f ′(n). Since f < f ′ we have
f (n)< f ′(n), then [r f (n)]< [r f ′(n)].

Moreover since n≤ LT( f ′) we have

∑
n<i≤LT( f ′)

r f (i) ·ai+1 = ∑
n<i≤LT( f ′)

r f ′(i) ·ai+1.

Therefore, by monotonicity of + it is enough to prove that for every n′ ∈ N we have

∑
i≤n

r f (i) ·ai+1 + sn′(0)< r f ′(n) ·an+1.

For n = 0 it is trivially true. For n > 0, we have

∑
i≤n

r f (i) ·ai+1 + sn′(0)

= ∑
i<n

r f (i) ·ai+1 + r f (n) ·an+1 + sn′(0)

< an+1 + r f (n) ·an+1 + sn′(0)

< an+1 · (r f (n)+ sn′+1(0))

< an+1 · r f ′(n),

where in the first inequality we used Claim 5.4. Therefore ϕ is orderpreserving as
desired.

Theorem 3.5 showed that the positive polynomials with integer coefficients Z(XN)
are a model of PA−. In analogy to Theorem 4.6, we show that this is the minimal
non-standard model of PA−:

Theorem 5.5 Let M be a non-standard model of PA−. Then (Z(XN),0,<,s,+, ·)
is isomorphic to a submodel of M.

Proof Let M be a non-standard model of PA− and a∈M be a non-standard element
of M. Let f ∈Z(XN) and s f

0 , . . . ,s
f
n f be an enumeration of supp( f ) such that for every

i, j ≤ n f if j < i then s f
i < s f

j . Remember that f can be thought as a polynomial

f (s f
0)X

s f
0 + f (s f

1)X
s f
1 . . .+ f (0). We define the following function ϕ : Z(XN)→M:

ϕ( f ) = f (s f
0)a

s f
0 + f (s f

1)a
s f
1 . . .+ f (0)
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where we are abusing of notation using the fact that subtraction is definable for
x < y by the > axiom. It is a routine proof to check that ϕ is an embedding of
(Z(XN),0,<,s,+, ·) into M.

Corollary 5.6 Let M be a non-standard model of PA−. Then, Oω can be embedded
in the order type of M. In particular Z(X2) is not a model of PA−.

Proof Since Oω is the order type of the positive polynomials on Z, this follows
directly from Theorem 5.5.

Corollary 5.7 Every non-standard model of PA− has a proper non-standard sub-
model.

Proof As in the proof of Corollary 4.8, by Theorem 5.5, it is enough to check
that Z(XN) has a proper non-standard submodel. Consider the polynomials of even
degree and observe that they are closed under addition and multiplication and that
the structure satisfies >.

We end this section by showing that, using formal power series, one can study the
numbers of non-isomorphic order types of models of PA− of a given cardinality. As
we shall see, at least in the countable case, the situation is quite different from the
one for Pr and PA.

Lemma 5.8 Let α and β be two ordinals bigger than 0. If Z(Xα) is order isomor-
phic to Z(Xβ ) then α = β .

Proof An easy induction shows that for every ordinal γ > 0, Z(X γ) is order iso-
morphic to Oγ . Now we want to prove that if 0 < α < β then Oβ cannot be order
embedded into Oα . First note that for every ordinal 0 < α and for every order em-
bedding ϕ of ωα into Zα we have that ϕ is cofinal in Zα . By induction on α . If
α = 1 or α is limit, the claim is trivially true. For α = β +1, let ϕ : ωβ ·ω→ Zα be
an order embedding. Assume that there is f ∈ Zβ ·Z such that for every γ ∈ ωβ ·ω
we have ϕ(γ) < f . Then f = 〈g,z〉 for some g ∈ Zβ and z ∈ Z. Without loss of
generality we can assume that z is the minimum such that f is an upper bound of ϕ .
For every 〈γ,n〉 ∈ ωβ ·ω let us denote by 〈g〈γ,n〉,z〈γ,n〉〉 the image of 〈γ,n〉 under ϕ .
Note that since for every n ∈ N, the sequence (〈γ,n〉)

γ∈ωβ is strictly increasing of
order type ωβ , so it is its image. Moreover, since z ∈ Z and it is the minimum such
that f is an upper bound of ϕ , there are n∈N and γ ∈ωβ such that for every γ ′ ∈ωβ

if γ < γ ′ we have z〈γ,n〉 = z〈γ ′,n〉 = z. Finally, since ωβ is additively indecomposable
we have that (g〈γ ′,n〉)γ<γ ′∈ωβ is a strictly increasing bounded sequence of order type
ωβ in Zβ . But this contradicts the inductive hypothesis.

Given what we have just proved, it is a routine induction to prove that for every
α > 0, α is the biggest ordinal such that ωα can be embedded in Oα .

Therefore, for every 0 < β < α we have that the order type of Z(Xβ ) is not
isomorphic to the order type of Z(Xα).

