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Abstract

This thesis explores Peter Mittelstaedt’s dialogue-based system
for quantum logic. It is argued that the approach is fundamentally
similar to that of dialogical logic. Mittelstaedt’s system is explored
in detail and a comparison drawn between this approach and that
of dialogical logic. The manner in which Mittelstaedt accommodates
quantum features within this system is explored and some connections
with the dynamic approach to quantum logic are suggested.

Introduction

Logics of scientific concepts have been of perennial interest to philosophers
of science for a century or so. The logical positivists of the early twentieth
century, for example, attempted to formalise the epistemology of science,
the ways in which knowledge advances and scientific discoveries are made.
Of course, quantum logic is a different endeavour, formalising the workings
of physical systems themselves, or at least the results arising from measure-
ments on those systems, depending on one’s philosophical standpoint.

This paper aims to examine in detail a neglected dialogical approach to quan-
tum logic developed by Peter Mittelstaedt in the 1970s1. As I argue in this
thesis, this turns out to be very similar to the dialogical logic first developed
by Lorenz and Lorenzen and now the subject of ongoing research, although
it remains a niche field2. In our analysis we hope to clarify how we can view
these quantum dialogical developments in a larger logical philosophical
framework of other work on dialogics. In our conclusion section we will
refer to further links to recent developments in the field of quantum logic,
developments which may well be extended with interrogative elements and
if they then they can benefit from the present study of quantum dialogues.

Quantum Mechanics and Quantum Logic

We begin with an extremely short summary of some key points about
quantum phenomena and explain why they appear to give rise to a non-
classical logic.

1See Mittelstaedt 1972, Mittelstaedt 1972, Mittelstaedt 1978, Mittelstaedt 1979.
2For an introduction to the dialogical approach, see eg. Keiff 2011, for early work on

dialogical logic, see eg. Lorenzen 1955, 1965; Lorenz 1973
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Quantum Phenomena

Quantum mechanics is the mathematical theory predicting the behaviour of
microscopic particles. In mathematical terms, the theory is both successful
and well-understood. However, in philosophical terms, it gives rise to a
whole host of interpretational issues, as the behaviour of quantum systems
is very much at odds with classical mechanics, and indeed with the way we
usually conceive the functioning of the world at a macroscopic level (Jenann,
2015: §1). We now enumerate some of these distinctive features3.

Physical quantities, in this context, refer to what we might think of as observ-
ables, the position, momentum and so-called ’spin’ direction4 of a particle
are examples. To determine the values of such an observable, and hence to
talk about physical quantity or a so-called experimental propositions, we
have to perform measurements. However, in contrast to classical observa-
tions, we see that quantum measurements are non-deterministic, i.e. the
outcome of a measurement is not fully determined by the input state (Baltag
& Smets, 2011: 9). Initial state of a system ψ may assign to an experimental
proposition a probability of 1, a probability of 0, or something in between.
So, unlike in the classical setting, here there is no guarantee that a system
in a given state will yield any one determinate value for all of the physical
quantities when measured. The state of the system does not determine exact
values for observables, but only probability distributions over these values5.

Another distinctive feature is that there are physical quantities of quantum
mechanical systems that cannot be measured simultaneously, we say these
are incompatible. More precisely, as the accuracy of a measurement of
one increases, the accuracy of a measurement of the other will decrease.
The position and the momentum of a particle are the canonical examples
of incompatible physical quantities (Hilgevoord & Uffink, 2016: §1). No
quantum mechanical system ever has determinate simultaneous values for
all observables pertaining to it (Ismael, 2015: §4). The mentioned case of
position and momentum refers to the famous uncertainty principle, and has
given rise to much philosophical discussion as to whether this is an inherent
feature of the world or the result of some deficiency in either the theory or
our ways of measuring. The notion of compatibility, or commensurability as

3There is, of course, an extensive body of literature on the subject, for a basic bibliography
see for example Jenann 2015

4The angular momentum of a particle, which can be conceived as having a particular
direction for our purposes

5This feature of quantum mechanics has, of course, given rise to debate about whether
the theory can in fact be considered a complete description of reality, or whether there is
some missing element that would facilitate a deterministic view.
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it is referred to below, is a key feature for quantum logic to take into account,
we will explore the logical workings of this notion in detail below.

A specific property of quantum states is that they can be in superposition.
Mathematically, we can express this by taking a linear combination of given
basis-states (Bacciagaluppi, 2007: 5).

In some sense, this means that a system can apparently be in several basis-
states at the same time, until a measurement is made on the system causing
it to ’collapse’ into one of them. For instance, we can think of a particle in a
superposition state of two properties P and Q as being in an indeterminate
state in between exhibiting P and Q. The famous Schrödinger’s cat thought
experiment is intended to illustrate the peculiarity of this notion - a cat in a
box in a superposition of live and dead states, which will be either alive or
dead when the box is opened (i.e. when a measurement is made). Yet com-
mon sense dictates that the cat must be alive or dead regardless of whether
the box has been opened or not6. Similarly, in classical mechanics a particle
is assumed to have a well-defined determinate position, momentum etc.
at all times, regardless of whether we know this information. And indeed,
this conflicts with our common sense intuitions about the functioning of the
macroscopic world.

This leads us to another particularity in the standard interpretation of quan-
tum mechanics - measurements on a quantum system may change the state
of the system. This is evident from the above stated fact that quantum
theory is non-deterministic; and the possibility of a quantum system being
in a superposition of different basis-states. Measurements, when made,
yield determinate values for the physical quantity measured. And so it
would appear that making a measurement somehow causes the system in
question to assume some determinate value with regards to the observable
measured. This is puzzling, and many different accounts of the reason for
this measurement problem in the literature.

The above is by no means exhaustive of the manners in which quantum
mechanics challenges our ordinary view of the world, but we need not delve
any deeper into the practicalities of the physical theory in order to motivate
the logical investigation thereof. Of course, the question now arises as to
what logic has to do with the physical theory outlined.

6Of course, this thought experiment has precipitated reams of philosophising, which
there is not space to go into here.
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Non-Classical Features of Quantum Logic

From the above, it is clear that the failure of quantum systems to adhere to
the laws of classical mechanics raises interesting questions regarding how
to reason about them. Here we outline some of the non-classical features
of quantum logic as traditionally done, in terms of both the behaviour of
connectives and the failure of certain classical laws.

In mathematical terms the study of quantum logic uses the language of
lattice theory, with specific reference to Hilbert spaces. In such a framework
we can represent the different concepts and physical intuitions that we
described above. To start, we view the experimental propositions as the
closed linear subspaces (or equivalently as the projectors on these subspaces)
of a given Hilbert space, where the Hilbert space provides the framework
representing a quantum system.

Classical negation does not hold in the quantum setting. Given the form
of the experimental propositions stated above, we can see that the classical
negation of such a proposition is not necessarily an experimental proposition
in its own right, in mathematical terms it does not necessarily correspond to
a closed linear subspace of the Hilbert space7. In place of negation, quantum
logic is generally set up in such a manner that the orthocomplement ¬A8 of
any proposition A fulfils the role of negation instead, satisfying the following
conditions:

1. A = ¬¬A

2. A ⊆ B⇒ ¬B ⊆ ¬A

3. A ∨ ¬A = 1

Standard quantum logic works with probability values of 0 and 1 only, al-
though other probability values can be added in a different setting, different
authors have their own approaches. State ψ assigns probability value 1 to
event X if and only if it assigns probability value 0 to its orthocomplement,
and vice versa. So in the case where we have the extreme ends of the prob-
ability spectrum the orthocomplement behaves as classical negation does
(Dalla Chiara & Giuntini, 2008: 12).

7Indeed, as Baltag & Smets note, it is not even the case that all physically meaningful
propositions about a quantum system deal with properties that are directly testable in the
sense of corresponding to closed linear subspaces of a Hilbert space (Baltag & Smets, 2011:
5).

8The standard notation in quantum logic for orthocomplement and quantum join (’or’) is
different to that used below, I retain classical notation in the interest of consistency, as this is
the notation used in Mittelstaedt’s system, which forms the central component of this thesis.
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Disjunction appears to be non-classical in the quantum setting, as mathemat-
ically we observe that the set-theoretic union of two closed linear subspaces
is not necessarily itself a closed linear subspace, and therefore cannot au-
tomatically be taken to represent an experimental proposition about the
system (Bacciagaluppi, 2013: 9). That is why quantum logicians work with
the closure of the union, usually represented by t to represent the quantum
disjunction. Yet by doing so, the disjunction inherits a strange property,
namely that in lattice-theoretic terms, state ψ may belong to a subspace
corresponding to X tY whilst not belonging to either X or Y. Dalla Chiara
& Giuntini give an illustration of this in physical terms. Quantum mechanics
presents us with situations where we are dealing with alternatives that are
’semantically determined and true’, while each of the alternatives in question
is undetermined. Take for example a particle whose spin may assume one of
two values only, up or down, where these, as mentioned, are incompatible
physical quantities. It is undetermined what value the particle’s spin will
take upon testing, yet it must take one of the two. Hence it is untrue that
the particle will have spin up, untrue that the particle will have spin down
(as it will take either with a particular probability); yet true that it will take
one of the two (Dalla Chiara & Giuntini, 2011: 8).

Because of the non-classical nature of quantum disjunction, distributivity
(A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)) fails here, and so, as mentioned, the
algebra is not Boolean like that of classical propositional logic. The reason
for the failure of distributivity hinges, of course, on the quantum disjunction
just outlined. Just as we saw with the disjunction, a state ψ may belong
to A ∧ (B ∨ C) without belonging to either A ∧ B or A ∧ C. As Herman,
Marsden & Piziack put it: ’The distinguishing feature of quantum mechanics,
namely the existence of quantities which are not simultaneously measurable,
led to an attack on the distributive law as the law of logic which is least
tenable in quantum logic’ (Herman, Marsden & Piziack, 1975: 305).

Non-classical disjunction and the failure of distributivity in the algebraic
structure of quantum experimental propositions, in turn, have repercussions
with regards to the implication, which is not classical in quantum logic. This
will be discussed in some detail below, so I omit discussion of the matter
here for the sake of brevity.

We now turn to a particularly crucial feature of quantum logic that will
inform much of the following discussion. As mentioned, physical quantities
of a quantum system may be compatible or incompatible (commensurable or
incommensurable, in the terminology of the system to be discussed below).
The intuitive meaning of this is that two observables are compatible if they
can be measured simultaneously, as we saw above. The meaning of this
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in terms of the Hilbert space formulation outlined here is as follows. Two
propositions A and B are said to be compatible if and only if:

A = (A ∧ B) ∨ (A ∧ ¬B)

This relation is symmetric (Dalla Chiara, Giuntini & Greechie, 2011: 35).
Mathematically speaking, compatibility equates to commutativity between
the two projections corresponding to the observables at hand, i.e. AB = BA
(Dalla Chiara, Giuntini & Greechie, 2011: 202). In intuitive, physical terms,
this means that making measurements for A and B will yield the same
results regardless of the order in which the measurements are performed.
More precisely, taking into account the probabilistic nature of the quantum
theory at hand, the probabilities of a given result for each measurement
remain the same, regardless of the order in which the measurements are
performed. Given that we know that measurements can change the state
of a system, this is not trivial - it may be that testing for A then affects the
result of a subsequent measurement of B. Going back to the Hilbert space
lattice, where the elements in question are compatible, we obtain a Boolean
sublattice9. Conversely, propositions in the lattice are generally taken to
be incompatible if neither A ≤ B nor B ≤ A holds. This will be of central
importance later on when we explore Mittelstaedt’s system and his way of
conceptualising quantum logic.

Dialogue-Based Approaches to Logic

I will use dialogue-based approaches to develop the connections between
Mittelstaedt’s quantum version of this kind of dialogue-based logic and
more standard variations thereon. In order to do this, I first examine a
standard conception of dialogical logic (DL, henceforth) for first-order logic,
disregarding the clauses for quantifiers, as Mittelstaedt’s system is proposi-
tional.

It is important to note that the dialogical approach, although similar in tech-
nique to game-theoretic semantics developed by Hintikka, is fundamentally
different, making no reference to the notion of truth in a model10.

Dialogues in this context are two-player zero-sum games between idealised
agents where what is at stake is a formula. One player (the Proponent)
asserts a formula and must subsequently defend it from attacks by the
Opponent, who attempts to refute it. If the Proponent wins the dialogue

9Indeed, the Foulis-Holland Theorem states that distributivity holds among any three
elements of the lattice as long as one is compatible with the other two, see eg. Greechie, 1977.

10For an exposition of game theoretic semantics, see e.g. Hintikka, 2009.
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the formula is valid, if the Opponent wins, it is not. The dialogical sys-
tem comprises particle rules and structural rules. Particle rules are the
means by which connectives are defined, seen in terms of the possibilities
for players asserting, attacking and defending a proposition involving a
connective. These essentially function as what we would usually think of
as the semantics of the logic. The ways in which these can be combined in
order to determine validities are then determined by means of structural
rules specifying how dialogues are to proceed - this component therefore
constitutes what we would usually think of as the syntax of the language.

Mittelstaedt’s system has different kinds of dialogue, with a key distinction
being between material and formal dialogue games. He has what he refers
to as argument rules for both kinds of dialogue. In addition to these argument
rules, he also has a set of what he terms frame rules, the most general meta-
rules specifying how dialogues can proceed. As we will see, some of the
frame rules in question correspond to DL’s structural rules, and some of the
argument rules for formal and material dialogues also correspond to struc-
tural rules of DL. Material dialogues will ultimately be seen to correspond
to DL’s particle rules; formal dialogues to its structural rules.

The means by which distinctively quantum features are incorporated into
Mittelstaedt’s system is via the rules for dialogues and the development
of the means to accommodate the fact that there are statements about a
quantum system that cannot be made at the same time; as well as the fact that
making a measurement changes the state of the system and therefore what
is true of it at one point is not necessarily the case later. This Mittelstaedt
accounts for by means of commensurability and availability statements for
the propositions involved in a given dialogue, as we shall see in detail later.

Dialogical Logic

The dialogical approach was formulated initially in the mid-twentieth cen-
tury by Lorenz and Lorenzen, among others. It is a proof-theoretic approach
making no reference to models but instead concerned with the notion of
validity (Keiff, 2011: §5). Dialogues are used to specify whether or not a
formula is valid in the system at hand - a successful strategy for the defence
of a formula in a dialogue means that the formula is valid. This approach is
constructive, making no reference to models, but only to finite dialogues,
which are won or lost after a definite number of moves.

There are several philosophical motivations for espousing this kind of sys-
tem as a means of developing first-order logic. If propositions are defined
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via the notion of proof, undecidable propositions are in fact not propositions
at all. Therefore, says Keiff, the dialogical approach was developed to solve
some of the issues with this (Keiff, 2011: §1). The dialogical method also
has the neat side-effect that the differences between various logics can be
explained with reference to different rules of the game.11

The notion of proof in this conception is defined in relation to the game
- a proof of a proposition is just a dialogue in which the defender of the
proposition has won the game. The games involve two kinds of rule - one
specifying the general structure that the dialogue can take; and another
set of rules specifying exactly which moves are acceptable on the part of
the two players in any given set of circumstances. The latter specify the
possible attacks and defences for any given position. The former specify
more general structural rules12. As Keiff puts it, ’particle rules describe the
local meaning of logical constants, structural rules determine their global
semantics’, so the notion of what constitutes a proof is determined by these
structural rules. As Keiff notes, normative concepts may play a part in
shaping the structural rules for a given dialogical system (Keiff, 2011 §2.1.2).

Of course, it is as well to note here the (fairly obvious, given the context)
fact that the players in the dialogue games explored below are not taken to
be humans, the games are not built to accommodate the inevitable strategic
failings of human beings. The games in question are in this sense merely
abstract, the players are generally conceived of as idealised agents. The
notion of a game in this context is a device with which to define a process
for checking the validity of a statement. And so the different permutations
of dialogue games with which we deal below are in no way representative
of actual reasoning processes, merely idealised ones. Yet this is instructive -
how we ought to reason is at least as interesting as how we in fact do, if not
more so.

