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1 Introduction

In recent years, logicians have become increasingly interested in the interplay of
several agents, especially in dynamic settings of epistemic and doxastic nature.
Fruitful technical advances have led to deep insights into the epistemic nature
of interaction by logicians, and this new direction of logic has quickly gained
momentum and support, allowing a re-assessment of the role of logic for artificial
intelligence. The complete formalization of concrete games in which knowledge
and belief play a crucial role (called “knowledge games” by van Ditmarsch [24]) in
terms of dynamic epistemic logic has been hailed as a great success. Van Eijck’s
software DEMO [26] renders this theoretical success into a useful tool. The first
and second author have proposed to use formalisms based on epistemic logic for
the formalization of narratives [11, 12], and the third author (in collaboration
with Kennerly and Zvesper; [28, 10]) has formulated a simple knowledge-based
action situation from a computer game. We formalize this (toy) example using
dynamic epistemic logic (DEL) and explain the underlying planning problem,
motivating the definition of a general DEL planning problem in which we propose
to use DEL as a general formalism to generate intelligent and convincing social
behavior in simulated characters.

Related Work.

The potential to use dynamic epistemic logic for actual implementations of rea-
soning processes permeates the literature; many papers mention concrete ap-
plications as the motivation for studying dynamic epistemic logic. The DEMO
software of Jan van Eijck [26] makes this very concrete; it has been used, e.g.,
for the Russian Card problem in [17, chapter 6].

Renardel de Lavalette and van Ditmarsch [14] discuss updating and main-
taining a minimal epistemic model and identifying subclasses of DEL for which
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that is possible. They provide model minimization for so-called simple actions
in order to allow efficient model checking. Our scenario used in this paper has
non-simple (though propositional) actions, and uses non-S5 models.

The closest cognate to our proposal is the work by van der Hoek and Wooldridge
[23] on planning with epistemic goals, based on the idea of Giunchilia and
Traverso to use model checking as a planning algorithm [9]. Their planning
algorithm is based on S5 ATEL (for more on embedding DEL into temporal
logics, cf. § 2), using a similar model as we did in [10]; we argue here that DEL
provides a more flexible framework.

Related to the idea of using DEL for planning is the paper [1] on public
announcement logic which examines which public announcement to make in a
strategic setting with goals (assuming truthfulness).

Outline of this paper

In § 2 we shall give a standard introduction to dynamic epistemic logic, following
roughly the textbook [25]. At the end of the section, we stress that DEL is not
a temporal logic and comment on possible embeddings of DEL in temporal
settings. In § 3, we return to the setting of the doxastically enriched computer
game Thief from [28, 10] and give a formalization in terms of DEL which is then
used in §§ 3.4 and 3.5 to explain possible applications (resticted to the case of our
toy example). Based on this concrete example, we then define the DEL planning
problem in § 4, and close the paper with a few pointers to future work in § 5.

2 Dynamic Epistemic Logic

Epistemic logic proved to be a powerful tool for studying distributed algorithms
and multi-agent systems (cf. [7, 13]). Much of the current research on epistemic
logic focuses not only on developing logics for reasoning about the knowledge
and beliefs of interacting rational agents, but also the dynamics of information
and beliefs (cf. [19] for an account of this perspective). In this section, we give
an overview of product updates due to Baltag, Moss and Solecki [3] for the
non-expert reader, following closely the textbook [25] (where the reader can find
more details).

Let A be a finite set of agents and At a set of atomic propositions. An
epistemic model is a tuple 〈W, {Ri}i∈A, V 〉 where W =: D(M) is a non-empty
set called the domain of M, for each i ∈ A, Ri ⊆W×W is a binary relation on
W (typically an equivalence relation) and V : At → 2W is a valuation function. If
w ∈ D(M), we call (M, w) a pointed epistemic model. If w is clear from the
context, we may omit it from the notation. The elements of W constitute “states
of the world” and the relations Ri are accessibility relations, i.e., for states
w, v ∈W , wRiv means “in state w, agent i would consider state v possible.”

