
Context-Free Processes and Push-Down Processes

MSc Thesis (Afstudeerscriptie)

written by

Zeno de Hoop
(born August 17, 1991 in Goes, Netherlands)

under the supervision of Prof. Dr. Jos Baeten, and submitted to the
Board of Examiners in partial fulfillment of the requirements for the degree

of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 29, 2017 Prof. Dr. Benedikt Loewe

Prof. Dr. Jos Baeten
Prof. Dr. Wan Fokkink
Prof. Dr. Yde Venema

Contents

1 Introduction 4

2 Preliminaries 6
2.1 Push-Down Automata . 6
2.2 Equivalences on PDA’s . 9
2.3 Process Specifications . 13
2.4 Greibach Normal Form for Sequential specifications 19
2.5 PDA’s & Sequential Algebras 22

3 Head-Recursion in Process Algebras 26

4 Transparency in Process Algebras 37

5 Combining Transparency and Head-Recursion 58

6 Transparency with Modified Process Algebras 67

7 Conclusion 73

1

Abstract

The purpose of this thesis is to examine in which cases context-free
processes and push-down processes are the same. In particular, we de-
part from the well-known case of language-equivalence and instead look
at processes using process theory and more fine-grained equivalences,
such as bisimulation and contrasimulation.

We identify two difficulties when looking at process specifications:
head-recursion and transparency. Here, two new results are achieved:
we prove that when excluding transparency, context-free processes and
push-down processes are equivalent up to at least branching bisimi-
larity without explicit divergences. When including transparency, we
prove that they are equivalent up to at least contrasimulation. Finally,
we present a new result where, when one excludes head-recursion and
adopts a modified definition of sequential composition, one can im-
prove the equivalence to strong bisimulation. Some of the drawbacks
of this modification are discussed as well.

2

Acknowledgements

The first person I would like to extend my gratitude to is my supervisor,
Jos Baeten, without whom the creation of this thesis would not have been
possible. My interest in the topic of this thesis was sparked by his course
”Computability and Interaction”, and it was his enthusiastic teaching that
made this one of the most memorable courses in my Master’s. He also
encouraged us to try our hand at open problems in the field, which was the
starting point of many of the ideas found in this thesis.

This brings me to two other people who deserve acknowledgement. The
first is Sander in ’t Veld, a fellow student in the aforementioned course.
It was one of his ideas, unpolished at the time, that eventually grew into
one of the results found in this thesis (in particular, the result regarding
head-recursion). This unpolished idea was then taken up by Fei Yang, who
developed this idea further, bringing it very close to the final state found in
this thesis. Finding a proof for this idea was one of the major breakthroughs
in the process of writing this thesis, so I thank them both for their insight. I
would further like to thank Fei Yang for having taken the time to proofread
my thesis.

Lastly, this thesis would not have been possible without the support of
the people around me.

3

1 Introduction

The subject of this thesis is the relation between Context-Free Processes
and Push-Down Processes. However, since that statement is, in itself, too
general to be useful, some further clarifications are in order.

To begin with, it is a well-known fact that for each context-free grammar
one can find a push-down automaton that has the same language, and vice
versa. This result can be found in many text-books on process or automata
theory, among which [12].

However, with language-equivalence, one sees the behaviour of a system
as merely the sequence of observable actions. This notion can be widened.
One could for instance look at behaviour of a system as not only the total
of events or actions that it can perform and the order in which they can
be executed (as is the case with language-equivalence), but one could refine
behaviour to include when certain ”decisions” are made. The latter is com-
pletely abstracted from with language-equivalence: a process which decides
its final action as soon as it begins, and one that only decides its final action
at the very end are, under language-equivalence, indistinguishable.

With this in mind, we can make the method and purpose of this thesis
a bit more precise. A process, in the context of this thesis, will be a la-
belled transition system. This is a generalization of non-deterministic finite
automata. This also means that we will only consider discrete processes.

The differences between processes, when given as labelled transition sys-
tems, can be captured by equivalence relations on these systems. Language-
equivalence is the most well-known of these equivalences, but there are many
more. Of particular interest to this thesis will be Bisimulation and Con-
trasimulation. For more information on equivalence relations on transition
systems in general, and a description of the lattice that these relations form,
we refer to [8] and [7].

The primary question of this thesis will therefore be as follows: when is a
process from a context-free grammar the same as a process from a push-down
automaton? In particular, what is the finest equivalence relation realising
this?

The structure of the thesis will be as follows:

• In the first section we present a number of definitions and relevant
previous results.

• In the second section we give a proof of a conjecture from [14]; we
show that for any sequential specification with head-recursion (with-
out transparent names) one can construct a push-down automaton so
that the associated transition systems are equivalent up to branching
bisimulation.

• In the third section we give a proof of another conjecture found in [14];

4

we show that for any sequential specification with transparency (with-
out head-recursion) one can construct a push-down automaton so that
the associated transition systems are equivalent up to contrasimula-
tion.

• In the fourth section we combine the results from the previous two
sections: given a sequential specification, without restrictions on head-
recursion or transparency, one can construct a push-down automaton
so that the associated transition systems are equivalent up to con-
trasimulation.

• Finally, in the fifth section, we show that, if one modifies one rule of
the operational semantics, one can find the same result as detailed in
the third section, but up to strong bisimilarity. We also briefly discuss
the drawbacks of this rule change.

As mentioned, most of the original results of this thesis are proofs of
conjectures found in [14]. We also refer to this work for a more detailed
treatment of many of the topics found in the chapter dealing with the pre-
liminaries.

5

2 Preliminaries

This section covers a large part of the definitions used throughout the paper.
The first subject covered is push-down automata, followed by equivalences
on push-down automata, and finally process theory.

2.1 Push-Down Automata

As mentioned in the introduction, a push-down automaton is a transition
system that goes from state to state by performing actions, and which has
at its disposal a stack that may contain data. We will formally define the
notion of a Push-Down Automaton that will be used in this paper. The
definitions used in this section can be found in, for instance, [12].

Before detailing the definition of a push-down automaton, we will first
define transition systems, as these will be routinely used throughout this
work.

Definition 2.1. Let A be a set of actions, and Aτ = A ∪ {τ}, where τ
is an unobservable action. A labelled transition system T is defined as a
four-tuple (S,→, ↑, ↓) where:

• S is a (possibly infinite) set of states.

• →⊆ S × Aτ × S is a labelled transition. (s, a, t) is usually written as
s
a−→ t.

• ↑∈ S is the initial state.

• ↓⊆ S is the set of terminating states.

We also introduce the following two bits of notation: with � we mean
the transitive-reflexive closure of

τ−→, and→+ indicates the transitive closure
of

τ−→.
We will now define what it means to be a push-down automaton. Infor-

mally, a push-down automaton is a transition system which has access to a
stack in which it can store data and later retrieve it.

Definition 2.2. A Push-Down Automaton (PDA) M consists of a six-tuple
(S,A,D,→, ↑, ↓) where:

• S is a finite set of states.

• A is a finite set of actions.

• D is a finite set of data.

• →⊆ S × Aτ × D⊥ × D∗ × S is a transition relation on S, with every
transition labelled by an element of Aτ ×D⊥ ×D∗.

6

s0

s1

t

b[0, 10]

a[⊥, 0]
a[0, 00]

b[1, 11]

c[1, ε]

c[0, ε]
c[1, ε]

Figure 1: example PDA M

• ↑∈ S is the initial state.

• ↓⊆ S is the collection of terminating states.

This definition needs some further clarification. By Aτ is meant the set
A ∪ {τ}, where τ is an unobservable action, not originally found in A, also
referred to as silent or internal action. By D⊥ is meant the set D ∪ {⊥},
where ⊥ is a special symbol indicating that the stack is empty. Finally, by
D∗ is meant a sequence of data symbols. As in [14], we often let δ and ζ
range over D∗, and use ε for the empty string.

In terms of notation, if (s, a, d, δ, t) ∈→, we will write s
a[d,δ]−−−→ t. The

meaning of this is as follows: if the PDA is at state s, and the top element
of the stack is d, then the PDA can perform action a to reach state t. The
d on top of the stack is replaced by δ. Note that a need not be observable,

and that δ can be empty, that is, ε. A special case of note is s
a[⊥,δ]−−−→ t. This

is an action that can be performed if the stack is empty.

Example 2.1. In figure 1, one can see an example of a PDA. In its initial
state, s0, firstly, M can perform the action a an arbitrary number of times.
Each time a is performed, the symbol 0 is added to the stack. After the
action a has been performed at least one time, M can perform the action
b to go to state s1, which will add a 1 to the stack. At state s1, M can
perform the action b any number of times, and finally it can perform c to
move to the state t. At t one can then perform c as many times as there are
items in the stack.

We will call a string η ∈ A∗ accepted if a PDA can be at a final state
after performing all the actions in η. However, as the previous example
demonstrates, this is not completely unambiguous: depending on whether

7

or not the stack starts empty, and whether or not one requires that the stack
is empty before terminating, both influence the set of accepted strings.

Regarding the initial state of the stack, we will throughout this work
assume that in a PDA’s initial state the stack is empty.

When it comes to the latter issue, there are three possible interpretations:

• FS (Final State): a PDA can terminate when it is in a final state

• ES (Empty Stack): a PDA can terminate whenever its stack is empty

• FSES (Final State Empty Stack): a PDA can terminate when its stack
is empty, and it is in a final state.

So, looking at the previous example, we firstly see that under the FSES
interpretation, the set of accepted strings is {a1+nb1+mc2+n+m|n,m ∈ N}.
This is almost the same as under the ES interpretation, except under the
ES interpretation the empty string is also accepted. Finally, under the
FS interpretation the accepted strings are {a1+nb1+mcp|n,m ∈ N, 0 ≤ p ≤
2 + n+m}.

In this work we will use the FSES interpretation (unless otherwise spec-
ified). For further information on this topic we refer to [14].

Definition 2.3. Under a given interpretation, and given a PDA M , we call
the set L(M) ⊆ A∗ of all strings accepted by M the language of M .

Each PDA can also be transformed into a transition system.

Definition 2.4. Let M = (S,A,D,→, ↑, ↓) be a PDA. We then define
the associated transition system T (M) = (ST (M),→T (M), ↑T (M), ↓T (M)) as
follows:

• ST (M) = S × D∗.

• The contents of the set →T (M) are:

– (s, dζ)
a−→ (t, δζ) iff s

a[d,δ]−−−→ t for all s, t ∈ S, a ∈ A, d ∈ D, and
δ, ζ ∈ D∗.

– (s, ε)
a−→ (t, δ) iff s

a[⊥,δ]−−−→ t.

• The state (↑, ε) is the initial state of T (M).

• The final states of T (M) are ↓T (M)= {(s, δ)|s ∈↓, δ ∈ D∗}.

The last thing we will define in this subsection is the concept of push- and
pop-transitions. In the next section we will prove that under the relevant
equivalence, all PDA’s can be transformed into PDA’s using only push- or
pop-transitions.

8

s2

s1

s3

s0

t4

t1

t0

t2

t5

b c

a

b c

a a

Figure 2: Two language-equivalent transition systems

Definition 2.5. Let M be a PDA which contains the states s, t ∈ S, and
let a ∈ A, and d, e ∈ D. We call a transition a push-transition if it of the

form s
a[⊥,d]−−−→ t or s

a[d,ed]−−−−→ t. We call a transition a pop-transition if it is of

the form s
a[d,ε]−−−→ t.

2.2 Equivalences on PDA’s

In this subsection we will define the behavioural equivalences used in this
work. The definitions are taken from [14], unless otherwise specified. Addi-
tionally, for a more in-depth treatment of behavioural equivalences, we refer
to [7].

Definition 2.6. Two PDA’s M and N are language equivalent iff L(M) =
L(N). This is written as M ≈ N .

Language equivalence is probably the most well-known, and most studied
behavioural equivalence on automata. However, with language equivalence,
a lot of information about the details of the process is lost. We will give an
example of this in terms of transition systems.

Example 2.2. Consider the two transition systems given in figure 2. It
should be clear that these two systems are language equivalent; they both
accept the language {ab, ac}. However, their processes differ: in the left
transition system one first makes an a-step, after which one chooses between
b and c. In the system on the right one first chooses which a-step to take,
after which one is forced to do a b or c step, depending on one’s choice.

If one is interested in the actual details of the process, it is therefore a
good idea to look at a different equivalence, preferably one that takes into

9

account the choice structure of the process. The behavioural equivalence
that we will consider for most of the first part of this work is bisimulation.

Definition 2.7. Let T1 = (S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be tran-
sition systems. A bisimulation between T1 and T2 is an equivalence relation
R ⊆ S1 × S2 such that for all a, s1 ∈ S1 and s2 ∈ S2:

• ↑1 R ↑2.

• If s1Rs2 and s1
a−→ s′1 then there exists an s′2 such that s2

a−→ s′2.

• If s1Rs2 and s2
a−→ s′2then there exists an s′1 such that s1

a−→ s′1.

• If s1 ∈↓1 and s1Rs2 then s2 ∈↓2 and vice versa.

Transition systems T1 and T2 are called bisimilar if there exists a bisimula-
tion between them. The notation for this is T1 - T2.

Revisiting the previous example, we can now see that while the two
transition systems in figure 2 are language-equivalent, they are not bisimilar.
This is becase s0 would have to be related to t0 by virtue of being an initial
state, which would force one to relate s1 to either t1 or t2. However, there is
no c-transition from t1, nor is there a b-transition from t2, so no bisimulation
can be found.

The definition of bisimulation is sometimes also called strong bisimu-
lation. As shown via the example, for strong bisimulation each transition
needs to have an equivalent transition in the other transition system, in-
cluding τ transitions. This requirement is too strong in some situations. We
will therefore introduce the notion of branching bisimilarity.

Definition 2.8. Let T1 = (S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be tran-
sition systems. A branching bisimulation between T1 and T2 is a relation
R ⊆ S1 × S2 such that ↑1 R ↑2, and for all s1 ∈ S1 and s2 ∈ S2, s1Rs2

implies:

• if s1
a−→ s′1 and a 6= τ then there exist s′2, s

′′
2 ∈ S2 such that s2 � s′′2

a−→
s′2, and both s1Rs

′′
2 and s′1Rs

′
2.

• if s1
τ−→ s′1 then there exist s′2 ∈ S2 such that s2 � s′2, and s′1Rs

′
2.

• if s2
a−→ s′2 and a 6= τ then there exist s′1, s

′′
1 ∈ S1 such that s1 � s′′1

a−→
s′1, and both s′′1Rs2 and s′1Rs

′
2.

• if s2
τ−→ s′2 then there exist s′1 ∈ S1 such that s1 � s′1, and s′1Rs

′
2.

• if s1 ∈↓1 then there exists a s′2 ∈ S2 such that s2 � s′2 and both s1Rs
′
2

and s′2 ∈↓2.

10

• if s2 ∈↓2 then there exists a s′1 ∈ S1 such that s1 � s′1 and both s′1Rs2

and s′1 ∈↓1.

The transition systems T1 and T2 are branching bisimilar if there exists a
branching bisimulation between them. The notation for this is T1 -b T2.

