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Abstract. We show how to embed a framework for multilateral ne-
gotiation, in which a group of agents implement a sequence of deals
concerning the exchange of a number of resources, into linear logic.
In this model, multisets of goods, allocations of resources, prefer-
ences of agents, and deals are all modelled as formulas of linear logic.
Whether or not a proposed deal is rational, given the preferences of
the agents concerned, reduces to a question of provability, as does
the question of whether there exists a sequence of deals leading to an
allocation with certain desirable properties, such as maximising so-
cial welfare. Thus, linear logic provides a formal basis for modelling
convergence properties in distributed resource allocation.

1 INTRODUCTION
AI applications often involve some form of multiagent resource al-
location [1]: e.g., in cooperative problem solving, we need to find an
allocation of resources to agents that will allow each agent to com-
plete the tasks she has been assigned; in the context of electronic
commerce applications, the system objectives will often be defined
in terms of properties of the allocations of resources that are being
negotiated. Studies of resource allocation in AI may range from the
design of negotiation strategies, over the game-theoretical analysis
of allocation problems, to the complexity-theoretic study of relevant
optimisation problems. While some of the work in the field is very
pragmatic in nature, and rightly so, at one end of the spectrum, fun-
damental research in AI should (and does) develop frameworks for
the precise representation and formal study of systems for multiagent
resource allocation and negotiation. Logic suggests itself as a tool for
this purpose, and there have been a number of contributions of this
kind [4, 5, 8, 11, 12, 15, 16], some of which we shall review below.

In this paper, we show how to embed a framework for distributed
resource allocation [2, 3], in which a group of agents implement a
sequence of multilateral deals concerning the exchange of a number
of resources, into linear logic [6]. In our model, multisets of goods,
allocations of resources, preferences of agents, and deals are all mod-
elled as formulas of linear logic. Whether or not a proposed deal is
rational, given the preferences of the agents concerned, reduces to a
question of provability, as does the question of whether there exists
a sequence of deals leading to an allocation with certain desirable
properties, such as maximising social welfare.

There have been a number of previous contributions that use dif-
ferent kinds of logical frameworks to model a variety of aspects of
negotiation in multiagent systems. In an early contribution to the
field, Fisher [5] shows how to reduce the problem of constructing
coherent negotiation dialogues to (distributed) theorem-proving. In-
deed, most work on logic-based approaches to negotiation and re-
source allocation deals with this domain of “symbolic negotiation”.
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Sadri et al. [16], for instance, do so in the framework of abductive
logic programming. Several authors have recognised that, due to its
resource-sensitive nature, linear logic is particularly suited to mod-
elling resource allocation problems [8, 11, 15]. In particular, as far
as modelling the complex preferences of agents over bundles of re-
sources are concerned, we build directly on our recent work [15], in
which we have developed bidding languages for multi-unit combina-
torial auctions based on linear logic.

Two contributions on logic-based approaches to resource alloca-
tion relate to the same kind of resource allocation framework we shall
be working with here: Endriss and Pacuit [4] develop a modal logic
to study the convergence problem in distributed resource allocation;
and Leite et al. [12] show how to map the problem of finding an al-
location that is socially optimal (for a wide variety of fairness and
efficiency criteria) into the framework of answer-set programming.

The remainder of the paper is organised as follows. In Section 2,
we briefly review the distributed resource allocation framework we
shall adopt and Section 3 covers the necessary background on linear
logic. In Section 4, we define classes of valuations on multisets of
goods and in Section 5 we model social welfare of allocations. In
Section 6, we present a language to express deals and in Section 7
we define the relevant notions of rationality and we prove the results
connecting deals and social welfare. Section 8 concludes.

2 MULTIAGENT RESOURCE ALLOCATION

In this section, we briefly review the the framework of the distributed
approach to multiagent resource allocation [2, 3]. (There are two dif-
ferences between the cited literature and our presentation here: we
allow for resources to be available in multiple units and we restrict
utility values and prices to integers.) In the body of the paper, we will
then show how to model this framework in linear logic.