For example, consider two players i and j standing in front of a locked door.
There are two codes c1 and c2 that potentially open the door. We model this by
a state C1 in which c1 is the correct code and a state C2 in which c2 is the correct
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Fig. 1: The situation of two possible codes to open the door. The actual state is marked
by double borders. Bidirectional arrows are displayed as plain line.

code. Suppose that c1 is actually the correct code, agent i has this information
but agent j does not have this information. This is depicted in Figure 1. Notice
that the figure represents not only the information the players have about the
value of the secret code, but also the information the other player has about the
whether the other player is informed about the secret code. This can be made
precise using the following logic.

The set of multiagent epistemic formulas, denoted LA, is the smallest set of
formulas generated by the following grammar:

P | ¬ϕ | ϕ ∧ ψ | �iϕ

where P ∈ At and i ∈ A. We use the usual abbreviations for the other propo-
sitional connectives (∨,→,↔), and we use LProp to denote the propositional
sub-language (i.e., not containing �i). Truth of formulas ϕ ∈ LA is defined as
usual in Kripke models.6

Returning to our example (and using the notation C1 and C2 to denote the
propositions “c1 is the correct code” and “c2 is the correct code” as well as the
corresponding states), the reader can verify that the following formulas are true
at state C1:

1. �iC1: i knows the secret code is c1
2. ¬�jC1: j does not know the secret code is c1
3. �j(�iC1 ∨�iC2): j knows that i knows the value of the secret code
4. �i¬�j�iC1: i knows that j does not know that i knows that the secret code

is c1.

An event model E is a tuple 〈S, {→i}i∈A, pre〉, where S is a nonempty set,
for each i ∈ A, →i⊆ S × S is i’s accessibility relation, and pre : S → LA
is the pre-condition function. The set S is called the domain of E , denoted
D(E). We call E propositional if pre goes into LProp, i.e., all preconditions
are propositional. The product update operation updates an epistemic model
M = 〈W, {Ri}i∈A, V 〉 with an event model E = 〈S, {→i}i∈A, pre〉 and is defined
as M⊗E = 〈W ′, {R′i}i∈A, V

′〉 with

(i) W ′ = {(w, e) | w ∈W, e ∈ S and M, w |= pre(e)},
(ii) (w, e)Ri(w′, e′) iff wRiw

′ in M and e→i e
′ in E , and

(iii) V ′((s, e)) = V (s).

6 I.e., M, w |= �iϕ iff for all v ∈ W , if wRiv then M, v |= ϕ.
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Fig. 2: The event model of agent j secretly learning that the correct code is c1. We
shall denote the left event by e1 and the right event by e2.
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Fig. 3: The result of the epistemic update of the epistemic model from Figure 1 by the
event model from Figure 2.

For pointed models, the point of the product is the pair of the factors’ points.
If E and E ′ are two event models, we can analogously define the product

event model E ⊗ E ′. It satisfies a type of associative law (M ⊗ E) ⊗ E ′ ≡
M⊗ (E ⊗ E ′), where ≡ denotes isomorphism.

The usual notion of equivalence used in modal logic is the weaker notion
of bisimulation [25, Definition 2.14], denoted -. Bisimilar pointed models are
equivalent in the sense that they satisfy exactly the same formulas. For any
model M and events E , E ′, if E - E ′ then M⊗E - M⊗E ′ (note that the con-
verse does not hold, see [27]). For each model M, the union of all bisimulations
of M with itself is again a bisimulation. The quotient structure of this bisimu-
lation gives us the most compact model satisfying the same formulas, called the
bisimulation contraction. By bMc, we denote the cardinality of the domain
of the bisimulation contraction of M.

Returning to our example, Figure 2 shows the event where j secretly learns
the code is c1. It has two primitive events e1 and e2. The precondition of e1 is C1

(denoted pre(e1) = C1) while the precondition for e2 is > (denoted pre(e2) = >).
So e2 reflects an event where “nothing is happening”. Agent j is aware that event
e1 took place while agent i thinks that nothing happened (and is unaware that
agent j learned the secret code).

