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Abstract

This thesis studies the cognitive difficulty of the Deductive Mastermind (DMM) game

by measuring the complexity of two different logic formalizations of the game. DMM

is a version of the board game Mastermind, and it has been implemented in an online

educational game system. This system records players’ speed and accuracy data in solving

the game, which serves as an empirical indicator of the cognitive difficulty of each DMM

game item. In the thesis, we look at an existing formalization of DMM based on analytic

tableaux, and we develop a formalization based on dynamic epistemic logic (DEL). The

DEL model of DMM performs as well as the tableaux model in predicting the cognitive

difficulty of DMM game items, and the DEL model is able to capture more reasoning

patterns as self-reported by DMM players. We find that feedback types play an important

role in predicting cognitive difficulty of game items, and this result is robust over the two

different logic formalizations that we considered.
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Chapter 1

Introduction

“Don’t worry,” your friend tells you, “I heard the modal logic final will be easier than

our weekly assignments.” In this situation, the difficulty of a logic question is evaluated

by how hard it is for a student to solve it. How much time do you spend on it? How

directly can you find the right answer? Do you indeed manage to find the right answer

in the end? We call this the “cognitive difficulty” of the question or task at hand. We

can study the cognitive difficulty of a variety of things such as solving a question in an

exam, recognizing a color in a certain context, or interpreting the meaning of a quantifier

in communication.

A fruitful method to study the cognitive difficulty of a task is to combine computa-

tional and logical analyses. We can use logic to formalize a task into a computational

problem, and then measure the complexity of this logic formalization as a predictor for the

cognitive difficulty of this task. This two-staged method has proved useful in studying the

cognitive difficulty of communicative and linguistic tasks, both theoretically (see Berwick

and Weinberg (1984); Cherniak (1986); Barton et al. (1987); Ristad (1993); Szymanik

(2016); van Rooij et al. (2011)) and empirically (see Szymanik (2016); Gierasimczuk and

Szymanik (2009); Szymanik and Zajenkowski (2010); Zajenkowski et al. (2011)). Feld-

man (2000) shows that a complexity measure based on logic provides a nice account of the

cognitive difficulty of learning various Boolean concepts such as observed in behavioral

experiments. Furthermore, this method was successfully applied in studying the composi-

tionality of concept learning (Piantadosi et al., 2016). (See Isaac et al. (2014) for a review

on how researchers have applied computational and logical analysis in cognitive science.)

In this thesis we apply this method to a case study. We look at the cognitive difficulty

of the Deductive Mastermind (DMM) game. DMM is a simplified version of the board

game Mastermind, and to win a DMM game item for a player is to deduce a secret flower

sequence, also known as the correct answer, from the information she sees on the screen.

Figure 1.1 is a screen shot of a DMM game item. It consists of several clues, each of which

includes a sequence of flowers in a line and a corresponding feedback. Besides, it also

1



Introduction

Figure 1.1: A DMM game item

shows some available flowers that a player can

choose to form her answer. The feedbacks provide

information on the relationship between the flower

sequence in a clue and the correct answer. DMM has

been implemented in Math Garden, a popular on-

line educational game system, which is used in pri-

mary schools all over the Netherlands and has accu-

mulated billions of behavioral data on how children

play the games. Each DMM game item in Math

Garden is associated with a rating of its difficulty, and this rating is computed based on

children’s speed and accuracy in solving the game item. DMM is an ideal case study

because (1) it can be naturally formalized using logic, and (2) it provides an empirical

dataset on the cognitive difficulty of each game item, as indicated by the ratings. By for-

malizing DMM with logic, we define complexity measures over such formalization, and use

these measures as predictors for the cognitive difficulty of DMM game items. Therefore,

this is a case study of using logic to capture cognitive difficulty.

Gierasimczuk et al. (2013) propose an analytical tableaux model of DMM that gives an

account of the cognitive difficulty of a DMM game item based on the size of the decision

tree generated for that item. Their analytic tableaux model correctly predicted 63% of the

item ratings,1 but the model is challenged from different perspectives, which include the

following: (1) The tableaux model is based on strong assumptions. The model assumes

that players reason by cases and process feedbacks one by one, and Gierasimczuk et al.

(2013) assume that the size of tableaux decision trees is a proxy for working memory

load. (2) The tableaux model is unable to capture certain observed reasoning patterns.

The tableaux formalization is order-dependent. That is, a decision tree in this model can

only unfold one clue after another, and therefore cannot represent cross-clue patterns.

However, it has been observed that when the clues for a particular game item all contain

green-red feedback, children can use this information to make a more strategic move than

processing clues one by one (van der Maas, 2017). Consider Figure 1.1 where two green-

red feedbacks are given. A child can deduce that the orange daisy that stands at the

second place in each clue corresponds to the green feedback and shall go directly to the

answer, and the flowers that stand in the first place in the clues correspond to the red

feedback peg and therefore should not appear. The tableaux model cannot represent such

a move. (3) Since the complexity measurements in the tableaux model are generated

by the particular formalization, it is not clear whether they indeed capture the cognitive

difficulty of the DMM game, or simply are some artifacts of the formalization itself.

1In the 2013 dataset, the tableaux model can predict up to 75% item ratings for 100 game items, and

in the 2017 dataset it predicts item ratings at 63% for 355 items.
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The above mentioned drawbacks hinder the tableaux formalization, and we want to

design a different model that uses fewer assumptions, better represents the choices of

the children, and can cross check the plausibility of the logic-based model. We used

Dynamic Epistemic Logic (DEL) to build a new model of DMM. This model makes fewer

assumptions than the tableaux model, because it does not require reasoning by cases and

the way of finding solutions does not depend on the order in which piece of information are

processed. The DEL model of DMM solves the game via a natural approach of eliminating

impossible options and deliberating over possible answers, and it can give an account of

the cross-clue pattern that is mentioned earlier. By testing complexity measurements of

the DEL formalization against the empirical dataset, we showed that the DEL model can

predict 66% of the item ratings, and thereby performs slightly better than the tableaux

model based on the latest dataset. Furthermore, we analyzed the correlation of the

DEL and tableaux formalization, and demonstrated that it is the feedback types that

determine a game item’s cognitive difficulty. This feature is indeed captured by both

logic formalizations. These analyses show that the results of the tableaux and the DEL

model are not dependent on the particular logic that each model is based on, because they

both capture feedback types as predictors of the cognitive difficulty of DMM, irrespective

of the the kind of formalization that is being used.

The structure of this thesis is as follows. Chapter 2 introduces the Deductive Master-

mind game. It presents both the game setting and the dataset that the game generates.

Chapter 3 summarizes the tableaux model. Chapter 4 presents the DEL model, defines

several complexity measurements of the DEL model, explains the emergence of cross-clue

patterns, and shows how to translate a tableaux decision tree to a DEL model. Chap-

ter 5 tests the complexity measurements of both models with the empirical dataset, and

analyzes the results from both formalizations in comparison with each other. Chapter 6

concludes and points out several ideas for future work.

3



Chapter 2

Deductive Mastermind Game

In this chapter, we introduce the Deductive Mastermind game, both its game setting and

the empirical dataset it provides.

2.1 Game Setting

Figure 2.1: A complete Mastermind

game won in 5 conjectures

Deductive Mastermind (DMM) is a simplified ver-

sion of the Mastermind game. Mastermind2 is a

board game between two players, one is called the

code-maker and the other is called the code-breaker.

The code-maker makes a code that consists of four

colored pegs, and places this code below the game

board such that the code-maker can see the code,

but the code-breaker cannot. Each game consists of

several rounds. Each round consists of two parts:

first the code-breaker makes a conjecture about the

code, then the code-maker gives feedback on the

conjecture. There are two types of feedback pegs.

A black feedback peg means that a color peg in the

code-breaker’s conjecture is of the right color and

sits in the correct position. A white feedback peg

means that a color peg in the code-breaker’s conjec-

ture has the correct color but sits in a wrong posi-

tion. (A feedback of no pegs means none of the colored pegs in the code-breaker’s code

match a color in the hidden code.) The code-breaker uses the conjectures she has made

2This introduction of Mastermind game is adapted from Mastermind’s Wikipedia page (Mastermind

(board game), 2017). Readers with a rich knowledge of this game can safely skip this paragraph and go

to the next paragraph.

4



2.1. Game Setting

and the feedbacks she has received to formulate a new conjecture for the next round,

if the game continues. The code-breaker wins the game if she correctly figures out the

secret code within a certain numbers of rounds, and otherwise she loses. Figure 2.1 from

Brown (2012) shows a complete Mastermind game where the code-breaker won in five

conjectures. In Figure 2.1, the colored code at the upper side of the board is the code-

makers secret code, and it is sheltered from the code-breaker. At the bottom side of the

board, a code-breaker made five conjectures, and received five feedbacks from the code

breaker. The fifth and final conjecture generated an all-black feedback, which meant the

code-breaker successfully broke the code.

Mastermind can be turned into a computational problem called Mastermind Satisfi-

ability Problem (MSP): given a set of conjectures and feedbacks, does a unique secret

sequence exist that generates the given feedbacks for the given conjectures? Stuckman

and Zhang (2005) show that MSP is NP-complete, and they argue that this is why Mas-

termind has always been a challenging game for human players.

Deductive Mastermind The Deductive Mastermind (DMM) game simplifies the in-

teraction part of a Mastermind game between the code-maker and code-breaker. The

computer plays the role of the code-maker, and the human player always plays the role

of the code-breaker. The computer displays a set of conjectures with their corresponding

feedbacks, and the human player does not formulate his or her own conjectures in the

game. The conjectures and feedbacks the computer provide correspond to a unique code,

and the task for the human player is to deduce this code.

Figure 2.2: Screen shot of a DMM game item

As mentioned earlier, DMM is implemented in Math Garden, an online educational

game system designed for primary school students. In Math Garden, DMM is shown as

5



Deductive Mastermind Game

a game called “Flower Code” among other mathematical games. In this implementation,

colored pegs are replaced with flowers, and feedback pegs are presented in more vivid

colors, in order to be attractive to children. Throughout this thesis, we write ‘DMM’ to

refer to this implementation. Figure 2.2 is a screen shot of a DMM game item. There

are 2 clues in this game item, and below the clues there are four types of flower pegs for

players to choose from. At the top-right corner, three rules explain what each feedback

peg means:

• green peg: a right flower in the right position

• orange peg: a right flower in the wrong position

• red peg: a wrong flower

In DMM, the order in which the feedback pegs are given is always the same: green pegs

first, then orange pegs, and lastly red pegs. Hence, no fixed correspondence exists between

the positions of flower pegs and the positions of feedback pegs. The first feedback peg is

not necessarily meant for the first flower peg in the clue.3

In the bottom-right corner, there are some golden coins recording how much time is

left for a player to solve the game item. If the player answers correctly, then the less

time she used, the more golden coins she will receive as a reward. If she fails to give a

correct answer, or she does not answer within the given period of time, then she will not

receive any golden coins. This setting serves as a motivation for players to solve the task

as quickly and accurately as possible.

We call a DMM game item a n-pin game item if each clue in this game item consists

of n flower pegs and n feedback pegs. In 2-pin DMM game items, there are four possi-

ble feedbacks: green-red, red-red, orange-orange and orange-red. Other combinations of

feedback pegs are not proper feedbacks: green-green simply reveals the game answer and

green-orange is not possible.

2.2 Item Ratings

As mentioned earlier, DMM is implemented in Math Garden (rekentuin.nl in Dutch, or

MathsGarden.com in English), an online educational game system where children practice

mathematics or analytical skills by playing games. Math Garden was first developed by

van der Maas et al. (2010), and by 2013 Math Garden was used in more than 700 primary

schools in the Netherlands, and over 90,000 students have generated over 200 billion

answers to Math Garden game items (Gierasimczuk et al., 2013).

3In a previous version of DMM, feedback pegs were listed as a horizontal line by the side of a conjecture,

and researchers found that players tend to correspond the first flower in the conjecture to the first feedback

peg, and so on and so forth. Hence, in the new version of this game, feedback pegs are presented vertically

as in Figure 2.2, in order to reduce the influence of such correspondence.

6
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2.2. Item Ratings

Math Garden provides an ideal dataset for studying the cognitive difficulty of playing

a game item, because it makes use of a computerized adaptive practice (CAP) system to

evaluate a game item’s difficulty empirically. This CAP system evaluates a game item’s

difficulty based on student’s speed and accuracy data on solving that item. If more

students can solve a game item successfully in a short period of time, then the game item

is evaluated as easier, and vice versa. To compute such evaluations, the CAP system

extends the Elo rating system (ERS) – a well known interactive rating system that is

used to rate chess players – with constraints on time. I will explain how the CAP system

works in the following paragraphs, starting from ERS and then introducing constraints

on time.

The Elo rating system (ERS) With the purpose of rating chess players, Elo (1978)

first developed the Elo rating system (ERS). In ERS, each chess player is rated with a

provisional ability rating θ that updates over time according to results of this player’s

chess matches.

θ̂j = θj +K(Sj − E(Sj)) (2.1)

Equation 2.1 shows how to update player j’s rating (denoted as θ̂j), where Sj is the

result of the match for player j. (In chess, S takes the value 0, 0.5 and 1 for loss, draw and

win.) K is a parameter modifying how much one result changes the overall rating, and

E(S) is the expected result dependent on ratings of both players in the match. Usually,

E(Sj) is calculated as 1

1+10(θj−θi)/400
, where θi is the rating of player j’s opponent in the

match. According to ERS, beating a strong opponent implies that you are also a strong

player, and losing to a strong player does not lower your ranking because the system

recognizes that the winner is expected to win as a stronger player.

The computerized adaptive practice (CAP) system Math Garden uses the com-

puterized adaptive practice (CAP) system to rate game items, which is an adaptive version

of the ERS. In the CAP system, playing a game item is taken as a match between the

human player and the computer. If a player solves a game item, it is interpreted as a

“win” for the human player, and if the player fails to solve the game item, it is interpreted

as a “win” for the computer. In addition, the CAP system also takes time constraints

into consideration with the following scoring rule:

Sij = (2χij − 1)(aidi − aitij) (2.2)

Score Sij is given by a player j’s response χ to game item i within time tij, constrained

by time limit di and scaled by a discrimination parameter ai.