Theorem 5.9 There are at least λ+ non-isomorphic order types of models of PA−

of cardinality λ . Therefore, under GCH there are exactly 2λ non isomorphic order
types of models of models of PA− of cardinality λ .
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Proof Note that for every δ -ordinal α the structure (α,<,0,⊕) where ⊕ is the
natural addition of ordinals, is an ordered commutative positive monoid. Since for
every λ <α < λ+ we have ωα < λ+ then there are λ+ many γ-ordinals smaller than
λ+. But then, since for every such ordinal ωα we have that (Z(X)ωα

,0,<,s,+, ·) is
a model of PA− of cardinality λ . Hence there are at least λ+ non-isomorphic order
types of models of PA− of cardinality λ as desired.

In particular, note that for λ = ω , we have at least ℵ1 non order isomorphic mod-
els of PA− this in contrast to the only two order types of countable models of PA
(the standard model has order type N and by Cantor’s theorem, there is exactly one
countable order type of the form N+Z ·D where D is a densely ordered set without
smallest and largest element). Moreover, note that none of the order types generated
by the proof of Theorem 5.9 satisfy the requirements of Corollary 4.3, and so they
cannot be order types of models of Pr (nor of PA). Therefore, we have:

Corollary 5.10 There are at least λ+ non-isomorphic order types of models of
PA− of cardinality λ which are not order types of models of Pr or PA.

6 Summary

As mentioned, one of the major open questions in this area is a complete character-
isation of the order types of models of PA. For the theories SA and Pr−, we were
able to give complete characterisations in Corollaries 2.4 and 4.5; for the theories Pr
and PA−, we were able to give necessary conditions in Corollary 4.3 and Theorems
5.1 and 5.3, respectively.

We are now in the position to combine our results to show the separation of the
five theories mentioned in § 1.1 in terms of order types. In the following diagram, an
arrow from a theory T to a theory S means “every order type that occurs in a model
of T occurs in a model of S”. The diagram is complete in the sense that the absence
of an arrow means that no arrow can be drawn, i.e., “there is an order type of a model
of T that cannot be an order type of a model of S”.

SA

Pr−

<<zzzzzzzz
Proo

aaBBBBBBBB

PA−

OO

PAoo

OO

We summarise the negative results from §§ 3 & 4:

Corollary 6.1 There is no model of Pr (and hence, no model of PA) with the same
order type as Z(X2) or Z(XN).

Proof The order type of Z(X2) is N+ Z ·N and the order type of Z(XN) is
N+Z ·Oω . Clearly, N and Oω are not the positive parts of densely ordered abelian
group, so by Corollary 4.3 there is no model M of Pr which is order isomorphic to
Z(X2) or Z(XN).

We need to show the following separation results:
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SA9 Pr−: Follows from Corollary 2.4 and Corollary 4.7: N+Z is an order
type witnessing the separation.

Pr−9 Pr: Follows from Theorem 3.3 and Corollary 6.1: N+Z ·N is an order
type witnessing the separation.

Pr−9 PA−: Follows from Theorem 3.3 and Corollary 5.6: N+Z ·N is an order
type witnessing the separation.

PA−9 Pr: Follows from Theorem 3.5 and Corollary 6.1: N+Z ·Oω is an order
type witnessing the separation.

Pr9 PA−: Follows from Theorem 5.1 and Corollary 4.2: N+Z ·R is an order
type witnessing the separation.
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[14] Smoryński, C., Logical Number Theory I: An Introduction, Universitext. Springer-
Verlag, 1991. 4

[15] Visser, A., “What is the right notion of sequentiality?,” 2010. Logic Group Preprint
Series 288, Universiteit Utrecht. 8

[16] Zoethout, J., “Interpretations in Presburger arithmetic,” 2015. B.A. thesis, Universiteit
Utrecht. 10

Acknowledgments

This work started during the visit of Swaraj Dalmia in Amsterdam during the summer
of 2016, funded by the Indo-European Research Training Network in Logic (IERTNiL);
the authors would like to thank him for his involvement in the early phase of the project.
Furthermore, the authors would like to thank Andrey Bovykin, Nathan Bowler, and Al-
bert Visser for discussions about the material included in this paper.

Galeotti
Fachbereich Mathematik, Universität Hamburg
Bundesstraße 55, 20146 Hamburg
GERMANY
and
Institute for Logic, Language and Computation, Universiteit van Amsterdam
Postbus 94242, 1090 GE Amsterdam
THE NETHERLANDS

Löwe
Institute for Logic, Language and Computation, Universiteit van Amsterdam
Postbus 94242, 1090 GE Amsterdam
THE NETHERLANDS
and
Fachbereich Mathematik, Universität Hamburg
Bundesstraße 55, 20146 Hamburg
GERMANY
and
Churchill College, University of Cambridge
Storey’s Way, Cambridge CB3 0DS
ENGLAND


	Introduction
	Motivations & Results
	Definitions
	Order types
	Basic Properties

	Successor Arithmetic
	Models based on generalised formal power series
	Presburger Arithmetic
	Peano Arithmetic
	Summary
	References
	Acknowledgments
	Author's addresses