Using the product update operation, we can construct the epistemic model
shown in Figure 3, which reflects the situation after the event has occurred. As
expected, we have that both i and j know the secret key (formally, �iC1∧�jC1

is true at the state (C1, e1)). Furthermore, i does not know that j knows the
value of the secret key (formally, ¬�i�jC1 is true at (C1, e1)). In fact, i actually
mistakenly believes that j does not know the value: �i¬�jC1.7

7 Note that we are here using dynamic epistemic logic for a situation in which we
describe beliefs. The main difference between knowledge and belief is that beliefs
can be false whereas knowledge—in standard formalizations—cannot. If i discovers
that j does know, the product update will produce a model in which i considers no
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Now, adding to LA a modal operator 〈E , e〉 for each pointed event model E , e,
we obtain the language LDEL. Truth for these modalities is defined as

M, w |= 〈E , e〉ϕ iff M, w |= pre(e) and M⊗E , (w, e) |= ϕ.

Given a pointed model (M, w) and a formula ϕ ∈ LA, checking M, w |= ϕ
can be done in time polynomial in the size of M and ϕ [22]. Some care must be
taken with respect to the product update, as at first glance it can potentially
lead to exponentially growing models (cf. § 3.3).

Given that DEL is about dynamics, i.e., the change of an epistemic situation
through time, it may come as a slight surprise that DEL is not a temporal
language, i.e., has no means of expressing temporal relations. In order to have
temporal relations, one can embed DEL into an appropriate temporal logic. In
[20], the authors give a natural embedding of DEL into ETL. Since the details of
temporal logic do not matter for our purposes, we think of the temporal setting
as follows: Fix a pointed epistemic model (M, w) and a finite set of (pointed)
event models E. For prefixes of finite sequences σ := (E0, . . . , En) of models in
E, we have a natural notion of immediate successor, viz. extension by one
additional model. Let M⊗ σ := M⊗E0 ⊗ . . .⊗ En, then the collection of these
epistemic models forms a tree structure with successor structure derived from
the finite sequences and M = M∅ at the root. It is this tree structure that we
consider to be the natural temporal setting for DEL planning (cf. § 4).

Slightly more precisely, for a pointed epistemic model (M, w) and (E , e) ∈
E, we say that (E , e) is possible at (M, w) if M, w |= 〈E , e〉>. We say that
a sequence σ is legal if it is empty or its (uniquely determined) immediate
predecessor σ∗ is legal and (E∗, e∗) is possible at M⊗σ∗, with (E∗, e∗) being the
last element of σ. The set of legal sequences, denoted LS, contains exactly those
sequences that can be performed in the given order, since the preconditions of
each event are met at the appropriate time. They form a subtree of our tree
structure. If we want to impose further external restrictions on the possible
courses of action, we can consider a subtree T ⊆ LS.

To conclude our description of DEL, we should note that we do not consider
events that change actual facts (i.e., the valuation function). This is a serious
restriction but doesn’t affect the example in § 3. The definition of the product
update can be extended to deal with factual change [22], but for the sake of
simplicity, we restricted ourselves to purely epistemic events (cf. § 5).

3 An implementation project

We envision a use of DEL as a general engine (called “knowledge module” by
Kennerly, Witzel, and Zvesper in [28, 10]) which allows for flexible specification of
situations and events and then maintains the agents’ mental models throughout

state of the world possible. For a more graceful handling and revising of inconsistent
beliefs, we could use dynamic doxastic logic (DDL, cf. [4]). Since DEL works for the
simple examples in this paper, we ignore these issues for the present discussion.
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the progress of the game or scene, much like a physics engine maintains a model
of the physical state of the world. We will illustrate this in a slightly richer
scenario taken from an actual computer game. Note that, while we focus on
maintaining one central epistemic model as part of the simulation engine, such
a model can also be distributed and maintained by the individual agents [2].

