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Abstract. Human language is one of the most intricately structured

communication system in the natural world. Over the last decades re-

searchers in various fields have developed the idea that languages are

primarily shaped by processes of cultural evolution, and that these pro-

cesses can account for the structure of language. Computational mod-

els play an important role in their arguments. This thesis asks what those

models can teach us about cultural language evolution. To that end, the

first part of this thesis connects the two main branches of agent-based

models, naming games and iterated learning, in a new Bayesian language

game. The game gives a unified view on the field and suggests a charac-

terisation of the behaviour exhibited by the main agent-based models of

language evolution. It moreover addresses shortcomings of earlier mod-

els. We find lineage-specific languages reflecting the innate biases of the

learners. The second part of this thesis aims to compare that behaviour

with the evolution of actual language. Numeral systems are argued to

be an ideal empirical test case for models of cultural language evolution.

We revisit Hurford’s pioneering work on the modelling of the emergence

of numeral systems, and discuss some further results.

Preface. Dear reader, I will keep it short. As I write this, my mother is

preparing a delicious meal. And, as you will understand, I cannot keep my

parents waiting. They haven’t seen me much over the last few months,

and I’m afraid they are not the only ones. Let me just say thanks to all

those wonderful, warm, and loving people that make life so much fun. Oh

and Jelle, of course, thanks for putting up with me ;-)
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ɞ The cultural
origins of
language



1. The cultural origins of language

Communication abounds in the natural world, but few, if any, communication sys-
tems are so intricately structured as human language. We can understand the meaning
of a sentence that has never been uttered before, because we understand the words it
consists of and the way in which they are combined — that is to say that language is
by and large compositional. The words, morphemes, themselves also have an internal
structure: they consist of phonemes, combined in a accordance with a combinatorial,
phonological system specific to the language. The semantic and phonological combi-
natorics together give language what Hockett (1960) dubbed a ‘duality of patterning’
— a design feature not commonly found in communication systems of other species.
Most animal communication systems are holistic: every vocalisation has one specific
function, and no further internal structure (Zuidema 2013). There are, it seems, few
interdependencies between vocalisations. But language is quite different: just about
any two sentences will have many interdependencies in their phonology, morphology,
hierarchical structure, and so on. It is in this sense that language has a distinct system-
aticity (Kirby 2017).

Now, the Big Question is this: where does it come from? And, indeed, why only us?
Well, we find ourselves in good company. Robert Berwick and Noam Chomsky (2017)
have been thinking about the same question, and leave us no doubt how we should
not try to account for the structure of language: “by means of a cultural-biological
interaction”. No, “this latter effort fails in all respects”. Some of that work is “trivially
inadequate”, or otherwise the “Kirby-typemodels”, “the Kirby work” and “the Kirby line
of research” do of course “not say anything about the initial origin of compositionality”.

Good, good! More than enough reason to write a thesis about this “Kirby type work”
— and in passing perhaps even cite more than two of his papers. But let’s leave the
polemics there. After all, what greater good do they really serve?

Berwick and Chomsky (2017) raise some fair concerns, for example regarding the
testability and empirical validity of the Kirby-type theories. Or regarding their ex-
planatory power: if your ‘agents’ already know, say, context-free grammars, and they
‘evolve’ a compositional language, does your model explain anything? Are you then, if
anything, addressing the evolution of universal grammar, or just modelling language
change? These are all valid concerns — or so I think, since I address some of them
in this thesis, too. But reading Berwick and Chomsky’s paper — I haven’t read the
book yet — one starts to understand what it means if two scientific traditions have lost
their common ground and have started talking about radically different things, only
superficially using the same words.

My apologies if I overwhelmed the reader with this, well, lack of introduction, but I
want to get started sooner rather than later. One should know that the Kirby-type
theories, in the broad sense, are really the work of a large group of linguists, cogni-
tive scientists, biologists, anthropologists, computer scientists, statisticians, and even
physicists, who over the last 30 years or so have tried to turn the question of language
evolution upside down. The ‘traditional’ debates centred around the question whether
language was an adaptation or not. Does language perhaps add to our reproductive
fitness, or was it a key mutation event that catapulted language in the world? In either
case, the origin of language was thought to be a fundamentally biological concern. We
only had to find out how those brains evolved to accommodate language. Well, the
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Kirby-type work turned that around: how do languages have to change, in order to fit
in our brains (Christiansen and Chater 2016a)? Rather than evolving brains, let’s think
about evolving languages.

For this to even make sense, one has to drastically change the, let’s say, Chomskyan
conception of language. Language now becomes a complex adaptive system in its own
right, that is subject to all kinds of pressures, at multiple different levels and timescales
simultaneously (Kirby and Hurford 2002; Christiansen and Chater 2016a; Smith 2014;
Kirby 2017; Steels 2016). On a biological level and evolutionary timescale the innate
mechanisms that underly human cognition and language need to develop. At an in-
dividual level and much shorter timescale, humans acquire language, constrained by
what their biological makeup can accommodate. These learning biases influence, on a
cultural level and historic timescale, the cultural dynamics of language. Universals that
emerge through processes of cultural evolution in turn shape the fitness landscape and
indeed, interactions exist within in and across all levels. Rather than looking solely at
the biology of language, the question is how biology can interact with acquisition and
use. The idea developed is that “language has been adapted through cultural trans-
mission over generations of language users to fit the cognitive biases in inherent in
the mechanisms used for processing and acquisition” (Christiansen and Chater 2016b,
p. 12).

Returning to Berwick and Chomsky (2017), I think they are quite right to point out
that this work “does not really tackle questions about the evolution of UG, but rather
questions about how particular languages change over time, once the faculty of lan-
guage itself is in place”. I doubt Kirby would disagree. Indeed, this is the entire point.
Since if it turns out that languages tend to change over time in a somewhat system-
atic way that explains their structure, then the explanatory burden is lifted from the
faculty of language. And this is precisely what the Kirby-type theories argue for: that
biology does not have to carry the entire explanatory load, but that a fair share of lin-
guistic structure can be explained by a process of cultural evolution. As Kirby (2017)
concludes, “we expect the language faculty to contain strong constraints only if they
are domain general (e.g. arising from general principles of simplicity) and that any
domain-specific constraints will be weak.” If anything, the Kirby-type work is in the
business of explaining away UG, rather than explaining it.

Now, the evolution of language is a notoriously hard problem — I belief this is where
one is supposed to mention the Société — but how does one go about if language is
moreover a complex adaptive system? Using mathematical and computational mod-
els is one solution. Modelling makes all assumptions absolutely transparent, allows
one to verify their coherence and consistency and generate new hypotheses, or even
predictions (Jaeger et al. 2009). Accordingly, models have figured prominently in the
literature on cultural language evolution. And that is where the habitat of this thesis is
to be found. What can these models of language evolution actually learn us about lan-
guage evolution? That is the heart of this thesis, but as such, the question is too open
ended. I therefore break up the question in two parts.

1. What kind of behaviour can we expect from agent-based models of language evo-
lution? To answer this question, I aim to formulate a model that captures a sub-
stantial share of the agent-based modelling tradition, and try to characterise its
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1. The cultural origins of language

behaviour. The ‘substantial share’ is easily identified, since the field falls apart
in two (strictly separated) traditions. Chapter 2 introduces the ‘vertical’ tradi-
tion around iterated learning. This is the Kirby-type work that addresses how
vertical transmission between generations can shape language. Chapter 3 in-
troduces the ‘horizontal’ tradition around naming games, which focusses on the
self-organising power resulting from local interactions within a generation. Al-
though the traditions are strictly separated, I will argue in chapter 4 that their
models are very similar. To do so, I take inspiration from Bayesian models of
iterated learning and propose the Bayesian language game. By further changing
the population model I can interpolate between both traditions and thus analyse
their behaviour in a single unified framework. I moreover argue that it addresses
some of the problems left open by Bayesian models of iterated learning.

2. How does that behaviour relate to actual evolved language? Once it is clear what
kind of behaviour these agent-based models exhibit, one should ask what this
learns us about language evolution. But how can one start answering such a
question without an empirical test case? In chapter 5 I therefore argue that nu-
meral systems are a good test case, and explain in some detail what the structures
are one should try to explain. In chapter 6 I make a first start with simulating
the emergence of numeral systems, which largely amounts to revisiting and ex-
tending the pioneering work of James Hurford.

The reader might want to note that the summaries at the start of every chapter further
flesh out this outline.

The problem of language evolution challenges many disciplinary boundaries. This
thesis alone borders at least several branches of linguistics, statistical physics, biology,
probability theory and Bayesian (cognitive) modelling. When starting with the cur-
rent work, I was new to pretty much all of these fields (except perhaps some courses
in the latter two fields) and many important results might very well have escaped my
attention. But some things I deliberately left out, or only touch on in passing. These
include (1) models of biological evolution, (2) evolutionary game theory, (3) genetic
algorithms, (4) evolution of ug, (5) empirical studies of transmission chains and (6)
experimental semiotics. Neither will I further discuss broader debates, of which the
Berwick andChomsky paper is part. Instead, I try to address issues in the field of agent-
based modelling of language evolution on its own terms. Indeed, the reader will notice
that focus in the majority of this thesis is decidedly on the models, more so than on
possible interpretations thereof. This partly reflects personal interest, but more impor-
tantly, I belief interpretations of models should, insofar as possible, built on a sound
understanding of the model themselves. That is what I hope this thesis, if anything,
contributes to.

ǙǝǗǚȱȨ ȱǝȰȨ ȳǞȰ Ȱȳǘȳ I have made the source code of all experiments publicly avail-
able via bascornelissen.nl/msc-thesis (including all figures and LaTeX files). A refer-
ence to the ‘raw’ data from all experiments can also be found there. The captions of
many figures contain a code like bng06 or fig03. This identifies the experiment or
figure in the repository.
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ǞǝǘȳǘǣǝǞ Throughout the thesis I use several notational conventions. Vectors are
written in boldface, as in x = (x1, . . . , xK), and indexed by k if they have length
K. Sometimes it will be convenient to abbreviate x0 :=

∑K
k=1 xk. We often need

to decorate variables with time-indications. The most consistent unambiguous solu-
tion, x(t), x(t)k etc., often clutters the notation. Therefore, vectors (boldface) simply get
their indication in the subscript (x1, x2, . . . , xt, . . . ) and I only use the superscript (t)
when confusion can arise, as in x(t)k . If X is a random variable with distribution Dist
parametrized by λ, then by X ∼ Dist(λ) we mean that pX(x) = Dist(x | λ) where the
latter is the density (mass) function. We mostly drop the random variables and write
p(x) and p(x | z) rather than pX(x) and pX|Z(x | z). Normalizing constants are often
irrelevant and we write p(x) ∝ f(x) to indicate proportionality, i.e. that p(x) = 1/C · f(x)
whereCdoes not dependon x. With regard to sets,N,Z,Rdenote the natural numbers,
integers and reals. If A and B are sets, their Cartesian product is A× B and BA denotes
the set of all functions f : A → B. ‘Spaces’ typically have a calligraphic character, so
x lies in X and parameters tend to be Greek. Finally, x is nearly always an observable
variable (e.g. an utterance), z and unobservable variables (e.g. internal representation
of a language), m a meaning and s a signal.

ȨǚǚȳǘǗǟ Typos and other errors will be listed on bascornelissen.nl/msc-thesis.
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ɘ Iterated
Learning
Could it be that structure in language emerges because it is transmitted

from one generation to the next? Is cultural transmission the force shap-

ing language? Early models of iterated learning suggested precisely that.

Bayesian models improved the early work by separating the biases of the

learners from the effects of transmission. But they also indicated that

cultural evolution only allows the prior biases to surface, a result that

sparked a small controversy. The ‘convergence to the prior’ was shown to

break down in more complicated populations, again creating room for the

shaping force of cultural evolution. This chapter introduces the iterated

learning tradition and ends with a list of desiderata for models of cultural

language evolution. The list serves as a guide to the remainder of this

thesis.

ɘ.ɞ. Early iterated learning models . . . . . . . . . . . . . . . . . . . . . 16
ɘ.ɘ. Iterated learning with Bayesian agents . . . . . . . . . . . . . . . . . 18
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ɘ.ɖ. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



2. Iterated Learning

FǣǥǗǚȨ ɘ.ɞ In the iterated learning
model, the language produced by
the previous generation serves as
the primary linguistic data for the
next.

Adapted from Kirby (ɘɚɚɞ).

θ1

x1

θ2

x2

θ3

x3

ǜǚǝȰǗȱȨ
ǠȨȳ

ǚǞ

Language
(internal)

Utterances
(external)

Generation ɞ Generation ɘ Generation ɕ

Early iterated learning models
In the early years of this century, James Hurford, Simon Kirby, Kenny Smith and oth-
ers, developed the idea that cultural transmission, in the form of iterated learning (il),
could be the source of structure in language. Early work in this tradition tried to isolate
a “minimal set of assumptions and hypotheses with which linguistic structure can be
explained” (Brighton 2002). The result was a simple model of cultural transmission
between generations consisting of a single agent each. In the model, language alter-
nates between an internal representation (i-language in Chomskyan parlance; Chom-
sky 1986, pp. 19–24) or an external representation in the form of actual utterances
(e-language), as figure 2.1 illustrates. The first agent (the parent) is presented with sev-
eral objects for which it produces some utterances. Those utterances form the primary
linguistic data from which the second agent (the child) has to learn a language.1

ɞ The utterances alone are not
enough, unless you assume the
child can mind-read. Instead
meaning-signal pairs are often
communicated.

The
child goes on to become the parent of the next generation, forms expressions for several
(other) objects, which are observed by the next agent, and so on.

Every generation learns a language by observing the language of the previous genera-
tion, who themselves learned it from the generation before them. The target of learning
is therefore the outcome of the same learning process and this gives rise an evolution-
ary dynamics on the cultural level: the fact that a language has to be learned over again
shapes the language itself to become better learnable, hence better transmissible. And
key to better transmission, many studies suggested, was the acquisition of some form
of systematicity. Paraphrasing Hurford (2000), language appeared to be structured,
because cultural transmission favours systematicity.

ǘǤȨ ȨǟȨǚǥȨǞȱȨ ǝǦ ȱǝǟǜǝǙǣǘǣǝǞȳǠǣǘǓ, ǣ This conclusion was primarily based on com-
puter simulations of the emergence of compositionality which I briefly want to discuss.
Suppose, following Brighton (2002), that agents are positioned in an environment with
various objects. The objects have F possible features, each taking V values, and thus
correspond to points in a F-dimensional meaning spaceM. The features might be
color and shape, taking values triangular, rectangular or circular and orange, blue and
black respectively. A language associates meanings m ∈ M to signals s in a space S
of signals, typically strings over some alphabet. Certain languages are compositional,
meaning that the signals can be decomposed in subsignals that each bear one aspect
of the meaning. Compositional languages should be distinguished from holistic lan-
guages where meanings correspond to a signals without there being any underlying
regularity.
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2.1. Early iterated learning models

Consider the following language with alphabet {t, r, c, o, b, k}:

(△, ) 7→ to, (△, ) 7→ tb (△, ) 7→ tk
(□, ) 7→ so, (□, ) 7→ sb (□, ) 7→ sk
(#, ) 7→ co, (#, ) 7→ cb (#, ) 7→ ck

This language is clearly compositional, since the first subsignal indicates the shape,
(triangle, rectangle, circle) and the second subsignal the color (orange, blue, black).
In fact, that description is much more efficient:

△ 7→ t, □ 7→ s, # 7→ c
 7→ o,  7→ b  7→ k

Rather than listing the signals corresponding to each of the VF = 33 meanings (the
worst case scenario for a holistic language), a compositional languages can be com-
pressed to F · V = 2 · 3 rules listing to which subsignal every feature maps. That also
means that one can faithfully reconstruct a compositional language from F · V signals,
whereas it would need to observe all signals to reconstruct a holistic language (in the
worst case). A compositional language is, in short, more compressible and as a result
better transmissible.

ǘǚȳǞǙǟǣǙǙǣǝǞ ȲǝǘǘǠȨǞȨȱǡǙ ȳǞȰ ǥȨǞȨǚȳǠǣǙȳǘǣǝǞ In reality, children do not observe
their entire language (e.g. all English sentences), but only a subset of it. They face a
transmission bottleneck2

ɘ In fact, various different bot-
tlenecks have been put forward;
see Cornish (ɘɚɞɞ, ch. ɗ) for an
overview and a discussion of the
empirical findings regarding the
presence of such a bottleneck.

better known as the poverty of the stimulus. If there is no such
bottleneck all languages can be transmitted in their entirety, and faithfully so. The lan-
guage can consequently not be changed by transmission and the initial language marks
a steady state, maintained throughout all future generations. In the presence of a bot-
tleneck, however, the learner is forced to generalize the observed data to a full language,
in which case systematic errors can slowly accumulate.

The exact generalisation mechanism can take many different forms, such as (heuris-
tic) grammar induction (Kirby 2001; Zuidema 2003), training a neural network (Kirby
and Hurford 2002; Smith 2002) or constructing a finite state transducer (Brighton
2002). All these mechanisms try to discern some structure (e.g. compositionality)
in the language. Sometimes, that allows the child to produce signals for unobserved
meanings. But in other cases, the child is forced to invent a new signal. Inciden-
tally, the new signal introduces a structure previously absent in the language. The next
generation is then more likely to infer a language that reproduces that structure. As
time passes, the differences between successive generations shrink and the language
becomes more and more stable: the transmission bottleneck forced the language to be-
come better transmissible. This is how the poverty of the stimulus solves the poverty
of the stimulus (cf. Zuidema 2003).

A variety of different models confirmed this account. To name a symbolic and con-
nectionist example, Kirby (2001) showed that a bottleneck caused the emergence of
a stable, compositional language in agents representing language with definite-clause
grammars. In another study, Kirby and Hurford (2002) found that the number of
training instances passed between neural-network agents acted as a bottleneck, with
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2. Iterated Learning

a medium-sized training set leading to structured meaning-signal mappings. The fact
that these, and many other, different models gave rise to similar behaviour is in itself
striking. But it also makes it difficult to decipher what exactly is going on.

The shape-color example gives a hint, since there is a languagemuchmore compress-
ible than a compositional one: the degenerate language that expresses every meaning
with the same signal. The fact that none of the early studies seem to have produced
degenerate languages, suggests that a bias against those must have been present (Cor-
nish 2011). Or, conversely, that the learning algorithms implicitly pressured towards
compositional languages. This opens up the possibility that “cultural evolution does no
more than transparently map properties of the biology of an individual to properties of
language” (Kirby 2017). Kirby points out that there are reasons to doubt this conclu-
sion: The size of the bottleneck and the structure of the domain for example influence
the simulations. Nonetheless, it became clear that in order to make claims about the
shaping force of cultural evolution, one needs to know 1) what the implicit biases in
the model are, 2) what the biases of the agents are and 3) how those interact with the
cultural process.

Iterated learning with Bayesian agents
In 2005,ThomasGriffiths andMichael Kalish reinterpreted the iterated learningmodel
in a population of Bayesian agents. One reason for doing so is that it connects the it-
erated learning model to a rich Bayesian modelling tradition in cognitive science (see
e.g. Perfors et al. 2011; Goodman and Tenenbaum 2016; Griffiths, Kemp, and Tenen-
baum2008) and the formalmodels of human behaviour that have been proposed there.
The Bayesian model of Griffiths and Kalish also solved the issues arising from implicit
biases, since it explicitly encodes the biases of the learners. Moreover, the authors man-
aged to characterise the long-termbehaviour of themodel— convergence to the prior —
which sparked a small controversy. In the years that followed, the Bayesian paradigm
appears to have surfaced as the primary approach tomodelling iterated learning (Kirby,
Griffiths, and Smith 2014; Kirby 2017). For that reason, and for its role in the next
chapter, I want to go through the model in detail.

Recall from figure 2.1 that in iterated learning, a language alternates between a ‘la-
tent’ internal representation θ and an ‘overt’ external representation x. Agents use
a production and language algorithm (pa and la) to move between these representa-
tions.3

ɕ The language algorithm is usu-
ally called a learning algorithm.
Since that terminology causes
some confusion in chapter ɗ, I
use the term language algorithm.

The idea put forward by Griffiths and Kalish (2007) is to model these produc-
tion and language algorithms with probability distributions. An agent using language
θt has a distribution ppa(xt | θt) over productions describing how to select a utterance.
Conversely, it has a distribution pla(θt | xt−1) from which the agent picks a language
after observing data xt−1 produced by the previous agent. Note that, as figure 2.1 il-
lustrates, these are the only dependencies. Productions are conditionally independent
from previous productions and the same goes for languages. This seems reasonable as
an agent cannot use the previous production when making a new one (only its rep-
resentation thereof) and clearly an agent cannot use the unobservable language of the
previous agent directly. In short, iterated learning becomes a stochastic process on the
random variables xt and θt, which are conditionally independent fromprevious xt’s and

18



2.2. Iterated learning with Bayesian agents

= 2, , 6

= 1
=

FǣǥǗǚȨ ɘ.ɘ Exponentiating a distri-
bution moves the probability mass
towards the mode. Illustrated for
three different distributions.

Ǧǣǥɚɕ

θt’s respectively.
What makes these agents ‘Bayesian’ is that their language algorithm reuses the the

production algorithm and the prior beliefs of the agents using Bayes’ rule. When con-
fronted with data xt, the agents infer the posterior distribution

p(θt | xt−1) ∝ ppa(xt−1 | θt) · p(θt), (2.1)

which captures how likely every language θt is in light of the observed the data. The
posterior distribution balances two factors. First — and this is where the production
algorithm is reused — how probable the agent itself regards the observed data to be, if
it were to use language θt. This is the likelihood term p(xt | θt). And second, how likely
the language is in the first place: the prior p(θt).

Interestingly, beforeGriffiths andKalish published their Bayesian interpretation, Kirby,
Smith, and Brighton (2004) also noted that the language acquisition can be seen as
Bayesian inference. The prior, they state, corresponds to Universal Grammar or the
Language Acquisition Device: “everything the learner brings to the task independent
of the data” (italics in original). However, Griffiths and Kalish (2007) stress that the
prior “should not be interpreted as reflecting innate constraints specific to language ac-
quisition” (my italics). The prior is, in other words, not necessarily domain specific,
but aggregates all factors that influence language acquisition, including learned biases.
Therefore, “the prior is better seen as determining the amount of evidence that a learner
would need to see in order to adopt a particular language”. Nevertheless many later pa-
pers use the prior primarily to capture innate learning biases (e.g. Kirby, Griffiths, and
Smith 2014; Kirby 2017).

So howdoes aBayesian agent adopt a particular language? Kirby, Smith, andBrighton
(2004) assume agents pick the language with the highest probability under the poste-
rior, the maximum a posteriori (map) estimate arg maxθ p(θ | x). Griffiths and Kalish
(2005), however used a different strategy where agents sample a language from their
posterior, i.e. they are probability matching. The two strategies can be seen as extreme
cases of a more general strategy: sampling from a exponentiated (or ‘exaggerated’) ver-
sion of the posterior (Kirby, Dowman, and Griffiths 2007):

pη(θt | xn−1) ∝ p(θt | xn−1)
η, η ≥ 1. (2.2)

For η = 1 this is the same as the sampling strategy, but as η increases, more and more
of the probability mass is moved towards the maximum of the distribution (the mode)
until sampling becomes indistinguishable from the map strategy (see figure 2.2). The
language algorithm thus takes the posterior distribution and applies the language strat-
egy (sample or maximise) to adopt a language.
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ǘǤȨ ȨǟȨǚǥȨǞȱȨ ǝǦ ȱǝǟǜǝǙǣǘǣǝǞȳǠǣǘǓ, ǣǣ It might be helpful to go through a concrete
example. Griffiths and Kalish (2005) introduced a ‘binary’ language, which figured in
several later studies (Griffiths, Canini, et al. 2007; Burkett and Griffiths 2010; Kirby,
Tamariz, et al. 2015). It is a special case of the shape-color example introduced earlier,
with two colours and two shapes (so F = V = 2). The language was introduced to
study the emergence of compositionality. If we simplify the encoding, it is easier to
see what the compositional languages are. Write 0 for a triangle, 1 for a square, 0 for
black and 1 for orange, such that (□, ) for instance becomes 10 and (△, ) becomes
01. Using alphabet {a, b} there are 4 compositional languages given by the feature-
subsignal mappings

(1) 0 7→ a, 1 7→ a
(2) 0 7→ a, 1 7→ b
(3) 0 7→ b, 1 7→ a
(4) 0 7→ b, 1 7→ b

In this scenario there are 4 meanings (▲,▲,■,■) and 44 = 256 ways to map four
meanings to four signals {aa, ab, ba, bb}. This gives 256 languages of which 4 compo-
sitional and 252 holistic.

Not all languages are equally likely. A hierarchical prior that puts a fraction α of the
probability mass on the compositional languages:

p(θ) =

{
α
4 if θ is compositional
1−α
256 otherwise

(2.3)

Once an language θ has been fixed, the agent is presented with new meaning m for
which it then produces a signal s by sampling from the distribution

p(s | m, z) =

{
1− ε if m 7→ s in language θ
ε/3 otherwise

(2.4)

This means the agent will pick the signal s corresponding to m under language θ most
of the time, but has a small probability ε of making an error and uniformly picking
one of the other signals. Together with a completely independent distribution p(m),
typically a uniform one, this specifies the production algorithm

ppa(x | θ) = p(s | m, θ) · p(m), x = (m, s) (2.5)

If x = ((m1, s1), . . . (mb, sb)) is the list of the utterances produced by the previous
agent, then the posterior distribution is

p(θ | x) ∝ p(θ) ·
b∏

i=1
ppa(xi | θ), (2.6)

and, as usual, the language algorithm takes the form pla(θ | x) ∝ p(θ | x)η.
Figure 2.3 illustrates the resulting simulation in a population of samplers (η = 1). It

shows which language was used in every generation (left): one of the 252 holistic lan-
guages (H) or a compositional language (C1–4). The compositional languages seem
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FǣǥǗǚȨ ɘ.ɕ Emergence of compo-
sitionality in the Bayesian iterated
learning model of Griffiths and
Kalish (ɘɚɚə). On the left, the lan-
guage used in every generation with
H one of ɘɖɘ holistic languages and
Cɞ–ɗ the compositional languages.
On the right the relative frequency
of every language up to a certain
time t. These relative frequencies
converge to the prior (orange).
Larger bottlenecks (subfigures
A–C) slow down convergence.

ǥǡɚɞ WebPPL simulation with
α = 0.5, ε = 0.001 and samplers
(η = 1).

to be used much more frequently, which is confirmed by the plots on the right. There
we see the relative frequency of every language up to several points t in the simulation.
These plots indicate that the relative frequencies converge to the prior, shown in or-
ange. Since the compositional languages have a higher prior probability than each of
the holistic languages, they are more frequent. The convergence rate towards the prior
is much faster when the bottleneck is small (b = 1, subfigure A) than when it is large
(b = 10, subfigure C). It is clear why this happens: the more data is transmitted, the
greater the probability that the child can reconstruct the language. The result is that
languages will be stable throughout multiple generations, as seen from the lines in fig-
ure 2.3c. Nevertheless, even with a large bottleneck the relative frequencies seem to
converge to the prior, be it very slowly. We will discuss all these findings in more detail
later. First, what discuss the observed ‘convergence to the prior’.

Convergence to the prior
Let me briefly summarise what we have seen so far. Bayesian agents observe utterances
xt−1 produced by the previous agent, and then use Bayes’ rule to infer a language. This
language is θ is drawn from pη(θt | xt−1) = p(θt |= x)η, where η interpolates between
a sampling- and map-strategy for η = 1 and η = ∞ respectively. All this results in a
chain of the form

x0 −→ θ1 −→ x1 −→ θ2 −→ x2 · · · . (2.7)

Griffiths andKalish (2005) noted that severalMarkov chains can be discerned in eq. 2.7,
ofwhich the long-termbehaviour iswell-studied: They often converge to a so called sta-
tionary distribution. This characterised the long-term behaviour of the iterated learn-
ing model.

Appendix A introduces the relevant convergence results for Markov Chains; I only
summarise them here. Consider a system with a set of possible states S. If the vari-
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2. Iterated Learning

FǣǥǗǚȨ ɘ.ɗ Different Markov chains
hidden in the Bayesian iterated
learning model, and to which sta-
tionary distribution they converge
(right).

Figure adapted from Griffiths and
Kalish (ɘɚɚə).

x0 θ1 x1 θ2 x2
pǠȳ(θ | x) pǜȳ(x | θ) pǠȳ(θ | x) pǜȳ(x | θ)

θ1 θ2 p(θ)

∑
x pǠȳ(θ | x) · pǜȳ(x | θ)

x0 x1 x2 p(x)

∑
θ pǜȳ(x | θ) · pǠȳ(θ | x)

∑
θ pǜȳ(x | θ) · pǠȳ(θ | x)

θ1, x1 θ2, x2 p(θ, x)
pǠȳ(θ | x) · pǜȳ(x | θ)

ables x0, x1, x2, . . . indicate the state at every time step, they form a Markov chain
if the probability of moving to another state only depends on the last state: p(xt |
x0, . . . , xt−1) = p(xt | xt−1). If the number of states is finite, these transition prob-
abilities can be collected in the transition matrix T. Suppose the initial distribution
over states is given by vector π, then the next distribution is p(x1 = i) = (Tπ)i and
after t steps, p(xt = i) = (Ttπ)i. These probabilities can converge to the so called
stationary distribution π⋆ which must be an eigenvector of T since Tπ⋆ = π⋆. If the
Markov chain is ergodic it is guaranteed to have a unique stationary distribution to
which it converges: p(xt = i) → π⋆

i as t → ∞. Ergodicity, briefly, ensures that the
chain keeps revisiting the entire state space and has a positive probability of reaching
any other state from any given state in a finite number of steps. How often it visits every
state is given by the stationary distribution, in the sense that the relative frequencies of
visited states converges to the stationary distribution.

ǜǚǝǝǦ ǝǦ ǘǤȨ ȱǝǞǖȨǚǥȨǞȱȨ ǘǝ ǘǤȨ ǜǚǣǝǚ Griffiths and Kalish (2005) noted that by
marginalising out the productions xt in eq. 2.7 one obtains the following Markov chain
(see also figure 2.4):

p(θt | θt−1) =
∑
xt−1

pla(θt | xt−1) · ppa(xt−1 | θt−1). (2.8)

We hitherto assumed that the transition probabilities remain constant over time, that
is, we looked at time-homogeneous chains. The Markov chain in eq. 2.8 is only homo-
geneous if all agents use the same production and language algorithms. In particular,
they should all use the same prior. We will later discuss the validity of this assump-
tion. If these assumptions hold and the chain is moreover ergodic, then the long-term
behaviour of iterated learning is known: convergence to the stationary distribution,
independent of the initial distribution.

The stationary distribution π⋆ of this distribution happens to be the prior q(θ) :=

p(θ). To show this, one has to see that

q(θt+1) =
∑
θt

p(θt+1 | θt) · q(θt) (2.9)

I have written q for the prior to highlight that we do not know whether q(θt+1) is a
marginal distribution of p(θt+1, θt). In that case, the equality would hold trivially. Oth-
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erwise, the following derivation shows that eq. 2.9 holds:∑
θt

q(θt) · p(θt+1 | θt) =
∑
θt

q(θt) ·
∑
xt

pla(θt+1 | xt) · ppa(xt | θt) (2.10)

=
∑
xt

pla(θt+1 | xt) ·
∑
θt

q(θt) · ppa(xt | θt) (2.11)

=
∑
xt

pla(θt+1 | xt) · ppa(xt)

(⋆)
=

∑
xt

ppa(xt | θt+1) · q(θt+1)

ppa(xt)
· ppa(xt)

= q(θt+1)
∑
xt

ppa(xt | θt+1)

= q(θt+1)

where (⋆) holds by definition of pla(θt+1 | xt) and because we use samplers (η = 1).
For maximisers, the proof breaks down at this point.