7



Deductive Mastermind Game

The expected score, accordingly, also takes time constraints into consideration, result-

ing in the following formula:

E(Sij) = aidi
e2aidi(θj−βi) + 1

e2aidi(θj−βi) − 1
− 1

θj − βi
(2.3)

Putting equation 2.2 and equation 2.3 into the original ERS formula 2.1, the Elo rating

of a human player θj and score of a game item βi in Math Garden are calculated as follows:

θ̂j = θj +Kj(Sij − E(Sij)) (2.4)

β̂i = βi +Ki(E(Sij)− Sij)) (2.5)

Note that we use the term “Elo rating” or “rating” to refer to the rating computed

by the CAP system from now on. These equations show that if more players are able to

solve a game item fast and correctly, then the game item is evaluated with a lower rating,

and if few players can solve a game item correctly, then this game item is evaluated with

a higher rating. Players’ performance data, specifically time and accuracy, provide an

empirical measurement for how difficult a game item is behavior-wise. In Math Garden,

Elo ratings of human players and game items range from −∞ to +∞. In general, the

lower the Elo rating, the easier a game item is, and the higher the Elo rating is, the harder

a game item is. (For more details, readers can consult Klinkenberg et al. (2011) and Maris

and van der Maas (2012).)

Figure 2.3: Ratings of 2-pin DMM game items

Dataset for 2-pin DMM game items In this thesis, we look at the dataset provided

by Math Garden of item ratings for 2-pin DDM game items. In practice, among all DMM

game items, 2-pin items are played most often, and thus their ratings are more reliable.

8



2.2. Item Ratings

Up to May 2017, there are 355 2-pin DMM game items in Math Garden, and their Elo

ratings range from −35.23118 to −0.001269599. Elo ratings for 2-pin game items are

negative mainly because most players are able to solve 2-pin game items successfully.

Figure 2.3 shows the distribution of Elo ratings for 2-pin DMM game items. The x-axis

shows Elo ratings for 2-pin DMM game items, and the y-axis shows the frequency of the

Elo ratings. This plot shows that the distribution of the Elo ratings of 2-pin DMM has a

peak around −2.5, while it is more uniformly distributed for game items with Elo ratings

below −10.

9



Chapter 3

Analytical Tableaux Model

As described in the previous chapter, in a DMM game item players need to deduce the

secret flower code from a set of clues displayed on the screen. This makes DMM a game

that can be naturally formalized in logic. In addition, the CAP system used in Math

Garden assigns each DMM game item an Elo rating that reflects the cognitive difficulty

of that item based on the accumulated data. Therefore, a logic based complexity analysis

can be applied to study the cognitive difficulty of playing DMM.

Gierasimczuk et al. (2013) were the first to study the cognitive difficulty of playing

DMM game items on the basis of a logic formalization of the game. They proposed an

analytical tableaux model for 2-pin DMM game items. Analytical tableaux is a decision

procedure for finding a satisfying valuation for a given propositional formula (Beth, 1955;

Smullyan, 1968; van Benthem, 1974). Gierasimczuk et al. (2013) first converted each

2-pin DMM game item into a set of Boolean formulae, and then built a decision tree for

each game item following the analytical tableaux method. The assumption was that the

size of the decision tree is a proxy of working memory load for solving this game item,

and linear regression analysis showed that the size of the decision trees predicted 75% the

ratings of the game items correctly.

In this chapter, we present the formalization of 2-pin DMM game items in the tableaux

method used in Gierasimczuk et al. (2013), and analyze the virtues and shortcomings of

this model.

3.1 Formalization

The analytical tableaux model of 2-pin DMM game items views each game item as a set of

Boolean formulae, and solving the game item is equivalent to finding the unique valuation

that satisfies these formulas. To that end, a conjecture in a game item is viewed as an

assignment of flowers. Formally,

10



3.1. Formalization

Definition 3.1 (Conjecture). A conjecture of length l (consisting of l pins) over k flowers

is defined as a sequence given by a total assignment h : {1, . . . , l} → {c1, . . . , ck}. In

the game setting, the goal sequence goal is a specific conjecture, goal : {1, . . . , l} →
{c1, . . . , ck}.

According to this definition, h(i), goal(j), i, j ∈ {1, . . . , l} refer to flower pegs, and

h(i) = goal(j) where i, j ∈ {1, . . . , l} is viewed as a literal in the Boolean translation of a

game item.

Every non-goal conjecture is paired with a feedback that indicates how similar h is to

the given goal assignment. There are three types of feedback pegs: green, orange, and

red. In the model, green is represented by g, orange by o and red by r.

Definition 3.2 (Feedback). The feedback f for flower configuration h with respect to

goal is a sequence
a︷ ︸︸ ︷

g . . . g

b︷ ︸︸ ︷
o . . . o

c︷ ︸︸ ︷
r . . . r = gaobrc

where a, b, c ∈ {0, 1, 2, 3, . . .} and a+ b+ c = l.

A feedback consists of

• exactly one g for each i ∈ G where G = {i ∈ {1, . . . l} | h(i) = goal(i)},

• exactly one o for every i ∈ O, where O = {i ∈ {1, . . . , l} \ G| there is a j ∈
{1, . . . , l} \G, s. t. i 6= j and h(i) = goal(j)}, and

• exactly one r for every i ∈ {1, . . . , l} \ (G ∪O).

Sets G, O, and R induce a partition over {1, . . . , l}, and Gierasimczuk et al. (2013) de-

fine ϕgG, ϕ
r
G,o, ϕ

o
G,O to represent the the propositional formulae that correspond to different

parts of the feedback.

• ϕgG :=
∧
i∈G h(i) = goal(i) ∧

∧
j∈{1,...,l}\G h(j) 6= goal(j)

• ϕoG,O :=
∧
i∈O(

∨
j∈{1,...,l}\G,i 6=j h(i) = goal(j))

• ϕrG,O :=
∧
i∈{1,...,l}\{G∪O},j∈{1,...,l}\G,i 6=j h(i) 6= goal(j)

Gierasimczuk et al. (2013) then set G := {G|G ⊆ {1, . . . , l} ∧ card(G) = a} and if

G ⊆ {1, . . . , l},then OG = {O|O ⊆ {1, . . . , l} \ G ∧ card(O) = b}. These two sets are

collections of possible assignments with respect to a specific feedback. With the help of

these sets, a clue can be translated into a Boolean formula as follows:

11
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Definition 3.3 (Boolean translation of a clue). The Boolean translation of a clue con-

sisting of conjecture h with its corresponding feedback f is given by

Bt(h, f) :=
∨
G∈G

(
ϕgG ∧

∨
O∈OG

(ϕoG,O ∧ ϕrG,O)

)
.

Putting clues together, a game item is then viewed as a set of Boolean formulae.

Definition 3.4 (Boolean translation of an item). A DMM game item over l pins, k flowers

and n rows, DM(l, k, n), is a set of clues {(h1, f1), . . . , (hn, fn)}, each consisting of a single

conjecture hi and its corresponding feedback fi. The Boolean translation of a DMM-item

Bt(DM(l, k, n)) = Bt({(h1, f1), . . . , (hn, fn)}) = {Bt(h1, f1), . . . , Bt(hn, fn)}.

Let us look at Example 3.1 to understand the translation of a DMM game item in the

tableaux formalization.

Example 3.1. Consider the game item in Figure 2.2. For the first row of conjecture,

take (h1, f1) such that h1(1) := c2, h1(2) := c2, and the corresponding feedback f1 := gr,

then G = {{1}, {2}},OG = ∅, and

Bt(h1, f1) = (goal(1) = c2 ∧ goal(2) 6= c2) ∨ (goal(2) = c2 ∧ goal(1) 6= c2).

Similarly, for the second row of conjecture (h2, f2) such that h2(1) := c2, h2(2) := c4
and feedback f2 := oo, G = {∅} and OG = {{1, 2}}. Hence,

Bt(h2, f2) = goal(1) 6= c2 ∧ goal(2) 6= c4 ∧ goal(1) = c4 ∧ goal(2) = c2.

The Boolean translation for all clues in 2-pin DMM game items are listed in Table

3.1. For any h(1) := ci, h(2) := cj, Bt(h, f) is:

Feedback f Boolean Translation Bt(h, f)

oo goal(1) 6= ci ∧ goal(2) 6= cj ∧ goal(1) = cj ∧ goal(2) = ci

rr goal(1) 6= ci ∧ goal(1) 6= cj ∧ goal(2) 6= ci ∧ goal(2) 6= cj

gr (goal(1) = ci ∧ goal(2) 6= cj) ∨ (goal(2) = cj ∧ goal(1) 6= ci)

or (goal(1) 6= ci ∧ goal(2) 6= cj)∧
(goal(1) = cj ∧ goal(2) 6= ci) ∨ (goal(2) = ci ∧ goal(1) 6= cj)

Table 3.1: Boolean translations for 2-pin DMM feedbacks

After translating each 2-pin DMM game item into a set of Boolean formulaeDM(l, k, n),

the analytical tableaux method is applied to build a decision tree for a game item in or-

der to find the unique valuation goal. In analytical tableaux there are standard rules of

unfolding a Boolean formula into a decision tree. In the case of 2-pin DMM game items,

12



3.2. Complexity Measurements

only two logical connectives are used, namely, ∧ and ∨, as listed in Table 3.1, because

negation only takes place at the literal level. Hence, there are four branching rules for

formulae of 2-pin DMM game items, and they are depicted in Figure 3.1. Figure 3.2a

shows the decision tree for the game item in Example 3.1 following the top-to-bottom

order.

ci, cj

goal(1) 6= ci
goal(2) 6= cj
goal(1) = cj
goal(2) = ci

oo

ci, cj

goal(1) 6= ci goal(2) 6= ci
goal(1) 6= cj goal(2) 6= cj

rr

ci, cj

goal(1) = ci
goal(2) 6= cj

gr

goal(1) 6= ci
goal(2) = cj

gr

ci, cj

goal(1) 6= ci
goal(2) = ci
goal(1) 6= cj
goal(2) 6= cj

or

goal(2) 6= cj
goal(1) = cj
goal(1) 6= ci
goal(2) 6= ci

or

Figure 3.1: Branching rules for 2-pin DMM feedbacks

3.2 Complexity Measurements

Gierasimczuk et al. (2013) define the size of a decision tree to be the measurement of

complexity for a decision tree. Given a logic formalization, a complexity measure over

that formalization is a formal notion that captures some combinatorial property of the

formalization. The goal of such measurements is to investigate whether this formal prop-

erty captures some of what causes the cognitive difficulty of the task. Since the decision

tree is viewed as how children find solutions for a DMM game item, the size of the decision

tree is therefore viewed as a proxy of working memory load that predicts the Elo rating of

a game item (Gierasimczuk et al., 2013). Observing the trees in Figure 3.1, it is obvious

that different feedbacks result in different branching and different sizes of decision trees.

Ordering by the size of decision trees generated by each feedback, the tree-difficulty for

the four types of feedbacks in 2-pin DMM game items is: oo < rr < gr < or.

Obviously, processing the easier feedbacks earlier can shrink the size of the decision

tree, while processing the harder feedbacks earlier will amplify the size of the decision

tree. For example, Figure 3.2 shows two different decision trees for the DMM game item

in Figure 2.2. The left tree is built according to the default order of conjectures, i.e., first

13



Analytical Tableaux Model

Bt(h1, f1) and then Bt(h2, f2). Since f1 = gr, the tree branches at the first level, and

with f2 = oo, each of the branches extends one step further, resulting in a decision tree

with four branches. On the right tree in Figure 3.2, however, if the agent starts building

the tree from Bt(h2, f2) directly, since f2 = oo, by moving one step the agent can already

find a valuation that satisfies the Boolean formulae of this game item, and this decision

tree has just one branch.

Bt(h1, f1)

goal(1) = c2
goal(2) 6= c2
Bt(h2, f2)

goal(1) = c4
goal(2) = c2

oo

gr

goal(1) 6= c2
goal(2) = c2
Bt(h2, f2)

goal(1) = c4
goal(2) = c2

oo

gr

(a) The default decision tree

Bt(h2, f2)

goal(1) = c4
goal(2) = c2
Bt(h1, f1)

oo

(b) The least decision tree

Figure 3.2: Two different decision trees for the same game item

Therefore, Gierasimczuk et al. (2013) proposed two ways of solving a 2-pin DMM

game item. One is to process feedbacks from top to bottom, generating a default decision

tree, and another is to process feedbacks following the difficulty order oo < rr < gr < or,

generating the least decision tree. Note that not all decision trees lead to goal valuation

directly. In some cases, a flower is not used in formulating clues, and one needs to add

that flower to the final valuation in order to produce the correct answer.

Application steps After building the decision trees, the next step is to measure the

size of a decision tree as the indicator for item ratings. In the analytical tableaux method,

Gierasimczuk et al. (2013) used application steps per feedback of a decision tree to mea-

sure the size of decision trees. Application steps are computed by a recursive algorithm

that assumes that agents search over the tree following the top-to-bottom and left-to-

right order, and once a solution is found, the algorithm will stop. If the search meets a

contradiction at some node, then it goes one step back and continues. For each feedback

that appears in the game item, the application steps for that feedback is the number of

searches this algorithm conducts on the branches generated by that feedback. If one of

the four feedbacks does not appear in a game item, the application step of that feedback is

set to 0. If a feedback appears more than once, then the application steps of this feedback

is the sum of all application steps the feedback generates at different level of the tree.
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3.2. Complexity Measurements

Example 3.2. Consider a DMM game item DM(l = 2, k = 3, n = 2). This item has 2

pins, 3 types of flowers, and 2 rows. Let h1(1) := c1, h1(2) := c2, f1 := gr and h2(1) := c3,

h2(2) := c2, f2 := gr. The default tree and least tree for this game item are the same,

which is depicted in Figure 3.3. Number of steps are counted at each gr-edge, and for

this game item the application steps for gr is 6, application steps for oo, rr and or are all

0.

Bt(h1, f1)

goal(1) = c1
goal(2) 6= c2
Bt(h2, f2)

goal(1) = c3
goal(2) 6= c2

⊥

gr.2

goal(1) 6= c3
goal(2) = c2

⊥

gr.3

gr.1

goal(1) 6= c1
goal(2) = c2
Bt(h2, f2)

goal(1) = c3
goal(2) 6= c2

⊥

gr.5

goal(1) 6= c3
goal(2) = c2

>

gr.6

gr.4

Figure 3.3: Tableaux tree for Example 3.2

Regression results The application steps are treated as the size of the decision tree in

Gierasimczuk et al. (2013), and are used as the complexity measurement of the tableaux

model of DMM. The application steps of a DMM game item is a tuple of four, and each

element in the tuple represents the application steps for a feedback type. Gierasimczuk

et al. (2013) tested how well application steps predicted item ratings on 100 2-pin DMM

game items, and the results showed high correlation. A basic regression model that

only considered basic game features such as number of flower types, number of clues,

and whether all flowers were used in the clues, could only explain 34%4 of the variance.

However, the regression model that incorporated application steps based on the default

decision tree could explain 70% of the variance, and the regression model that incorporated

application steps based on the least decision tree could explain 75% of the variance. This

showed that application steps computed by the analytical tableaux model can predict

item ratings very well, and the size of the decision trees is a possible explanation for the

cognitive difficulty of 2-pin DMM game items.