Let N = {1, . . . , n} be a finite set of agents and let M be a
finite multiset of resources. We denote the set of types of resources
in M by A (as these will be the atoms of our logical language).
An allocation is a mapping α : M → N ∪ {∗} from resources to
agents; indicating for each item who receives it or whether it does
not get allocated at all (∗). Ai = α−1(i) is the multiset of resources
given to agent i ∈ N . We will refer to allocations both in terms of α
and A. A deal takes us from one allocation to the next; i.e., we can
think of it as a pair of allocations. Note that there are no restrictions
as to the number of agents or resources involved in a single deal. Of
special interest are structurally simple deals: for instance, 1-deals are
deals involving the reassignment of a single resource only.

Each agent i ∈ N is equipped with a valuation function vi :
P(M) → N (including 0), mapping multisets of resources she may
receive to their value. The valuations of individual agents can be used
to define what constitutes a desirable allocation. We will concentrate
on two economic efficiency criteria [1]: (1) the (utilitarian) social



welfare of an allocation A is defined as swu(A) =
P

i∈N vi(Ai)
and we shall be interested in finding allocations that maximise so-
cial welfare; (2) an allocation is Pareto optimal if no other allocation
gives higher valuation to some agents without giving less to any of
the others (this is a considerably less demanding criterion).

What kinds of allocations can be reached from a given initial al-
location depends on the range of deals we permit. A deal is called
individually rational if it is possible to arrange side payments for the
agents involved such that for each agent her gain in valuation out-
weighs her loss in money (or her gain in money outweighs her loss
in valuation). The payments of all agents need to add up to 0.

It is possible to show, rather surprisingly, that any sequence of
individually rational deals will always converge to an allocation with
maximal social welfare [17]. The proof of this result crucially relies
on the insight that increases in social welfare are in fact equivalent to
individual rationality [3]. For certain restricted classes of valuation
functions it is furthermore possible to prove convergence by means
of structurally simple deals [2].

To be precise, social welfare increase is equivalent to individual
rationality in case valuation functions are real-valued. In this paper,
we assume that valuation functions are integer-valued; we will adapt
the definition of individual rationality accordingly and consequently
obtain a slightly different (namely, stronger) convergence result.

3 LINEAR LOGIC

We briefly present some essential features of linear logic (LL); for
full details, we refer to Girard [7] and Troelstra [18]. LL provides
a resource-sensitive account of proofs by controlling the amount of
formulas actually used. In classical logic, sequents are defined as Γ `
∆, where Γ and ∆ are sets. According to the structural rules of the
Gentzen sequent calculus, we can for example delete a second copy
of a formula. In LL, structural rules are dropped, so Γ and ∆ are to
be considered multisets of formulas. The absence structural rules has
important consequences on the logical connectives we can define.

Given a set of positive atoms A, the language of LL is defined as
follows (where p ∈ A): L ::=

p | 1 | ⊥ | > | 0 | L⊥ | L⊗ L | L� L | L⊕ L | L& L | !L | ?L

Linear negation (·)⊥ is involutive and each formula in LL can be
transformed into an equivalent formula where negation occurs only
at the atomic level. The conjunction A ⊗ B (“tensor”) means that
we have exactly one copy of A and one copy of B, no more no less.
Thus, e.g., A⊗ B 0 A. We might say that in order to sell A and B,
we need someone who buysA andB, not just a buyer forA. We will
not directly use the disjunction A � B (“par”); rather we use linear
implication: A ( B := A⊥ � B. Linear implication is a form of
deal: “forA, I sell youB”. The additive conjunctionA&B (“with”)
introduces a form of choice: we have one of A and B and we can
choose which one. For example, A & B ` A, but we do not have
them both:A&B 0 A⊗B. The additive disjunctionA⊕B (“plus”)
means that we have one ofA andB, but we cannot choose, e.g.,A `
A⊕B butA⊕B 0 A&B. The exponentials !A and ?A reintroduce
structural rules in a local way: !-formulas licence contraction and
weakening on the lefthand side of `; ?-formulas licence structural
rules on the right. Intuitively, exponential formulas can be copied and
erased; they are relieved from their linear status and can be treated as
elements of sets again.