Finally, we might want our branching bisimulation to preserve diver-
gences (that is, unbounded sequences of τ actions). This equivalence is
called branching bisimilarity with explicit divergence in [7], but we will fol-
low [14] in calling it divergence-preserving branching bisimilarity.

Definition 2.9. Let T1 = (S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be tran-
sition systems, and let R ⊆ S1 × S2 be a branching bisimulation. This re-
lation R is a divergence-preserving branching bisimulation if for all s1 ∈ S1

and s2 ∈ S2, s1Rs2 implies:

• if there exists an infinite sequence (s1,i)i∈N such that s1,0 = s1, s1,j
τ−→

s1,j+1, and s1,iRs2 for all i ∈ N, then there exists a state s′2 such that
s2 →+ s′2 and s1,iRs

′
2 for some i > 0.

• if there exists an infinite sequence (s2,i)i∈N such thats2,0 = s2, s2,j
τ−→

s2,j+2, and s1Rs2,i for all i ∈ N, then there exists a state s′1 such that
s1 →+ s′1 and s′1Rs2,i for some i > 0.

The transition systems T1 and T2 are divergence-preserving branching bisim-
ilar if there exists a divergence-preserving branching bisimulation between
them. The notation for this is T1 -∆

b T2.

We note that branching bisimilarity and divergence-preserving branching
bisimilarity have been proven to be equivalence relations on labelled transi-
tion systems. For the proofs of this we refer to [6] and [10], respectively.

As mentioned at the end of the previous section, every PDA is, under
a ”relevant equivalence”, equivalent to a PDA with only push- and pop-
transitions. The relevant equivalence is divergence-preserving branching
bisimulation, and we will prove this statement here, as it will make later
results simpler to prove. This theorem can also be found in [14].

Theorem 2.1. For every PDA M there exists a PDA M’ which uses only
push- and pop-transitions, such that T (M) -∆

b T (M ′)

Proof. We prove this by modifying any transitions in M that are not push-
or pop-transitions.

• We construct M ′ by modifying any transition of the type s
a[⊥,ε]−−−→ t by

adding an extra state s0 such that s
a[⊥,d]−−−→ s0

τ [d,ε]−−−→ t, where d is an
arbitrary element from D.

11

• We modify any transition of the type s
a[⊥,δ]−−−→ t where δ = dn...d1 and

n ≥ 2 by adding extra states s0, ..., sn−2 such that:

s
a[⊥,d1]−−−−→ s0

τ [d1,d2d1]−−−−−−→ ...
τ [dn−2,dn−1dn−2]−−−−−−−−−−−→ sn−2

τ [dn−1,dndn−1]−−−−−−−−−−→ t

• Any transition of the type s
a[d/δ]−−−→ t where δ = d0d1..dn 6= ed for some

e can be modified to:

s
a[d/ε]−−−→ s0

τ [α/d0]−−−−→ s1
τ [d0,d1d0]−−−−−−→ ...

τ [dn−2,dn−1dn−2]−−−−−−−−−−−→ sn−2
τ [dn−1,dndn−1]−−−−−−−−−−→ t

Here α can be any single element from D ∪ {⊥}.

For every transition modified this way, it is clear that if we relate s ∈M to
s ∈ M ′, and t ∈ M to s0, ..., t ∈ M ′, we will have a divergence-preserving
branching bisimulation.

2.3 Process Specifications

In the previous section we have specified processes via automata. However,
it is also possible to specify a process via a process specification, which
corresponds to a grammar in language theory. In this section we will define
a syntax and a semantics for this purpose. This section is largely based on
the works of in [14] and [2] (the former, in turn, basing his work on [3] and
[4]).

Definition 2.10. Given an alphabet A and a finite set N of names, a
Recursive Specification S is a set of equations that associates with every
name in N a term, which is constructed as follows:

• 0 and 1 are terms.

• Any N ∈ N is a term.

• For all a ∈ A and a term t, a.t is a term.

• For all terms x and y, the alternative composition x+ y is a term.

A recursive specification is interpreted as follows: to start with, 0 denotes
a transition system with a single initial state, which is not final, and no
transitions, and 1 a transition system with a single initial state, which is
final, and no transitions.

Secondly, in the term a.N , the a. part is called the action prefix. So, if
you have N = a.M , this means that at N , one can perform an action a to
reach M .

Finally, x + y means that one can perform either x, or y. So, to put
everything together, N = a.M+b.1 means that at N , one can either perform

12

a and reach M , or one can perform b and terminate. We will refer to parts
of an alternative composition as summands. So, in this example, a.M and
b.1 are both summands of M .

We will now give the structural operating semantics for the previous
definition. These semantics will allow us to reason what transitions will
be possible in the labelled transition system that describes the context-
free process of the recursive specification. These semantics were originally
proposed by Plotkin in [13], and are also found in [2].

Definition 2.11. The Structural Operating Semantics (SOS) for recursive
specifications is as follows. To begin with, ↓ denotes that a state is final,
and

a−→ is an a-labelled transition. The following rules will define the precise
semantics of these predicates.

For all terms P1, P
′
1, P2, P

′
2, we have the following:

1 ↓

In words: the term 1 always terminates.

a.P
a−→ P

This rule means that if a term has an action prefix, it can make a tran-
sition of that type to that term.

P1
a−→ P ′1

P1 + P2
a−→ P ′1

P2
a−→ P ′2

P1 + P2
a−→ P ′2

The previous two rules say that and alternative composition can make
an a-transition if and only if one of the summands can make an a-transition.

P1 ↓
(P1 + P2) ↓

P2 ↓
(P1 + P2) ↓

These two rules state that an alternative composition of terms can ter-
minate if and only if one of the summands can terminate.

Finally, we have some rules for recursion. Let N be a name in a specifi-
cation, and N = P1. We then have:

13

P1 ↓
N ↓

P1
a−→ P ′1

N
a−→ P ′1

These rules will be the basis for reasoning about transitions and steps of
recursive specifications.

Definition 2.12. We call a recursive specification a Linear Specification if
each term associated with a name is linear. A term is linear if it meets one
of these two requirements:

• it is 0, 1, or of the form a.N , where a ∈ A and N ∈ N

• it is an alternative composition of two linear terms.

Using SOS, a term of a linear specification can also be associated with
a (finite) automaton.

Definition 2.13. Given a linear specification and N ∈ N a term, we will
call T (N) = (S,A,→, ↑, ↓) the finite automaton associated with this term,
which we will be as follows:

• We let the set of states S ⊆ N be those names reachable from N .

• P a−→ Q iff P = a.Q or P contains a summand a.Q.

• N =↑

• P ∈↓ iff P = 1 or P contains a summand 1.

Note that here the choice of the N in T (N) determines what state will
be the initial state, as linear specifications in themselves have no indication
of a ”starting point”.

Example 2.3. Consider the following recursive specification S:

N = a.M + b.1M = a.M

Now say that we’re interested in the associated labelled transition system
TS(N). One could, for this, easily use the construction given in the previous
definition, but by way of illustration we will piece it together here using the
operational semantics.

To begin with, we have:

b.1
b−→ 1

14

N M

1

a

b

a

Figure 3: The labelled transition system TS(N)

So therefore:

a.M + b.1
b−→ 1

Which means that we have:

N
b−→ 1

By the same reasoning, we therefore have:

N
a−→M

And finally, since a.M
a−→M , we also have:

M
a−→M

We finally note that 1 is the only terminating term present. So putting
all this together, we get the labelled transition system seen in figure 3.

Every linear specification therefore can therefore be associated with a
finite automaton. The converse of this statement, moreover, is also true:
given a finite automaton, we can find a linear specification that corresponds
with it up to divergence-preserving branching bisimulation. This theorem
can be found in [2].

Theorem 2.2. For every finite automaton M = (S,Aτ ,→, ↑, ↓) there exists
a linear specification with an initial name I such that T (I) - M

Proof. We begin by associating with each state s ∈ S a name Ns, where
N↑ = I. The terms of each name will depend on the outgoing arrows of the

state. The basic principle is, that for each s
a−→ t, the term for Ns will contain

a.Nt in its summation. Formally, we will define each name as follows:

Ns =
∑

(s,a,t)∈→

a.Nt[+1]s∈↓

15

The tail end of the term is a conditional addition, adding a 1 iff the state
s terminates.

Using this construction, we can then easily verify that T (I) is stongly
bisimilar to M .

To begin with, we will define the relation R as follows:

∀s ∈ S.sRNs

We will now verify that R is indeed a strong bisimulation. We begin by
noting that ↑ RN↑, so the initial states are related.

Secondly, if s
a−→ t then we have a.Nt as a summand of Ns, meaning that

we have Ns
a−→ Nt.

For the third requirement we simply note that if Ns
a−→ Nt then a.Nt

must be a summand of Ns, and so we must have that s
a−→ t.

Lastly, if s terminates, then we have that Ns has as a summand 1, which
means that Ns terminates. The same holds in the opposite direction.

We therefore conclude that R is a strong bisimulation, which concludes
the proof.

We also note that every recursive specification
This shows that linear specifications are sufficient to describe finite au-

tomata. However, since we also wish to look at algebraic specifications of
PDA’s, we need to extend our algebra with another notion: sequential com-
position.

Definition 2.14. Given an alphabet A and a finite set N of names, a
Sequential Specification S is a set of equations that associates with every
name in N a term. These terms are recursively defined as follows:

• 0 and 1 are terms.

• Any N ∈ N is a term.

• For all a ∈ A and N ∈ N , a.N is a term.

• For all terms x and y, the alternative composition x+ y is a term.

• For all terms x and y, the sequential composition x · y is a term.

The sequential composition x · y means that one first performs x, and,
when x successfully terminates, y is performed.

We will now extend the SOS to include sequential composition.

Definition 2.15. The Structural Operating Semantics for sequential speci-
fications is the same as those for recursive specifications, with the following
additions:

16

P1
a−→ P ′1

P1 · P2
a−→ P ′1 · P2

In words, if one can make a transition, this transition will still be possible
if another term is sequentially composed.

P1 ↓ P2
a−→ P ′2

P1 · P2
a−→ P ′2

This rule states that, if, in a sequential composition, the first term can
terminate, one can immediately start making transitions of the next term.

P1 ↓ P2 ↓
(P1 · P2) ↓

This rule states that if two terms terminate, then the sequential compo-
sition of these terms terminates as well.

We will now introduce the notion of sequential term, the primary func-
tion of which is that it makes sequential specifications easier to read.

Definition 2.16. A Sequential Term is a term that only contains 0, 1,
action prefixes, names, and sequential composition (that is, anything but
alternative composition). We say that a specification is in Sequential Form
if each name is associated with an alternative composition of sequential
terms.

Lemma 2.1. Each sequential specification is strongly bisimilar to a sequen-
tial specification in sequential form.

Proof. We will specify how to transform a specification that is not in se-
quential form. The only way that a specification could be not in sequential
form is if there exists a name n ∈ N that contains a summand that is not a
sequential term. For a term to be not sequential, it must contain alternative
composition. This means that N must contain a summand that can be in
one of the following three shapes: α · (β + γ), (β + γ) · δ, or α · (β + γ) · δ,
where α, β, γ, δ are terms.

For the sake of brevity we will only consider the third case, as the pro-
cedure for the previous two can be easily deduced from it. The idea is that
we simply introduce a new name N ′, such that N ′ = β + γ, and we rewrite
the non-sequential term of N as α ·N ′ · δ.

This can be done for every non-sequential term in every non-sequential
name, and even if some of the new names may be non-sequential at first,
since at every rewrite one reduces the depth of the terms by one, we can
conclude that this is a finite process.

17

It is additionally possible to rewrite any sequential specification in such a
way that each summand contains at most two sequentially composed names.

Lemma 2.2. Given a sequential specification S and a name X in S, it is
possible to find a sequential specification S′ such that all summands in all
names in S′ contain at most two sequentially composed names, and TS(X) -
TS′(X).

Proof. This is a relatively simple matter of rewriting. Let S consist of the
names Xi, where i = 0, 1, ..., n. We then introduce new names Yij , where
Yij = XiXj . One can then replace, in any sequential composition, starting
from the left, a set of two names by their joint name. This process can then
be repeated until all sequential compositions of names are of length 2 or
less.

Finally, we will define what we mean by a head-recursive term, as this
will be relevant in later sections, and it is a central notion in one of the new
results presented in this paper.

Definition 2.17. We call a term N Head-Recursive if its alternative compo-
sition contains a term of the form N ·X, where X is a non-empty sequential
composition of names.

2.4 Greibach Normal Form for Sequential specifications

In this section we will detail the Greibach Normal Form (GNF) for sequen-
tial specifications, which was introduced in [11]. This specific form for se-
quential specifications will be used for many results, not least of which the
language equivalence between PDA’s and sequential specifications in GNF,
to be detailed in the next section.

We begin by defining when a term is considered guarded as a basic notion
that will be extended to pre-GNF, which will finally be developed into GNF
proper.

Definition 2.18. A term in a sequential specification S is guarded if it is
of the form a.X, where a ∈ Aτ , and where X is a sequential composition of
one or more names, or 1.

Note that this means that, for instance, terms of the form a.0 are not
considered guarded.

Definition 2.19. A sequential specification S is in pre-Greibach Normal
Form (pre-GNF) if every term associated with a name N meets one of the
following requirements:

• N = 0.

18

• It is an alternative composition of one or more terms. Each of these
terms is of one of the following forms:

– The term is guarded.

– The term is 1.

– The term is of the form N ·X, where N is head-recursive.

Theorem 2.3. Given a sequential specification S, there exists a sequential
specification S′ such that S′ is in pre-GNF, and S - S′.

Proof. We will detail how to obtain S′ by rewriting S in bisimilar ways. To
begin with, one rewrites S to be in sequential form (see previous section).
Any single variables can then be replaced by the term associated with their
names, or, if they are of the shape N = N + x, then the single variable N
in N can be removed entirely (since N - x).

If any alternative composition contains the term N ·X, where X is non-
empty, then this can be rewritten by replacing N with its associated term
in S. If one encounters a name N that has N ·X as a summand, then this
summand is head-recursive and can be left as is.

Pre-GNF is designed to preserve bisimilarity. If one is merely concerned
with language equivalence, then one can use GNF proper:

Definition 2.20. A sequential specification S is in Greibach Normal Form
(GNF) if every term associated with a name meets one of the following
requirements:

• The term is 0

• It is of the form
∑
a.X(+1), where a ∈ A ∨ a = τ , X is a sequential

composition, and (+1) means that it has an optional 1-summand.

Theorem 2.4. For every sequential specification S there exists a sequential
specification S′ such that S′ is in GNF and S ≈ S′

Proof. Firstly, we rewrite S into S′′, where S′′ is in pre-GNF, and S -∆
b S′′

(and therefore S ≈ S′′). We can then simply rewrite any head-recursive
terms N · X into τ.N · X, which will give S′ in such a way that S′′ ≈ S′,
and so by transitivity of language equivalence, we get S ≈ S′.

Now, if we look at transition systems associated with sequential specifi-
cations in GNF, we see a desirable property emerge, namely, that no infinite
or unbounded branching occurs. Additionally, it will contain only one final
state.