4Results in Gierasimczuk et al. (2013) were generated based on the 2013 dataset of DMM. In Chapter

5 Empirical Evaluation of Models, we tested the tableaux model with the latest dataset, and replicated

similar results. A more detailed statistical analysis can be found in Chapter 5.
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Analytical Tableaux Model

3.3 Caveats

Even though the analytical tableaux model is able to correctly predict the the Elo ratings

of game items, some of the assumptions and limitations of this model limit its ability to

adequately explain the cognitive difficulty of DMM game items.

Order-dependency The procedure for building a decision tree in the analytical tableaux

model is order dependent. According to the rules of analytical tableaux, a decision tree

has to be unfolded step by step. In the case of DMM, a step is a Boolean formula that

represents a clue. Therefore, in a DMM game, the analytical tableaux model depicts an

agent as reasoning about clues one by one. Hence, the analytical tableaux model makes

strong assumptions on the order in which players reason about clues when working on a

game item.

Figure 3.4: Game item with four all gr feedbacks

However, researchers have observed

that in reality players also reason across

clues. When children saw game items

whose feedbacks are all gr and the same

flower appeared at the same position in the

clues, they chose that flower and put it in

the same position as in the clues for their

answer. Self-reports of children supported

that some children did recognize this pat-

tern of all gr feedbacks. By applying some

logic reasoning, clues that all contain gr

feedbacks form a logical shortcut for solving that game item. Researchers also speculated

that children are even able to use this pattern in game items with more pins. Figure 3.4

gives an example of an all gr game item. In these kinds of cases the analytical tableaux

model provides an incorrect prediction by stating this item is very difficult because it

generates a huge decision tree that branches four times, whereas this item is, in fact, easy

because children can recognize the all gr pattern across clues.

Reasoning by cases The analytical tableaux model makes strong assumptions about

the cognitive process of children when they play this game. Gierasimczuk et al. (2013)

claim that a decision tree generated by the tableau method for a DMM game item “rep-

resents an adequate reasoning scheme” for players. In the analytical tableaux model, the

size of the decision tree is determined by the branching rules for feedbacks. Feedbacks

such as gr and or branch the decision tree, and therefore increase the complexity of the

resulting decision tree. Reasoning by case directly decides the complexity measurements.

To put it bluntly, the tableaux model assumes that it is reasoning by cases that decides
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3.3. Caveats

the cognitive difficulty of a 2-pin DMM game item.

Even though the tableaux model implicitly assumes that decision trees are how children

solve a game item, in practice uncovering the actual reasoning procedure that children

use is quite difficult. Instead of reasoning by cases, children may also think in different

ways, such as deliberating over possible answers and eliminating impossible conjectures.

Therefore, it is too strong to assume that decision trees generated by tableaux is the

cognitive process for solving that game.

Reliability of parameters Another concern follows naturally from the worry about

making strong assumptions about the cognitive process is that, since the size of decision

trees is a feature of the formal system, it is not clear whether the application steps indeed

capture the cognitive difficulty of a game item, or just are artifacts of the specific model

being used. Parameters computed by a particular formalization reflect properties of a

game item under that formalization. But if that formalization is not a good representa-

tion of our cognitive system, to what extent can we take those formal parameters to be

parameters about a game item’s cognitive difficulty?
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Chapter 4

Dynamic Epistemic Logic Model

We saw an analytical tableaux model for 2-pin DMM game items. This model was able to

correctly predict 75% of the ratings of game items, but is also challenged for claiming to

represent the cognitive process of solving DMM games without accounting for observed

reasoning patterns. Since children may solve DMM games using processes other than

reasoning by cases, can some other model capture those processes? Can we cross-check

the reliability of the tableaux model by another model based on a different formalization?

The answer to each of these questions is yes. In this chapter we explore a Dynamic

Epistemic Logic (DEL) model of 2-pin DMM game items. The DEL model of DMM game

items does not include an assumption of reasoning by cases, and it allows agents other

ways of solving a 2-pin DMM game item such as by deliberating over possible options. The

DEL model can represent both order-dependent and order-independent ways of solving a

game item, and provides a nice representation of cross clue logical shortcuts like the all gr

feedback pattern discussed earlier. In addition to these benefits, the DEL model of DMM

game items is at least as general as the tableaux model because each tableaux decision

tree for a DMM game item can be translated into a DEL model of the same game item.

In this chapter, we present the DEL formalization of DMM game items and the DEL

way of solving a 2-pin DMM game item. We present two variants of the DEL model. One

is order-dependent, and the other order-independent. We discuss and define complexity

measurements of the DEL models, and show how to translate a tableaux decision tree

into a DEL model, and end this chapter by presenting the DEL account for cross clue

logical shortcuts.

4.1 DEL Preliminaries

This section refreshes readers on the knowledge of DEL required for the modeling. The

definitions we introduce here are primarily based on lecture notes from Baltag (2016).
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4.1. DEL Preliminaries

As a unifying framework of both epistemics and dynamics, DEL extends basic epis-

temic logic with event models and product updates, and thus becomes a powerful frame-

work that can model sophisticated belief revision, information flow in social interactions,

and many other phenomena (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem

et al., 2006). The basic language of DEL is the same as standard epistemic logic.

Definition 4.1 (Language). The language of of single-agent epistemic logic LX is gener-

ated by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ

where p ∈ Φ and Φ is a countable set of atomic sentences. ∨ and → are defined in the

standard way. Bϕ reads like “believe ϕ”.5

In DEL, the epistemic states of agents are represented by epistemic models.

Definition 4.2 (Epistemic model). An epistemic model of LX is a tuple S = 〈S, || · ||, s∗〉
where S is a set of possible worlds that are epistemically possible, || · || : Φ 7→ P(S) is a

valuation assigning to each p ∈ Φ a set ||p||S of worlds, and s∗ is the actual world.

This model provides sphere semantics for LX , which differs from the standard Kripke

semantics for epistemic models, by not having indistinguishablity relations. Therefore,

possible worlds are not connected in this epistemic model; instead, they are evaluated

as sets. The sphere models are less general than Kripke models for LX , but is enough

for modeling DMM game items and solutions. For any world w in a model S and any

sentence ϕ, we write w |=S ϕ if ϕ is true in the world w. When the model S is fixed, we

omit the subscript and simply write w |= ϕ. For atomic sentences, w |= ϕ is given by the

valuation:

w |= p iff w ∈ ||p||

The semantics for other propositional formulas is given by the usual truth clauses:

w |= ¬ϕ iff w 6|= ϕ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ

The semantics for the belief operator B is given by:

w |= Bϕ iff t |= ϕ for all t ∈ S

Definition 4.3 (Event model). An event model is E = {E, pre},6 where e ∈ E is an

action, and pre is a sentence in LX that describes the precondition of E.

5In the standard epistemic logic, there is another modal operator Kϕ that reads “know ϕ”. For the

scope of this thesis, the belief operator B is enough for our modeling, and therefore we omit this operator.
6We omit the indistinguishablity relation (

A−→) here because: (a) this is a single-agent model, so we do

not need to specify agents, and (b) sphere semantics does not involve indistinguishablity relations. Same

for the product update model.
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Given epistemic models and event models defined above, agents update their beliefs

according to the product update protocol:

Definition 4.4 (Product update). The product update model is defined as

S⊗ E = (S ⊗ E, || · ||)

where {(s, e) ∈ S ⊗ E | s |= pree} and ||p||S⊗E := s ∈ ||p||S.

4.2 Model of Game Items

In this section, we present the DEL formalization of DMM game items and how to solve

a DMM game item via product update in DEL. This section divides into two subsections.

The first subsection formalizes static information of a DMM game item shown on the

screen. The second shows how to use DEL techniques to model the process of finding the

secret flower code.

4.2.1 Formalizing Game Items

We formalize the static information shown on the screen for a DMM game item in this

subsection, and we call this formalization the DMM game model. The DMM game model

is introduced in three steps, first we show the mapping of flower pegs and feedback pegs

to propositional letter, then we introduce sentences that represent flower sequences and

clues, and lastly we define a feedback function that encodes how feedback pegs are given

with respect to the secret sequence and a flower sequence.

Atomic sentences

The set of atomic sentences Φ consists of propositional letters for flower pegs and feedback

pegs, as well as indexed propositional letters for flower pegs in flower sequences. We assign

propositional letters as follows: p, q, . . . to lower pegs, g to green feedback pegs, o to orange

feedback pegs, and r to red feedback pegs. For flower pegs in a flower sequence, index ·i
denotes the position of each flower in the sequence.

Example 4.1. As an example, consider the DMM game item in Figure 2.2. Let a stand

for tulips, b stand for daisies, c stand for sunflowers and d stand for the green flowers, b1
stand for a daisy that appears at the first place in a flower sequence, b2 stand for a daisy

that appears at the second place in a flower sequence, and d2 stand for a green flower that

appears at the second place in a flower sequence. The first row of the flower sequence in

Figure 2.2 consists of propositions b1 and b2, and the second row of the flower sequence

consists of propositions b1 and d2.
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We can concatenate n propositional letters for feedback pegs to form a feedback se-

quence σn. For example, a 2-pin DMM game items has four possible feedbacks: green-red,

red-red, orange-orange and orange-red. Hence, the four possible feedback sequences σ2

are gr, rr, oo, and or. When n = 1, the three possible feedback sequences σ1 are the

three propositional letters for feedback pegs, namely, g, r, and o. We include feedback

sequences σn, n ≥ 1 in the set of atomic sentences Φ as well.

Altogether, the set of propositional letters Φ consists of flower pegs p, q, . . ., indexed

flower pegs pi, qj, . . ., and feedback sequences σn, n ≥ 1.

DMM game model

For every DMM game item, each clue consists of a conjecture and a corresponding feed-

back. The conjecture consists of n flower pegs and the feedback consists of n feedback

pegs. Formally, we define a clue as follows.

Definition 4.5 (Clue). A clue L =
n∧
i=1

xi ∧ σn, x, xi, σ
n ∈ Φ.

In Definition 4.5, the x of xi ranges over propositional letters for flowers p, q, . . ., and i

is the position of the flower in the clue. The feedback sequence σn in the clue has length

n, which equals the number of indexed flower pegs. Note that σn is a propositional letter

in our language. We call the conjunction of all the xis in a clue L a flower configuration,

and denote it with C. A clue is a conjunction of a flower configuration C =
n∧
i=1

xi and a

feedback sequence σn. For every clue, each position in the flower configuration shall be

filled with exactly one flower. In other words, for all 1 ≤ i ≤ n, there exists exactly one

xj such that xi = xj. If pi, qj are in the same clue and i = j, then p = q; but not the

converse.

Example 4.2. Figure 2.2 shows 2 clues of a game item. In the first row clue L1 =

b1 ∧ b2 ∧ gr, and in the second row clue L2 = b1 ∧ d2 ∧ oo.

The secret code, or goal (the only correct answer of the game), is a flower configuration

that is hidden from agents in the game.

We now define the game model for DMM game items.

Definition 4.6 (DMM game model). A DMM game model G is a tuple 〈FG,LG, goalG〉
where FG is a set of indexed flower pegs that are available for players to choose from, LG
is the set of clues, and goalG is the secret code.

The secret code goal is not shown on the screen for players, but we still include it

determines how feedbacks are given for a flower configuration. In the next step, we define

a feedback function that interprets the relation between flower sequences and feedbacks

with respect to goal. For simplicity, we omit the subscript ·G when the context is clear.
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Example 4.3. For example, consider again the game item in Figure 2.2. Let G be the

DMM game model of this game item, F = {a1, a2, b1, b2, c1, c2, d1, d2}, and L = {L1, L2}.
As in Example 4.2, clue L1 = b1 ∧ b2 ∧ gr, and clue L2 = b1 ∧ d2 ∧ oo. Note that goal is

not on the screen.

Feedback function

We want to not only describe DMM game items in DEL, but also encode the information

needed for an agent to solve those game items. At the top-right corner of the screen

shot in Figure 2.2, 3 rules state the relation between feedback pegs, conjectures, and the

secret code. Accordingly, we define the following function to represent these pieces of

information.

Definition 4.7. Given a DMM game model G = 〈F,L, goal〉, a clue L ∈ L and all the

pi that appear in L:

f goal(pi) =


g if there is a qj in goal such that p = q and i = j;

o there is a qj in goal such that p = q and i 6= k

and there is no rk in L such that q = r and j = k;

r otherwise.

Let C be the flower configuration in clue L, with a slight abuse of notation, we write

f goal(C) = σn as the result of concatenating f goal(pi) for all pi that appears in C. There-

fore, a clue L = C ∧ σn = C ∧ f goal(C).

Example 4.4. Take game model G in Example 4.3, it is the case that f goal(C1) =

f goal(b1 ∧ b2) = gr and f goal(C2) = f goal(b1 ∧ d2) = oo.

The feedback function specifies the relation between a flower configuration C in clue

L and the goal configuration. It encodes information for solving a DMM game item. This

definition can be relaxed to any flower configuration instead of just goal, which we will

use later.

4.2.2 Solving Game Items

Now that we have formalized DMM game items into DMM game models, we can build

DEL models for each game model to analyze the procedure of solving the game.

In general, an epistemic model describes an agent’s beliefs about possible answers to

the game. An event model represents the action of reasoning about a clue. The product

model that results from updating an epistemic model with an event model forms a new

epistemic model for an agent after reasoning about the clue.
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Taking the framework of DEL, we get the syntax and semantics for epistemic model,

event model and product update for free. What remains to be specified are the valuation

function and preconditions. Let us examine them one by one.

Valuation function

In an epistemic model S = {S, ||·||, s∗}, a possible world s ∈ S such that s |= ϕ represents a

possibility that ϕ is true at s. As for modeling DMM game items, we want each possible

world s to represent a possible flower configuration. In other words, for each possible

flower configuration C, we want one possible world s ∈ S such that s |= C.

Recall that a flower configuration C is a conjunction of indexed flower pegs,
n∧
i=1

xi.

Hence, by the semantics of DEL, we want the valuation function || · || to map the set of

indexed flower pegs FG to the power set of possible worlds P(S), i.e., || · || : FG 7→ P(S).

The actual world s∗ |= goal. Atomic sentences that are not in the set of indexed flower

pegs are mapped to the empty set, i.e., || · || : Φ \ FG 7→ ∅.

Before an agent reasons about any clue, every flower configuration is a possible answer

for the game. We call the epistemic model before updating with any event models the

initial epistemic model. Hence, the number of possible worlds in the initial epistemic

model is the same as the number of all possible flower configurations.

Proposition 4.1. Let S = {S, || · ||, s∗} be an initial epistemic model for n-pin DMM

game model G, if |FG| = m · n, then |S| = mn.