We will use the intuitionistic version of LL (ILL), obtained by
restricting the righthand side of the sequent to a single formula, so we

will not use ? and�. In fact, we will mostly use ILL augmented with
the global weakening rule (W), also known as affine logic [10, 18]:

Γ ` ∆ W
Γ, A ` ∆

The rules of the sequent calculus for ILL are shown in Table 1 [18].
We can restrict attention to the following fragments: intuitionistic

multiplicative linear logic (IMLL) using only ⊗ and (; intuition-
istic multiplicative additive linear logic (IMALL) using only ⊗, (,
& and ⊕; and Horn linear logic (HLL). In the latter, sequents must
be of the form X,Γ ` Y [9], where X and Y are tensors of pos-
itive atoms, and Γ is one of the following (with Xi, Yi being ten-
sors of positive atoms): (i) (X1 ( Y1) ⊗ · · · ⊗ (Xn ( Yn), (ii)
(X1 ( Y1) & · · ·& (Xn ( Yn).

For these fragments, we have the following proof-search complex-
ity results. MLL is NP-complete and so is MLL with full weakening
(W) [13]. The same results apply for the intuitionistic versions. HLL
is NP-complete, and so is HLL + W [9]. MALL and IMALL are
PSPACE-complete [14].

ax
A ` A

Γ, A ` C Γ′ ` A
cut

Γ, Γ′ ` C

MULTIPLICATIVES

Γ, A, B ` C
⊗L

Γ, A⊗B ` C

Γ ` A Γ′ ` B ⊗R
Γ, Γ′ ` A⊗B

Γ ` A Γ′, B ` C
(L

Γ′, Γ, A ( B ` C

Γ, A ` B
(R

Γ ` A ( B

Γ ` C 1L
Γ, 1 ` C

1R` 1

ADDITIVES

Γ, Ai ` C
&L

Γ, A0&A1 ` C

Γ ` A Γ ` B
&R

Γ ` A&B

Γ, A ` C Γ, B ` C
⊕L

Γ, A⊕B ` C

Γ ` Ai ⊕R
Γ ` A0 ⊕A1

0L
Γ, 0 ` C

>R
Γ ` >

EXPONENTIALS

Γ, A ` C
!L

Γ, !A ` C

!Γ ` A
!R

!Γ `!A

STRUCTURAL RULES

Γ, A, B, Γ′ ` C
P

Γ, B, A, Γ′ ` C

Γ, !A, !A,` C
!C

Γ, !A ` C

Γ ` ∆
!W

Γ, !A ` ∆

Table 1. Sequent Calculus for Intuitionistic LL

4 VALUATIONS
Recall thatM is a finite multisets of resources and thatA is the set of
distinct (types of) resources inM. We callA the atoms, and we will
build a logical language based on these atoms. In this section, we will



show how to represent different classes of valuation functions over
the powerset of M in LL.

There is an isomorphism between multisets and tensor formulas of
atoms (up to associativity and commutativity):

{m1, . . . ,mk} ∼= m1 ⊗ · · · ⊗mk

Thus, we can represent each subset X ⊆ M as a tensor product.
Moreover, if M ∼= A and N ∼= B, then the (disjoint) union of M
and N is isomorphic to A⊗B.

We want to define languages to encode valuation functions v :
P(M) → N (including 0), mapping subsets of M to values. To
model values, assume a finite set of distinct weight atoms W =
{w1, ..., wp}. In fact, we will use just one weight atom u. We write
uk for the tensor product u⊗· · ·⊗u (k times). To associate weights
with numbers, we define a function val : W → N, with val(u) = 1.
Let W⊗ be the set of all finite tensor products of atoms in W ,
modulo commutativity (including the “empty” product 1). That is,
W⊗ = {1, w1, w2, w1 ⊗ w2, . . .}. We extend val to W⊗ by stipu-
lating val(1) = 0 and val(ϕ⊗ψ) = val(ϕ)+val(ψ). In particular,
this means that val(uk) = k.