We want to emphasize that this is merely a toy example, and while there is
no claim to scalability we do want to point out some initial issues and possible
approaches to handling them.

3.1 Thief: The Dark Project

The video game Thief: The Dark ProjectTM by Eidos Interactive (1998) is
themed as a game of stealth, in which the player (the thief) avoids being de-
tected by computer-simulated guards. The player exploits the guard’s—possibly
mistaken—beliefs about the thief’s presence. Due to the simplicity of the guard’s
control program, the guard’s beliefs are in practice perceived as either “the thief
is here” or “the thief is not here”. The entertainment value of a typical Thief
scenario could be enhanced by a guard that acts not only based on these two
basic beliefs, but also depending on what he believes the thief believes, including
what he believes the thief believes he believes.

3.2 Example scenario

We consider a minimalistic example scenario with a thief and a guard, modeling
the agents’ belief states as events occur in the game. In particular, we consider
these ways in which relevant beliefs can come about: by causing or hearing noise,
seeing the other one from behind, or facing each other.

We assume that the scene starts with thief and guard present, each uncertain
of the other’s presence, and that agents cannot enter or leave for the sake of
simplicity. In our formalization, we consider the following kinds of events:

– nt, ng: The thief (the guard) makes some noise.
– bt, bg: The thief (the guard) sees the other one from behind.
– f : Thief and guard see each other face to face.

The intuitive epistemic effects of these events are as follows:

– nt: The guard learns that a thief is present; the thief learns that, if a guard
is present, that guard learns that the thief is present.

– bt: The thief learns that a guard is present; the guard believes nothing has
happened (he is not paranoid enough to constantly suspect being seen from
behind)

– f : Thief and guard commonly learn that both are present.

The effects of ng and bg are analogous.
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3.3 DEL formalization

To model this situation in DEL, we use the set of atomic propositions At =
{pt, pg}, with the reading that the thief, respectively the guard, is present. We
formalize the initial situation by the pointed model I and the events described
above by the set of pointed event models E = {Nt,Ng,Bt,Bg,F}, as depicted
in Figure 4. From now on we omit the qualifier “pointed”.

pg

pt, pg

pt

g
t

t
g

(a) I: initial situation

pt ∧ ¬pg

pt ∧ pg

>

t

g

(b) Nt: thief makes noise

¬pt ∧ pg

pt ∧ pg

>

g

t

(c)Ng: guard makes noise

>

pt ∧ pg

g

t, g

t

(d) Bt: thief sees guard
from behind

>

pt ∧ pg

t

t, g

g

(e) Bg: guard sees thief
from behind

pt ∧ pg

(f) F : face to face

Fig. 4: Models for initial situation and events. Undirected edges represent bidirectional
accessibilities. In models without directed edges, reflexive accessibilities are omitted.

Given that our aim is to maintain a model of the current situation as the
game proceeds, we need to worry about the size of that model, since each product
update could potentially multiply the number of states.

To analyze the situation, we first introduce some notions. We call an event
model E self-absorbing if for all models M we have M⊗ E ⊗ E - M⊗ E ,
and we call two event models E , E ′ commutative if for all models M we have
M⊗E⊗E ′ - M⊗E ′⊗E . The events we consider in the example will be both self-
absorbing and commutative, enabling us to show that the model is well-behaved
and stays small.

To show the results formally and for a more general class of events than
the small set that we consider, we need one auxiliary notion. We call an event
model E almost-mutex if there is at most one atomic event e> ∈ D(E) with
pre(e>) = > and e> →i e> for all i ∈ A, and the formulas pre(e) with e 6= e>
are pairwise inconsistent. We are now ready to state some results.
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Lemma 1 Propositional event models are commutative.