Rules for Dialogical Logic

For the purposes of comparison with Mittelstaedt’s system, we now state
the basic particle rules and structural rules for a standard formulation of
dialogical logic. Later in the paper, we examine the relations between the
two. The structure of this section is as follows. First, particle rules are stated

11Of course, we shall examine this idea in much greater detail later with reference to
quantum logic.

12A detailed explanation of these kinds of rules and the difference between them will be
expounded in the context of Mittelstaedt’s system below and so I keep the explanation here
brief.
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and explained. Structural rules for both classical and intuitionistic settings
are then examined13, and validity defined. Finally, the differences between
classical and intuitionistic structural rules are discussed and examples of
dialogues are given to demonstrate these differences.

First, we examine the argumentation forms for connectives, the particle rules.
These state the possibilities for attack and defence of compound propositions.
Atomic propositions cannot be attacked or defended, as the issue at hand is
that of logical validity and so how one determines the truth or otherwise of
atomic propositions is of no particular importance in this classical setting.
As we will see later, Mittelstaedt does give a method for determining this,
as he is working within an empirical quantum setting. The dialogues are
conceived as an exchange between two player, the proponent stating the
initial proposition, who must then attempt to defend it; and the opponent,
who attempts to refute the proposition in question.

For the purposes of DL, an argumentation form is conceived as a tuple
consisting of a player assignment (i.e. O or P); a set of possible attacks; a set
of possible defences and a relation specifying which defences may be used
against which attacks. In the following, we use ∀ and ∃ to denote a player
assignment (O or P, where ∀ 6= ∃ - the point here is that both participants
may use these argumentation forms, subject to the structural rules to be
enumerated below). A is used to denote the proposition being attacked or
defended. The particle rules stating the possibilities for attack and defence
of propositions containing the basic connectives are as follows14.

∧ ∨ ¬ →

Assert ∀−!− A ∧ B ∀−!− A ∨ B ∀−!−¬A ∀−!− A→ B

Attack ∃−?− 1 or ∃−?− 2 ∃−?−∧ ∃−!− A ∃−!− A

Defend ∀−!− A and ∀−!− B ∀−!− A or ∀−!− B - ∀−!− B

In the above table, 1 and 2 refer to the different conjuncts. The ’force symbols’
! and ? refer to the assertion of a proposition; and to a request for the other
player to prove a proposition, respectively. Note that attacks need not

13The difference will be important later in the paper, as Mittelstaedt’s formal dialogues
are intuitionistic.

14The formulation of the rules we use here is actually formulated for first-order logic, but
because Mittelstaedt’s system is propositional, I have disregarded the parts of the DL system
concerning quantifiers. There are, of course, formulations of DL in purely propositional
terms, see e.g. Rebuschi 2009. However, I have attempted to use what appears to me the
most standard formulation.
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always consist of a challenge to prove a proposition. Yet despite the attack
on the implication consisting of an assertion of the antecedent, ultimately,
as we can see from the corresponding defence, it amounts to a challenge to
prove the consequent on the basis of the antecedent.

These essentially provide the equivalent of introduction and elimination
rules, determining what it means for a proposition involving a connective
to be valid in the system. So after ∀ has asserted a conjunction A ∧ B, ∃
must choose either the left or the right conjunct to attack, after which ∀must
defend the conjunct attacked. Subsequently ∃ attacks the other conjunct,
which must also be defended by ∀. After a disjunction A ∨ B is asserted by
∀, ∃ attacks the disjunction as a whole and ∀ must choose either disjunct
to defend (it is, of course, not necessary for ∀ to defend both disjuncts, as
long as one of them can be defended the disjunction is true). If a negation
¬A is asserted by ∀, ∃ may attack with the assertion of A, against which
there is no defence. Lastly, if ∀ asserts an implication A→ B, ∃may attack
with an assertion of the antecedent A, after which ∀must defend with an
assertion of the consequent B. True to the aforementioned constructive
origins of DL, to challenge an implication amounts to providing a proof of
the antecedent and claiming that the other player will fail to build a proof
of the consequent from this. Therefore the defence consists in providing a
proof of the consequent15 (Keiff, 2011: §2.1.1).

We now examine the structural rules of DL, which determine the overar-
ching structure of dialogues and ultimately give us the tools with which
to determine if a given proposition is valid. As mentioned, two variants
of these rules are considered, for classical and intuitionistic logic. This
will serve as an illustration of how different logics can be captured by dif-
ferent structural rules. First, we state several definitions and notational
conventions used here, where A is any proposition:

Dialogues have a (possibly empty) set of premises and a thesis, an initial
assertion made by P. A move is any subsequent attack or defence.

D(A) denotes a dialogue for A, i.e. with a move of the form P−!− A
as the thesis from which the dialogue commences.

∆ ∈ D(A) is a game within the dialogue D(A). Games can be indexed
to denote their position in the sequence of games constituting a di-
alogue - ∆n denotes the n-th game in the sequence16. Moves within

15Note that this is also the reason that the attack against an implication takes the same
form as that against a negation - the constructive negation is defined as A → ⊥, and ⊥
cannot be defended (Keiff, 2011: §2.1.1).

16The reason for this distinction between dialogues and games will become clearer below,
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a given ∆ may also be indexed, for example ∆1[n] denotes the n-th
move in ∆1.

Relevant structural rules of DL are as follows:

SR-0 (Starting Rule):

For any ∆ ∈ D(A), the thesis has position 017, ie. ∆[0] = P−!− A.

Every dialogue begins with the assertion of a thesis by a player who takes
the defending role of proponent P. There may also, of course, be additional
premises assumed for the purposes of the particular dialogue at hand. Every
game in the dialogue begins with the assertion of a thesis by the proponent,
which he must then defend (premises may be referred to at any point, of
course).

For any n > 0 such that there is a ∆[n], this denotes a P-move where n is
even, an O-move otherwise.

The game proceeds with P and O taking turns to make moves, in compliance
with all particle and structural rules. Any move following the thesis is a
reaction to a previous move by the other player. The next rule specifies
different logics with reference to restrictions on which previous moves a
player may react to at any given stage.

SR-1 (Round Closure Rule):

Classical: ∀ may attack any ∃-move as long as the rules allow, or defend
against any attack of ∃ (even those she has already defended against).

Intuitionistic: ∀ may attack any move of ∃ as long as the rules allow, or
defend against the last attack she has not already defended against.

The reason for the differences between these two variants of the rule will be
explored in detail below, and so I leave the issue aside for the time being.

SR-2 (Branching Rule):

There are three cases in which ∆ ∈ D(A) of even length (ie. where O is
to make the next move) can be extended in such a way as to generate two
distinct new games ∆1 and ∆2:

there are various points where a dialogue can ’split’ into different possible subgames, for
example the defence of a conjunction will generate distinct subgames as both conjuncts
must be defended. Where propositions contain several, connectives distinct subgames
dealing with the various components will be generated, so for example a proposition like
(A ∧ B)→ (A→ B) will require distinct games for A ∧ B, A→ B.

17Note that we begin with 0, not 1.
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1. Assume for 0 < m < n, that ∆[m] = O−!− B ∨ C; ∆[n] = P−?− ∨. O
may extend with the following moves:

∆1[n + 1] = O−!− B

∆2[n + 1] = O−!− C

In other words, when P attacks a disjunction asserted by O, which has then
been attacked by P, the game can be extended in two ways, depending on
which disjunct O chooses to defend with. As per the particle rules, O may
choose either disjunct to defend, resulting in different games.

2. Assume ∆[n] = P−!− B ∧ C. O may extend as follows:

∆1[n + 1] = O−?− L

∆2[n + 1] = O−?− R

Again, referring back to the particle rules, O may choose to attack a conjunc-
tion by challenging P to prove either conjunct, generating distinct games.

3. Assume for m such that 0 < m < n, ∆[m] = O−! − B → C; ∆[n] =
P−!− B. O may extend with the following moves:

∆1[n + 1] = O−?− ...

∆2[n + 1] = O−!− C

Where ... denotes an attack concerning a relevant particle rule for a com-
pound antecedent. This rule merely states the possibilities where the oppo-
nent must make a choice as to how to proceed. By SR-1, attacks are always
possible, and so clearly it is also permissible for O to make the alternative
attack after P has made the next move.

SR-3:

a) A dialogical game ∆ ∈ D(A) is closed if and only if there is some atomic
formula which has been played by both players. More precisely, let Sub(A)

denote all subformulas of A, then ∆ is closed if and only if there exist
two integers m and n and atomic formula a ∈ Sub(A) ∪ {A} such that the
propositional content18 of ∆[m] is a and the propositional content of ∆[n] is a
and exactly one of {∆[m], ∆[n]} is a P-move. If ∆ is closed, P wins, otherwise
P loses.

18Let f denote ! or ?, e denote an expression. A move ∀ − f − e where has propositional
content if e is a first-order formula, according to this formulation of DL (Keiff, 2011: §2.1.2),
but one might just as well say a propositional formula in keeping with our restricting atten-
tion to the propositional aspects of this logic. This is another way of saying the expression
concerned is a formula of the language.
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A dialogical game is finished if and only if it is closed or the rules do not
allow any move for the player whose turn it is to make the next move.

b) Let 〈D(A), p〉 be a play p of D(A) of the form p = 〈∆0, ..., ∆n, ∆〉. 〈D(A), p〉
is finished iff all ∆0, ..., ∆n are closed and ∆ is finished. P wins the play iff
〈D(A), p〉 is closed.

These clauses specify the conditions for P winning or losing the game (i.e.
the formula in question being valid or not, respectively). This formulation
does not make explicit reference to winning strategies, however, it still
essentially encapsulates this notion, given that if O has had to assent to a
statement of P he has conceded that P is correct and has therefore lost the
game.

SR-4:

Let ∆1, ∆2 ∈ D(A) be distinct dialogical games. Assume O has chosen to
play in ∆1. O may only switch to ∆2 if he has lost ∆1, i.e. O cannot switch to
another game before the one being played is finished.

Clearly, if O has won a part of the whole game, P has already lost the game.
Yet there will be situations in which O loses part of the game but has yet
to be defeated, as P still needs to defend another part of the formula to be
proved.

SR-5:

• Atomic formula a is introduced in 〈D(A), p〉 by move ∆i[n] if and only
if:
i) a is the propositional content of ∆i[n]
ii) there is no previous move ∆i[m] such that a is the propositional
content of ∆i[m] (i.e. if it has not been played in a previous move)

• P cannot introduce atomic formulas

• Atomic formulas cannot be attacked

P cannot introduce atomic formulas because the formula to be defended
will be compound, and allowing P to introduce the atomic formulas needed
to defend the proposition in question would mean that P could prove
anything non-contradictory. O will introduce atomic formulas in the process
of attacking P, after which P can then defend with the appropriate atomic
formula (subject to the restrictions of SR-1). Atomic formulas cannot be
attacked because we are not making reference to the truth of a statement in
a model.
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SR-6:

Def. Strict repetition:

• Let ∆[m] ∀−?− e be an attack against some previous move ∆[n]. ∆[m]

is a strict repetition if and only if there exists some move ∆[k] such
that n < k < m and ∆[k] is an attack against ∆[n] with an expression e
identical to that in ∆[m]

• Let ∆[m] ∀−!− e be a defence against some previous move ∆[n]. ∆[m]

is a strict repetition if and only if there exists some move ∆[k] such
that n < k < m and ∆[k] is a defence against ∆[n] with an expression e
identical to that in ∆[m]

Classical: No strict repetition is allowed.

Intuitionistic: If O has introduced an atomic formula that can now be used
by P, P may perform a repetition of an attack. No other repetition is allowed.

This last rule excludes the possibility that a player repeats the same move
indefinitely in a loop, effectively ensuring that the game terminates. Of
course this is crucial to determining validities, it is impossible to prove that a
proposition is valid according to these structural rules if the rules in question
allow for indefinite repetition of arguments. As for SR-1, discussion of the
reason for the difference between the two variants of the rule is postponed.

Validity in DL

Validity in DL is usually conceptualised in terms of there being a winning
strategy for the statement in question. However, the formulation to which
I adhere puts the notion slightly differently, although the definition below
amounts to the same thing. Here we make reference to the definition of
a closed game given in SR-3. This definition of validity will be explained
further below in the context of connections between DL and Mittelstaedt’s
system.

Def. Validity: A sentence A is dialogically valid if all dialogue games
belonging to the dialogue D(A) are closed.

Essentially this definition captures the idea that one player has had to make
a concession, playing a move previously played by another player because
there was no other possible move to be made at that stage. Of course, the
player who makes this concession (of necessity and not out of misjudgement
or error, we are talking about an idealised notion of a game here, without
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fallible agents involved), loses the game, and the other player is therefore
in possession of a winning strategy. Because P is always the player who
starts the game by asserting a proposition to be defended, if P has a winning
strategy the formula in question is valid, on the other hand, if O wins
the dialogue, the initial proposition is not valid. Remember that the DL
approach is a proof-theoretic framework, as such, no concept of truth is
developed. That said, DL does not preclude the possibility of adding a
notion of truth, indeed as we shall see, this is exactly what Mittelstaedt does
in the quantum setting.

Classical and Intuitionistic Rules in DL

The difference between the classical and intuitionistic rules here merits some
explanation. An in depth examination of intuitionistic logic is beyond the
scope of this paper, but of course the two accept different rules, certain
laws hold for classical logic that are intuitionistically unacceptable. One key
difference between classical and intuitionistic logic is the acceptance or re-
jection, respectively, of the Law of Excluded Middle, A ∨ ¬A (Moschovakis,
2015:§1).

First, a note on the schematic representation of dialogues is in order19:

• The succession of arguments is enumerated by rows beginning at 0.
From left to right, the first column contains this enumeration.

• The second column contains moves of O.

• The third column contains the number of the row O refers to with his
current move.

• The fourth column contains moves of P.

• The fifth and final column contains the number(s) of the row(s) P
refers to with her current move.

• Numbers in parentheses () denote attacks, i.e. (1) denotes an attack on
a proposition of the other player at row 1.

• Numbers in angled brackets 〈〉 denote defences, i.e. 〈1〉 denotes a
defence against an attack made by the other player at row 1.

• Where P takes over a proposition of O, we add an asterisk to number
the row where the O-proposition in question occurs, i.e. 3∗ denotes a

19Different presentations vary somewhat as to their representation of the dialogues, for
the most part I follow Mittelstaedt’s manner of representing them.
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P-move taking over a proposition of O at row 3. This is important as
P cannot introduce atomic propositions, but can only use them when
they have been previously introduced by O.

• We refer to moves by player assignment and row number, P3 denotes
P’s move at 3.

• If a player does not defend at a given row, we place the empty argu-
ment [ ] in the relevant column and continue to the next row.

In order to provide a means of comparison, we begin with an example
of a formula valid according to both classical and intuitionistic rules (so
providing P with a winning strategy regardless of which set of rules is
obeyed): ((A→ B) ∧ A)→ B.

The dialogue here runs as follows:

O P
0. ((A→ B) ∧ A)→ B!
1. (A→ B) ∧ A! (0) 2? (1)
2. A! 〈1〉 1? (2)
3. A→ B! 〈2〉 A! (3), 2∗

4. B! 〈3〉 B! 〈0〉, 4∗

Of course, having stated the initial argument, P cannot defend against O’s
attack at 1 with B! directly, as P may not introduce atomic formulas (by
SR-5). Yet attacks can be made at any time according to both sets of rules,
and so P has two avenues of attack against the conjunction asserted by O.
O must eventually defend with B at 7, allowing P to take over the atomic
proposition and win the dialogue - by SR-3 where the same atomic formula
has been played twice and the game is therefore closed, P wins (Rebuschi,
2009: 232).

Now let us turn to a case in which the different sets of rules dictate different
outcomes. We illustrate the difference between the two sets of rules with
reference to the Law of Excluded Middle, which, of course, is classically, but
not intuitionistically valid.