We first define atomic valuations, which specify which value w is
associated to a multiset M .

Definition 1. An atomic valuation is a formula M ( w, where M
is a tensor product of atoms in A and w ∈ W .

We will consider various languages to express valuations; they all
share the same definition of generated function.

Definition 2. Every formula ϕ in any of our languages generates a
valuation vϕ mapping multisets X ⊆M to their value:

vϕ(X) = max{val(w′) | w′ ∈ W⊗ and X,ϕ ` w′}

In the case of atomic valuations ϕ = (M ( w), this simply says
that vM(w(X) = w whenever X is equal to (or a superset of) the
multiset isomorphic to M , and vM(w(X) = 0 otherwise.

In case the only weight atom used is u, i.e., if W = {u}, then
Definition 2 can be restated as follows:2

vϕ(X) = max{k | X,ϕ ` uk}

Now, consider the following classes of valuations.

Definition 3. Let v : P(M) → N; we say that:
• v is monotonic if M1 ⊆M2 implies v(M1) ≤ v(M2).
• v is additive if v(M) =

P
m∈M v({m}) for all M ⊆M.

• v is dichotomous if v(M) = 0 or v(M) = 1 for all M ⊆M
• v is 0-1 if it is add. and v({r}) = 0 or v({r}) = 1 for all r ∈M.

We can define the following languages to encode valuations. They
are obtained by restricting the language of LL.

VAL := X ( w | VAL & VAL

ADD := a ( w | ADD ⊗ ADD

DIC := X ( 1 | X ( u | DIC & DIC

01 := a ( 1 | a ( u | 01 ⊗ 01
The class of all valuations from P(M) to N can be generated by the
formula &X⊆M(X ( w), which encodes the graph of the func-
tion v.
2 If we define u0 = 1, by weakening (which represents monotonicity), from
` 1 we get Γ ` 1, for any Γ. So every valuation produces at least u0, since
it will always be satisfied by any allocation (also by allocating nothing),
e.g., p, p⊗ q ( uk ` 1 will be provable.

Proposition 4. The following facts hold:
• VAL generates all valuations v : P(M) → N.
• VAL under weakening generates all monotonic valuations and

only those.

For a proof, we refer to [15]. The next result is immediate, and we
omit its proof for lack of space.

Proposition 5. The following facts hold:
• DIC generates all dichotomous valuations and only those.
• 01 generates all 0-1 valuations and only those.

Moreover, we have:

Proposition 6. ADD generates all additive valuations and only
those.

Proof. Consider any formula ADD = (a1 ( w1) ⊗ · · · ⊗ (ap (
wp). We prove that it generates an additive function. Let uk =
vADD(M). Since a singleton can satisfy at most one implication in
ADD, for any m ∈ M , we have vADD({m}) = wi if m = ai, oth-
erwise we have vADD({m}) = 0. If we take all the mi providing
non-zero utility, we can build the following proof (by ⊗R and ⊗L):

m1, al1 ( wl1 ` wl1 . . . mk, alk ( wlk ` wlk

m1, . . . , mk, (al1 ( wl1 )⊗ · · · ⊗ (alk ( wlk ) ` wl1 ⊗ · · · ⊗ wlk

If (al1 ( wl1)⊗· · ·⊗(alk ( wlk ) is not equal to ADD, then we can
use weakening and ⊗L to get the full formula. Thus M, ADD provesP

m∈M{v({m}) | v({m}) 6= 0}. That the value actually equals the
maximum follows, since all the non-zero elements are there.

Conversely, take an additive function v, define the additive for-
mula as follows. For all m ∈ M, consider v({m}) = hm. If
h 6= 0, write (m ( hm), otherwise write nothing. The expression
⊗m∈M(m ( hm) generates v.