Proof. This comes from basic combinatorial calculations. Since G is a n-pin game, |FG| =
m·n means that there are m types of available flowers pegs. A flower sequence, represented

by a flower configuration, has n spots, and each of the n spots can choose from m types

of flower pegs. Hence, there are mn combinations.

Following from this proof, each possible world in an epistemic model of a DMM game

item represents an unique flower configuration C. Formally, for any s, s′ ∈ S such that

s |= C, s′ |= C ′, if C = C ′, then s = s′. We write Cs to denote the flower configuration C

that is true at world s.

Precondition

Epistemic models represent an agent’s beliefs about possible flower configurations. Given

a game model G, the initial epistemic model contains all possible flower configurations.

When an agent deliberates over clues, some possibilities get eliminated, because they are

inconsistent with information encoded by the clues. After reasoning about all the clues,

only one world should remain, namely, the actual world s∗ where goal is true.
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To model this reasoning process, we define event models EL to represent the action of

reasoning about a clue L ∈ LG. Given a DMM game model G, we define an event model

EL = {eL, pre} where eL is the action of observing clue L ∈ LG, and pre is the precondition

for clue L to be true. For 2-pin DMM game models, we define four preconditions pre with

respect to each feedback sequence. Consider any clue L = p1 ∧ q2 ∧ σ2, then

If σ2 = oo, preeL = q1 ∧ p2
If σ2 = rr, preeL = ¬p1 ∧ ¬p2 ∧ ¬q1 ∧ ¬q2
If σ2 = gr, preeL = (p1 ∧ ¬q2) ∨ (q2 ∧ ¬p1)
If σ2 = or, preeL = (p2 ∧ ¬p1 ∧ ¬q1) ∨ (q1 ∧ ¬p2 ∧ ¬q2).7

The precondition for σ2 = oo says that clue L = p1 ∧ q2 ∧ oo is true at worlds where

the position of the two flower pegs in L are switched. The precondition for σ2 = rr says

that L = p1 ∧ q2 ∧ rr is true at worlds where neither of the flower pegs in L appear in

this world. The precondition for σ2 = gr says that L = p1 ∧ q2 ∧ gr is true at worlds

where one of the flower pegs in L is at the right position and another flower peg does not

appear. Finally, the precondition for σ2 = or says that clue L = p1 ∧ q2 ∧ or is true at

worlds where one of the flower pegs in L is the right flower at another position, and the

other position holds neither flower pegs in L.

The product model S⊗ E is defined as usual in DEL.

Now we need to show that the preconditions indeed capture the correct interpretation

of each feedback, which we do by defining a notion of compatibility.

Definition 4.8 (Compatibility). A possible world s is compatible with a clue L = C∧σn

if fCs(C) = σn.

Recall that Cs is the flower configuration C that is true at world s. fCs(C) = σn

is an extension of the feedback function in Definition 4.7, and is defined by replacing

goal in Definition 4.7 with Cs. From the definition of the valuation, we know that each

possible world s in an epistemic model holds a unique flower configuration Cs. Therefore,

fCs(C) = σn means that if s is the actual world, and C is the flower configuration in clue

L = C ∧ σn, we get a feedback sequence σn
′

such that σn
′
= σn.

Proposition 4.2. Let S0 be an initial epistemic model for a game model G, EL =

{eL, pre}, where eL is the action of observing a clue L, then for S1 = S0 ⊗ EL and

S1 ∈ S1, world s ∈ S1 if and only if s is compatible with L.

7 According to the feedback function, the precondition for the or feedback to flower configuration

p1 ∧ q2 can also be p2 ∧¬p1 ∧¬q1 ∧¬q2, and is equivalent to the precondition defined in the text, because

p1 already indicates the q2 cannot be the case, according to the condition of being a flower configuration

(see Definition 4.5).
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Proof. Without loss of generality, assume L = a1 ∧ b2 ∧σ2. By the definitions of the DEL

models in Section 4.1 and 4.2.2, S1 = {s|s ∈ S0 ⊗ E} and S0 ⊗ E = {(s, e)|s |= pre}.
Note that (s, e) represents the possible world s with label (s, e), hence, s ∈ S1 ⇔ s |= pre.

Hence, we need to show that for all s ∈ S1:

• ⇒: if s ∈ S1, then fCs(a1 ∧ b2) = σ2, and

• ⇐: if s 6∈ S1, then fCs(a1 ∧ b2) 6= σ2.

Let us check the four feedback sequences oo, rr, gr, or one by one.

(i) σ2 = oo:

• ⇒: given any s ∈ S1, by definition of pre, s |= a2∧b1. By definition of feedback

sequence, fCs(a1 ∧ b2) = oo.

• ⇐: given any s 6∈ S1, by definition of pre, s 6|= a2 ∧ b1. Hence, s |= ¬a2 ∨ ¬b1,
therefore, s |= ¬a2 or s |= ¬b1. If s |= ¬a2, then s 6|= a2, and therefore

fCs(a1) 6= o, so that fCs(a1 ∧ b2) 6= oo. If s |= ¬b1, then s 6|= b1, and fCs(b2) 6=
o, fCs(a1 ∧ b2) 6= oo. In all, if s 6∈ S1, then fCs(a1 ∧ b2) 6= oo.

(ii) σ2 = rr:

• ⇒: given any s ∈ S1, by definition of pre, s |= ¬a1 ∧ ¬a2 ∧ ¬b1 ∧ ¬b2. By

definition of feedback sequence, fCs(a1 ∧ b2) = rr.

• ⇐: given any s 6∈ S1, by definition of pre, s |= a1 ∨ a2 ∨ b1 ∨ b2. That is

to say, s |= a1 or s |= a2 or s |= b1 or s |= b2. If s |= a1, then fCs(a1) =

g, fCs(a1 ∧ b2) 6= rr. Similarly for s |= a2, s |= b1 or s |= b2. In all, if s 6∈ S,

then fCs(a1 ∧ b2) 6= rr.

(iii) σ2 = gr:

• ⇒: given any s ∈ S1, by definition of pre, s |= (a1 ∧ ¬b2) ∨ (b2 ∧ ¬a1). Hence,

s |= a1∧¬b2 or s |= b2∧¬a1. If s |= a1∧¬b2, then s |= a1 and s 6|= b2. By s |= a1,

fCs(a1) = g. By s 6|= b2, f
Cs(b2) = r. Hence, fCs(a1 ∧ b2) = gr. Similarly for

s |= b2 ∧ ¬a1, we have fCs(b2) = g, fCs(a1) = r and fCs(a1 ∧ b2) = gr. In all,

fCs(a1 ∧ b2) = gr.

• ⇐: given any s 6∈ S1, by definition of pre, s 6|= (a1 ∧ ¬b2) ∨ (b2 ∧ ¬a1), hence,

s |= (¬a1 ∨ b2) ∧ (¬b2 ∨ a1). Suppose that s |= ¬a1, then s |= ¬b2, then

fCs(a1) 6= g and fCs(b2) 6= g, therefore fCs(a1 ∧ b2) 6= gr. Suppose that s |= b2,

then s |= a1. Hence, fCs(a1) = g, fCs(b2) = g, therefore fCs(a1 ∧ b2) = gg and

fCs(a1 ∧ b2) 6= gr.
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(iv) σ2 = or:

• ⇒: given any s ∈ S1, by definition of pre, s |= (b1∧¬a2∧¬b2)∨(a2∧¬a1∧¬b1).
Hence, s |= b1∧¬a2∧¬b2 or s |= a2∧¬a1∧¬b1. Suppose that s |= b1∧¬a2∧¬b2,
by Definition 4.7, fCs(a1) = r and fCs(b2) = o. Hence, fCs(a1 ∧ b2) = or.

Similarly for s |= a2 ∧ ¬a1 ∧ ¬b1. In all, fCs(a1 ∧ b2) = or.

• ⇐: given any s 6∈ S1, by definition of pre, s |= (¬b1 ∨ a2 ∨ b2)∧ (¬a2 ∨ a1 ∨ b1).
Hence, s |= ¬b1 ∨ a2 ∨ b2 and s |= ¬a2 ∨ a1 ∨ b1. Suppose that s |= b1, then

s |= a2 ∨ b2. If s |= a2, then Cs = b1 ∧ a2 and fCs(a1 ∧ b2) = oo 6= or. If

s |= b2, then Cs = b1 ∧ b2 and fCs(a1 ∧ b2) = gr 6= or. Hence, if s |= b1 then

fCs(a1 ∧ b2) 6= or.

Suppose that s |= ¬b1, then s |= ¬a2 ∨ a1. If a |= ¬a2, then s |= ¬b1 ∧¬a2, and

fCs(a1 ∧ b2) 6= or because there cannot be any o feedback for either flower. If

s |= a1, then fCs(a1) = g and fCs(a1 ∧ b2) 6= or. In all, fCs(a1 ∧ b2) 6= or.

Therefore, in all, for any L = C ∧ σ2 and S1 = S0 ⊗ E,

s ∈ S1 ⇔ fCs(C) = σ2.

Because of Proposition 4.2 and uniqueness of goal in the game setting, it follows that

after updating with all clues, the DEL model converges to goal.

Theorem 4.1. For any 2-pin DMM game model G = (FG,LG, goal) where LG =

{L1, . . . , Ln}, let Ei = {ei, pre} where action ei is observing clue Li ∈ LG, then for

Sn = S0 ⊗ E1 ⊗ . . .En, |Sn| = 1.

Proof. By Proposition 4.2, it is always the case that the actual world s∗ ∈ Sn. Hence,

|Sn| ≥ 1. By uniqueness of goal, for all s ∈ |Sn| such that s is compatible with all clues

in LG, s = s∗. Hence, |Sn| = 1.

4.3 Sequential Update

The DEL model of a DMM game model generates a sequence of epistemic models, and each

one contains some possible flower configurations that are compatible with the information

processed so far. Agents may reason about clues one by one, or reason about several clues

at the same time. In this section, we consider the first case, and in the next section the

second case.
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4.3.1 Illustration

Reasoning about clues one by one generates a sequence of epistemic models that shrink

in size until only one possible world remains.

Example 4.5. Consider the game model G in Example 4.3, where the initial epistemic

model is S0 = {S0, || · ||, s∗}, and |S0| = 42 = 16. There are 16 possible flower configura-

tions, each true at a unique possible world si ∈ S0:

s1 |= a1 ∧ a2, s2 |= a1 ∧ b2, s3 |= a1 ∧ c2, s4 |= a1 ∧ d2,
s5 |= b1 ∧ a2, s6 |= b1 ∧ b2, s7 |= b1 ∧ c2, s8 |= b1 ∧ d2,
s9 |= c1 ∧ a2, s10 |= c1 ∧ b2, s11 |= c1 ∧ c2, s12 |= c1 ∧ d2,
s13 |= d1 ∧ a2, s14 |= d1 ∧ b2, s15 |= d1 ∧ c2, s16 |= d1 ∧ d2.

Let the following event models encode the two clues in the game model:

EL1 = {eL1 , preL1}, since L1 = b1 ∧ b2 ∧ gr, preL1 = (b1 ∧ ¬b2) ∨ (b2 ∧ ¬b1), and

EL2 = {eL2 , preL2}, since L2 = b1 ∧ d2 ∧ oo, preL2 = d1 ∧ b2.
If the agent first reasons about clue L1, then the updated epistemic model is S1 =

S0 ⊗ EL1 , S1 = {s2, s5, s7, s8, s10, s14}.
And reasoning about clue L2 results in the second updated epistemic model S2 =

S1 ⊗ EL2 , S2 = {s14}.
Since |S2| = 1, and s∗ = s14, the goal is d1 ∧ b2.

In Example 4.5, the initial epistemic model S0 has 16 possible worlds, and after updat-

ing with clue L1, S1 has 6 possible worlds. Updating with clue L2 results in S2 where only

the actually world is left. S0, S1 and S2 form a sequence of updated epistemic models,

which we illustrate in Figure 4.1.

s1, s2, s3, s4
s5, s6, s7, s8
s9, s10, s11, s12
s13, s14, s15, s16

S0

s2, s5, s7
s8, s10, s14

S1

s14

S2L1 L2

Figure 4.1: Illustration of the update sequence for Example 4.5

We call such a sequence of updated epistemic models an “update sequence”. Formally,

Definition 4.9 (Update sequence). Let G be a (2-pin) DMM game model, S0 be the

initial epistemic model, and E1, . . . ,En be event models for clues L1, . . . , Ln ∈ L, then

S1 = S0⊗E1,S2 = S1⊗E2, . . . ,Sn = Sn−1⊗En. An update sequence of this game model

is QG = 〈S0, S1, . . . , Sn〉 where Sk ∈ Sk.
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As stated in Theorem 4.1, the update sequence of any DMM game model will end

with the epistemic model of size 1, and for any epistemic models S, S ′ in the same update

sequence, if S is before S ′, then |S| ≥ |S ′|.

4.3.2 Complexity Measurements

We now define several criteria to measure the complexity of an update sequence generated

by the DEL model of a DMM game model. We measure the complexity of an update

sequence from the perspective of the number of possible worlds and the rate of convergence

of the epistemic models respectively.

Size of epistemic models

One natural proposal is to take the sum of the sizes of all epistemic models in an update

sequence. The size of an epistemic model reflects how many possibilities could serve as the

correct answer, and hypothetically the more possibilities, the more difficult of this game

item. Therefore, if a game item generates an update sequence in which each epistemic

model contains many possible worlds, then this game is perceived to be more difficult.

Formally,

Definition 4.10 (Measurement SUM0). The SUM0 complexity of an update sequence

Q = 〈S0, . . . , Sn〉 is defined as

SUM0 :=
n∑
i=0

|Si|

We illustrate this measurement with the following example.

Example 4.6. Consider the following two game items.

(1) Game item 125966 (Rating: -15.77):

G1 = {F1,L1, goal1}, F1 = {a1, a2, b1, b2, c1, c2, d1, d2, e1, e2}, |F1| = 5 · 2 = 10,

L1 = {L1
1, L

1
2}, L1

1 = a1 ∧ b2 ∧ rr, and L2
1 = c1 ∧ d2 ∧ rr.

(2) Game item 125780 (Rating: -30.15):

G2 = {F2,L2, goal2}, F2 = {a1, a2, b1, b2, c1, c2}, |F2| = 3 · 2 = 6,

L2 = {L2
1, L

2
2}, L2

1 = a1 ∧ a2 ∧ gr, and L2
2 = b1 ∧ b2 ∧ rr.