In the classical case, the dialogue will look as follows (Rahman & Tulen-
heimo, 2009: 168):

O P
0. A ∨ ¬A!
1. ∨? (0) ¬A! 〈1〉
2 A! (1) A! 〈1〉, 2∗
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Note that because of SR-5, P cannot assert atomic proposition A at 2, and so
must choose the negation as defence P1. The classical permutation of SR-1
allows P to defend once more against the attack O1 (Rahman & Tulenheimo,
2009: 168), despite the fact that O has made another attack O2 in the interim.
Because O has introduced atomic proposition A at O2, P may subsequently
make use of it at P2, according to SR-5.

In the intuitionistic case, the last step of the classical dialogue is forbidden
by the intuitionistic version of SR-1, which states that only the last attack
made by the opposing player may be defended against.

The intuitionistic version of the same dialogue will therefore look as follows
(Rahman & Tulenheimo, 2009: 168):

O P
0. A ∨ ¬A!
1. ∨? (0) ¬A! 〈1〉
2. A! (1) -

As we can see, in this game, P is forbidden from going back to defend
against O’s challenge once again at row 1., because O has attacked again at
row 2., making O2 the most recent attack. As atomic formulas cannot be
attacked, P therefore has no further possible moves to play and so loses the
game.

The dialogue above reflects the fact that intuitionistically, we cannot infer
the truth of A on the basis of the falsity of ¬A, as we would expect.

The effect of the intuitionistic rules is essentially dynamic, players must
respond to what is happening at the current stage of the game, a new
challenge effectively erases previous ones. The intuitionistic permutation
of SR-1 ensures that at any stage of the game, P is able to provide grounds
for his assertions without recourse to future concessions of O (Keiff, 2011:
§2.2.3).

SR-6, dealing with strict repetition, the countering of a move with a propo-
sition used previously against the very same move, works on the same
principle. The intuitionistic variant forbids strict repetition unless an atomic
formula has been introduced - this allows P to use the information available
at that moment in order to counter the challenge posed at the current stage
of the game. In the classical case (which forbids all strict repetition), this
rule essentially ensures that dialogues are finite. Because defences against
previous challenges are always allowed (by the classical permutation of
SR-1) the dialogue about a formula could be endless, as the same challenge
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could be defended against again and again, yet the dialogue will always
have the same end result.

It is worth mentioning here that the dialogical approach was developed in
the context of philosophical concerns about logic and mathematics and its
founders were of the opinion that the intuitionistic rules are the only correct
ones20. This aside, as noted above, the differences between different logics
are conceived as differences in the structural rules for the logics in question.
There is, according to Keiff, no general theory of how structural rules ought
to be formulated, but there are some of these rules that apply consistently
(namely SR-0; SR-2; SR-3 a and b; SR-4), with changes being made to the
other rules as necessary (Keiff, 2011: §2.2.2).

The discussion here will be relevant below when we explore the connections
between DL and Mittelstaedt’s system later in this paper, as Mittelstaedt’s
formal dialogues eventually result in an intuitionistic kind of logic.

We now move on to a reasonably thorough exposition of Mittelstaedt’s
dialogical system for quantum logic, which is somewhat more complex
than the version of DL presented here, partly in virtue of the quantum
setting. Subsequently the relations between the two systems will be explored.
Mittelstaedt’s system takes its key concepts from early permutations of DL
and so the two approaches have a lot in common.

Mittelstaedt’s Quantum Logic

As we shall see, Mittelstaedt’s logic is in a very similar spirit to the dialogical
approach discussed above. It provides an interesting example of a more
practical, empirically focused use of this kind of approach, dealing as it does
with scientific statements. Mittelstaedt aims to incorporate classical logic in
his quantum system while allowing for the non-classical quantum aspect,
how he does this will be explored below.

This section contains an exposition of the key elements of the logic in ques-
tion. Later in the paper I will offer some discussion of the relation between
dialogical logic and Mittelstaedt’s system, as well as a more in depth analysis
of how he deals quantum phenomena.

20For historical background, see e.g. Lorenz 2001.
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Preliminaries

Mittelstaedt begins with what he terms elementary propositions, the results of
measurements made on a quantum system. These are denoted by a, b, c...21

For elementary propositions it is assumed that we have either an exper-
imental procedure which proves a or an experimental procedure which
disproves a (Mittelstaedt, 1978a: 50). A, B, C... denote propositions more
generally, A may be a compound proposition or an elementary proposition.
Player assignments O and P work exactly as for DL, with P stating an initial
proposition and O attempting to refute it.

Def. Proposition: The set S of propositions is defined recursively as:
i) Elementary propositions a ∈ S are propositions
ii) If A ∈ S , B ∈ S are propositions, A ∧ B, A ∨ B, A → B, ¬A, k(A, B),
k̄(A, B) are propositions22.

There are different varieties of dialogue in Mittelstaedt’s system, fulfilling
similar roles to the particle and structural rules for DL discussed above.
Material dialogues fulfil the particle rule function, defining the connectives.
Formal dialogues then give us the validities of the system, so the structure for
determining logical truths.

The notion of truth is defined in a fairly standard manner for logical systems
making use of dialogues, via the notion of a winning strategy. A participant
has a strategy of success within dialogue-game Dx (material dialogues are
denoted by Dm, formal ones by D f ) if there is a succession of arguments
resulting in that participant’s winning the dialogue regardless of the other
player’s moves.

Def. Truth: A is true (or x− true) iff P has a strategy of success within Dx

about A.

Def. Falsity: A is false (or x− f alse) iff P has a strategy of success against A
within Dx (i.e. if A is asserted by O, P wins Dx regardless of O’s subsequent
arguments. If A is true with respect to Dx we write `Dx A (Mittelstaedt,
1978a: 53).

Of course, quantum logic is not classical, and Mittelstaedt must account for
this in some way. He does this by introducing statements into the dialogues

21The same notation used for atomic propositions in DL is used for the elementary propo-
sitions here. This is because Mittelstaedt is effectively giving a notion of how the truth
of atomic propositions is determined here, he is applying the dialogical technique to an
empirical phenomenon.

22The meanings of k(A, B) and k̄(A, B) will become clear shortly.
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regarding the commensurability of the propositions at hand. Commen-
surability corresponds to the the idea of compatibility mentioned in the
introduction and corresponds to the characteristic that there are proper-
ties of a quantum system that cannot be measured at the same time. We
adhere to Mittelstaedt’s terminology here. He introduces this notion into
the material dialogues, capturing the fact that in the quantum setting a
proposition proved earlier in a dialogue may not remain available to be used
subsequently, if, for example, another measurement on the system has been
made which has changed the state of the system in such a way that the pre-
vious proposition is no longer true. Mittelstaedt terms statements regarding
whether two propositions are commensurable or incommensurable availabil-
ity propositions. This notion will be made precise in the following sections.
We now examine the language of this logic, starting with the general frame
rules.

Frame Rules

Frame rules are meta-rules for the system, applying to both material and
formal dialogues. They determine the permitted structure of dialogues in
general, as follows:

F1: P asserts an initial argument, establishing the initial position of the
dialogue.

F2: O attempts to refute P’s initial argument. Arguments are stated in
turn by P and O according to proof rules.

F3: Arguments are either attacks or defences of previous arguments, not
both.

The above are fairly self-explanatory, merely setting up how the dia-
logues proceed.

F4: a) An attack may be made at any point.

b) Having been attacked, participants must defend in reverse order of
attacks (ie. most recent first).

F5: If a participant has no argument to continue they lose and the dialogue
ends.

We will see later when the comparison is made with rules of DL that most of
these rules also occur implicitly or explicitly in the structural rules for DL.
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Material Dialogues

Dialogues containing proof-procedures that necessarily refer to empirical re-
sults, which must be proved outside the dialogue are called material dialogues
(Mittelstaedt, 1978a: 60). As mentioned, they fulfil the same role as particle
rules in DL, with additional specifications reflecting the empirical aspect
of the enquiry. This will be discussed in detail below. Material dialogues
deal with propositions where some element has to be proved outside the
dialogue, i.e. that make reference to something empirical.

Elementary propositions and availability propositions must be proved out-
side the dialogues, and so they constitute what Mittelstaedt terms material
propositions. Attacks and defences of material propositions are not argu-
ments in the strict frame-rules sense, but questions and answers related
to a quantum system, which ultimately determines the truth of material
propositions (Mittelstaedt, 1978a: 62). Elementary propositions are proved
by a measuring process on a quantum system, for availability propositions
(to be discussed shortly), it is assumed that there is some empirical pro-
cess for determining their truth or falsity. Compound propositions, on the
other hand, are dialogue-definite, as their proofs must be performed within a
dialogue.

The basic definitions of logical connectives concern elementary propositions
related to one quantum system at a given time. The strategies available
for the different connectives are summarised below, The possibilities for
attack and defence for compound propositions in a material dialogue are as
follows, with A? representing a challenge to prove A and A! a successful
proof of A:

Proposition Attack options Defence options
A A? A!

A ∧ B 1?, 2? A, B
A ∨ B ? A, B

A→ B A B
¬A A

Examples of Mittelstaedt’s dialogues follow the schematic conventions in-
troduced above for the DL dialogues. An example of how the dialogue
involving conjunction proceeds is as follows, dialogues involving the other
binary connectives are analogous, subject to the attack and defence options
given.
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O P
0. a ∧ b
1. 1? (0) a 〈0〉
2. a? (1) a! 〈1〉
3. 2? (0) b 〈0〉
4. b? (3) b! 〈3〉
5. 1? (0) a 〈0〉
6. a? (5)

P asserts a∧ b and is thereby committed to demonstrating elementary propo-
sitions a and b by means of experiments. O subsequently attacks the first
conjunct, P retaliates by stating the conjunct a. Now O attacks the elemen-
tary proposition a, which P must prove with reference to a measurement
on the system in question. The form of this kind of dialogue contrasts with
the DL examples in that P stating a at 1. is not the same as P proving a!
with reference to a measurement at 2. (the same is true for b). This is not
of great importance, merely serving to underline the empirical nature of
the dialogues at hand. It is assumed in this example that P can prove a and
b by measurements on the system. Note that at 5., O attacks the conjunc-
tion again. This is possible because of the aforementioned fact that, having
yielded a positive result for a in one instance, the system is not guaranteed
to do so again after a subsequent measurement23.

The dialogue for negation runs as follows:

O P
0. ¬a
1. a (0) a? (1)
2. a! 〈1〉

O’s successful proof (by measurement) of a at O2 definitively defeats P’s
initial proposition ¬a. If P were to repeat her attack the result would be
the same, as no other measurement has been made on the system in the
interim. The same would hold is the system did not yield a positive result
for a. Therefore, this dialogue is automatically finite24.

23To be a little more precise, the rationale for this is based on the assumption that if a is
proved by measurement on a system at time t1, then after a measurement for b at t2 > t1,
given subsequent measurement for a at t3 > t2, the result a is not necessarily obtained, even
for arbitrarily small time difference δt = t3 − t1 (Mittelstaedt, 1978: 60).

24This, of course, rests on the assumption that a measurement made at t1 and repeated at
t2 will yield the same result, provided the time difference δt = t2 − t1 is sufficiently small
(Mittelstaedt, 1978: 60).

22



Quantum Dialogues Laura Biziou-Van Pol (10865675)

The set of propositions in the material dialogues as seen so far comprises el-
ementary propositions and compound propositions incorporating arbitrary
iterations of connectives, as per the definition above (Mittelstaedt, 1978a: 59).
To reiterate, material dialogues for two place connectives may, in principle,
be infinite, in contrast to the DL dialogues we have seen. This holds for
elementary propositions and material compound propositions. Because
measurements affect quantum systems, a proposition A that was true of a
system at some point in the game may no longer be true at a later stage of
the game in question, and so we cannot restrict the material dialogues in
the way that the DL dialogues above were restricted. Mittelstaedt devel-
ops a way to do this, to be discussed below. It is worth remembering here
that material dialogues, despite the resemblance of some of their argument
rules (detailed below) to those for the DL system, are actually providing a
semantics for this kind of setup, as we shall see.

Commensurability - Introduction

Before stating the argument rules for material dialogues, an introductory
look at commensurability and incommensurability is in order. This is a
key notion in Mittelstaedt’s system, allowing him to deal with quantum
phenomena but also retain classical logic, in a manner to be discussed later
in the paper. The lattice theoretic basis of Mittelstaedt’s system comes into
play here, I leave the details aside for the time being. We come back to this
in the context of Mittelstaedt’s notion of implication later on. The idea of
commensurability in this system will be made formally precise below, we
will also see how it fits in to the material dialogues. Commensurability fulfils
two key functions aside from its role in retaining classical logic. Firstly, as
we have seen, measurements performed on quantum systems may change
the system, meaning that what is true of the system after one measurement
does not necessarily remain so after subsequent measurements. It is also the
case that certain measurements cannot both be made on the system with the
same degree of accuracy, as mentioned in the introduction. Therefore, Mit-
telstaedt requires a way to factor this into his system, and commensurability
provides both the conceptual and the formal means to do this. Relatedly, it
provides the means to restrict the infinite material dialogues defining binary
connectives to finite ones, eventually allowing a notion of validity captured
in the formal dialogues (in exactly the manner of DL, where, as we saw,
dialogues are restricted to finite length).

Mittelstaedt introduces procedures for proving availability propositions,
which in turn can be used to restrict the length of the dialogues defining
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the connectives (as we will see at Am2 below). As stated above, availability
propositions, like elementary propositions, are proved outside the dialogues
- whether a given proposition is commensurable with another must be
established empirically, ultimately. Availability propositions are of two
varieties (Mittelstaedt, 1978a: 61):

Commensurability propositions k(A, B) stating that A remains available
after a material dialogue about B.

Def. Commensurability, k(A, B): A and B are commensurable (k(A, B) has
been proved is for a given system), if A and B can be tested dialogically in an
arbitrary sequence without thereby influencing the result of the dialogues.

Incommensurability propositions k̄(A, B) state that A is no longer available
after a material dialogue about B.

Def. Incommensurability, k̄(A, B): A and B are incommensurable (k̄(A, B)
has been proved) if, for a given system, the result of a dialogic test of one
proposition can be changed by a dialogic test of the other.

We now move on to the argument rules for material dialogues, before
showing how these propositions can be used within them. Specifically,
we will see examples of how availability propositions are used to restrict
dialogues about the binary connectives to finite length.

Argument Rules for Material Dialogues

Am 1: An elementary proposition a, once stated, may be attacked by a
challenge a? to prove it, for which the defence consists of a demonstration
of a (by an empirical measurement).

Elementary propositions Attack Defence

a a? a!

Am 2:

Attacks and defences for availability propositions25:

25Examples of how these behave within the material dialogues will be gven in the next
section.
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Availability proposition Attack Defence

k(A, B) k(A, B)? k(A, B)!

k̄(A, B) k̄(A, B)? k̄(A, B)

As for elementary propositions, commensurability and incommensurability
propositions are demonstrated empirically. A challenge k(A, B)? to prove
the commensurability of A and B is countered with reference to some em-
pirical procedure outside the dialogue.

Am 3: If a participant cannot defend against an attack of a material proposi-
tion (i.e. a, k(A, B), k̄(A, B)), he may assume a previous defence obligation.

Am 4:

Connective Attacks Defences

k(A, B)? k(A, B)!

A ∧ B 1? A

2? B

? k̄(A, B)

A ∨ B A

B

A→ B A B

k(A, B)? k(A, B)!

¬A A

Commensurability gives additional attack and defence possibilities for the
binary connectives in the material dialogues. To attack A ∧ B, a player
may question whether A and B can obtain together; likewise for A → B.
A ∨ B, conversely, only acquires a new defence, the player defending this
disjunction may now do so by demonstrating the incommensurability of A
and B.

Am 5: If a participant attacks A, the other may check the availability of A
using arguments k(A, B). Here, B is any proposition in the dialogue after A,
attack k(A, B)? may be used once for every B.