5 ALLOCATIONS
In this section, we show how to represent allocations (and their
properties) in LL. We will model an allocation producing a certain
social welfare as a proof for a particular LL sequent. Recall that
N = {1, ..., n} is the set of agents. We add to the set of atoms
A = {p1, . . . , pm} all atoms pj

i , with i ≤ m and j ≤ n, to express
that the good pi is allocated to the individual j. From now on, we
will assume that valuations are defined using these indexed names
of resources; agents must express their preferences using the set of
atoms Aj = {pj

1, . . . , p
j
m}.

To express that each (copy of a) resource may be given to any of
the agents (but not to more than one), we use the following formula:

MAP :=
O
p∈A

[&j∈N (p ( pj)]M(p) (1)

Following [15], we now define the concept of allocation sequent,
which encodes a feasible allocation returning a particular social wel-
fare. We take M and N to be fixed, and MAP to be defined accord-
ingly.

Definition 7. The allocation sequent for value k and valuations
VAL1, . . . , VALn is defined as the following LL sequent:

M,MAP, VAL1, . . . , VALn ` uk

The following proposition states the relationship between proofs and
allocations.



Proposition 8. Given n formula in a given class of formulas VAL,
every allocation A with value k provides a proof π of an allocation
sequent for k, and vice versa, every proof π of an allocation sequent
for k provides an allocation α with value k.

For the proof we refer to [15]. Given an allocation sequent, we can
read the allocation A considering the atoms that have been actually
used in the proof.

Example 9. Consider the following allocation sequent:

p, q, r,

MAPz }| {
p ( p1 & p ( p2, q ( q1 & q ( q2, r ( r1 & r ( r2,

p2 ⊗ q2 ( w, r1 ( v ` w ⊗ v

We can retrieve A from the proof π of the sequent, which contains
the following steps:

p2, q2 ` p2 ⊗ q2 w ` w
p2, q2, p2 ⊗ q2 ( w ` w

r1 ` r1 v ` v
r1, r1 ( v ` v

So the multiset of allocated goods, A = {p2, q2, r1}, can be read
from the axioms in π.

Define Ai ⊆ A to be the multiset of atoms allocated to agent i:
{pi | pi ∈ A}. We can state the definitions of social welfare within
our framework as follows.

Definition 10 (Utilitarian social welfare).

swu(A) = max{k | A, VAL1, . . . , VALn ` uk}

We can consider a particular proof π of an allocation sequent and
define the value of the allocation in that proof as swπ

u(A) = uk,
where A, VAL1, . . . , VALn ` uk is in π. The value of the allocation
for a certain agent i is given by: uπ

i (A) = wi, where A, VALi `
wi is in π. So, for example, the utilitarian social welfare of a given
allocation sequent is given by the sum of the individual utilities:

uπ
1 (A)⊗ · · · ⊗ uπ

n(A) = swπ
u(A)

Slightly abusing the notation, we identify the value swu(A′) with the
value k of the tensor formula uk. Given two allocations A and A′,
since we are using LL with (W), we have that swu(A) ≤ swu(A′)
iff swu(A′) ` swu(A). In order to define a strict order, we put
swu(A) < swu(A′) iff swu(A′) ` swu(A)⊗ u.

We can present now the definition of Pareto optimality.

Definition 11 (Pareto optimality). An allocationA is Pareto optimal
iff there is no allocation A′ such that sw(A′) ` sw(A)⊗ u and for
all i, ui(A) ` ui(A

′).

6 DEALS
In this section, we define a general language to express deals, then in
the next section we will see what it means for an agent to be willing
to accept a deal. The language we define will be more general than
one would expect, since we consider any kind of formula to be a deal.

We will not put structural constraints on the formula expressing
deals; rather, the condition we will put on the feasibility of the nego-
tiation will provide the expected meaning of deals, namely that they
transform an allocation A into and allocation A′.

Definition 12. A deal is any formula of linear logic built over the
indexed alphabet Aj .

So for example a single atom pj means that p goes to agent j. The
meaning of a deal of the form p1 ( q3 is simply the agent 1 loses p
and the agent 3 gets q.