Similar results hold for the other Markov chains hidden in the iterated learning
model (see figure 2.4). When averaging over interpretations rather than productions,
one obtains a Markov chain on the productions:

p(xt+1 | xt) =
∑
θt+1

p(xt+1 | θt+1) · p(θt+1 | xt). (2.12)

A proof analogous to eq. 2.10 shows that this chain converges to the prior predictive
distribution p(x) =

∑
θ ppa(x | θ)·p(θ) Finally, one could consider aMarkov chain over

the state space of language-utterance pairs (θ, x) ∈ Θ×X with transition probabilities

p(θt+1, xt+1 | θt, xt) = p(θt+1 | xt) · p(xt | θt). (2.13)

This chain has the joint p(θ, x) = ppa(x | θ) · p(θ) as its stationary distribution. Inter-
estingly, this shows that Bayesian iterated learning implements a Gibbs sampler.

Gibbs samplers are often used in Bayesian statistics, whenever it is not possible to
workwith complicated distributions analytically. MonteCarlomethods arework-arounds
that collect many samples from the distribution, and approximate the distribution us-
ing those samples. To obtain samples, one constructs a Markov chain whose stationary
distribution is the distribution of interest. Over time, the visited states will be (corre-
lated) samples from the target distribution. This is the basic idea behind many Markov
Chain Monte Carlo (mcmc)methods andGibbs sampling is one of those. It can be used
to approximate a joint distribution p(θ, x) if it is easy to sample from the conditional
distributions p(θ | x) and p(x | θ). In every iteration, it fixes one of the variables, say
θt and samples a new xt+1 from p(xt+1 | θt). Then it fixes xt and samples θt+1 from
p(θt+1 | xt+1), and so on. This results in a new sample (θt+1, xt+1) from the joint after
every ‘sweep’ through the variables. Indeed, this procedure exactly mirrors Bayesian it-
erated learning with sampling agents, and it follows that the chain in eq. 2.13 converges
to p(θ, x) (see Griffiths and Kalish 2007 for a longer discussion).
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ȱǝǞǖȨǚǥȨǞȱȨ ǘǝ ǘǤȨ ǟȳǔǣǟǗǟ ǝǦ ǘǤȨ ǜǚǣǝǚ? What kind of behaviour should one
expect in populations of maximisers? This turns out to be a much harder question.
There are, to the best of my knowledge, two analytical results — we will return to em-
pirical evaluations in chapter 4 — both suggesting that in populations of maximisers
the behaviour is largely determined by the prior, but in a less direct way. First of all,
Kirby, Dowman, and Griffiths (2007) analyses the stationary distribution for maximis-
ers (η > 1) using a constrained set of languages that spread the probability mass uni-
formly over a (sub)set of utterances.4

ɗ This constraint on languages
has a purely mathematical mo-
tivation: it is precisely what is
needed to factorise the normalis-
ing constant in the posterior.

In other words, p(x | θ) is either 0 or equal to
a f(x), where the latter does not depend on θ. In that case, the stationary distribution
is proportional to p(z)η. This implies that cultural evolution results in an exaggerated
version of the prior (cf. figure 2.2).

A similar conclusion follows from the second result, due to Griffiths and Kalish
(2007). They note that maximisers (now η = ∞) implement a version Expectation-
Maximisation (em). This is an iterative algorithm used in models with hidden vari-
ables to estimate parameters that are increasingly close to the maximum likelihood
estimates, or, in our case, map estimates. The trick is to use the current parameters to
estimate the expected likelihood of the observed and hidden variables, and then update
the parameters so that they maximize that likelihood. When computing the expecta-
tion analytically is intractible, it can be approximated by drawing several samples. The
case using a single sample is called stochastic em. Now, suppose, in em jargon, there
are no observed variables, xt is the latent variable and θt the parameter, then stochastic
em in this model amounts to Bayesian iterated learning in a population of maximisers
(see Griffiths and Kalish (2007) for details). This characterisation is not as clear-cut as
with samplers, but suggests that the stationary distribution over languages will roughly
be centred on the maxima of the prior (Griffiths and Kalish 2007).

Convergent controversy
The convergence to the prior was the first general result about the long-term behaviour
of the iterated learningmodel. For populations of samplers, the result was crystal clear:
starting from any initial distribution, the probability that an agent down the chain
would be using language θ is given by the prior probability p(θ). And this is precisely
what we observed in figure 2.3, which shows the the emergence of compositionality —
or rather, the emergence of the prior. The model is an ergodic Markov chain, and over
time the probability that a certain language will be used therefore converges to its prob-
ability under the stationary distribution, which is the prior. Compositional languages
have high probability under that prior, and consequently emerge. Maximisers aremuch
harder to analyse. The probability that a language is used by maximisers seems to be
largely determined by the maxima of the prior. Now, what are the implications of all
this for cultural language evolution?

ȲǝǘǘǠȨǞȨȱǡǙ ȳǞȰ ǕȨȳǡ ȲǣȳǙȨǙ Iterated learning was inspired by the idea that lan-
guage is a compromise between “the biases of learners, and other constraints acting
on language during their transmission” (Smith 2009), originally in the form of a trans-
mission bottleneck. But in the Bayesian models, the bottleneck hardly plays any role.
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2.4. Convergent controversy

Griffiths and Kalish (2007) conclude that “the emergence of languages with particular
properties does not require a bottleneck” (p. 466). Larger bottlenecks do slow down
convergence since they imply more faithful transmission and this increases language
stability. The Markov chain’s walk through the state space consequently slows down,
which, somewhat paradoxically, also slows down convergence. But in the long run bot-
tlenecks play no role — at least for samplers. This seems to undermine the idea that
compressible languages emerge because of cultural transmission. Should we conclude,
then, that languages are not shaped by cultural evolution, but primarily by innate con-
straints? Griffiths and Kalish (2007) conclude that their results “do not indicate which
of these explanations is more plausible” (p. 475). There’s something for everyone: if
the prior captures innate biases, “iterated learning acts as an engine by which these
constraints result in universals” (p. 475), but if you prefer the transmission process to
actually change the priors, then you “can take heart from our results for learners who
use map estimation”.

Kirby, Dowman, and Griffiths (2007) follow the latter advise. Their paper discusses
an iterated learning model with maximisers that have a prior bias towards regular lan-
guages. Bottleneck effects can occur in populations ofmaximisers (Griffiths and Kalish
2007) and the authors accordingly conclude that as the bottleneck tightens in their
model, “regularity is increasingly favoured”. But there is something peculiar about this
conclusion: It seems to hold only because their prior favoured regularity. Had their
prior favoured irregularity, irregularity would have been increasingly favoured under a
tighter bottleneck.5

ɖ I found their ǜǞȳǙ paper is a
bit sketchy on the details of their
simulations, but these conclu-
sions follow directly from Grif-
fiths and Kalish (ɘɚɚə) and as
far as I can see apply equally
to Kirby, Dowman, and Griffiths
(ɘɚɚə).

In the Bayesian model, transmission at most amplifies pre-existing
biases, which of course can be seen as an effect of cultural transmission. Another con-
clusion of Kirby, Dowman, and Griffiths (2007) is therefore that processes of cultural
evolution can “completely obscure” the strength of the bias. A small tendency to favour
languages with higher prior probability (i.e. η > 1) amplifies weak biases and results
in strong universals. The strength of the bias has no role, only the ordering of the lan-
guages. All in all, it suggests a rather toothless process of cultural evolution. Several
researchers therefore started tweaking the assumptions of the model to find out how
robust the results are.

ǜǝǜǗǠȳǘǣǝǞ ǙǘǚǗȱǘǗǚȨ ȳǞȰǤȨǘȨǚǝǥȨǞǝǗǙ ǜǝǜǗǠȳǘǣǝǞǙ Thepopulation structurewas
one of the first things addressed. It should be noted that (Griffiths andKalish 2007) gen-
eralised their findings to somewhat different scenario, with finite generations evolving
in (discrete or) continuous time (cf. Nowak, Komarova, and Niyogi 2001). In that case
the proportion pt(θ) of the population speaking language θ at time t converges to the
prior p(θ), as can easily be seen. If pt = (pt(θ) : θ ∈ Θ) and T the transition matrix,
these proportions change as

pt+1 = Tpt, (2.14)

which describes a linear dynamical system with a unique stable equilibrium. The same
derivations as eq. 2.10 show the prior is that equilibrium. However, Niyogi and Berwick
(2009) argue that this is an unrealistic model of language evolution as it precludes the
possibility of bifurcations. Moreover, language stability cannot be maintained: even if
only 0.01% of the population uses a different language, it will spread to a larger share of
the population (the prior admitting). As a remedy Niyogi and Berwick (2009) propose
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an alternative model where agents learn from a mixture of the languages used in the
previous generation, not just one. This leads tomarkedly different nonlinear behaviour
with bifurcations and possibility multiple equilibria, which they argue accurately de-
scribes historical developments (namely, that English is no longer a ‘verb-second’ lan-
guage).

That the behaviour changes in different populations structures was confirmed in
several other studies. Smith (2009) similarly considered infinite generations of agents
learning frommultiple parents. He reports that this precludes convergence to the prior
and introduces a dependency on the initial distribution of languages in the population.
Ferdinand and Zuidema (2009) draw the same conclusion, but also drop the assump-
tion that all agents share the same innate biases, i.e. that the population is homogeneous.
In heterogeneous population the convergence to the prior breaks down. Dediu (2009)
finds that the strong differences between samplers and maximisers disappears in pop-
ulations with a different structure or heterogeneity.

The agents in studies such as Ferdinand and Zuidema (2009) are not Bayesian agents
in the strict sense that agents assume to be learning from a single language, while in
fact the data comes from several sources. Burkett andGriffiths (2010) address this issue
in a hierarchical model where agents take into account that they are possibly learning
from multiple languages. Accordingly, the convergence to the prior reappears. Very
recently, Whalen and Griffiths (2017) extended this to populations with arbitrary net-
work structures, although it should be stressed that agents still learned from a single
teacher. Nevertheless, the emerging consensus appears to be that in slightly more com-
plicated population structures (with possibly imperfect Bayesian reasoners) the con-
vergence to the prior can break down and nontrivial cultural effects appear.

ǠǣǞȨȳǥȨǙ ȳǞȰ ȱǗǟǗǠȳǘǣǖȨ ȱǗǠǘǗǚȳǠ ȨǖǝǠǗǘǣǝǞ It is somewhat surprising that the pop-
ulation structure received most criticism, since that aspect of the Bayesian model is
perfectly in line with the original iterated learning model. Some other parts, I would
argue, are not. First of all, the type of convergence — in language or in probability of
using a language — is markedly different. In early iterated learning studies, the popu-
lation converged to a stable language which could be transmitted faithfully along many
generations. In the Bayesian models, nothing of this sort happens. In the simulation
of the emergence of compositionality (figure 2.3) one clearly sees that successive gen-
erations can acquire radically different languages: picture English-speaking parents,
themselves born to Basque parents, whose children miraculously learned Hungarian.

Transmission in the Bayesian model generally not faithful — indeed, this is neces-
sary for ‘convergence’ to occur at all. That seems particularly problematic for a model
of cultural evolution. Even if transmission shapes languages, it has to be somewhat
faithful if one expects any kind of cultural evolution. Tomasello (1999) points out that
faithful transmission is important because it enables a so called cultural ratchet, where
cultural innovations are passed on and improved upon by later generations. Cultural
evolution, as a result, is cumulative and products of cultural evolution consequently
reflect their full historical development. If it is not already uneasy that the defining
property of a Markov chain is being memoryless, ergodicity certainly conflicts with the
idea of cumulative cultural evolution. In an ergodic Markov chain, every ‘lineage’ is
guaranteed to revisit all possible languages infinitely often. That amounts to an infi-
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nite reinvention of the wheel — pretty much the exact opposite of cumulative cultural
evolution.

Conclusions
The first iterated learning models suggested that languages primarily pick up system-
aticity during cultural transmission. Simulations showed how compositional structure
accumulated in initially unstructured languages when a bottleneck pressured the lan-
guages to becomemore compressible. However, the learning algorithms that generalise
a few observations to a full language implement all kinds of implicit biases, and pos-
sibly provide an implicit pressure towards compositional structures. To make general
claims about the interaction of cultural processes and innate biases, the two need to be
separated clearly. Bayesian iterated learning models did precisely that, but were also
shown to converge to the prior. That meant that the probability that a certain language
would be used, is after a while completely determined by the biases of the learners, in-
dependent of the initial conditions. In populations of maximisers, the relation is less
transparent and the shape of the prior (its maxima in particular) largely appears to
determine the outcome of cultural evolution.

The Bayesian iterated learning model moved the explanatory load from the cultural
process to the prior biases of the learners. However, the strong conclusions were in
several studies shown to break down in more complicated populations. The Bayesian
model moreover results in an arguably unrealistic model of cultural evolution, with no
language stability, nor any cumulative effects. Despite these shortcomings, the field
made significant progress due to the work of Griffiths and Kalish. Explicitly encod-
ing the biases of the learners made studies of the interactions between the ‘nature’ and
‘nurture’ of language much more principled, and moreover resulted in cognitively bet-
ter motivated agents. The focus on analytic results regarding the long-term behaviour
brought further transparency to the somewhat opaque conclusions suggested by sim-
ulations alone — irrespective of whether the results are ultimately convincing.

In sum, combining the criticism and benefits, I would draw up the following list of
desiderata for amodel that aims to show that cultural processes can shape the evolution
of language (in arbitrary order):

(d1) Explicate biases. The biases of the agents should be explicitly specified in the
model.

(d2) Strategies. Themodel should explore awide range of strategies, such as sampling
or map strategies.

(d3) Analysable. The model should be amenable to analytical scrutiny, and it should
ideally be possible to draw general conclusions about long-term behaviour.

(d4) Nontrivial cultural effects. Themodel should exhibit non-trivial cultural effects,
which might for example result in lineage-specific evolution: different runs re-
sulting in different outcomes of cultural evolution.

(d5) Robustness to population structure. The model should exhibit behaviour that
is fairly robust to changes in population structure.
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(d6) Language stability. The model should result in a ‘reasonable’ degree of language
stability. Reasonable, since languages are never perfectly stable (see also Kirby
2001).

(d7) Empirically testable. Themodel should give an empirically plausible, mechanis-
tic explanation of cultural evolution, which is further testable against empirical
linguistic findings (predating the lab).

The list is no doubt incomplete, but mainly serves as a guide to what I will address in
this thesis, most notably in chapter 4.
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ɕ Naming
Games
How can a population negotiate a shared language without central coor-

dination? This is the terrain of naming games, the second class of agent-

based models. In local, horizontal interactions, agents ’align’ their lan-

guage until they reach coherence. We discuss several alignment strate-

gies, some of which return in later chapters, and conclude with a proof

suggesting that a stable, single-word language always emerges. Themodel

used therein is the stepping stone for the next chapter, where we connect

naming games to Bayesian models of iterated learning.
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3. Naming Games

Naming games (ng) or language games were pioneered in the 90s by Luc Steels and
colleagues. The view of language that motivated their work was similar to the views
expressed in the iterated learning literature. As Steels (1995) puts it, “language is an
autonomous adaptive system, which forms itself in a self-organising process”. How-
ever, language games approach the adaptive system from a different angle than iterated
learning. The development of linguistic structure is not primarily driven by transmis-
sion, as Kirby and others proposed, but “by the need to optimise communicative suc-
cess” (p. 319, my italics). The central question takes the form (Steels 2011): how can
a convention of some sort (lexical, grammatical, or otherwise) emerge in and spread
through a population as a result of local communicative interactions, that is, without
central coordination? So if iterated learning is a model of vertical language evolution,
then the naming games model horizontal language evolution.

One of the first studies to explore this, Steels (1995), used a game in which (software)
agents negotiated a spatial vocabulary. Equipped with a primitive perceptual appara-
tus, the agents learned to identify each other by name or spatial position in a shared
simulated environment. Later research extended this approach to embodied robotic
agents, grounding their ‘language’ in the physical world. These grounded naming games
(Steels 2012; Steels 2015) introduce additional complexities pertaining to the percep-
tual and motor systems of the robots. We focus on non-grounded games, which can
be divided into two branches. The first is centred around the minimal naming game,
studied extensively using methods from statistical physics. The second extended the
first naming games to more complex and possibly realistic linguistic scenarios. This
chapter discusses and compares both branches. Of particular interest is the kind of
dynamics one can expect from these models. We therefore conclude with the proof by
De Vylder and Tuyls (2006) suggesting that naming games always converge to a stable,
single-word language.

The basic naming game
Picture a group of people encountering a colourless green object for which they do not
have a name. Of evenworse, suppose they don’t have a shared language at all. Confused,
I suppose, they furiously shout out names for the object. But can they gradually align
their vocabularies by carefully attending to what the others are saying, until they have
agreed on a word for the object — gavagai, perhaps?

Frivolities aside, this is the essence of the naming game. It imagines a population of
N agents in a shared environment filled with objects, which the agents try to name. At
the start of the game, there is no agreement whatsoever about the names of the objects.
Every agent has an inventory of names for the objects (a lexicon), which is adjusted
after every round with the goal of increasing communicative success. In every round,
two randomly selected agents interact, one as speaker, one as the hearer, according to
the following script (Wellens 2012):

1. The speaker selects one of the objects which is to serve as the topic of the interac-
tion. She6

ɛ ‘Gender’ is only introduced to
convieniently disambiguate the
intended agent: the speaker
(she) or the hearer (he). This
even puts the ‘men’ in the role
of listener — which I belief is
sometimes regarded to be the
appropriate role.

produces a name for the object, either by using one of the names she
already knew, or by inventing a new name.
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A. Failed communication

ǙǜȨȳǡȨǚ ǤȨȳǚȨǚ =⇒ ǙǜȨȳǡȨǚ ǤȨȳǚȨǚ

Gavagai Spam Gavagai Spam
Cofveve Foo Cofveve Foo
Spam Spam Gavagai

B. Successful communication

ǙǜȨȳǡȨǚ ǤȨȳǚȨǚ =⇒ ǙǜȨȳǡȨǚ ǤȨȳǚȨǚ

Gavagai Spam Spam Spam
Cofveve Foo
Spam

FǣǥǗǚȨ ɕ.ɞ The updates of the min-
imal naming game illustrated. If
communication fails, the hearer
adds the word uttered by the
speaker (bold) to its vocabulary.
After a success, both empty their
vocabularies and keep only the
communicated word.

Figure inspired by Wellens (ɘɚɞɘ).

2. The hearer receives the word, interprets it and points to the object he believes
was intended.

3. The speaker indicates whether she agrees or disagrees, in that way signalling
whether communication was successful.

4. Both the speaker and hearer can update their inventories.

The script is a broad outline and concrete implementations are more specific. How,
for example, does the speaker select a word in step 1? The typical assumption is that
the speaker uses her own experience as a proxy of the hearer’s inventory and opts for
a signal she would likely interpret correctly herself. This is a so called obverter strat-
egy (Oliphant and Batali 1996). Or more importantly, how do the speaker and hearer
update their lexicons after the encounter? Here, the sky is the limit. Does the speaker
update her lexicon, or the hearer, or both? What happens after successful communica-
tions, what after failure? In years of research, one particular script emerged, which is
discussed below. It also became clear that whichever update strategy is used, itmust im-
prove the alignment between the lexicons Steels (2011). That means that the probabil-
ity that a future encounter will be successful is increased. Such strategies thus reinforce
successfully communicated words and this often installs a winner-takes all dynamics
which, in the end, leads to a (unique) shared convention. This is best seen in the so
called minimal naming game.

The minimal strategy
The minimal naming game was introduced by statistical physicist Andrea Baronchelli
(2006) and simplifies earlier naming game in several respects (Baronchelli, Felici, et al.
2006). First, it assumes that homonymy cannot occur. Homonymy can only be intro-
duced when a speaker invents a new word for an object that happens to have been used
already to name another object. If the space of possible new words is large enough, we
can safely assume that invented words are unique and homonymy will be absent. Sec-
ondly, one can assume, without loss of generality, that there is only one object. If there
is no homonymy, the update in step 4 will never affect words used for a different object.
The competition between the synonyms for a particular object is thus completely inde-
pendent from other objects. As a result, the dynamics of a naming game with multiple
objects is fully determined by the dynamics of a game with a single object.

In the minimal naming game, the inventory of every agent is a list of words. In step
1, the speaker select one word uniformly at random from her inventory. The update in
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3. Naming Games

step 4 distinguishes two cases.

• Success. If the hearer knows theword, communication is successful. Both hearer
and speaker remove all other words from their inventories, yielding two perfectly
aligned inventories with one single word.

• Failure. If the hearer does not know the word, communication fails and the
hearer adds the word to his lexicon.

Figure 3.1 illustrates how the inventories of agents change after failed and successful
communication. The dynamics of the games can be studied by collecting several statis-
tics (cf. Baronchelli 2017; Wellens 2012), typically with a certain resolution (e.g. after
every 10 rounds). Concretely, we measure the following:

• (Probability of) communicative success ps(t). The probability that an interac-
tion at time t is successful. These probabilities are estimated by averaging this
binary variable over many runs.

• Total word count Ntotal(t) The total number of words used in the population at
time t. Some authors prefer to divide it by the population size to get the average
number of words per agent.

• Unique word count Nunique(t). The number of unique words used in the popu-
lation at time t.

Due to the stochasticity of the games, individual runs vary substantially and can ob-
scure underlying regularities. Conversely, the behaviour of a single run can suggest
regularities that do not generalise. For that reason, we study the average behaviour of
the games, obtained by averaging over many simulation runs.

ǜǤȨǞǝǟȨǞǝǠǝǥǓ The minimal naming game goes through three distinct phases, as
illustrated in figure 3.2. In the first phase, most interacting agents will have empty
vocabularies and thus invent new words. This results in a sharp increase of the number
of unique words Nunique in the population. In the second phase, no new words are
invented, but the invented words spread through the population. Alignment is still low
and words will rare rarely be eliminated, so Ntotal keeps growing. In the third phase,
after the peak ofNtotal, this changes. Interactions are increasingly likely to be successful,
leading to a sharp increase in communicative success and a drop in Ntotal as more and
more words are eliminated. This also results in the characteristic S-shaped curve of
psuccess. Eventually the population reaches coherence in the absorbing state where all
agents share one unique word and reach perfect communicative success (Nunique = 1,
Ntotal = N and psuccess = 1).

The game has two important properties, that one might call effectiveness and effi-
ciency. The resulting communication system is effective because agents learn to com-
municate successfully, and efficient in the sense that agents do not memorise more
words than strictly necessary (one, in this case). A simple argument shows that the
minimal naming game almost always reaches an efficient and effective stable state (Baronchelli,
Felici, et al. 2006). At any point in the game, there is a positive probability of reaching
coherence in 2(N − 1) steps: pick one speaker and let her speak to all other N − 1
agents twice. The first time, a hearer might still have to adopt the word, but after the
second interaction only one word will remain in his inventory. If p is the probability

32



3.2. The minimal strategy

0 2500 5000 7500 10000
0

200

400

600

800

1000

0

50

100

150
A.     Unique and total word count

Nuniqe(t)

Ntotal(t)

0 2500 5000 7500 10000

0.00

0.25

0.50

0.75

1.00
B.     Communicative success FǣǥǗǚȨ ɕ.ɘ The dynamics of the

minimal naming game. An sharp
transition leads to convergence and
the emergence of consensus.

ǟǞǥɚɞ Results shown for N = 200;
avg. of ɕɚɚ runs, ɞ std. shaded.

of this (unlikely) sequence of interactions, the probability that it has not occurred af-
ter k · 2(N − 1) steps is less than (1 − p)k, which decreases exponentially in k. With
probability 1, the population will thus reach coherence as k → ∞. The argument is
somewhat unsatisfactory as it does not reveal anything about the dynamics: how fast
is the convergence, for example?

ǙȱȳǠǣǞǥ ǚȨǠȳǘǣǝǞǙ ȳǞȰ ǞȨǘǕǝǚǡ ǙǘǚǗȱǘǗǚȨ To obtain a better insight in the dynam-
ics, one can adopt a methodology commonly used in statistical physics and look at
scaling relations. The question is then how certain quantities, like convergence time,
scale with the size of the system, i.e. the number of agents. To that end, two critical
points are identified: the time tconv where the game reaches coherence and the time
tmax at which point Ntotal(t) reaches its maximum. It turns out that these quantities de-
pend on the population size N in a power-law fashion (Baronchelli, Felici, et al. 2006;
Loreto et al. 2011):

tconv, tmax, Ntotal(tmax) ∝ Nα where α ≈ 1.5 (3.1)

Now note that Ntotal(tmax)/N is the maximum number of words each agent has to store
on average — the maximum memory load, perhaps. Baronchelli (2017) concludes that
“the cognitive effort an agent has to take, in terms of maximum inventory size, depends
on the system size and, in particular, diverges as the population gets larger” (Baronchelli
2017, italics in original). Although interesting, I would be hesitant to concede that
linguistic activity in a small language community requires less cognitive effort than the
same activity in a larger community.

Besides the scaling effects, the role of the network structure of the population has
been studied extensively (see Baronchelli 2017, for an overview). In the classical nam-
ing game any two agents can interact — there is homogeneous mixing — correspond-
ing to a fully connected social network. Varying the topology (to e.g. more realistic
small-world networks, Dall’Asta et al. 2006) strongly influences the dynamics. This is
reflected by different scaling relations, but not by convergence per se: the population
still negotiates a unique word — as long as the networks remains connected, of course.
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3. Naming Games

TȳȲǠȨ ɕ.ɞ Parameter settings for
four different strategies, whose be-
haviour is shown in figure ɕ.ɕ. Note
that equivalent parametrisations
also exist; see main text for details.

δinc δinh δdec sinit smax

ǟǣǞǣǟȳǠ ǙǘǚȳǘȨǥǓ ɚ ɞ ɚ ɞ 1
Ǡȳǘ. ǣǞǤǣȲǣǘǣǝǞ ǙǘǚȳǘȨǥǓ ɞ ɞ ɞ ɚ ɞ ∞
Ǡȳǘ. ǣǞǤǣȲǣǘǣǝǞ ǙǘǚȳǘȨǥǓ ɘ ɚ.ɞ ɚ.ɖ ɚ.ɞ ɚ.ɖ 1
Ǡȳǘ. ǣǞǤǣȲǣǘǣǝǞ ǙǘǚȳǘȨǥǓ ɕ ɚ.ɞ ɚ.ɘ ɚ.ɘ ɚ.ɖ 1
ǦǚȨǛǗȨǞȱǓ ǙǘǚȳǘȨǥǓ ɞ ɚ ɚ ɞ ∞

Lateral inhibition strategies
Theminimal strategy is somewhat opportunistic in that it forgets all other words after a
successful encounter. It has been suggested that subtler alignment mechanisms might
yield faster convergence times: so called lateral inhibition strategies (see Wellens 2012
ch. 2, for an overview). The name is ultimately derived from biology, where excited
neurons can be found to inhibit neighbouring neurons. Similarly, lateral inhibition
strategies decrease the chance of using competing words again. To that end, they assign
a score to every word. If a word is communicated successfully, its score is increased, and
the scores of competitors are decreased or inhibited. The production mechanism must
also accounts for the scores, typically by producing the highest-scoring word.

The (basic) lateral inhibition strategy was first formulated in Steels and Belpaeme
(2005) and is described by five nonnegative parameters (Wellens 2012)7

ə Wellens (ɘɚɞɘ) only uses δ’s in
(0, 1), but this general formula-
tion allows the inclusion of the
frequency strategy.

δinc, δinh, δdec, sinit, smax. (3.2)

After a success, both agents increase the score of the communicated word by δinc and
decrease scores of competitors by δinh. After a failure, the hearer adopts the word with
score sinit and the speaker decreases the score by δdec. Whenever a score drops below
(or equals) 0 the word is removed, and scores can never grow larger than smax. Other
inhibition strategies have also been used and will be discussed in chapter 7.

The minimal strategy is a special case of the lateral inhibition strategy, for δinc =

δdec = 0 and δinh = sinit = 1 (see also table 3.1). With those parameters new words get
score 1 and this score is never further increased. It can be inhibited, by 1, which leads
to to immediate removal. In this strategy, the scores thus play a purely administrative
role. A strategy where scores play a larger role, is the frequency strategy which counts
how often every word has been encountered. This strategy however exhibits no form
of lateral inhibition. The minimal strategy and frequency strategy thus mark two ex-
tremes: the former has the strongest possible form of lateral inhibition, the latter none.
Between these endpoints lie the proper lateral inhibition strategies.

I want to discuss three fairly different li strategies here: li strategy 1 is a strategy that
returns in chapter 6; strategy 2 is taken from Wellens (2012); and strategy 3 is a varia-
tion thereof. The parameters are listed in table 3.1 and figure 3.3 shows the dynamics.
First of all note that the dynamics of Nunique can strongly differ for different strategies
(subfigure a). If for example δinh = δdec as in li strategy 3, many more words can
be invented. But eventually this strategy gives rise to an efficient language. So do all
other strategies, except that the frequency strategy results in amaximally inefficient lan-
guages where all agents know all words. Since agents only use the most frequent word,
perfect communicative accuracy is still attained, as is the case for the other strategies.
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These are just five strategies, but what does the rest of the strategy space look like?
In appendix B I systematically explore a larger part of the space, following Wellens
(2012). I indeed find that δinh interpolates between theminimal and frequency strategy.
Further, relatively large δinc can lead to temporary stabilisation at a non-equilibrium
state, until inhibition takes over the stable state is reached. However, I should note that
I do not replicateWellens’s finding that the frequency converges faster than theminimal
strategy (see also figure 3.3), and have not been able to reconstruct why. Although the
behaviour might vary initially, the long-term behaviour is unaffected: convergence to
a single-word language.

In sum, all strategies discussed allow the population to solves the naming problem
and leads to effective communication within the population. Any form of lateral in-
hibition dampens competing words, a result of which agents eventually forget all but
one word. The frequency strategy is the only discussed strategy that is not efficient in
this sense. For different parameter settings communicative success can increase earlier,
later or even stabilise temporarily, but will eventually be reached nonetheless. Indeed,
it seems that “adding a scoringmechanism yields onlymarginal improvements in terms
of communicative and alignment success” (Wellens 2012, p. 23)8

ɝ That is, for the basic naming
game, since Wellens (ɘɚɞɘ) finds
that in more complicated games,
subtle update mechanisms can
be beneficial.

Why, one wonders,
is the convergence so robust?

Proof of convergence
To the best of my knowledge, De Vylder and Tuyls (2006) provided the only analytical
result indicating that non-minimal naming games converge to a shared, single-word
language. The results apply to a variant of the game, which makes similar simplifica-
tions as the minimal naming game: there is no homonymy and only a single object. It
moreover starts ‘later’ in the game, when all agents have already engaged in an interac-
tion and no new words are invented. At this point, there are K unique words w1, . . .wK
in the game and the authors assume none of these is ever removed—verymuch like the
frequency strategy. Similarly, speakers use observed frequencies to determine which
word they will produce. For production strategies that reinforce or amplify the most
frequent word, the authors are able to prove convergence to a single-word language.
However, their proof applies to a deterministic model, the sampling-response model,
and De Vylder and Tuyls use simulations — not a proof — to argue that their results
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FǣǥǗǚȨ ɕ.ɗ A discrete distribution θ
over three values corresponds to a
point in the 2-simplex, a triangular
slice of R3 (left). The simplex can
be embedded in the plane (middle),
so that every point in the triangle
determines a distribution (right).
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generalise to the actual stochastic, turn-based model. I will present the deterministic,
sampling-response model in some detail, partly because it is the stepping stone for the
next chapter.