The sizes of the epistemic models in the update sequence for G1 are 〈25, 9, 1〉, and for

G2 they are 〈9, 4, 1〉. According to Definition 4.10, SUM0(G1) = 25 + 9 + 1 = 35 and

SUM0(G2) = 9 + 4 + 1 = 14.
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The Elo rating for G1 is -15.77 and the rating for G2 is -30.15, which means that

empirically G1 is harder than G2. The SUM0 measurement for these two game items

reflects this fact, with G1 of complexity measurement 35 and G2 of 14.

However, measurement SUM0 may overate the influence of the initial model, which

we demonstrate in the next example.

Example 4.7. Consider game items (3) and (4), which have different sizes of initial

epistemic models and therefore very different SUM0 measurements. However, their ratings

are very similar to each other.

(3) Game item 125831 (Rating: -20.84):

G3 = {F3,L3, goal3}, F3 = {a1, a2, b1, b2, c1, c2, d1, d2}, |F3| = 4 · 2 = 8,

L3 = {L3
1, L

3
2}, L3

1 = a1 ∧ b2 ∧ rr, L3
1 = c1 ∧ d2 ∧ oo.

(4) Game item 125563 (Rating: -22.66):

G4 = {F4,L4, goal4}, F4 = {a1, a2, b1, b2, c1, c2}, |F4| = 3 · 2 = 6,

L4 = {L4
1, L

4
2}, L4

1 = a1 ∧ a2 ∧ gr, L4
1 = b1 ∧ c2 ∧ rr.

The sizes of epistemic models in DEL structure for G3 is 〈16, 4, 1〉, and the sizes of

epistemic models in the DEL structure for G4 is 〈9, 4, 1〉.

According to Definition 4.10, SUM0(G3) = 16+4+1 = 21 and SUM0(G4) = 9+4+1 =

14. However, the Elo rating of these two game items are very close to each other (-20.84

and -22.66). We therefore propose another measurement SUM1 that excludes the size

of the initial epistemic models because the initial epistemic model simply contains all

possibilities, which does not directly relate to how to solve the game. Formally,

Definition 4.11 (SUM1). The SUM1 complexity of an update sequence Q = 〈S0, . . . , Sn〉
is defined as

SUM1 :=
n∑
i=1

|Si|

This SUM1 measurement counts the number of possible worlds in an update sequence

without counting the initial epistemic state, which avoids the situation illustrated in

Example 4.7. According to this new measurement, the SUM1 measurement for the update

sequence of game model G3 is 5, which equals the SUM1 measurement for DEL structure of

game model G4. This fits better with the Elo ratings for both items. We test whether the

SUM1 measurement captures the empirical difficulty better than the SUM0 measurement

in the next section.

In addition to the two sum measurements, we also define the following measurement

that considers the average size of epistemic models in an update sequence.
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Definition 4.12 (SV). The SV complexity of an update sequence Q = 〈S0, . . . , Sn〉 is

defined as

SV :=
SUM0(Q)

n

Here, “V” stands for “average”, indicating that the SV measurement considers the

average number of possible worlds per update. The higher the SV measurement, the

more difficult a game item is.

Convergence rate

Another measurement of the complexity of DEL update sequences is the rate of conver-

gence. If from Sk−1 to Sk, a clue Lk eliminates more states, then the faster this game

item converges to goal. Our assumption is the more possible worlds a clue eliminates, the

more difficult it is for a player to reason about this clue.

Definition 4.13 (CR). The CR complexity of an update sequence Q = 〈S0, . . . , Sn〉 is

defined as

CR :=
n∑
i=1

|Si−1|
|Si|

The CR measurement takes the sum of the convergence rate of an update sequence.

The more states that get eliminated, the more reasoning is required for this step, and

therefore we expect a higher rating. When increasing the number of states Si eliminates

from Si−1,
|Si−1|
|Si| increases, resulting in a larger value that indicates a higher cognitive

difficulty of this game item.

Consider the four game models in Example 4.6 and Example 4.7, the CR complexity

for each DEL structure of those game models are as follows:

CR(Q1) =
25

9
+

9

1
≈ 11.78,

CR(Q2) =
9

4
+

4

1
≈ 6.25,

CR(Q3) =
16

4
+

4

1
≈ 8, and

CR(Q4) =
9

4
+

4

1
≈ 6.25.

The CR measurement says that game model G1 is the most complex, and then G3

the next complex, and that game models G2 and G4 are equally complex. As for the

Elo ratings, the difficulty ranking of the four game models is G1 > G4 > G3 > G2. CR
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measurement captures the fact the G1 is more difficult than the rest, and that G3 is more

difficult than G2, but not G4 is more difficult than G2 and G3, and that G2 is the least

difficult.

4.4 Intersecting Update

As shown earlier, an update sequence is order-dependent. That is to say, the order of

which clue to process decides the update sequence, and consequently influences the value

of the complexity measurements of that game item. However, experiments that track eye

movements reveal that people do not always follow a specific order in reasoning over clues

(Truescu, 2016). Therefore, since assuming the order of clues to update in a DEL update

is too strong, and we want to relax or drop this constraint on our DEL model.

Fortunately, updating clues one after one is not the only way to solve a DMM game

item in the language of DEL. In fact, an agent can update the initial epistemic model

using all the clues at the same time, and then take the intersection of such updates.

According to the DEL formalization, this procedure always leads to goal as well.

Proposition 4.3. For a 2-pin DMM game model G, let S be an epistemic model, EL be

an event model for clue L ∈ LG, and EL′ an event model for clue L′ ∈ LG, then:

S⊗ EL ⊗ EL′ = S⊗ EL′ ⊗ EL.

Proof. Let A = S⊗EL⊗EL′ , and B = S⊗EL′⊗EL. Let ϕ =
∨
Cs for all s ∈ S, then for

all s ∈ S, s |= ϕ. By definition of product update, for all a ∈ A, a |= ϕ ∧ preeL ∧ preeL′ ,
and for all b ∈ B, b |= ϕ ∧ preeL′ ∧ preeL . Since all the preconditions pre do not contain

any modal operator, but are just propositional logic formulas, whether pre is true in some

world s depends only on the valuation at s, and not at any other world. By propositional

logic, A = B.

Proposition 4.3 shows that the order of an update does not effect the updated model.

This proposition can be written in a different way:

Theorem 4.2. For a 2-pin DMM game model G, let S0 be the initial epistemic model

and EL1 , . . .ELn be event models for clue L, . . . , Ln:

S0 ⊗ EL1 . . .⊗ ELn =
n⋂
k=1

S0 ⊗ ELk

Theorem 4.2 says that to update epistemic models clue after clue is the same as

updating all clues at the same time. In particular, let the initial epistemic model be

updated with each clue, and simply take the intersection of such update to get goal. The

proof for Theorem 4.2 is similar to the one for Proposition 4.3, which uses the fact that

in propositional logic if p = a ∧ b and q = c ∧ d, then p ∧ q = a ∧ b ∧ c ∧ d.
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Figure 4.2: Screenshot of a 2-pin DMM game item

4.4.1 Illustration

Now we show by way of an example that we can find goal for a game item by updating

each clue with the initial epistemic model and then taking the intersection of them.

Example 4.8. Consider the game item in Figure 4.2, which has game model G =

〈F,L, goal〉, where F = {a1, a2, b1, b2, c1, c2}, L = {L1L2}, L1 = b1 ∧ b2 ∧ gr, and

L2 = c1 ∧ b2 ∧ gr. The initial epistemic model S0 = {S0, || · ||, s∗}, |S0| = 32 = 9.

There are 9 possible flower configurations, each true at a possible world si ∈ S0:

s1 |= a1 ∧ a2, s2 |= a1 ∧ b2, s3 |= a1 ∧ c2,
s4 |= b1 ∧ a2, s5 |= b1 ∧ b2, s6 |= b1 ∧ c2,
s7 |= c1 ∧ a2, s8 |= c1 ∧ b2, s9 |= c1 ∧ c2.

Let event models encode the two clues in the game model as follows:

EL1 = {eL1 , preL1}, since L1 = b1 ∧ b2 ∧ gr, preL1 = (b1 ∧ ¬b2) ∨ (b2 ∧ ¬b1).
EL2 = {eL2 , preL2}, since L2 = c1 ∧ b2 ∧ gr, preL2 = (c1 ∧ ¬b2) ∨ (b2 ∧ ¬c1).
Updating the initial epistemic model with clue L1 results in the updated epistemic

model S1 = S0 ⊗ EL1 , S1 = {s2, s4, s6, s8}.
And updating the initial epistemic model with clue L2 results in the updated epistemic

model S2 = S0 ⊗ EL2 , S2 = {s2, s5, s7, s9}.
Intersecting S1 and S2 leads to the actual world, S1∩S2 = {s2}, s∗ = s2, goal = a1∧b2.

Figure 4.3 shows the update sequence for Example 4.8. In this case, the initial epis-

temic model is updated with each clue individually, and then the intersection of all the

updated models is taken, which leads to the secret sequence goal.

This leads to the notion of an unordered update sequence, which contrasts with the

notion of update sequence where clues are processed one after one. The unordered update

sequence assumes that it is equally likely to process any clue at first, and goal is derived

by taking the intersection of such updates. Formally,
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s1, s2, s3,

s4, s5, s6,

s7, s8, s9.

S0

s2, s4,

s6, s8.

S1
s2, s5,

s7, s9.

S2

L1 L2

Figure 4.3: Illustration of the update sequence for Example 4.8

Definition 4.14 (Unordered update sequence). For any event models Ei ∈ {E1, . . . ,En},
an unordered update sequence is a set U = 〈S0, . . . , Sn〉 where Sn ∈ Sn such that Sn =

S0 ⊗ En.

4.4.2 Complexity Measurements

There are several ways of measuring the complexity of an unordered update sequence.

On the one hand, the measurements we defined for update sequence can be applied to

unordered update sequence with minor modifications. On the other hand, we can also

measure complexity of an unordered update sequence with respect to different feedback

types.

Complexity measurements SUM0, SUM1 and SV can be applied on unordered update

sequences. The only change is that whereas Si in an ordered update sequence refers to

the i-the iteration, in an unordered update sequence it simply refers to an update of the

initial epistemic model, but the calculations are the same. The complexity measurement

CR is modified as follows:

CR’ :=
n∑
i=1

|Si|
|S0|

,

because for each Si, i > 0 is the result of updating clue Li against the initial epistemic

model, hence we should take the ratio of |Si| against |S0| accordingly.

To measure complexity of an unordered update sequence with respect to different

feedback types, the idea is straightforward. We measure how many possible worlds a clue

keeps after updating, and average this number by feedback types. For example, the sizes

of epistemic models in the unordered update sequence in Example 4.8 are 9, 4, and 4, and

both clues contain gr feedbacks. For each clue, the number of possible worlds kept by

the clue is 4. Since both clues contain gr, the complexity measurement for gr feedback is

(4+4)/2 = 4, and the complexity measurements for the other three feedback types are all
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0. Besides computing the number of possible worlds that survive an elimination, we can

also compute the ratio of the number of worlds that survive to the number of worlds in

the initial epistemic model, as an echo to the concern about convergence rate discussed in

earlier sections. Listing 4.1 shows the R code of the algorithm that we use in computing

these measurements for the unordered update sequence for each 2-pin DMM game item.

Listing 4.1: R code for measurements over unordered update sequence

for ( i in 1 : nrow(2 pin DMM)){
i f ( c lu e [ i ] == oo ){

oo <− oo + x

} else i f ( c lu e [ i ] == r r ){
r r <− r r + x

} else i f ( c lu e [ i ] == gr ){
gr <− gr + x

} else i f ( c lu e [ i ] == or ){
or <− or + x

}
}

We define two complexity measurements using the this algorithm. One is the DELs

measurement, which considers the number of possible worlds that get selected per feedback

type, and the other is the DELr measurement, which considers the ratio of the selected

possible worlds to the initial epistemic model per feedback type. We first compute a value

x for each clue, and then average x with respect to feedback types. For measurement

DELs, x is the size of epistemic model Si after updating the initial epistemic model with

event model Ei that contains clue Li. For measurement DELr, x is calculated as |S i| /

|S 0| for a given DEL structure. All feedbacks oo,rr,gr,or are initialized as 0. Hence,

if a feedback σ does not appear in a game model, the evaluation for feedback σ remains

0. Both the DELs and DELr measurements are averaged by the number of appearance

of that feedback.

Consider the game item in Example 4.5. The size of the initial epistemic model is

16. One clue has a gr feedback, which leads to an updated epistemic model of 6 possible

worlds. Another clue has a oo feedback, which leads to an updated epistemic model of

only 1 possible world. The unordered update sequence for this game item is 〈16, 6, 1〉,
with 6 for gr and 1 for oo. Hence, the DELs measurement for this item is

〈oo = 1, rr = 0, gr = 6, or = 0〉

And the DELr measurement for this item is

〈oo =
1

16
, rr = 0, gr =

6

16
, or = 0〉

Table 4.1 lists the six complexity measurements we have defined so far. The first four

measurements apply to both update sequences and unordered update sequences, and the
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last two measurements only apply to unordered update sequences and take feedback type

into account. In the next chapter, we test these measurements with the empirical dataset

of item ratings.

Table 4.1: Summary of complexity measurements

Complexity

Measurement
SUM0 SUM1 SV CR DELs DELr

Definition
n∑
i=0

|Si|
n∑
i=i

|Si| SUM0

n

n∑
i=0

|Si−1|
|Si|

SUM0 per

feedback type

CR per

feedback type

4.5 Informativeness of feedbacks

Before testing our complexity measurements with empirical dataset, let us pause a bit

in and take a closer look at how each clue eliminates possible worlds differently in the

elimination process.

The number of possible worlds eliminated relates to the notion of informativeness. In

information theory, informativeness of the occurrence of an event is defined by its entropy.

The less likely the occurrence of the event is, the more information it contains. Entropy

can also be viewed as the bits needed to encode the occurrence of the information. It

was first studied by Shannon (2001), and then developed into an important area of study.

Measuring informativeness of information based on the probability distribution is used

in many research areas. In particular, Fangzhou et al. (2015) used this measurement

to simulate human reasoning of logic rules in syllogistic reasoning. In the DEL models

of 2-pin DMM game items, a natural correspondence to informativeness of clues is the

number of possible worlds eliminated by an update. Assume that an agent is currently at

epistemic model S with |S| = m. From Section 4.2, for each s ∈ S, s |= Cs where Cs is a

possible flower configuration that could be an answer of this game. Hence, the probability

of each s being s∗

P (s = s∗) :=
1

|S|
(4.1)

When |S| = 1, P (s∗ = s∗) = 1, in accordance with Theorem 4.1.

Definition 4.15 (Elimination power of clues). Let E be an event model where eL is the

action of observing clue L, S0 is the initial epistemic model before updating with E, and

S = S0 ⊗ E, then the elimination power of clue L is defined as

El(L) :=
( |S|
|S0|

)−1
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by Proposition 4.1, |S0| > 0.