A proposition A is successfully defended if the dialogue-game starting from
A is won by the player who initiates it (P). If P has a strategy of success for
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A within Dm, A is materially true. If P has a strategy of success within Dm

against A, A is materially false.

Availability Propositions in the Material Dialogues

We now illustrate how availability propositions allow us to replace the
infinite dialogues defining connectives with finite ones.

Conjunction a ∧ b

This can be limited to finite length if a and b are known to be commensurable,
as subsequent proof attempts will produce the same results. In the case that
they are incommensurable, P is guaranteed to lose at some point, where
either a or b cannot be defended (Mittelstaedt, 1978a: 63). Thinking back
to the example of the conjunction dialogue above, and assuming as above
that P can prove a and b with reference to measurements, we now have the
following:

O P

0. a ∧ b

1. k(a, b)? (0) k(a, b)! 〈0〉
2. 1? (0) a 〈0〉
3. a? (2) a! 〈2〉
4. 2? (0) b 〈0〉
5. b? (4) b! 〈4〉

With the additional attack and defence possibilities for commensurability
k(a, b) from Am 2, O may attack immediately with a challenge to prove
that a and b are commensurable. Assuming that P can prove this by the
requisite empirical procedure, it is established that a measurement of a
does not affect a measurement of b. Therefore, provided P can provide the
empirical proofs of a and b, the dialogue does not continue indefinitely, as
the same results will be repeated for all subsequent measurements. If a
and b are incommensurable, a measurement of one would change the result
of a subsequent measurement for the other. Therefore, at some point in
the dialogue, P would be unable to defend one of the conjuncts, losing the
dialogue, so a ∧ b would not hold.

Disjunction a ∨ b

Dialogues concerning a disjunction A ∨ B can be limited to finite length if
it can be shown that a and b are incommensurable. Of course, if the player

26



Quantum Dialogues Laura Biziou-Van Pol (10865675)

asserting a disjunction can prove one or other (or both) of the disjuncts,
the problem does not arise. However, consider the situation where P has
asserted a ∨ b, yet has failed to prove both a and b by measurement. If a
and b are commensurable, as above, the same results will continue to obtain
regardless of how may times the measurements are performed. Yet if it
can be shown that a and b are incommensurable, then P will at some point
succeed in proving one of the two.

Material implication a→ b

This can be restricted to a finite dialogue if the availability of a remains after
a b-proof - ie. a and b must be commensurable (Mittelstaedt, 1978a: 64). By
way of illustration, the dialogue runs as follows:

O P

0. a→ b

1. a (0) [ ]

2. a! 〈1〉 a? (1)

3. [ ] b 〈0〉
4. k(a, b)? (0) k(a, b) 〈0〉
5. b? (3) b! 〈3〉

Note that P cannot defend against an atomic proposition in row 1; and after
O has proved a in row 2., it is then up to P to continue with his proof of
b. Without P’s proof that a and b are commensurable, even after a proof of
b by P, O could attack anew with a, as there would be no guarantee of a
successful b-proof after a new a-proof if a measurement of a may change the
state of the system so as to preclude a proof of b (Mittelstaedt, 1978: 65).

Infinite dialogues can be restricted to finite ones in the same way for ar-
bitrary compound propositions. Proofs by measurement are replaced by
subdialogues relevant to proving the propositions at hand (Mittelstaedt,
1978a: 65).

Formal Dialogues - Introduction

Here we move on to formal dialogue games, the means by which validities
are defined in Mittelstaedt’s system. Formal dialogues give a set of rules al-
lowing us to determine statements that are always true in a material dialogue.
Of course some propositions can be defended in the material dialogue game
regardless of the elementary and availability propositions that they contain,
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and we now turn to the details thereof. An example of such a material
dialogue will serve to illustrate this point. As usual, P asserts a proposition
which she then attempts to prove, and which O attempts to refute.

O P

0. [ ] (a ∧ b)→ (a→ b)

1. a ∧ b (0) [ ]

2. a 〈1〉 1? (1)

3. a! 〈2〉 a? (2)

4. b 〈1〉 2? (1)

5. b! 〈4〉 b? (4)

6. k(a, b)! 〈1〉 k(a, b)? (1)

7. [ ] a→ b 〈0〉
8. a (7) b 〈7〉
9. k(a, b)? (7) k(a, b)! 〈7〉, 6∗

10. b? (8) b! 〈8〉, 5∗

In row 1., O will attack with an assertion of the antecedent of the conditional
proposition to be proved. As the latter takes the form of a conjunction, he
must prove both conjuncts, with P attacking accordingly at rows 2.-5. P
then attacks at 6. with a challenge to prove that a and b are commensurable,
according to the rules for conjunction. As we saw above, if O fails to provide
this, the dialogue about the conjunction could go on indefinitely. In this
example, we deliberately take the situations most disadvantageous for P,
where O is able to prove a, b and k(a, b), at rows 3., 5., and 6., respectively.
Yet P still wins the dialogue, as the crucial propositions k(a, b) and b, which
P requires to prove a → b, the consequent of the implication statement
she is trying to defend, are already proved by O in the course of his proof
of a ∧ b. Therefore, this proposition can always be proved in the material
dialogue game. The question then is how to systematise this notion. The
argument rules Mittelstaedt develops for the formal dialogue games enable
the construction of all these validities, eliminating the need to investigate
every possibility for each material dialogue in order to determine validities
(Mittelstaedt, 1978: 74).

As such, the formal dialogue games clearly fulfil a very different function
to the material dialogues. While the latter determine what is true on the
basis of the truth of elementary propositions and availability propositions
referring to measurements; the former give us propositions true regardless
of the truth of their constituent propositions.
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Argument Rules for Formal Dialogues

Formal dialogues have their own argument rules analogous to those for
material dialogues, despite the very different function of these rules. Mit-
telstaedt develops these in several steps, I adhere closely to these stages.
The aim here, is to end up with a set of validities, which, clearly, should not
depend on any empirical content such as measurement results.

The first step he takes is to eliminate reference to elementary propositions in
the semi-formal dialogue game detailed in this section. Next, he eliminates
availability propositions, by devising a system that captures propositions
of the form k(A, B) which always hold. This is the calculus of formal com-
mensurabilities and will be explored in the next section. These formal
commensurabilities can be proven to be equivalent to certain compound
propositions, which replace them in the full formal dialogue game. The
set of propositions that can be defended in the full formal dialogue game
constitutes Qe f f , the calculus of intuitionistic quantum logic (Mittelstaedt,
1978: 72).

The rules establishing the semi-formal dialogue game are as follows:

A f 1:

(a) Elementary propositions cannot be attacked.

(b) O may always state elementary propositions; P may only do so where
O has done so previously, and where the proposition in question is
still available (Mittelstaedt, 1978a: 76).

Elementary propositions can no longer be attacked in the formal dialogues
as we are no longer talking about the content thereof, but about propositions
that are valid regardless of the content of elementary propositions. Because
P must defend the initial proposition asserted (the validity of which is in
question), he can no longer draw upon anything external to the dialogue,
and he should prove that the proposition at hand is true independently of
the content of elementary propositions contained within it.

A f 2: P may attack propositions asserted by O only if they are still available.

This rule is designed to avoid irrelevant attacks, clearly if a proposition is
no longer available, any attack against it is redundant.

A f 3: Possibilities for attacks and defences of the connectives:
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Connective Attack options Defence options

A ∧ B 1?, 2? A, B

A ∨ B ? A, B

A→ B A B

¬A A

A f 1 and A f 2 here do not eliminate the possibility that a given proposition
may be infinitely available. Yet P must have a strategy of success. To limit
the length of dialogues, we postulate that P sets a bound n on the number of
times he may take over an elementary proposition to attack O (Mittelstadt,
1978a: 77). This is an artificial constraint, we then take the set of validities to
be determined by the union of all Dn

f . A f 4 and A f 5 specify how this is done.

If A is true, P is assumed to have a strategy for success in the dialogue initi-
ated by the assertion of A by P. So P can defend against all O’s arguments in
this kind of game. As such, for the purposes of the formal dialogue game we
only need to consider the situation where P is in the worst possible position
to defend A (recall the dialogue for (a ∧ b) → (a → b) in the last section,
where we deliberately assumed that O could prove everything he needed to
prove). On this basis, we know that there is no need to go through every
possibility for what O can prove in the dialogue. Hence, the attack and
defence possibilities of both P and O are restricted to reflect this fact in the
next rule. It is important to note here that this rule is just a technical device
for expediency (Mittelstaedt, 1978: 78):

A f 4:

(a) P may take over the same elementary proposition at most n times.
P may attack the same proposition of O at most n times. This rule
limits the length of dialogues in accordance with the bound n just
mentioned.

(b) O may attack a proposition of P at most once. O must decide whether
to defend against an attack from P or whether to attack P. If O defends,
he may no longer attack, and the defence used is no longer possible.

A proposition A, once proved, only remains available if it is commensurable
with every intervening proposition B stated between the initial proof of A
and the subsequent citing of A (Mittelstaedt, 1978a: 78). As it happens, there
are just three possible positions in the dialogue where the availability of a
proposition may be called into question:
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p1: O attacks a material implication A→ B of P with A.

p2: O attacks a negation ¬A of P with A.

p3: O defends a disjunction A ∨ B against an attack from P.

These are the positions in which it will be necessary for O to introduce a new
proposition in order to initiate the next step in the dialogue, hence the need
to check the commensurability of the new proposition with the previous
ones.

The next rule details how this may be done:

A f 5:

(a) In positions p1, p2, p3 of a dialogue, P may reduce the availability of
all O’s previous propositions to zero.

(b) (semi-formal) In such a position, where O can state a new proposi-
tion A, O may instead attack with k(C, A)?, where C is any previous
O-proposition with non-zero availability. The defence consists in
demonstrating k(C, A)26.

c) In positions p1, p2, p3 of a dialogue, P may challenge a proposition B.
Then O may either assert B and continue the dialogue from this in the next
row, or ask ((A1 ∧ ...∧ An)→ B)?, where the antecedent is the conjunction
of all O’s previous propositions with non-zero availability. P must defend
against the latter by asserting a new initial argument (A1 ∧ ...∧ An)→ B.

The rationale for the above rules will become clearer in the next section,
which deals with commensurabilities in the formal dialogue-game - essen-
tially the above rule plays a crucial role in eliminating commensurabilities
in order to obtain the full formal dialogue-game.

Finally, to exclude infinite strategies again using the artificial bound n, we
have:

A f 6: P may make use of A f 5 c) at most n times.

The above rules establish the semi-formal dialogue game, the next step
is to establish the formal commensurability calculus, so that availability
propositions can be eliminated in order to give the full formal dialogue
game.

26This part of A f 5 is modified in the full formal dialogue game in light of the formal
commensurability calculus, as we will see below.
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The Calculus of Formal Commensurabilities

In order to establish the full formal quantum dialogue-game it is necessary
to eliminate material proofs regarding commensurabilities. There are some
availability propositions that are formally true, holding regardless of the
propositions contained within them (conversely, there are no formal incom-
mensurabilities). These formal commensurabilities must be incorporated
into the formal dialogues (Mittelstaedt, 1978a: 83), and to do this, Mittel-
staedt develops a calculus of formal commensurabilities. The idea here,
as we will see, is that if a proposition regarding commensurability can be
proved within this calculus, it can actually be shown to be equivalent to a
material proposition for which there exists a strategy for success, and so it
can be replaced by such a proposition in the formal dialogue.

Recall the definition of commensurability from above - propositions are
commensurable if they can be dialogically tested in arbitrary order without
affecting the result of the dialogue. Now let us consider as an example the
formal commensurability k(A, A→ B).

Take a dialogue in which P needs to show both A and A→ B. In the event
that P loses the dialogue about A, then, on attacking A→ B (which is done
with a proof of A), O will also lose the dialogue about A. Because only A
has been tested, a repeat of the dialogue about A will give the same result.
On the other hand, if we assume that P wins the dialogue about A, there
are several possibilities as regards the subsequent dialogue about A→ B. P
will lose the dialogue if he is unable the prove k(A, B), but the proof attempt
for k(A, B) will yield the same result as the dialogue about A. If P is able
to prove A→ B, then because A and B are commensurable the subsequent
dialogue about B does not affect the previous result of the dialogue about
A. Once k(A, B) has been proved, the previous A-result will continue to
hold. This means that k(A, A → B) holds across the board, it is a formal
commensurability (Mittelstaedt, 1978: 83).

The full details of the formal commensurability calculus need not concern us
overly here, it is enough for our purposes to see how they are incorporated
into the formal dialogue game. As it turns out, some equivalences between
formal commensurabilities and compound propositions can be proved.
These allow formal commensurabilities to be incorporated into the formal
dialogues, as required. I briefly state the relevant proofs here to illustrate
why this is the case. We will show that if the formal commensurability
k(A, B) can be proved then it can be shown that there exists a strategy of
success for A→ (B→ A). Further, if a strategy of success for A→ (B→ A)

exists, then the obligation to prove k(A, B) in a dialogue can be circumvented
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(Mittelstaedt, 1978: 85).

Theorem: Formal commensurabilities

i) If the formal commensurability k(A, B) can be proved then there exists a
strategy of success for A→ (B→ A).
Proof: Where k(A, B) can be proved in K, we have a situation illustrated by
the following dialogue:

O P

0. [ ] A→ (B→ A)

1. A (0) B→ A 〈0〉
2. B (1) A 〈1〉

Because k(A, B) is presupposed, and the commensurability relation is sym-
metric, (i.e. k(A, B) = k(B, A)), O cannot attack P’s assertion of B → A
with k(B, A)?. Because of the assumed commensurability of A and B, the
availability of A remains unchanged by a B-proof at O2 and therefore P can
take A over from O1 to defend at P2 (Mittelstaedt, 1978a: 85).

ii) If there exists a strategy of success for the dialogue about A→ (B→ A),
the obligation to prove k(A, B) can be disregarded.
Proof: An illustration will serve to clarify this proof:

O P

. . .

. . .

. . .

(m) A .

. . .

. . .

(n) B→ A

(n + 1) k(A, B)? [ ]

(n + 2∗) [ ] (B→ A)?

(n + 3∗) A→ (B→ A)? A→ (B→ A)!

(n + 2) (B→ A)! (B→ A)?

(n + 3) B (n) [ ]

(n + 4) A 〈n + 2〉 B (n + 2)
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We assume that P has a strategy of success for A → (B → A). Here,
(n + 2∗) and (n + 3∗) denote one ’branch’, one way the dialogue could
proceed; (n + 2)... the other. Say O has asserted A at row m, and P has
asserted B→ A at row n. According to A f 5 b), O may attack with k(A, B)?
at (n+1). By assumption, P has a strategy of success for A → (B → A)

and so can circumvent this attack by making use of A f 5 c), challenging
B → A instead of defending with k(A, B)!. Thereupon, O has the two
options illustrated at (n + 3∗) or (n + 2). In the former case, P can defend
successfully by assumption. In the latter, P may reduce the availability of A
to zero. However, if O then asserts B as an attack against P(n), P can attack
with B. If O defends with A, P can then take this over and successfully
defend, completing the dialogue.

The proofs for i) and ii) above can be generalised, as clearly they apply to
each available O-proposition, so we have the following:

Theorem: Formal commensurabilities (generalised)

i) If formal commensurabilities k(A1, B), k(A2, B),... can be proved then
there exists a strategy of success for the proposition (A1 ∧ ...∧ An)→ (B→
(A1 ∧ ...∧ An)).

i) If there exists a strategy for success for the proposition (A1 ∧ ...∧ An)→
(B→ (A1 ∧ ...∧ An)), the obligations to prove commensurabilities k(A1, B),
k(A2, B),... can be circumvented (Mittelstaedt, 1978a: 86).