ǜǚȨǠǣǟǣǞȳǚǣȨǙ First of all, we need to introduce the simplex: the space of discrete
probability distributions. A probability distribution over K words is described by a
vector θ = (θ1, . . . , θK) such that all θk are positive, and they together sum to 1, i.e.∑

k θk = 1. Note that the last entry, θK, is determined by the others and constraint∑
k θk = 1. Probability vectors therefore lie in a (K− 1)-dimensional slice ofRK. This

slice is known as the (K− 1)-simplex ΔK−1, or simply Δ if no confusion can arise. The
2-simplex corresponds to a triangle, as illustrated in figure 3.4.

The model proposed by De Vylder and Tuyls (2006) considers a population of N
agents who keep a queue of the last Q words they have observed.9

ɜ The notation of De Vylder and
Tuyls (ɘɚɚɛ) maps to ours as fol-
lows: n⇝ K, K⇝ Q, mi ⇝ ci ,
xi ⇝ qi , s(k)⇝ πk Σ ⇝ Δ,
σ ⇝ θ (mostly), and τ ⇝ π̄.

A speaker will utter
a word based on the relative frequencies of the words in her queue. Formally, we write
c = (c1, . . . , cK) for the vector of counts, i.e. ck the the number of k’s in the queue. The
counts correspond to (relative) frequencies θ = (θ1, . . . , θK) where θk = ck/Q. The
point θ = (0.2, 0.3, 0.5) in figure 3.4 for example depicts the frequencies of K = 3
words in a queue of length Q = 10 with 2 occurrences of w1, 3 of w2 and 5 of w3.
By ‘frequencies’ θ we from now on mean relative frequencies and we also call θ the
language of an agent. The frequencies lie in a discrete subset ΔQ of the simplex which
depends on the size of the queue Q (see figure 3.5).

Given a language, a response function r determines with what probability each word
is uttered. Consider for example the response function r that puts all mass on the most
frequent word. In our example with θ = (0.2, 0.3, 0.5) this means that r(θ) = (0, 0, 1),
so the probability of uttering w3 is p(x = w3 | θ) = 1. More generally, r : Δ→ Δ maps
the language θA of agent A to a word distribution πA := r(zA), such that the probability
of uttering word x = wk is

p(x = wk | A) = πA,k, where πA,k =
[
r(θA)

]
k (3.3)

ǘǤȨ ǙȳǟǜǠǣǞǥ-ǚȨǙǜǝǞǙȨ ǟǝȰȨǠ It is not easy to analyse this game directly. Consider
how the language θ of a hearer changes during an interaction. The only thing that
matters is the probability of hearing a word, not which speaker uttered it. We obtain
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those probabilities by averaging over all possible speakers (for simplicity, agents are
allowed to speak to themselves),

p(x = wk) = π̄k, where π̄ =
1
N

N∑
A=1

πA, (3.4)

and call this average word distribution the aggregate languages as it aggregates the lan-
guages of all agents. Since the language of the hearer changes in every round, the ag-
gregate language π̄ also varies from round to round. To obtain a analysable model,
De Vylder and Tuyls (2006) nonetheless assume it temporarily remains constant. In
the resulting sampling-response model all agents interact synchronously in successive
episodes. During an episode all agents simultaneously receiveQ utterances, drawn from
the aggregate language π̄. One episode therefore corresponds to multiple rounds of the
original turn-based game, enough to ensure that all agents have ‘flushed’ their queues,
i.e. acted as a hearer Q times. Indeed, the analogy is not perfect, but deliberately so.

Importantly, the sampling-responsemodel is deterministic and analysing howan agent’s
language changes during an episode becomes much easier. Concretely, if π̄ is the ag-
gregate language during an episode t, the probability of observing frequencies θt is the
probability of observing the corresponding counts ct amongst Q independent draws
from π̄t. A multinomial probability, that is, so the sampling-response model takes the
form

θt | π̄t ∼ Multinomial
(
ct | π̄t

)
, ct = Q · θt, (3.5)

xt | θt ∼ Categorical(r(θt)) (3.6)

We can use this to compute the word distribution of agent A after episode t:

π(t+1)
A,k = p(xt+1 = wk | A, π̄t) (3.7)

=
∑
θ∈ΔQ

p(xt+1 = wk | θ) · p(θ | π̄t) (3.8)

=
∑
θ∈ΔQ

[r(θ)]k ·Multinomial(c | π̄t). (3.9)
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3. Naming Games

Note that the word distribution does not depend on A. This implies that the next ag-
gregate language is also

π̄t+1 =
∑
θ∈ΔQ

r(θ) ·Multinomial(c | π̄t). (3.10)

This defines a deterministic transition π̄t 7→ π̄t+1 from the aggregate language in one
episode to the next.

ȱǝǞǖȨǚǥȨǞȱȨ In summary, in episode t of the sampling-response model, all agents
simultaneously hear Q words drawn from the aggregate language π̄t. At the end of the
episode, all agents have updated their language, resulting in a new aggregate language
π̄t+1. The new language is a deterministic function of π̄t, but also depends on the re-
sponse function r. De Vylder and Tuyls (2006) showed that under certain conditions
π̄t converges to an aggregate language with only a single word:

lim
t→∞

π̄t = (0, . . . , 0, 1, 0, . . . , 0). (3.11)

Perhaps the most important condition was that the response function must be am-
plifying. That means, roughly, that the response function increases the probability of
producing the most frequent word (with respect to its frequency). We have already
seen the prime example of an amplifying function: the function that exponentiates a
distribution (see figure 2.2):

rη(θ) =
1∑K

k=1 θζ
k
·
(
θζ
1, . . . , θ

ζ
K

)
, ζ > 1 (3.12)

With this response function, the population would eventually adopt a language with
only one word.

Conclusions
Naming games try to understand how self-organisation can lead to the emergence of
a shared vocabulary. To reach coherence, agents have to align their vocabularies af-
ter every encounter, for which various strategies can be used. The strategies discussed
in this chapter — the minimal, frequency, and lateral inhibition strategies — all lead
to the emergence of a consensus. As long as the alignment strategy implements some
kind of competition damping, for example in the form of lateral inhibition, the result-
ing language is effective and agents remember no more words than strictly required.
The frequency strategy was the exception, where agents remember all words but nev-
ertheless reach full communicative success.

The naming games discussed in this chapter are the simplest, but, it seems, most
important models in the literature. By dropping various assumptions, different games
have been obtained. One could for example allow homonymy, in which case coher-
ence can then still be reached by damping competing homonyms and synonyms. This
introduces a kind of mapping-uncertainty (Wellens 2012) (which word corresponds
to which object?) that will return in chapter 6. This problem is stronger in so called
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3.5. Conclusions

Guessing games where the speaker is not allowed to indicate the object the hearer, who
has to guess the intended object. Rather than simplifying the basic naming game, it
can also be extended. Recently, Steels (2015) for example proposed the syntax game,
where agents communicate n-ary relationships rather than words. Both the script and
underlying mechanism are in the end very simimlar to the original naming game. This
also seems to hold for work that has adopted fluid construction grammars to extend the
representational capacities, hoping to move closer towards natural language (see e.g.
Steels (2016) for an overview). Since this thesis concerns itself with the dynamics of
the underlying game, such extensions have been left out.

The underlying, long-term dynamics of naming games seems rather clear. Where
Bayesian iterated learning found a convergence to the prior, in naming games one
finds convergence to single-word, coherent stable language, if the alignment mech-
anism somehow amplifies the highest-scoring word. So much both the proof of De
Vylder and Tuyls (2006) and experimental results suggest. The proof applies only to
a deterministic variant of the naming game, and it remains an open problem to show
convergence for stochastic naming games. The wide range of experimental results sug-
gests this should be possible — at least as long as the rules of the game are respected.
As soon as the rules are changed, convergence can break. Baronchelli, Dall’Asta, et
al. (2007) for example introduced a parameter β regulating the probability with which
agents update their inventories. They find that for values of β below some critical point,
multiple words can survive in the population.

Thedesiderata formulated in the last chapterwere clearlymotivated by iterated learn-
ing models, and might not be directly relevant for naming games. Nevertheless, it
should be pointed out that naming games give rise to stable languages (d6), are to some
extend analysable (d3) and appear to be robust to population structure (d5). They
include various strategies (d2), but the resulting behaviour is always similar terms of
long-term behaviour. One desideratum the naming game does clearly not fulfil is the
explicit representation of the learning biases. In fact, agents have hardly any cognitive
makeup, but this is addressed in the next chapter.

39





ɗ Bayesian
Language
Games
Few studies, it seems, have tried to bridge the gap between iterated learn-

ing and naming games. In this chapter I argue that Bayesian models of

iterated learning can naturally be connected to naming games in the form

of a new, Bayesian language game. This model of cultural evolution gives

rise to a stable, lineage-specific language that reflects innate biases, but

not faithfully so. With a proposed population structure, the game interpo-

lates between an iterated learning model and a naming game and more-

over incorporates a wide range of strategies. The model, in short, brings

a unified perspective on two agent-based modelling paradigms and ad-

dresses some of the desiderata formulated in chapter ɘ.
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4. Bayesian Language Games

Naming games and iterated learning are the central traditions of agent-based mod-
elling of language evolution (Smith 2014; Grifoni, Ulizia, and Ferri 2016; Jaeger et al.
2009). In Jaeger et al. (2009) they even form the axes defining the space of agent-based
simulations: naming games horizontally and iterated learning vertically. But the coor-
dinate system looks rather empty. Although horizontal and vertical models have often
been combined, the interaction between the two traditions seems extremely limited. A
naive citation count makes this disturbingly clear.10

ɞɚ I counted references to pa-
pers coming from the group of
either Kirby (ǣǠ) or Steels (Ǟǥ).
All serious papers in either tra-
dition cite extensively from the
work of the respective groups.

A paper by Luc Steels (2016) with
the inclusive title Agent-based models for the emergence and evolution of languages cites
a grand total of zero iterated learning papers. Some years earlier, Steels (2011) scores
3/120 in a review called Modelling the cultural evolution of language. At least the tra-
ditions meet in mutual neglect: The cultural evolution of language (Tamariz and Kirby
2016) scores11

ɞɞ Admittedly, Tamariz and Kirby
(ɘɚɞɛ) does cite the experimen-
tal semiotics literature. But
then again, it does not include
Steels under the heading ‘naming
games’ (table ɞ), under which we
do find some papers from Kirby’s
group.

1/73 and Kirby, Griffiths, and Smith (2014) 2/60. But then again, the
latter paper is called Iterated learning and the evolution of language.

A case of incommensurable paradigms? In this chapter, I will argue the opposite.
Far from being incommensurable, Bayesian models of iterated learning and naming
games naturally meet in a model I will call the Bayesian language game. This will be
the extension of a Bayesian naming game, to be introduced first. Several closely related
models can be found in the literature, but, to the best ofmy knowledge, have never been
used to connect the two traditions. I review related work at the end of this chapter and
would like to start where we left off in the previous chapter: the convergence proof of
the naming game.

The Bayesian naming game
The Bayesian naming game can be seen as an extension of the naming game studied by
De Vylder and Tuyls (2006). We make similar simplifications and assume all N agents
already know words w1, . . . ,wK, and need to negotiate which of these words to use for
the single object at hand. Each agent has an internal language θ, a distribution over the
K words, based on which it produces words x using some production strategy. I use
this naming game interpretation throughout the chapter, but it should be noted that
the language θ has also be interpreted as a distribution over various linguistic variants.
As Reali andGriffiths (2010) explain, “learning a language involves keeping track of the
frequencies of variants of a linguistic form at various levels of representation, includ-
ing phonology, morphology, and syntax”. Ferdinand and Zuidema (2009) represent
languages in a similar fashion.

The queue-learners in De Vylder and Tuyls (2006) ‘learned’ their language by com-
puting the relative frequencies of observed words. Here, the Bayesian naming game
takes a different turn. Following Bayesian iterated learning models, it assumes that
agents are Bayesian reasoners updating their language usingBayes’ rule. In otherwords,
they use Bayesian updating as an alignment strategy. After observing utterances x, the
agent infers the posterior distribution over languages

p(θ | x) ∝ p(x | θ) · p(θ), (4.1)

and samples a language accordingly (other strategies are discussed later). Just like iter-
ated learning models, the biases of the agent enter the model explicitly in the form of
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4.1. The Bayesian naming game

FǣǥǗǚȨ ɗ.ɞ The Dirichlet distribution
for various parameter settings. The
Dirichlet can be parametrised by a
point μ in the simplex and a scalar
β. The mean of the distribution is
determined by μ and β influences
the variance. The first row (A–D)
demonstrates the effect of β while
fixing μ = (1/3, 1/3, 1/3); the second
row (E–H) the effect of μ while
keeping β = 15 fixed. Note that
with β · μ = (1, 1, 1) (subfigure B)
one gets a uniform distribution over
the simplex.

Ǧǣǥɚɘ Figure produced us-
ing code by Thomas Boggs at
gist.github.com/tboggs/ɝəəɝɜɗɖ

a prior p(θ). But there is an important difference. Agents engage in multiple encoun-
ters and every time a hearer interact, its beliefs about the language it should use, have
to be updated. The the posterior beliefs p(θ | xt) inferred during interaction t should
thus serve as the prior beliefs pt+1(θ) in round t + 1. Strictly speaking, I use ‘prior’ as
a technical term for the distribution pt(θ). It can be interpreted as the ‘beliefs’ of the
agent. In the first round, the prior encodes the (innate) biases, but later in the game, it
encodes both innate biases and past experience. For simplicity, I consistently speak of
innate biases, but a more more precise reading would be “everything that the learner
brings to the task independent of the data” (Kirby, Smith, and Brighton 2004). The
distinction becomes relevant in chapter 6.

In general terms, round t in the Bayesian naming game has the following script.

• A hearer H and speaker S are randomly selected from the population.
• The speaker samples a language θt from her prior distribution pS,t(θ). This is

the posterior pS(θ | xt′) inferred during the last interaction t′ she engaged in
as a hearer. The selected language defines a distribution p(x | θt) over words.
She samples b words xt = (x1, . . . , xb) from that distribution and communicates
those to the hearer.

• The hearer updates his beliefs pH,t+1(θ) := pH(θ | xt) to the posterior, which
is proportional to p(xt | θ) · pH,t(θ). All other agents A, including the speaker,
maintain their current beliefs: pA,t+1(θ) := pA,t(θ).

This script outlines a general framework for Bayesian naming games. This chapter dis-
cusses one specific instantiation, a Dirichlet-categorical naming game, but it should be
noted that the proposed framework is more general.

On a practical note, a mathematical development of the model is included in ap-
pendix C. The treatment in the main text is informal and to keep the notation unclut-
tered, deliberately sloppy: I do not decorate variables with the corresponding agent,
time or index, unless strictly necessary.
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4. Bayesian Language Games

The Dirichlet-categorical naming game
Following De Vylder and Tuyls (2006), the internal language θ of an agent is a cate-
gorical distributions over words, but what should the prior distribution over languages
look like? The obvious candidate is the Dirichlet distribution, because it is the conjugate
prior of the categorical. This means that the posterior distribution has the same para-
metric form as the prior, i.e. the posterior will also be a Dirichlet. If the prior at time t
is parametrised by some parameter vector αt, the hyperparameter, then posterior infer-
ence amounts to determining the new hyperparameter αt+1, which can often be done
analytically. So in terms of the Bayesian naming game, hearers only need to change the
hyperparameter after an interaction to update their beliefs.

TheDirichlet distribution is defined over the entire simplex— not just over the finite
subset ΔQ, as with the multinomial in De Vylder and Tuyls (2006) — and thus assigns
a probability to every language, every distribution over K words. It is parametrised by a
vector α = (α1, . . . , αK), but it is often convenient to split this into a normalised vector
μ and a scalar parameter β > 0 and use α = β · μ. The vector μ, since it sums to 1,
lies in the simplex and determines the mean of the distribution. β is a kind of inverse
variance, with larger values of β resulting in smaller variance. Figure 4.1 illustrates
several different parameterisations.

With this conjugate prior, posterior inference amounts to updating the hyperparam-
eter α — but how? Suppose the hearer receives words xt = (x1, . . . , xb)— here b is the
bottleneck size — and let ct = (c1, . . . , cK) denote the corresponding vector of counts,
such that ck is the number of k’s in x. If αt is the previous hyperparameter, then the
posterior of the hearer is

p(θ | xt) = Dirichlet(θ | αt + ct), (4.2)

and the belief update amounts nothing more than αt+1 := αt + ct. The Dirichlet-
categorical (dc) naming game we have defined can now be summarised as

speaker

{
θt | αt−1 ∼ Dirichlet

(
αt−1

)
xi | θt ∼ Categorical

(
θt
)
, i = 1, . . . , b.

(4.3)

hearer αt+1 := αt + ct (4.4)

Note that the speaker still samples both languages and productions. Other strategies
are discussed later.

ǜǚǣǝǚǙ, ȲȨǠǣȨǦǙ, ǣǞǞȳǘȨ ȲǣȳǙȨǙ, ȳǞȰ ǜȳǙǘ ȨǔǜȨǚǣȨǞȱȨ An additional benefit of the dc
naming game is that it transparently represents several important concepts, which is
visualized in figure 4.2. First of all, we can separate beliefs from the prior. I will call the
hyperparameter αt the beliefs, since those are updated after every interaction, and the
distribution Dirichlet(αt) the prior. Recall that the prior at t = 0 encodes the innate
biases, but in later encounters captures past experience as well. Unraveling successive
updates of the beliefs brings this fact to the fore:

αt+1 = α0 + c1 + c2 + · · ·+ ct = α0 + c−t, (4.5)
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4.2. The Dirichlet-categorical naming game

ǙǜȨȳǡȨǚ

αtc−tα0 =+ θt xt
pǠȳ(θt | αt) pǜȳ(xt | θt)

πt

internal
language

production

beliefs

language
algorithm

production
algorithm

expected
language

innate
bias

observations
or experience

ǤȨȳǚȨǚ

αt+1 := αt + ct

pt+1(θ) p(xt | θ) pt(θ)∝

posterior
(next prior)

likelihood

prior

ǙǜȨȳǡȨǚ xt+1 ǤȨȳǚȨǚ

ǙǜȨȳǡȨǚ xt+2 ǤȨȳǚȨǚ

ψt+2

external language

FǣǥǗǚȨ ɗ.ɘ Illustration of the
Bayesian naming game with all
relevant concepts. See main text
for details.

where c−t is the vector of counts of all observations before and including round t.12

ɞɘ We set ct = 0 if the hearer
did not participate in round t.

That
is, c−t captures all past experience, whereas α0 captures “everything that the learner
brings to the task independent of the data” (Kirby, Smith, and Brighton 2004). Equa-
tion 4.5 thusmakes explicit that the beliefs in round t are the sumof innate biases α0 and
past experience c−t. It also shows that the innate biases act as so called pseudo-counts
of pseudo-observations. It is as if a newborn agent has already observed utterances with
word counts given by α0, before engaging in any interactions. The point of Griffiths
and Kalish (2007), that the prior should not be seen as the innate bias, is even more to
the point here. Alternatively, it can indeed be seen to regulate the amount of evidence
needed to adopt a certain language. If αt for example contains nothing but 20 obser-
vations of word w3, the agent will need a lot of evidence before it will prefer to choose
another word — irrespective of whether it concerns pseudo or actual observations.

ǣǞǘȨǚǞȳǠ, ȨǔǘȨǚǞȳǠ, ȨǔǜȨȱǘȨȰ ȳǞȰ ȳǥǥǚȨǥȳǘȨ ǠȳǞǥǗȳǥȨǙ Languages, here, are always
distributions over words w1, . . . ,wK, but care should be taken to distinguish several
different distributions. First of all, in every round the speaker chooses a language θt
fromwhich she generates words. This is the internal language (i-language). It is distinct
from the external language (e-language) which consists of all utterances. The external
language can be estimated with the relative frequencies of the words

ψt :=
1

b · t
·

t∑
τ=1

cτ (4.6)

In that way the external language ψt also becomes a distribution over words.
Finally, we need to introduce the expected language and the aggregate language for

practical reasons. Every agent entertains a full distribution over internal languages (the
Dirichlet) and we cannot know beforehand which language it will use in a particular
round. To probe the internal state of an agent we turn to its expected language πt =
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4. Bayesian Language Games

FǣǥǗǚȨ ɗ.ɕ Two runs of the Bayesian
Naming Game. A. The expected
languages of agents (thin black
lines) first diverge but eventually
stabilise. They always reflect the
bias (orange), B. Utterances (dots)
at every time plotted over a moving
average of ɘɚɚɚ time steps. C.
The external language matches the
aggregate language. See main text
for more details.

Ǧǣǥɚɖ K = 16, N = 15, b = 1,
β = 18, η = ζ = 1, γ = ∞

(π1, . . . , πK), the language it is expected to use in the next round. That is, we consider
the marginal distribution

πk := p
(
x = wk | αt−1

)
=

∫
Δ
p(x, θ | αt−1) dθ = α̂k, (4.7)

where α̂k is the k’th entry of α̂t = αt/
∑

j α
(t)
j , which is the normalised version of αt.

The conjugacy of the Dirichlet gives this marginal distribution a simple form: the ex-
pected language πt is proportional to the beliefs αt of the agent. Note that the expected
language at t = 0 is the language completely determined by the innate biases: π0 = α̂0.
Accordingly, we often identify the bias with α̂0. Finally, the average of the expected
languages of all agents in the population is called the aggregate language

π̄t :=
1
N

N∑
i=1

πAi,t, (4.8)

consistent with our terminology in chapter 3.

Phenomenology of the Ȱȱ naming game
ǘǤǚȨȨ-ǙǘȳǥȨ ȨǖǝǠǗǘǣǝǞ Figure 4.3 show two typical runs of the Dirichlet-categorical
naming game. Subfigure a shows the expected languages of all the agents (πA, thin
lines) and the aggregate language (π̄, thick lines) after 10, 100, 1000 and 10000 encoun-
ters. The cultural evolution can be divided in three stages, which I will metaphorically
call ‘infancy’, ‘puberty’ and ‘adulthood’. In ‘infancy’, the agents have engaged in few
encounters and the innate biases (α0, orange) have a strong effect on the language they
use. These ‘infants’ are fast learners: a single observation can drastically alter their be-
liefs. But they have not yet accumulated enough evidence to develop a consistent, more
or less stable language. After a few hundred iterations, during ‘puberty’ this starts to
change. By now all agents use much more stable, but different languages. Still, they are
susceptible to new observations. This susceptibility slowly dies out during ‘adulthood’,
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4.3. Phenomenology of the dc naming game

when agents align their languages until, after ten thousand encounters, they have ef-
fectively negotiated a shared language. The resulting shared language is shaped by the
cultural evolution. Different lineages thus adopt different languages, which the two
simulations in figure 4.3 illustrate. Both lineages clearly reflect innate biases. So rather
than a convergence to the prior, we observe a reflection of the bias.

Subfigure b and c focus on overt linguistic behaviour. The dots in subfigure B in-
dicates which words were uttered, and the blue shades in the background show the
external language over the last 2000 utterances.13

ɞɕ Note that the colours are ‘nor-
malised’ in every column, such
that the in every column the least
frequent word is white and the
most frequent ones the darkest
blue.

The external language ψT is shown in
subfigure c, together with the bias and π̄ from subfigure b. The latter is hardly visible,
since external language and the aggregate language seem to agree. This is not surpris-
ing: once the population has settled on a shared language, words are used in exactly
the corresponding proportions. Note that the first two phases (‘infancy’ and ‘puberty’)
are not so clear from subfigure b and c, although close inspection does reveal larger
variability in the initial part of the game. The next two experiments present further
evidence for (1) the three-stage evolution and (2) the reflection of the bias.

ǟȨȳǙǗǚǣǞǥ ǘǤȨ ȰǓǞȳǟǣȱǙ First, we need better ways to measure the dynamics of the
game. The statistics used in chapter 3, such as the number of unique words or the
total number of words, are meaningless once the vocabulary is fixed.14

ɞɗ When writing this, I realise
that variants can of course be
defined. In fact, I had done so
‘before’, in chapter ɛ. Future
work could transfer those mea-
sures to the Bayesian naming
game.

To measure
coherence, we use the (generalised) Jensen-Shannon divergence (jsd). The jsd can
quantify the similarity of all the expected languages πA1 , . . . πAN simultaneously (see
appendix C for details). Normalising the jsd, the coherence measure becomes

C(t) = 1−
jsd

(
π(t)

A1
, . . . , π(t)

AN

)
log2(N)

, (4.9)

such that C(t) = 1 indicates perfect coherence and lower values larger incoherence.
Another question of interest is how the innate biases α0 are reflected in the expected
languages. To that end we measure the divergence between the aggregate language and
the (shared) innate bias, which I will call the reflectance

R(t) = 1− jsd(α̂0, π̄t). (4.10)

When R = 1 reflectance is perfect and the aggregate language coincides with the bias;
lower values indicate poorer reflection of the bias.

ȱǝǞǖȨǚǥȨǞȱȨ The first results suggest that the population will always reach coher-
ence. Note that contrary to Bayesian iterated learning, it is not straightforward to obtain
such results analytically: We face the same difficulties as De Vylder and Tuyls (2006).
Convergence was thus analysed in an experiment that measured how the coherence
and reflectance change over time. The results are shown in figure 4.4b. The distance
coherence (orange) initially decreases (during ‘infancy’) until it reaches a maximum
(in ‘puberty’) and then starts to increase again (during ‘adulthood’), indicating that the
population reaches coherence. Subfigure a shows the divergences directly, and suggests
that convergence is reliable, since jsd

(
π(t)

A1
, . . . , π(t)

AN

)
is eventually well approximated

by a function of the form a · t−1, This is illustrated by the dotted line, obtained using
linear regression on doubly logarithmic coordinates.
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4. Bayesian Language Games

FǣǥǗǚȨ ɗ.ɗ The Dirichlet-categorical
name converges to a stable, co-
herent language. A. The distance
between expected languages van-
ishes, but the aggregate language
deviates from the bias. B. Co-
herence initially drops, but then
increases to ɞ. The black line illus-
trates the reflection of the bias.
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However, the stable language is not identical to the bias. Rather, the effect of the
bias diminishes as can be seen from the reflectance (figure 4.4b, black). The reflectance
decreases, signalling a divergence from the bias, until it stabilises belowR = 1. The final
reflectance is fairly consistent across runs and seems to be determined by the strength
β of the (see below). In summary, in every run of cultural evolution, in every lineage,
the population develops a different, stable and shared language that reflects the innate
biases, but diverges from it within certain bounds.

ǙȱȳǠǣǞǥ Figure 4.4 highlights two ‘critical’ points tmax and tint, namely the maxi-
mumof jsd(π1, . . . , πN) and the intersection of that with jsd(π̄, α̂0) respectively. These
points seem to provide reliable indications of the convergence time and can thus be
used to analyse how it is influenced by different parameters (cf. Baronchelli, Loreto,
and Steels 2008; Baronchelli 2017). Figure 4.5 shows the effects of the language size
(K), the population size (N) and the bottleneck size (b) on the convergence time, mea-
sured by the location of tmax and tint. The number of words does not seem to have a
strong effect on the convergence time. This is somewhat surprising and it might be
worth investigating further. The population size does have a clear effect and seems to
follow a power law tint ∝ N2.18 (estimated using linear regression). The minimal nam-
ing game exhibits similar power-law scaling, although with a different exponent of 1.5
(see eq. 3.1). This means that convergence time increases quickly as the population
grows. But, as subfigure c shows, growing convergence times can be countered by in-
creasing the bottleneck. This, too, exhibits power-law behaviour tint ∝ b−.97, which is
suspiciously close to tint ∝ b−1. This is not surprising since larger bottlenecks allow
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4.4. Language and production strategies

A.     Reflection of the bias

Average of 15 lineages
Agg. lang. of a lineage
Bias

= 10

B.     The strength of the bias ( )

= 20 = 100 = 500

FǣǥǗǚȨ ɗ.ɛ A. Different runs of
cultural evolution result in different
languages (thin black lines) that
all reflect the bias (orange) in the
sense that the cultural process
reproduces the bias on average,
over many runs. This is illustrated
with six differently shaped biases.
B. How well the languages reflect
the bias is regulated by the strength
of the bias (β).

ȲǞǥɚɗ/ɚə K = 20, N = 10, b = 10,
ζ = η = 1, γ = ∞, β = 100

for a more faithful transmission of the language, leading to faster convergence. Finally
it should be stressed that the numerical results are rather rough estimates, since the
explored range is very limited. Future work might extend the range to obtain more
reliable numbers, or search for analytic results.

ǚȨǦǠȨȱǘǣǝǞ ǝǦ ǘǤȨ ȲǣȳǙ What mechanism underlies the ‘reflection of the bias’ in the
final language? One possibility is that every converged language is a ‘draw’ from some
distribution around the bias. That would mean that cultural evolution reproduces in-
nate biases, but only on average. To test this, the game was repeated 15 times with six
differently shaped biases. Indeed, each of the 15 lineages developed a distinct language,
but the average of all lineages closely aligns with the innate bias (see figure 4.6a). The
next question might be how much the emerging languages can deviate from the bias.
This, it seems, is determined by the strength of the bias, β. Recall that the bias enters
the model as the parameter of a Dirichlet distribution and α0 can thus be factorised as
α = β · μ where β is an inverse variance for the corresponding Dirichlet. Higher val-
ues of β result in smaller variance. This translates directly to the distance the resulting
languages can have from the bias, as illustrated by figure 4.6b. These results corrobo-
rate the idea that in this model, cultural evolution effectively samples a language from
a distribution around the bias. Interestingly, the resulting pattern is a common one in
linguistics: wide constrained variation (Regier, Kemp, and Kay 2015). Colour terms, to
name one example, vary across languages, but within certain constraints Regier, Kemp,
and Kay (2015).

Language and production strategies
ǠȳǞǥǗȳǥȨ ǙǘǚȳǘȨǥǣȨǙ Chapter 2 discussed two strategies for selecting languages in
iterated learning models: sampling a language or using the maximum of the poste-
rior (map). The same strategies can be introduced in Bayesian naming games, using
a parameter η to interpolate between them. In the Dirichlet-categorical model, the
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4. Bayesian Language Games

FǣǥǗǚȨ ɗ.ə Exaggerating (or ex-
ponentiating) a Dirichlet distribu-
tion shrinks the variance and as η
grows, the mean approaches the
mode.

Ǧǣǥɚɘ

exponentiated distribution even has a simple analytical form (see eq. 7.32):

pla(θ | x, α) ∝
[
p
(
θ | x, α

)]η (4.11)
= Dirichlet(θ | η · (α − 1) + 1). (4.12)

Exponentiation shifts the distribution towards its mode, the point with highest proba-
bility, and moreover shrinks the variance, as illustrated in figure 4.7. We assume that
agents only use the exponentiated posterior during production, and use the normal
(un-exponentiated) posterior as the prior in the next round. In other words, a hearer
updates its beliefs to αt+1 := αt + ct, and not to η(αt − 1) + 1 + ct. This means that
agents will use the (internal) language they are most confident about, but remember
how uncertain they were about other languages. After all, if an agent were to use the
exponentiated posterior as the prior in the next round, it would effectively assume that
the language it last encountered will from now on be used by all other agents. For that
reason η really determines a production strategy, and not a learning strategy (the name
commonly used in il). I have called it the language strategy to distinguish it from the
actual production strategy (see below, and also figure 4.2).