Proof. Let E , E ′ be propositional event models. We prove that E ⊗ E ′ - E ′ ⊗ E .
To see that this holds, consider the smallest relation ρ with (s, s′)ρ(s′, s) for all
(s, s′) ∈ D(E) × D(E ′). This relation is a bisimulation due to commutativity of
logical conjunction. ut

Lemma 2 Almost-mutex event models with transitive accessibility relations are
self-absorbing.

Proof. Let E = 〈S, {→i}i∈A, pre〉 be an almost-mutex event model with point
s ∈ S. We again prove that E ⊗ E - E . Consider the smallest relation ρ ⊆
(D(E)×D(E))×D(E) such that

(e, e)ρe (e, e>)ρe (e>, e)ρe

for all e ∈ D(E). We show that this is a bisimulation on the submodels of E ⊗ E
and E generated by (s, s) and s. To see this, note first that (s, s)ρs.

Next, assume that (e1, e2)ρe and (e1, e2) →i (e′1, e
′
2). We have to show that

there is e′ with e→i e
′ and (e′1, e

′
2)ρe

′. By definition of ρ, we are in one of three
cases:

– e1 = e2 = e. From (e, e) →i (e′1, e
′
2) it follows that e →i e

′
1 and e →i e

′
2.

If e′1 = e′2 then (e′1, e
′
2)ρe

′
1 by definition of ρ and we are done. Otherwise

e′1 6= e′2. Since (e′1, e
′
2) ∈ D(E⊗E), pre(e′1) and pre(e′2) cannot be inconsistent,

and with E being almost-mutex it follows that one of the two events is e>.
If e′1 = e> then (e′1, e

′
2)ρe

′
2 by definition of ρ, and analogously if e′2 = e>.

– e1 = e and e2 = e>. From (e, e>) →i (e′1, e
′
2) it follows that e →i e

′
1 and

e> →i e
′
2. If e′1 = e′2 then (e′1, e

′
2)ρe

′
1 by definition of ρ. Otherwise e′1 6= e′2.

Since (e′1, e
′
2) ∈ D(E ⊗ E), pre(e′1) and pre(e′2) cannot be inconsistent, and

with E being almost-mutex it follows that one of the two events is e>. If
e′2 = e> then (e′1, e

′
2)ρe

′
1 by definition of ρ and we are done since e →i e

′
1.

Otherwise e′1 = e>, and from e →i e
′
1 = e> →i e

′
2, by transitivity we get

e→i e
′
2. By definition of ρ, (e>, e′2)ρe

′
2.

– e1 = e> and e2 = e. Analogous to the previous case.

Finally, assume that (e1, e2)ρe and e→i e
′. We have to show that there is (e′1, e

′
2)

with (e1, e2) →i (e′1, e
′
2) and (e′1, e

′
2)ρe

′. This is easy to see with a similar case
distinction as above, noting that e> →i e> by assumption. ut

For a sequence σ = E1 . . . Ek of event models, let Set(σ) = {E1, . . . , Ek}, and
let M⊗ σ = M⊗E1 ⊗ · · · ⊗ Ek for a model M.

Corollary 3 For any model M and any sequences σ1, σ2 of propositional, almost-
mutex events with transitive accessibility relations, if Set(σ1) = Set(σ2) then
M⊗ σ1 - M⊗ σ2.

Proof. Follows immediately from Propositions 1 and 2. ut
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Proposition 4 Let σ by any sequence of events from E = {Nt,Ng,Bt,Bg,F}
Then bI ⊗ σc ≤ 6.

Proof (Sketch). Using Corollary 3. First note that F ⊗ E - F for any E ∈ E,
so bI ⊗ σc = 1 for any σ containing F . Also, Nt ⊗ Ng - F , so the same holds
for any sequence containing these two events. Due to symmetry we are left with
6 cases to check: σ ∈ {Nt,Bt,NtBt,NtBg,BtBg,NtBtBg}. ut

Together with the fact that the bisimulation contraction can be computed
in linear time [6], this shows that our toy model indeed stays a toy model.
As mentioned above, this may not say much about more realistic models, but
guarantees may be found there with similar techniques.