Rule A f 5 fulfils the following function, which can be seen at work in the
dialogue above. In some situations in the formal dialogue game, it will be
beneficial to allow P to challenge O to prove a formally true proposition B,
in order for P to be able to take over propositions (usually atomic proposi-
tions) from B. After P has made such a move, there are two ways for O to
proceed. Either he can assert B and continue the dialogue, or he can ask P to
demonstrate the formal truth of B on the basis of all previous O-propositions
in the dialogue with (A1 ∧ A2 ∧ ...∧ An)→ B.

We will see below how this eliminates formal commensurabilities and com-
pletes the full formal dialogue-game.

Formal Dialogue Argument Rules Continued - The Full Formal Quantum
Dialogue Game

To establish the full formal dialogue-game we must eliminate commensura-
bilities. The above generalised formal commensurability theorem gives us a
new version of A f 5 b) taking into account the possibility of O attacking by
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questioning the availability of new proposition A in view of the conjunction
of A with all previous propositions in the dialogue:

A f 5 b) (formal): In a position p1, p2, p3 of a dialogue, where O can state
a new proposition A, O may attack with k(C, A)? instead of asserting A
(where C is the conjunction of all previous O-propositions with non-zero
availabilities). The defence against k(C, A)? is the assertion of a new initial
argument C → (A→ C).

A f 7: a) O may not attack the initial argument A→ ((A→ B)→ A).

b) P may replace the initial argument A→ (B→ A) with B→ (A→ B).

c) P may replace the initial argument (A1 ? A2) → (B → (A1 ? A2)) with
A1 → (B→ A1) or A2 → (B→ A2), with ? ∈ {∧,∨,→} and where O must
choose between the two possibilities.

d) P may replace initial argument ¬A→ (B→ ¬A) with A→ (B→ A).

e) P may state the same initial argument at most once.

A f 7 merely makes use of what was proved in the formal commensurability
theorems above, with availability propositions of the formal variety giving
way to compound propositions according to the equivalences proven. Initial
arguments involving commensurabilities are replaced by P with the corre-
sponding compound propositions; rules of the commensurability calculus
K are replaced with rules concerning initial arguments (Mittelstaedt, 1978a:
87).

Dialogical Logic and Mittelstaedt’s Dialogical Quantum Logic

We now move on to detailing the relationship between DL and Mittelstaedt’s
system. Mittelstaedt’s work was based on early developments in DL27,
his aim was to develop a logic that could encapsulate the traits of both
classical and quantum systems. He sees classical logic as a special case of his
own system, where propositions are unrestrictedly available. Mittelstaedt’s
system is close to DL, but with added clauses and modifications to take into
account: a) the empirical nature of the enquiry; b) (related) the temporal
nature of dialogues; c) the quantum aspects of the logic. The two systems
are rather different in their set up and they differ with respect to which
rules are made explicit. Nevertheless, as briefly mentioned above, there
is a correspondence between the two systems that is worthy of further
elucidation.

27He refers particularly to the work of Lorenzen (Mittelstaedt,1978: 70).
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Untangling the different terminology and sets of rules for DL and Mittel-
staedt’s system is somewhat intricate and it is not possible to compare the
two in an entirely straightforward manner. Where DL has particle rules
defining the connectives, which specify how to win the game in a specific
situation; and structural rules, where the particle rules are abstracted out
- this is the proof system, where validities are defined. Roughly, then, we
can say that Mittelstaedt’s material dialogues correspond to the particle
rules of DL; whereas the formal dialogues (ie. those dealing with validity,
what is always true regardless of the content of the propositions in question)
correspond to the structural rules of DL.

More specifically, Mittelstaedt’s formal dialogue-game gives proof rules
for validity in the same way that DL’s structural rules specify this for DL
dialogues. His material dialogues differ from the particle rules for DL in
that, although what they are fundamentally doing is giving the semantics
for connectives, they are doing so within a particular empirical context.
Mittelstaedt’s system goes a layer deeper in the sense that he specifies the
procedure for attacking and defending (ie. verifying) atomic formulas - with
reference to a measurement process. DL is concerned solely with the logical
side of things and so has no need to flesh this out. In DL, atomic propositions
cannot be attacked or defended. Mittelstaedt’s material dialogues specify
criteria for truth of atomic (elementary) propositions, as well as setting up
the rules for connectives. Thus, material dialogues fulfil the same role in
Mittelstadt’s system as particle rules do in DL, but go into more detail.

Rules for attacks and defences for the connectives appear in argument rules
for both Dm and D f (whereas these are just particle rules in DL). Attacks
and defences for D f turn out to be identical to the particle rules of DL,
as might be expected. Attacks and defences for Dm include availability
propositions, proved outside the main dialogue, DL does not have this
construct, having no need to take into account the particulars of quantum
theory. For Mittelstaedt, frame rules specify the general structure of both
types of dialogue. For the most part, these meta-rules appear impicitly in
the structural rules of DL, or are contained within more detailed rules, as
will be illustrated below.

The two systems have rather different approaches, DL you might call a
’top-down’ approach, where the starting point is to construct a proof-system
for logical validities. Mittelstaedt, on the other hand, starts from a particular
empirical phenomenon he is trying to model, and approches validities later
through abstracting away from this. Nevertheless, they do end up doing
the same thing, elaborating a system for determining validities.

To provide a more specific illustration, I now enumerate some of the cor-
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respondences between rules for DL and Mittelstaedt’s system. The way
DL is formulated in the presentation I have followed here is more formally
explicit about the ingredients of the dialogue than some other accounts,
as the formulation I refer to is more contemporary. This is, however, not
of great conceptual importance, except in that it tends to make DL’s rules
somewhat more precise than Mittelstaedt’s.

• SR-0 corresponds to F1 and F2. F1 corresponds to for any n greater
than zero, and any ∆ ∈ D(A) such that ∆[n] exists, if n is even, ∆[n]
denotes a P-move, otherwise it denotes and O-move. F2 corresponds
to the part of S-0 stating that O attempts to refute P’s arguments, and
arguments are stated in turn by P and O.

• F4 is the intuitionistic variant of SR-1. More specifically, F4a) is the first
clause of the classical and intuitionistic variants of SR-1. F4b) states
that participants are obliged to defend in reverse order of attacks,
and that a player may postpone defence as long as there are possible
attacks to put forth, which is the intuitionistic variant of SR-1.

• F3 is assumed in the preliminaries to DL’s structural rules.

• SR-2’s branching rules specify the courses a game can take where
O has different options regarding the manner in which to proceed.
While Mittelstaedt does not make this rule explicit for either variety of
dialogue, it is implied by the definitions of the connectives specified
for both the material dialogues (Am4), and the formal dialogues (A f 3)
together with the other rules. Different attack and defence possibilities
are reflected in the argument rules for the material dialogue-game,
Am4 and Am5, the difference being that the latter include stipulations
regarding commensurability. The argument rules for A f also include
stipulations regarding attacks, defences and when in the semi-formal
dialogue-game the availability of a proposition can be questioned, at
A f 4.

• F5 states that if a participant has no argument to continue, he loses
(and therefore the other participant wins). SR-3 puts this in far more
precise terms, but the key idea is the same, both specify what counts
as winning or losing in the context of the game.

• SR-5 and A f 1 correspond, both stipulate that atomic or elementary
propositions cannot be attacked, and that P, having stated the initial
argument, may not introduce such propositions. Of course, this rule
does not apply to the material dialogues, where, according to Am1 ele-
mentary propositions may indeed be attacked and defended, defences
thereof consisting of an empirical demonstration of the proposition in
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question outside the dialogue.

• SR-6 (classical or intuitionistic) does not hold for material dialogues
. For formal dialogues this restriction on the length of dialogues is
fulfilled by A f (4(n)). There is a key difference at the level of rules for
attacks and defences in DL and Mittelstaedt’s corresponding rules in
the material dialogues, which is that while the dialogues for particle
rules in DL are finite, Mittelstaedt’s are not, because of the possibility
of a different outcome regarding the same proposition later in the
dialogue in a quantum setting. Mittelstaedt therefore has to add
commensurability and availability propositions to restrict the length
of these dialogues.

As mentioned above, a core of DL structural rules are also present in Mittel-
staedt’s system, meaning that the two systems, though differently presented,
have a lot in common. Mittelstaedt takes the dialogical methodology a step
further in using it to essentially give a semantics for the proof-theoretic
system of the formal dialogue games (on the basis of which he eventually
specifies the effective quantum logic Qe f f ).

At a general level, Mittelstaedt’s system gives a semantics to DL’s purely
proof-theoretic approach, specifying the method by which atomic proposi-
tions (of the formal dialogue) are determined to be true - a material dialogue.
Via the material dialogues, he gives a basis for interpreting the content of
atomic propositions, namely in terms of statements about the state of a
quantum system. The system therefore has an additional dimension, the
meaning of compound propositions is explained, rather than left blank to
fill in as one wishes (or a blank to be ignored entirely, depending on one’s
interests), as is the way with DL. This is interesting, of course there could
be very many ways to do this, Mittelstaedt’s quantum logical system is just
one way to give this semantic meaning to the formal system developed in
DL. Mittelstaedt’s formal dialogue-game corresponds to the intuitionistic
part of the full quantum calculus, this is reflected in the fact that some of
Mittelstaedt’s rules align, as we have seen, with the intuitionistic variants of
the DL structural rules explained above.

Of course, Mittelstaedt also has to put in some work to deal with the quan-
tum nature of the systems that are giving the logic its semantics, so to speak.
The commensurability calculus he develops, which fits in to the formal
dialogue-games is a requirement stemming from the semantic side, deal-
ing as it does with whether propositions can, in principle, be asserted of
one system at a given time. This important feature of the system is then
incorporated into the syntactic rules by means of the equivalences that can
be proved between formally true availability propositions from the com-
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mensurability calculus K (which always hold) and certain formally true
material implication statements. Mittelstaedt places great importance on
the possibility of eliminating material propositions, ie. those pertaining to
the empirical, from his formal dialogues, as he wishes to formulate a logic
that works for both classical and quantum systems, rather than one that
only works for quantum systems. As such, in the end the formal quantum
dialogue game actually bears great resemblance to the intuitionistic variant
of the DL setup.

Truth and Validity in the Two Systems

The notions of validity given by DL and Mittelstaedt’s formal dialogues are
very similar, although the formulation of DL I have chosen to discuss does
not make explicit reference to winning strategies. I now briefly revisit key
notions regarding truth and validity for both systems in order to be able to
compare them.

DL

• Def. Validity: A first-order sentence A is dialogically valid if all dia-
logue games belonging to the dialogue D(A) are closed.

• Def. Closed: A dialogical game ∆ ∈ D(A) is closed iff there is some
atomic formula which has been played by both players. More precisely,
∆ is closed iff there exist two integers m and n and atomic formula
α ∈ Sub(A)∪ {A} such that the propositional content of ∆[m] is α and
the propositional content of ∆[n] is α and exactly one of {∆[m], ∆[n]}
is a P-move.

• DL makes no reference to truth in a model, focussing exclusively on
validities in the proof system defined.

• This definition makes no explicit reference to strategy, but amounts to
A being valid if P has a winning strategy for A, as P must be able to
win against all possible moves by O, and the game is defined by the
sequence of choices made by O. In other words, if a participant has
been forced to play the same atomic formula as their counterpart, they
have effectively been forced to concede that the other is correct.

As detailed previously, DL is a purely proof-theoretic approach, making no
reference to models rendering a proposition true or false. It deals purely with
a testing procedure for the validity of compound propositions, regardless of
the atomic formulas contained within them, here we are interested in the
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mechanics of proving these validities without recourse to the meanings of
their constituents.

Mittelstaedt’s Quantum Logic
Mittelstaedt’s characterisation of truth or validity is more standard for a
dialogical approach, defining truth in terms of the proponent having a
winning strategy for the statement at hand.

• A participant has a strategy of success within dialogue-game Dx if there
is a succession of arguments resulting in that participant’s winning
the dialogue regardless of the arguments of the other.

• Def. Truth: A is true (or x− true) iff P has a strategy of success within
Dx about A

• A is materially true if P has a strategy of success for A within Dm

(which ultimately depends on the truth of the elementary propositions
and availability propositions involved in what is being demonstrated).

• A is formally true if P has a strategy of success for A within D f (so A
is true in all material dialogues, regardless of the specifics of elemen-
tary and availability propositions contained within it - D f deals with
validities).

Notice that Mittelstaedt’s terminology involves a notion of truth, in contrast
to DL, which speaks only of validity. There are several factors at play here,
one being that Mittelstaedt, of course, is dealing with empirical factors that
do not arise in DL. Whereas in DL atomic propositions cannot be attacked
and defended, they do not have any ’source’ of truth or falsity, in some sense
having meaning only insofar as they occur in compound propositions the
validity or otherwise of which can then be ascertained; Mittlstaedt does have
a substantive notion of truth for the material dialogues. In the empirical
sense, this is just that an atomic proposition makes a statement about a
physical system that can be true or false. Elementary proposition a being
true is just to say that a measurement has been made on the system at hand
verifying this. In mathematical terms, as his system is based on the standard
lattice-theory for quantum logic, making use of Hilbert space models, the
notion of material truth does amount to an idea of truth in a model. Con-
versely, the formal dialogues deal with those material propositions that are
true regardless of the elementary propositions contained within them, i.e.
validities in exactly the sense of DL.

The way the notion of truth and validity is presented for Mittelstaedt’s
different varieties of dialogue is similar, both being in terms of dialogues,
yet the concepts of material and formal truth in his system are fundamentally

40



Quantum Dialogues Laura Biziou-Van Pol (10865675)

different - essentially the former is semantic truth, the latter validity. DL has
only the latter, being in principle unconcerned with the notion of truth in a
model.

Rahman & Tulenheimo specify two approaches to adding a notion of truth
to dialogical systems. Alethic dialogues relativise a dialogue to a model,
adding (in the case of propositional logic) a valuation function; whereas
what they term material dialogues avoid this by approximating a notion of
truth by adding hypotheses to the structure in the form of initial concessions
of the opponent. Effectively this amounts to specifying a model but in
terms of the object language only, by means of specifying of every atomic
proposition that either it or its negation holds (Rahman & Tulenheimo, 2001:
176).

Effectively, as the name of his material dialogues would suggest, this is what
Mittelstaedt does, making no reference to the algebraic structures at hand
while setting up the dialogues (although he links the two later on). Of course,
he does make reference to how the truth of the elementary propositions
is determined, but in the context of setting up the dialogues he does this
without recourse to a mathematical model, it is simply taken as read that
we have a physical method for determining the truth of the elementary
propositions, and later the commensurability propositions.

Quantum Features of Mittelstaedt’s System

I will now examine the distinctively quantum features of Mittelstaedt’s
system and how he squares these with the retention of crucial aspects of
classicality to which he aspires.

As we have already seen in the exposition of Mittelstaedt’s system above,
a key contention is that classical logic corresponds to the part of quantum
logic involving only commensurable propositions. The manner in which
this is effected is explored in more detail here.

One of the key features of quantum logic is a non-classical implication, and
there are many possible variants of quantum implication (see eg. Dalla
Chiara & Giuntini, 2001; Pavičić & Megill, 2009; Herman, Marsden & Piziak,
1975). Mittelstaedt’s notion of factual implication and its relation to the
material implication that appears in the dialogues we have seen above bears
further examination. In the following section we will see that Mittelstaedt’s
basic notion of implication in the quantum logical setting is in fact that of
Sasaki Hook.
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In the following section we summarise the issue of quantum implication,
why it cannot be the classical implication. The particulars of implication
in Mittelstaedt’s system are the discussed, beginning with an exposition of
the various notions of implication he has in lattice-theoretic terms, and the
relations between these and the commensurability propositions examined
above. We then revisit the formal dialogue games and elaborate on how
the implication functions within these before showing how the logic of the
formal dialogues is extended to the full quantum calculus.