ǜǚǝȰǗȱǘǣǝǞ ǙǘǚȳǘȨǥǣȨǙ In a similar fashion, different strategies for picking words can
be defined by sampling from

ppa(x | θ, α) ∝
[
p(x | θ, α)

]ζ
. (4.13)

One reason for introducing the map-strategy for selecting utterances (i.e., ζ = ∞) is
that it mirrors the production strategy used in naming games. There, agents typically
produce the word with the highest score. But if we assume, following Griffiths and
Kalish (2007), that agents are Bayesian and have accurate knowledge of the production
strategy, they should infer a different posterior distribution: p(θ | x) ∝ ppa(x | θ)·p(θ).
This distribution is no longer aDirichlet distribution (see appendixC) and a result, pos-
terior inference cannot take the form of updating α. This significantly complicates the
game and partly for that reason we assume that agents update their posterior without
taking into account ζ. For ζ > 1 agents are therefore not (perfect) Bayesian reason-
ers. This, I would argue, is not too problematic, since the parameter ζ is primarily
introduced to reproduce the naming game, which itself does not use Bayesian agents.
Moreover, technical considerations suggest that Bayesian agents that do take into ac-
count ζ would after a single observation deem all languages to be absurd, if they do not
assign the highest probability to the observed word. That also seems unrealistic.15

ɞɖ But then again, this proba-
bly happens because agents
do not take into account that
the language comes from mul-
tiple sources (cf Ferdinand and
Zuidema ɘɚɚɜ; Smith ɘɚɚɜ) and
is discussed later.
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4.5. Bayesian language games

In short, a round in the Dirichlet-categorical naming, with language and production
strategies parametrised by η and ζ, takes the following form

speaker

 θt | αt−1 ∼ Dirichlet
(

η(αt−1 − 1) + 1
)

xi | θt ∼ Categorical
(
θζ/Σ(θζ)

)
, i = 1, . . . , b.

(4.14)

hearer αt+1 := αt + ct (4.15)

where Σ(θζ) := θζ
1 + . . . θζ

K denotes the sum of the entries of a vector.
In conclusion, Bayesian naming games can use different language and production

strategies by importing parameters η and ζ from iterated learning and naming games
respectively. We will evaluate all these strategies empirically and, in some cases, ana-
lytically. But it is better to do that later, in tandem with a new population structure that
connects the Bayesian naming game to Bayesian models of iterated learning.

Bayesian language games
The Bayesian naming game was directly inspired by Bayesian models of iterated learn-
ing. The strategies, we have just seen, can also be connected to strategies used in the
naming game. We now take the analogies one step further and explicitly connect the
two paradigms. I reserve the name Bayesian naming game for the game studied above,
and refer to the extension that we will define here as the Bayesian language game, since
it includes iterated learning-type models. To connect iterated learning to the Bayesian
naming game, the population model has to be changed. I propose to add two ingredi-
ents: random walks and a life expectancy. The model will do a random walk through
a population of fixed size. If agents ‘die’ after every interaction, the random walk be-
comes a transmission chain used in iterated learning. If the agents live forever, the
random walk resembles homogeneous mixing from the naming game. Random walks
might not be a very realistic model of linguistic interaction (although similar to homo-
geneous mixing), but formulating the most realistic model is not our main motivation
either. Rather, connecting the two paradigms aims to highlight what they have in com-
mon and where they diverge.

ǣǞǥǚȨȰǣȨǞǘ ɞ: ǚȳǞȰǝǟ ǕȳǠǡǙ Transmission chains and homogeneousmixing are nat-
urally combined into a randomwalk (see figure 4.8). Starting with a randomfirst agent,
in every round only one new agent is selected. The previous hearer becomes the next
speaker. In that way a path through the population is formed that, when unraveled,
mirrors a transmission chain. This trick is also used by Whalen and Griffiths (2017) in
the context of arbitrary graphs. Note that this walk does not impose any restrictions
on which agents can interact. Over time all agents are visited equally often and with
equal probability.16

ɞɛ More precisely, the random
walk is a Markov chain over the
population with uniform station-
ary distribution.

The underlying social network is fully connected and in that sense
there is homogeneous mixing. Note that using a random walk in the minimal nam-
ing game would be rather pointless: only the first agent will invent a word, which then
spreads the population. This is caused by the extreme form of lateral inhibition, and
the Bayesian language game seems unaffected by this.17

ɞə I have not been able to iso-
late systematic differences be-
tween homogenous mixing and
random walks in the Bayesian
language game, although future
work could investigate this more
systematically
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4. Bayesian Language Games

FǣǥǗǚȨ ɗ.ɝ The proposed transmis-
sion model, a random walk through
the population, combines the trans-
mission chains used in iterated
learning with the homogeneous
mixing from the naming game.

ǘǚȳǞǙǟǣǙǙǣǝǞ ȱǤȳǣǞ
Iterated learning

ǤǝǟǝǥȨǞȨǝǗǙ ǟǣǔǣǞǥ
Naming Game

ǚȳǞȰǝǟ ǕȳǠǡ
Bayesian Naming Game

FǣǥǗǚȨ ɗ.ɜ Different hazard func-
tions. The more realistic (continu-
ous/discrete) Weibull hazard is bet-
ter approximated by a degenerate
than a constant hazard function.
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ǣǞǥǚȨȰǣȨǞǘ ɘ: ǖȳǚǓ ǘǤȨ ǠǣǦȨ ȨǔǜȨȱǘȳǞȱǓ Although a random walk forms a chain, it is
not a typical transmission chain since agents can join in several times. For iterated learn-
ing, this issue is particularly pressing— youwould not want the great-grandmothers to
reappear as the children of their great-granddaughters. Fortunately, this is easily reme-
died by the second ingredient: death. If speakers were to die after every encounter, and
if their places were taken by newborns, the random walk does reduce to a transmission
chain. Conversely, if agents live forever one retrieves the naming game. And for in-
termediate life expectancies, one gets a gradual turnover of the population with both
horizontal interactions (between agents that have lived for a while) and vertical inter-
actions (between newborns and older agents) — a bit like the real world.

Birth-death processes are fairly common in the language evolution literature. To cite
just two examples, de Boer and Vogt (1999) and Smith et al. (2002) model population
turnover by removing one random agent in every round, and replacing it with a new
agent. The problem with this approach is that it implies a rather unrealistic model of
life-expectancy. To see why, one has to look at the so called hazard rate: probability
that an agent will die in a given round, given that it is not dead yet (Rogríguez 2007).
In the mentioned studies, this quantity is constant: 1/N. Constant hazard rates do arise
naturally, for example in radioactive decay, but not in humanmortality rates. Those are
much higher amongst elderly (and infants) and therefore not constant. For that reason,
demographers have adopted different models often building on either the Weibull or
Gompertz distribution (Juckett and Rosenberg 1993).

In appendix E I have outlined a discrete Weibull model of life expectancy. It has one
parameter γ, which is the average life-expectancy. Since mathematical analyses might
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benefit from an even simpler model, I alternatively propose to use a degenerate hazard
function that assigns all agents an identical, fixed life-span. This seems a better approx-
imation of the Weibull than a model with constant hazard-rate (see figure 4.9). In the
simulations below, I have indeed used a degenerate model with a fixed life-expectancy
of γ, i.e. every agent dies after γ interactions as a speaker.18

ɞɝ Here too, I have to leave it to
future work to systematically as-
sess the impact of the different
models of population turnover.

Characterising Bayesian language games
The Bayesian language game is simply the Bayesian naming game extended with the
random walk and population turnover outlined above. It can reproduce various differ-
ent models, depending on three parameters:

• Language strategy η. Determines to what extend the agents favour more likely
languages. η = 1 yiels samplers, η =∞maximisers.

• Production strategy ζ. Regulates the tendency to produce more likely produc-
tions; ζ = 1 for samplers and ζ =∞ for maximisers.

• Life expectancy γ. Theaverage life expectancy of an agent in terms of the number
of rounds it can play as a speaker. For γ = 1 for iterated learning; γ = ∞ for a
naming game.

Of course, the population size, number of words and bottleneck size are also of interest,
but η, ζ and γ most directly determine the type of game. The next question is simple:
how? What kind of behaviour can we expect for different parameter settings? To find
out, an experiment was set up to explore a larger part of the parameter space (η, ζ, γ) in
a systematic fashion. The parameters appear to interpolate relatively smoothly between
the extreme cases where η, ζ and γ are either 1 or∞. The extreme cases are, I believe,
most clearly illustrated by the outcomes of single runs. The main text discusses those,
and I refer to appendix D for a more systematic exploration of the parameter space
confirming the findings discussed here.

The central figure is 4.10. It shows one run of the Dirichlet-categorical language
game for four different life expectancies: γ = 1 (iterated learning), γ = ∞ (naming
game) and the intermediate γ = 10 and γ = 100. For every γ the four ‘extreme’
language-production strategies (η, ζ) are shown: sample-sample, sample-map, map–
sample and map–map. Note that the blue bars show the external language, not the
bias. All runs use the same bias: the by now familiar ‘pyramid’. I first discuss the effect
of population turnover (γ) and then turn to the different strategies.

ǖȳǚǓǣǞǥ ǠǣǦȨ ȨǔǜȨȱǘȳǞȱǓ: ȲȨǘǕȨȨǞ ǣǠ ȳǞȰ Ǟǥ’Ǚ The results for iterated learning (sub-
figure a), are easily misinterpreted. At every point, only one agent has some past expe-
rience: the current speaker. That speaker corresponds to the thin line deviating from
the aggregate language. The expected language of all other agents is exactly their bias.
Through the lens of the Bayesian language game, we see an almost perfectly homo-
geneous population, which explains why the aggregate language π̄ is the same for all
strategies. This also means that the coherence is near-maximal, but this could be seen
as an artefact. After all, considering the external language reveals an important dis-
crepancy for non-sampling strategies. The internal language of agents, as seen from
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4. Bayesian Language Games

FǣǥǗǚȨ ɗ.ɞɚ Typical outcomes of
the Dirichlet-Categorical language
game for the extreme strategies
(sample–sample, ǟȳǜ–sample,
sample–ǟȳǜ, ǟȳǜ–ǟȳǜ) in pop-
ulations with immediate turnover
(ȳ, iterated learning, γ = 1), no
turnover (Ȳ, naming game, γ = ∞)
and two intermediate turnovers
(ȱ and Ȱ). See the main text for a
discussion.

Ǧǣǥɚɝ K = 16, N = 15, b = 1,
T = 10000
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the aggregate language, is in strong disagreement with the external language (orange).
That means that no agent, not even the speaker, has a faithful internal representation
of the language actually used. With more experience the discrepancy disappears: in
naming game (subfigure b) the external and internal languages are in fair agreement.
More experience can also result from larger bottlenecks, which would result in only the
speaker having a better representation of the language.

Another interesting observation is suggested by the twomixed strategies, map–sample
and sample–map. Both exaggerate the bias, but in different ways. Maximising only the
language appears to prune low-probability languages, whereas maximising only pro-
ductions seems to exponentiate the language. This would explain the shape of the lim-
iting language under a map–sample strategy in the naming game. That appears to con-
sistently deviate from an exponentiated distribution and indeedmore closely resembles
a pruned distribution. Needless to say, more work is needed to confirm this ‘pruning-
vs-exponentiating’ hypothesis. The most striking difference between the Bayesian iter-
ated learning model and the naming game is the ‘predictability’ of cultural effects with
the former. Even maximising strategies appear to result in languages that are deter-
mined by the bias, and some simple operation (possibly pruning or exponentiating).
They are seemingly uninfluenced by the contingencies of the cultural process, in sharp
contrast to the Bayesian naming game. This suggests that even maximising strategies
in Bayesian iterated learning result exhibit fairly “uninteresting” (cf. Dediu 2009) be-
haviour.

The Bayesian naming game arguably exhibits more “interesting” behaviour, since
the resulting languages are clearly shaped by a the contingencies of a rough, stochastic
process of cultural evolution. The intermediate life expectancies seem to interpolate
between il and ng behaviour. The longer the agents live, the — yes — ‘stronger and
stabler’ the cultural effects become, and the more languages can move away from the
biases. For intermediate languages, variability can be large since new agents can al-
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t = 10000
Aggregate language ¯ Expected language bias ˆ

t = 20000 t = 30000 t = 40000 t = 50000 t = 60000 t = 70000

FǣǥǗǚȨ ɗ.ɞɞ Gradual language
change in the Bayesian language
game for a particular choice of pa-
rameters. The effect seems brittle:
slightly different parameter set-
tings can give the kind of behaviour
shown when γ = ∞.

Ǧǣǥɞɞ K = 20, N = 10, b = 2,
β = 40, γ = 700, η = 2, ζ = 1,
deterministic hazard.

ways be introduced. An interesting question if the Bayesian language game can also
reproduce gradual language change while maintaining a fair stability. Preliminary ex-
periments suggest this is the case (see figure 4.11, although they also suggest that the
effect is brittle in the sense that for example increasing γ quickly seems to result in
behaviour more similar to γ =∞.

ȨǔǘǚȨǟȨ ǙǘǚȳǘȨǥǣȨǙ Ǧǝǚ ǘǤȨ ȲȳǓȨǙǣȳǞ ǞȳǟǣǞǥ ǥȳǟȨ The Bayesian naming game im-
plements a kind of lateral inhibition in the form of Bayesian updating. So do other
strategies correspond to the different alignment strategies in the naming game? I dis-
cuss all strategies below, also γ <∞/

• Sample–sample (s–s, η = ζ = ∞). This is the ‘default’ strategy in the Bayesian
naming game and corresponds to the sampler-strategy in iterated learning. This
strategy exhibits lateral inhibition, in the sense that the ‘score’ of an observed
word increases, while the score of other words decrease. By score the probability
of the word under the expected language st(x) := p(x | αt) is meant. After
observing xt it can be shown (see eq. 7.42) to change to

st+1(y) =
Σ(αt)

Σ(αt) + 1
· st(y) +

Jy = xK
Σ(αt) + 1

, (4.16)

where J condition K is the indicator function evaluating to 1 if the condition
holds, and 0 otherwise. The update differs from the basic lateral inhibition strate-
gies (e.g. Wellens 2012). First, the inhibition works by scaling rather than sub-
traction of a fixed parameter δinh. Second, the effect of the updates decreases
with time since Σ(αt) increases over time. Note that this proves that the ex-
pected language of one particular agent will converge, since the updates vanish.
The simulations earlier this chapter suggest that all agents moreover converge
to the same language, which reflects the bias. This is also what we see in figure
4.10b (s–s).

• map–sample (m–s, η = ∞, ζ = 1). This strategy is used by maximisers in
iterated learning. The lateral inhibition mechanism takes a very similar form
as in the sample-sample strategy. In particular, the updates eventually also van-
ish, proving ‘individual’ convergence. Simulations suggest that coherence always
emerges and the stable language appears to reflect an amplified or exaggerated
version the bias. The exaggeration is apparent from figure 4.10b (m–s), where
the resulting language is more peaked than the bias. The bias is not shown, but
is the ‘pyramid’ also visible in subfigure a (s–s).
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• Sample–map (s–m, η = ∞, ζ = 1). This strategy is hardest to analyse, since
the scores p(x | α) do not seem to have a simple expression (see appendix C for
details). However, when bias is flat the strategy reduces to the case analysed byDe
Vylder and Tuyls (2006), which implies convergence to a single-word language.
Indeed figure 4.10b (s–m) confirms that idea.

• map–map (m–m, η = ζ = ∞). The map–map strategy corresponds to the fre-
quency strategy from chapter 3. An agent with this strategy uses the language
with highest probability, the mode, and then utters the largest component from
themode. This amounts to producing xt = arg maxk αk, the word with the high-
est counts, including pseudo-counts. The only words these agents will every use
are the maxima of the bias. Consistent with chapter 3, we find convergence to a
single-word language in 4.10b (m–m).

Conclusions
This chapter proposed a Bayesian naming game based on aDirichlet-categoricalmodel.
In the standard version of the game (η = ζ = 1) the population reaches coherence in
a typical three-stage process, metaphorically called ‘infancy’, ‘puberty’ and ‘adulthood’.
The resulting language reflects the bias, but is clearly shaped by the contingencies of
cultural evolution. The model thus gives rise to lineage-specific, stable languages. In
sum, it answer many of the desiderata formulated in chapter 2. Concretely, it explic-
itly represents biases (d1); incorporates strategies from both the iterated learning and
naming game literature (d2); seems susceptible to mathematical analysis (d3), as fur-
ther discussed in chapter 7; exhibits nontrivial cultural effects (d4); and results in a
stable language ((d6)).

TheBayesiannaming gamewas extended to the Bayesian language gameby introduc-
ing language- and production strategies (η and ζ) and a populationmodel consisting of
(1) a random walk and (2) a life expectancy γ for every agent. For γ = 1 this produced
an iterated-learning model, for γ = ∞ in a naming game. A characterisation of the
parameter space suggested several conclusions. First, that agents in an iterated learn-
ing model never faithfully represent the language actually used. And second, that the
effect of maximising languages or productions are different and correspond to some-
thing like pruning or exponentiating the bias respectively. This in turn indicates that
for those strategies are also relatively ‘uninteresting’ in iterated learning models, in the
sense that that the outcome seems to be predictably determined by the bias. This is not
the case for the Bayesian naming game, where the cultural process leaves a non-trivial
on the language. That does not mean that the process is completely unpredictable,
since the resulting language appears to be a draw from some distribution around the
bias, allowing for only limited variability.

An interesting further question concerns ‘stable’ language change. Initial results sug-
gest this can occur, but is somewhat brittle and does therefore not fulfil the desideratum
of robustness ((d5)). In general, the characterisation however does suggest a fair ro-
bustness. All small values of γ result in behaviour very similar to γ = 0 (iterated learn-
ing), and all large values are similar to γ = ∞. The same goes for the strategies: there
seems to be a relatively smooth transition between the extreme cases. That means that
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understanding the extreme cases gives a fair sketch of the kind of behaviour that can
be expected. In short, those are that sampling strategies result in (external) languages
reflecting the biases, either perfectly (iterated learning) or imperfectly, when mediated
by culture (naming game); mixed strategies exaggerate the biases, but differently when
languages or productions are maximised (and again perfectly or imperfectly); and pure
maximising strategies result in degenerate distributions. The longer the life span, the
closer the external and internal languages align and the greater the language stability.

Of all the desiderata formulated in chapter 2, only one remains. This is not to say that
the models presented perfectly addressed all points, merely that they did so sufficiently
for the purposes of this thesis — I discuss it’s shortcomings in the final chapter. In the
second part, I address the remaining desideratum: empirical testability. Let me end
this chapter with some remarks on related work.

ǚȨǠȳǘȨȰ Ǖǝǚǡ TheBayesian iterated learningmodel is closely related to variousmod-
els proposed in the literature. In the naming game literature, De Vylder and Tuyls
(2006) is the closest analogue I have been able to find. The Dirichlet-categorical nam-
ing game nearly has their model as a special case, with a flat bias and a map language-
strategy (η = ∞). The queue-agents can be roughly approximated by a fixed life-
expectancy corresponding the length of the queue, but the analogy is not perfect. An
interesting question is whether their results can be extended to the continuous case
here. Even more closely related is the model by Reali and Griffiths (2010). In fact, it
is the exact same Dirichlet-categorical model, but only studied in the iterated learn-
ing context.19

ɞɜ I unfortunately only became
aware of this while writing up
the results and time does not
allow me to include an in-depth
discussion.

Interestingly, they show that the model is in that case equivalent to the
Wright-Fisher model of genetic drift. Needless to say, this is an area ripe for future re-
search. The first sketches of a ‘Bayesian’ naming game can also be discerned in Kirby,
Tamariz, et al. (2015), who consider a population of two Bayesian agents interacting
without population turnover. Ferdinand and Zuidema (2009) similarly represent lan-
guages (hypotheses) as categorical distributions, but use a different prior. A prior ‘ex-
tending’ the Dirichlet prior used here, the so called Dirichlet Process, has figured in
Burkett and Griffiths (2010) and Kirby, Tamariz, et al. (2015). However, all these stud-
ies had different goals and none of them explicitly explored the parallels with naming
games, hence I do not further discuss them here.
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ɖ Numeral
systems
Models of cultural language evolution are seen to be ecologically valid,

primarily because their conclusions are reproducible in equivalent labora-

tory experiments. More direct comparisons seem vital, and this chapter

proposes numeral systems as a test case. Various reasons are given: re-

constructions of their development have been proposed, lots of empirical

data are available, the design space is vast, cognitive mechanisms well-

studied and finally, numerals are simple enough to be easily modelled.

The next chapter addresses early attempts at modelling the cultural evo-

lution of numeral systems.
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5. Numeral systems

Numerals, as Bernard Comrie once put it, seem to be one of the rare cases where
“present-day languages provide direct insight into the evolution of language” (Com-
rie 2013). They suggest an evolution in multiple stages, starting with words for the
numbers 1–4, then building up a counting sequence, which gave rise to ‘serialised’ ad-
ditive constructions and finally to the fully recursive systems that prevail today. He
was not the first to note this. The multistage evolution of numerals was one of the cen-
tral ideas developed in James Hurford’s Language and Number. Numeral systems, he
writes “show marks of successive phases of invention in the building up of the whole.”
(p. 78). As a result, “one can ‘read’ the history of a system, just like the history of an
old building, from the contrasting styles of its pieces, from the foundations up” (p. 83).
If it possible to reconstruct the evolution of numeral systems, doesn’t that make it the
ideal test case for models of language evolution? That is exactly what I suggest in this
chapter.

Balancing expressivity and simplicity
A good empirical test case is indispensable. As Dediu et al. (2013) observe, “much
work in agent-based modelling has proceeded in the absence of empirical linguistic
data, input from linguists, or psychological considerations regarding learning, mem-
ory and processing” (p. 330). The absence might be a side effect of a growing body
of laboratory experiments with cultural evolution (see Tamariz (2017) for a recent re-
view), providing evidence for the ecological validity of the models (Smith 2014). To
give one famous example, Kirby, Cornish, and Smith (2008) presented human partici-
pants, organised in a transmission chain, with an artificial language learning task. The
first participant learned randomly generated names for a subset of a larger collection
objects, which differed in colour, shape and movement. In a testing phase, the subject
was asked to reproduce the names of all the objects, including unseen ones. A subset of
the reproduced names was used to train the next subject. That subect again reproduced
names for all objects, which were presented to another subject, and so on. Transmitting
only a subset of the meaning-symbol pairs gave rise to a transmission bottleneck. This
led to increase in learnability in the form of a systematic underspecification. The result-
ing language for example only distinguishes shape, but ignores colour and movement.
Underspecification comes at the cost of expressivity, but when adding a pressure for
expressivity, compositional languages emerged (see figure 5.1). Initially, this pressure
was imposed by artificially removing homonymy (Kirby, Cornish, and Smith 2008),
later by introducing communication in a chain of dyads (Kirby, Tamariz, et al. 2015).
In either case, the experimental findings are surprisingly consistent with early iterated
learningmodels and are therefore said to “provide empirical support for computational
and mathematical models of iterated learning” (Kirby, Cornish, and Smith 2008).

The idea that language balances competing pressures for expressivity and learnabil-
ity connects iterated learning to the work of Terry Regier and colleagues. In a series
of papers, they argue that languages are optimised for efficient communication, im-
plying a similar balance between expressivity and simplicity. They found evidence for
this in colours terms (Regier, Kay, and Khetarpal 2007), kinship relations (Kemp and
Regier 2012), spatial relations (Khetarpal et al. 2013; Regier, Kemp, andKay 2015), and,
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5.1. Balancing expressivity and simplicity

Results of Experiment 1. The results of our first experiment, involv-
ing 4 separate diffusion chains of 10 participants each, are shown in
Fig. 2. Each of these chains was initialized with a different random
language. There is a clear and statistically significant decrease in
transmission error between the initial and final generations (mean
decrease 0.748, SD ! 0.147; t (3) ! 8.656; P " 0.002). This decrease
confirms the first of our predictions: the language is adapting to
become increasingly transmissible from generation to generation.
Indeed, toward the end of some chains the language is transmitted
perfectly: these participants produced exactly the same strings for
every meaning as their predecessor, although they had not been
exposed to the strings associated with half of those meanings.

How is this adaptation possible? Is any structural evolution of the
language taking place as in the second of our 2 predictions? As
Table 1 shows, the number of distinct strings in each language
decreases rapidly. The initial random languages are completely
unambiguous: every meaning is expressed by a distinct signal. The
transmission process cumulatively introduces ambiguity as single
strings are re-used to express more and more meanings. In other
words, the languages gradually introduce underspecification of
meanings. Clearly, the reduction in the number of strings must
make a language easier for participants to learn, but the reduction
alone cannot account for the results we see. For example, the
reduction does not explain how, in some chains, participants are
able to produce the correct signal for every meaning, including
meanings drawn from the UNSEEN set.

The answer to this puzzle lies in the structure of the languages.
The initial random language is, by definition, unstructured: nothing
in the set of signals gives any systematic clue to the meanings being
conveyed. The only way to learn this language is by rote. Equally,
if a language is randomly underspecified, then rote learning is the
only way it can be acquired. For example, if the same signal is used
for a black spiraling triangle and a red bouncing square, then a
learner must see this signal used for both of these meanings to learn

it. Because we deliberately hold items back from the SEEN set, rote
learning for all meanings is impossible. For learners to be able to
generalize to unseen meanings successfully, there must be system-
atic underspecification.

We can observe exactly this kind of structure evolving by
examining a language as it develops in the experiment. For example,
by generation 4 in 1 of the diffusion chains, the string tuge is used
exclusively for all pictures with an object moving horizontally. The
distribution of the other strings in the language is more idiosyncratic
and unpredictable at this stage. By generation 6, poi is used to refer
to most spiraling pictures, but there are exceptions for triangles and
squares. Blue spiraling triangles or squares are referred to as tupin,
and red spiraling triangles or squares are tupim. In the following
generation, these exceptional cases are reduced to the blue spiraling
triangle and the red spiraling square. By generation 8 (shown in Fig.
3), and also for generations 9 and 10, the language has settled on
a simple system of regularities whereby everything that moves
horizontally is tuge, all spiraling objects are poi, and bouncing
objects are divided according to shape.

It is precisely because the language can be described by using this
simple set of generalizations that participants are able to label
correctly pictures that they have never previously seen. This gen-
eralization directly ensures the stable cultural transmission of the
language from generation to generation, even though each learner
of the language is exposed to incomplete training data.
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Fig. 2. Transmission error and a measure of structure by generation in 4 chains. a shows the increase in learnability (decrease in error) of languages over time. b shows
structure in the languages increasing. The dotted line in b gives the 95% confidence interval so that any result above this line demonstrates that there is a nonrandom
alignment of signals and meanings. In other words, structure in the set of signals reflects structure in the set of meanings. In 2 cases, this measure is not defined and
therefore is not plotted (see Methods). The language discussed in the paper is circled.

Table 1. Number of distinct words by generation in the
first experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

! Chain 1 27 17 9 6 5 4 4 2 2 2 2
" Chain 2 27 17 15 8 7 6 6 6 5 5 4
‚ Chain 3 27 24 8 6 6 5 6 5 5 5 5
# Chain 4 27 23 9 10 9 11 7 5 5 4 4

Symbols correspond to those in Fig. 2.

tuge tuge tuge
tuge tuge tuge
tuge tuge tuge
tupim tupim tupim
miniku miniku miniku
tupin tupin tupin
poi poi poi
poi poi poi
poi poi poi

Fig. 3. An example evolved language in the first experiment. This language
exhibits systematic underspecification, enabling learners to reproduce the whole
language from a fragment.
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Our structure measure confirms that the languages evolve to
become more structured. As can be seen in Fig. 2b, significantly
nonrandom structure in the mapping from meanings to signals
emerges rapidly. Furthermore, the languages produced by the final
generation are significantly more structured than the initial lan-
guages (mean increase 5.578, SD ! 2.968, t (3) ! 3.7575, P " 0.02).

Languages in this experiment are evolving to be learnable, and
they are doing so by becoming structured. This development of
structure confirms our hypothesis regarding the cultural evolution
of language. However, we are interested in whether it would be
possible for a language to evolve that is learnable and structured but
also expressive, i.e., a language that would be able to label meanings
unambiguously. Such a language cannot rely on systematic under-
specification of meanings but instead must find some other means
of gaining structure.

Design of Experiment 2. Accordingly, in the second experiment we
made a single minor modification: we ‘‘filtered’’ the SEEN set
before each participant’s training. If any strings were assigned to
more than 1 meaning, all but 1 of those meanings (chosen at
random) was removed from the training data. This filtering effec-
tively removes the possibility of the language adapting to be
learnable by introducing underspecification: filtering ensures that
underspecification is an evolutionary dead-end. This process, al-
though artificial, is an analogue of a pressure to be expressive that
would come from communicative need in the case of real language
transmission.

Results of Experiment 2. As expected, under the modified regimen,
the overall number of words in participants’ output remains com-
paratively high throughout the experiment, as shown in Table 2. Fig.
4a shows how transmission error changes as the language evolves.
Once again, it is clear that the languages are becoming more
learnable over time (mean decrease 0.427, SD ! 0.106, t (3) !
8.0557, P " 0.002) although it is not possible to introduce the kind

of underspecification seen in Experiment 1. Furthermore, it is clear
from Fig. 4b that, as in Experiment 1, the languages are becoming
increasingly structured over time (mean increase, 6.805, SD !
5.390, t (3) ! 2.525, P " 0.05). Because filtering rules out the
generalizations that emerged in the previous experiment, a differ-
ent kind of structure that does not rely on underspecification must
be emerging.

If we examine the languages at particular stages in their cultural
evolution, we can see exactly what this structure is. For example,
Fig. 5 shows the language output by a participant at generation 9 in
1 of the diffusion chains. When one looks at this language, it
immediately becomes clear that there is structure within the signals.
We can analyze each signal as 3 morphemes expressing color, shape,
and movement, respectively, with 1 exceptional irregularity (renana
for a bouncing red circle). It turns out that this general structure
emerges by at least generation 6 and persists to the end of the
experiment, although the details change as some morphemes are
lost or are reanalyzed from generation to generation [see support-
ing information (SI) Tables S1–S8 for the complete set of
languages].

Discussion
What we have observed here under laboratory conditions is cu-
mulative cultural adaptation without intentional design. Just as

Table 2. Number of distinct words by generation in the
second experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

! Chain 1 27 23 22 17 21 21 17 21 25 13 16
" Chain 2 27 26 13 10 10 16 16 12 12 13 12
‚ Chain 3 27 11 16 14 12 17 14 16 20 19 12
#Chain 4 27 19 19 17 19 17 22 23 21 27 23

Symbols correspond to those in Fig. 4.
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Fig. 4. Transmission error and structure by generation in the experiment in which ambiguous data were removed from the training set at each generation. a gives
error for the whole language; b gives structure. These results show that, despite the blocking of underspecification, structure still evolves that enables the languages
to become increasingly learnable. The language discussed in the paper is circled.

n-ere-ki l-ere-ki renana
n-ehe-ki l-aho-ki r-ene-ki
n-eke-ki l-ake-ki r-ahe-ki
n-ere-plo l-ane-plo r-e-plo
n-eho-plo l-aho-plo r-eho-plo
n-eki-plo l-aki-plo r-aho-plo
n-e-pilu l-ane-pilu r-e-pilu
n-eho-pilu l-aho-pilu r-eho-pilu
n-eki-pilu l-aki-pilu r-aho-pilu

Fig. 5. An example evolved language in the second experiment. The language
is structured: the string associated with a picture consists of substrings expressing
color, shape, and motion, respectively. The hyphens represent 1 way of analyzing
the substructure of these strings and are added purely for clarity; participants in
theexperimentalwaysproducedstringsofcharacterswithoutspacesoranyother
means of indicating substructure.

10684 ! www.pnas.org"cgi"doi"10.1073"pnas.0707835105 Kirby et al.

FǣǥǗǚȨ ɖ.ɞ Transmission pressures
for learnable languages, resulting
in systematic underspecification
(left). Introducing a pressure for ex-
pressivity results in compositional
structure (right).