Theorem 2.5. If S is a sequential specification in GNF, and no names in
S contain a 1-summand, then TS(I), where I is a name occurring in S, will
have finite, bounded branching, and at most one final state.

19

Proof. Firstly, the states of the transition system will be labelled by the
names in S, all sequential compositions of names reachable from S, and
finally of a state labelled 1. The state labelled 1 will be the only terminat-
ing state, as no terms associated with names have immediate termination.
Additionally, as may be clear, the state labelled I will be the initial state.

Now, for every state X, where X is a non-empty composition of names,
all the outgoing transitions will be dependent on the first name in the se-
quential composition of X. For example, say that X = N ·Y and N contains
the summand a.Z, then in the transition system one will have X

a−→ Z · Y .
This means that every state will have at most as many outgoing arrows as
there are summands in the first name of the sequential composition. Since
this is by definition finite, this means that all branching in TS(I) will be
finite, and therefore bounded.

We will now also define what it means to be a sequential language, and
what it means to be a sequential process.

Definition 2.21. Given a sequential specification S and an initial name I,
we will denote the language associated with this specification as LS(I).

Definition 2.22. Given a sequential specification S and an initial name I,
the Sequential Process PS(I) is the divergence-preserving branching bisimi-
larity class of transition systems that contains the transition system TS(I).

Theorem 2.6. The class of sequential processes is closed under + and ·.

Proof. Let PS(I) and PT (J) be sequential processes, and let S ∩ T = ∅.

• PS(I) + PT (J) = PS∪T (I + J).

• PS(I) · PT (J) = PS∪T (I · J).

Theorem 2.7. The class of sequential languages is closed under union and
concatenation.

Proof. Let LS(I) and LT (J) be sequential languages, and let S ∩ T = ∅.
The proof is then identical to the proof above, except regarding language
rather than processes.

Theorem 2.8. Sequential languages (and therefore by extension sequential
processes) are not closed under intersection and taking the complement.

Proof. This is proven by counterexample. Consider the following two se-
quential specifications:

S = {I = N ·M,N = 1 + a.N · b.1,M = 1 + c.M}

20

T = {J = K · L,K = 1 + a.K,L = 1 + b.L · c.1}

Given these specifications, we know that LS(I) = {anbncm|n,m ≥ 0}
and LT (J) = {anbmcm|n,m ≥ 0}. However, this means that LS(I) ∩
LT (J) = {anbncn|n ≥ 0}, which is well known to be non-sequential [1].

This result also immediately gives us the fact that sequential languages
are not closed under taking complement. Consider the following set-theoretic
fact:

(UC ∪ V C)C = U ∩ V

Therefore, if sequential languages were closed under taking complement,
they would be closed under intersection as well, which is a contradiction.

2.5 PDA’s & Sequential Algebras

This section will contain a number of results pertaining to the link between
push-down automata and sequential specifications. The following proof is
based mostly on [14], and has been slightly modified to suit the purpose of
this work.

Theorem 2.9. Given a sequential specification E in Greibach normal form,
where E contains no transparent names, and an expression Px from this
specification, there exists a Push-Down Automaton (PDA) M (under the
FSES interpretation) consisting of one state such that TE(Px) -∆

b T (M),
on the condition that M may start with a non-empty stack.

Corollary 2.1. Given a sequential specification E in Greibach normal form,
and an name Px from this specification, there exists a Push-Down Automa-
ton (PDA) M (under the FSES interpretation) consisting of two states such
that TE(Px) -∆

b T (M).

Proof. Let E = {Pi =
∑
j∈Ji

aij .ξij |i ∈ I} be a sequential specification in

Greibach normal form (GNF), and x ∈ I. Here ξj is a finite list of sequen-
tially composed names from E.

The claim is now that this sequential specification can be simulated by
a one-state PDA. This PDA is constructed as follows:

• One state, N, where N ↑ and N ↓.

• For all i ∈ I, let N
aj [Pi/ξj]−−−−−→ N for all j ∈ J .

• Let the initial stack consist of the symbol Px.

21

The claim is that TE(Px) -∆
b T (M). Firstly, for TE(Px) the construction

detailed previously is used. Note in particular that this means that for a
state Piχk, (where χk is either empty or a list of names from E) it holds

that Piχk
aj−→ ξjχk iff Pi contains ajξj as part of its alternate composition.

Secondly, for T (M) the standard construction given earlier is used. This
means that in the transition system, for any state (N, sζ) (where sζ is a
stack with the element s on top) we have (N, sζ)

at−→ (N, ρζ) iff in M we

have N
at[s/ρ]−−−−→ N .

Now, to prove that TE(Px) -∆
b T (M), let R ⊆ S× T , where S is the set

of states from TE(Px) and T is the set of states from T (M). We define R
as follows: simply let αR(N,α), where α is a list of names from E.

Now all that is left is to show that this is a branching bisimulation that
preserves divergencies. First, we show that it is a bisimulation. For this, let
αi = Pyβi and αiR(N,αi).

Now, for the first condition of bisimulation, if αi
az−→ αj , this means that

αj = ξzβi, and that, in E, the alternate composition of Py contains az.ξz.

This then implies that in the PDA M we have N
az [Py/ξz]−−−−−−→ N , which implies

that in T (M) we have (N,Pyβi)
az−→ (N, ξzβi), which proves the condition.

Since the reverse of all these implications also holds, this also proves the
second part of the definition. Furthermore, we note that this reasoning also
holds for the terminating states, proving that R is in fact a bisimulation.
Not only does it prove this, but it also shows that TE(Px) and T (M) are in
fact isomorphic.

For the corollary one only needs to add one extra state Q to M, which

will be the initial state instead of N, and the transition Q
τ [⊥/Px]−−−−−→ N . It is

then easy to show that the previous result still holds, although only up to
divergence preserving branching bisimulation.

Corollary 2.2. Under the FS interpretation of PDAs, one additional state
is needed.

Proof. Under the FS interpretation one will need to add an additional state
N ′, which will be the only terminating state (meaning that N will no longer

terminate), and the transition N
τ [⊥/ε]−−−−→ N ′. It can easily be checked that

this PDA is still branching bisimilar with divergencies to E.

This result can also be used to get another classic result pretty much
immediately:

Theorem 2.10. Given a sequential specification S and an initial name I,
there exists a PDA M such that LS(I) ≈ L(M).

Proof. Every sequential specification can be transformed to GNF under lan-
guage equivalence, after which the only thing left to do is construct a fitting
PDA as detailed above.

22

One can also prove the converse (adapted from [12]).

Theorem 2.11. Given a PDA M , there exists a sequential specification S
with an initial state I such that S is in GNF, and L(M) ≈ LS(I).

Proof. Firstly, under language equivalence we can safely assume the follow-
ing things about M :

• M has only one final state.

• M has only push/pop transitions.

The sequential specification S will now be constructed as follows: firstly,
one creates names Vs∅ and Vsdt for all s, t ∈ S and d ∈ D. These names then
get assigned summands as follows:

• We assign to Vs∅ the summand a.Vtdu · Vu∅ for every u ∈ S and every

step s
a[∅/d]−−−→ t.

• We assign to Vsdt the summand a.1 for every step s
a[d/ε]−−−→ t.

• We assign to Vsdt the summand a.Vuev · Vvdt for every t, v ∈ S and

every step s
a[d/ed]−−−−→ u.

• We assign to V↓∅ the summand 1.

Any names without summands will be assigned the constant 0.
The basic idea of this construction is as follows: basically, the names will

encode both the contents of the stack, and, so to say, a potential order in
which the content of the stack will be ”spent”. So, say that we are in Vs∅,

and there is a step s
a[∅/d]−−−→ t. This means that the alternate composition of

Vs∅ will most likely contain many summands of the form a.Vtdu · Vu∅. Note
that for each Vtdu there are two options: either the d in the stack is ”spent”
in the step to u, in which case it can terminate by choosing the summand
a1, after which the process will be at the name Vu∅, or another element is
gained, in which case the list of sequentially composed names increases (and
so do the potential options).

It is therefore clear that if the PDA M accepts a certain word, then the
sequential specification S will too. However, one could still worry that, since
so many potential (and potentially impossible) paths are created, perhaps
S will accept more than M . However, it is not hard to see that this will
never happen: say that one chooses a summand with an impossible path.
Firstly, we can assume that the final name in the sequential composition is
V↓∅, as otherwise the state will not terminate. Secondly, we can assume that
all names of the shape Vsdt will no longer choose any summands of the form
a.Vuev ·Vvdt, as otherwise the path might be possible, rather than impossible.

23

Given these assumptions, it must then mean that there is a Vsdt such that

no step of the form s
a[∅/d]−−−→ t exists. However, this means that Vsdt = 0,

and therefore causes a deadlock.

24

X

1 Y Y Y Y Y Y · · ·

a
a a

a
a

b b b b

Figure 4: Transition system TS(X)

3 Head-Recursion in Process Algebras

We have seen that, given a sequential specification in GNF, one can find a
PDA such that the respective transition systems are divergence-preserving
branching bisimilar. In this section we will look at sequential specifications
containing head-recursion.

Example 3.1. Consider the following sequential specification S:

X = X · Y + a.1

Y = b.1

If we expand the equation for X we see that the following transitions
will be possible:

X
a−→ 1

X · Y a−→ Y

X
a−→ Y

X · Y a−→ Y · Y

X
a−→ Y · Y

X · Y a−→ Y · Y · Y

X
a−→ Y · Y · Y

And so on. It is clear that one can therefore, from X, make an a-step to
an infinite number of states. The transition-system TS(X) is therefore like
in figure 4.

For this, under divergence-preserving branching bisimilarity, a matching
PDA can not be found. However, if we drop the divergence-preserving aspect

25

N M

τ [⊥/1]
τ [1/11]
τ [1/ε]

a[⊥/ε]
a[1/1]

b[1/ε]

Figure 5: Push-down automaton M

(N,⊥)

(M,⊥) (M, 1) (M, 11) (M, 111) · · ·

(N, 1) (N, 11) (N, 111) · · ·

a

τ

b b b b

τ
a

τ

τ
a

τ

τ
a

τ

τ

Figure 6: Transition system T (M)

from the branching bisimilarity, it is possible. Consider the PDA shown in
figure 5, and the associated transition system seen in figure 6.

We will now show that TS(X) and T (M) are branching bisimilar. Con-
sider the following relation R:

R = {(X, (N, 1n))|n = 0, 1, ...} ∪ {(Y m, (M, 1m))|m = 0, 1, ...}

One can easily verify that R is a branching bisimulation. The main point
of the proof is that, since all (N, 1n) are related to X, the newly introduced
τ -transitions simply correspond to standing still in TS(X). Additionally,
since one can move along the string of (N, 1n) states freely, any step from
X to Y m can be simulated by (N, 1n) � (N, 1m)

a−→ (M, 1m).

The previous example illustrates the basic idea of the more general case:
to deal with head-recursion, one ”unravels” the state in which the head-
recursion occurs to form a string of states where one can get to any state us-
ing only τ -transitions (introducing divergencies where they previously didn’t
exist, meaning that it only works up to branching bisimilarity).

However, when one tries to generalize this idea, one runs into additional
problems, illustrated by the next example:

Example 3.2. Consider the following sequential specification S:

26

X = X · Y + a.1 + c.Z

Y = b.1

Z = d.X

When figuring out the transition system TS(X), we begin by noting that
the steps derived in example 3.1 are still possible. That is, there still exists
the transition X

a−→ Y n for any n ∈ N. However, when expanding the
equations, an additional pattern starts to emerge:

X
c−→ Z

X · Y c−→ Z · Y

X
c−→ Z · Y

X · Y c−→ Z · Y · Y

X
c−→ Z · Y · Y

X · Y c−→ Z · Y · Y · Y

So the transition X
c−→ ZY is possible, from where one is forced into the

transition ZY
d−→ XY . So, contrary to Example 3.1, here XY (and XY Y ,

and XY Y Y , etc.) are proper states. These states are clearly not identical
to X, as one cannot transition from XY Y straight to Y , for instance. The
transition system TS(X) can be seen in Figure 7 (for the sake of readability
the transitions have been left unlabelled, but the action associated with the
transition should in all cases be clear).

Keeping this difficulty in mind, we will now treat the more general case,
where only the initial state is head-recursive.

Theorem 3.1. Let S be a sequential specification defined by a set of vari-
ables {X,Yi|i = 0, 1, ..., n} as follows:

X = X · Y0 +
∑
k∈IX

ak.ξk

Yi =
∑
j∈Ii

aij .ξij

Here ξ is a sequential composition of any number of variables, where zero
variables is understood to be equal to 1.

There exists a PDA P such that TS(X) -∆ T (P).

27

X

1 Y Y Y Y Y Y · · ·

XY XY Y XY Y Y · · ·

Z ZY ZY Y ZY Y Y · · ·

Figure 7: Transition system of a more complex head recursion

Proof. Keeping the difficulties from the previous example in mind, we in-
troduce the segment symbol �, with which we will mark any return to the
head-recursive state X, so that we don’t accidentally throw away any previ-
ously committed Y0’s from the stack. The set of data D used by this PDA
will therefore be defined as {X,Yi|i = 0, 1, ..., n} ∪ {�}. The PDA P will
consist of three states, {1, N,M}. The state 1 will simply behave as the
terminating state. The state N will take care of the head-recursion of X,
and will therefore behave as follows:

N
τ [⊥/Y0]−−−−−→ N

N
τ [Y0/Y0Y0]−−−−−−−→ N

N
τ [Y0/ε]−−−−→ N

N
τ [�/Y0�]−−−−−→ N

∀k ∈ IX , d ∈ D.N
ak[d/ξkd]−−−−−−→M

The first four steps take care of the head-recursion: it allows the PDA
to stack and remove as many Y0’s as is needed, though any Y0’s on the stack
below the segment symbol � will not be removed. Additionally, one can

28

terminate at this state, and the final scheme for steps indicate that at any
point N can choose any other summand.

The second state, M , will simulate the behaviour of all other variables:

∀i ∈ {0, 1, ..., n}, j ∈ Ii.M
aij [Yi/ξij]−−−−−−→M

M
τ [⊥/ε]−−−−→ 1

M
τ [�/ε]−−−→M

M
τ [X/�]−−−−→ N

The first two lines specify the simulation of the Yi variables, functioning
in the same vein as before. The latter two lines specify the functioning of
the segment symbol.

This concludes the specification of the PDA P . All that remains is to
show that TS(X) -∆ T (P). For that we will first introduce some new
notation, to enhance readability.

Firstly, we will denote with ζ a string of variables from S, possibly also
containing the segment symbol �. To put it more formally, ζ ∈ (S ∪ {�})∗
With ζ− we will mean the string ζ, but with any segment symbols removed.
With ζ� is meant any element from the set of strings that one can obtain
by placing segment symbols anywhere in the string ζ. Finally, with the
notation [�]ζ we mean the string �ζ if ζ is not empty, and the empty string
otherwise.