Quantum Implication - Background

We start with the briefest of comments on the problem of implication in
quantum logic. It is not my intention to discuss the lattice theory involved
in any great depth here, but a short look at it will serve to clarify the issue at
hand. In this section, we look at the lattice theoretic aspects of Mittelstaedt’s
logic with a view to explaining his notion of implication. The necessity of
modifying the classical notion of implication is one of the defining features of
quantum logic, and so is a useful way to explore what makes Mittelstaedt’s
system distinctively quantum. We will see that the notion of commensura-
bility plays a crucial role here, and we will look in slightly more depth at
some lattice theoretic aspects of this mentioned earlier.

The material implication is among the classical connectives that must be
altered to accommodate quantum phenomena. This problem hinges on the
fact that the lattice underlying the logic is that of the closed subspaces of a
Hilbert space, which differs in certain key respects from the Boolean lattice
of classical logic.

The lattice of closed subspaces of a Hilbert space, unlike a Boolean lattice, is
not distributive, i.e. A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) does not, in general,
hold. Any logical system with material implication as main operator will be
distributive, and so the Hilbert space lattice cannot have a classical material
implication. We will see why in more detail below.

Experimental propositions of the form A→ B do not seem to encode a static
experimental property of a system, but rather a relation between properties
(Baltag & Smets, 2011: 4).

A propositional calculus, as Mittelstaedt puts it, is a lattice L, with elements
A, B, C... which form a partially ordered system with respect to ≤, the
implication relation, as he would have it. Of course, to have a logical system
the implication A ≤ B is also used in iterated form (Mittelstaedt, 1972: 1359).
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According to Dalla Chiara & Giuntini, an implication connective ∗→ ought
to satisfy the following conditions:

Identity: A ∗→ A

Modus Ponens: If A is true and A ∗→ B is true, then B is true (Dalla Chiara
& Giuntini, 2008: 22).

As a side note, it is instructive to say a word or two about why some form of
implication is so important for a logical system. Modus Ponens is essential
for deduction - it is difficult to capture the notion that a statement follows
from another without it, and so we must be able to express it in lattice
theoretic terms if the lattice in question is to be considered a logic. As Zeman
puts it, if a formalism is to have a reasonable interpretation as a theory of
deduction, it must have some relation that, when it holds between two
elements of the formalism, might reasonably be interpreted as expressing
that one follows from the other (Zeman, 1979: 723). This is the implication
relation, crucial for a formalism to be considered a logic28.

Various different quantum implications have been proposed, and it is not
my intention to discuss them all here, but implication connectives that can
be defined for quantum logic are all to some degree anomalous (for further
details, see Dalla Chiara & Giuntini, 2008).

We focus here on the variety of quantum implication known as Sasaki
hook, which, as we shall see, is the implication of the full quantum logic of
Mittelstaedt’s system. This is defined as follows:

A S→ B := A′ ∨ (A ∧ B)

Sasaki hook does exhibit certain non-classical features such as the failure
of contraposition, ie. A S→ B ⇒ B′ S→ A′ does not hold (Herman et al.
1975: 312). Nevertheless, it is arguably the best behaved of the quantum
conditionals that can be defined, being equivalent to the material implication
in Boolean sublattices of the quantum lattice, as we shall see below29.

28See for example Greechie & Gudder, 1971 for an argument that quantum logic is not in
fact a logic.

29Philosophical discussion as to the meaning of Sasaki hook abounds. Hardegree 1979, for
example, argues that it encodes the Stalnaker conditional; whereas according to Smets, it
should not be conceived of as a static implication, but a dynamic one (Smets, 2001: 308).
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Implication in Mittelstaedt’s System

A Digression on Lattices

In what follows, a brief sketch of the lattice theoretic aspects of Mittelstaedt’s
system is given, with a view to clarifying the manner in which he deals with
the quantum implication discussed above. The lattice theory in question
is relevant because it is the means by which he defines factual implication,
the partial order relation, which is to be distinguished from the implication
connectives that we saw above in the dialogues.

I begin by introducing some notation and defining several key properties
lattices may have, which will differentiate the lattices discussed below.

We define a zero element 0 and a unit element 130 satisfying the following
for any lattice element A (Mittelstaedt, 1978: 28):

0 ≤ A, A ≤ 131

Orthocomplement: For an orthocomplemented lattice, there exists an auto-
morphism Θ¬ : S → S , denoted by Θ¬(A) = ¬A satisfying the following:

A ∧ ¬A ≤ ∧
0 ≤ A ∧ ¬A
A = ¬¬A
A ≤ B⇒ ¬B ≤ ¬A

Pseudocomplement: The pseudocomplement of A, ¬A in a pseudocomple-
mented lattice satisfies the following:

0 ≤ A
A ∧ ¬A ≤ 0
A ∧ C ≤ 0⇒ C ≤ ¬A

Quasi-pseudocomplement:

0 ≤ A
A ∧ ¬A ≤ 0
A ∧ C ≤ 0⇒ A→ C ≤ ¬A
A ≤ B→ A⇒ ¬A ≤ B→ ¬A

Quasimodularity: B ≤ A, C ≤ ¬A⇒ A ∧ (B ∨ C) ≤ B

Distributivity: A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ ¬C)

30I have modified Mittelstaedt’s original notation here, he uses
∧

for 0 and
∨

for 1.
31When we come to interpret this lattice as a logic, 0 and 1 take on the meaning of canonical

falsity and canonical truth, respectively.
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Mittelstaedt introduces several lattices in the course of his explanation of the
relation between dialogues and lattices. A key distinction is that between
Lq, the quasimodular lattice; and Lqi, the quasi-implicative lattice of the logic
Qe f f arising from the formal dialogue games. The latter corresponds to
the intuitionistic part of Lq, as we shall see in greater detail below. As
mentioned above, Mittelstaedt bases his novel methodology for quantum
logic on the traditional conception of the lattice of closed linear subspaces of
a Hilbert space. The lattice he eventually arrives at in his exposition is the
orthocomplemented quasimodular lattice Lq, which is actually less specific
than the algebra of closed subspaces of a Hilbert space (the latter having
some properties not shared by Lq) (Mittelstaedt, 1978: 29). Yet he does this
by way of the lattice Lqi corresponding to the propositional calculus Qe f f
arising from the formal dialogue games detailed above.

The specifics of Mittelstaedt’s exposition are rather detailed, so only the
briefest outline is given here. He makes reference to the following lattice
structures:

LH: The lattice of closed linear subspaces of a Hilbert space.

Lq: The orthocomplemented quasimodular lattice. This has as a model
the lattice of closed linear subspaces of a Hilbert space (Mittelstaedt,
1978: 27), but is a weakening of LH, lacking certain conditions that
hold there32.

Lo: The orthocomplemented lattice.

Lqi: The quasi-implicative lattice. This is the lattice of the logic Qe f f , the
propositional calculus arising from the formal dialogue-games. It
is quasi-pseudocomplemented (rather than orthocomplemented or
pseudocomplemented), and not quasimodular or distributive. It corre-
sponds to the intuitionistic part of Lq.

Li: The implicative lattice. This is the lattice of ordinary intuitionistic logic.
It is distributive and pseudocomplemented. Mutually commensurable
elements of Lqi form implicative sublattices of Lqi.

LB: The Boolean lattice. This is the lattice of classical logic, which, of
course, is orthocomplemented and distributive. Mutually commensu-
rable elements of Lq form a Boolean lattice.

Relations between the different lattices Mittelstaedt discusses can be
summarised as follows (Mittelstaedt, 1978: 118):

32Among these are atomicity and the covering law, which Lq does not satisfy (Mittelstaedt,
1978: 29).
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Lqi extended by A ≤ B→ A results in Li

Lqi extended by 1 ≤ A ∨ ¬A results in Lq

Lq extended by A ≤ B→ A results in LB

Li extended by 1 ≤ A ∨ ¬A results in LB

Mittelstaedt develops logic Qe f f on the basis of the formal dialogue-game,
as we shall see in more detail below. The axioms of this logic are intuitionis-
tically defendable propositions from the games. These in turn correspond to
the axioms of the lattice Lqi. Eventually, he extends this logic with the law of
excluded middle (making certain assumptions about the value-definiteness
of material propositions) to the full quantum logic, corresponding to the
lattice Lq.

Propositions A ∈ Lqi which can be shown to be true (ie. for which the
relation 1 ≤ A can be derived in Lqi) are the compound propositions for
which there exists a strategy for success within a dialogue game. Therefore,
a particular definition of a dialogue game counts as a semantics for Li.
This cannot be directly applied to Lq, which validates A ∨ ¬A. However, a
generalisation of the dialogic method can be used to give an interpretation
of Lqi, the intuitionistic part of Lq

33. The generalised quantum dialogue-
game leads to an interpretation of Lqi, which can then be extended to an
interpretation of Lq (Mittelstaedt, 1978: 46).

The reasons for his starting from the intuitionistic variant of the logic here
appear to be at least to some degree of a historical bent. As has been noted
above in the exposition of DL, the founders of the dialogical tradition were
convinced that intuitionistic logic was the correct logic and were looking
to establish a way of doing intuitionistic logic, a proof system for it. As
such, this is the way Mittelstaedt sets up his dialogues, so as to result in
an intuitionistic permutation of quantum logic. Nevertheless, he also later
gives reasons based in the physical nature of the theory, when extending
Lqi to Lq and hence building the calculus of full quantum logic, stating
that the reason for the missing principle of excluded middle is the lack of
value-definiteness for commensurability propositions. We will revisit this
below.

33To be more precise, if excluded middle is added to the axioms of Lqi, the resulting lattice
is isomorphic to Lq
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Partial Orders as Implications

In a Boolean lattice LB, the partial order ≤, as well as being considered
a relation, can also be used to introduce a two-place operation material
implication, which is the classical implication. For LB, material implication is
connected with ≤ by the condition A ≤ B⇔ 1 ≤ A→ B. Here,→ satisfies
the following (Mittelstaedt, 1978: 37):

MI1: A ∧ (A→ B) ≤ B

MI2: A ∧ C ≤ B⇒ C ≤ A→ B

Of course, it is well known that the material implication can be defined in
terms of the other classical connectives as follows: A→ B := ¬A ∨ B.

In the lattices Lq and Lqi, we cannot have the material implication in general,
as only distributive lattices have this form of implication, and Lq is not
distributive34. Note that MI1 can be seen as a version of Modus Ponens and
MI2 as one direction of the deduction theorem. These ingredients are crucial
and any implication that satisfies them will necessarily be distributive, see,
eg. Hardegree 1981.

Nevertheless, Mittelstaedt contends that postulates can be formulated for
Lq guaranteeing the existence of a lattice element satisfying some intuitive
properties of material implication such as Modus Ponens and additionally
it has to relate to the order relation as follows: 1 ≤ A → B ⇔ A ≤ B
(Mittelstaedt, 1978: 44). According to Mittelstaedt, this new implication
is the analogue of the implication that holds for Boolean and implicative
lattices. Implications can be formulated differently for different lattices, but
must satisfy Modus Ponens.

Therefore, we can have an implication that retains the most important fea-
tures of the classical material implication for Lq, the analogue for the quasi-
modular lattice of what we find in the Boolean lattice, which fulfils the con-
ditions specified above. (Mittelstaedt, 1978: 38). I will denote this different

variety of implication here by S→, as it refers to the above-mentioned Sasaki
Hook. Mittelstaedt calls this implication variant material quasi-implication
(the more commonplace contemporary terminology is Sasaki hook), and, to
recall, it is defined as follows:

A S→ B = ¬A ∨ (A ∧ B)

34We will see later in the context of commensurability how Mittelstaedt obtains more
standard varieties of implication for the dialogues.
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Material quasi-implication (as defined for Lq) satifies the following condi-
tions:

A ∧ (A S→ B) ≤ B
A ∧ C ≤ B⇒ ¬A ∨ (A ∧ C) ≤ A S→ B

We now turn to the quasi-implication of Lqi, the lattice of the logic of the
formal dialogues.

The quasi-implication of Lqi satisfies the following:

Lqi(4.1) A ∧ (A→ B) ≤ B
Lqi(4.2) A ∧ C ≤ B⇒ A→ C ≤ A→ B
Lqi(4.3) A ≤ B→ A⇒ B ≤ A→ B
Lqi(4.4) B ≤ A→ B, C ≤ A→ C ⇒ B ∗C ≤ A→ (B ∗C) for ∗ ∈ {∧,∨,→}

Under certain circumstances, the order on Lqi gives rise to the intuitionistic
implication of Qe f f , on others it will give rise to the Sasaki hook, depending
on the additional conditions present.

If Lqi is extended by the following axioms then the quasi-implication here
goes over into the element ¬A ∨ (A ∧ B), the material quasi-implication of
Lq. A sketch of the proof is given here by way of illustration35 (Mittelstaedt,
1978: 114):

5.27 1 ≤ A ∨ ¬A
5.28 A = ¬¬A
5.29 A ≤ B⇒ ¬B ≤ ¬A

To prove that with the addition of these axioms, the quasi-implication of Lqi
is equivalent to the material quasi-implication of Lq (ie, the quasi-implication

A → B = A S→ B = ¬A ∨ (A ∧ B)), we proceed as follows, referring
specifically to Lqi(4.2) (A ∧ C ≤ B⇒ A→ C ≤ A→ B):

From A ∧ (A ∧ B) ≤ B we obtain A → (A ∧ B) ≤ A → B. Because of the
formal commensurability A ∧ B ≤ A → (A ∧ B) (Mittelstaedt, 1978: 105),
we have that A ∧ B ≤ A→ B, from Lqi(4.2).

From Lqi(4.2), again, we have that ¬A ≤ A→ B, as follows. From A∧¬A ≤
B, it follows from Lqi(4.2) that A → ¬A ≤ A → B. From the formal
commensurability A → B ≤ A → (A → B) (Mittelstadt, 1978: 105), we
have that ¬A ≤ A→ B.

It follows that ¬A ∨ (A ∧ C) ≤ A→ C.

35Indeed, Lqi can be extended to Lq with the addition of some axioms, see Chapter 5 of
Mittelstaedt, 1978.
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It is worth noting here that not everyone believes that taking the partial order
as one’s implication relation is legitimate. For example, Herman, Marsden
& Piziack raise an objection, namely that implication, classically, is a binary
connective; whereas ≤ is a relation between lattice elements. They contend
that this amounts to a confusion of object-language and meta-language, and
that ≤ says something about deducibility, rather than implication (Herman,
Marsden & Piziack., 1975: 307). Zeman, for example, contends that ≤ is in
fact the deduction (`), rather than the implication relation (Zeman, 1979:
724).

Mittelstaedt essentially mitigates against this challenge to viewing ≤ as the
implication by saying that while it is a relation, where it holds between
A and B, a particular kind of proposition concerning A and B is also true.
Here, it is worth briefly clarifying the difference between the partial ordering
relation on the lattices denoted by ≤ and the closely linked, but different
operator→ (in its various forms, as we have seen, both these concepts differ
depending on the lattice under discussion). The partial order on a lattice
is a relation that holds between elements of the lattice in question. The
implication operator→, on the other hand, gives rise to a proposition in its
own right, and hence another element of the lattice. The proposition A→ B
holds precisely when A ≤ B, this is when the additional lattice element
A→ B is generated.

So in the case of Lq, for example, the Sasaki hook, A S→ B is a proposition
about the relation between A and B, and so is, in fact, another, separate
element of the lattice. This proposition is true when A ≤ B, and is equiv-
alent to the proposition ¬A ∨ (A ∧ B), as we have seen. This relationship
between the partial order and the implication operator holds regardless of
the lattice in question (at least as far as the lattices Mittelstaedt discusses are
concerned), but for different lattice structures, the element generated by, so
to speak, talking about the relation ≤ is different.

Commensurability in Lattice Theoretic Terms

We now turn our attention to commensurability from a lattice theoretic
point of view, in order to better understand the relationships between the
lattice-theoretic implications≤ in Lq and Lqi and the implication connectives
in their associated logics. The key point here is that commensurable propo-
sitions generate distributive sublattices, thereby allowing for non-quantum
implication connectives to hold between propositions in the logics at hand.