Figure reproduced from Kirby, Cor-
nish, and Smith (ɘɚɚɝ) without
permission.

indeed, numeral systems (Xu and Regier 2014). It was soon recognised that iterated
learning might explain the observed near-optimality (Levinson 2012). Xu, Griffiths,
and Dowman (2010) and Carstensen et al. (2015) accordingly set up iterated learning
experiments where human subjects reproduced colour terms, concluding that “colour-
naming universals may come from the learning and perceptual biases of human learn-
ers, brought out through the process of cultural transmission” (Xu, Griffiths, and Dow-
man 2010). Interestingly, perceptual biases in the form of just-noticeable differences,
were also sufficient to reproduce realistic colour-term patterns in a simulation using a
variant of the naming game (Baronchelli, Gong, et al. 2010).

However, colour terms might not provide the most convincing case for the argu-
ment that compositional structure in language results from pressures for learnability
and expressivity (e.g. Kirby, Tamariz, et al. 2015) — colour terms have, to the best of
my knowledge, typically no compositional structure. In that respect numeral system
aremuchmore promising. Few, if any, structures seem to balance expressivity and sim-
plicity so effectivelyMost languages can accurately name a vast range of numbers using
a small lexicon and some simple recursive rules. In English, for example, the thirteen
words one, two, three, four, five, six, seven, eight, nine, ten, hundred, thousand, and mil-
lion can be used to name nearly all numbers up to one billion (109). This might make
numerals atypical linguistic structures, but that does not mean their structure cannot
be explained by typical linguistic processes such as grammaticalisation (von Mengden
2008).

This chapter, then, has two goals. First, it argues that numeral systems are a good test
case for models of language evolution. One argument can be found in the discussion
above — numerals balance simplicity and expressivity, which should be reproducible
using iterated learning — and further arguments are developed later in this chapter.
Second, the chapter outlines the basic structure of numeral systems, a prerequisite for
all that follows. In light of the above discussion, the internal, arithmetical structure of
numerals is of primary interest and not, say, the grammatical role of numerals (e.g. why
is five blue balls grammatical, and blue five balls not?). Restrictions of this type are
necessary, since the linguistic literature on numerals is vast. In one survey, Harald
Hammerström identifies 13 500 references to primary sources, over 100 monographs
and hundreds of articles. I am practically oblivious to all this literature and will rely
on several more general, secondary sources, which fortunately sketch a relatively clear
picture of the world’s numeral systems.
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5. Numeral systems

FǣǥǗǚȨ ɖ.ɘ Numerals are numeri-
cally specific, systematic quanti-
fiers.

Reproduced from von Mengden
(ɘɚɚɝ) without permission.
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or some. Numerically specific quantifiers, on the other hand, specify how many 
members of the respective class there are. They assign cardinalities to sets by in-
dicating the exact number of elements in a class irrespective of the extensional 
meaning of the quantified noun.2

2.2 Systemic vs. non-systemic

Cardinal numerals form an important set of numerically specific quantifiers. How-
ever, languages may contain additional expressions which have the same seman-
tic function as cardinal numerals (numerically specific quantification) and very 
similar, if not identical, morphosyntactic properties. Such are, for instance, simple 
expressions like dozen ‘12’ or score ‘20,’ but also complex expressions (which may 
have cardinal numerals as their constituents) like three tens, twice a hundred and 
also, I would argue, expressions of the type fourteen hundred.
 In spite of the obvious similarities between these quantifiers and cardinal nu-
merals, I would recommend excluding the former from the category ‘cardinal nu-
meral.’ In order to justify this delimitation, we need to define the difference be-

2. A detailed discussion of the range of quantifier types cannot be provided here. See, for in-
stance, the discussions in Langacker (1991: 81–89) or Gil (2001). As my focus is on cardinal nu-
merals, the distinction between numerically specific and numerically unspecific plays a more 
central role here than it does in the two descriptions just mentioned.

Quantification

Numerically unspecific Numerically specific
(assignment of cardinalities to sets)

Universal Other Existential

all
every
both
. . .

few
several
many
most
. . .

some
a(n)

Non-systemic

one
two

three
fourteen

twenty-three
one hundred and 

seventy-six
. . .

dozen
score

three twenties
twice a hundred

Systemic
(Cardinal numerals)

Figure 1. Types of quantifiers

An introduction to numeral systems
ȰȨǦǣǞǣǞǥ ǞǗǟȨǚȳǠǙ Sowhat exactly are numerals? Numerals are expressions for num-
bers, but we need to be more preicse. The the expressions of interest are cardinals like
one, two, three. These express quantity and should should be distinguished from ordi-
nals such as first, second, third expressing order. von Mengden (2008) presents a cate-
gorisation that clearly distinguishes cardinals from other quantifiers; it is reproduced
in figure 5.2. At the highest level he distinguishes numerically specific from numerically
unspecific quantifiers. The latter include vague quantifiers such as some and many but
also universals such as all. Other words, like score and dozen have specific muneric
values, but are typically not considered to be numerals, for the simple reason they are
not part of a system in they way one, two, three, and so on, are. They for instance do not
normally occur in the counting sequence.

To a first approximation, numerals are systematic, numerically specific expressions,
but considering a more refined definition is instructive. Hammarström (2009) defines
numerals as “(1) spoken, (2) normed expressions that are used to denote the (3) exact
number of objects for an (4) open class of objects in an (5) open class of social situa-
tions with (6) the whole speech community.” These clauses exclude certain other nu-
merical expressions. Symbolic systems such as Roman and Arabic number symbols are
excluded by (1); non-standard expressions like three-times-five-and-two for seventeen
are excluded by (2); and (3) excludes numerically unspecific expressions. (4) excludes
counting systems that are exclusively used to count a restricted class of objects, such
as the Wuvulu system for counting coconuts (Hammarström 2009). (6) excludes spe-
cialised (mathematical or technical) jargon, and (5) excludes body-tally systems. Those
systems use a fixed sequence of body parts to which speakers point when indicating a
number. The sequences can be quite elaborate: some extended body counting systems
in the highlands of New Guinea use a sequence of 23 body parts20

ɘɚ Starting on the left side of
the body: little finger, ring finger,
middle finger, index finger, thumb,
wrist, middle of forearm, inside
of elbow, middle of upper arm,
shoulder, collarbone, hole above
breastbone, and then continuing
in reverse order at the other side
of the body

(Comrie 2013). As
Hammerström explains, “body tallying has to be done on a physically present person
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5.2. An introduction to numeral systems

and to understand what number is referred to, the process must be watched”. This
makes body-tally systems markedly different from the other numeral systems.

The constraints (1)–(6) can hardly be called restrictive. Hammarström (2009) esti-
mates there are at least 3500 numeral systems. Accordingly, Numeralbank,21

ɘɞ Numeralbank is part of Glot-
tobank and largely based on the
work of Eugene Chan. He col-
lected many numeral systems at
mpi-lingweb.shh.mpg.de/numeral.
For most languages, it contains
the expressions for ɞ–ɕɚ, ɗɚ, ɖɚ,
ɛɚ, əɚ, ɝɚ, ɜɚ, ɞɚɚ, ɘɚɚ, ɞɚɚɚ
and ɘɚɚɚ.

a data-
bank of numeral systems, contains around 4200 numeral systems. These numeral sys-
tems can be divided in at least two categories: restricted and recursive systems Comrie
(2011) and Xu and Regier (2014). Restricted systems have little internal structure (e.g.
all numbers are lexicalised or use only additive constructions) and typically cannot
express numbers higher than 20. These systems are extremely rare. Most numeral sys-
tems are recursive, meaning they are organised around one or several bases and use
multiplication and addition to recursively express a vast range of numbers. English
uses the bases 10, 100 and 1000 (and possibly more), and happens to be a representa-
tive example: The vast majority of the world’s languages use a decimal system, followed
by vigesimal (base 20) and quinary (base 5) systems (Comrie 2013). Yet many other
systems exist. There are languages without base, or languages using base 3, 4, 5, 6, 8,
12 or 15, perhaps supplemented by higher bases like 40, 60 and 80 (see Hammarström
2009, for a survey).

ǙǣǟǜǠȨ ǞǗǟȨǚȳǠǙ, ȱǝǟǜǠȨǔ ǞǗǟȨǚȳǠǙ ȳǞȰ ȲȳǙȨǙ Let’s spell out the structure of nu-
meral systems in more detail, by considering the English system. The first ten num-
bers are expressed by mono-morphemic forms which we will call simple numerals (von
Mengden 2008). Forms like hundred or thousand are also simple numerals. They can
be combined to form complex numerals such as two thousand three hundred sixty five.
The transition between simple and complex numerals can be a smooth one, as evident
from French: onze (11), douze (12), treize (13), quatorze (14), quinze (15), seize (16),
dix-sept (17), dix-huit (18), dix-neuf (19) (Calude and Verkerk 2016). Simple numerals
can be further subdivided in atoms and bases. The atoms are the numerals from one up
to nine; ten, hundred and thousand are the bases (higher bases are discussed later). Even
if bases are “the most salient single characteristic” of numeral systems (Hammarström
2009), defining what exactly counts as a base is tricky.

Comrie (2013) defines a base as a number b occurring in multiplicative expressions
of the form x× b + y, where he stresses that order is unimportant. Although the idea
is clear, it is not precise enough: The expression six hundred and four is of the given
form, but should not suggest that 6 is an English base. Greenberg (1978) opts for a
more technical definition. From a linguistic point of view, 2× 10 (two tens) and 10× 2
(ten twos) are not identical. The order of the factors indicates which of the two is the
‘constant’ (augend in additive/multiplicand in multiplicative constructions) and which
the ‘variable’ (addend/multiplier). Bases, according to Greenberg, are multiplicands
occurring in a series like 2× 10, 3× 10, 4× 10, . . . — they are serialised multiplicands.
But even this definition has shortcomings: It ignores subtractive constructions of the
form x×b−y. Hammarström (2009) does account for those and defines a number bi to
be a base if (1) the next higher base bi+1 is a multiple of bi and (2) “a proper majority”
of the numbers between bi and bi+1 are expressed as n× bi + k or n× bi − k for some
k < bi. For English, this definition designates 10, 100, 1000, 106 and 109 as bases.
Indeed, definitions are difficult, but the idea should be clear.
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5. Numeral systems

ǣǙǝǠȳǘȨȰ, ǟǣǔȨȰ ȳǞȰ ȳȰȰǣǘǣǖȨ ȲȳǙȨǙ It will be convenient to introduce some termi-
nology for ‘special’ base-like numbers, that are not bases in the strict sense. French is
famous for containing remnants of a vigesimal system, expressing numbers above 80
using base 20, as in quatre-vingt-dix-sept ‘four-twenty-ten-seven’ (97 = 4×20+10+7).
However, using Hammarström’s definition, this would not make 20 a French base, as
only a minority of the numbers between 20 and 100 (the next base) are expressed using
20. Comrie (2011) calls such cases isolated bases.

The Welsh expression deu naw ‘two nine’ (18 = 2 × 9) is another example of an
isolated base, since Welsh has a fairly clear vigesimal system — with one notable ex-
ception: It uses 100 as a base, which is not a power of 20. When the bases in a system are
not powers of a single base, the system has mixed bases. In the case of Welsh, 20 does
qualify as a base, since most numbers between 20 and 99 are expressed using multiples
of 20. 70 is for example expressed as deg a thrigain ‘ten on three-twenty’ (3× 10). Such
mixed vigesimal-decimal system are very common (Comrie 2013), but other mixes are
also attested. Supyire uses a particularly complex mix of base 20, 80 and 400, while
expressing numbers below 20 using additive constructions involving 5 and 10. Comrie
(2011) gives the expression for 799 as

(1) kàmpwóò
fourhundred

ŋ̀kwuu
eighty

sicyɛɛré
four

’ná
and

béé-tàànre
twenty-three

ná
and

kɛ́
ten

’ná
and

báár-ìcyɛ̀ɛ̀rè
five-four

Supyire

799 = 400 + (80× 4) + (20× 3) + 10 + (5 + 4)

Additive constructions for numbers below the lowest base, aswith 10 and5 in Supyire,
occur in more languages. Mixtec languages for example use a vigesimal system with
single words for 10 and 15. The same pattern is found in BiblicalWelsh (Hurford 1975).
Georgian expresses the number 11 to 19 using addition with 10, which is reminiscent
of the French quatre vingt dix sept, where 10 is used in a similar additive construction.
In these examples, 5, 10 or 15 are not proper bases, but one might call such numbers
additive bases, if they are smaller than the first base and occur in multiple additive
constructions — that is, if they are serialized augends (Greenberg 1978). It should be
stressed that neither additive nor isolated bases are bases according to Hammerström’s
definition, while mixed bases are.

ȨǔǜǝǞȨǞǘǣȳǘǣǝǞ ȳǞȰ ǟȳǘǤȨǟȳǘǣȱȳǠ ȲȳǙȨǙ. The notion of ‘base’ is used in mathemat-
ics, in a similar, but different way. A decimal system in the mathematical sense uses
bases 100, 101, 102, 103, 104, 105, . . . , whereas a decimal system in the linguistic sense
would use a finite subset such as 102, 103, 106, 109. The defining property of mathe-
matical bases is that they are exponents. It has been argued that exponentiation also
plays a defining role in numeral systems (e.g. Hurford 1975), but this is controversial
(see Comrie 1999; Comrie 2013). First, nothing signals that hundred and thousand
correspond to the first and second power of 10. The use of portmanteau forms for
high bases is in fact widespread: million originates from Italian millione, the augmen-
tative of mille (thousand), something like ‘a big thousand.’ Second, even if the sequence
billion, trillion, quadrillion, and so on, is somewhat productive, the relation to the cor-
responding powers is opaque (n-illion meaning 103n+3). Third, such high powers are,
with the notable exception of at least Sanskrit (see below), often a recent invention
used mostly in technical context. Finally, exponentiation is not very consistent across
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5.2. An introduction to numeral systems

languages. Illustrating the last few points, the UK adopted the so called short scale sys-
tem in favour of the long scale system as recently as 1974. The short scale system uses
million for 106, billion for 109, trillion for 1012, and so on; the long scale system uses
million for 106, milliard for 109, billion for 1012, billiard for 1015, and so on. Mandarin
uses a completely different sequence of powers: 104, 108, 1012, 1016. Sanskrit even has
a monomorphemic series of bases for all powers of 10 up to 1011 (Comrie 2011). The
simple and safe solution, in sum, is to define the bases of a numeral system by listing
all of them.

ǙǗȲǘǚȳȱǘǣǝǞ, ȰǣǖǣǙǣǝǞ ȳǞȰ ǦǚȳȱǘǣǝǞǙ Arithmetical operations other than addition
and multiplication are also used. One finds subtraction in the Latin expression un-
de-viginti ‘one-from-twenty’ (19 = 20← 1), where I wrote a← b for b− a to respect
the order of the constituents. In Biblical Welsh, one finds expressions like onid pedwar
deugain ‘minus four two-twenty’ (36 = −4 + 2× 20) and Ket expresses 70, 80 and 90
as 100− 30, 100− 20, 100− 10 respectively. Comrie (2011) gives the example

(2) qus’am
one

ʌɣam
left.over

dɔŋas’
thirty

bən’s’aŋ
without

²kiʔ
hundred

Ket

71 = 1 + (30← 100)

Some languages even use division, although it might be more accurate to speak of
multiplication by fractions (Comrie 2011). Welsh expresses 50 as half cant ‘half hun-
dred’ (50 = 1/2×100). Danish offers more examples, expressing 50 as halvtreds, which
is derived from halv-tred-sinds-tyve ‘half-third-times-twenty’ (50 = 21/2 × 20). Here
half-third can be interpreted as the third half: 21/2 after 1/2 and 11/2, but Comrie (2011)
lists it as an example of overcounting.

ǝǖȨǚȱǝǗǞǘǣǞǥ ȳǞȰ ǝǖȨǚǚǗǞǞǣǞǥ. The English equivalent of overcounting would be
the expressionthree on the way to to fifty for 43. More formally, if b is some base, an
example of overcounting is of the form a towards (x+1)×b for x×b+a. One could read
an example of overcounting in half-tred: half on the way to three, but the interpretation
‘the third half ’ also seems likely. Clearer examples are cited by Hurford (1975). Some
Mayan languages express 41 ashuntuyoxkal, which translates to the first of the third score
(1 + 3 × 20). Overrunning is a different phenomenon, where one uses addition when
multiplication might be expected, or multiplication if a higher base would be expected.
The English equivalent would be tenteen for 20 or tenty for 100. Comrie (1992) gives
several examples, starting with Polabian

(3) visem-nocti,
eight-ten,
18,

diva(t)-nocti,
nine-ten,
19,

disa(t)-nocti
ten-ten
20

Polabian

The French soixante dix neuf (6× 10+ 10+ 9) would be another example, and indeed
some varieties of French have adopted the simpler septante neuf. A clear example of
multiplicative overrunning can be found in Old Islandic

(4) otto tiger,
eight ten,
8× 10,

níu tiger,
nine ten,
9× 10,

tío tiger,
ten ten,
10× 10,

ellefo tiger
eleven ten
11× 10

Old Islandic
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5. Numeral systems

ǝǚȰȨǚ Languages can differ in how they order the constituents of numerals. The En-
glish twenty five (20 + 5) becomes vijfentwintig ‘five-and-twenty’ (5 + 20) in Dutch,
and German similarly ‘reverses’ the order. As Calude and Verkerk (2016) point out,
the ordering (base–atom, as in English or atom–base as in Dutch) has not always re-
ceived enough attention. But there are interesting regularities. If languages use both
the base–atom and atom–base order, the system always uses atom–base for the smallest
numbers and at some point switches to base–atom. The reverse never happens (Green-
berg 1978). Greenberg proposed the cognitive explanation that for large numbers the
base term is much more informative and salient. Calude and Verkerk (2016) find that
in Indo-European languages, the change in order, if it happens, practically always hap-
pens below 20.

ȱǝǞǘǣǞǗǣǘǓ ǝǦ ǘǤȨ ȱǝǗǞǘǣǞǥ ǙȨǛǗȨǞȱȨ Another property of numeral systems is that
they never have gaps.22

ɘɘ But see Zhou and Bowern
(ɘɚɞɖ) for possible gaps in some
restricted Australian systems.

If a system can express numbers up to L, it has expressions
for all numbers 1, . . . , L. This perhaps unsurprising observation has some importance
for philosophical discussions concerning the nature of numbers. Hurford (1987) ded-
icates a full chapter to three possible explanations of the continuity. First, in extreme
form, the referential-pragmatic hypothesis holds that cardinalities are properties of col-
lections (‘threeness’) that are fairly directly perceptible (subitised, see below). Conti-
nuity follows from the claim that n is more likely to be expressed than n + 1. Second,
the conceptual-verbal hypothesis assumes we are born with the concepts one, number
and successor. As a result children cannot but construct a continuous sequence, like
“little Peano’s.” Third, the ritual hypothesis assumes numbers are the result of reciting
a ritualised sequence; the meaning is grounded in the ritual of counting. All of these
positions are problematic and Hurford therefore suggests a synthesis: Small numbers
up to 3–4 are subitised and we learn the notion of successor only after exposure to a
conventional counting sequence.

ǘǤȨ ǜȳȱǡǣǞǥ ǙǘǚȳǘȨǥǓ The main (near-)universal property of numeral systems for-
mulated in Hurford (1975) is the so called packing strategy. Conceptually, it is a simple
principle: “When forming an expression for a high number, pick the highest-valued
expression available as a starting point, and then build on that” (Hurford 1987, p. 243).
Even though it is regularly cited it has not receivedmuch attention in the literature. One
reasonmight be that the packing strategy was originally formulated as a fairly technical
set of constraints on a phrase-structure grammar. But it is in fact a simple principle,
both technically and conceptually. That becomes clear if you reformulate the principle
outside the specific framework of Hurford (1975). In appendix F I reduce the packing
strategy to the claim that complex numerals use the largest multiple of the largest base
possible. A slightly more general formulation would be the difference between a and b
in a + b and a × b should be maximised. For example, Mixtec uses both 15 and 10 as
base and could thus express 19 as either 10+9 or 15+4. The packing strategy correctly
picks the latter, as it uses the larger of the two possible bases 10 and 15. Counterex-
amples also exist: twenty-three hundred does not conform to the packing strategy since
two thousand three hundred expresses the same number using a larger base.
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5.3. The evolution of numeral systems

ȳ ȰȨȱǣǟȳǠ ǕǝǚǠȰ The previous discussion should not suggest a world where any two
languages will use a radically different numeral systems, with mixes of subtraction,
overcounting, division, overrunning and what not. No, that is certainly false. In fact,
“we live in a decimal world. […] Bases other than 10 or 20 are extremely rare in the
modern world” (Comrie 2013). It is no big mystery why the particular base 10 is so
prevalent — “no contemporary linguist has ever thought it necessary to spell this ex-
planation out, let alone argue against it” (p. 39–40). Indeed, boydy parts are a com-
mon source for certain number names: “Nouns for ‘hand’ probably provide the most
widespread source for numerals for ‘five’ in the languages of the world” (Heine and
Kuteva 2002, p. 166).

But the fact that we live in a decimal world also has another reason, clearly illustrated
by the vigesimal systems, the most common after decimal systems. Vigesimal systems
were dominant in Mesoamerica before the European invasions, but by now a mixed
decimal-vigesimal system is mostly used. The systems typically include a word for 100
derived from Spanish ciento. Comrie (2013) signals a “worldwide historical trend for
the dominant decimal system to encroach on and replace other systems” and concludes
that “non-decimal numeral systems are even more endangered than the languages in
which they occur.” But why are numeral systems particularly prone to replacement?
One explanation is that “numerals, much more so than most other parts of a language,
are very culture-bound, being tied to the educational system in modern societies, to
trading relations even in the earlier and less modernised societies” (Comrie 1999).

If the development of numeral system can follow a rough, unpredictable path, shaped
out by all sorts of historical contingencies, all accounts of cultural evolution of numeral
systems should be careful to check that abstracting away from those is justified. One ac-
count has a fair argument for this: that most recursive numeral systems share a similar
basic structure.

The evolution of numeral systems
Not many studies have accounted of the evolution of numeral systems. But the ac-
counts I have found, most notably of von Mengden (2008), Hurford (1987), Hurford
(2007), and Comrie (1999) suggest a broadly similar picture. I recount the particularly
lucid version of von Mengden (2008). It focusses on the decimal numeral system as
found in most Indo-European languages, but appears to be equally applicable to other
recursive systems. The reconstruction is based on the ‘growth marks’ (Hurford 1987)
left by successive stages in the development of the numeral systems. It therefore rests
on two crucial assumptions: first, that numerals are an ordered sequence, and second,
that the sequence is continuous. Together, they suggests that properties of lower parts
of the number sequence diachronically precede properties of higher parts (von Meng-
den 2008).

ɞ. ǙǗȲǣǘǣǙǣǞǥ ȳǞȰ ǙǣǟǜǠȨ ǞǗǟȨǚȳǠǙ The simplest numeral system, if a system at all,
would consist of only simple numerals. The few languages with only simple numerals
reach no higher than 5 (Greenberg 1978, p. 256), but often only to 3 or 4 (vonMengden
2008). There is a simple explanation for the discontinuity around 4: Small quantities

67



5. Numeral systems

up to 3–4 are directly perceptible, a phenomenon called subitising. Even newborns can
fairly accurately discriminate different sized sets of 1, 2 or 3 items, while above 4 items
their performance drops below chance level (Feigenson, Dehaene, and Spelke 2004).
Importantly, subitising does not require counting, but quantities are recognised auto-
matically. Even though the exact nature and the limits of subitising remain contested
(Dehaene 2011; Feigenson, Dehaene, and Spelke 2004), it is clear that the lowest quan-
tities are relatively directly perceptible.

Hurford (2001) argued that subitising is evidenced by languages, where numerals
up to 3–4 are treated specially. For example, (exact) grammatical number distinctions
beyond singular, dual and trial do not exist. Idiosyncrasies in words for 1–4 provide
further evidence. Hurford cites themany irregular and suppletive forms for the first 4 or
so ordinals in several languages. Similarly, small numbersmore often have distinct case
or gender forms, and sometimes a differentword order. It should be noted that the sheer
frequency of low numbers (Dehaene and Mehler 1992) could provide an alternative
explanation for some of these effects. Nevertheless, languages with only subitizable
cardinalities could form the fist step towards numeral systems. But they differ from
numeral systems in two respects (von Mengden 2008). First, they are not organized in
a sequence and second, they cannot be said to be systematic.

ɘ. ȱǝǗǞǘǣǞǥ ȳǞȰ ǘǤȨ ȨǟȨǚǥȨǞȱȨ ǝǦ ǞǗǟȨǚȳȱǓ The obvious starting point for a con-
ventional counting sequence is not verbal but gestural: a fixed sequence of body parts
(von Mengden 2008). The number n can then be indicated by highlighting the n’th
body part in the sequence, while at the same time naming the body parts. At some point
the gestures might become redundant and the names themselves form the counting se-
quence. Evidence for this idea can still be found in the use of body parts as atoms (Heine
and Kuteva 2002, p. 166). von Mengden (2008) thus concludes that “we can safely as-
sume that body-part expressions are the main source for cardinal numbers” (p. 299).
Once the body-part expressions are standardised as cardinals, they often loose their
original meaning. Consequently, the ordering of the words becomes arbitrary, as the
association with a sequence of body parts is lost. As remembering long sequences is
difficult, sporadic complex formsmight emerge to express higher numbers. vonMeng-
den (2008) argues that these expressions would have an underlying arithmetic struc-
ture (like complex numerals) but this would likely be rendered opaque. The resulting
mono-morphemic forms would behave like atoms, necessitating a more transparent,
recursive system.

ɕ. ǙȨǚǣȳǠǣǙȳǘǣǝǞ A more transparent system would be one using serialisation Green-
berg (1978). This means that one numeral is combined with an entire sequence of con-
secutive simpler numerals. TheMedieval Latin numeral decem (10) is thus serialized in
un-decim (11), duo-decim (12), tre-decim (13), quattuor-decim (14), quinque-decim (15),
se-decim (16), decem et septem (17), decem et octo (18), decem et nouem (19) (vonMeng-
den 2008, p. 301). Crucially, or so von Mengden argues, the compositional structure
of the serialised expressions remains transparent. But howwould serialisation emerge?
One explanation would be that once the conventional sequence ends, another words is
used for the whole collection. Consider people counting a pile of objects. Whenever
they run out of counting words, the sequence ends, they group the objects and start
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again (Hurford 2007). The groups will be given a name, perhaps a ten, or closer to the
body counting: a hand or two hands. This word will start to function as a base. Initially
this would be an additive base; multiplicative serialisation and actual bases would have
emerged later. This is suggested by 1-deletion, that languages tend not to use multipli-
cation by 1 (Hurford 1987, p. 54) for the first base, as in ten instead of onety.

ɗ. ǦǗǞȱǘǣǝǞȳǠ ȨǠȨǟȨǞǘǙ At this point, the numeral system is already fairly devel-
oped. Numerals will have acquired internal, arithmetical structure, which is perhaps
sufficient for the purposes of this thesis. Tut the system will undergo further changes,
in processes such as grammaticalisation. Grammaticalisation theory aims to describe
how lexical forms can gradually evolve in grammatical forms (Heine and Kuteva 2002).
During that process some of their semantic, morphosyntactic, and phonetic properties
are lost, and the lexical forms take on another, more grammatical role. Consider nu-
meral bases, which are often expressed by differentmorphemes, such as the English ten,
-ty and -teen, a phenomenon called base suppletion(Hurford 1987, p. 56). von Meng-
den (2008) argues that this is a clear example of grammaticalisation, in which the base
tengradually took up a more grammatical role. The suffix -ty still means 10, but also
signals that it occurs in a multiplicative construction. Similarly, -teen signals an ad-
ditive construction. The resulting expressions such as nineteen or ninety are therefore
more grammatical than that from which they are supposedly derived (something like
nine and ten and nine tens).

Conclusions
Numeral systems, it seems, emerged in a multistage process where it gradually picked
up more complex, recursive structure. This process is likely rooted in practices such
as body-tallying (von Mengden 2008) or the practice of reciting a counting sequence
(Hurford 2007). Grouping objects might be natural first step towards multiplicative
constructions. Processes such as grammaticalisation further shaped the systems, re-
sulting in functional affixes such as -ty and -ten. It does not seem too far fetched to
extend this account to include subtraction, overrunning and the like. The origin of the
arithmetic structure of numerals, after all, seems to lie in concrete counting practices.

Although the typology of numerals support this account, it is clearly speculative, and
leaves open many questions. This is a terrain where modelling could proof useful. For
example, Von Mengden suggests that in stage 2, only serialised complex expressions
remain transparent, and that earlier, sporadic compounds are rendered opaque. Hur-
ford (1987), on the other hand, seems to suggest that various competing expressions,
all transparent, would be used simultaneously. A process of social negotiation would
then lead to the standardisation of a single expression for every number. He supported
this idea with simulations, which I discuss in detail in the next chapter.

But this would be an example of models helping our understanding of numerals,
while the point of this chapter was to argue the reverse: that the numerals could help
understand themodels of language evolution. Since I touched upon various arguments
throughout the chapter introducing, let me list all arguments explicitly.
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5. Numeral systems

• There is a fairly well-supported account of how numeral systems might have de-
veloped in several successive stages. This, one could say, is the empirical bench-
mark.

• There is a wealth of empirical data regarding numeral systems in the form of
NumeralBank, comparable to the World Colour Survey (wcs).

• The design space of numeral systems is vast. The many arithmetic operations
attested (subtraction, division, overrunning and -counting, besides addition and
multiplication) and use of mixed bases all bear testimony to this.

• Numeral systems seem to be the school-book example of a balance between ex-
pressivity and simplicity, one of the predictions made by iterated learning. Mod-
els should be able to reproduce this.

• The cognitive mechanisms of number cognition have been studied extensively,
although I have not discussed this in detail here. See for exampleDehaene (2011)
(but also Hurford 1987.

The next chapter discusses some first results in this direction.
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ɛ Emergent
numeral
systems
Numeral systems seem to be an ideal testbed for models of language

evolution. They have a clear hierarchical, recursive structure, there is

plenty of variation, and their structure suggests how they evolved. So

what can the models of language evolution discussed in the first part of

this thesis tell about the emergence of numeral systems? This chapter

addresses that question. To that end we first revisit and reinterpret the

work of James Hurford, who addressed the same question over ɕɚ years

ago. This reveals that naming games can be sensitive to biases in the

domain, which can be distinguished from biases of the agents. Finally,

an attempt to simulate the evolution of numeral systems directly is pre-

sented and discussed.
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6. Emergent numeral systems

Numeral systems strongly restrict the set of allowed expressions for numbers. One
would be surprised to find a book for three fours and seven euros—that number is called
nineteen. The degree of standardisation, to put it differently, is remarkably high for nu-
merals. Why so? Hurford (1987) wonders whether the standardisation could be the
result of a process of social interaction. In his account of the evolution of numeral sys-
tems, linguistic innovators play an important role. These rare individuals occasionally
invent new linguistic constructions, such as additive or multiplicative constructions.
Between phases of linguistic innovation the invented rules spread the population and
do not change substantially, until the next innovation comes along. This might be an
idealisation, but even if one prefers gradual phases of innovation rather than an indi-
vidual innovator, the question remains how a linguistic innovation eventually become
standardised.

Hurford addresses the standardisation of a base, the most salient characteristic of
a recursive numeral system. Using two23

ɘɕ Hurford discusses several
other variants. I restrict myself
to the two his simulations which
appear to be most important for
his argument.

agent-based simulations, he argues that the
standardisation of a shared base could be the result of a process of social negotiation.
In line with current terminology, I have baptised the simulations the additive and mul-
tiplicative Base Game (bg). The simulations represent two successive ‘stages’ in evo-
lutionary history, following the invention of additive and multiplicative constructions
respectively. This chapter starts by revisiting Hurford’s work, then moves on to some
further simulations and concludes with a discussion.