Definition 13. We say that an allocation A′ is obtained from A by a
DEAL iff

A, DEAL ` A′

The fact that we use provability to model the passage from a A to A′

amounts to assuming that the deals are feasible in the sense that they
concern the resources in A. For example, take p1 ( p2; if agent 1
does not own p in A, then such a deal will not be used.

Remark 14. There are some situations we are excluding. The valua-
tions we are considering are defined on multisets that are represented
in our language by tensor formulas. We will not consider here valua-
tions defined on other types of formulas, as options like a& b (agent
has the choice) or a ⊕ b (agent doesn’t have the choice): it would
require a rather different definition of valuation functions. We leave
such extensions to future work.

We discuss some examples. Deals that simply move a single resource
p from one agent to another (1-deals) can be modelled as implica-
tions of the form pi ( pj . A swap deal [17] between individu-
als is defined by the following formula (pi ( pj) ⊗ (qj ( qi),
which means that i gives p to j and j gives q to i. For example, let
A = {p1, q2, r3}, we can get A′ = {p2, q1, r3} by the swap:

p1, q2, r3, (p1 ( p2)⊗ (q2 ( q1) ` p2 ⊗ q1 ⊗ r3

Note that, according to this definition, there might be deals that
change nothing, e.g., pi ( pi. Moreover, we can also consider deals
that simply provide a resource p to a certain agent i, pi. In this way,
we can for example model, as a form of negotiation, the passage
form a partial allocation, in which some goods were not allocated, to
a total one:

p1, q2| {z }
A

, p1 ( p2, q3| {z }
DEAL

` p2 ⊗ q2 ⊗ q3| {z }
A′

Cluster deals [17], where agents exchange more then one item, can
be modelled using tensors: pi ⊗ qi ⊗ ri ( pj ⊗ qj ⊗ rj , meaning
that i gives one p, one q and one r to j.

The language of LL allows for expressing deals that entail some
forms of choice. Let us call them optative deals. So, for example,
(p1 ( p3) & (p2 ( p3) means that 3 would get p from 1 or from 3
(but not from both), or (p1 ( p2) & (p1 ( p2) means that 1 would
give p to 2 or to 3 (but not to both).

Using the distributivity law of LL:

A� (B & C) a` (A�B) & (A� C),

we can write optative deals in the following forms. We can express
deals like “someone gives p to i” as follows:

(p1 ⊕ · · · ⊕ pn) ( pi

Symmetrically, we can express “i gives p to someone”:

pi ( (p1 & · · ·& pn)

In an analogous way, we can consider “i gives something to j” and
“i gets something from j”.

Taking the language of deals in its full generality, we can also
define transformations of deals, for example (pi ( pj) ( (rj (
ri), the intuitive meaning of which is that j would give r to i if the
deal (pi ( pj) has been accepted in the negotiation.



Example 15. Let A be {p1, r3, p1, q2} and the deals p1 ( p2 and
q2 ( q3, meaning that 1 gives on p to 2 and 2 gives one q to 3.

The following proof shows that A′ = {p1, r3, p2, q3} is obtained
from A:

p1, r3 ` p1 ⊗ r3

p1, p1 ( p2 ` p2 q2, q2 ( q3 ` q3

⊗ L
p1, q2, p1 ( p2, q2 ( q3 ` p2 ⊗ q3

⊗ L
p1, r3, p1, q2, p1 ( p2, q2 ( q3 ` p1 ⊗ r3 ⊗ p2 ⊗ q3

We can prove that the language of deals is sufficiently powerful to
express every transformation of allocations A, A′.

Proposition 16. Let A and A′ be two allocations. Then there exists
a formula DEAL in the deal language such that

A, DEAL ` A′

The proof is obvious in the sense that it is enough to consider the
formula A ( A′ as a deal. We can define a general notion of nego-
tiation as follows.

Definition 17. A negotiation is a sequent A, DEAL1, . . . , DEALl `
A′ where DEAL1, . . . , DEALl are accepted deals according to some
criterion.

We can also consider the feasibility of an allocation with respect a
given multiset of resources as follows:

M,MAP ` A (2)

Here, MAP is the formula defined as in (1). The provability of (2)
entails that, given the actual multiset of resourcesM, A is a feasible
way to assign goods.