We can also show the fact stated above, saying that we do not need to consider
belief revision mechanisms in our simple scenario, since the agents never reach
inconsistent belief states (although their beliefs may be mistaken).

Proposition 5 For any sequence σ of events from E and any agent i ∈ A,
I ⊗ σ 6|= �i⊥.

Proof (Sketch). Since F⊗E - F for any E ∈ E and I⊗F 6|= �i⊥, with Corollary
3 we get that I ⊗ σ 6|= �i⊥ for any σ containing F . Assume there is some σ
with I ⊗ σ |= �i⊥, then there must be no state that i considers possible at the
point of I ⊗ σ. By definition of ⊗, the same would then hold for the point of
I ⊗ σ ⊗F , which is a contradiction. ut

We can now proceed to describe the two ways in which we envision such an
epistemic model to be used.

3.4 Use case: Scripted behavior

In the original Thief game, the behavior of the guard is rigidly connected to
particular events. It was proposed in [28, 10] to introduce beliefs as an abstraction
layer. For example, if the guard believes that the thief is present, but the guard
believes that the thief hasn’t noticed the guard, the guard tries to ambush the
thief. Otherwise, if the guard believes the thief may have noticed him, but that
the thief thinks that he (the guard) in return hasn’t noticed him (the thief), the
guard tries to exploit that mistaken belief and trick the thief, maybe by playing
stupid and suddenly launching a surprise attack. If all else fails, he rushes and
attacking him openly. These rules constitute the guard control program in our
example scenario, shown in Listing 1.1.

When scripting the guard’s behavior, the programmer need not worry about
how exactly the beliefs came about, he simply uses the familiar concept of belief
in order to express the rules on a high level. As the guard’s control script is
executed, the knowledge module is queried and determines the truth value of
any given formula.

This approach removes from the scripter the burden of having to decide
exactly which events cause what, and facilitates adjustments and more complex
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if B(g, p_t):

if B(g, not B(t, p_g )):

g.ambush(t)

elif B(g, not B(t, B(g, p_t }))):

g.trick(t)

else:

g.rush(t)

Listing 1.1: Pseudo-code for a guard in Thief: The Dark Project. B(i,ϕ) stands
for �iϕ, g stands for guard and t for thief.

dependencies. For example, the model may be refined so that the noise of an
arrow induces the guard to believe that a thief is there and has noticed him,
while an arguably more innocent noise such as breaking a twig may induce the
guard to believe that a thief is there and hasn’t noticed him (he accidentally
caused that noise). Only the latter case corresponds to our event nt, and the
resulting beliefs would then trigger the behavior rule that says to try an ambush.
The point is that this belief model is independent from the behavior and can be
tested and tuned separately.

3.5 Use case: Autonomous planning

Ideally, handcrafted rules would be as few as possible, and the artificial agents
would act largely autonomously, including proactively trying to bring about de-
sirable (epistemic) situations. We discuss how a planning guard may be realized
in our simple scenario, before we set out to propose a general DEL planning
framework in § 4.

First, we specify which of the events we discussed can be brought about by the
guard, and thus should be in his repertoire of actions. For now, we simply assume
that the guard can make a noise (ng), he can let himself be seen from behind
(bt; for example, by walking around with his head turned towards the wall),
and he can step out and provoke a face-to-face encounter (f). These actions
are associated with the corresponding DEL events from Figure 4, which also
encapsulate the actions’ preconditions. For example, f can only happen if both
are present, and correspondingly, the guard only knows that he can make f
happen if he knows that both are present.

Besides these actions corresponding to our DEL events, we consider the fol-
lowing additional actions specifying the different attacks described in § 3.4:

– ambush, with precondition pre(ambush) = pt ∧ ¬�tpg

– trick, with precondition pre(trick) = pt ∧�tpg ∧ ¬�t�gpt

– rush, with precondition pre(rush) = pt.