Hurford’s base games
In both base games, populations ofN agents “spend their time uttering numeral expres-
sions to each other”: constructions like 7+6 or 3×10+5. Interaction between agents
are assumed to be homogeneous. Initially, all agents will use different expressions for
the same numbers, but over time the same base should be used to form expressions.
Since a base is not defined outside a numeral system, Hurford takes the base to be the
largest of the constituents: the base of both a × b and a × b + c is max(a, b). So
3× 7, 4× 7+ 3 and 4+ 7 all use base 7. Note that the summand c in a multiplicative
construction can thus be larger than the base. We return to these assumptions in the
discussion.

Hurford assumes speakers try to use expressions that a hearer is likely to know. To
that end agents track the frequencies or scores s(b) of all bases b they encounter.24

ɘɗ In this chapter b does not de-
note the bottleneck, but a base.

A
simple criterion decides which bases are favoured, i.e. which bases an agent prefers to
use. A base b is favoured if

s(b) > 0 and s(b) ≥ ξ ·max
b′

s(b′), (6.1)

for 1 ≥ ξ > 0.25

ɘɖ Hurford does not require
s(b) > 0, but this simplifies
the discussion and does not alter
the behaviour of the game.

Just like ζ in the the Bayesian language games, the parameter ξ determines the pro-
duction strategy: how much the agent tends towards using the most frequent bases.
For ξ = 1 the base with positive and maximal frequency are favoured. The smaller ξ
gets, the lower the threshold for being favoured. This slows down convergence, and I
have used ξ = 1 throughout this chapter. Appendix G includes a brief analysis of the
effects of ξ. The set of bases favoured by agent A is denoted F(A).
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6.1. Hurford’s base games

ȳȰȰǣǘǣǖȨ ȲȳǙȨ ǥȳǟȨ It will be convenient to reformulate Hurford’s models in a more
formal fashion. Suppose agents know simple numerals for the numbersS = {1, . . . ,B =

2K}, which they can combine in additive constructions. We assume B = 2K to be even
as it greatly simplifies the discussion. Since agents generally prefer to use the simple
numerals for numbers below B, they only form complex numerals for the numbers
N = {B + 1, . . . ,B + B}, which I call the domain. This implies that the numerals
n ∈ S for which n+n < B+1 cannot be used as a base. For example, if B = 10, agents
know simple numerals {1, . . . , 10}, communicate about the domain {11, . . . , 20} us-
ing bases in {6, . . . , 10}. Note that base 10 is most expressive since it can be used to
form expressions for all numbers in the domain. With base 9 you can only get to 18,
with 8 up to 16, and so on. To make this precise, note that there are K numbers that
could be used as a base, namely

b1 := K + 1, b2 := K + 2, . . . bK := K + K = B (6.2)

For the set of numbers n that are expressible by base b we write

E(b) = {n ∈ N : n ≤ b + b}, (6.3)

Conversely E−1(n) = {b : n ∈ E(b)} denotes the set of bases that express n.
Hurford (1987) only considered the decimal case B = 10. He argued that because

10 is most expressive, it will soon become the most frequent base, resulting in the stan-
dardisation of the expressions 10+ 1, 10+ 2, . . . , 10+ 10. The additive base game was
proposed to test the consistency of this account and follows the following script.

1. A number n ∈ N is chosen from the domain.
2. The speaker considers the set C = F(S) ∩ E−1(n) of candidate bases: favoured

bases thatmoreover expressn. She randomly picks a base b fromC if it is nonempty,
or from E−1(n) otherwise. The speaker expresses n as b + (n− b).

3. The hearer H receives the expression, determines the base used, and updates the
score sH(b) of b by 1.

ǟǗǠǘǣǜǠǣȱȳǘǣǖȨ ȲȳǙȨ ǥȳǟȨ Thesecond game, themultiplicative base game, corresponds
to the next stage in the evolution of numeral systems. By this time, an innovator has in-
vented multiplicative constructions of the form a×b+ c, which have become available
to the entire population. We assume agents prefer the simpler additive constructions
for the numbers B+1 up to B+B. Therefore, the domain isN = {2B+1, . . . ,B2+B}
and the numbers expressible by b are E(b) = {n ∈ N : n ≤ b2 + B}. As before,
agents track frequencies to determine which bases they favour. But there is an addi-
tional criterion. When an agent favours several bases, some numbers can be expressed
in different ways. For example, if 10, 9, 8 and 7 are all favoured, 21 can be expressed
as 2 × 10 + 1, 2 × 9 + 3, 2 × 8 + 5 and 3 × 7. In this case agents prefer simpler
expressions — here 3 × 7 — as the result of a general simplicity bias (Hurford 1987).
Step 2 of the script is changed to accommodate this:

2. The speaker considers all expressions of the form n = a×b+ c, where b is a base
in C, or otherwise in E−1(n) when C is empty. If there are ‘simple’ expressions
n = a× b, she communicates one of those, or otherwise a random other one.
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6. Emergent numeral systems

FǣǥǗǚȨ ɛ.ɞ Comparison between
the Additive Base Game (black)
and the Multiplicative Base Game
(orange). The dynamics of the
two games are remarkably similar.
Dynamics are visualized using A.
the base counts of all possible
bases for the Additive Base Game
only (the Multiplicative case looks
extremely similar); B. the total base
counts; C. the unique base count;
and D. the probability of successful
communication. See main text for
details.

ǤǗǚɚɕ Results shown for N = 200,
B = 10, ξ = 1; avg. of ɛɚɚ runs; ɞ
std. shaded.
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ȲȳǙǣȱ ǜǤȨǞǝǟȨǞǝǠǝǥǓ Unlike Hurford (1987), we have twenty years of agent-based
modelling research at our disposal. I therefore reanalyse the games using a more mod-
ern methodology and analyse the following statistics

• (Probability of) communicative success ps(t) We consider an interaction suc-
cessful if the base used by the speaker is favoured by the hearer.

• Base count Nbase(b, t). The number of agents that favour base b at time t.
• Total base count Ntotal(t). The total number of bases favoured by agents in the

population, i.e. Ntotal(t) =
∑

b Nbase(b, t).
• Unique base countNunique(t). The number of unique bases favoured in the pop-

ulation at time t, i.e. Nunique(t) = |{b : Nbase(b, t) > 0}|.

Figure 6.1 summarises the dynamics of the base games. Subfigure a illustrates the
typical stages every simulation goes through. Initially, none of the bases is favoured
and bases are used with roughly equal probability. This is followed by a phase in which
different bases compete for a share of the population. The largest two bases are the two
biggest competitors, but base 10 soon takes over, leading to the emergence of a shared,
decimal system. Subfigure b shows thatmultiple bases compete directly for each agent’s
preference. This can be seen from the peak of Ntotal, which crosses the population size
N = 200, indicating that agents at that point on average favour more than one base.
Even when base 10 is already dominant, it can take a long time to eliminate all other
bases from the population, as seen from c. But in d one sees that population eventu-
ally communicates sucessfully. The difference between the additive and multiplicative
game, in terms of dynamics, appears to be small. Most importantly, Hurford’s intuition
about the emergence of a decimal system, is confirmed.
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simulation
theory

FǣǥǗǚȨ ɛ.ɘ In the additive base
game, the probability of using a
base without any past experience
(i.e., no preferences) is strongly
skewed towards the highest base.
The game has a strong implicit prior
for using high bases.

Ǧǣǥɞɚ The ‘simulation’ is the rel.
freq. of ɞɚɚ ɚɚɚ samples.

Domain adaptivity in the base games
The similarities between the dynamics of the base games (figure 6.1) and the dynamics
of the naming games (e.g. figure 3.3) are striking. Indeed, the base games seem to
be naming games in disguise. Rather than negotiating a name for an object, agents
negotiate a base: which of the ‘words’ 6, . . . , 10 should name the ‘object’ base. Like the
Bayesian language game, the ‘vocabulary’ is fixed to K = 5 bases, and the strategy used
corresponds directly to the frequency strategy (when ξ = 1).

But there are also some striking dissimilarities. Most notably, the same ‘word’ —
base 10 — is adopted in every simulation: The base game seems to be biased towards
adopting the highest base. Hurford recognises this, but does not explain what this
implicit bias exactly is. But this can be done, for the additive base game, at least. It is
a nice mathematical puzzle to show that the probability that a base will be used (by an
agent with no past experience) is

p(bj) =
1
K
(
HK −HK−j

)
, (6.4)

where Hn = 1/1 + · · ·+ 1/n is the n’th harmonic number (see appendix G for a proof).
The distribution is plotted in figure 6.2, for B = 10, 30 and 60. The figure clearly
demonstrates that the additive base game has a strong implicit bias towards using the
largest base.

ǣǟǜǠǣȱǣǘ ȲǣȳǙȨǙ ȳǞȰ ȨǔǘȨǚǞȳǠ ȱǝǞǙǘǚȳǣǞǘǙ I have called the bias implicit since the
bias seems to be the result of certain constraints built into the model. In this case, the
constraints are arithmetic in nature and ensure that base 10 is much more expressive
than base 6. The constraintsmoreover appear to be external to the agent—properties of
the domain, rather than properties of the agent.26

ɘɛ Readers objecting to mathe-
matical constraints being some-
how external to the agents
should note that this does not
undermine the main point that
biasses can differ in kind.

This raises the question whether the
implicit biases arising from external constraints (“13 > 6+6”) should be distinguished
from the biases somehow internal to the agent (“I have ten fingers”). If the different
biases influence the behaviour in qualitatively different ways, that is a clear indication
that the two should be distinguished. The next experiment shows that this is indeed
the case.

Consider a population where every agent has an internal bias towards using a certain
base. For example base 10, because the ten fingers are particularly salient. We model
this by initially assigning a score s0 to one particular base b0. These initial scores act
as pseudo-observations, in the same way as the biases work in the Bayesian language
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FǣǥǗǚȨ ɛ.ɕ The additive base game
in populations biased towards us-
ing base ə (left) or base ɝ (right),
with varying initial score s0 (higher
scores indicate stronger bias). The
figure illustrates that the biases
implicit in the domain and the bi-
ases of the agents work differently:
agents cannot overcome the former
(see main text for details). Note:
averages over ɕɚɚ runs are shown
and for s0 = 1.5 individual runs
convert to either base ɞɚ or base ɝ.

ǤǗǚɚɖ Results shown for N = 200,
η = 1, nmax = 46; avg. of ɕɚɚ runs,
ɞ std. shaded.
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game. Figure 6.3a reports an experiment with the additive base game where the pop-
ulation is biased towards using base w0 = 7, with various different initial frequencies
s0. The initial state seems to be unstable, irrespective of the initial frequency of base 7
(although it takes longer before base 7 dies out if the initial frequency is higher). Ap-
parently, a septenary system cannot be maintained. I presume this is so because base 7
can express only less than half of the numbers in the domain. The probability that an
agent will use another, larger base is therefore greater than the probability that it will
use base 7, independent of whether it favours base 7. This makes a septenary language
unstable, and a larger base will eventually take over. The important point is that the bi-
ases of the agents cannot overcome the constraints of the domain. No matter how strong
their initial bias for using base 7, nothing will change the fact that 7+ 7 < 15, and the
population will have to adapt to the constraints in the domain.

But the the internal biases and external constraints can interact in nontrivial ways.
Figure 6.3b shows the same experiment, but now for a population biased towards base
8. The behaviour is remarkably different. Most notably, an octal system can be main-
tained, presumably since base 8 does expressmore than half the numbers in the domain.
As a result, agents favouring base 8 are also more likely to use it. But there is a caveat:
the initial frequency must be large enough. If s0 ≥ 2, the population always adopts a
base-8 system. For s0 ≤ 1, base-8 slowly dies out and the decimal system takes over.
But in between, 1 < s0 < 2 we observe a bifurcation. It should be noted that the plot
shows the average over 300 runs. In every such run, the population seems to adopt
either a decimal or an octal system.

These experiments demonstrate that the additive base game is not just the Bayesian
naming game with a particular choice of bias. This initially seems plausible, since the
implicit biases takes the form of a distribution over K bases b1, . . . , bK and even the
strategy (ξ = 1) corresponds directly to a map–map strategy (η = ζ = ∞) in the
Dirichlet-categorical ng. But since biases in that game act as pseudo-counts, sufficient
counter-evidence will make the bias disappear. Biases and experience are, in that re-
spect, on completely equal footing. In the additive base game, this is not the case. No
amount of counter-evidence can overcome the external constraints in the sense that
they never disappear. We return to this point in the discussion.
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A.     Simulation result: estimate distribution over outcomes (adopted bases) for every nmax
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B.     Implicit bias: probability of drawing a base-n expressions from all expressions in I(nmax)

Base 6 Base 7 Base 8 Base 9 Base 10

FǣǥǗǚȨ ɛ.ɗ Domain adaptivity in
the multiplicative base game.
Figure A. shows the distribu-
tion over outcomes (adopted
bases) for every the domain
I(nmax) = {11, . . . , nmax}. Note
that the plot shows ɜɜ distributions,
one for each nmax. The game ap-
pears to exaggerate certain biases
implicit in the domain. Figure B.
shows an approximation of these
biases: the probability that an ex-
pression randomly drawn from all
expressions for numbers in I(nmax)

uses base b. Details are in the main
text.

ǤǗǚɚə Results shown for N = 200,
η = 1. Each of the ɜɜ distributions
is the average over ɛɚɚ runs.

ȰǝǟȳǣǞ ȳȰȳǜǘǣǖǣǘǓ ǣǞ ǘǤȨ ǟǗǠǘǣǜǠǣȱȳǘǣǖȨ ȲȳǙȨ ǥȳǟȨ Thedriving force behind the im-
plicit bias in the additive base game is the difference in expressivity between bases, with
the largest base having a strong expressive advantage over the other bases. One might
wonder: are there other implicit biases, that come to the fore when bases are equally
expressive? This is best studied in the multiplicative base game, which allows for larger
domains. The idea is to restrict the the domain such that no base has an expressive ad-
vantage. On a domain with upper bound nmax = 62 + 10, the limit of a multiplicative
base-6 system, all all bases have equal expressivity. If there are no other biases, the prob-
ability that base is adopted should be equal for all bases. But initial experiments sug-
gested that something very different was happening: the probability that a base would
be adopted, depends on the size of the domain, i.e. on nmax. The following experiment
therefore takes a more general approach. For every nmax ∈ {11, . . . , 110}, 600 simu-
lations of 5000 iterations were repeated, with domain I(nmax) = {11, . . . , nmax}.27

ɘə In Hurford’s game,
agents communicate about
{21, . . . , 110}, but for this exper-
iment the domain was extended.

In
each simulation, one particular base might be adopted. The experiment aims to quan-
tify the probability that a base is adopted on a certain domain, by averaging over 600
runs.28

ɘɝ More precisely, we recorded
the final distribution over bases,
since it sometimes happened
that the population had not yet
converged after ɖɚɚɚ iterations.

I will call the distribution over adopted bases the distribution over outcomes.
Figure 6.4a shows the results. Every point on the x-axis corresponds to a domain

I(nmax). Above that point, the distribution over outcomes is plotted. The figure thus
shows 110 − 11 = 99 distributions. It indicates that different bases are more likely to
be adopted on different domains I(nmax). When agents communicate about I(18), base
6 is adopted most frequently, when communicating about I(70), base 8 is most likely
to emerge, etc. The pattern is somewhat jumpy, but probably not because of random
noise. The estimates seem to be reliable, since averaging only 150 runs yields a similar
pattern as the averages of 600 runs shown here. There seems to be a structural reason
for the jumpiness, a bias implicit in the structure of the domain, to which the language
adapts.

In the additive base game, we specified the bias explicitly. In this case, we will ap-
proximate it with the relative frequency of base-b expressions. How many ways there
are to express a number n using base b? Consider n = 26 and b = 6. The only possible

77



6. Emergent numeral systems

expressions in the multiplicative base game are 4×6+2 and 3×6+8. More generally,
the only two possible base b-expressions are:

a× b + c and (a− 1)× b + (b + c). (6.5)

After all, for any lower factor a− 2, the remainder would be at least b+ b+ c > 2b >

B, and therefore inexpressible in the game. So how many base-b expressions does a
number n have? We denote this quantity by Nb(n). If n > b2 + B, it simply cannot be
expressed and Nb(n) = 0. Now let c := n mod b. If b + c > B then eq. 6.5 shows that
Nn(b) must be 1. The same holds when c = 0, since preference is then given to the the
simpler x× b + 0. In all other cases, there are 2 expressions, so in sum,

Nb(n) =


0 if n > b2 + B
1 if b + c > B or if c = 0
2 otherwise.

, c := n mod b (6.6)

The total number of base-b expressions for numbers in the interval I(nmax) is the sum
Nb(I(nmax)) :=

∑nmax
n=nmin

Nb(n), and the relative frequency of base-b expressions amongst
all expressions in the interval I(nmax) is

f(b, nmax) :=
Nb( I(nmax) )∑
b′ Nb′( I(nmax) )

. (6.7)

Figure 6.4b shows the relative frequencies for all bases and 99 values of nmax, cor-
responding to subfigure a. The figure suggests that the relative frequency f(b, nmax) is
a good first approximation of the implicit bias implicit in the domain, and the multi-
plicative base game seems to have exaggerated this bias. The match is far from perfect,
since we have not accounted for all complexities of the game. First, the peaks in the
implicit bias (subfigure b) have shifted to the left in the simulation results (subfigure
a). Consider the implicit bias towards base 6 in I(90). In an actual game with this
domain, the base would never be adopted, since more than half of that domain is not
expressible by base 6. We have not accounted for that, but the game, of course, does
and accordingly ‘shifts’ the implicit bias to the left (e.g. 6 has lower probability there).
Second, the game seems to exaggerate the implicit bias in the sense that bases with very
low relative frequency are never adopted, and most probability mass is moved to the
most frequent base. This is in line with earlier findings about frequency strategies in
chapter 4, but does not seem to correspond to exponentiation alone.

Even though the approximation of the implicit biases is far from perfect, the experi-
ment strongly suggests that there can be are other biases at play, besides the expressive
advantage. In this case the sheer number of expressions for a given number appears
to give rise to a complex bias that makes different bases more likely to be adopted on
different domains. The language, numeral system, in this sense exhibits a kind of do-
main adaptivity. The cultural process moreover seems to exaggerate the structure of
the implicit bias, and the underlying reason might be the amplifying character of the
frequency strategy. In the final section of this chapter we further discuss the implicit
biases.
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B.     Total word count FǣǥǗǚȨ ɛ.ɖ A naming game with
three objects is just the sum of
three independent single-word
Ǟǥ’s when there is no homonymy.
Dashed lines show the statistics
per object; solid lines for the ‘total’
game: the sum of the dashed lines.

Ǧǣǥɚə Results shown for ɞ run; N =

200, using the current strategy.

Counting games
Hurford’s models only addressed the standardisation of a base and assumed that (1)
the atoms of the system were in place and (2) that the additive or multiplicative con-
structions had been invented. These two assumptions roughly correspond to the first
three stages in the evolution of numeral systems as outlined in the previous chapter.
In this section, rather than assuming these stages, we attempt to reproduce them. The
first stage, the emergence of the first simple numerals, seems to be the type of problem
naming games excel at. The lowest numbers subitised and could therefore be named
directly. So, let’s suppose there is no homonymy, and agents need to negotiate, say, 3
numbers. We could run the simulation, but there is really no need to do so: we al-
ready know that this works. Playing a naming game with 3 objects in the absence of
homonymy is the same as playing 3 independent single-object games at the same time
(see figure 6.5).

Can we extend this approach to the next stage, where a larger counting sequence of
simple numerals emerges, by simply asking agents to negotiate more words? Yes, but
it raises a problem: nothing about the words signals that they are ordered (although
their semantics of course does). In fact, using a naming game to model the emergence
of simple numerals commits to a certain conception of number. Recall from the pre-
vious chapter that the referential-pragmatic hypothesis holds that quantity is directly
perceptible and can therefore be named unproblematically, as in a naming game. For
the lowest numbers up to around 4 this might be realistic, but for larger numerals, it
is not. The game we develop for that reason aims to align more closely with the rit-
ual hypothesis (and Hurford’s synthesis). It assumes that numerals are grounded in a
practice of counting (Hurford 2007): reciting a the sequence one, two, three, and so on.
As discussed in the previous chapter, this sequence might initially be a sequence of for
example body parts. The result is that the word eight does not mean 8 because it refers
to some object eight, but because it is the 8th word in a conventionalised counting
sequence. In this case, the semantics of numerals in a counting sequence are implicitly
defined by their position in the sequence, by their order. This implies that numerals
are necessarily ordered and continuous (uninterrupted), as some argue they should be
(von Mengden 2008).

The goal then is to adapt the naming game so that agents negotiate a counting se-
quence. To do so, first consider a naming game with homonymy. In that case agents
communicate object–word pairs (o,w) where the same word can occur in different
pairs. For the population to reach coherence, the alignment strategy has to dampen
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6. Emergent numeral systems

competing pairs: all pairs using the same object, but a different word, or the same word,
but a different object. All this is very similar to the original naming game, when words
are replaced by pairs and the inhibition rules is extended accordingly. We will use29

ɘɜ This is actually an unfortunate
choice, since figure ɕ.ɕ suggests
convergence is relatively slow.
When doing this work, I was how-
ever not aware of the existence
of lateral inhibition strategies and
the like.

lateral inhibition strategy 1 from 3.1, that is, with

δinc = δinh = δinit = 1, δdec = 0 (6.8)

Next, we replace object-wordpairs by pairs of consecutive numerals: (one, two), (two, three),
and so on. To illustrate this, suppose an agent knows the following pairs:

(start, one), (start, two), (two, three), (two, four), (one, two),

where start is a purely administrative symbol indicating the start of the counting se-
quence. The agent can form the following sequences:

start, one, two, three, start, one, two, four,
start, two, three, start, two, four

Other agents might be able to form different sequences, but the idea is that after many
interactions, a consensus will emerge where only one sequence remains in use.

In every interaction the agents must somehow communicate a sequence of words,
rather than single words. This can be done in various ways, and I experimented with
three slightly different scripts (L denotes the limit of the system):

1. Unbounded counting game. Starting from x0 = start, the speaker iteratively
chooses the next pair (xi, xi+1) with the highest score, generating as many new
pairs as necessary, until it reaches a randomly drawn number n ≤ L. The se-
quence (start, x1, x2, . . . , xL) is presented to the hearer, who updates the score
of every pair (xi, xi+1) according to the alignment strategy. (With L = 1 this is
a normal naming game.)

2. Instructional counting game. Similar to the unbounded version, but now the
speaker can invent at most 1 new pair, whose score remains 0, and always tries
to count up to L (rather than to n ≤ L). In this game, agents can therefore only
acquire new numerals if another agent instructed them how to count on.

3. Joint counting game. Starting with start, the speaker utters the first word. Both
agents perform the usual updates. Only if the hearer knows the word, i.e. if com-
munication was successful, they continue with the next word. The round goes
on in this fashion until communication breaks down or they reach L.

To measure the dynamics of these games, besides the usual statistics the (counting
sequence) length ℓ(t) is measured: the length of the initial segment of the counting se-
quence about which the entire population agrees at time t. It should also be noted that
a complication arises when pairs are removed. If one thinks of the pairs as describing a
tree with start at the root, the removal of a pair can render an entire branch inaccessi-
ble. To keep statistics like Ntotal (which now counts pairs) informative, all inaccessible
pairs are removed before collecting the statistics. Finally, the communicative success
is no longer boolean but averaged over all words in a round.

The dynamics of the three games is visualised in figure 6.6. All three games allow
the population to negotiate a shared counting sequence, but in quite different ways. In
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FǣǥǗǚȨ ɛ.ɛ Dynamics of the three
counting games measured by the
number of unique pairs and the
initial segment length. In all cases
the population develops a counting
sequence, but the dynamics are
strikingly different. See main text
for details.

Results shown for N = 200; avg. of
ɛɚɚ runs, ɞ std. shaded.

the unbounded counting game (a) convergence time does not depend on the limit L:
negotiating 10, 20 or 30 simple numerals takes equally long. Closer inspection reveals
that the population has ‘found’ a simple trick. My implementation happens to represent
words by successive integers (rather than, say, strings). A typical30

ɕɚ I have checked all this by
computing the distribution of
fragment lengths for every L.

counting sequence
at the end of the game turns out to be of the form

start, 212, 213, 214︸ ︷︷ ︸
fragment 1

, 350, 351, 352, 353︸ ︷︷ ︸
fragment 2

, 658, 659, 660︸ ︷︷ ︸
fragment 3

.

where the numbers are ‘words’ and every fragment is generated by a single speaker.
It seems that the population has ‘adapted’ to a higher L by communicating fragments
rather than pairs. Since fragments become larger when L does, convergence times re-
main approximately stable.

In the instructional game this cannot happen, since in every encounter at most one
word can be invented. But the game does exhibit some funny behaviour. If a population
for example has to count up to L = 10, they can do so earlier than when they have to
count up to L = 30. This can be seen from the length ℓ(t) in figure 6.6b and is, of
course, mildly absurd. Interestingly, the joint counting game results in perfectly linear
behaviour: the population is always exactly on the same page. After all, a speaker can
only count on if the hearer agreed about the sequence so far.

ǙǣǟǜǠȨ ǞǗǟȨǚȳǠǙ, ȳǞȰ ȲȨǓǝǞȰ? Populations of counting agents can negotiate a count-
ing sequence, so can they go on and negotiate a recursive numeral system? The idea
was again to again take inspiration from the evolutionary account in chapter 5 and
see if a practice of ‘grouping’ could give rise to serialisation, or, simply put, additive
constructions: ten stones and another 3 (Hurford 2007). When counting agents could
at some point decide to group what they had counted so far. This means that agents
have to score possible group sizes — bases, really — and use a base depending on its
score. In other words, agents would have to play a naming game to negotiate the group
size, the base, while simultaneously playing a counting game to negotiate a sequence of
atoms. These two problems are interdependent: the length of the counting sequence
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6. Emergent numeral systems

is determined by the base, or, conversely, the base is the numeral where the counting
sequence of atoms ends.

What I typically observed in all experiments with games of this type — I considered
many variations on this theme — was that negotiating a single base is much easier than
negotiating a long counting sequence. The population would thus adopt the first base it
could count to (typically 2, as I excluded group size 1). To prevent this from happening
one should, in one way or another, get the population to postpone the negotiation of
the base, until the counting sequence has developed sufficiently. But this amounts to
implementing an implicit bias towards a certain base. I did not continue along these
lines, since it appeared to add little to our understanding of the the evolution of numeral
systems. After all, if the model is in the end bringing some implicit biases to the fore,
one might as well take the Bayesian naming game and encode the biases explicitly as a
prior.

Conclusions
This chapter explored the first experiments trying to align agent-based simulations of
the cultural evolution of numeral systems with their actual evolution, as discussed in
chapter 5. The starting point was the pioneering work of James Hurford, who intro-
duced the base games where the population negotiated a shared base with additive and
multiplicative constructions. Detailed analyses suggested that the base games imple-
ments a strong implicit biases towards the highest base, resulting from the expressive
advantage that base has: it can express all the numbers in the domain, whereas the
smallest base can only express a few numbers. When this advantages is removed by re-
stricting the domain such that all bases have equal expressivity, more subtle frequency
patterns in the domain appear to determine the outcome of the cultural process. Fur-
ther analyses revealed that the biases implicit in the domain affect the behaviour of the
game differently than biases of agents. The latter can be overcome by counter evidence,
the former cannot.

The findings highlight one simple point: naming games can be driven by implicit
biases. This is reminiscent of early iterated learning models, where the biases leading
to the emergence of compositionality were often hard to isolate. In iterated learning
literature (Kirby, Dowman, and Griffiths 2007; Kirby, Dowman, and Griffiths 2007)
explicit biases are often advocated, as is done in Bayesian models. The additive base
game provide a compelling argument for doing the same with naming games. Expli-
cating the biases, as we did in eq. 6.4, makes transparent to what extend the outcome
(a decimal system) is determined by the assumptions in the model. However, we have
also seen that hard constraints influence the behaviour of themodel differently than the
biases in for example the Bayesian naming games. This suggests that Bayesian models
not only introduced explicit biases in the iterated learning literature, but might also
have changed the way the biases work compared to early iterated learning models.

Although the games exhibit a certain domain adaptivity, one must be careful not to
jump to the conclusion that numeral systems are shaped by their domain. After all,
the adaptivity in the multiplicative base game is rather artificial.31

ɕɞ It might be interesting to
note that in some trial experi-
ments where, as the result of
some bugs in the implementa-
tion, prime numbers had a slight
frequency advantage, leading to
the emergence of prime bases.
Clearly these kind of biases are
not driving the evolution of nu-
meral systems.

Base 6 has higher
expressivity on, say, I(18) than base 10, only because the game allows the summand c
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in an expression a×b+ c to be larger than the base b, as seen from eq. 6.5.32

ɕɘ I am not sure if Hurford
(ɞɜɝə) was aware of this. His
definition of a base is explicit
and implies that “ə would be the
the base in both (3 × 7) and
((4 × 7) + 3)” (p. ɘɜɖ). He also
mentions expressions such as
3 × 4 + 9 (p. ɘɜɗ), which leave
me to conclude that he did not
rule out overrunning.

Such over-
running is rarely found in actual numeral systems, as discussed in the previous chapter.
That adaptivity of the multiplicative base game (figure 6.4) is therefore an artefact of
overrunning. It further implies that synonymy only disappears if the domain is not
restricted, that is, if base 10 does have an expressive advantage. On smaller domains
a population might evolve a base 6 system, where both the expressions 3 × 6 + 8 and
4×6+2 would be perfectly ‘standard’. This is not only undesirable for a model of stan-
dardisation, it also has consequences for the packing strategy, which Hurford’s sim-
ulations partly aimed to explain. The first of these expressions, after all, violates the
packing strategy.

ǟȨȱǤȳǞǣǙǟǙ ȳǞȰ ǣǞǘȨǚǜǚȨǘȳǘǣǝǞǙ Although the base games indicate that social pro-
cesses can lead to standardisation of a base, that is not to say that the model isrealistic.
Roughly, the models suggest that standardisation arises because people prefer to use
the most frequently observed bases. Interestingly Hurford himself suggests a very
different explanation before introducint his simulations, arguing that standardisation
would arise because “the obvious communicative advantages of standardised, canoni-
cal forms, and because no communicative advantage is lost by such a standardisation,
due to the rather special nature of numerals/numbers” (p. 273). Something along those
lines indeed seems plausible, but such explanations are not supported by the models.
I think this highlights a serious difficulty for the use of models: the mechanism and
the interpretation need not be aligned. That is, the mathematical explanation of why a
model exhibits the behaviour it does, is often not in line with the interpretation given to
the model, since that is typically based only on the behaviour observed in simulations.
And insofar the interpretation and the mechanism are misaligned, modelling does not
contribute much to showing the consistency of an informal account either. One way
to resolve such discrepancies is by evaluating models against empirical data: by testing
the underlying mechanisms and the predictions they make.

When it comes to that, the base games do not await a very bright future. They for
example predict that higher bases are more likely to be adopted, while in fact bases
higher than 20 are rare (Hammarström2009). Moreover, numeral systems usemultiple
bases to counter expressive restrictions, so the disadvantage of a base-6 system in the
base games is in reality ameliorated by introducing the larger base 36.
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7. Conclusions

What canmodels learn us about language evolution? That is the question this thesis set
out to address. Without any introduction, it suggests a fairly philosophical thesis, but
we found nothing of the sort — deliberately so. This thesis aimed to delineate the space
of possible model behaviour and in that way get some understanding of what we can
expect to learn from the models. Of course, the space is restricted to ‘relevant’ models,
interesting enough to have been studied for several decades. Those, by and large, come
in two flavours: the horizontal naming games and vertical iterated learning tradition.
The main contribution of the thesis is an attempt to unify these two traditions in a new
model: the Bayesian language game.