7 RATIONALITY OF DEALS
In this section, we present some conditions that specify when an
agent would accept a deal. Basically, according to the relevant lit-
erature [3], we distinguish two cases, one with side payments and
one without. A payment function is a function p : N → Z such thatX

i∈N

p(i) = 0

Using side payments, the notion of individual rationality can be de-
fined as follows. A deal is individually rational iff whenever A′ is
obtained byA by means of that deal, then there exist a payment func-
tion p such that for all i ∈ N :

vi(A
′) > p(i) + vi(A)

We rephrase the notion of payment function considering formulas in
our language as side payments. The requirement that the prices actu-
ally paid must sum up to zero is here interpreted as the provability of
the sequent containing positive and negative payments. Intuitively,
there should be a matching between who pays and who gets pay-
ments.

Definition 18. A side payment is a sequent X a` Y , where X and
Y are tensors of u, that is provable in LL. We call the formulas on
the left negative payments and those on the right positive payments.

We could also consider more general formulas as side payments. As
an example of possible generalisation, we can consider an individual

i who would accept to face a loss of three units of her utility for get-
ting one q; it can be modelled using the formula u3 ( qi. However,
it is not clear how to define a notion of rationality for side payments
consisting of general formulas.

Using payment sequents we can rephrase the notion of individual
rationality as follows.

Definition 19. Given a deal DEAL such that A′ is obtained by A
by means of DEAL and a side payment X a` Y , we say that DEAL

is individually rational iff for all i, ui(A
′
i), Xi ` ui(Ai) ⊗ Yi and

there exists a j such that: uj(A
′), Xj ` uj(Aj) ⊗ u ⊗ Yj , where

X1 ⊗ · · · ⊗Xn
∼= X and Y1 ⊗ · · · ⊗ Yn

∼= Y .

Note that, since we are working with integers, we do not require all
agents to experience a (possibly infinitesimally small) improvement,
but rather ask that no agent suffers a loss, and at least one of them
gains one full unit u. We can derive the case without side payments,
by taking the payment sequent to be 1 ` 1, yielding the following
definition of cooperative rationality [3]:

Definition 20. A deal formula DEAL such that A, DEAL ` A′ is
cooperatively rational iff for all i, ui(A

′) ` ui(A) and there exists
a j such that uj(A

′) ` uj(A)⊗ u.

In what follows, w.l.o.g., we will consider payments in which, for
each i, (at least one of) Xi or Yi is the tensor unit 1.

Example 21. Suppose we want to determine whether a deal taking
us from allocation A to A′ is individually rational. Let u1(A

′) =
u15, u2(A

′) = u10, u3(A
′) = u5 and u1(A) = u2, u2(A) = u1,

u3(A) = u6. We can define Xi and Yi as follows:

u15 ` u2 ⊗ u6 Y1 = u6

u10 ` u1 ⊗ u2 Y2 = u2

u5, u8 ` u6 X3 = u8

We have that positive and negative payments match: u8 a` u6⊗u2.

We can now state the relationship between individual rationality and
social welfare by means of the following theorems. The next result
corresponds to [3, Lemma 1], except that we get a more precise char-
acterisation in the context of integer valuations: a deal is individually
rational if and only if it increases social welfare by at least one unit.

Theorem 22 (Rational deals and social welfare). A deal formula
DEAL with A, DEAL ` A′ is individually rational iff swu(A′) `
swu(A)⊗ u.