Plans can be assessed as to whether they are legal, believed by the guard to
be legal, or believed to be believed to be legal at each intermediate point of the
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plan (i.e., that plan can be “knowingly” executed). Of course, the guard agent
should only be able to access the last two assessments.

For example, two potential plans would be P1 = bt, trick and P2 = ng, ambush.
In the initial situation I, P1 is legal, but the guard does not know this since
he is not sure of the thief’s presence. After seeing the thief from behind, the
guard does take P1 to be legal, although it is not the case that he would be-
lieve it at each point of the plan. Formally, by slight abuse of notation, we have
I |= 〈Bt〉〈trick〉> but I 6|= �g〈Bt〉〈trick〉>, and I ⊗ Bg |= �g〈Bt〉〈trick〉> but
I ⊗ Bg 6|= �g〈Bt〉�g〈trick〉>. This last thing is due to the fact that we modeled
being seen from behind as something that one never assumes to happen. In that
sense it is not an action the guard can knowingly perform—it would be more
appropriate to formalize such an action as DEL event which does get reflected
in the guard’s epistemic state, but which looks to the thief like Bt. Due to the
modular nature of DEL, such issues can be taken care of simply by modifying
or adding the affected event models.

With P2, we have I 6|= 〈Ng〉〈ambush〉> along with I 6|= �g〈Ng〉〈ambush〉>
and I 6|= �g〈Ng〉�g〈ambush〉>. In fact the same is true in any situation, since by
the very act of making noise, the guard destroys the precondition for an ambush.

We have implemented a naive planner which considers all plans up to a
certain length ending with one of the attack actions, and queries the knowledge
module as to their (current) feasibility. One research goal is to find shortcuts for
pruning the space of potential plans to a manageable size. For example, we can
note that positive formulas are persistent, so any plan under construction can
be discarded as soon as a state is reached where a negated positive goal formula
is violated. Once the thief does know that the guard has noticed him (violating
the last conjunct in pre(trick)), no further events can destroy that knowledge and
the search for any plan ending with trick can be aborted.

We end the discussion of planning in our scenario by showing the protocol
of an example run.

The scene starts.
Selected plan: None.
Guard sees thief from behind.
Selected plan: n_g,trick Avoid: n_t f
Something happens which is not part of the plan:
Thief steps on a twig or makes some other noise (n_t)
Selected plan: ambush Avoid: b_t n_g f

Note that this guard, other than the one from Listing 1.1, prefers to trick the
thief and only falls back to the plan of ambushing once tricking is not possi-
ble anymore. Also, our simple planner produces a list of events that should be
avoided in order to keep the selected plan (believed to be) legal. In that sense, it
produces compositional behavior: Ambush is just an attack while avoiding being
seen or making noise; trick is an attack avoiding a face-to-face encounter or the
thief making noise (thus losing his belief that the guard hasn’t noticed him). Of
course, it is not within the guard’s power to prevent that last event.
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4 Towards a general framework for DEL planning

DEL has established itself as a standard conceptual model for epistemic situa-
tions and change, allowing to represent arbitrary events, including an algorith-
mic definition of how the events affect the epistemic models. Together with its
conceptual clarity, this makes DEL a promising framework for knowledge- or
belief-based parts of computer games. Making planning into a crucial element
of narrative design for computer games has been proposed by Riedl and Young
[15, 16]. Combining these aspects, we here propose to study a general framework
of DEL planning.

The classic planning problem consists of a description of the world, the agent’s
goal and a description of the possible actions in some appropriate formal lan-
guage. A planning algorithm consists of sequences of possible actions which when
executed will achieve the goal.

To attempt an initial definition of a DEL planning problem, we fix a pointed
epistemic model (M, w) and a finite set E of pointed event models. As mentioned
at the end of § 2, we consider the tree LS of legal sequences σ from E as our space
of possible plans, and we allow to impose additional rules on when events can
occur in the form of specifying a subtree T ⊆ LS.