ȲȳǓȨǙǣȳǞ ǞȳǟǣǞǥ ǥȳǟȨ This Bayesian language game is a simple extension of the
Bayesian naming game, also proposed in this thesis. In the Bayesian naming game, all
agents haven an internal language θ from which they draw words in every encounter.
After observing utterances, they update their beliefs using Bayesian updating. Con-
cretely, we studied a Dirichlet-categorical variant of this framework, meaning that the
prior beliefs of the agent aremodelled by aDirichlet distribution. Althoughmathemat-
ically simple, the game exhibits a rich behaviour. First of all, the population converges
to a shared, stable language (d6). Second, this language reflects the bias: it is clearly
shaped by both the innate biases and the cultural process, in a non-trivial way. That
means that different lineages develop different languages (d4) Third, the game devel-
ops in three stages, metaphorically called ‘infancy’, ‘puberty’ and ‘adulthood’. In the
first two stages the language primarily develops its characteristic, contingent shape,
and during ‘adulthood’ it stabilises.

The Bayesian naming game addresses the lack of language stability in the Bayesian
iterated learning models, but it also incorporates one of the main innovations of the
Bayesianmodels: the explicit representation of innate biases (d1). Further, in this game
the innate biases can be transparently separated from past linguistic experience. Con-
sequently, the ‘total’ beliefs of an agent are, quite literally, the sum of innate biases and
past experience. Another innovation of the Bayesian iterated learning models was the
study of different strategies agents use for selecting languages: using the most likely
language under the posterior (map or maximising) or sampling a language. This can
be directly translated to the Bayesian naming game in the form of a parameter η, to-
gether with a production strategy, parametrised by ζ, derived from the naming game
literature. After all, the game is primarily a naming game and was accordingly shown
to implement a kind of lateral inhibition, one of the alignment strategies used in that
field.

ȲȳǓȨǙǣȳǞ ǠȳǞǥǗȳǥȨ ǥȳǟȨ The Bayesian language game extended the Bayesian nam-
ing game by changing the population structure so that it can either take the form of a
naming game, or the form of an iterated learning model. The language game performs
a random walk through a population of fixed size. It moreover adds a life expectancy,
and when an agent dies it is replaced by a newborn agent. The random walk, when
unraveled, forms a chain (iterated learning), but since it is random, it simultaneously
approximates homogeneous mixing (naming game). The crucial parameter that in-
terpolates between naming games and iterated learning is the life expectancy γ. The
Bayesian language game is therefore parametrised by three crucial parameters: η for
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the language strategy, ζ for the production strategy and γ for the life expectancy. This,
then, is the ‘space of agent-based models’ whose behaviour we aimed to characterise:
the parameter space (η, ζ, γ) of the Bayesian language game.

The eight extreme cases, with η, ζ, γ ∈ {1,∞} are of special interest. With γ =

1 the language game reduces to iterated learning, and with γ = ∞ it reduces to a
naming game. The pure sampling strategy (sample–sample) corresponds to η = ζ =

1; the mixed sampling-maximising strategies to η = 1, ζ = ∞ (sample–map) and
η =∞, ζ = 1 (map–sample); and the pure maximising strategy to η = ζ =∞ (map–
map). A systematic search through the space suggested that the behaviour of the game
would relatively smoothly change between these eight extreme cases. Characterising
their behaviour therefore goes a longway to charting the behaviour one can expect from
agent-based languagemodels. The result of cultural evolution in the extreme cases (and
two intermediate population turnover rates) are shown again in figure 7.1. The main
conclusions it suggests are:

• Bayesian naming games results in languages reflecting the bias, but shaped by
cultural evolution.

• In iterated learning models, no agent faithfully represents the external language.
• Pure sampling strategies stay close to the bias, either perfectly (iterated learning),

or imperfectly (naming game)
• Mixed strategies differently ‘exaggerate’ the bias: maximising languages results in

some kind of pruning, maximising productions in some kind of exponentiation.
• Pure maximising strategies result in degenerate languages.
• The language spoken in an iterated learningmodel seems predictably determined

by the biases — even for maximising strategies.
• Intermediate life expectancies interpolate between these two extremes.33

ɕɕ With one notable exception:
there might be stable language
change in between, but possibly
only for a very limited parameter
range.That, in short, that was the answer this thesis formulated on the first subquestion ad-
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dressed in this thesis: what kind of behaviour can we expect from agent-based models
of language evolution? Well, see figure 7.1, and interpolate!

ȨǟǜǣǚǣȱȳǠ ǖȳǠǣȰǣǘǓ That might be a good start, but what does it tell us about language
evolution? In all fairness, I do not think I have formulated anything close to a clear
answer to this question. Perhaps because this is a not exactly an easy question.

In the second part of the thesis I identified numeral systems as an interesting test case
for models of language evolution. I gave various reasons, pertaining to the amount of
linguistic data available, the sheer size of the design space (whichmakes for an interest-
ing search problem), the balance between expressivity and simplicity in numerals and,
most importantly, that the structure of numerals themselves suggest a reconstruction
of their origins. The last chapter tried to connect that reconstruction to agent-based
models of language evolution. That led to some interesting findings, such as the fact
that the biases of agents and the constraints of the domain interact in different ways. Or
the sensitivity of naming games to subtle frequency biases in the underlying domain.

In fact, that finding is perfectly illustrative of the problem: all agents seem to be do-
ing in these models is a more or less sophisticated form of frequency administration.
Administration surely helped the rise of human civilisation, but perhaps not this kind
of administration. Perhaps. The point is that adapting to frequencies describes a mech-
anism that amounts to an explanation of the observed phenomenon — but is it the
right one, is it justified? Frequency ‘administration’ could explain the standardisation
of bases, as we have seen in the last chapter. But one could also explain that by using
arguments of communicative efficiency, as Hurford (1987) also proposed. Which one
to prefer? Or take a different example: the idea that compositionality emerged because
it balances expressivity and compressibility. The explanations suggested for one of the
purest compositional structures, that of numerals, point in a quite different direction: a
counting practice, grouping objects, or, later, processes of grammaticalisation. Which
one is it?

As soon as one leaves the world of models and enters the world of language, in this
case numeral systems, it becomes clear that you have moved to a different, lower level
of description. One could conclude that the higher level description is ‘wrong’, but that
would be too simple. Descriptions at different levels are rarely perfectly aligned— that’s
the whole point of having different levels of descriptions in the first place. But what,
then, is the conclusion? Perhaps that it is time to see if the levels of description align at
all. That is, to see if the models can explain actual linguistic data, outside the computer
or the lab.

I did not like Berwick and Chomsky’s paper, as the reader could no doubt tell from the
introduction. Just as pretty much any other field of science, the ‘Kirby-type work’ has
problems and good, sharp critiques are refreshing. But the style — demeaning, terri-
torial, grotesque. I mean, the academic equivalences thereof. Science, the knowledge
commons, those are, in the end, beautiful, praiseworthy things and you would hope
for a more more communal spirit.34

ɕɗ Ah, how could I have missed
that? The second sense: “(of
conflict) between different com-
munities, especially those having
different religions or ethnic ori-
gins: violent communal riots.”
That explains everything.

In any case, there is one point at which I could
not disagree with Berwick and Chomsky (2017): when they write that, as far as they
know, the “whisper down the lane” properties (slang for ‘iterated learning’) have not
been applied to “the empirical phenomena of language change that linguists have actu-
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ally measured” outside the lab or simulations. It is just that I would prefer not to read
that as a fatal blow, but as a programme.

I will leave it at that. The remainder of this chapter lists the main contributions, some
points of discussion and future work.

Main contributions
The main two contributions of this thesis are (1) the Bayesian Naming Game, an at-
tempt at unifying the naming game with the Bayesian model of iterated learning, and
(2) the identification of numeral systems as a testbed for models of cultural language
evolution. Various other additions to existing literature have been made throughout
the thesis. The ones I believe to be of most interest are listed below.

• Lineage-specific languages can reflect a bias. A demonstration that longer lifes-
pans can lead to lineage-specific, shared languages that reflect the bias, but do not
mirror it exactly. This suggests that cultural evolution can change languages in
nontrivial ways, while still being subject to innate constrains.

• Randomwalks as a transmission model. A new model of cultural transmission
in the form of a random walk through a population of fixed size. This combines
the transmission chains with homogeneous mixing.

• Connecting naming games to iterated learning The thesis tried to connect two
agent based modelling paradigm. Most specifically this results in a direct math-
ematical parallel between the model of De Vylder and Tuyls (2006) and Bayesian
iterated learning models.

• Numerals as a testbed for language evolution. I have argued that numeral sys-
tems are a promising test case to relate models of language evolution with actual
language. Numeral systems (i) allow one to model a subsystem of natural lan-
guage directly; (ii) there is plenty of linguistic variation (i.e. the search of possible
systems); (iii) the cognitive capacity for numerosity has been studied extensively;
and (iv) there are benchmarks in the form of a reasonable reconstruction of the
origins of numeral systems, which ismoreover supplemented by recent empirical
studies.

• Realistic population turnover using Weibull distributions. Proposed a more
realistic death-process for iterated learning models based on the Weibull dis-
tribution, often used to model life-expectancy. Earlier iterated learning studies
have often assumed constant hazard rates, which are unrealistic.

• Revisited Hurford’s base games. I have shown that Hurfords early simulations
of the standardisation of a base are variants of the Naming Game.

• Domain-adaptivity in theBaseGame. Demonstrated that the BaseGame adapts
to the domain in the sense that the behaviour depends on frequency patterns
determined by domain.

• CountingGame. Anew type of naming game in which agents negotiate a count-
ing sequence. In this model simple numerals derive their meaning solely from
their position in the sequence.
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• Packing strategy without grammar. A reformulation of the packing strategy
independent of the phrase-structure grammar proposed in Hurford (1975) in
terms of the semantic (arithmetic) structure of the numerals. This is particularly
relevant for empirical studies of this proposed universal.

Future work
Throughout this thesis, possibilities for future work have been identified. Let me list
the most practical points first, and then move on to the more interesting questions.

• Other lateral inhibition strategies. This thesis only compared Bayesian updat-
ing has only to the basic lateral inhibition strategy in Wellens (2012). Wellens
also mentions the so-called interpolated li strategy, which can be interpreted as
the Rescorla-Wagner or Widrow-Hoff rule. In hindsight, that seems closer to
Bayesian updating (in form, at least) and future work could address the exact
relation.

• Measures for the Bayesian naming game. The measures used to analyse the
Bayesian naming game could be improved by developing appropriate variants of
measures used in naming games (communicative success, number of (unique)).
The methodology of chapter 6 could be a starting point.

• Scaling relations. The change in convergence time in the Bayesian naming game
under varying population, vocabulary and bottleneck size could be investigated
more thoroughly, either empirically or analytically.

• Models of life-expectancy. Chapter 4 argued for more realistic models of life-
expectancywithout actually analysingwhether theymake a difference in the sim-
ulations. A systematic analysis would be valuable.

• Random walks vs. homogeneous mixing. Preliminary experiments did not re-
veal any systematic differences between randomwalks and homogeneousmixing
in the Bayesian naming game, but this should be checked in a principled fashion.

• Mathematical problems. The mathematical analyses gave rise to several prob-
lems. The first concerns the characterisation of the posterior distribution of an
agent with amaximising word strategy ζ > 1; see appendix C. Another concerns
the bias in Hurford’s additive base game: has this distribution (proportional to
the difference of two harmonic numbers) been studied before?

ǝǘǤȨǚ ȲȳǓȨǙǣȳǞ ǞȳǟǣǞǥ ǥȳǟȨǙ This thesismainly developed theDirichlet-categorical
naming game as the simplest instantiation of a more general framework. Future work
could study other models inside the same framework. An interesting possibility would
be to drop the conjugacy assumption, and consider more general probabilistic models.
In fact, the Dirichlet-categorical model surfaced from early experiments with Bayesian
agents represented as so called probabilistic programs. Probabilistic programming (see
Ghahramani 2015 for an overview) provides a remarkable representational flexibility
by using programming languages to specify the models, and their universal approx-
imate inference algorithms (sampling or variational methods) significantly speed up
development time. The downside in our context would be that poor inference could
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have unexpected results when repeated for tens of thousands of rounds and thus trouble
the analyses.

ȱǝǞǞȨȱǘǣǝǞǙ ǘǝ ȲǣǝǠǝǥǣȱȳǠ ȨǖǝǠǗǘǣǝǞ Reali andGriffiths (2010)were the first to con-
nect Bayesian models of iterated learning to biological evolution, i.e. the Wright-Fisher
model. Since the Bayesian Naming Game is in many ways identical to their model, it
seemsworthwhile to explore further connections withmodels developed in population
genetics.

ǞǝǞǜȳǚȳǟȨǘǚǣȱ ȨǔǘȨǞǙǣǝǞ ǝǦ ǘǤȨ ȲȳǓȨǙǣȳǞ ǞȳǟǣǞǥ ǥȳǟȨ TheBayesianNamingGame
made the simplifying assumption that the number of words in the population is fixed,
an assumption made earlier in De Vylder and Tuyls (2006). The model would stay
closer to the original naming games if this assumption could be dropped. Invention
after all plays a crucial role in the Naming Game (Steels 2011), but more generally it
has been argued that inventors play an important role in language change and evolu-
tion (Hurford 1987). Fortunately, there is a straightforward extension of the Bayesian
Naming Game which does not fix the number of categories — is not parametric in that
sense. This model would use an infinite analogue of the Dirichlet distribution, a Chi-
nese restaurant process, that allows for the use of an arbitrary number of words. Every
agent then faces the choice of either using an old word or inventing a new one. This ex-
tension has been discussed in the iterated learning literature before Reali and Griffiths
(2010) and Burkett and Griffiths (2010).

Combined with population turnover, the non-parametric model seems to solve an-
other issue: that words never disappear from the population completely. In classi-
cal lateral inhibition games, words scoring below a certain threshold are removed.
This mechanism allows the emergence of efficient vocabularies. Population turnover
could replace that mechanism in a non-parametric variant of the Naming Game: low-
frequency words might simply not be acquired by newborn agents, and consequently
die out. If this prediction is indeed true, it suggests a very exciting possibility. Suppose
one splits the population in two parts at a certain point in time, and let both halves con-
tinue the game separately. Given the stochasticity of the game, it seems likely that dif-
ferent words would die out, effectively leading to different lineages. Future work could
investigate such ‘linguistic speciation’ in a non-parametric extension of the Bayesian
Naming Game.

Note that this also highlights a problem with the notion of ‘lineage specificity’ as I
have used it. ‘Lineages’ were understood tomean ‘runs’, since it has not been shown that
one can, say, split the population and develop two distinct branches. For the Bayesian
naming game, the later seems moreover unlikely, since the language develops its char-
acteristic shape primarily in the early phase of the game, before agents reach ‘adult-
hood’. After that, the population only converges to a completely stable language, which
is not realistic either (Kirby 2001). Increasing population turnover addresses this, and
the nonparametric suggestion outlined above might solve the former.

ǟȳǘǤȨǟȳǘǣȱȳǠ ȳǞȳǠǓǙǣǙ ǝǦ ǘǤȨ ȲȳǓȨǙǣȳǞ ǞȳǟǣǞǥ ǥȳǟȨ Simulations indicate that co-
herence emerges in the Bayesian Naming Game, but I have not provided a formal proof
of this. In fact, there are two separate questions: (i) do all agents converge to the same
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distribution? And (ii) can one characterise this distribution in terms of the parameters
η, ζ and γ? It seems unlikely that this is a simple problem, since even the special case
of the naming game has so far resisted analytical scrutiny (De Vylder and Tuyls (2006)
only provide analytical results for a deterministic variant of the game). One possible
line of attack would investigate whether the limiting distribution is indeed a sample
from some distribution around the bias. If so, a characterization of that distribution
would be likely to provide valuable further insights into many models of cultural lan-
guage evolution simultaneously.

And the list continues. But that’s it for now.
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Appendices

A Converging Markov Chains
Convergence results for Markov chains are key to understanding the long-term be-
haviour of Bayesian iterated learning models. This appendix introduces those results
for ergodic Markov chains.

ǚȳǣǞǓ ȳǞȰ ǙǗǞǞǓ ȰȳǓǙ Let’s consider a ‘simple’, non-linguistic scenario: the weather.
Suppose sunny (s) and rainy (r) days are equally probable, but that every sunny day is
deterministically followed by a rainy day:35

ɕɖ This ‘gappy process’ is
adapted from Mathias Madsen’s
notes on Random Processes and
Ergodicity (Madsen ɘɚɞɖ). The
presentation of the formalism is
based on Norris (ɞɜɜə).

r s

1/2

1

1/2

(7.1)

This model results in walks through the state space of the form r, r, s, r, s, r, s, r,
r, r, s, r, r, s, and so on. The numbers along the edges are the transition probabilities
of moving from one state to the next. Importantly, these probabilities do not change
over time, a property known as time-homogeneity, and depend on the current state
only. What happened in the past is irrelevant. This ‘memorylessness’ happens to be a
defining characteristic of Markov chains. If x0, x1, x2, . . . denote the states (rainy or
sunny) at day 0, 1, 2, . . . , these random variables form a Markov chain if

p(xt | x0, . . . , xt−1) = p(xt | xt−1), t ≥ 1, (7.2)

that is, if the probability of being in state xt only depends on the very last state xt−1 the
system was in. What about the very first state? The probability that x0 = i is separately
by a initial distribution π, just a probability vector if the number of states is finite. In
our example, the state space S = {r, s} is indeed finite. The transition probabilities
can then be collected in a transition matrix

T =

[
1/2 1
1/2 0

]
= [ti→j]j,i∈S (7.3)

where entry ti→j at position (j, i) is the probability of transitioning from state i to j. The
probability that X0 = i is given by the initial distribution, but what is the probability
we are in i at a later time, say t = 1? To find out we compute the marginal probability

p(X1 = j) =
∑
i∈S

p(X1 = j | X0 = i) · p(X0 = i) =
∑
j∈S

ti→j · πi = (Tπ)j

In other words, themarginal distribution over states at time t = 1 is given by the vector
Tπ. Repeating this trick, we find that at time t this probability is given by Ttπ, where
Tt is the t’th power of the transition matrix.
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ǠǣǟǣǘǣǞǥ ȳǞȰ ǙǘȳǘǣǝǞȳǚǓ ȰǣǙǘǚǣȲǗǘǣǝǞǙ Suppose we start with initial distribution π =

(1/2, 1/2). Then themarginal distribution at t = 1 isTπ = (3/4, 1/4), in the next time step
T2π = (5/8, 3/8), then (11/16, 5/16), (21/32, 11/32), and so on. These distributions converge
to the limiting distribution π⋆ = (2/3, 1/3):

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

1
3

2
3

p(xt = rainy)
p(xt = sunny)

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

1
3

2
3

After a while, it will rain with probability 2/3 and will be sunny with probability 1/3,
regardless of the initial condition, or so the plot on the right suggests. Looking at the
transition diagram 7.1, that makes sense: every sunny day necessarily comes with one
extra rainy day. Note that a ‘converged’ chain still hops between states (i.e., it will be
either rainy or sunny), only the probability with which it is one of these stabilizes.

Now, once probabilities of being in state r and s are exactly 3/2 and 1/3 respectively,
that should remain true in the next time step — they have converged, after all. And
yes, that is as true as it gets. The distribution π⋆ is therefore also called the stationary
distribution. The stationary distribution is left unchanged by the transition matrix, so
Tπ⋆ = π⋆, which makes it an eigenvector of the transition matrix with the eigenvalue
1. In our simple example, the limiting distribution (the limit of Ttπ as t→∞) and the
stationary distribution (eigenvector of T) are the same. That is not true for all Markov
chains.

ȳǜȨǚǣǝȰǣȱǣǘǓ ȳǞȰ ǣǚǚȨȰǗȱǣȲǣǠǣǘǓ Take this Markov Chain:

1 2

1

1

Starting from X0 = 1, it will be in state 1 at all even times and in state 2 at odd times
— this chain is periodic. As a result, p(Xt = i) alternates between 0 and 1 and does
not converge over time. But even though it has no limiting distribution, it does have a
stationary distribution π⋆ = (1/2, 1/2), as is easily verified.

Here more more common thing that can go ‘wrong’: sinks can lead to multiple sta-
tionary distributions. Consider two connected copies of our weather model:

1 2 3 4 5

1/2

1
1/2

1/4 3/4

1/2

1/2

1
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If the chain at some point reaches node 2 it will keep jumping between 1 and 2 af-
terwards. {1, 2} thus acts like a ‘sink’ from which there is no escape. The set {4, 5}
is another such sink. Both sinks having their ‘own’ stationary distributions and de-
pending on the initial condition, the chain converges to one of them — or a mixture.
Concretely, write δi for degenerate and deterministic distribution with all mass on state
i. If we start with the initial distribution π0 = δ1, the chain converges to the stationary
distribution (2/3, 1/3, 0, 0, 0). But if we start on the other side with π0 = δ5, then it
converges to (0, 0, 0, 1/3, 2/3). Finally, starting in the middle with π0 = δ3 results in a
mixture of both: (2/12, 1/12, 0, 3/12, 6/12). All of these are stationary distributions. (And
so are all the convex combinations of (2/3, 1/3, 0, 0, 0) and (0, 0, 0, 1/3, 2/3).)

In this case, there is no unique stationary distribution because the graph has several
sinks from which one cannot reach the other parts of the graph. If every state is reach-
able from every other state with positive probability in a finite number of steps, then
it is called irreducible. Such a Markov chain has no sinks and every state will almost
surely be visited again and again.36

ɕɛ This is generally not true for
infinite state spaces, but intro-
duced as an additional condition
(recurrence)

It (almost) never stops visiting the entire state space.

ȨǚǥǝȰǣȱǣǘǓ Markov chains that are both irreducible and aperiodic are said to be er-
godic. Together, the two properties are sufficient to ensure convergence of a Markov
chain to a unique stationary distribution, just as in our weather model:

Theorem 1 (1.8.3 in Norris 1997). Let (x0, x1, . . . ) be an ergodic Markov chain with
initial distribution π, transition matrix T and stationary distribution π⋆. Then

p(xn = i) −→ π⋆
j as n −→∞ (7.4)

for all i ∈ S.

Aswe have seen, an ergodicMarkov chain over time traverses the entire state space in
an aperiodic fashion. One might wonder if any regularity underlies the states it visits.
Is it more likely to visit high-probability states under the stationary distribution, for
example? Indeed, it is. The relative frequencies of visited states in fact converge to the
stationary distribution. The important point is that this connects a distribution over
time — the visited states — with a distribution over the state space — the stationary
distribution. Ergodic theory studies this relation between time- and space-averages and
I want to state one result here. To do so we define these averages, for any bounded
function f : S→ R, as

ftime :=
1
n

n−1∑
k=0

f(Xk) and fspace :=
∑
i∈S

π⋆
i f(i) (7.5)

The result is as follows.

Theorem 2 (Ergodic Theorem; 1.10.2 in Norris 1997). Let (xn)n≥0 be as in theorem 1
and let f : S → R be any bounded function. Then the time-average of f almost surely
converges to the space-average of f:

p
(
ftime −→ fspace as n −→∞

)
= 1. (7.6)
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I omit the proof, but want to draw a practical conclusion. As seen, one can find the
stationary distribution as an eigenvector of (an estimate of) the transition matrix, but
the previous theorem shows a more intuitive option: measuring relative frequencies. If
Vi(t) is the number of visits to state i before time t, then fi(t) = Vi(t)/t is the relative
frequency. For an ergodic Markov chain, this converges to the stationary distribution,
fi(t)→ πi as t→∞, with probability 1. This is (a consequence of) the Ergodic theorem
(Norris 1997, p. 1.10.2) when fi is the indicator function. As the reader might notice,
this fact has been used extensively.

B Lateral Inhibition Strategies
In chapter ɕ we explored five different lateral inhibition strategies, and concluded that
they always converge to an effective, shared language. Do these conclusions indeed
generalize to the rest of the ɛ-dimensional, strategy space? The convergence proof
suggests so, but does not apply to the naming games directly. In this appendix part
of the parameter space is therefore explored systematically. The results indicate that
effective languages eventually emerge for all strategies, although the dynamics before
convergence can vary substantially.

Recall that the space of lateral inhibition strategies is defined by five nonnegative pa-
rameters

δinc, δinh, δdec, sinit, smax. (7.7)

I have not been able to find a systematic analysis of the parameter space. Wellens (2012)
does compare several strategies and suggest that the the value of the parameters deter-
mines the strategy. For example concluding that “a higher value [of δinh] improves
alignment”. I belief this is slightly inaccurate, since the strategies are invariant under
scaling. In other words, it is the relative value of the parameters that matters. There are
many more such equivalences. One could for example use any other δinh ≥ sinit with-
out altering the minimal strategy; or fix smax := sinit and use any δinc > 0. Similarly,
a different δinc > 0 leaves the frequency strategy unchanged, since scores greater than
sinit are of the form sinit + k · δinc and essentially track the frequency k anyway.

We map two slices of the strategy space by fixing either the increments or inhibi-
tion parameter and varying the other (following Wellens 2012). Figure 7.2 reports the
results. Fixing δinc = 1 while varying δinh (figure 7.2a) reveals that the inhibition pa-
rameter δinh interpolates between the minimal strategy (δinh = 42 or larger; purple)
and and the frequency strategy (δinh = 0; black). Both reach eventually reach perfect
communicative success, but the stronger the lateral inhibition, the faster so. The num-
ber of unique words Nunique initially grows identically for all δinh as inhibition plays
hardly any role at the start of the game. In the frequency strategy, no words are ever
removed and the resulting vocabulary is therefore not efficient. It is hard to tell if the
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FǣǥǗǚȨ ə.ɘ A. The effect of δinh
keeping δinc = 1 fixed. It interpo-
lates between the minimal strategy
and frequency strategy. B. the ef-
fect of δinc for δinh = 1 fixed. For
large δinc , the inhibition is rendered
ineffective.

ǠǣǞǥɚɕ Results shown for N = 200,
δdec = 0, sinit = 1, smax = ∞; avg.
of ɕɚɚ runs. psuccess is moreover
a rolling average over a centered
window of ɞɚɚɚ iterations.
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amount of lateral inhibition matters in the long-term. The plot seems to suggest that
this is not the case, and even the slightest lateral inhibition will (after a significantly
longer time) result in a one-word language.

The effect of the increment δinc is shown in figure 7.2b. One can see that theminimal
strategy corresponds to δinc = 0, but larger increments yield different dynamics. After
the peak of Nunique, words with score δinit = 1 are quickly removed, as it takes a single
inhibition. But words that have been heard multiple times have scores of at least δinit +

δinc and need many more inhibitions to be removed. There appear to be around N/6

such words. The result is a temporary stabilisation of Nunique. Eventually inhibition
takes over and competing words start disappearing. The (very) long-term behaviour
thus appears to be the same as before: convergence to a single-word language.

C Mathematical details of
Dirichlet-categorical Ǟǥ

This appendix develops the Dirichlet-categorical naming game in amore rigorous fash-
ion. Please refer to chapter ɗ for extensive motivation.

First, recall our notational conventions. The most precise notation would be of the
form

α(t)A =
(
α(t)

A,1, . . . , α
(t)
A,K

)
∈ RK, (7.8)
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and indicates the agent, the time and indices. I nearly always prefer a cleaner notation
and often drop agents, or even time indices, whenever they are irrelevant. Also, vectors
(boldface) get their time index in the subscript. Further recall that Σ(α) :=

∑
k αk and

that we write J condition K for the indicator function evaluating to 1 if the condition
holds and to 0 otherwise

Dirichlet and categorical distributions
The Dirichlet distribution is a continuous multivariate probability distribution defined
over the interior of the (K−1)-simplexwhichwedenote as ΔK−1 = {x ∈ RK :

∑
k xk =

1 and 0 < xi < 1}. We will only consider the (K−1)-simplex, so drop the superscript.
Samples of a Dirichlet can thus be interpreted as K-dimensional probability-vectors.
The Dirichlet is parametrised by a K-vector α and its density is given by

p(θ | α) = D(α)
K∏

k=1

θαk−1
k , D(α) = Γ(Σ(α))∏K

k=1 Γ(αk)
, (7.9)

where D(α) is the normalising constant, computed using the gamma function Γ, a con-
tinuous extension of the factorial with Γ(n + 1) = n! for n ∈ N. If θ ∼ Dirichlet(α),
then it has the following properties (e.g. Bishop 2006)

E[θk] =
αk

Σ(α)
, Var[θk] =

αk(Σ(α)− αk)

Σ(α)2(Σ(α) + 1)
, Mode[θk] =

αk − 1
Σ(α)− K

.

(7.10)

It is often convenient to parametrise the Dirichlet differently, as α := β · μ with β ∈ R
and μ ∈ Δ. Here β is the concentration parameter, a kind of inverse variance, and μ
determines the location of the distribution. This translates into

E[θk] = μk, Var[θk] =
μk(1− μk)

β + 1
(7.11)

from which we see that the mean is determined by μ and that larger β lead to smaller
variance. We will use both parametrisations interchangeably.

The categorical distribution is a discrete probability distribution over K outcomes,
described by a probability vector θ ∈ Δ. Recall that ck =

∑
i Jxi = kK counts the

number of k’s in x. The joint distribution of b i.i.d. categorical variables x = (x1, . . . , xb)

is then given by

p(x | θ) =
b∏

i=1

K∏
k=1

θJxi=kK
k =

K∏
k=1

θ
∑

iJxk=kK
k =

K∏
k=1

θck
k , (7.12)

ȰǣǚǣȱǤǠȨǘ-ȱȳǘȨǥǝǚǣȱȳǠ ȰǣǙǘǚǣȲǗǘǣǝǞ To show that the Dirichlet is the conjugate prior
of the categorical distribution, consider the following model

θ ∼ Dirichlet(α) (7.13)
x1, . . . , xb ∼ Categorical(θ). (7.14)
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In this case, conjugacymeans that the posterior distribution p(θ | x, α) is of the same
parametric form as the prior p(θ | α), namely a Dirichlet. More precisely, we have

p(θ | x, α) ∝ p(θ | α) · p(x | θ) (7.15)

∝
K∏

k=1

θαk−1
k ·

K∏
k=1

θck
k (7.16)

=
K∏

k=1

θαk+ck−1
k . (7.17)

In the last line one can recognise aDirichlet density with parameters α+c. We conclude
that the the posterior is Dirichlet(α + c)-distributed, or, more explicitly,

θ | x, α ∼ Dirichlet(α1 + c1, . . . , αK + cK). (7.18)

This result also illustrates the workings of the hyperparameter α. It is as if the model
pretends to have observed αk more instances of category k that it actually has. For that
reason, the αk’s are often called pseudo-counts.