We now define the commensurability relation K, which we saw above in the
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context of dialogues, in lattice theoretic terms, for Lq, and Lqi
36

K ⊆ Lq × Lq := (A, B) ∈ K ⇔ (A ∧ B) ∨ (A ∧ ¬B)

Implication relations are contained in K for both Lq and Lqi. This means that
commensurability is a prerequisite for the implication relation ≤ to hold
between two elements.

In Lq, the conditions satisfied by K ⊆ Lq × Lq can be summarised as follows
(Mittelstaedt, 1978: 34).

(KLq1) K is symmetric
(KLq2) R ⊆ K
(KLq3) If S ⊆ Lq is a subset of elements with S ×S ⊆ K, then S generates
a Boolean sublattice LB(S ) ⊆ Lq

(KLq4) If LB ⊂ Lq is a Boolean sublattice, the elements of any subset S ⊆ LB

are commensurable, ie. S ×S ⊆ K.

The proof that mutually commensurable elements A, B, C ∈ Lq generate a
Boolean sublattice runs as follows:

From B = (B ∧ A) ∨ (B ∧ ¬A) and C = (C ∧ A) ∨ (C ∧ ¬A), we get
A ∧ (B ∨ C) = A ∧ ((B ∧ A) ∨ (B ∧ ¬A) ∨ (C ∧ A) ∨ (C ∧ ¬A)). Apply-
ing quasimodularity we get the desired result (Mittelstaedt, 1978: 33).

In fact, this result holds for any orthomodular lattice; the result can be stated
in what is called a Foulis-Holland set in the literature. A Foulis-Holland
set is a set of elements A, B, C of an orthomodular lattice where at least one
element commutes with the other two (ie. one element is commensurable
with the other two, casting our minds back to the definition of compatibility
in the introduction). This implies distributivity where the set in question is
a subset of the orthomodular lattice37.

We can easily see how where we have commensurable propositions A and
B (and hence, a distributive sublattice of Lq), the Sasaki hook defined above
becomes equivalent to the material conditional. Recall the definition of
commensurability, A = (A ∧ B) ∨ (A ∧ ¬B). Sasaki hook A → B, as we
have seen, is defined as ¬A ∨ (A ∧ B). By distributivity, from the latter we
have (¬A ∨ A) ∧ (¬A ∨ B), in other words ¬A ∨ B, the classical material
implication, as long as excluded middle is a validity. This does not automat-
ically hold for Lqi, where, in the first instance, the law of excluded middle
does not hold38, and in the second, the quasi-implication of Lqi does not give

36The relevant definitions are found in Mittelstaedt 1978, pages 35-35, and 112, respectively.
37For the proof of this, see eg. Greechie, 1977.
38Recall the failure of a dialogical proof for the law of excluded middle working with

intuitionistic rules in DL above
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us the Sasaki hook unless some axioms are added. This will become clearer
when we look at the relation between Lqi and the corresponding logic Qe f f ,
which is intuitionistic and so does not admit of an implication connective
definable in terms of the other connectives.

Analogous to the conditions for Lq above, in Lqi, the conditions satisfied by
K ⊆ Lqi × Lqi can be summarised as follows (Mittelstaedt, 1978: 34).

(KLqi1) K is symmetric
(KLqi2) R ⊆ K
(KLqi3) If S ⊆ Lqi is a subset of elements with S ×S ⊆ K, then S

generates an implicative sublattice Li(S ) ⊆ Lqi
(KLqi4) If Li ⊂ Lqi is an implicative sublattice, the elements of any subset
S ⊆ Li are commensurable, ie. S ×S ⊆ K.

Neither of the lattices above is distributive, yet commensurable subsets of
elements generate distributive sublattices for both, albeit different varieties
thereof - the implicative lattices of ordinary intuitionistic logic for Lqi; the
Boolean lattices of classical logic for Lq.

Quasi-implication, the Formal Dialogue Game and Effective Quantum
Logic

For the sake of convenience in formulating the calculus Qe f f of effective
quantum logic, the calculus we get from the formal dialogue game, Mit-
telstaedt introduces some of the notions from the lattice theoretic setting
we have just seen, to which we now turn our attention. He adds to the
set S of propositions two new propositions, canonical truth denoted by 1
and canonical falsity denoted by 0. In the dialogical context, 1 cannot be
questioned by either player, and the player attempting to argue 0 loses the
dialogue. It follows that propositions A→ 1 and 0→ A can be defended in
a dialogue regardless of the content of A (Mittelstaedt, 1978: 89).

He also introduces the now familiar relation≤ in the context of the dialogues,
which holds if and only if the intuitionistic implication can be defended in a
dialogue, defined as:

A ≤ B⇔`D f A→ B

From the dialogues and the relation above, we also have that A ≤ 1 and
0 ≤ A for all A. From these and Lqi(4.3) detailed in the section on commen-
surability above, it also follows that 1 and 0 are commensurable with all
other propositions. Aribitrary A can be defended in a formal dialogue if
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and only if the relation 1 ≤ A holds; similarly ¬A holds if and only if A ≤ 0
does (Mittelstaedt, 1978: 90). And so we have 1 ≤ ¬A⇔ A ≤ 0.

It can be shown in the dialogues that conditions 1.1 and 1.2 from above hold,
the first two conditions satisfied by the quasi-implication, as follows:

1.1: A ≤ A

O P

0 [ ] A→ A

1. A (0) A 〈0〉

1.2: A ≤ B, B ≤ C ⇒ A ≤ C

O P

−2. A→ B

−1. B→ C

0. A→ C

1. A (0) [ ]

2. B 〈−2〉 A (−2)

3. C 〈−1〉 B (−1)

4 [ ] C 〈0〉

It is worth noting that whether propositions A, B and C in this second dia-
logue are mutually commensurable is irrelevant for the strategy of success
in question (Mittelstaedt, 1978: 92). For the sake of ilustration, I also in-
clude the dialogical proof of Modus Ponens, given its central importance
discussed above.

Modus Ponens: A ∧ (A→ B) ≤ B

O P

0. (A ∧ (A→ B))→ B

1. A ∧ (A→ B) (0) [ ]

2. A 〈1〉 1? (1)

3. A→ B 〈1〉 2? (1)

4. B 〈3〉 A (3)

5. [ ] B 〈0〉
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Note that this dialogue makes use of the formal commensurability k(A, A→
B) at P(4), where P takes over A asserted by O at (2) (Mittelstaedt, 1978: 93).

As we have seen in the discussion of the various lattices involved, where
propositions are commensurable, they form implicative sublattices of the
quasi-implicative lattice Lqi (which, again, corresponds to the calculus Qe f f
of effective quantum logic). This is the manner in which Mittelstaedt man-
ages to maintain more standard connectives in his logic whilst also account-
ing for quantum features.

However, there are validities provable in the formal dialogues that hold
regardless of whether the propositions concerned are commensurable, see
the dialogical proof of 1.2 above, for example.

The quasi-implicative lattice is a weakening of the implicative lattice, the
lattice of ordinary intuitionistic logic. This can be seen from the following di-
alogically provable propositions, which can be strengthened to intuitionistic
validities in the case that the propositions involved are commensurable:

Qe f f theorem: A ∧ C ≤ B ⇒ A → C ≤ A → B. The dialogue in question
runs as follows:

O P

−1. A ∧ C → B

0. [ ] (A→ C)→ (A→ B)

1. A→ C (0) A→ B 〈0〉
2. A (1) [ ]

3. [ ] A ∧ C (−1)

4. 2? (3) [ ]

5. C 〈1〉 A (1)

6. B 〈−1〉 C 〈3〉
7. [ ] B 〈1〉

This can, if the propositions in question are commensurable, be strengthened
to A∧C ≤ B⇒ C ≤ A→ B, which cannot be proved in the formal dialogue
game. Mittelstaedt states that this is the decisive difference between ordinary
logic and quantum logic (Mittelstaedt, 1978: 94). As we saw above, any
implicative lattice satisfies this condition.

Likewise, we have Qe f f theorem A ∧ C ≤ 0 ⇒ A → C ≤ ¬A, provable in
the formal dialogue game as follows:
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O P

−1. ¬(A ∧ C)

0. [ ] (A→ C)→ ¬A

1. A→ C (0) ¬A 〈0〉
2. A (1) [ ]

3. [ ] A ∧ C

4. 2? (3) A(1)

5. C 〈1〉 C 〈3〉

Where A and C are commensurable, we can strengthen this to A∧ C ≤ B⇒
C ≤ A→ B, as in ordinary intuitionistic logic, however, this is not generally
provable in the formal dialogue game.

In the context of Qe f f , the implication A ≤ B holds if and only if the
intuitionistic implication39 A → B can be defended in a formal dialogue
game (Mittelstaedt, 1978: 90). Every implication derivable from Qe f f can
be proved in a formal dialogue. Qe f f is consistent with regards to the
class of implications provable in the formal dialogue, also complete, ie.
`Qe f f A ≤ B ⇒`Qe f f A → B, and conversely, `Qe f f A → B ⇒`Qe f f A ≤ B.
This amounts to being able to prove the same things in the logical and
lattice-theoretic settings (Mittelstaedt, 1978: 99).

If all elements of a lattice Lqi are ’pairwise commensurable’, ie. each ele-
ment is commensurable with every other, in other words, we can add the
relation A ≤ B → A to its axioms, then we have an implicative lattice,
as we saw above (Mittelstaedt, 1978: 112). Quasi-implication (the partial
order) is contained in the commensurability relation (and so any proposi-
tions between which the quasi-implication holds will be commensurable),
but the connectives give no indication as to whether the propositions in
question are commensurable. So, for example, there is a strategy of success
in the formal dialogue game for A ∧ B ≤ A regardless of whether A and B
are commensurable or not, yet, of course, A is commensurable with itself
(Mittelstaedt, 1978: 92).The propositions involved in a successful formal
dialogue proof, at the lattice theoretic level, form implicative sublattices
of Lqi (ie. lattices of ordinary intuitionistic logic). However, this does not
necessarily mean that the propositions involved in each different formal
dialogue game are mutually commensurable, hence the fact that Lqi is not

39Mittelstaedt uses the term material implication to refer to two separate concepts - the
classical material implication connective and the intuitionistic implication connective, I have
differentiated between the two here to avoid confusion.
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itself an implicative lattice.

Qe f f is intuitionistic, so the implication we have here is not exactly that
of classical logic, definable in terms of A → B := ¬A ∨ B. Intuitionistic
logic does not have this kind of definition in terms of other operators for
the implication, as Mittelstaedt says, Li has an implication connective that
cannot be expressed in terms of the other connectives40 (Mittelstaedt, 1978:
43). Rather, what A→ B in this context tells us is that there is some method
by which a proof of B can be deduced from a proof of A, in this case, clearly
via the means of a winning strategy for B in the material dialogue derived
from a prior proof of A.

Therefore, we end up with an implication connective that expresses some-
thing more along the lines of ’if A is provable in a material dialogue, then
from that proof, B is provable in a material dialogue’. This stands to reason,
given that the connectives in the dialogue games are defined by the possi-
ble attacks and defences they admit, and in the formal dialogue game the
whole idea is to construct validities, which hold regardless of the content of
material propositions.

Concerning validity, we use the dialogues to capture what is valid, eventu-
ally ending up with a propositional calculus based on a series of formally
true implications from which other formally true implications can be de-
rived (Mittelstaedt, 1978: 97). Of course, Mittelstaedt does in fact provide us
with a semantics for this logic as well in the form of the material dialogues,
he does specify what it is for a material proposition to be true, but he also
abstracts away from this in the formal dialogue games, eliminating reference
to material propositions in favour of propositions that are provable in the
material dialgues no matter what the content of the elementary propositions
contained therein. Yet the material dialogues then become relevant again
when extending the logic to the full quantum logic, as we want to have some
reference to the quantum systems this is intended to capture.

I now give a very brief sketch of how Mittelstaedt extends Qe f f to obtain
the calculus of full quantum logic (which he calls Q).

Qe f f (with corresponding lattice Lqi differs from the propositional structure
in Hilbert space (given by lattice Lq) in that the law of excluded middle
cannot be derived. For elementary propositions the law of excluded middle
’is valid for physical reasons’, elementary propositions have definite truth
values, whereas for compound propositions the law of excluded middle
cannot be proved. This is due to the fact that commensurability propo-

40For a detailed exposition of intuitionistic logic, see for example Bezhanishvili & de Jongh,
2006

55



Quantum Dialogues Laura Biziou-Van Pol (10865675)

sitions can never be shown conclusively by a finite process to be value
definite41, and so it cannot be guaranteed that the elementary propositions
in a compound proposition containing a two-place connective are always
commensurable (Mittelstaedt, 1978: 119). Mittelstaedt instead postulates a
’strategy of confirmation’ on the philosophical basis that science proceeds
without such stringent proofs, meaning that the law of excluded middle can
be introduced in the calculus (Mittelstaedt, 1978: 138).

Concluding Thoughts

Mittelstaedt’s Dialogues in the Quantum Logical Setting

Mittelstaedt’s setup is, as he explicitly states, the traditional quantum logic
setup, conceptualised via the notion of dialogues we have looked at in
detail above, describing a process or algorithm for checking the validity of a
proposition. The lattice theoretic background he describes is the traditional
variety, however, as we have seen, he looks to develop the dialogical system
independently of its lattice-theoretic basis, before unifying the dialogues
with the the lattices generated by the logics in question.

Mittelstaedt speaks of the dialogic conceptualisation as a pragmatic device
(Mittelstaedt, 1978a: 48), and emphasises that the construction of his lan-
guage does not hinge on any empirical results, contending instead that
’the syntactic rules of this language are rather the linguistic preconditions
of the possibility of experience’ (Mittelstaedt, 1978a: 48). The procedures
described for proving propositions about the world determine the syntax
of this scientific language (Mittelstaedt, 1978a: 48), they also determine the
semantics, the meaning of a proposition is conceptualised in terms of its
possibilities in a dialogue.

Ultimately, his system is both a means to determine truth in a particular kind
of mathematical model and a means to determine validites. Mittelstaedt is
keen on the fact that the dialogues can be divorced from the lattice theory,
standing on their own as purely syntactic devices without reference to
empirical results, although he does, as we have seen, need to make some
concession to the fact that he is dealing with empirical phenomena.

41This point has a distinct Popperian feel to it, essentially what Mittelstaedt is running up
against here is just the problem of induction - no finite sequence of successful demonstrations
of a commensurability proposition guarantees that the next attempt will not have a different
answer.
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Mittelstaedt’s language takes as primitive the results of measurements -
’elementary propositions concerning measuring results’ (Mittelstaedt, 1978a:
48). Thus his conceptual foundation fits with the operational tradiditon
in quantum logic. Rather than seeing a projection as encoding a physical
property of a system, and assuming that it is physical properties that ul-
timately count as meaningful or fundamental, the operational approach,
originating with the work of Piron, views quantum logic in terms of the
results of measurements made on a system (Coecke, Moore & Wilce, 2001: 6).
Mittelstaedt’s system follows this general idea, the elementary propositions
of material dialogues are taken to be the results of measurements made on a
quantum system.

This idea chimes with the notion of a dialogue in that the making of mea-
surements on a system can be conceptualised as a process with a variety of
question-answer structure, as mentioned in the introduction. ’The opera-
tionist [sic]...will see the experimenter as the asker of questions, he will view
the theory as supplying the answers and he will view quantum logic as
describing the logical structure of those questions and answers’, as Gibbins
words it (Gibbins, 1982: 210). Of course, the measurements made on a sys-
tem, which determine the truth of elementary propositions do not form part
of Mittelstaedt’s dialogical structure, the means of determining the truth
of elementary and availability propositions is taken to be a process that
happens outside the dialogues. Mittelstaedt seeks to relate the empirical
and the logical in such a way as to delineate the two clearly, he is at pains not
to allow the empirical to directly affect his logic, which ultimately abstracts
away from the material dialogues, creating a system that does not hinge on
quantum mechanics, although it contains devices designed to deal with the
non-classical features that must be accomodated by any logic thereof. The
dialogical approach appears convenient for this, allowing as it does a kind
of heirarchy of dialogues, material dialogues concerning empirical notions;
then formal dialogues that eliminate the empirical aspects. The empirical
aspect reappears in the full quantum logic, as Mittelstaedt has to justify the
law of excluded middle with reference to quantum measurements resulting
in value-definite propositions.