We will now give the relation R ⊆ TS(X)×T (P) that will be our branch-
ing bisimulation:

∀ζ ∈ S∗.ζ R(M, ζ�)

∀m ∈ N.X R(N,Y m
0)

∀ζ ∈ S∗.Xζ R(N,Y m
0 � ζ�))

1 R1

Where m ∈ N.
To prove that R is a branching bisimulation, we first check that ↑1 R ↑2.

Since ↑1= X, and ↑2= (N,⊥), and XR(N,⊥), this first condition is satisfied.
For the rest of the conditions, assume that s1Rs2.

• If s1
a−→ s′1 and a 6= τ , we claim that there exist s′2, s

′′
2 ∈ T (P) such

that s2 � s′′2
a−→ s′2 and s′1Rs

′
2.

First, assume that s1 = Xζ, with ζ potentially empty. Then s2 =
(N,Y m[�]ζ), or s2 = (M,Xζ�). However, the latter reduces to the
former case, as (M,Xζ�)

τ−→ (N, �ζ�). There is then one option for

29

non-τ steps from s1, namely that s′1 = ξkY
m′

0 ζ, so the step taken is

Xζ
ak−→ ξkY

m′
0 ζ, or, in words, one goes down the head-recursion m′

times, and then chooses another, non-head-recursive summand from
X. Then the desired states in T (P) are s′′2 = (N,Y m′

0 [�]ζ) and s′2 =
(M, ξkY

m′
0 [�]ζ). This is because

(N,Y m
0 [�]ζ) � (N,Y m′

0 [�]ζ)

since one can freely change the number of Y0’s on the stack in the state

N , and since ∀k ∈ IX , d ∈ D.N
ak[d/ξkd]−−−−−−→M , we have:

(N,Y m′
0 [�]ζ)

ak−→ (M, ξkY
m′

0 [�]ζ)

Additionally, it is easy to see that these states also relate in the correct
way:

XζR(N,Y m′
0 [�]ζ)

ξkY
m′

0 ζR(M, ξkY
m′

0 [�]ζ)

meaning that the requirements for branching bisimilarity are, in this
case, satisfied.

So if s1 = Xζ, this requirement for bisimilarity holds. We will now
consider the simpler case where s1 = Yiζ. This means that s2 =
(M,Yiζ

�). The only possible transition in this scenario is a transition

where s′1 = ξijζ and so the transition made is Yiζ
aij−−→ ξijζ. However,

since this means that Yi contains the summand aij .ξij , we also have

that M
aij [Yi/ξij]−−−−−−→M , and so we have:

(M,Yiζ
�)

aij−−→ (M, ξijζ
�)

And additionally we know that:

ξijζR(M, ξijζ
�)

Therefore, for every non-τ transition from s1 we can find the appro-
priate s′′2, s

′
2 to satisfy branching bisimilarity.

• If s1
τ−→ s′1, then there exists a s′2 such that s2 � s′2 and s′1Rs

′
2. If

there is a transition from s1 of the shape s1
τ−→ s′1, then this means

that the first variable in the name of s1, say Zi, must have contained
a summand of the shape τ.ξij , which means that the proof for the
previous point applies here as well.

30

• If s2
a−→ s′2 and a 6= τ , then there exist s′1, s

′′
1 ∈ TS(X) such that

s1 � s′′1
a−→ s′1.

First, we look at the case where s2 = (N,Y m
0 [�]ζ). This means that s1

must be the state Xζ−. There is now only one non-τ transition that
can be made from s2, and that is the case in which s′2 = (M, ξkY

m[�]ζ),
so the transition made is:

(N,Y m
0 [�]ζ)

ak−→ (M, ξkY
m[�]ζ)

Here we have that s′′1 = s1 and s′1 = ξkY
mζ−. Since the transition

in T (M) is possible because X contains the summand ak.ξk, we can
similarly in TS(X) make the transition:

Xζ−
ak−→ ξkY

mζ−

And we know that:

ξkY
mζ−R(M, ξkY

m[�]ζ)

So if s2 = (N,Y m
0 [�]ζ), this requirement of bisimilarity holds.

The only other option is that s2 = (M,Yiζ). Note that we do not
consider the state (M,Xζ) and (M,⊥) here: this is because no non-τ
steps can be taken from these states.

If s2 = (M,Yiζ), we know that s1 = Yiζ
−. All non-τ transitions that

can be taken from s2 are of the following shape:

(M,Yiζ)
aij−−→ (M, ξijζ)

Again, if this transition is possible, it must be that in M we have the

transition M
aij [Yi/ξij]−−−−−−→. If this step exists in M , then we know that Yi

must have aij .ξij as a summand. Which in turn means that in TS(X)
we can make the following transition:

Yiζ
− aij−−→ ξijζ

−

Which is, of course, the desired transition, since:

ξijζ
−R(M, ξijζ)

Which means that, in every scenario, if s2
a−→ s′2, there exist appropri-

ate s′1, s
′′
1 for bisimilarity to hold.

31

• If s2
τ−→ s′2, then there exists a s′1 ∈ TS(X) such that s1 � s′1 and

s′1Rs
′
2.

This direction of the requirement on τ steps requires a bit more work
than its converse, since T (M) contains many more silent transitions
than its process-algebraic counterpart.

First, we consider the case in which s2 = (N,Y m
0 [�]ζ). This means

that s1 = Xζ−. In this case, only one type of silent transition can be
made: M can either add, or remove, a Y0 from the stack. So:

(N,Y m
0 [�]ζ)

τ−→ (N,Y m±1
0 [�]ζ)

In this case, one simply takes s′1 to be equal to s1, since s1 � s′1 is not
only the transitive, but also reflexive closure of τ , and additionally we
have

Xζ−R(N,Y m±1
0 [�]ζ)

Meaning that for this case, the requirements hold.

The second scenario we will consider is s2 = (M,⊥). Here it must
be the case that s1 = 1. The only possible transition from s2 is
(M,⊥)

τ−→ 1, which poses no problems since 1R1.

The third scenario to consider is when s2 = (M, �ζ). Here we must
have s1 = (�ζ)− = ζ−. The only possibility for s′2 here is s′2 = (M, ζ),
as no other τ -transitions exist from this state but the following one:

(M, �ζ)
τ−→ (M, ζ)

However, again, this is no problem, as we can simply choose s′1 = s1

once more, as ζ−R(M, ζ).

Finally, the fourth case to consider is when s2 = (M,Xζ). Here we
have that s1 = Xζ−, and the only possible option for s′2 is s′2 = (N, �ζ),
so the transition is:

(M,Xζ)
τ−→ (N, �ζ)

Which, like before, is no issue if one takes s′1 = s1, as Xζ−R(N, �ζ).

As a final note, any τ -transitions not covered by these cases are tran-
sitions based on summands in S, which means that the proof in the
previous bullet-point applies.

• If s1 ∈↓1, then s1 = 1, and so it must be the case that s2 = 1, and
therefore s2 ∈↓2, as 1R1. The converse also holds, as both transition
systems have only one terminating state (namely, 1).

32

This concludes the proof of R being a branching bisimilarity.

With this, we can make a further generalization to cover all non-transparent,
head-recursive sequential specifications.

Theorem 3.2. Let S be a sequential specification defined by a set of vari-
ables {Xi, Yi′ |i = 0, 1, ...n ∧ i′ = 0, 1, ..., n′} as follows:

Xi =
∑
j∈Ii

Xi · Vij +
∑
k∈Ji

aik.ξik

Yi′ =
∑
j′∈Ii′

ai′j′ .ξi′j′

Let Z and each Vij be a name from S. There exists a PDA P such that
TS(Z) -∆ T (P).

Proof. The PDA P will follow the same principles as the PDA seen in the
previous proof. The two main differences, in words, will be the following:
to begin, each Xi, that is, each head-recursive name, will get its state, Ni,
which can add or remove any Vij at will. The second difference is that each
Xi is now allowed to contain any finite number of head-recursive summands.
This does not change anything fundamentally: it simply means that one can
jump to any sequence of Vij ’s from X.

The basic part of the PDA will therefore look as follows:

∀i = 0, 1, ..., n; j ∈ Ii.Ni
τ [⊥/Vij]−−−−−→ Ni

Ni
τ [Vij/VijVij]−−−−−−−−→ Ni

Ni
τ [Vij/ε]−−−−−→ Ni0

Ni
τ [�/Vij�]−−−−−→ Ni

∀k ∈ Ji, d ∈ D.Ni
aik[d/ξikd]−−−−−−→M

∀i′ ∈ {0, 1, ..., n′}, j′ ∈ Ii′ .M
ai′j′ [Yi′/ξi′j′]−−−−−−−−→M

M
τ [⊥/ε]−−−−→ 1

M
τ [�/ε]−−−→M

M
τ [Xi/�]−−−−→ Ni

However, since we have also lifted the demand to have a specific name
be the initial name, we will introduce one extra state, M ′:

33

M ′
τ [⊥/Z]−−−−→M

The relation R ⊆ TS(Z)×T (P) that will be our branching bisimulation
will also not hold any particular surprises:

ζR(M, ζ�)

ZR(M ′,⊥)

Xiζ1R(Ni, ζ
�
2 � ζ�1)

Xiζ1R(N ′i , ζ
�
2 � ζ�1)

1R1

As for the proof, all the work is essentially done in the preceding proof:
for each moment of head-recursion in S, the state M sends one to the appro-
priate state Ni, where the desired stack can be freely generated, before being
sent back to M to proceed. The only thing left to check is the transition
from the newly made state M ′:

(M ′,⊥)
τ [⊥/Z]−−−−→ (M,Z)

However, since both ZR(M ′,⊥) and ZR(M,Z), it will still hold that R
is a branching bisimulation.

34

4 Transparency in Process Algebras

In this section we will look at sequential specifications that contain transpar-
ent names, and show that these specifications can be emulated by push-down
automata up to contrasimulation.

We will begin by defining contrasimulation. Recall that with � we
mean the transitive, reflexive closure of τ -transitions. We also introduce the
following new notation: with s

a−→→ t we mean s� u
a−→ v � t.

Definition 4.1. Let T1, T2 be labelled transition systems. A pair of relations
(R,Q), where R ⊆ T1×T2 and Q ⊆ T2×T1 is a contrasimulation if it meets
the following requirements.

First, we have that ↑1 R ↑2 and ↑2 Q ↑1.
Let s1Rs2. Then:

• If s1
a−→→ s′1 and a 6= τ , there exist s′2 ∈ T2 such that s2

a−→→ s′2, and
s′2Qs

′
1.

• If s1
τ−→→ s′1, then there exists a s′2 ∈ T2 such that s2 � s′2 and s′2Qs

′
1.

• If s1 ∈↓1, then there exists a s′2 ∈ T2 such that s2 � s′2, s′2 ∈↓2 and
s′2Qs1.

Secondly, we require the converse of the above requirements to hold:
Let s2Qs1. Then:

• If s2
a−→→ s′2 and a 6= τ , there exist s′1 ∈ T1 such that s1

a−→→ s′1, and
s′1Rs

′
2.

• If s2
τ−→→ s′2, then there exists a s′1 ∈ T1 such that s1 � s′1 and s′1Rs

′
2.

• If s2 ∈↓2, then there exists a s′1 ∈ T1 such that s1 � s′1, s′1 ∈↓1 and
s′1Rs2.

We note that contrasimulation sits between -b and ≈ in Glabbeek’s
lattice of equivalences. For more details we again refer to [7].

Before we present any general results, we will first consider a number of
examples. The first example is the ”canonical” example of why transparency
in process algebras can be troublesome.

Example 4.1. Consider the following specification S:

X = a.X · Y + b.1

Y = c.1 + 1

In figure 8 one can see the transition system TS(X). It is clear that
the main problem occurs on the right: due to the fact that the name Y

35

X 1

Y

Y Y

Y Y Y

· · ·

XY

XY Y

XY Y Y

· · ·

b

a c

c

c

c

c

ca

b

a

b

b

· · ·

Figure 8: Transition system TS(X)

contains the summand 1, this means that it is possible to make the transi-
tion Y n c−→ Y m for any m < n, and since one can also choose to pick the
1-summand in all Y ’s, we have that all Y n states terminate.

Now, where the previous results worked for the FSES interpretation of
PDA’s, here we are forced to limit ourselves to FS. This is to be able to deal
with the fact that arbitrarily large sequences of names can instantaneously
terminate (provided that all names are transparent).

Now, our goal with this example is to find a PDA that will be equivalent
to TS(X) up to contrasimulation. We claim that the PDA P , shown in figure
9 will do exactly that. The associated transition system T (P) is shown in
figure 10.

The transition system for P illustrates the basic principle for dealing with

36

M M ′

M ′′N

τ [⊥/X]

a[X/XY]

b[X/ε]

c[Y/ε]
τ [Y/Y]
τ [⊥/ε]

τ [Y/ε]

Figure 9: Push-down automaton P

transparency in the context of contrasimulation, so it will be informative to
look at the contrasimulation (R,Q) in detail.

To begin with, we will define R as follows:

X R(N,⊥)

∀n ∈ N.XY n R(M,XY n)

∀n ∈ N.Y n R(M ′, Y n)

∀n ∈ N.Y n R(M ′′, Y n)

And we will define the relation Q as follows:

(N,⊥) QX

∀n ∈ N.(M,XY n) QXY n

∀n ∈ N.(M ′, Y n) QY n

Note that none of the states originating from M ′′ have a relation in the
Q-direction.

Now, we want to show that this is indeed a contrasimulation. We be-
gin by noting that XR(N,⊥) and (N,⊥)QX, meaning that we meet the
requirement that the initial states should be related in both directions.

First, let s1Rs2. Then:

37

(M,X) (M ′,⊥)

(M ′, Y)

(M ′, Y Y)

(M ′, Y Y Y)

· · ·

(M,XY)

(M,XY Y)

(M,XY Y Y)

· · ·

(M ′′,⊥)

(M ′′, Y)

(M ′′, Y Y)

· · ·

(N,⊥)
b

a

c

c

c

a

b

a

b

b

τ

τ

τ

τ

τ

τ

τ

τ

Figure 10: Transition system T (P)

38

• If s1
a−→→ s′1 and a 6= τ , there exist s′2 ∈ T2 such that s2

a−→→ s′2, and
s′2Qs

′
1.

If s1 = XY n for any n ∈ N, we must have s2 = (M,XY n). Then the
only options are to take an a or a b transition. The former transition
will be:

XY n a−→ XY n+1

Which can be mirrored in T (P) by:

(M,XY n)
a−→ (M,XY n+1)

And we have that (M,XY n+1)QXY n+1. Identical reasoning applies
for the b-transition.

The more interesting case is when s1 = Y n. We have two options here
for s2, but we begin by considering the case where s2 = (M ′′, Y n) (the
other option, where s2 = (M ′, Y n), will also be covered by this case).
We can then make the following transitions:

∀m < n.Y n c−→ Y m

Now, we can mirror this as follows:

(M ′′, Y n)
τ−→ (M ′, Y n)

c−→ (M ′′, Y n−1) � (M ′, Y m)

And since (M ′, Y m)QY m, the requirement is met.

• The requirement about τ -transitions need not be considered, as TS(X)
contains none.