Similar to the least tree approach in the tableaux method, the elimination power of

clues can provide a ranking of difficulty of game items. The stronger the elimination

power a clue has, the faster it helps a model to converge to the actual world.

Claim 4.1. The elimination power of a clue L in game model G is dependent on the

feedback types σ in clue L and the number of flower types |F | = m ·n in the game model

G.

Proof. By Definition 4.6 and Proposition 4.1, for any 2-pin game model G, |F | = 2 ·m.

For any clue L = a1 ∧ b2 ∧ σ in G, there are four cases to consider.

(i) σ = oo:

Recall that preeL = b1 ∧ a2. Hence, in S1, S1 = {(b1, a2)}, therefore, |S1| = 1, and

El(L) = m2.

(ii) σ = rr:

The precondition for E is preeL = ¬a1 ∧ ¬a2 ∧ ¬b1 ∧ ¬b2. Hence,

|S1| =

(m− 1)2 if a = b

(m− 2)2 if a 6= b

This comes straightforward from basic combinatorial operations. For a = b, only

m−1 types of flowers are still possible in making possible flower configurations, and

for a 6= b, there are m−2 types of flowers left. By similar reasoning as in Proposition

4.1, we derive the above equations. Accordingly,

El(L) =

( m
m−1)2 if a = b

( m
m−2)2 if a 6= b

(iii) σ = gr:

The precondition for this clue says that preeL = (a1 ∧ ¬b2) ∨ (b2 ∧ ¬a1). There are

two cases to consider, either the first flower is the right flower in the right position

and the other one is a wrong flower, or the other way around. For each case, there

are |m− 1| possible flower configurations, and altogether |S1| = 2(m− 1). Hence,

El(L) =
m2

2(m− 1)
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(iv) σ = or:

The precondition for clues with or feedbacks is preeL = (a2∧¬a1∧¬b1)∨ (b1∧¬b2∧
¬a2). Similarly to the gr case, there are two cases to consider. For each case, there

are m − 2 possible flower configurations left in the updated model. Hence, in total

|S1| = 2(m− 2), and

El(L) =
m2

2(m− 2)

We have now proven that the elimination power of a clue L in game model G depends

on the feedback types σ in clue L, and the number of flower types |F | in the game model

G. For each m ∈ [2, 5] according to the game design, the elimination power is listed in

Table 4.2.

Table 4.2: Elimination power of clues

oo
rr

gr or
a = b a 6= b

m = 2 4/1 4/2 - 4/2 -

m = 3 9/1 9/4 9/1 9/4 9/2

m = 4 16/1 16/9 16/4 16/6 16/4

m = 5 25/1 25/16 25/9 25/8 25/6

Similar to the difficulty order of feedbacks in the tableaux model, there is a refined

difficulty order of elimination power of feedbacks according to the DEL model.

• when m = 2: |oo| > |rr| = |gr|.

• when m = 3:

– if the two flowers in the rr clue are the same: |oo| > |or| > |rr| = |gr|.
– if the two flowers in rr clue are different: |oo| = |rr| > |or| > |gr|.

• when m = 4:

– if the two flowers in the rr clue are the same: |oo| > |or| > |gr| > |rr|.
– if the two flowers in rr clue are different: |oo| > |rr| = |or| > |gr|.

• when m = 5: |oo| > |or| > |gr| > |rr|.

In all, the informativeness of a clue in the DEL model depends on the number of

available flower types and content of the clue, and it provides a finer ranking of feedback

types than the tree-difficulty of feedback types in the tableaux model.
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4.6 Generality

In this section, we present an algorithm that translates tableaux decision trees of DMM

game items to DEL models that follow the sequential update procedure of the same game

item. More precisely, we show that the Boolean translation of a game item in the tableaux

model is equivalent to the preconditions in its DEL model.

In the tableaux model, each game item is firstly translated into a set of Boolean

formulae. Each formula in this set corresponds to a clue in the game. We will show

that such a formula in the tableaux model can be treated as an event model in the DEL

formalization of DMM. Besides, possible valuations in the tableaux model correspond to

possible worlds in the epistemic models in the DEL formalization. Note that the DEL

model is able to represent all possible flower configurations, but that is not the case in

the tableaux model. If a flower is not used in the clues, the tableaux decision tree will not

take that flower into consideration for possible valuations until the last step of searching.8

We can fix this by forcing a set of all possible valuations for the tableaux model, and this

will help with translating a tableaux decision tree to a DEL model.

Boolean formulae and preconditions Firstly, let’s have a look at how to translate

a Boolean formula Bt(h, f) in the tableaux model into a precondition pre in the DEL

model.

1. Map each c1, . . . , cn in a tableaux model to an unindexed propositional letter a, b, . . .

in the DEL language.

2. For literal goal(i) = cn in the tableaux model, add index ·i to the propositional

letter for cn in the DEL language. For example goal(1) = c1 in a Boolean formula

in the tableaux model can be translated as a1 in the DEL model.

As for negation, “ 6=” in the tableaux model is translated as “¬” in the DEL model.

For example goal(2) 6= cj in a Boolean formula can be translated as ¬b2 in the DEL

model.

With these two simple steps, a Boolean formula in the tableaux model can be trans-

lated into a precondition for the corresponding clue in the DEL model. Adding a possible

world to represent the action of reasoning about that clue, we can derive an event model

for this Boolean formula. On the other hand, we can also translate the precondition in

8We have mentioned this point earlier, and it will become clearer in the following illustrative examples.

Intuitively, one can think of the game item in Figure 3.4. The sunflower is not used in any of the clues,

so that it is not represented in the tableaux decision tree of this game item. After searching over the

decision tree and finding a consistent valuation, players need to fill in this missing sunflower in order to

get the correct answer.
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an event model into a Boolean formula following the reverse of this algorithm. In all, the

Boolean translation of a game item is equivalent to the event models of this game item.

For example, consider the tableaux formalization in Example 3.1. This game item has

two clues, and therefore two Boolean formulae in the tableaux model:

Bt(h1, f1) = (goal(1) = c2 ∧ goal(2) 6= c2) ∨ (goal(2) = c2 ∧ goal(1) 6= c2)

and

Bt(h2, f2) = (goal(1) 6= c2 ∧ goal(2) 6= c4 ∧ goal(1) = c4 ∧ goal(2) = c2)

Following our algorithm, first convert c2 to propositional letter b, convert c4 to propo-

sitional letter d. Next, we can translate the Boolean formulae as follows.

Bt(h1, f1) 7→ (b1 ∧ ¬b2) ∨ (b2 ∧ ¬b1)

and

Bt(h2, f2) 7→ d1 ∧ b2

These two formulae correspond to two preconditions in the DEL model. Moreover,

every Boolean formula in the tableaux model corresponds to a precondition in the DEL

model:

• Feedback oo: goal(1) 6= ci∧goal(2) 6= cj∧goal(1) = cj∧goal(2) = ci in the tableaux

model can be translated into ¬a1∧¬b2∧ b1∧a2, and it is equivalent to precondition

a2 ∧ b1 in the DEL model.

• Feedback rr: goal(1) 6= ci∧goal(2) 6= cj∧goal(1) 6= cj∧goal(2) 6= ci in the tableaux

model corresponds to precondition ¬a1 ∧ ¬a2 ∧ ¬b1 ∧ ¬b2 in the DEL model.

• Feedback gr: (goal(1) = ci ∧ goal(2) 6= cj) ∨ (goal(2) = cj ∧ goal(1) 6= ci) in the

tableaux model corresponds to precondition (a1∧¬b2)∨(b2∧¬a1) in the DEL model.

• Feedback or: (goal(1) 6= ci∧goal(2) 6= cj)∧((goal(1) = cj∧goal(2) 6= ci)∨(goal(2) =

ci ∧ goal(1) 6= cj)) in the tableaux model can be translated into (¬a1 ∧¬b2)∧ [(a2 ∧
¬b1) ∨ (b1 ∧ ¬a2)], and by propositional logic this is equivalent to (a2 ∧ ¬b1 ∧ ¬a1 ∧
¬b2)∨ (b1 ∧¬a2 ∧¬a1 ∧¬b2), and by definition of flower configurations in the DEL

model, this is equivalent to the precondition (a2 ∧ ¬b1 ∧ ¬a1) ∨ (b1 ∧ ¬a2 ∧ ¬b2).

Valuations and possible worlds As mentioned earlier, a valuation in the tableaux

model corresponds to a possible world in the epistemic models in the DEL formalization,

but there are some possible worlds in the DEL model that do not have direct corresponding

valuations in the tableaux model.
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Bt(h1, f1)

goal(1) = c2
goal(2) 6= c2
Bt(h2, f2)

goal(1) = c3
goal(2) 6= c2

⊥

gr

goal(1) 6= c3
goal(2) = c2

⊥

gr

gr

goal(1) 6= c2
goal(2) = c2
Bt(h2, f2)

goal(1) = c3
goal(2) 6= c2

⊥

gr

goal(1) 6= c3
goal(2) = c2

>

gr

gr

Figure 4.4: Tableaux tree for the game item in Figure 4.7a

Consider the DMM game item in Figure 4.2. Let h1(1) := c2, h1(2) := c2, f1 = gr, and

h2(1) := c3, h2(2) := c2, f2 = gr, the tableaux decision tree for this game item is depicted

in Figure 4.4.

Figure 4.4 shows that rightmost branch provides a true valuation goal(1) 6= c2 ∧
goal(1) 6= c3 ∧ goal(2) = c2. However, this valuation is not enough to tell the secret

code. One needs to go back, check the game item, and find goal(1) = c1 to complete this

valuation.

If we translate each Boolean formula into preconditions, we can get a sequence of event

models.

E1 = {e1, pre1 = (b1 ∧ ¬b2) ∨ (¬b1 ∧ b2)}
E2 = {e2, pre2 = (c1 ∧ ¬b2) ∨ (¬c1 ∧ b2)}

We can map the preconditions to the tree structure in Figure 4.5.

pre1

b1 ∧ ¬b2
pre2

c1 ∧ ¬b2

gr

¬c1 ∧ b2

gr

gr

¬b1 ∧ b2
pre2

c1 ∧ ¬b2

gr

¬c1 ∧ b2

gr

gr

Figure 4.5: A tree for DEL preconditions

Limitation of the tableaux model is that we cannot get the valuation directly from
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this tree. However, if we apply the initial epistemic model to this tree structure, we can

indeed get the correct answer directly.

The initial epistemic world for this game item is S0 = {S0, || · ||, s∗}, |S0| = 32 = 9.

There are 9 possible worlds representing 9 possible flower configurations in the model.

s1 |= a1 ∧ a2, s2 |= a1 ∧ b2, s3 |= a1 ∧ c2,
s4 |= b1 ∧ a2, s5 |= b1 ∧ b2, s6 |= b1 ∧ c2,
s7 |= c1 ∧ a2, s8 |= c1 ∧ b2, s9 |= c1 ∧ c2.

Figure 4.6 shows the mapping of possible words as valuations in the tableaux tree.

S0

{s4, s6}

{s7, s9}
∅

L2

{s2, s5}
∅

L2

L1

{s2, s8}

{s7, s9}
∅

L2

{s2, s5}
{s2}

L2

L1

Figure 4.6: A tree for possible worlds

At the end nodes, a possible world is kept if it is included by all the nodes along

the branch. In Figure 4.6, only s2 at the rightmost branch is kept, corresponding to

the correct answer of the game. Hence, by translating Boolean formulae in the tableaux

model to DEL preconditions and applying them on the DEL initial epistemic model, we

can have a more direct way of finding the goal valuation in the tableaux decision tree.

4.7 Logical Shortcuts

The DEL model can also represent cross clue reasoning patterns, such as the all gr feed-

back pattern. Recall the game item in Figure 4.7b (same as Figure 3.4) has four clues,

each with a gr feedback and the same kind of flower appears in the same position in each

of them. Some children recognize this pattern and point out that the same flower should

appear at the same position in the answer as well. As mentioned earlier the tableaux

model cannot represent this kind of cross clue pattern because a decision tree always

branches clue by clue. However, the DEL model provides a nice account for such cross

clue patterns. Since this cross clue pattern makes a complicate game item easier, we call

it a “logical shortcut”, or simply a “shortcut”, throughout this section.
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(a) Game item with two gr feedbacks
(b) Game item with four gr feedbacks

Figure 4.7: Screenshots of two game items with gr-only feedbacks

In the DEL formalization, the gr shortcut discussed above is a result of some propo-

sitional logic reasoning. Consider the game item in Figure 4.7a (same as Figure 4.2). Let

G = (FlG,LG, goal), F lG = {a, b, c},LG = {L1, L2}, L1 = C1 ∧ σ1 = b1 ∧ b2 ∧ gr, and

L2 = C2 ∧ σ2 = c1 ∧ b2 ∧ gr.
Let S0 be the initial epistemic model, E1 = {e1, pre}, where e1 is the action of observ-

ing clue L1, and E2 = {e2, pre}, where e2 ∈ E2 is the action of observing clue L2.

By the product update, S0⊗E1⊗E2 = S2, such that for all s ∈ S2, s |= preeL1
∧preeL2

.

By the definition of preconditions, for all s ∈ S2 we have:

s |= [(b1 ∧ ¬b2) ∨ (b2 ∧ ¬b1)] ∧ [(c1 ∧ ¬b2) ∨ (b2 ∧ ¬c1)]

By propositional logic we have:

s |= (b1 ∧ ¬b2 ∧ c1) ∨ (b2 ∧ ¬b1 ∧ ¬c1)

By the definition of flower configurations in Section 4.5, b1∧¬b2∧c1 cannot be a flower

configuration, because both b1 and c1 are indexed with ·1.
Hence, s |= b2 ∧¬b1 ∧¬c1. Therefore, s |= b2 ∧ a1 and by Theorem 4.1, goal = b2 ∧ a1.
We can generalize the gr shortcut in Theorem 4.3, and prove it based on our DEL

formalization and propositional logic rules.