Proof. (⇒) Let DEAL be individually rational. We have that for all
i, there are payments such that ui(A

′), Xi ` u(Ai)⊗ Yi. Moreover,
there is an agent h such that uh(A′), Xh ` u(Ah) ⊗ u ⊗ Yh. Let
i1, ...ik be the set of agents which gets negative payments (those for
which Yi is 1) and lk+1, . . . , ln those with positive payments (those
for which Xi is 1). From sequents uij (A

′), Xj ` uij (A), by tensor
introduction, we get:

ui1(A
′), . . . , uik (A′), Xi1 , . . . , Xik ` ui1(A)⊗· · ·⊗uik (A) (3)

Now consider the negative payments uli(A
′) ` uli(A) ⊗ Yli . We

can split uli(A
′) in two tensors, say u′li and u′′li , such that u′li `

uli(A) and u′′li ` Yli . In case h is in this group, then we have that
u′h ` uh(A)⊗ u. If h was in the previous group, then his utility has
already been considered. So, taking all the u′li ` uli(A), by tensor
introduction, we have:

ui1(A
′), . . . , uik (A′), u′lk+1 , . . . , u

′
ln , Xi1 , . . . Xik ` (4)

ui1(A)⊗ · · · ⊗ uik (A)⊗ ulk+1(A)⊗ · · · ⊗ uln(A)



Where the formula on the right hand side amounts to sw(A) ⊗ u.
From all the u′′li ` Xli , we build by introducing tensors:

u′′lk+1 , . . . , u
′′
ln ` Ylk+1 ⊗ · · · ⊗ Yln (5)

Since Ylk+1 ⊗ · · · ⊗ Yln ` Xi1 ⊗ · · · ⊗Xik , we have by cut:

u′′lk+1 , . . . , u
′′
ln ` Xi1 ⊗ · · · ⊗Xik (6)

We can finally conclude again by cut on (6) and (4):

ui1(A
′), . . . , uik (A′), u′lk+1 , u

′′
lk+1 , . . . , uln , u

′′
lnj

`

sw(A)⊗ u

Where ui1(A
′), . . . , u′ln , u

′′
ln is sw(A′). Thus, sw(A′) ` sw(A)⊗u

(⇐) Let A and A′ such that swu(A′) ` sw(A) ⊗ u, where
A, DEAL ` A′. We prove that there exist a payment sequent X a`
Y . We define Zi = up(i) where p(i) is defined as follows:

p(i) = ui(A
′)− ui(A)

Moreover, we chose an individual h and we allocate also
usw(A′)−sw(A). We have that if p(i) is positive, then ui(A

′) `
ui(A) ⊗ Zi and if p(i) is negative ui(A

′) ⊗ Zi ` ui(A). More-
over the individual h will have a strict improvement. The provability
of X a` Y follows then from the fact that p(i) sum up to zero.

In a similar way we can prove a result linking cooperative rationality
and Pareto improvements [3].

The following result shows that allocations with maximal utilitar-
ian social welfare can be reached from any (suboptimal) allocation
A by means of individually rational deals.

Theorem 23. Let A∗ be an allocation with maximal social welfare.
Then for any allocation A with lower social welfare there exists an
individually rational deal DEAL such that A, DEAL ` A∗.

The proof relies on the fact that there always exists a deal to reach
A∗ from A, by Proposition 16. Since social welfare improves, by
Theorem 22 such a deal is individually rational.

It is interesting to remark that, since we are dealing with integer
valuations, if we consider any set of rational deals, each of them must
make social welfare increase by at least one unit. Thus, if k is the dif-
ference between the maximal social welfare and the social welfare of
the initial allocation, then we will always reach an optimal allocation
by means of any sequence of at most k individually rational deals.

8 CONCLUSION
We saw how a framework for multilateral negotiation over multisets
of goods can be embedded in linear logic. Moreover, we defined a
general language to express deals as transformations of allocations,
which have adequately been interpreted as proofs in LL. We also
showed how to use our framework to exhibit some fundamental re-
sults in multiagent resources allocation, and we pointed at some in-
teresting differences with respect to the usual treatment (stemming
from the use of integers for valuations).

Future work should include an investigation of the complexity of
checking the relevant problems, such as feasibility of an allocation
or existence of certain class of sufficient deals. Furthermore, it is
interesting to further investigate the notion of side payments we pro-
vided, since we would be able consider classes of formulas as pay-
ments, which could be interesting for example for modelling agents
with various rationality constraints, or even to investigate different
notions of rationality .
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