• If s1 ∈↓1, then there exists a s′2 ∈ T2 such that s2 � s′2, s′2 ∈↓2 and
s′2Qs1.

If s1 terminates, then it must be a state Y n for some n ∈ N. To begin
with, if we then have that s2 = (M ′, Y n), then there is no problem,
since (M ′, Y n) ∈↓2 and (M ′, Y n)QY n.

If s2 = (M ′′, Y n), then one can simply make the transition:

(M ′′, Y n)
τ−→ (M ′, Y n)

to terminate properly.

Now all that is left is to check the requirements in the other direction.
Let s2Qs1:

39

• If s2
a−→→ s′2 and a 6= τ , there exist s′1 ∈ T1 such that s1

a−→→ s′1, and
s′1Rs

′
2.

We will only consider the interesting case here, as all other cases are
straightforward. We therefore let s2 = (M ′, Y n) and s1 = Y n. The
only transition we will consider is the following:

(M ′, Y n)
c−→→ (M ′′, Y m)

Where m < n. This will be mirrored in TS(X) by the following:

Y n c−→ Y m

Which meets the requirement, since Y mR(M ′′, Y m).

• Again, the case with τ -transitions need not be considered, since there is
no s2 that stands in relation Q to some S2 that can make τ -transitions
(without mixing in at least one action).

• Regarding terminating states the proof will work like in the R direc-
tion.

This therefore shows that (R,Q) is a contrasimulation.

The previous example illustrated the basic problem of transparency.
However, it is not the only difficulty that transparancy brings. We will
give a few more examples of problems that may arise when dealing with
transparent names, and we’ll sketch how these problems are solved in the
general proof.

Example 4.2. Consider the following sequential specification S:

X1 = a.X2 · Y + b.1

X2 = a.X2 · Z + b.1

Y = c.1 + 1

Z = d.1 + 1

The main difference here, compared to the previous example, is that one
builds a stack of both Y ’s and Z’s, both of which are transparent.

The associated transition system TS(X1) can be seen in figure 11. Now,
the most important thing to note here is that most paths, after they have
performed the b action, can both make a d-transition from any of the Z’s
present in the sequential composition, or a c action, from the single Y .

This illustrates a more general problem when trying to find a matching
PDA: one needs to know exactly which transparent names are reachable from

40

X1 1

Y

ZY

ZZY

· · ·

X2Y

X2ZY

X2ZZY

· · ·

b

a c

d

c

d

d

ca

b

a

b

b

· · ·

Figure 11: Transition system TS(X)

41

X1 1

Y

ZY

ZZY

· · ·

X2Y

X2ZY

X2ZZY

· · ·

b

a c

d

c

d

d

ca

b

a

b

b

· · ·

Figure 12: Transition system TS(X) where Y = c.1

where one is. In the more general solution this will be solved as followed:
we will ”save” this information in the name of the state, by tacking an
element from P(Ntr) (that is, the powerset of Ntr, where Ntr is the set of
transparent names) to the PDA state, so that at each moment it is clear
which are reachable.

Furthermore we note that one needs to know one additional thing: say
that in this example Y was not transparent, for instance, Y = c.1. In this
case one would in fact be obliged to perform a c before one could terminate.
The transition system in this case can be seen in figure 12. All it would
change is that one cannot terminate at any state ZnY anymore. We will
therefore in the general solution also keep track of the first upcoming opaque
name (if any).

We will now give the more general result regarding transparency in se-

42

quential specifications and contrasimulation.

Theorem 4.1. Let S be a sequential specification defined by a set of vari-
ables {Xi, Yj |i = 0, 1, ..., n ∧ j = 0, 1, ...,m} as follows:

Xi =
∑
k∈Ii

aik.ξik + 1

Yi =
∑
l∈Ij

ajl.ξjl

Here ξ is a sequential composition of at most 2 variables, where zero
variables is understood to be equal to 1. Let Z be a name in S.

There exists a PDA P under the FS-interpretation such that TS(Z) is
contrasimilar to T (P).

Proof. We will first outline in general terms the construction of the PDA P .
To begin with, we will introduce two types of segment-symbols.

The first type is αχ,Yj . Here χ ⊆ {Xi|i = 0, 1, ..., n}. This segment
symbol will, in words, mean the following: there will follow a number of
transparent names in the stack, each of which is in χ, and the first opaque
name after this is Yj .

The second segment symbol we’ll introduce is ωXi . This symbol will
signify that P has just passed the final Xi, either in the current transparent
part of the stack, or in the entire stack (if the stack contains no more opaque
names).

To give an example, consider the following sequence of names:

X1X2X1Y1X1, X3X3Y2Y2X1

The PDA P will then store this name as the following stack:

X1X2ω
X2X1ω

X1Y1α
{X1,X3},Y2X1ω

X1X3X3ω
X3Y2Y2α

{X1},⊥X1ω
X1

Now to give a more precise specification of P . We will create a number
of states in P , since we intend to ”save” up to three things in the name of
the state.

• We will have a state M∅. Here we know that the top element of the
stack is opaque.

• For all χ ⊆ {Xi|i = 0, 1, ..., n}, that is, all subsets of transparent
names, and all Yj , there will be a state Mχ,Yj . These states contain
the information that there is a transparent part of the stack with the
names χ, followed by the opaque name Yj .

43

• We will have states Mχ,⊥, which signify that the entire stack is trans-
parent, and contains the names in χ.

• For every Xi ∈ χ and ξ such that a.ξ is a summand of Xi, there will

be a state M
χ,Yj
Xi,ξ

(and Mχ,⊥
Xi,ξ

). These states contain the information
that ξ is yet to be added to the stack, and that this ξ comes from an
Xi.

• For every Yj and every summand ajl.ξjl there will be a state M∅Yj ,ξjl .

This state has as its purpose to remove any transparent names from
the stack, and add ξjl once the Yj on the stack is reached.

• For all ξ such that a.ξ is a summand of some Yj , there will be a state

M∅,?ξ . These are intermediary states to determine the next opaque
name in the stack, so as to correctly keep track of this.

• Finally, there will be a starting state N , and an extra terminating
state T .

To make the specification more readable, we will write as ξ ∈ Z when
we mean that there exists an a such that a.ξ is a summand of Z. We also
let X be the set of all transparent names, and Y the set of all opaque names.

We will now begin with the proper specification of P . To begin with,
there are two options for the starting state N , depending on whether or not
Z is opaque. If it is, we have the following transition:

N
τ [⊥/Z]−−−−→M∅

If it is transparent, we have the following transition:

N
τ [⊥/ZωZ]−−−−−−→M{Z},⊥

For M∅, the state dealing with opaque names, we will have the following
transitions:

44

∀Yj ∈ Y, l ∈ Ij , ξjl = 1.M∅
ajl[Yj/ε]−−−−−→M∅

∀Yj , Y ∈ Y, l ∈ Ij , ξjl = Y.M∅
ajl[Yj/Y]
−−−−−−→M∅

∀Yj , Y, Y ′ ∈ Y, l ∈ Ij , ξjl = Y Y ′.M∅
ajl[Yj/Y Y

′]
−−−−−−−→M∅

∀Yj , Y ∈ Y, X ∈ X , l ∈ Ij , ξjl = XY.M∅
ajl[Yj/Xω

XY]
−−−−−−−−−→M{X},Y

∀Yj ∈ Y, X ∈ X , l ∈ Ij , ξjl = X.M∅
ajl[Yj/ε]−−−−−→M∅,?X

∀Yj , Y ∈ Y, X ∈ X , l ∈ Ij , ξjl = Y X.M∅
ajl[Yj/ε]−−−−−→M∅,?Y X

∀Yj ∈ Y, X,X ′ ∈ X , l ∈ Ij , ξjl = XX ′.M∅
ajl[Yj/ε]−−−−−→M∅,?XX′

∀χ ∈ P(X), y ∈ Y ∪ {⊥}.M∅ τ [αχ,y/ε]−−−−−→Mχ,y

M∅
τ [⊥/ε]−−−−→ T

We will also detail the functioning of the states of the type M∅,?.

∀X ∈ X , y ∈ Y ∪ {⊥}.M∅,?X

τ [y/XωXy]−−−−−−−→M{X},y

∀X ∈ X , χ ∈ P(X), X 6∈ χ, y ∈ Y ∪ {⊥}.M∅,?X

τ [αχ,y/XωX]−−−−−−−−→Mχ∪{X},y

∀X ∈ X , χ ∈ P(X), X ∈ χ, y ∈ Y ∪ {⊥}.M∅,?X

τ [αχ,y/X]−−−−−−→Mχ,y

∀X ∈ X .M∅,?X

τ [⊥/XωX]−−−−−−→M{X},⊥

∀X ∈ X , Y ∈ Y, y ∈ Y ∪ {⊥}.M∅,?Y X

τ [y/Y α{X},yXωXy]−−−−−−−−−−−−→M∅

∀X ∈ X , χ ∈ P(X), Y ∈ Y, X 6∈ χ, y ∈ Y ∪ {⊥}.M∅,?Y X

τ [αχ,y/Y αχ∪{X},yXωX]−−−−−−−−−−−−−−−→M∅

∀X ∈ X , χ ∈ P(X), Y ∈ Y, X ∈ χ, y ∈ Y ∪ {⊥}.M∅,?Y X

τ [αχ,y/Y αχ,yX]−−−−−−−−−−→M∅

∀X ∈ X , Y ∈ Y.M∅,?Y X

τ [⊥/Y αχ,⊥XωX]−−−−−−−−−−−→M∅

45

∀X,X ′ ∈ X , X 6= X ′, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [y/XωXX′ωX

′
y]−−−−−−−−−−−→M{X,X

′},y

∀X,X ′ ∈ X , X 6= X ′, χ ∈ P(X), X,X ′ 6∈ χ, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [αχ,y/XωXX′ωX

′
]−−−−−−−−−−−−→Mχ∪{X,X′},y

∀X,X ′ ∈ X , X 6= X ′, χ ∈ P(X), X 6∈ χ,X ′ ∈ χ, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [αχ,y/XωXX′]−−−−−−−−−−→Mχ∪{X},y

∀X,X ′ ∈ X , X 6= X ′, χ ∈ P(X), X ∈ χ,X ′ 6∈ χ, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [αχ,y/XX′ωX

′
]−−−−−−−−−−→Mχ∪{X′},y

∀X,X ′ ∈ X , X 6= X ′, χ ∈ P(X), X,X ′ ∈ χ, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [αχ,y/XX′]−−−−−−−−→Mχ,y

∀X,X ′ ∈ X , X = X ′, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [y/XXωXy]−−−−−−−−→M{X},y

∀X,X ′ ∈ X , X = X ′, χ ∈ P(X), X,X ′ 6∈ χ, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [αχ,y/XXωX]−−−−−−−−−→Mχ∪{X},y

∀X,X ′ ∈ X , X = X ′, χ ∈ P(X), X,X ′ ∈ χ, y ∈ Y ∪ {⊥}.M∅,?XX′
τ [αχ,y/XX]−−−−−−−→Mχ,y

∀X,X ′ ∈ X , X 6= X ′.M∅,?XX′
τ [⊥/XωXX′ωX′]−−−−−−−−−−−→M{X,X

′},⊥

∀X,X ′ ∈ X , X = X ′.M∅,?XX′
τ [⊥/XXωX]−−−−−−−−→M{X},⊥

We will now detail the specification of states of the type Mχ,y, that is,
states that deal with transparent parts of the stack.

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Xi, X ∈ χ, k ∈ Ik.Mχ,y aik[X/X]−−−−−−→Mχ,y
Xi,ξik

∀χ ∈ P(X), X ∈ χ ∪ {ωX′ |X ′ ∈ χ}, Yj ∈ Y, l ∈ Ij .Mχ,Yj
ajl[X/ε]−−−−−→M∅Yj ,ξjl

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Xi ∈ χ.Mχ,y τ [ωXi/ε]−−−−−→Mχ−{Xi},y

For the last transition we note that M∅,y = M∅.
We will now detail the transitions of states of the type Mχ,y

Xi,ξik
. In these

states one can throw away parts of the transparent stack until one reaches
the Xi one wishes to ”execute”.

46

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Xi, X ∈ χ, k ∈ Ik.Mχ,y
Xi,ξik

τ [X/ε]−−−−→Mχ,y
Xi,ξik

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Xi, X ∈ χ,Xi 6= Xk ∈ Ik.Mχ,y
Xi,ξik

τ [ωX/ε]−−−−−→M
χ−{X},y
Xi,ξik

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Xi ∈ χ.Mχ,y
Xi,1

τ [Xi/ε]−−−−→Mχ,y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X ∈ X , Xi, X ∈ χ.Mχ,y
Xi,X

τ [Xi/X]−−−−−→Mχ,y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X ∈ X , Xi ∈ χ,X 6∈ χ.Mχ,y
Xi,X

τ [Xi/Xω
X]−−−−−−−→Mχ∪{X},y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Y ∈ Y, Xi ∈ χ.Mχ,y
Xi,Y

τ [Xi/Y α
χ,y]−−−−−−−−→M∅

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X,X ′ ∈ X , Xi, X,X
′ ∈ χ.Mχ,y

Xi,XX′
τ [Xi/XX

′]−−−−−−−→Mχ,y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X,X ′ ∈ X , Xi, X ∈ χ,X ′ 6∈ χ.Mχ,y
Xi,XX′

τ [Xi/XX
′ωX

′
]−−−−−−−−−→Mχ∪{X′},y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X,X ′ ∈ X , Xi, X
′ ∈ χ,X 6∈ χ.Mχ,y

Xi,XX′
τ [Xi/Xω

XX′]−−−−−−−−−→Mχ∪{X},y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X,X ′ ∈ X , Xi ∈ χ,X,X ′ 6∈ χ.Mχ,y
Xi,XX′

τ [Xi/Xω
XX′ωX

′
]−−−−−−−−−−−→Mχ∪{X,X′},y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X ∈ X , Y ∈ Y, Xi, X ∈ χ.Mχ,y
Xi,Y X

τ [Xi/Y α
χ,yX]−−−−−−−−−→M∅

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X ∈ X , Y ∈ Y, Xi ∈ χ,X 6∈ χ.Mχ,y
Xi,Y X

τ [Xi/Y α
χ∪{X},yXωX]−−−−−−−−−−−−−−→M∅

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, X ∈ X , Y ∈ Y, Xi ∈ χ.Mχ,y
Xi,XY

τ [Xi/Xω
XY αχ,y]−−−−−−−−−−−→M{X},Y

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, Y, Y ′ ∈ Y, Xi ∈ χ.Mχ,y
Xi,Y Y ′

τ [Xi/Y Y
′αχ,y]−−−−−−−−−→M∅

The last states to be specified will be states of the type M∅Yj ,ξjl . The

purpose of these states is to clean out the entire transparent part of the
stack.