Theorem 4.3 (gr-shortcut). In a 2-pin game item where G = (FlG,LG, goal), and LG =

{L1, . . . , Ln}, for any L,L′ ∈ LG, if L = p1 ∧ q2 ∧ gr and L′ ∈ LG = r1 ∧ t2 ∧ gr, then

s∗ |=

p1 ∧ ¬q2 ∧ ¬t2, if p = r

q2 ∧ ¬p1 ∧ ¬r1, if q = t

Proof. Assume that p = r, q 6= t, then L = p1∧ q2∧gr, and L′ = p1∧ t2∧gr. Accordingly,

we can build two event models E = {e, pre}, where e ∈ E is observing clue L and

E′ = {e′, pre}, where e′ ∈ E ′ is observing clue L′. Let S be the epistemic state model
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after updating with both E and E′, by the definition of product update, for all s ∈ S, S ∈
S, s |= pree ∧ pree′ . By definition of preconditions, for all s ∈ S, S ∈ S we have:

s |= [(p1 ∧ ¬q2) ∨ (q2 ∧ ¬p1)] ∧ [(p1 ∧ ¬t2) ∨ (t2 ∧ ¬p1)]

By propositional reasoning we have:

s |= (p1 ∧ ¬q2 ∧ ¬t2) ∨ (q2 ∧ ¬p1 ∧ t2)

By the definition of flower configurations we have:

s |= p1 ∧ ¬q2 ∧ ¬t2

Note that q 6= t because p = r, σ = σ′ and L 6= L′.

By theorem 4.1, s∗ ∈ S. Hence, s∗ |= p1 ∧ ¬q2 ∧ ¬t2 if p = r.

Similarly, s∗ |= q2 ∧ ¬p1 ∧ ¬r1 if q = t.

As discussed above, the gr shortcut can be generalized to more than two clues. Let

LG be a set of clues, and each Lk ∈ LG be a sentence of the form p1 ∧ x2 ∧ gr, where

p is the same flower for all Lk ∈ LG but x is different for all Lk ∈ LG. In this game,

s∗ |= p1 ∧
∧
¬x2, x appears in Lk for all Lk ∈ LG. A similar rule holds for clues of the

form x1∧ p2∧ gr where p2 stays the same across clues and x changes flowers among clues.

We call this the generalization of the gr clue.

For example, look at the game item in Figure 3.4. Let the FlG = {a, b, c, d, e} from

top to bottom, the four clues in the game are

L1 = a1 ∧ b2 ∧ gr,
L2 = d1 ∧ b2 ∧ gr,
L3 = e1 ∧ b2 ∧ gr,
L4 = b1 ∧ b2 ∧ gr.

By the generalization of gr rule,

s∗ |= b2 ∧ ¬(a1 ∨ d1 ∨ e1 ∨ b1)

Therefore,

s∗ |= b2 ∧ c1

Hence, goal = b1 ∧ c2.
The ability to represent logical shortcuts in the DEL model also increase its prediction

power on item ratings. We can select a group of game items for which shortcuts are

applicable, and generate a simpler update sequence for these game items according to the

shortcuts. These simplified update sequences will have smaller complexity measurement
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values when compared to the original (unordered) update sequence, which corresponds

to lower ratings of these game items which better match the ratings observed in the

empirical dataset. Therefore, incorporating logical shortcuts in the model results in a

finer categorization of game items, and is expected to improve the prediction performance

of our formalization.
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Chapter 5

Empirical Evaluation of Models

In the previous chapter we presented a DEL formalization of DMM game and in this

chapter we evaluate this DEL model with regard to the empirical Elo rating data of DMM

game items. We test each DEL measurement defined in the previous chapter against the

empirical dataset, and compare the performances of the DEL and tableaux models with

respect to this same dataset. We show that DEL measurements that take feedback types

into consideration perform as well as the tableaux measurements. Presumably the DEL

and the tableaux measurements capture the same aspect of the cognitive difficulty of DMM

game items because of their similar prediction power, together with the high correlation

between the predictions of both formalizations.

5.1 DEL Measurements

In this section, we test the DEL complexity measurements on the prepared dataset. See

Table 4.1 for the list of measurements we test. We compute each measurement for the

355 2-pin DMM game items and use the multiple linear regression approach to check how

well DEL measurements correlate with the empirical Elo rating data. See appendix for a

description of the treatment of the dataset.

The multiple linear regression approach analyzes how well various independent vari-

ables explain a dependent variable. The relationship between the dependent variable and

a set of independent variables is modeled via a linear predictor function. Each independent

variable is associated with a model parameter, and the linear predictor function estimates

unknown model parameters from the data (Freedman, 2009). The model parameters in-

dicate how an independent variable effect the dependent variable, and the linear predictor

function generates a line that tries to fit the data as much as possible. After the function

is computed, a total least square (TLS) method is applied to measure how much the set

of independent variables deviates from the linear predictor function, and this deviation

is taken as a measurement of how well the set of independent variables explain the de-
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pendent variable. In our case, the Elo ratings for game items is the dependent variable

that needs to be explained, and we check various features of the game as well as different

complexity measurements to see how well they explain the empirical Elo ratings.

5.1.1 Sequential Update

Table 5.1 lists the regression results for the four DEL measurements SUM0, SUM1, SV

and CR on the update sequences generated by top-to-bottom order. To test these four

measurements, we consider five linear models.

Model 0 considers basic features of a 2-pin DMM game item, which include the fol-

lowing: colors refers to the number of flower types available for the item, rows refers

to the number of rows of clues in the game, and allcolin tells whether all the types of

flowers are used in the clues (allcolin is a Boolean value). Model 0 provides a baseline

for comparing measurements that use different aspects of solving a game item. According

to Tabel 5.1, rows and allcolin contribute significantly to the prediction, and Model 0

explains 26.79% of the variance.

Table 5.1: Regression results for four DEL measurements

Model 0 Model 1 Model 2 Model 3 Model 49

Definition
n∑
i=0

Si
n∑
i=1

Si (
n∑
i=0

Si)/n (
n∑
i=1

Si−1

Si
)/n

(Intercept) −17.8894*** −37.2518*** −29.6852*** −27.7091*** −42.2720***

colors −0.3354 8.6411*** 4.7626*** 20.7143*** −5.7883***

rows 4.5300*** 6.3047*** 6.0788*** −4.5951*** 58.0237***

allcolin −8.8332*** −3.7360*** −3.7666*** −6.3370*** −6.4818***

SUM0 −0.4843**

SUM1 −0.4237*

SV −3.3568***

CR −75.8919***

R2 0.2679 0.179 0.171 0.3581 0.425

Adj. R2 0.2616 0.1696 0.1616 0.3508 0.4184

The four DEL measurements listed in Table 5.1 are Model 1 to Model 4. Model 1

extends Model 0 with the SUM0 measurement that sums the number of possibilities for

solving a game item; Model 2 extends Model 0 with the SUM1 measurement which leaves

out the size of the initial epistemic model from SUM0; Model 3 extends Model 0 with the

SV measurement which takes the average of the SUM0 measurement for each game item;

and Model 4 extends Model 0 with the CR measurement that considers the convergence

9Another measurement where each Si comes from S0 ⊗ ELi
gives similar results.
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rate of solving a game item. Each measurement is computed according to its definition

for each game item.

The regression analysis shows that each of the four DEL measurements contribute

significantly. The basic features, i.e., colors, rows, allcolin, in Model 1 to Model 4

contribute significantly, with the feature colors changing from not significant in Model 0

to significant in each of the other four models. This indicates that the number of flowers

types used in a game model plays an important role when considering the logic structure

for solving a game item.

The four DEL measurements have different power in predicting item ratings. Model

1 and Model 2 performs relatively bad, while Model 4 performs the best among the four

DEL measurements. Specifically, Model 1 has R2 of 17.9% and Model 2 has R2 of 17,1%.

R2 demonstrates how much the given set of independent variables explain the dependent

variable, the higher R2, the better predictions that model makes. It is also known as the

variance explained by the linear predictor function. Hence, Model 1 and Model 2 give poor

predictions according to our statistics. Model 3 that averages the SUM0 measurement

with number of clues performs slightly better than Model 1 and Model 2, with 35.81%

variance explained. Model 4 can explain up to 42.5% of the variance, demonstrating

better prediction power of the convergence rate measurement.

Figure 5.1 shows the plots of observed rating data (black points in the plots) and

predicted ratings based on the four DEL measurements (red points in the plot). It shows

that predictions computed based on the four DEL measurements tested so far still deviate

quite a lot from the real situations, as the red predicted dots scatter loosely around the

black observation dots.

Analysis of update sequence

Table 5.1 shows that the DEL measurements tested so far cannot predict the ratings

of items very well. One reason for the poor predictions is that none of the four DEL

measurements can categorize game items that have similar Elo ratings under the same

complexity measure. Ideally, we want a positive correlation between Elo ratings of a game

item and its corresponding DEL complexity measurement. If a game item has a more

complex DEL structure, then the game item is expected to be more difficult in practice,

resulting in a high Elo rating, and vice versa. However, as we are going to show in the

following analysis, these four DEL measurements cannot categorize empirically easy or

hard game items well enough.

We analyzed the SUM0 measurement, introduced a method to evaluate how well a

DEL measurement categorizes Elo ratings, then we apply this method to all of the four

DEL measurements, and discovered that these measurements all fail to categorize Elo

ratings of game items well enough.
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(a) SUM0 (b) SUM1

(c) SV (d) CR

Figure 5.1: Plots for predictions and observed ratings of 2-pin game items

To understand how well the SUM0 measurement categorizes Elo ratings of the 355

game items, let us first list all the distinct values in the SUM0 measurement. These

distinct values are referred to as SUM0 values throughout this chapter. There are 25

SUM0 values out of the 355 game items, and Figure 5.2a shows the count for each SUM0

values. The distribution for count of SUM0 values differs quite significantly with the

distribution of Elo ratings of 2-pin DMM game items in Figure 2.3, showing a potential

mismatch between them.

Let’s take the SUM0 value 14 for a further look. SUM0 value 14 covers game items

with Elo ratings from −31.9436 to −0.0013, with a mean value of −11.69646 and the

standard-deviation of 10.85946. Within the scale from −31.9436 to −0.0013, a standard

deviation of 10.85946 shows that item ratings spread quite widely. Ideally, one DEL

measurement value should capture a class of game items that share similar Elo ratings,

so the standard-deviation should be as small as possible. The large standard deviation

values shows that the SUM0 value 14 fails to categorize a class of empirically easy game

items.

Calculating standard deviations for all the unique values in the SUM0 measurement,

we get the list in Figure 5.2b. Figure 5.2b shows that though some values in the SUM0
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(a) Count of SUM0 values (b) σ for SUM0 values

measurement can indeed categorize a class of game items that are empirically of similar

difficulty level, most of the SUM0 values fail to do so, with standard deviation σ > 2.

The average standard deviation σmean = 5.775954 further confirms that in general SUM0

values cannot categorize empirical ratings in a neat way.

Table 5.2 lists the standard deviations for all of the four DEL measurements. We can

see that none of the four DEL measurements can actually categorize the empirical ratings

for DMM game items. This explains why these four DEL measurements do not perform

well in the regression model, because each of their values fails to categorize game items

with similar ratings.

Table 5.2: Summary for standard deviation σ of distinct values in each DEL measurement

SUM0 SUM1 RV CR

count 25 15 30 27

min. 0.6031 2.055 0.5828 0.5828

max. 12.5700 12.470 12.5700 14.3100

mean 5.775954 7.197 6.1010 6.0590

5.1.2 Intersecting Update

We apply the above mentioned four DEL complexity measurements on ordered update

sequences as well, and the the regression results for the recomputed measurements are

listed in Table 5.3. Model 1’ recomputed SUM0 values for the unordered DEL structure,

Model 2’ recomputed the SUM1 values and Model 3’ recomputed the SV values. The

regression result shows that Model 1 behaves quite similar to Model 1, explaining 17.22%
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of the variance, Model 2 similar to Model 2’, explaining 16.75% of the variance, and Model

3’ similar to Model 4 in table 5.1, with 27.05% variance explained.

Table 5.3: Regression results for unordered DEL structures

Model 1’ Model 2’ Model 3’

(Intercept) −37.7607*** −32.7578*** −37.2804***

colors 7.5445*** 5.1031*** 18.6707***

rows 7.2826*** 7.0439*** 0.3659

allcolin −3.8006*** −3.8159*** −5.4563***

SUM0 −0.3004**

SUM1 −0.2746*

SUM0 / rows −2.5745***

R2 0.1722 0.1675 0.2705

Adj. R2 0.1627 0.158 0.2622

Figure 5.3 compares plots for predicted and observed rating data for each 2-pin game

items between normal DEL structures and unordered DEL structures. From the plots, it

is clear that neither of the definitions align with observations well enough, and they show

very similar distributions. Therefore, either (1) order of processing clues does not really

matter for fitting the DEL model with empirical ratings, or (2) there are other factors

that influence how logical structures fit with empirical rating data.

(a) SUM0 (b) SUM1 (c) SV

(d) SUM0’ (e) SUM1’ (f) SV’

Figure 5.3: Plots for default and unordered predictions
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5.1.3 Update per Feedback Type

Next, we test the DELs and DELr measurements that take feedback types into consider-

ation. Recall that DELs and DELr measurements compute the average size of updated

model, or the average ratio of updated model against initial model, per feedback type.

Table 5.6 shows the regression result of DELs and DELr based on Elo ratings of 355

game items. Compared to Table 5.1, both DELs and DELr improve the fitting of DEL

measurements with data and can explain up to 63% and 67% of the variance. This shows

that considering the type of feedbacks can predict item ratings of 2-pin DMM game items

quite well. This result is intuitive because people process feedback to solve the game, and

different feedbacks pose different computational problems. For example, the gr excludes

a flower and confirms another one, and the or feedback does not only exclude a flower,

but also says that the other flower is of the wrong position. These two feedbacks may

influence the time and cognitive resource an agent need to reason about them. Statistical

result further confirms that feedback is an important predictor of the cognitive difficulty

of DMM game items.

(a) SUM0 (b) SV

(c) DELs (d) DELr

Figure 5.4: Plots for DEL measurements that consider feedback types

Figure 5.4 further shows the improvement of prediction. Figure 5.4a and Figure 5.4b
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are predictions of item rating based on the SUM0 and RS measurements, which as pre-

sented above does not align with the observed data. Figure 5.4c and Figure 5.4d are

predictions of item rating based on the DELs and DEr measurement. As shown from the

plots, the red predicted values center around the black observed rating data much closer

than the the two plots above, displaying a clear improvement of prediction accuracy. The

DELs and DELr plots shows two clear clusters among easier items and harder items, with

the harder items aligning even more closely to the observed rating data. This indicates

that feedback types does play an important role in predicting harder game items. More-

over, in Figure 5.4a and Figure 5.4b , predicted values can hardly match with some of the

easiest items, but in Figure 5.4c and Figure 5.4d is problem is solved. This indicates that

considering feedback types also helps to make better predictions concerning the easiest

game items.

5.2 Comparing Tableaux and DEL Measurements

In this section, we compare how well the tableaux and DEL models explain Elo ratings.

Firstly, we tested the tableaux measurements on the dataset for May 2017, and discovered

some noteworthy variances when compared to Gierasimczuk et al. (2013). Figure 5.5

shows the plot of item rating distribution for the 2013 and 2017 dataset. The figure

on the left is replicated from Gierasimczuk et al. (2013), which shows a clear bimodal

distribution of 2-pin item rating data. The figure in the middle is the distribution of 2-

pin item ratings up to May 2017, and the bimodal distribution is not clear anymore. Item

ratings peak around -2.5, and ratings lower than -10 have a more uniform distribution.