We can also derive the compound distribution p(x | α) =
∫
Δ p(x | θ) · p(θ | α) dθ

by marginalizing out all probability vectors θ. To do this, we have to use a trick, which
exploits the fact that the Dirichlet distribution is normalized,∫

Δ
D(α)

K∏
k=1

θαk−1
k dθ = 1. (7.19)

Moving the normalising constant out of the integral, we see that∫
Δ

K∏
k=1

θαk−1
k dθ =

1
D(α)

(7.20)

Using that trick we can compute the marginal probability of x as

p(x | α) =
∫

Δ

b∏
i=1

p(xi | θ) · p(θ | α) dθ (7.21)

=

∫
Δ

b∏
i=1

θxi · D(α) ·
K∏

k=1

θαk−1
k dθ (7.22)

= D(α)
∫

Δ

K∏
k=1

θαk+ck−1
k dθ (7.23)

=
D(α)

D(α + c)
(7.24)

=
Γ(Σ(α))

Γ(Σ(α + c))

K∏
k=1

Γ(αk + ck)
Γ(αk)

(7.25)

Note that when b = 1, hence x = (x), the (almost defining) relation Γ(n+ 1) = nΓ(n)
can be exploited to further simplify the distribution. Concretely, note that Γ(Σ(α +
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c)) = Γ(Σ(α) + 1) = Σ(α)Γ(Σ(α)). This simplifies the first term in equation 7.25, so
we can simplify the marginal probability to

p(x | α) = 1
Σ(α)

· Γ(αx + 1)
Γ(αx)

·
∏
k ̸=x

Γ(αk)

Γ(αk)
(7.26)

=
1

Σ(α)
· αxΓ(αx)

Γ(αx)
=

αx

Σ(α)
. (7.27)

This also gives the posterior predictive distribution p(y | x, α), since that is just p(y | α′)
for the updated parameters α′ := α + c:

p(y | x, α) =
αy + cy
Σ(α + c)

(7.28)

This is a remarkably simple result, indeed: the probability of observing y is propor-
tional to the number of times it has been observed already, including the pseudo-
observations.

Exponentiated distributions
Different strategies can be used for selecting languages or words in the Bayesian Nam-
ing Game. This is done by exponentiating the distributions p

(
θ | α

)
and p

(
x | θ

)
by two parameters, η and ζ respectively. The resulting distributions again take simple
form:

p(θ | α)η ∝
( K∏

k=1

θαk−1
k

)η
=

K∏
k=1

θ[η(αk−1)+1]−1
k (7.29)

∝ Dirichlet(θ | η(α − 1) + 1). (7.30)

The case of the categorical is obvious,

p
(
x | θ

)ζ
=

θζ
x

Σ(θζ)
. (7.31)

So we conclude that

pla
(
θ | α

)
= Dirichlet

(
θ | η(α − 1) + 1

)
(7.32)

ppa
(
x | θ

)
= Categorical

(
x | θζ/Σ(θζ)

)
(7.33)

ǘǤȨ ȰǣǦǦǣȱǗǠǘ ȱȳǙȨ ζ = ∞ Whenever ζ ̸= 1, Bayesian agents are facing a different
inference problem and should infer the posterior distribution p(θ | x, α) ∝ p(x |
θ)ζ · p(θ | α). However, this is no longer a Dirichlet distribution. To see this, we
compute the joint

p
(
θ, x | α

)
= p

(
θ | α

)
·

b∏
i=1

p
(
xi | θ

)ζ (7.34)

= D(α) ·
∏
k

θαk−1
k · 1

Σ(θζ)
·
∏
k

θζ·ck
k (7.35)

=
1

Σ(θζ)
· D(α) ·

∏
k

θαk+ζck−1
k (7.36)
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FǣǥǗǚȨ ə.ɕ The posterior distribu-
tion p(θ | x) for various x if ζ = ∞,
that is, if agents always pick the
most likely word. The posterior re-
stricts the prior to the area of the
simplex where arg maxk θk = x.

Ǧǣǥɚɘ

Although this is reminiscent of the Dirichlet density, it is not proportional to it, since
the first term depends on θ. Consequently, deriving a closed-form expression of the
posterior seems hard, as it involves solving the integral∫

Δ

1
Σ(θζ)

∏
k

θαk+ζck−1
k dθ. (7.37)

The reciprocal of the sumhindered any progress on this point and all suggestionswould
be more than welcome.37

ɕə I also posted the problem at
math.stackexchange.com/q/ɘɕɛɚɗɛɝ.

This might be an interesting problem in its own, partly because we can relatively
easily identify the extreme cases. When ζ = 1 we trivially get the normal posterior, but
when ζ =∞we can also get an idea of the posterior. After observing x, the language θ
used to generate it can only be one where x gets maximum probability. In other words,
θ must have been in Δx := {θ ∈ Δ : θx ≥ θk for all k}. Consequently,

p(θ | x, α) = p(θ | θ ∈ Δx, α) (7.38)

=
Jθ ∈ ΔxK · Dirichlet(θ | α)∫

Δx
Dirichlet(θ | α) dθ

(7.39)

That is, the posterior is proportional to the prior, restricted to the section Δx of the
simplex where the largest component is x. I have not tried integrating the Dirichlet
over Δx yet, other than the symmetric case, i.e. α = β/K · 1, when the integral is simply
1/K. In any case, one immediately sees that this cannot be a Dirichlet distribution: the
posterior is discontinuous at the boundary of Δx, or at least at the part of it that lies
inside Δ.

All this is illustrated in figure 7.3. It should be clear from that figure that agents who
update their beliefs like this very quickly run into serious problems. After observing
x = 0 all mass is restricted to Δ0 and if the agent next observes x = 1, it has the
problem that p(1 | α) =

∫
Δ0

p(θ, 1) dθ = 0. This is one of the reasons for assuming
that agents use exaggerated distributions only during production, and do not account
for them during posterior inference.

Measuring the distance between languages
Most measures introduced to analyse the Dirichlet-categorical naming game, mea-
sure distances between languages. As a distance measure for distributions, the Jensen-
Shannon divergence (jsd) can be used. The jsd is a symmetric version of the more
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FǣǥǗǚȨ ə.ɗ The divergence be-
tween distributions in the ɘ-simplex
and the uniform distribution
(1/3, 1/3, 1/3) (indicated by a dot)
under the Jensen-Shannon diver-
gence. Points on the solid lines
have the same distance to the uni-
form

Ǧǣǥɚɘ Figure inspired
by a blogpost of Lior Pachter
liorpachter.wordpress.com/tag/jensen-
shannon-metric/

common Kullback-Leibler divergence and measures the similarity between probabil-
ity distributions. Figure 7.4 illustrates the jsd of different discrete distributions to the
uniform distribution. Formally, if π1, . . . , πN are probability distributions, their diver-
gence is

jsd(π1, . . . , πN) := H
( 1

N

N∑
i=1

πi

)
− 1

N

N∑
i=1

H(πi), (7.40)

whereH is the Shannon-entropy, ameasure for the uncertainty in a distribution. As one
can see, the jsdmeasures the difference between the entropy of the average distribution
and the average entropy. If the divergence is zero, the distributions are identical since
the jsd is the square of a metric (Endres and Schindelin 2003; Briët and Harremoës
2009). The divergence is moreover bounded,

0 ≤ jsd(π1, . . . , πN) ≤ log2(N) (7.41)

so the normalised divergence, between 0 and 1, is obtained by dividing by log2(N).

Bayesian updating and lateral inhibition
Intuitively, Bayesian updating implements a kind of lateral inhibition — but how ex-
actly? We derive the ‘update’ rules in the Dirichlet-categorical naming game. Recall
that every word is assigned a score s(x) = p(x | α). The question is how score of word
y changes after observing x. That is, what is st+1(x) in terms of st(x)? For a sampler,
this follows directly from eq. 7.28:

st+1(y) = p(y | x, α) =
αy + Jy = xK

Σ(α) + 1
(7.42)

=
αy

Σ(α)
· Σ(α)
Σ(α) + 1

+
Jy = xK
Σ(α) + 1

(7.43)

= st(y) ·
Σ(α)

Σ(α) + 1
+

Jy = xK
Σ(α) + 1

(7.44)

For the map language strategy (η =∞), the agent always chooses the mode ν of the
distribution Dirichlet(α), i.e.,

ν =
α − 1

Σ(α)− K
(7.45)
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The score s(y) = p(y | x, α) is therefore the y’th component of the mode. A similar
argument as above shows that

st+1(y) = st(y) ·
Σ(α)− K

Σ(α)− K + 1
+

Jy = xK
Σ(α)− K + 1

. (7.46)

This is a similar lateral inhibition mechanism as the one used by samplers.

D Parameter space of the Ȱȱ
language game

The Bayesian language game has a language strategy parameter η, a production strat-
egy parameter ζ and a parameter γ for the life expectancy. How do those influence the
resulting behaviour of the model? This appendix reports an experiment that system-
atically analysed the behaviour in a larger part of the space.

The experiment measures three new quantities besides coherence and reflectance
The first concerns the amount of synonymy in the language. If a language assigns all
words the same probability, the synonymy is maximal, but if one word takes all proba-
bility mass, there is no synonymy. Synonymy is the inverse notion of efficiency in the
naming games and formally defined as the relative Shannon entropy of the aggregate
language,

S(t) := H(π̄t)

log2(N)
, (7.47)

where H is the entropy. S(t) = 1 indicates maximal synonymy, S(t) = 0 the com-
plete absence of synonymy. Second, the discrepancy between the internal and external
language is measured:

D(t) := jsd(π̄t,ψt), (7.48)

where the aggregate language functioned as a proxy of all internal languages. Third, we
measure the variability of the aggregate language as its standard deviation over time,

V(t) = std(π̄0, . . . , π̄t). (7.49)

If the languages used in the populations were relatively stable throughout the game, the
variability should be low.

The experiment simulated 20 runs of the Dirichlet-categorical language game for
every combination of the parameters η ∈ {1, 2, 5, 50,∞}, ζ ∈ {1, 1.5, 2, 5,∞} and
γ ∈ {1, 10, 50, 10, 100, 1000,∞}.38

ɕɝ To be completely clear: that
amounts to ɕɖɚ million rounds
in ɕɖɚɚ independent simulations,
using ɞəɖ different parameter
settings. Every run had a duration of 100 000 iterations and
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all used the same, relatively flat, but nonuniform, prior. Trial experiments suggested
that these parameter values sufficiently illustrate games in different parts of the parame-
ter space. For example, η > 100 and ζ > 100 already yield behaviour comparable to the
infinite case and were left out. The coherence,39

ɕɜ Coherence is not shown, be-
cause all simulations appear to
have reached coherence. This is
an artefact of the measure used,
which should thus be improved:
populations with few observa-
tions, as in iterated learning, look
perfectly coherent to our mea-
sure, because the shared bias
fully determines their language.

reflectance, synonymy, discrepancy,
and variability weremeasured at the end of every game. Figure 7.5 shows all the results.
Interpreting the results is tricky, and it helps to keep figure 4.10 inmind: The corners of
every heat map in figure 7.5 mark the extreme strategies (η, ζ ∈ {1,∞}), which were
also shown in figure 4.10. The life expectancies we considered earlier (γ = 1, 10, 100
and ∞) can also be found in figure 4.10. Now, the main conclusion is be that our
earlier findings are largely confirmed by the current experiment. For intermediate pa-
rameter values, we observe a relatively smooth transition between the extreme cases
η, ζ, γ ∈ {1,∞}.

We first discuss the last row, which corresponds to a naming game. The reflectance
(column a) is much higher for samplers, and decreases quickly as soon as agents start
to maximise their productions slightly (i.e. ζ > 1). The synonymy (column b) sug-
gests why: maximising production strategies result in a one-word language, that is, one
with no synonymy. This explains why the reflectance is low for high ζ: the bias allows
much more synonymy. The reflectance and synonymy also suggest that the language
strategy (η) is far less influential than the production strategy (ζ). The fact that the
change in vertical direction is smaller than the change in horizontal direction, and this
seems to generalise to other life-spans as well. Looking at agents with shorter lifespans,
we further see that the reflectance and synonymy increase as γ approaches 1 (iterated
learning). As before, the reason is that the internal language of an agents with a short
life span is nearly completely determined by the bias. Accordingly, reflectance is high
and since the bias is fairly flat, so is synonymy. But, note that the discrepancy be-
tween the external language and the internal increases sharply for more maximising
strategies. Finally the last column shows an increase in variability with intermediate
lifespans. This could indicate continuous language change when agents have an inter-
mediate lifespan of around γ = 1000 interactions, but more research is needed before
such conclusions are warranted.

E A discrete Weibull model of
population turnover

Population turnover is commonly modelled by replacing one random agent in every
round. Such a constant mortality rate is not very realistic, and this appendix proposes
an alternative, discrete Weibull model. It is reparametrised such that the mean life
expectancy is the only parameter.
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FǣǥǗǚȨ ə.ɖ The behaviour of the
Dirichlet-categorical language
game across the parameter space
(γ, η, ζ). Rows corresponds to
life expectancies (γ); columns
show the coherence, reflectance,
synonymy and variability for every
strategy (η, ζ). See figure ɗ.ɞɚ
for the typical resulting languages
in the extreme cases γ, η, ζ ∈
{1,∞}.

ȲǞǥɚɛ Every cell is an average
over ɘɚ simulation runs. K = 20,
N = 10, b = 1, γ = ∞, β = 30.
Simulations used a deterministic
hazard function.
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How can we realistically model the mortality-rate in a population? This is a central
question in survival analysis (e.g. Rogríguez 2007). In the context of a model of lan-
guage evolution, if one agent dies in every iteration, the probability that any given agent
dies at time t is thus γ — given that it was still alive at time t − 1. If T is the random
variable that measures the time of death of an agent, this means p(T = t | T ≥ t) = γ.
This conditional probability is known as the hazard rate h(t), as it measures the rate
of death (hazard) occurring at t.40

ɗɚ It is usually defined for con-
tinuous T with density f as
h(t) =

f(t)
1−F(t) , in which case

it is not a conditional probabil-
ity but the rate of instantaneous
hazard.

In our example the hazard rate was constant. But,
as explained in chapter 4, models with constant hazard rates are poor models of life-
expectancy in human populations and demographers usually adopt either the Weibull
or Gompertz distribution (Juckett and Rosenberg 1993). We here consider the simpler
Weibull distribution, mainly because several discrete analogous have been proposed
(Nakagawa and Osaki 1975; Stein and Dattero 1984; Almalki and Nadarajah 2014).

ȰǣǙȱǚȨǘȨ ǕȨǣȲǗǠǠ ȰǣǙǘǚǣȲǗǘǣǝǞ The Weibull distribution (Weibull 1951) is a continu-
ous distribution parametrized by a scale parameter κ > 0 and a shape parameter λ > 0.
If κ > 1 the distribution is unimodal, meaning that most agents die around the same
age, which is in turn determined by λ (see figure 7.6). For completeness, the density of
a Weibull-distributed random variable T is

p(t | λ, κ) = κ/λ·
(
t/λ
)κ−1· exp

(
−
(
t/λ
)κ
)
. (7.50)

Since language games are discrete timemodels, we use a discrete approximation known
as the Discrete Weibull distribution41

ɗɞ I reparametrized the distri-
bution by taking β := κ and
q := exp(−λ−κ), which is both
computationally and conceptually
more convenient.

(Nakagawa and Osaki 1975), which preserves the
so called survival function of the continuous distribution. The survivor function S(t) =
p(T ≥ t) measures the probability of surviving to at least time t. The Weibull distribu-
tion, this function takes the form

S(t) = exp
(
−
(
t/λ
)k
)
, (7.51)

and the Discrete Weibull is defined as the discrete distribution with the same survival
function. This can be done, since the probability mass function is fully determined by
the survival function:

p(T = t) = S(t)− S(t + 1) = exp
(
−
(
t/λ
)κ
)
− exp

(
−
(
t+1/λ

)κ
)
. (7.52)

It should be stressed that the resulting distribution approximates the Weibull distribu-
tion, which for our purposes is sufficient.

The hazard rate of the Discrete Weibull distribution can be computed as

h(t) = p(T = t | T ≥ t) = S(t)− S(t + 1)
S(t)

= 1− exp
((

t/λ
)κ −

(
t+1/λ

)κ
)
. (7.53)

Recall that the hazard rate is the probability that an agent dies at time t, given that it
hasn’t died yet. Therefore, if we want to model a population where the probability of
dying at time T approximately follows aWeibull distribution, we should in every round
flip a coin with weight h(t) to decide whether the agent dies.
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FǣǥǗǚȨ ə.ɛ The Weibull distribution
can model the probability that an
agent dies at time t. A. Varying the
parameters of a Weibull distribution
illustrates that λ is a scale param-
eter and κ a shape paramater. B. If
κ > 1 the Weibull is a unimodal dis-
tribution, whose variance decreases
with higher κ (thinner lines), but for
κ < 1 the distribution has no mode.
When κ = 1 the Weibull reduces to
a exponential distribution.

Ǧǣǥɚɗ 0 5 10 15 20

time (t)

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity
 p

(t)
A.     Effect of parameters of the Weibull (for k > 1)

= 5
= 10
= 15

0 2 4 6 8

time (t)

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity
 p

(t)

B.     Effect of k < 1 and k > 1

k < 1
k = 1
k > 1

FǣǥǗǚȨ ə.ə The single-parameter
version of the continuous and dis-
crete Weibull distribution. A. The
distributions closely line up and γ is
easily interpretable. B. The hazard
rate increases with time, thus cap-
turing ageing effects. Note that a
continuous hazard rate h(t) is not a
distribution and exceeds ɞ.
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ǟǝȰȨǠǠǣǞǥ ǜǝǜǗǠȳǘǣǝǞ ǘǗǚǞǝǖȨǚ TheDiscreteWeibull gives us amore realisticmodel
of population turnover, but its behaviour is regulated by two parameters: λ and κ. Ide-
ally a single parameter would interpolate between immediate death (iterated learning)
and immortality (naming game). This can be done by defining λ and κ in terms of a
γ ≥ 1:

κ(γ) := log(γ) + κ0 and λ(γ) := γ
Γ
(
1 + 1/κ(γ)

) , γ ≥ 1 (7.54)

where Γ is the gamma function. Figure 7.7 illustrates the effect of γ. Three reasons un-
derly this reparametrization. First, the term Γ

(
1+1/κ(γ)

)
makes γ interpretable: γ is the

mean of the continuous distribution Weibull
(
λ(γ), κ(γ)

)
. Second, scaling κ(γ) loga-

rithmically with γ results in a realistic mortality distribution for all γ ≥ 1. Third, the
constant κ0 guarantees that for γ = 1 the hazard rate is approximately 1, corresponding
to instant death in iterated learning. I opt for42

ɗɘ This results in the hazard rate
h(1 | λ = 1) > 1 − 10−8 , which
seems sufficiently close to ɞ.

κ0 = 5.
In sum, we have defined a discrete Weibull model, approximating the continuous

Weibull, but parametrised by a single parameter γ, the average life expectancy. When
used in combination with a random walk through a population of fixed size, γ thus
interpolates between iterated learning (γ = 1) and a naming game (γ =∞).

F Reformulating the packing
strategy

The technical formulation of the packing strategy in (Hurford ɞɜəɖ) seems to have
caused some confusion in the literature. This appendix reformulates the principle in-
dependent of the original generative framework, without compromising preciseness.
This will bring some limitations of the packing strategy to the fore.

ǘǤȨ ǜȳȱǡǣǞǥ ǙǘǚȳǘȨǥǓ ȳǙ ȳ ȱǝǞǙǘǚȳǣǞǘ ǝǞ ǘǚȨȨǙ Thepacking strategywas introduced
within the conceptual framework of generative grammar, as a ‘significant generalisa-
tions’ about number expressions and how they relate to numbers. Hurford (1975) anal-
ysed several numeral systems (English, French, Danish, Mixtec and Yoruba) using a
phrase structure grammar which can be simplified to:43

ɗɕ The original phrase structure
rules constructed bases using
exponentiation. This is controver-
sial (see chapter ɖ) so I have use
the most recent, simplified gram-
mar from Hurford (ɘɚɚə). Note
that the rewrite rule of ǜǚǝȰ is
different in Hurford (ɞɜɝə), where
ǙǗǟ is not optional. I have also
changed notation and use ǙǗǟ
for ǞǗǟ; ǜǚǝȰ for ǜǤǚȳǙȨ; and
ȳǘǝǟ for Ȱǣǥǣǘ.

sum −→

{
atom
prod (sum)

}
prod −→ (sum) base

(7.55)
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where atomandbase rewrite to one of the atoms andbases of the system respectively. It
is easiest to think of this grammar as an attribute grammar (Knuth 1968) where every
leaf (atom or base) has a fixed numeric value or attribute. Every nonterminal node
corresponds to an operation that computes the value of the node from the values of its
constituents. sums of course correspond to sums and prods to products. Here is the
structure for French quatre-vingt-dix-sept, where I decorated nodeswith their attributes
in grey:

sum:97

sum:17

sum:7

atom:7

sept

prod:10

base:10

dix

prod:80

base:20

vingt

sum:4

atom:4

quatre (7.56)

This is just one of the many structures with value 97 generated by the rules eq. 7.55.
The packing strategy was introduced as a way to separate the wellformed from the ill-
formed structures. It was therefore formulated as constraint on the structure of the
trees, namely that:44

ɗɗ The formulation is from Hur-
ford (ɞɜɝə) and Hurford (ɘɚɚə).
The original also applied to
bases constructed by exponen-
tiation and is thus more compli-
cated, as ȲȳǙȨ nodes were non-
terminals. Let A be a structure
of category X (i.e. a ǜǚǝȰ or a
ȲȳǙȨ) with value x and two con-
stituents: a ǙǗǟ and some node
of another category Z (ǜǚǝȰ or
ȲȳǙȨ). Then A is only wellformed
if Z has the largest possible
value z ≤ x. That is, if there
is no alternative Z′ that also ex-
pands X with val(Z) < val(Z′).

the sister constituent of a sum must have the highest possible value. (7.57)

That is, the highest possible value while keeping the value of the parent constant. The
sister constituent of a sum can be a prod or a base. Both can be found in eq. 7.56:
at depth 3 we for example find a base with value 20 and a prod with value 10. The
reader might also have noticed that the node sum:17 violates the packing strategy. In a
structure of the form

sum:97

sum:7prod:90 (7.58)

the node prod:90 is the sister constituent of a sum and has a value higher than 80. We
will discuss this problem later in more detail.

The packing strategy also accounts for the order of bases in large numerals, e.g. that
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that two hundred thousand is wellformed, but two thousand hundred is not:

sum:200 000

prod:200 000

base:1000

thousand

sum:200

prod:200

base:100

hundred

sum:2

atom:2

two

sum:200 000

prod:200 000

base:100

hundred

sum:2000

prod:2000

base:1000

thousand

sum:2

atom:2

two
(7.59)

In the tree on the right, the sister node of sum:2000 is the node base:100, and this
violates the packing strategy, as it is also possible to forma treewhere the corresponding
sister has the higher value 1000. This is the tree shown on the left.

ǘǤȨ ǜȳȱǡǣǞǥ ǙǘǚȳǘȨǥǓ ǕǣǘǤǝǗǘ ǘǚȨȨǙ Perhaps the tree representations overly com-
plicated.45

ɗɖ I doubt whether Hurford
would disagree; over the years
he used ever looser variants of
the grammar, and often opts for
arithmetic formulae in the dis-
cussion (Hurford ɞɜɜɜ; Hurford
ɘɚɚə).

First they generate obvious redundancies in fragments like

prod:10

base:10

dix

and sum:4

atom:4

quatre

(7.60)

But more importantly, the same structures can be expressed using simple arithmetic
formulae like (4 × 20) + (10 + 7) and (2 × 100) × 1000, as we have been doing
throughout. More precisely, every tree corresponds to a formula built up from the
values of the leaves using the binary operations addition and multiplication. Such for-
mulae are not only simpler, they also havemore expressive power. The phrase structure
rule can for example only produce multiplicative constructions with a base. But as we
have seen, languages sometimes contain multiplicative constructions with factors that
are not considered bases properly: isolated or mixed bases. Similarly, additive con-
structions with two atoms are illformed by the packings strategy; a base has to figure
in one of the constituents. The Welsh expression for 15 is an additive base, but not a
base. This means that correct expressions of the form 15 + 2 cannot be generated.46

ɗɛ Hurford (ɞɜəɖ) does list ɞɖ as
a base, and thus circumvents this
at the cost of using an arguably
wrong notion of base.It

is furthermore easy to extend the formulae with other (binary) operations like subtrac-
tion and division, whereas the phrase structure rules can only account for these using
complicated extensions of the semantic interpretation which I will not reproduce here.
Finally, the order of constituents, of the base and atom in particular, cannot be de-
scribed in the formalism, which is problematic (Calude and Verkerk 2016). In short,
the formulae are simpler, more expressive and stay closer to the semantic structure of
number expressions.
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So how can we express the packing strategy in terms of such formulae? Well, note
that sums only occur as sister constituents (bold) in fragments of the form

(a) sum

sumprod

basesum

(b) sum

sumprod

base

(c) prod

basesum

which, when collapsing chains, correspond to formulae of the form

(a) (y× b) + x, (b) b + x, (c) x× b.

Here x is the sum of interest, y some other expresion and b a base. Sister constituents
of sums are thus multiples of bases (considering b = 1× b a multiple) and the packing
strategy states that these should have the highest possible value. We can thus reformu-
late the packing strategy as:

Complex numerals use the largest multiple of the largest base possible. (7.61)

This directly suggests more general principles, such as:

The difference between a and b in a + b and a× b should be maximised. (7.62)

This would also apply to multiplicative constructions like 5× 6, which do not contain
a base (in English). The principle would then correctly favour 3× 10. Principle (7.62)
could be taken as a good interpretation of the informal statement that “languages prefer
to form numeral expressions by combining constituents whose arithmetical values are
maximally apart, within the constraints defined by the syntax of the system” (Hurford
1987, p. 243). But this is not a literal reformulation of the packing strategy: it is slightly
more general.

ǠǣǟǣǘǙ ǝǦ ǘǤȨ ǜȳȱǡǣǞǥ ǙǘǚȳǘȨǥǓ One of the arguments for the importance of packing
strategy was that it explained the peculiarities of French numerals Hurford (1975). As a
final note, I would like to point out thatHurford’s explanation is somewhat problematic.
Recall that structure eq. 7.58 showed that French numerals do not satisfy the packing
strategy. So how does Hurford use the packing strategy to explain why soixante dix
(60 + 10) is wellformed, and 50 + 20 or 40 + 30 are not? Consider the following
expressions for 70:

(a) 7× 10 (b) 6× 10 + 10 (c) 5× 10 + 20
(d) 3× 20 + 10 (e) 2× 20 + 3× 10

The correct expression is (b), although some dialects use septante for (a). We can di-
rectly eliminate (c) since the packing strategy favours (6×10)+10 over (5×10)+20.
But (b) is illformed, since 6×10 is illformed in the light of 3×20 (it is assumed that 20
is a base). To correct for this, two additional constraints are introduced (Hurford 1975,
p. 101). The first states (in a complicated way) that 70 × 10, 80 × 10 and 90 × 10 are
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illformed. This eliminates (a). The second states (in an even more complicated way)
that all multiples or 20, except 4 × 20, are illformed. This eliminates (d) and (e), but
also makes (b) wellformed, as desired.

The Packing Strategy, in short, does not appear to explain much about the French
numerals. On the contrary, it would predict a quite different, vigesimal system, which
can only be remedied by introducing ad-hoc constraints. This is perhaps not surpris-
ing. Thepacking strategy predicts a completely regular numeral system, and it is hard to
see how such a strategy in itself could account for irregularities like those encountered
with French numerals. These conclusions do mean that the packing strategy might not
be the important generalisation Hurford suggests it to be. The corresponding gener-
alisations in Greenberg (1978) (roughly, 37 and 38) might even be of more empirical
relevance. The latter captures that numeral systems are very predictable, or that “there
is no ‘surprise’ in numeral larger than [a certain] base”. If the French expression for 70
is irregular, so is the expression for 70 in 170 = 100 + 70. Finally, to the best of my
knowledge the packing strategy has never been systematically evaluated against a large
collection of numeral systems either. This might be something to address in future
work, which might benefit from the simplified formulation of the generalised packing
strategy derived in this appendix.

G Base games
This appendix mathematically derives the implicit biases in the additive naming game
and presents some further analyses of the parameters of the game.

Implicit biases in the additive naming game
The additive base game strongly favours the use of the highest base. To quantify that
bias, we ask what the probability is that an agent, without any past experience, will
use a certain base in the next round. ‘Without past experience’ is important, since we
are interested in the bias, similar to the Bayesian naming game. The problem, I think,
becomes much more intuitive if you keep the following diagram in mind:

The diagram illustrates the decimal case B = 10, so K = 5. Recall that E(b) is
the set of all numbers n in the domain that are expressible with base b; these sets are
shown as horizontal lines with dots at every number n. We first compute the probability
p(n ∈ E(bj)) that we pick a number expressible by the j’th base, and then the probability
that base bj is selected given that the number is expressible. From the diagram one
directly sees that

p
(

n ∈ E(bj)
)
=
|E(bj)|

B
=

j
K
, (7.63)
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11 12 13 14 15 16 17 18 19 20N

P1 P2 P3 P4 P5

E(b5 = 10)

E(b4 = 9)

E(b3 = 8)

E(b2 = 7)

E(b1 = 6)

which is the relative length of the black line corresponding to E(bj). Next, p(bj | n ∈
E(xj)) has to take into account that other bases might also express n. Given that n ∈
E(bj) there are j equally likely ‘parts’ P1, . . . , Pj that n could have been in. The parts
correspond the orange boxes. Now it is easily seen that the numbers n in box Pj can be
expressed by K − j + 1 different bases. In the diagram, the numbers 13 and 14 are in
part P2 and can be expressed by 5− 2 + 1 = 4 different bases. But that means that

p
(

bj | n ∈ E(bj)
)
=

j∑
i=1

p(n ∈ Pi) · p(bj | n ∈ Pi) (7.64)

=
1
j
·

j∑
i=1

1
K− i + 1

(7.65)

=
1
j
·
( K∑

i=1

1
i
−

K−j∑
i=1

1
i

)
(7.66)

=
1
j
(
HK −HK−j

)
, (7.67)

where Hn =
∑n

i=1
1/i is known as the n’th harmonic number and we assume H0 := 0.

Putting everything together,

p(bj) = p
(

n ∈ E(bj)
)
· p
(

bj | n ∈ E(bj)
)

(7.68)

=
1
K
(

HK −HK−j
)
. (7.69)

This implies a very strong bias towards using the highest base, which is further dis-
cussed in chapter 6.

As a final check, does eq. 7.69 really defines a distribution — is it normalised? The
distribution in eq. 7.69 is normalised if and only if

K∑
j=1

1
K
(HK −HK−j) = 1 (7.70)

Multiplying both sides by K and reordering, we see that this is equivalent to

K−1∑
j=1

HK−j = K · (HK − 1), (7.71)
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where we used the convention HK−K = H0 := 0 to sum only up to K − 1. Equation
7.71 is in fact true: it is one of the basic recurrence relations on the harmonic numbers.
We can therefore conclude that the distribution in eq. 7.69 is really a distribution.

As a final note, I have note been able to find any reference of this distribution, but I
haven’t searched extensively either. But if the reader happens to recognise this distri-
bution — I would be very interested to learn more about it.

Properties of the additive base game
ȨǦǦȨȱǘ ǝǦ ξ Recall that the parameter ξ determined which bases were favoured; base
b was favoured if

s(b) > 0 and s(b) ≥ ξ ·max
b

s(b), (7.72)

for 1 ≥ ξ > 0. The additive base game was simulated with ξ ∈ {1, 1/2, 1/3} and the
results are reported in figure 7.8. The main effect seems to be that lower values of ξ
slow down convergence. This is not surprising: when ξ = 1/3, an agent only favours a
single base if its frequency is 3 times as high as that of any other base. This is a much
weaker preference for frequent bases than with ξ = 1, in which case agents always use
the most frequent base.

ȨǦǦȨȱǘǙ ǝǦ ǘǤȨ ǞǗǟȲȨǚ ǝǦ ǙǣǟǜǠȨ ǞǗǟȨǚȳǠǙ How does the number of simple numer-
als influence the game? Figure 7.9 summarises some experiments of the additive base
game with B ∈ {1, 10, 20, 30}. Although these simple experiments do not yield strong
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conclusions, the convergence time is not strongly influenced by B. That is, certainly
not in a power law fashion, like population size. Rather, the convergence time does not
seem to depend on K. One reason for this is that convergence time in the Dirichlet-
categorical naming game was also not found to be strongly influenced by K.
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