47

∀Yj ∈ Y, l ∈ Ij , X ∈ X ∪ {ωX
′ |X ′ ∈ X}.M∅Yj ,ξjl

τ [X/ε]−−−−→M∅Yj ,ξjl

∀Yj ∈ Y.M∅Yj ,1
τ [Yj/ε]−−−−→M∅

∀Yj ∈ Y, X ∈ X .M∅Yj ,X
τ [Yj/ε]−−−−→M∅,?X

∀Yj , Y ∈ Y.M∅Yj ,Y
τ [Yj/Y]
−−−−−→M∅

∀Yj ∈ Y, X,X ′ ∈ X .M∅Yj ,XX′
τ [Yj/ε]−−−−→M∅,?XX′

∀Yj , Y ∈ Y, X ∈ X .M∅Yj ,XY
τ [Yj/Xω

XY]
−−−−−−−−→M{X},Y

∀Yj , Y ∈ Y, X ∈ X .M∅Yj ,Y X
τ [Yj/ε]−−−−→M∅,?Y X

∀Yj , Y, Y ′ ∈ Y.M∅Yj ,Y Y ′
τ [Yj/Y Y

′]
−−−−−−→M∅

This covers all the states and transitions of P . As mentioned before, we
have N as the initial state. Other than that, any Mχ,⊥ can terminate (as
the entire stack is transparent), and T can terminate.

Now that we have fully specified P , all that is left to give a R and Q
that satisfy the requirements for contrasimulation.

We will first introduce some extra notation. Firstly, we let ζ again be
any sequence of names. We let ζ+ be the sequence ζ, with the correct
segment symbols added in the appropriate places (that is, αχ,y’s at the start
of transparent segments, with correct labels, and ωX ’s after each last X of
its type in a transparent segment.). If ζ contains any segment symbols, we
will understand ζ− to mean the same sequence, but without the segment
symbols. Additionally, we will understand ζ= to be the set of transparent
names found in the first segment of transparent names (so its ∅ if the first
element of ζ is opaque), and ζ⇒ to be the first opaque name found in ζ,
after a transparent segment. We remind the reader that we interpret M∅,Y

as M∅. Lastly we let W be the set of all segment symbols
We will define R ⊆ TS(Z)× T (P) as follows:

48

Z R(N,⊥)

1 R(T,⊥)

∀ζ ∈ S∗.ζ R(M ζ=,ζ⇒ , ζ+)

∀ζ ∈ S∗, x ∈ X .Xζ R(M∅,?X , (Xζ)+)

∀ζ ∈ S∗, V, V ′ ∈ S.V V ′ζ R(M∅,?V V ′ , (V V
′ζ)+)

∀ζ ∈ S∗, ζ ′ ∈ (X − {Xi})∗, Xi ∈ X , k ∈ Ii.ξikζ R(Mχ,y
Xi,ξik

, (ζ ′Xiζ)+)

∀ζ ∈ S∗, ζ ′ ∈ X ∗, Yj ∈ Y, L ∈ Ij .ξjlζ R(M∅Yj ,ξjl , (ζ
′Yjζ)+)

And we define Q ⊆ T (P)× TS(Z) as follows:

(N,⊥) QZ

(T,⊥) Q1

∀χ ∈ P(X), y ∈ Y ∪ {⊥}, ζ ∈ (S ∪W)∗.(Mχ,y, ζ) Qζ−

∀ζ ∈ (S ∪W)∗.(M∅, ζ) Qζ−

∀ζ ∈ (S ∪W)∗, X ∈ X .(M∅,?X , ζ) QXζ−

∀ζ ∈ (S ∪W)∗, V, V ′ ∈ S.(M∅,?V V ′ , ζ) QV V ′ζ−

∀ζ ∈ (S ∪W)∗, ζ ′ ∈ (X ∪W)∗, Yj ∈ Y, l ∈ Ij .(M∅Yj ,ξjl , ζ
′Yjζ) Qξjlζ

−

Now all that remains is to show that (R,Q) is a contrasimulation. We
begin by noting that ZR(N,⊥) and (N,⊥)QZ, so the initial states relate to
eachother.

We will begin by examining if contrasimulation holds from R to Q. Let
s1Rs2.

• If s1
a−→→ s′1 and a 6= τ , there exist s′2 ∈ T2 such that s2

a−→→ s′2, and
s′2Qs

′
1.

First consider the case in which s1 = Yjζ for some Yj ∈ Y. The only

non-τ transition one could make from there is Yjζ
ajl−−→ ξjlζ for some

summand ajl.ξjl of Yj . There are now several option for what state s2

could be:

– s2 = (M∅, (Yjζ)+). In this case, the exact transitions will depend
on ξjl (in particular, it will determine if one has to detour through

M∅,?ξjl
). However, in all cases one has:

(M∅, (Yjζ)+)
ajl−−→→ (M (ξjlζ)

=,(ξjlζ)
⇒
, (ξjlζ)+)

And we have that (M (ξjlζ)
=,(ξjlζ)

⇒
, (ξjlζ)+)Qξjlζ.

49

– If ζ = Xiζ
′, we could have s2 = (M∅,?YjXi

, ζ ′+). However, we have:

(M∅,?YjXi
, ζ ′+)

τ−→ (M∅, (YjXiζ
′)+) = (M∅, (Yjζ)+)

So this case reduces to the previous one.

– If there exists an Xi that contains a summand ξik such that ξik =
Yjξ
′
ik and ζ = ξ′ikζ

′, we could have s2 = (Mχ,y
Xi,Yjξ′ik

, (ζ ′′Xiζ
′)),

where ζ ′′ ∈ {X|X ∈ χ}∗. However, here we have:

(Mχ,y
Xi,Yjξ′ik

, (ζ ′Xiζ)) � (M∅, (Yjξ
′
ikζ
′)+) = (M∅, (Yjζ)+)

Which means that this case again reduces to the first.

– If there exists an Y ′j that contains a summand ξ′jl such that ξ′jl =

Yjξ
′′
jl and ζ = ξ′′jlζ

′, we could have s2 = (M∅
Y ′j ,Yjξ

′′
jl
, (ζ ′′Y ′j ζ

′)+),

where ζ ′′ ∈ X ∗. However, again, from here we have:

(M∅Y ′j ,Yjξ′′jl
, (ζ ′′Y ′j ζ

′)+) � (M∅, (Yjξ
′′
jlζ
′)+) = (M∅, (Yjζ)+)

In the case that s1 = Xiζ, the only possible transition from there is of
the type Xiζ

aik−−→ ξikζ. We have as the most important possibility for
s2 that s2 = (M (Xiζ)

=,(Xiζ)
⇒
, (Xiζ)+). For this state we have that:

(M (Xiζ)
=,(Xiζ)

⇒
, (Xiζ)+)

aik−−→ (M
(Xiζ)

=,(Xiζ)
⇒

Xi,ξik
, (Xiζ)+)

From which we have the option for the following transition(s):

(M
(Xiζ)

=,(Xiζ)
⇒

Xi,ξik
, (Xiζ)+) � (M (ξikζ)

=,(ξikζ)
⇒
, (ξikζ)+)

Which is what we needed, since (M (ξikζ)
=,(ξikζ)

⇒
, (ξikζ)+)Qξikζ.

All other options for s2 reduce to this one in the same way as they did
for s1 = Yjζ.

• If s1
τ−→→ s′1, then there exists a s′2 ∈ T2 such that s2 � s′2 and s′2Qs

′
1.

For this point it suffices to note that if TS(Z) contains a τ -transition,
this will be because it is specified in the sequential specification. The
proof will therefore be identical to that of the previous point.

• If s1 ∈↓1, then there exists a s′2 ∈ T2 such that s2 � s′2, s′2 ∈↓2 and
s′2Qs1.

If s1 terminates, that means that there are two options. The first
option is that s1 = 1. In this case the only option is that s2 = (T,⊥).
Since (T,⊥) ∈↓ and (T,⊥)Q1, the requirement is met.

50

The other option is that s1 = ζ, where ζ ∈ X ∗, which is to say,
ζ is fully transparent and can therefore terminate on the spot. We
then have that s2 = (M ζ=,⊥, ζ+) (or s2 is a state that can reach
(M ζ=,⊥, ζ+) in one or more τ -transitions). However, since we are in
the FS interpretation, and M ζ=,⊥ is a final state in P , we have that
(M ζ=,⊥, ζ+) ∈↓. Additionally, (M ζ=,⊥, ζ+)Qζ, so this requirement is
met in full.

The requirements for contrasimulation therefore hold if one goes from R
to Q. The only remaining thing is to check if the inverse requirements hold,
going from Q to R.

Let s2Qs1:

• If s2
a−→→ s′2 and a 6= τ , there exist s′1 ∈ T1 such that s1

a−→→ s′1, and
s′1Rs

′
2.

Let s2 = (M∅, Yjζ). Then all possible transitions of the type
a−→→ will

be
ajl−−→→ for some summand ajl, ξjl in Yj . This then also means that

we have a s′′2 such that:

(M∅, Yjζ)
ajl−−→ s′′2 � s′2

Now, we know that the only option for s1 is that s1 = Yjζ
−. We

also know that Yjζ
− ajl−−→ ξjlζ

−. It can also easily be verified that for
any such transition, we have that ξjlζ

−Rs′′2. Additionally, any state
s′2 reachable by τ -transitions from s′′2 will also be related as ξjlζ

−Rs′2,
unless one makes a τ transition that is inherited from S (but in that
case one can make that same τ -transition in S).

We now consider the case where s2 = (Mχ,y, Xζ). Then all possible

transitions of the type
a−→→ will be

aik−−→→ for some summand aik, ξik of
some Xi ∈ χ, or, if y = Yj 6= ⊥, then we can have

aik−−→→ for some
summand ajl, ξjl in Yj .

Given this s2, our only option for s1 is s1 = Xζ−.

We first consider the following transition:

(Mχ,y, Xζ)
aik−−→ (Mχ,y

Xi,ξik
, Xζ)

This one can be matched in TS(Z) by the transition:

Xζ−
aik−−→ ξikζ

′−

Where ζ = ζ ′′Xiζ
′, and ζ ′′ ∈ χ−{Xi}. Since ξikζ

′−R(Mχ,y
Xi,ξik

, Xζ), we
have what we need. Note that if one takes any further τ -transitions

51

down from (Mχ,y
Xi,ξik

, Xζ), these can be similarly matched from Xζ−

by jumping to the leftmost Xi still present in the stack.

We will now consider the case where s1 = Xζ− and we make the
following transition:

(Mχ,y, Xζ)
ajl−−→ (M∅Yj ,ξjl , ζ)

We again know that s1 = Xζ−. Now let ζ = ζ ′′Yjζ
′, where ζ ′′ ∈ χ∗.

Then we have that:

Xζ−
ajl−−→ ξjlζ

′−

And we know that ξjlζ
′−R(M∅Yj ,ξjl , ζ). Further τ -transitions from

M∅Yj ,ξjl , ζ) (up to (M∅, ξjlζ
′), where another non-τ -transition (or a τ -

transition prescribed by S) will have to be taken) will lead to states
that all relate via R to ξjlζ

′−, meaning that the requirement is met.

We note that any other transition of the type
a−→→ will be from states

s2 such that s2 � s′′2, where s′′2 is one of the aforementioned states,
and s′′2Qs1, so these cases reduce the cases above.

• If s2
τ−→→ s′2, then there exists a s′1 ∈ T1 such that s1 � s′1 and s′1Rs

′
2.

First, let s2 = (N,⊥). Then we have that s1 = Z. The only transition
possible from here is:

(N,⊥)
τ [⊥/Z]−−−−→ (MZ=,⊥, Z+)

From here only τ -transitions prescribed by S could occur, which can
be treated as non-τ -transitions without loss of generality. However,
we also have that ZR(MZ=,⊥, Z+), so the requirement is met in this
case.

Now let s2 = (M∅,⊥). We then have that s1 = 1. From here only one
τ -transition is possible, namely:

(M∅,⊥)
τ−→ (T,⊥)

However, we have that 1R(T,⊥), so again no problems occur.

Now, let s2 = (M∅, αχ,yζ). We then have that s1 = ζ−. From here
the only possible transition is:

(M∅, αχ,yζ)
τ−→ (Mχ,y, ζ)

52

Like before, from here only τ -transitions prescribed by S could occur,
and again we have that ζ−R(Mχ,y, ζ).

Now, let s2 = (M∅,?ξ , ζ). We then have that s1 = ξζ−. The only
possible transition from here is:

(M∅,?ξ , ζ)
τ−→ (M (ξζ)=,(ξζ)⇒ , (ξζ)+)

Again, from here only τ -transitions prescribed by S could occur. We
also have that ξζ−R(M (ξζ)=,(ξζ)⇒ , (ξζ)+).

Next, let s2 = (Mχ,y, ωXζ). Here we have that s1 = (ωXζ)− = ζ−.
From here our only option is the following transition:

(Mχ,y, ωXζ)
τ−→ (Mχ−{X},y, ζ)

From where, once more, only τ -transitions prescribed by S could occur.
However, like before, ζ−RMχ−{X},y, ζ), so the requirement is met in
this case as well.

Finally, consider the case where s2 = (M∅Y,ξ, ζ
′Y ζ). We then can only

have s1 = ξζ−. From this state a set of transitions are possible. The
entirety of ones options (again, barring τ -transitions found in S) is as
follows:

(M∅Y,ξ, ζ
′Y ζ) � (M (ξζ)=,(ξζ)⇒ , ξζ)

It suffices here to note that for all states s′′2 passed in the above we
have ξζ−Rs′′2, meaning that the requirement is once again met.

This exhaust all the cases, meaning that the requirement is met.

• If s2 ∈↓2, then there exists a s′1 ∈ T1 such that s1 � s′1, s′1 ∈↓1 and
s′1Rs2.

The reasoning here is pretty much identical to the one found going
from R to Q: since we are in the FS interpretation of PDA’s, we have
that for any stack, we have that (Mχ,⊥, ζ) ∈↓, which corresponds to
ζ− being fully transparent. Since all terminating states are related to
their corresponding state in both the Q and R direction, we conclude
that this requirement is also met.

We have therefore shown that (R,Q) defines a contrasimulation, which
concludes the proof.

53

5 Combining Transparency and Head-Recursion

In this section we will examine the combination of the previous two results.
We’ll do this by extending the previous result to include head-recursive
names as well as transparent ones.

Theorem 5.1. Let S be a sequential specification defined by a set of vari-
ables {Wf , Xi, Yj |f = 0, 1, ..., nW ∧ i = 0, 1, ..., nX ∧ j = 0, 1, ..., nY } as
follows:

Wf =
∑
g∈If

Wf · Vfg +
∑
h∈I′f

afh.ξfh(+1)

Xi =
∑
k∈Ii

aik.ξik + 1

Yj =
∑
l∈Ij

ajl.ξjl

Here V is a name from S, and ξ is a sequential composition of at most
2 variables, where zero variables is understood to be equal to 1. Let Z be a
name in S.

There exists a PDA P under the FS-interpretation such that TS(Z) is
contrasimilar to T (P).

Proof. We let W be the set of Wf . Furthermore, we let Wop be the set of
opaque head-recursive names (that is, without +1), and Wtr be the set of
transparent head-recursive names. Furthermore, we let Ntr = X ∪Wtr (that
is, all transparent names), and Nop = Y∪Wop (which is the set of all opaque
names). We also let D be the set of all possible data that P can have on its
stack.