As mentioned before, in 2013 the number of game items was 100, and in 2017 the number

is 355. Therefore, we picked out from the 2017 dataset the game items that corresponded

to the 100 items in the 2013 dataset and plotted their item rating distribution, which is

the plot on the right in Figure 5.5. It shows a transition from the bimodal distribution to

the pattern of peak and uniform. There are many possible reasons for this change. One

is that there is a new version of game display between 2013 and 2017, and the designer

changed the way how feedback looks like on the screen. In the old version, feedbacks were

all presented horizontally, and in the new version they are presented vertically.

We then tested tableaux methods on the entire 2017 dataset and listed the results

in Table 5.4. Model 1 and Model 2 are from Gierasimczuk et al. (2013), measuring

application steps for each feedback based on the default and least decision tree. On the

2013 dataset, Model 1 explains 75% of the variance, and Model 2 explains 70% of the

variance. We computed the same measurement for the 355 game items in the 2017 dataset,

and listed them as Model 1’ and Model 2’ in Table 5.4. Model 1’ explains 62.53% of the

variance and Model 2’ explains 66.14% of the variance. The performance of both of the
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Figure 5.5: Plots for ratings of 2-pin game items

new models are less than the 2013 result, but are still good enough in terms of predicting

item ratings.

Table 5.4: Regression results for tableaux models on the old and new datasets

Model 1 Model 2 Model 1’ Model 2’

(Intercept) −7.55*** −8.64*** −15.8704*** −14.432994***

colors 0.92 0.57 3.7394*** 4.562682***

rows 3.16*** 2.47*** −0.9797 −1.016774*

allcolin −5.83*** −6.00*** −6.4096*** −6.089445***

oo −2.47* −0.41 −6.9381*** −11.455507***

rr −3.56*** −1.94*** −6.9381 −2.983262***

gr 0.12 0.45 0.6605** 0.003135

or 2.23 2.47*** 3.0772*** 2.518258***

R2 0.75 0.70 0.6253 0.6614

Adj. R2 0.73 0.68 0.6178 0.6545

Num. obs. 100 100 355 355

Next we compared the predictions from the tableaux and DEL models based on the

2017 dataset. Table 5.5 lists the regression results for the two DEL measurements with

feedback types and the results from the analytical tableaux models. In Table 5.5, oo, rr,

gr, or variables for model Tableaux and Tableaux’ are steps for the corresponding feed-

backs in tableaux decision trees, and oo, rr, gr, or variables for model DELs and DELr

are number of possible worlds eliminated per feedback and convergence rate per feedback

as defined in Section. Table 5.5 shows that the models based on tableaux decision trees

and DEL models that incorporate feedback types have similar statistical performances.

All four of the models explain more than 60% of the variance, with Model DELr performing
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the best, explaining 67.2% of the variance, and Model Tableaux performing the worst,

but still explaining 62.53% of the variance.

Table 5.5: Comparing tableaux model with DEL measurements

Tableaux Tableaux’ DELs DELr

(Intercept) −15.8704*** −14.432994*** −10.28256*** −26.8712***

rows 3.7394*** 4.562682*** 2.47430*** 34.6568***

colours −0.9797 −1.016774* −2.16959*** −7.6840***

allcolin −6.4096*** −6.089445*** −5.02605*** −6.9753***

oo −6.9381*** −11.455507*** −8.98402*** −55.2099***

rr −6.9381 −2.983262*** −0.04604 −46.6109***

gr 0.6605** 0.003135 0.70094*** −41.0523***

or 3.0772*** 2.518258*** 1.83475*** −21.3221***

R2 0.6253 0.6614 0.6322 0.672

Adj. R2 0.6178 0.6545 0.6248 0.6654

Table 5.5 shows that the tableaux and DEL models share similar statistical perfor-

mances on the same dataset. What if we combined the two methods to create a richer

model to predict item difficulty? Usually, incorporating more parameters in a regression

model leads to better data fit. For example, if Model A uses 2 parameters to predict

weather, and Model B uses 20, then Model B is more likely to give a precise prediction of

the weather, because it takes more factors into consideration. Following this reasoning, if

we merge the tableaux and DEL models into one we should get better predictions about

the difficulty of an item.

However, Table 5.6 shows that merging the two models does not produce better pre-

diction of item difficulty. Table 5.6 lists three models, one is the tableaux model with

halting condition on the least tree, which has the best statistical performance among all

tableaux models. Another is the DELr model that measures convergence rate with respect

to feedback types, which also gives the best prediction for item difficulty among all models

that incorporate DEL measurements. A combing model of these two models is denoted

as Tableaux + DEL in Table 5.6, which contains independent variables of the basic game

features, measurements commutated by the tableaux model, and measurements commu-

tated by the DEL model. Since we are only interested in how well each model predicts

rating of game items, we omit the estimated parameters for independent variables in the

table, and focus on the R2 value of each model. Surprisingly, even though have more pa-

rameter, the combined model performs just slightly better than the individual tableaux

or DEL model, with 67.2% variance explained.

A further analysis on the correlation of the tableaux and DEL models reveals that the

two share very high correlations with each other. This result is surprising because the
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Table 5.6: Regression results for the analytical tableaux model and combined models

Tableaux (least tree) DELr Tableaux + DEL

(Intercept) −14.432994*** −10.28256*** −10.1257***

rows 4.562682*** 2.47430*** −2.3511***

colours −1.016774* −2.16959*** 1.7511*

allcolin −6.089445*** −6.089445*** −5.4334***

...
...

...
...

R2 0.6614 0.672 0.6847

Adj. R2 0.6545 0.6654 0.6746

two models are based on different formalizations of the game, and each measures different

aspects of game solutions. The tableaux model focuses on case-switching, whereas the

DEL model cares about number of possible options and convergence rate. The tableaux

method computes application steps while searching over the decision tree, whereas the

DEL model counts the number of possible worlds or the ratio of selected worlds against

the initial epistemic world with each feedback type. However, the two models still display

similar statistical resemblance and high correlation, which indicates that the two models

capture similar aspects of the cognitive difficulty of DMM game items, despite their

differences in the modeling details.

A possible explanation for this result is that the influence of feedback types of item

difficulty is so strong that it is not effected by what logic one uses to model the game.

Recall that in the tableaux model, size of a decision tree is represented by application

steps of each feedback types, and in the DELs and DELr model, complexity is measured as

average number or ratio of selected possible worlds per feedback type. Similar regression

results imply that it is the feedback type that strongly influences the prediction of item

ratings, and high correlation among the two logic formalizations also confirms that they

are both measuring something similar about game. DEL models that do not break down

with respect to feedback types cannot predict item ratings as well as DEL models that

Table 5.7: Correlation analysis

dOO dRR dGR dOR

tOO 0.9642 -0.0763 -0.2312 -0.2843

tRR -0.0720 0.7475 -0.0012 -0.2177

tGR -0.3165 -0.0580 0.6448 -0.1270

tOR -0.2674 -0.1293 -0.2096 0.7632
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consider feedback types, which indicates that ignoring feedback types is a reason for the

poor statistical performances for those models.

Putting all this information together, it is reasonable to conclude that the effect of

feedback type is a strong predictor of the cognitive difficulty of the DMM game, and it is

prominent enough to be detected with different formalizations. Back to the question we

asked earlier about whether the predictions the tableaux model gave are artifacts of the

formalization itself, now it seems that the answer is no. That is because the DEL model

is a different formalization of the game, and the DEL model has similar statistical results

and high correlation compared with the tableaux model.
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Chapter 6

Conclusion

In this thesis we studied the cognitive difficulty of the Deductive Mastermind (DMM)

game by measuring the complexity of the game in two different logic formalizations.

We looked at an existing formalization of DMM based on an analytic tableaux, and

we developed a formalization based on dynamic epistemic logic (DEL). We found that

feedback types play an important role in predicting cognitive difficulty of game items.

This result was robust over the two different logic formalizations that we considered.

DMM is a simplified version of the board game Mastermind, and it has been imple-

mented within a popular online educational game system. In this system, each DMM

game item is associated with a rating to reflect its cognitive difficulty based on the accu-

mulated data of how quickly and accurately children solved it. We investigated a DEL

formalization of DMM, in which we used epistemic models to represent possible answers,

and event models to encode information related to the reasoning about clues. In the game

setting, a DEL solution to a game item will always lead to a final epistemic model where

only one world is left, namely, the actual world which represents the correct answer of

that game. The DEL model of DMM can also account for cross clue reasoning patterns,

such as the all gr feedback shortcut that children self-reported.

The DEL solution to a 2-pin DMM game item results in a series of epistemic models

that can be either order-depend or order-independent. We call such a series of epistemic

models an (unordered) update sequence and measure the logical complexity of each up-

date sequence by the sum of the sizes of all epistemic models, the converging rate of an

update sequence, or similar measurements that take feedback types into account as well.

Testing those complexity measurements with the empirical rating data shows that DEL

measurements that do no take feedback types into consideration cannot explain the em-

pirical dataset well, and DEL measurements that do consider such feedback types perform

better than the tableaux model. Combining the DEL and tableaux model leads to similar

predictions of item ratings, and together with the fact that there is a high correlation

between the tableaux and the DEL models, this shows that feedback type is a strong
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indicator of the cognitive difficulty of a DMM game item. This result also indicates that

item ratings are not influenced by the choice of the logic used in developing a formal

model of the game.

There is great potential for future work continuing this line of research. I outline three

possible directions in the following paragraphs.

1. Error patterns

One possibility is to extend the DEL formalization to account for the error patterns

observed in the empirical dataset. We can try to add and test several hypotheses,

such as that agents may arrive at a wrong epistemic model with a certain probability

or that they can accidentally exclude or include possible worlds. By playing with

these hypotheses, we can test how well the DEL formalization explains errors in

playing DMM game items.

2. Atomic operation

As this thesis reveals, feedback types play a decisive role in predicting the cogni-

tive difficulty of a game item. Another possible direction for future research is to

generalize this result to n-pin game items. One way to study such generalizations

efficiently may be to consider the role of atomic operations in feedbacks. A green

feedback refers to a confirmation of flowers, a red feedback refers to an elimination

of flowers, and an orange feedback refers to possibilities of case-analysis. Within the

DEL formalization, we can use these three atomic operations to partition the set of

possible flower configurations, and study their influence on the logical complexity

of more generalized cases.

3. Cognitive model

The DEL formalization explores different possible ways of solving DMM, either clue

by clue or via cross-clue reasoning patterns. These investigations can inspire models

that aim to capture the cognitive process of children for solving DMM. For example,

we can assume that some children make use of the cross clue reasoning pattern as

described by the DEL formalization, and turn it into a process model that assumes

the procedure for solving a game item is conducted in certain number of steps and

each step takes certain amount of time or cognitive resources. We may also post a

threshold for the amount of cognitive resources a play requires in solving the game

and try to predict the speed and accuracy performance based on these assumptions.

This thesis is a case study of using the combination of logic and computational analy-

sis to capture cognitive difficulty of solving DMM game items. It analyzes formalizations

of the DMM game in different logics, and investigates how different complexity measure-

ments of those logic formalizations predict cognitive difficulty of the game differently.
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From a formal perspective, this thesis presents a DEL formalization of the DMM game

that makes fewer assumptions than an existing tableaux model about an agent’s cogni-

tive process. The DEL formalization is also richer than the tableaux model because it

can account for some complicated reasoning patterns observed in children’s self-reports

of the game. From an empirical perspective, this thesis demonstrates that feedback types

for the game is a strong predictor of the cognitive difficulty of the game, and this fea-

ture is captured by both logic formalizations tested in this thesis. By comparing two

different logic formalizations, this thesis confirms that the intrinsic feature that strongly

influences the cognitive difficulty of a task can be prominent enough to be detected with

different formalizations. In all, this thesis combines logic and cognitive science, bridges

formal and statistical approaches to human reasoning, and successfully applies logic and

computational analyses in studying the cognitive difficulty of the DMM game.
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Processing of the Dataset

Our dataset is the list of Elo ratings for 2-pin DMM game items. In the 2013 dataset

there are 100 game items, by 2017, there are 355 game items in the dataset. The original

dataset of 2-pin game item ratings is shown as in Figure 1. As one can see from the figure,

the description of a game item is listed as a string that contains all relevant information.

For example, game item with id 25769, which is the first line in Figure 1, has a description

of the game item (the question column) as follows:

{’colours’:[’ROYGBP’, ’220000’],

’pins’:2, ’tried’:[[’OO’, ’RR’]], ’triesLeft’:1}
In every description, ’colours’ shows the available types of flowers for the corre-

sponding game item. In this case, [’ROYGBP’, ’220000’] means that there there are 2

of the R flower and 2 of the O flower, and none of the Y, G, B or P flower. The ’pins’:2

string simply says that this is a 2-pin game item. The ’tried’ string lists the clues

of the corresponding game item. The first string in a pair of [. . .] strings is the flower

configuration, and the second string in the pair is the feedback sequence. For example,

in this game item, there is only one clue, with a OO flower configuration, and a red-red

feedback. The ’triesLeft’:1 string marks the end of the question description.

To calculate the DEL measurements of a game item, we need to first structure the

dataset in such a way that each flower configuration and feedback is specified and anno-

tated properly. Moreover, we want to compute the basic features of a game item, such as

the number of available flower types, number of clues, whether all flowers are used in the

Figure 1: The first 10 items from the raw dataset of 2-pin DMM game items
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clues, etc. Figure 2 shows the result of such preparation of the dataset. This new dataset

keeps only relevant information on testing the DEL measurements, i.e., the rating data,

number of available flower types (colours), number of clues (rows), number of flowers

used in the clues (alcol), and whether all available types of flowers are used in the clues

(alcolin). The question string is divided into separate columns for flower configura-

tion and feedbacks. In the figure, C n refers to flower configurations, and L n refers to

feedbacks.

Figure 2: The first 10 items from the structured dataset of 2-pin DMM game items

Based on this structured dataset, we can now construct the DEL models of each game

item, and compute the above defined DEL measurements for each item. Figure 3 shows

the first 10 items that result from such construction and computation. For each 2-pin game

item, based on their update sequence, we compute four DEL complexity measurements

SUM0, SUM1, RV and CR for them. The DELs and DELr measurements are computed

based on unordered update sequence following similar manner. Figure 3 lists only the

SUM0 and SUM1 measurements, but the others are computed for each game item in a

similar manner.

Figure 3: The first 10 items from the dataset after computing the SUM0 and SUM1 measurements
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