Definition 6 (Absolute DEL planning problem) Given (M, w), E, a sub-
tree T ⊆ LS, and a formula ϕ ∈ LDEL, produce a sequence σ ∈ T such that
M⊗ σ |= ϕ.

The absolute DEL planning problem does not talk about agents and whether
the plan is realizable by a single agent. In fact, the DEL formalism as described
in § 2 does not talk about whether events are performed as actions of agents, and
of which agents. We have already seen in our Thief example that in practical
applications, it will matter a lot whether certain events are within the power
of a particular agent. In order to represent this, we consider a function power :
A → ℘(E) that tells us which events an agent can bring about. Here, if i ∈ A,
we interpret E ∈ power(i) as “agent i can perform action E”. If σ is a sequence
of actions, we write σ ∈ power(i) if for each E ∈ Set(σ), we have E ∈ power(i).
Similarly, for a partial sequence, i.e., a partial function σ̂ : {0, . . . , N} → E (for
some N), we write σ̂ ∈ power(i), if for all n ∈ dom(σ̂), we have σ̂(n) ∈ power(i).8

Definition 7 (Single-agent DEL planning problem) Given (M, w), E, a
subtree T ⊆ LS, a function power, an agent i ∈ A, and a formula ϕ ∈ LDEL,
produce a sequence σ ∈ LS such that M⊗ σ |= ϕ and σ ∈ power(i).

The single-agent DEL planning problem is asking for a plan that can be exe-
cuted by the agent alone, assuming no (interfering) actions of other agents. More
interesting (but also harder) is therefore the following problem that essentially
asks for a winning strategy in the usual game-theoretic sense.
8 These definitions are easily extended to sets of agents if we want to include actions

that can only jointly be performed by a group of agents.
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Definition 8 (Adversarial DEL planning problem) Given (M, w), E, a sub-
tree T ⊆ LS, a function power, an agent i ∈ A, and a formula ϕ ∈ LDEL, produce
a partial function σ̂ : {0, . . . , N} → E such that

1. σ̂ ∈ power(i),
2. there is a sequence σ ∈ T such that σ̂ ⊆ σ, and
3. for all sequences σ ∈ T with σ̂ ⊆ σ, we have M⊗ σ |= ϕ.

Note that this formulation assumes a kind of worst-case scenario, or in game-
theoretic terms, a zero-sum game. Ultimately, we would like to depart from the
extremes embodied in the previous two definitions (assuming no interference ver-
sus assuming complete opposition) and study a general strategic DEL plan-
ning problem where agents take (interfering or cooperative) actions of third
agents into account, and may to some extent try to anticipate them. However,
while there exists work in the context of DEL on defining the information con-
tent of events in strategic settings [8] and modeling goals and preferences [21],
things are far less clear in such a case, and we therefore leave it to future work.

5 Discussion and Future Work

We gave the our discussion of §§ 3 and 4 in the framework of DEL. Of course, the
most interesting applications are not about knowledge, but rather about belief,
so a first step would be to phrase the planning problems of this paper in dynamic
doxastic logic instead of DEL. There are a number of simplifications we made in
our set-up that could be removed: we did not consider the possibility of events
that change the valuation function (cf. [22]) nor the possibility that an agent’s
ability to perform an action may change over time. Generalizing our framework
to include these possibilities would be a natural next step.

Of course, the main technical issue is that in general it may be infeasible to
solve the DEL planning problem. The search space can easily be infinite, and
even if it is finite, it can be very large. Therefore, two crucial topics for further
research will be the following:

– Examine the long-term expansion of models under iterated updates (related
to [18], but we are foremost interested in finite models) and identify natu-
ral and general classes of actions that allow arguments such as our crucial
Proposition 4 in § 3.

– Find compact representations of models (cf. techniques from model check-
ing [5]) on which the product operation can operate directly.

Finally there is the large and mature field of “classic” planning with many
effective and proven optimization strategies and other techniques. Some of these
may be directly applicable to DEL planning or inspire suitable variants.
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