Combining transparent names and head-recursive names does not really
give rise to any new problems. One can simply extend the PDA given in the
previous section with the ”machinery” for head-recursive names. To begin
with, qua bookkeeping we will treatWop the same as any opaque name, and
Wtr will be treated as transparent names. The main difficulty encountered
is that the ”machinery” creating the headrecursive stack will have to be
modified to properly do all the bookkeeping required (which is to say, add
the right marker symbols, and keep the right information in the state-name).

For this we will add a set of states to P that will be labelled L. We
will also reintroduce the segment symbol �. We will now also label the �
segment symbol with extra information, to keep track of what is ”behind”
it, since we must now also keep track of that.

Now, the specification of P is, for the most part, the same as in the
previous result. We will therefore only give the specification for the new
parts of P , that is, the parts dealing with head-recursion.

54

These specifications don’t introduce any particular new ideas. However,
to do all the bookkeeping correctly, it is quite lengthy.

We begin with the specification for opaque head-recursive names. The
first thing that occurs is that we go to a state L?

Wf
, the purpose of which is

to label the segment symbol � correctly:

∀Wf ∈ Wop.M
⊥ τ [Wf/ε]−−−−−→ L?

Wf

∀Wf ∈ Wop, χ ∈ N ∗tr, y ∈ Nop ∪ {⊥}.L?
Wf

τ [αχ,y/�χ,y]−−−−−−−→ Lχ,yWf

∀Wf ∈ Wop, Y ∈ Nop.L?
Wf

τ [Y/�∅,Y Y]−−−−−−−→ L∅,YWf

∀Wf ∈ Wop.L
?
Wf

τ [⊥/�∅,⊥]−−−−−−→ L∅,⊥Wf

Now, the following steps specify one can add and remove opaque names
that are part of the head-recursion

∀Wf ∈ Wop, d ∈ D, g ∈ If , Vfg ∈ Nop.L∅,yWf

τ [d/Vfgd]
−−−−−−→ L

∅,Vfg
Wf

∀Wf ∈ Wop, d ∈ D, g ∈ If , Vfg ∈ Nop.Lχ,yWf

τ [d/Vfgα
χ,yd]

−−−−−−−−→ L
∅,Vfg
Wf

∀Wf ∈ Wop, g ∈ If , Vfg ∈ Nop.L
∅,Vfg
Wf

τ [Vfg/ε]−−−−−→ L∅,?Wf

The latter of these brings us to L∅,?Wf
, which will find out what to replace

the questionmark with:

∀Wf ∈ Wop, Y ∈ Nop.L∅,?Wf

τ [Y/Y]−−−−→ L∅,YWf

∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥}.L∅,?Wf

τ [αχ,y/ε]−−−−−→ Lχ,yWf

∀Wf ∈ Wop.L
∅,?
Wf

τ [⊥/ε]−−−−→ L∅,⊥Wf

∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥}.L∅,?Wf

τ [�χ,y/�χ,y]−−−−−−−→ Lχ,yWf

The following specifications detail how to add and remove transparent
names from the stack:

55

∀Wf ∈ Wop, y ∈ Nop ∪ {⊥}, d ∈ D, g ∈ If , Vfg ∈ Ntr.L∅,yWf

τ [d/Vfgω
Vfgd]

−−−−−−−−−→ L
{Vfg},y
Wf

∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥},

d ∈ D, g ∈ If , Vfg ∈ Ntr, Vfg 6∈ χ.Lχ,yWf

τ [d/Vfgω
Vfgd]

−−−−−−−−−→ L
χ∪{Vfg},y
Wf

∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥},

d ∈ D, g ∈ If , Vfg ∈ Ntr, Vfg ∈ χ.Lχ,yWf

τ [d/Vfgd]
−−−−−−→ Lχ,yWf

∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥}, g ∈ If , Vfg ∈ χ.Lχ,yWf

τ [Vfg/ε]−−−−−→ Lχ,yWf

∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥}, g ∈ If , Vfg ∈ χ.Lχ,yWf

τ [ω
Vfg/ε]−−−−−−→ L

χ−{Vfg},y
Wf

Finally, the following set of sequential specifications detail how to move
back after building the desired stack in the head-recursive part. This can
only be done by executing one of the steps of Wj (as it is not transparent).
For the sake of brevity, the following set of specifications is to be read as
prefixed by ”∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈ Nop ∪ {⊥}, d ∈ D, h ∈ I ′f”.

56

ξfh = 1.L∅,yWf

afh[d/d]
−−−−−→M∅

ξfh = X.L∅,yWf

afh[d/XωXd]
−−−−−−−−→M{X},y

ξfh = Y.L∅,yWf

afh[d/Y d]
−−−−−−→M∅

ξfh = XX ′, X 6= X ′.L∅,yWf

afh[d/XωXX′ωX
′
d]

−−−−−−−−−−−−→M{X,X
′},y

ξfh = XX ′, X = X ′.L∅,yWf

afh[d/XXωXd]
−−−−−−−−−−→M{X},y

ξfh = XY.L∅,yWf

afh[d/XωXY d]
−−−−−−−−−→M{X},Y

ξfh = Y X.L∅,yWf

afh[d/Y α{X},yXωXd]
−−−−−−−−−−−−−−→M∅

ξfh = Y Y ′.L∅,yWf

afh[d/Y Y ′d]
−−−−−−−−→M∅

ξfh = 1.Lχ,yWf

afh[d/d]
−−−−−→Mχ,y

ξfh = X,X ∈ χ.Lχ,yWf

afh[d/Xd]
−−−−−−→Mχ,y

ξfh = X,X 6∈ χ.Lχ,yWf

afh[d/XωXd]
−−−−−−−−→Mχ∪{X},y

ξfh = Y.Lχ,yWf

afh[d/Y αχ,yd]
−−−−−−−−−→M∅

ξfh = XX ′, X,X ′ ∈ χ.Lχ,yWf

afh[d/XX′d]
−−−−−−−−→Mχ,y

ξfh = XX ′, X 6= X ′, X 6∈ χ,X ′ ∈ χ.Lχ,yWf

afh[d/XωXX′d]
−−−−−−−−−−→Mχ∪{X},y

ξfh = XX ′, X 6= X ′, X ∈ χ,X ′ 6∈ χ.Lχ,yWf

afh[d/XX′ωX
′
d]

−−−−−−−−−−→Mχ∪{X′},y

ξfh = XX ′, X 6= X ′, X,X ′ 6∈ χ.Lχ,yWf

afh[d/XωXX′ωX
′
d]

−−−−−−−−−−−−→Mχ∪{X,X′},y

ξfh = XX ′, X = X ′, X,X ′ 6∈ χ.Lχ,yWf

afh[d/XXωXd]
−−−−−−−−−−→Mχ∪{X},y

ξfh = XY.Lχ,yWf

afh[d/XωXY d]
−−−−−−−−−→M{X},Y

ξfh = Y X,X ∈ χ.Lχ,yWf

afh[d/Y αχ,yXd]
−−−−−−−−−−→M∅

ξfh = Y X,X 6∈ χ.Lχ,yWf

afh[d/Y αχ∪{X},yXωXd]
−−−−−−−−−−−−−−−→M∅

ξfh = Y Y ′.Lχ,yWf

afh[d/Y Y ′αχ,yd]
−−−−−−−−−−→M∅

Now, the treatment for transparent head-recursive states is mostly the

57

same, except for the fact that here one commits to a certain action in advance
(and, by extension, one commits to ending the stack in certain way, as
well). Aside from this, however, it does not significantly differ from what
came before. What follows is to be read as prefixed by: ”∀Wf ∈ Wtr, χ ∈
P(Ntr), y ∈ Nop ∪ {⊥}, d ∈ D”

g ∈ If , a.ξ ∈ Vfg.Mχ,y a[X/X]−−−−→Mχ,y
Wf ,ξ

h ∈ I ′f .Mχ,y afh[X/X]
−−−−−−→Mχ,y

Wf ,ξfh

Mχ,y
Wf ,ξ

τ [Wf/�χ,y]
−−−−−−−→ Lχ,yWf ,ξ

g ∈ If , Vfg ∈ Nop.L∅,yWf ,ξ

τ [d/Vfgd]
−−−−−−→ L

∅,Vfg
Wf ,ξ

g ∈ If , Vfg ∈ Nop.L
∅,Vfg
Wf ,ξ

τ [Vfg/ε]−−−−−→ L∅,?Wf ,ξ

g ∈ If , Vfg ∈ Nop.Lχ,yWf ,ξ

τ [d/Vfgα
χ,yd]

−−−−−−−−→ L
∅,Vfg
Wf ,ξ

Y ∈ Nop.L∅,?Wf ,ξ

τ [Y/Y]−−−−→ L∅,YWf ,ξ

L∅,?Wf ,ξ

τ [αχ,y/ε]−−−−−→ Lχ,yWf ,ξ

L∅,?Wf ,ξ

τ [⊥/ε]−−−−→ L∅,⊥Wf ,ξ

L∅,?Wf ,ξ

τ [�χ,y/�χ,y]−−−−−−−→ Lχ,yWf ,ξ

g ∈ If , Vfg ∈ Ntr.L∅,yWf ,ξ

τ [d/Vfgd]
−−−−−−→ L

{Vfg},y
Wf ,ξ

g ∈ If , Vfg ∈ Ntr, Vfg 6∈ χ.Lχ,yWf ,ξ

τ [d/Vfgω
Vfg]

−−−−−−−−→ L
χ∪{Vfg},y
Wf ,ξ

g ∈ If , Vfg ∈ Ntr, Vfg ∈ χ.Lχ,yWf ,ξ

τ [d/Vfgd]
−−−−−−→ Lχ,YWf ,ξ

g ∈ If , Vfg ∈ Ntr, Vfg 6∈ χ.Lχ,yWf ,ξ

τ [Vfg/ε]−−−−−→ Lχ,YWf ,ξ

g ∈ If , Vfg ∈ Ntr, Vfg 6∈ χ.Lχ,yWf ,ξ

τ [ω
Vfg/ε]−−−−−−→ L

χ−{Vfg},Y
Wf ,ξ

After this, what follows is how to step out of the head-recursive stack-
creation. This is again pretty much the same as before, but with one impor-
tant difference: the action linked to this moment has already be executed,
and so all one has to do is correctly add the ξ that this action would nor-
mally add to the stack. Again, for the sake of brevity, the following set
of specifications is to be read as prefixed by ”∀Wf ∈ Wop, χ ∈ P(Ntr), y ∈
Nop∪{⊥}, d ∈ D, X,X ′ ∈ Ntr, Y, Y ′ ∈ Nop”. First we have the case in which
one is at a state of the type L∅,y

58

L∅,yWf ,1

τ [d/d]−−−→M∅

L∅,yWf ,X

τ [d/XωXd]−−−−−−−→M{X},y

L∅,yWf ,Y

a[d/Y d]−−−−−→M∅

X 6= X ′.L∅,yWf ,XX′
τ [d/XωXX′ωX

′
d]−−−−−−−−−−−→M{X,X

′},y

X = X ′.L∅,yWf ,XX′
τ [d/XXωXd]−−−−−−−−→M{X},y

L∅,yWf ,XY

τ [d/XωXY d]−−−−−−−−→M{X},Y

L∅,yWf ,Y X

τ [d/Y α{X},yXωXd]−−−−−−−−−−−−→M∅

L∅,yWf ,Y Y ′
afh[d/Y Y ′d]
−−−−−−−−→M∅

What follows is for when is in a state of type Lχ,y (the same prefix as
before applies).

59

Lχ,yWf ,1

τ [d/d]−−−→Mχ,y

X ∈ χ.Lχ,yWf ,X

τ [d/Xd]−−−−−→Mχ,y

X 6∈ χ.Lχ,yWf ,X

τ [d/XωXd]−−−−−−−→Mχ∪{X},y

Lχ,yWf ,Y

τ [d/Y αχ,yd]−−−−−−−→M∅

X,X ′ ∈ χ.Lχ,yWf ,XX′
τ [d/XX′d]−−−−−−→Mχ,y

X 6= X ′, X 6∈ χ,X ′ ∈ χ.Lχ,yWf ,XX′
τ [d/XωXX′d]−−−−−−−−→Mχ∪{X},y

X 6= X ′, X ∈ χ,X ′ 6∈ χ.Lχ,yWf ,XX′
τ [d/XX′ωX

′
d]−−−−−−−−−→Mχ∪{X′},y

X 6= X ′, X,X ′ 6∈ χ.Lχ,yWf ,XX′
τ [d/XωXX′ωX

′
d]−−−−−−−−−−−→Mχ∪{X,X′},y

X = X ′, X,X ′ 6∈ χ.Lχ,yWf ,XX′
τ [d/XXωXd]−−−−−−−−→Mχ∪{X},y

Lχ,yWf ,XY

τ [d/XωXY d]−−−−−−−−→M{X},Y

X ∈ χ.Lχ,yWf ,Y X

τ [d/Y αχ,yXd]−−−−−−−−−→M∅

X 6∈ χ.Lχ,yWf ,Y X

τ [d/Y αχ∪{X},yXωXd]−−−−−−−−−−−−−−→M∅

Lχ,yWf ,Y Y ′
τ [d/Y Y ′αχ,yd]−−−−−−−−−→M∅

Finally there is the case where one is in a state of the type Mχ,Wj

where Wj ∈ Wop. This case functions as somewhat of a hybrid between
the treatment of the opaque and the transparent head-recursive names: one
does immediately commit to a certain action, but this action can only be an
afh from Wj itself, and not an action from any of the names Wj can freely
add to the stack, since it is not transparent.

The following specifications detail how to enter the L-states in this sce-
nario

60

∀Wf ∈ Wop, h ∈ I ′f .Mχ,Wj
afh[Wf/ε]−−−−−−→ L?

Wf ,ξfh

∀Wf ∈ Wop, χ ∈ N ∗tr, y ∈ Nop ∪ {⊥}.L?
Wf ,ξ

τ [αχ,y/�χ,y]−−−−−−−→ Lχ,yWf ,ξ

∀Wf ∈ Wop, Y ∈ Nop.L?
Wf ,ξ

τ [Y/�∅,Y Y]−−−−−−−→ L∅,YWf ,ξ

∀Wf ∈ Wop.L
?
Wf ,ξ

τ [⊥/�∅,⊥]−−−−−−→ L∅,⊥Wf ,ξ

Other than this slight variation this case will behave the same as the
transparent head-recursive names.

As the very last step of the specification we need to tell the rest of the
PDA how to deal with the new segment symbol �. This is, like in the simple
head-recursive case, quite simple: they get thrown away. So for all non-L
states M in P , and for all variants of � we have:

M
τ [�/ε]−−−→M

Now, we also need to extend the contrasimulation (R,Q) to deal with all
these new states. First we show how R is extended. We let ζWf ∈ {Vfg|g ∈
If}∗. Furthermore, let the following hold for all χ ∈ P(Ntr) ∪ {?}, y ∈
Ntr ∪ {⊥} ∪ {?}, ζ, ζ ′ ∈ (Ntr ∪Nop)∗. We also note that we will understand
L?,y as L?.