As is the way with philosophers and logicians, Mittelstaedt wishes to have
his cake and eat it, locating the non-classicality of quantum logic outside of
the main dialogues, via availability propositions that must be proved outside
these dialogues. An ingenious feature of his setup is that he can incorporate
classical logic into his system, as a special case where propositions are
unrestrictedly available. So it seems that (like Putnam 1968, among others),
he believes his quantum logic to be the ’actual’ logic of the world. As he puts
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it, ’the ’true’ object-logic of propositions about physical systems is given by
the calculus of full quantum logic’ (Mittelstaedt, 1978: 143). He contends
that the calculus of quantum logic is the most general propositional system
applicable to propositions about classical and quantum systems, and that
classical propositional logic is a special case of this (Mittelstaedt, 1978: 140).

One clear motivation, as I see it, for Mittelstaedt to espouse a dialogical
approach is that it captures the ways in which he introduces and explains
the quantum features of his system very intuitively. Commensurabilities are
easily explained in the dialogical structure, in a way that has perhaps more
intuitive appeal than an explanation in terms of commuting projection oper-
ators, although of course they amount to the same thing as Mittelstaedt’s
theory is also based on the Hilbert space foundation.

To say that two statements are commensurable or otherwise and check for
availability in view of what has previously been proved in a particular
dialogue is a neat way to keep track of what can and cannot be said of a
given quantum system at the level of material dialogues. It is a useful way
to think about the information available about a particular system that again,
gives a procedure for checking what information is available at a given point
in a dialogue.

Gibbins makes a suggestion not made by Mittelstaedt himself regarding
the motivations for the dialogical approach, along the lines that a dialogical
construction is more natural than an axiomatic or natural deduction account
in the quantum setting. Gibbins’ reasons for this centre on logic representing
a reasoning process, and quantum logic representing a way of reasoning
about quantum systems. He suggests that axiomatic approaches distort this
fact, presenting logic as a mathematical system, rather than a representation
of a reasoning process. It minimises the need for rules of inference, but at
the cost of requiring axioms. Natural deduction approaches, conversely,
eliminate some (or even, at the limit, all) axioms in favour of rules of in-
ference, thereby arguably mirroring reasoning processes more accurately
(DL is a prime example of this manner of thinking, although the focus is
not necessarily on the accurate reflection of reasoning but on more technical
advantages). Gibbins thinks that Mittelstaedt’s approach takes this further,
and that Mittelstaedt might argue that dialogic in this context was yet more
natural, that ’logic arises because of, and perhaps in the course of arguing’
(Gibbins, 1982: 211). As we saw above, in DL, a proposition is true when it
can be defended by its proponent. It is formally true if it can be defended re-
gardless of other propositions in the dialogue. A proof in this context, rather
than being sequence of well-formed formulas or a tree of valid sequents, is
a dialogue where the proponent of the proposition proved has successfully
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defeated the opponent attempting to disprove the proposition. Gibbins
contends that this structure fits well with Mittelstaedt’s operationalist bent
regarding the philosophy of quantum mechanics (Gibbins, 1982: 212).

It appears to me that this analysis is somewhat flawed, for two reasons.
Firstly, there is the fact that, although quantum logic formalises an empirical
phenomenon, it still does so on the basis of the mathematical models used
to formulate the theory of that phenomenon. With regards to quantum
mechanics we have experimental testing procedures, but it isn’t as if we
are able to experience the phenomena tested in the sense of our everyday
experience of the macroscopic world. Measurements are made by an intri-
cate set of equipment and procedures, and the mathematical formalisms are
essentially what gives meaning to the very idea of performing such tests -
there would be precious little point in doing so if not to compare the results
to the predictions of the theory in question, which is a mathematical model
of the workings of the microscopic world.

Secondly as far as the reasoning process is concerned, the dialogical ap-
proach makes no attempt to model any real world, human reasoning process,
quite the contrary, it has nothing to do with actual reasoning, everything to
do with an idealised reasoning process, where the agents involved in the
dialogues are idealised. As mentioned, it essentially provides an algorithm
for a normative kind of reasoning. This point is potentially somewhat un-
charitable towards Gibbins, admittedly, clearly he is not suggesting that
there is no normatively correct way to reason about quantum systems. Yet
he does speak of the players of the game as if they were real word agents,
contrary to the spirit of the dialogical approach, and this seems to me to be
confusing the issue.

The fact that Mittelstaedt’s modus operandi for expounding his system is
entirely dialogical seems worthy of some thought. Partly this is presumably
a desire for consistency and a unified and systematic exposition. However,
other dialogue-based approaches such as Hintikka’s game-theoretic seman-
tics take a different stance, incorporating a traditional semantics making
reference to truth in a model, whilst using the dialogues as the means of
showing a proposition to be true or false. While the game-theoretic seman-
tics is also dialogue-based, they start from a different perspective compared
to the proof-theoretic accounts explained in this thesis. Part of the interest
of Mittelstaedt’s approach, as I see it, is that he defines both the syntax
and (part of) the semantics (ie. the definitions of connectives) in dialogical
terms, referring to model only for the urposes of determining the truth of
elementary propositions; whereas GTS defines having a winning strategy
in a dialogue with reference to truth in a model without the particle rules

59



Quantum Dialogues Laura Biziou-Van Pol (10865675)

characteristic of the dialogical approach.

Dialogical Quantum Logic and Dynamic Quantum Logic - Further
Research Possibilities

I conclude this thesis with some thoughts on avenues for further research, in
particular with regards to relations between dialogical logics and dynamic
logics, a more recent development that has proven highly successful in
modelling many real world phenomena including knowledge and belief.
Epistemic and quantum variants thereof differ. The latter aim to capture
processes of information exchange, identifying states of a system (of what-
ever kind) with the actions that can be performed upon the system, the
ways it can be changed. Thus, this approach posits actions, as opposed
to propositions, as the subject matter of the logics in question (Baltag &
Smets, 2008: 2). Modal operators are used to formalise these actions. In
particular, a dynamic quantum logic is developed by Baltag & Smets42, and
some comparisons between this and Mittelstaedt’s dialogical quantum logic
will be sketched in this section.

It is clear that there are fruitful connections to be explored between dynamic
and dialogical logics generally. Dialogical variants of modal logic have
been devised43. The challenge for dialogical approaches in this context
is to dispense with model theoretic notions such as possible worlds and
define modalities in purely dialogical terms; also to capture the notion of an
accessibility relation between the ’worlds’ in question. One way of doing
this is by introducing ’worlds’ as hypotheses; and relations between them as
specification questions narrowing down the possibilities, so we get to more
specific statements from the original hypothesis by means of the dialogues44.
Another is to add an extra feature to the structural rules, a series of labels
for different contexts (roughly speaking) (Magnier, 2012: 15).

True to its modal nature, dynamic quantum logic is built up from a set
of states and a family of binary relations between those states, the latter
representing different operations that can be performed on a state, we can
then detail whether these operations result in a new state, and what the state
resulting from such an operation on an initial state will be. The language, we
have set of propositional formulas and a set of programs, unitary transfor-

42See, eg. Baltag & Smets 2004; Baltag & Smets 2005
43See, eg. Rebuschi 2009 for a dialogical reconstruction of (modal) epistemic logic; Magnier

2012 for a dialogical reconstruction of (dynamic) Public Announcement Logic; Blackburn
2001 for an argument that modal logic is fundamentally dialogical.

44Rahman 2015 gives such a formulation of modal logic in dialogical terms.
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mations capturing the actions that can be performed on a quantum system.
For the set of propositional formulas the classical connectives are defined in
the usual manner, the quantum programs, however, behave non-classically,
reflecting quantum features, which are accounted for as a non-classical dy-
namics of information flow. As such, we can express what may occur to a
system, as opposed to just what is true of it. The dynamic approach is more
expressive than Mittelstaedt’s, which has no way to differentiate between
different types of measurements. Dynamic quantum logic also encodes
unitary evolutions of a system over time, which Mittelstaedt has no way to
capture.

Of course, dynamic quantum logic has the more usual logical setup, being
generally conceptualised in terms of a quantum frame with a valuation
function on this frame (Baltag & Smets, 2004: 49) - as such it refers to truth
in a given model, which the dialogical approach looks to avoid in general,
being proof-theoretic in nature. Yet, as we have seen, Mittelstaedt in fact
does have a semantic aspect to his logic, eventually referring back to the
algebraic Hilbert space realisation as a model of the quantum lattice.

The two approaches have certain interesting features in common, to which
we now turn. Contrary to traditional quantum logic, where laws of classical
logic are generally revised to account for quantum features, both can be
united with a classical logic within their respective systems. Of course, the
ways in which they conceptualise this are markedly different. Dynamic
quantum logic can capture classical logic as the static part of its system,
Mittelstaedt conceptualises it as the logic of commensurable propositions.

For dynamic quantum logic, it is the actions that can be performed on a
system that are non-classical, yet a static, classical component remains. In
Mittelstaedt’s system it is the incommensurability of propositions that make
the logic quantum and he gives us a method for determining validities
within this system, some of which require the propositions in question to
be commensurable and some of which do not. As we have seen, commen-
surable elements of the quantum lattice generate Boolean sublattices, the
classical parts exist within the wider, quantum whole. As we would expect,
there is a parallel here, the dynamic part of the dynamic quantum logic
encapsulates the tests that can be performed on a system; availability propo-
sitions for Mittelstaedt tell us whether two propositions are such that each
can be tested for without affecting the result of a test for the other. Yet the
dynamic approach differs in that the quantum features are expressed in
terms of actions on the static parts, whereas Mittelstaedt’s leaves the notion
of testing outside the dialogues, outside the formalisation itself.

The dynamic approach conceives of the non-classicality of quantum logic in
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terms of non-classical information flow. Mittelstaedt does not put it in these
terms, but of course commensurability is his way of expressing restrictions
on the information that can be gleaned about a system.

One interesting feature of the dynamic approach in relation to Mittelstaedt’s
system concerns the implication. As we saw, in Mittelstaedt’s full quantum
logic, the implication connective is the Sasaki hook. This is also the case
for dynamic quantum logic. One of the actions that can be performed on a

system is a test for a given property, and the Sasaki hook R S→ T is captured
in the dynamic part of the language, as the dynamic modality for tests.
It expresses the idea of the antecedent being the weakest precondition for
the consequent. It holds if after successfully performing R?, the test for
property R on a system, property T will surely hold45 (Baltag & Smets,
2011: 10). The terminology is slightly different within the two systems, with
the dynamic approach conceived in terms of states and properties thereof,
modified by measurement processes, Mittelstaedt’s in terms of the results of
measurements.

To introduce the details captured by dynamic quantum logic would entail
the introduction of a modal aspect to Mittelstaedt’s system. This would
require clauses for modalities in the material dialogues (analogous, as we
saw, to the particle rules of DL); as well as additional argument rules for
the formal dialogues detailing how the modal operators may be used there
(Rebuschi, 2009: 233). The formal dialogues are intuitionistic, Rebuschi 2009
details how an S4 modal ’simulation’ or translation of intuitionistic logic can
be implemented in a dialogical structure (in this case in the context of an S4
epistemic logic) (Rebuschi, 2009: 239). This suggests that, with appropriate
modifications, something similar might be implemented with quantum
modalities in the formal dialogue game, although the details would need to
be worked out.

The dialogical system deals primarily with rules, with a process, rather than
with the notion of information central to the dynamic approach. Yet it seems
to me that Mittelstaedt is still making use of a notion of information. In
the case of availability propositions in the material dialogues, we might
say that here we deal with the specifics of information we can have about
the system we are talking about. Ultimately in the formal dialogues the
notion of what information we can have about a system at any one time

45We also have a weaker notion in the dynamic setup, 〈R?〉T, meaning that one can
perform a test R on the current state and end up with property T, as well as the ordinary 2

and 3 modalities for tests, meaning that the property in question will hold after any test,
or that there is some test one can perform resulting in that property, respectively (Baltag &
Smets, 2004: 42).
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is amalgamated into the system of validities by determining certain com-
mensurability propositions (about simultaneously available information)
that always hold. These are then translated into a series of propositions that
can always be used within the proof system. Commensurability is set up
to capture the fact that there are physical quantities of a quantum system
that cannot be simultaneously known, where measuring one will affect a
subsequent measurement of the other, therefore it appears that they encode
part of the meaning of the dynamic test operators46. Nevertheless, it is
important to bear in mind that the formal dialogue games do not yet give us
the full quantum logic where the Sasaki hook implication holds, so it is not
the case that the intuitionistic implication of the formal dialogues coincides
with the weakest precondition of dynamic quantum logic.

In this respect the two systems differ, dynamic quantum logic has classical
implication and Sasaki hook, the two varieties of implication that hold in
Mittelstaedt’s full quantum logic. Mittelstaedt has the calculus of the formal
dialogues as a stepping stone to the full quantum calculus, but no analogue
of this exists for dynamic quantum logic. Nevertheless, the formal dialogues
give us the means to define calculus Qe f f which is extended to calculus Q.
Sasaki hook is the definition of implication for Q and therefore expresses the
same thing as its dynamic equivalent. The necessity element is not couched
in modal terms but in terms of validity. Rather than a notion of weakest
precondition, in Mittelstaedt’s system a proposition of the form A → B
in Q means that a material dialogue proving A guarantees a successful
material dialogue about B. This is tantamount to saying that this holds for
all material dialogues. The latter is essentially a proof-theoretic account;
whereas dyanmic quantum logic is a semantic one.

As outlined above, modal structural rules must place restrictions on the
accessibility relation between states. This is somewhat akin to Mittelstaedt’s
development of the formal commensurability calculus in the formal dia-
logues, which fulfils the role of establishing propositions that can be simul-
taneously true. The dynamic approach allows us to express (among other
things) the idea that a particular proposition is true after a given measure-
ment has been made. It would therefore make sense that commensurability
relations would need to be expressed in modal terms, if modal operators
were to be added to the system, and the ways in which this could be done
would need to be worked out in detail to unify the two approaches.

46Albeit less detailed, given that, for example, we have no explicit notion of a property
being potentially satisfied. It seems to me that this is connected to the fact that the formal
dialogues are set up to capture validity, truths that alays hold, without regard for the
expression of possibility.
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Conclusion

Here, I have aimed to give a thorough exposition of Mittelstaedt’s dialogical
quantum logic, which appears to have been somewhat neglected in more
contemporary studies of quantum logic. A basic account of the workings
of the dialogical approach has been given, with a view to facilitating a
comparison with the quantum dialogical system. We have seen in some
detail that Mittelstaedt’s approach is a modification of the intuitionistic
permutation of standard dialogical logic, incorporating a semantic element
(in the form of material dialogues) that pertains directly to quantum systems,
but which ultimately abstracts away from empirical content to give us a
dialogical system for proving validities (formal dialogues). This system
gives a method for the elimination of direct references to the quantum
phenomena it must accommodate in the formal commensurability calculus,
the validities of which are then shown to be equivalent propositions provable
in the formal dialogues. An intuitionistic propositional calculus is then
developed on the basis of these validities, which can be extended to the
full quantum logic. One of the decisive differences between classical and
quantum logics, the implication connective, was then examined, first with
reference to the lattice theoretic basis of the system and then with reference to
the dialogues, with the aim of demonstrating how the quantum implication
known as Sasaki hook arises in the system. Subsequently some general
thoughts on the use of the dialogical approach in the quantum setting have
been given, as well some indications of possible avenues for futher research
in this field on the basis of connections between Mittelstaedt’s dialogical
system and recent dynamic approaches to quantum logic.
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