∀Wf ∈ Wop.Wfζ R(Lχ,yWf
, (ζWf �ζ=,ζ⇒ ζ)+)

∀Wf ∈ Wtr, g ∈ If , h ∈ I ′f , ξ ∈ Vfg ∨ ξ = ξfh.ξζ
Wf ζ R(Mχ,y

Wf ,ξ
, (ζ ′Wjζ)+)

∀Wf ∈ Wtr, g ∈ If , h ∈ I ′f , ξ ∈ Vfg ∨ ξ = ξfh.ξζ
Wf ζ R(Lχ,yWf ,ξ

, (ζWj �ζ=,ζ⇒ ζ)+)

This looks slightly more complicated than it is. In the case of opaque
style head-recursion it is the same as before: since the action is performed
at the very end of building the desired stack, all interim stacks simply relate
to the original head-recursive name (for more detailed proof of this we refer
to the section on head-recursion).

With head-recursion in a transparent part of the stack the basic idea is
the following: every state ζ in TS(Z) relates via R to any state of the type
Mχ,y
Wf ,ξ

and Lχ,yWf ,ξ
that can reach it’s ”canonical” state, that is (M ζ=,ζ⇒ , ζ+),

using only τ -transitions. This will allow these states to mirror any step from
ζ by simply doing these τ -steps, and then following the step that ζ performs
as detailed in the previous proof.

Finally, the Q relation is extended as follows:

61

∀Wf ∈ Wop.(L
χ,y
Wf
, (ζWf �ζ=,ζ⇒ ζ)+) RWfζ

This simply mirrors the relation for the opaque-style head-recursion,
since this, as mentioned before, has not changed from the regular case,
which works up to branching bisimilarity.

In terms of proving that (R,Q) is a contrasimilarity, we will refer to the
proof in the previous section: head-recursion does not create any kind of
interference with transparent names, and so one can still mirror steps in
both directions in the same way as detailed before.

We have therefore shown that for any specification one can find a PDA
such that their associated transition systems are the same up to contrasim-
ilarity. This concludes the proof.

62

6 Transparency with Modified Process Algebras

So we saw that we can deal with both transparency and head-recursion using
contrasimulation. We conjecture that it can be done for no finer equivalence
in Van Glabbeek’s lattice, so in particular not for branching bisimulation.
We can improve this result to strong bisimulation, however, if we change the
semantics of sequential composition, as indicated next.

The modification made is that we replace · with •. We note that [5],
where this modification is proposed, uses the symbol ; instead. Recall that
for · the following operational rule holds:

P1 ↓ P2
a−→ P ′2

P1 · P2
a−→ P ′2

However, for • we have all rules be the same as for ·, except the above
one, which becomes the following:

P1 ↓ P2
a−→ P ′2 P1 6→

P1 • P2
a−→ P ′2

Or, put into words, one can only terminate P1 instantly and perform a
step from P2 if there are no other transitions possible from P1.

This change has a number of advantages, as can be seen in [5]. It addi-
tionally has the disadvantage of forcing us to use a negative premise in the
rule. This makes for supported models, where not every transition is deriv-
able for the rules. For more information on the theory of negative premisses
and supported models, we refer to [9].

This negative premise, in particular, causes problems when looking at
head-recursion. We will first give a small example of this, to illustrate why
we exclude head-recursion from the general case.

Example 6.1. Consider the following sequential specification S:

X = X • Y + 1

Y = a.1

Here one seemingly runs into a problem: if one assumes that X can make
no transitions, then the X in X • Y can terminate by choosing 1, and one
could make an a-transition. However, this would contradict the assumption
that X can make no transitions.

So since assuming that X 6→ leads to X
a−→ (and hence to contradiction),

we must have that X can execute some action, for instance X
b−→ 0. This

63

X 0
b

Figure 13: A possible labelled transition system TS(X)

means that the labelled transition system found in figure 13 satisfies the
specification.

We therefore have that with head-recursion, a name can take any action,
or even set of actions, as long as it reaches deadlock eventually.

However, all these transitions are not derivable from the rules. We will
therefore merely look at transparent names, and leave head-recursion out.

We note that the following result has been achieved simultaneously to,
and independently of [5].

Theorem 6.1. Let S be a sequential specification defined by a set of vari-
ables {Xi, Yj |i = 0, 1, ..., n ∧ j = 0, 1, ...,m} as follows:

Xi =
∑
k∈Ii

aik.ξik + 1

Yi =
∑
l∈Ij

ajl.ξjl

Here ξ is a sequential composition (using •) of any number of variables,
where zero variables is understood to be equal to 1. Let Z be a name in S.

There exists a PDA P under the FS-interpretation such that TS(Z) -
T (P).

Proof. With the introduction of the modified rule, a transparent state can
only terminate if all states after it are transparent as well. When construct-
ing P it is therefore important to keep track of whether or not the stack one
has is fully transparent or not. We will therefore introduce another marker
symbol, �.

This marker symbol will be used to mark the last non-transparent name
in a string of names. We will also introduce a piece of new notation: with
ξ(�) we will mean the string ξ, but with the symbol � added after the last
non-transparent name in the string. So, for example, if ξ = XiYjXiYj , then
we will have that ξ(�) = XiYjXi�Yj .

Furthermore we will use the symbol ζ for any string of names, and ζ−

for the string ζ with its marker symbols removed.
To begin with, we will reorganize the specifications of the Xi’s in S to

be able to distinguish between ξ that contain a non-transparent name, and
ones that don’t.

64

Xi =
∑

f∈Ii(tr)

aifβif +
∑

h∈Ii(op)

aihγih

Here βif contain only transparent names, while γih contain at least one
opaque name.

The PDA P will then consist of three states. The first, N , is the ini-
tial state. This state will simulate the initial name, Z =

∑
f∈Ij(tr)

ajfβjf +∑
h∈Ij(op)

ajhγjh:

∀f ∈ Ij(tr).N
ajf [⊥/βjf]
−−−−−−−→M

∀h ∈ Ii(op).N
ajh[⊥/γ(�)

jh]
−−−−−−−→M ′

Furthermore, if Z itself is transparent, we have N ∈↓.
The rest of the simulation of S is then done in the states M and M ′.
As for the specification of M , this will be the state one is in as long as

the entire stack is transparent. We therefore have M ∈↓, and the following
specification:

∀0 ≤ i ≤ n, f ∈ Ii(tr).M
aif [Xi/βif]
−−−−−−−→M

∀0 ≤ i ≤ n, h ∈ Ii(op).M
aih[Xi/γ

(�)
ih]

−−−−−−−−→M ′

Note that there are no transitions for finding a Yj on the stack. This is
because this will never occur: whenever an opaque name Yj is added to the
stack, the PDA will transition to M ′, and it will not move back to M before
all opaque names have been removed from the stack.

For M ′ we then finally have the following specifications:

∀0 ≤ i ≤ n, f ∈ Ii(tr).M ′
aif [Xi/βif]
−−−−−−−→M ′

∀0 ≤ i ≤ n, h ∈ Ii(op).M ′
aih[Xi/γih]−−−−−−−→M ′

∀0 ≤ j ≤ m, l ∈ Ij .M ′
ajl[Yj/ξjl]−−−−−−→M ′

M ′
τ [�/ε]−−−−→M

We would also like to stress the fact that M ′ 6∈↓.
Now, the claim is that the transition system associated with this PDA

is strongly bisimilar to TS(Z). We will therefore define a relation R ⊆
TS(Z) × T (P), and show that it is a strong bisimulation. We define R as
follows:

65

ζtrR(M, ζtr)

ζtrR(M ′,�ζtr)

ζopR(M ′, ζ(�)
op)

ZR(N,⊥)

Here ζtr is a string of transparent names, and ζop is a string that contains
at least one opaque name.

We will now show that R is a strong bisimulation. We begin by noting
that ZR(N,⊥), so the initial states are related to one another. Now, let
s1Rs2:

• If s1
a−→ s′1 then there need to exist s′2 ∈ T (P) such that s2

a−→ s′2, and
both s1Rs

′′
2 and s′1Rs

′
2.

Let s1 = V · ζ. Here V is any name from S, and ζ is a string of zero
or more sequentially composed names.

Now, we first assume that V ζ contains only transparent names. We
then have V ζR(M,V ζ). Since V ζ makes an a-transition, it must be
because V contains a summand of the form a.ζ ′ (it cannot be a later
name in V ζ due to the new rule here employed). We therefore have
V ζ

a−→ ζ ′ζ. Now, first assume that ζ ′ contains only transparent names.
Then there exists the following transition in P :

M
a[V/ζ′]−−−−→M

Which means that in T (P) we have:

(M,V ζ)
a−→ (M, ζ ′ζ)

And ζ ′ζR(M, ζ ′ζ).

Secondly, assume that ζ ′ contains at least one opaque name. This
means that in P there exists the following transition:

M
a[V/ζ′(�)]−−−−−−→M ′

Which means that in T (P) we have:

(M,V ζ)
a−→ (M ′, ζ ′(�)ζ)

And ζ ′ζR(M, ζ ′(�)ζ), since ζ ′(�)ζ = (ζ ′ζ)(�), as ζ is fully transparent.

66

Lastly, consider the case in which V ζ contains at least one opaque
name. This means that V ζR(M ′, (V ζ)(�)). We therefore have V ζ

a−→
ζ ′ζ, which means that in P we must have:

M ′
a[V/ζ′]−−−−→M ′

Which means that in T (P) we have:

(M ′, V ζ)
a−→ (M ′, ζ ′ζ)

And ζ ′ζR(M ′, ζ ′ζ).

• If s2
a−→ s′2 then there need to exist s′1 ∈ T (P) such that s1

a−→ s′1, and
both s′′1Rs2 and s′1Rs

′
2.

Here we note once more that all transitions in the PDA directly mirror
actions from S. This means that the direction of the implications of the
first requirement can be reversed freely, meaning that this requirement
is also met.

• If s1 ∈↓ then there exists a s′2 such that s′2 ∈↓ and s1Rs
′
2.

There are two cases in which a state in TS(Z) can terminate. The
first one is if s1 = 1. This state (since it contains no opaque names)
is related to s2 = (M,⊥), and since M ∈↓ we can therefore terminate
without even needing to make τ -transitions.

The second case is if s1 = ζ, where ζ consists only of transparent
names. This means that s2 = (M, ζ), and again, since M terminates,
the requirement is instantly met.

• If s2 ∈↓ then there exists a s′1 such that s′1 ∈↓ and s1Rs
′
2.

The reverse implications of the previous point all hold, so this require-
ment is also met.

We can therefore conclude that R is a strong bisimulation, which con-
cludes the proof.

67

7 Conclusion

In this section we first summarize the main results accomplished in this
thesis, discuss some of their limitations, and mention some ideas for future
research.

There are three primary accomplishments of this thesis. The first one is a
proof of Paul van Tilburg’s conjecture in [14] regarding head-recursion. We
showed that given a sequential specification with head-recursion (and with-
out transparency), one can construct a push-down automaton such that the
associated transition systems are equivalent up to non-divergence-preserving
branching bisimulation. This was achieved by adding a separate state in the
PDA for each head-recursive name in the specification. This new PDA state
can then freely add and remove elements via τ -transitions that the head-
recursive name would be able to add instantaneously.

The second result is a proof for another conjecture from [14]; we proved
that given a sequential specification with transparency, one can construct
a PDA such that the associated transition systems are equivalent up to
contrasimulation. The basic idea of this proof was to simulate ”forgetful”
transitions in the sequential specification (that is, steps where one or several
names are ”forgotten”, due to them terminating instantaneously) by having
non-deterministic τ -transitions.

As an extension to the previous two results, we also showed that they
could be combined without any additional difficulty. That is, given any se-
quential specification, one can find a PDA such that the associated transition
systems are equivalent up to contrasimulation.

Lastly, the third result showed that, if one modifies the operational se-
mantics of sequential composition, one can improve the equivalence, in the
case of transparency, up to strong bisimulation.

Now, with regard to the first two results, and their combination, the
first relevant thing to note is that the proofs are merely constructive: we
have shown that it is possible up to the specific equivalence, but we have
not shown that it is impossible to do better. We do conjecture that, in the
case of head-recursion, one cannot do better than non-divergence-preserving
branching bisimulation, and in the case of transparency (and the general,
combined case) one cannot do better than contrasimulation, but as we note
that negative results of this type are usually much harder to achieve, this
would be a good topic for further research.

Secondly, the third result can clearly not be improved upon, as strong
bisimulation is the finest equivalence in van Glabbeek’s lattice in [7]. How-
ever, it has as a downside that it introduces a negative premisse, which
has as a result that in the case of head-recursion, not all transitions can be
derived from the premisses.

In conclusion, we have shown in this thesis that context-free processes
and push-down processes are equivalent at least up to contrasimulation.

68

References

[1] J.C.M. Baeten. Models of computation: Automata, formal languages,
and communicating processes. Lecture Notes, February 2013.

[2] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra (Equa-
tional Theories of Communicating Processes). Number 50 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
2009.

[3] J.C.M. Baeten, P.J.L. Cuijpers, B. Luttik, and P.J.A. van Tilburg. A
process-theoretic look at automata. In F. Arbab and M. Sirjani, edi-
tors, Proceedings FSEN’09, number 5961 in Lecture Notes in Computer
Science, pages 1–33, 2010.

[4] J.C.M. Baeten, B. Luttik, and P. van Tilburg. Computations and in-
teraction. In R. Natarajan and A. Ojo, editors, Proceedings ICDCIT
2011, number 6536 in Lecture Notes in Computer Science, pages 35–54,
2011.

[5] Jos C. M. Baeten, Bas Luttik, and Fei Yang. Sequential composition
in the presence of intermediate termination. CoRR, abs/1706.08401,
2017.

[6] T. Basten. Branching bisimilarity is an equivalence indeed! Information
Processing Letters, 58(3):141–147, 1996.

[7] R.J. van Glabbeek. The linear time - branching time spectrum II. In
CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, pages 66–81,
1993.

[8] R.J. van Glabbeek. The Linear Time – Branching Time Spectrum I. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process
Algebra, pages 3–99. Elsevier, 2001.

[9] R.J. van Glabbeek. The meaning of negative premises in transition sys-
tem specifications ii. The Journal of Logic and Algebraic Programming,
60-61:229–258, 2004.

[10] R.J. van Glabbeek, B. Luttik, and N. Trčka. Branching bisimilarity with
explicit divergence. Fundamenta Informaticae, 93(4):371–392, 2009.

[11] S. A. Greibach. A new normal form theorem for context-free phrase
structure grammars. Journal of the ACM, 12(1):42–54, 1965.

[12] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Pearson, 2006.

69

[13] Gordon D. Plotkin. A structural approach to operational semantics. J.
Log. Algebr. Program., 60-61:17–139, 2004.

[14] Paul J.A. van Tilburg. From Computability to Executability (A Process-
Theoretic View on Automata Theory). PhD thesis, Eindhoven Univer-
sity of Technology, 2011.

70

