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Abstract

We will present a natural logic (NQL) for reasoning with
generalized quantifiers that aims to predict mean human
success on syllogistic and related reasoning tasks. Natu-
ral logics provide inference rules that operate directly on
natural language representations, thereby gaining flexibil-
ity and expressive power. NQL thereby proves to be more
cognitively plausible than competing theories. We will fur-
ther extend NQL to a natural language fragment that is
concerned with quantifier iteration. The inference rules in
NQL are assigned weights, corresponding to a measure of
complexity of inferences – this weight assignment is moti-
vated by semantic and psychological considerations. While
the overarching goal is to align the complexity of sequences
of inferences with the cognitive difficulty that reasoners en-
counter, we also aim to demonstrate that NQL can be used
to predict the mean success rates of reasoners on related
tasks. The natural logic approach highlights the inferential
properties of expressions over their extensional ones and
emphasizes the how we use natural language in inferences.
While we show that NQL successfully models inferences on
single and iterated quantifiers, we will also provide some
empirically testable hypotheses that are derived from NQL’s
informative weights.
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1 Introduction

Logic and psychology can look back on a shared history that is full of twists and turns,
with the two moving back and forth on their commitment to one another. Recently, van
Benthem (2008) noted that logic is undergoing a cognitive turn, where only little earlier
others proclaimed the time of logic in psychology to be over (see e.g. Evans 2002 or
Chater & Oaksford 1999). And some time before that, Frege argued for the independence
of logic and psychology with so much eager and success that van Benthem speaks
of ”Frege’s wall“ between the two fields. Logicians have since then however greatly
extended the logical toolbox in some ways that can prove relevant for the investigation of
a wide range of cognitive phenomena that we could describe as ”reasoning“. One of the
corollaries of this extended toolbox is however that there is not one logic for this kind of
task, but a variety of them (see for example Stenning & van Lambalgen (2010) and Besold
et al. (2017) on how reasoning under uncertainty can be approached using logic and logic
programming). Thus, when talking about logic in cognitive science and psychology, we
do not restrict ourselves to what is usually implied by the umbrella-term ”standard logic“
(embodying predicate logic and propositional calculus) but a variety of very different
tools that may or may not account for a variety of very different phenomena. We will
see later on that much of the criticism by Evans (2002) and Chater & Oaksford (1999)
can be traced back to such an equalization of logic with ”standard logic“. The story
of ”standard logic“ in psychology is indeed analogue to the story of the hammer that
mistakes everything for a nail and further fully disregards the pluralistic view of logic
(e.g. Stenning & van Lambalgen 2012).

That means that we cannot just go about and ”model reasoning with logic“ but have
to handpick a specific phenomenon of reasoning and the appropriate tool. The phe-
nomenon of reasoning that caught our eye is that of inferences on quantifier expressions
in natural language, e.g. ALL, NO, and MOST and their iterations, e.g. in ”MOST pigeons
annoyed AT LEAST THREE tourists“.1 Due to the limited scope of our investigation, we
will restrict our discussion to specific quantifier expressions in the English language –
determiners. While some researchers have emphasized the universality of quantification
in noun phrases across all languages (Barwise & Cooper 1981, 177), we will later see that
some languages do not use determiners for quantification. Quantifier expressions have
been in logical spotlight since at least the advent of Aristotelian logic – with Aristotle
being the (at least self-proclaimed) first logician and his syllogistic logic consequently
the (at least self-proclaimed) first logic. There is thus much shared history to build upon.
The appropriate logical hammer for this kind of reasoning, we think, is natural logic.

Natural logic emphasizes the fact that some important and recurring expressions
in natural language are not only carriers of information, containers in which we store
this and that piece of information, but allow for reasoning. Natural logic tries to make

1To avoid misunderstandings, we will consistently write quantifier expressions in small caps, e.g. MOST

instead of ”most“.
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sense of such expressions by giving them a formal characterization emphasizing the
properties that allow for the reasoning in question – this operationalizes a variety of log-
ical constants with semantic properties mirroring such in natural language expressions,
e.g. ”and“, ”or“, ”necessarily“, ”all“ etc. Reasoning and inferences that build on the
semantics of these expressions are thus inferences that operate ”on the surface of natural
language“ (van Benthem 2007). As it happens, quantifier expressions show semantic
properties that allow for a rich variety of such inferences.

We will present a natural logic – an extension of the model proposed by Geurts
(2003) – that captures the essential inferential properties of single and iterated quantifier
expressions. At the semantic center of this logic is the notion of monotonicity: we can
infer that ”MOST pigeons annoyed AT LEAST THREE humans“ from ”MOST pigeons
annoyed AT LEAST THREE tourists“ because, from an anthropocentric viewpoint, we
know that the set of all tourists is contained in the set of all humans. This example
already highlights the direction in which we will expand Geurts’ logic – it contains
two quantifier expressions and these iterations allow for monotonicity-based reasoning
similar to syllogistic reasoning. We will introduce inference rules that account for this
kind of reasoning as well. A natural logic defines some inferences as good and others
implicitly as bad – but by adding a complexity measure to the inferences that are deemed
good, we can also make statements about the difficulty of a good sequence of reasoning
steps. We will create such a measure that predicts the mean success rate of participants in
adequate reasoning-experiments concerned with (iterated) generalized quantifiers. The
entirety of inference rules and weight assignments will carry the name natural quantifier
logic (NQL).

This endeavor builds on the intersection of logic, the psychology of reasoning and
linguistics and operates under the assumption that it is possible to find a measure
of computational complexity of reasoning with quantifier expressions that aligns with
the variation in its cognitive difficulty and correlates with mean success rates of human
reasoners. Szymanik (2016) applies this idea to generalized quantifiers (where the
complexity-measure is grounded in their representation as finite automata) but remains
relatively silent on reasoning with them. The general approach of aligning complexity
with difficulty is presented by Isaac et al. (2014). Due to the interdisciplinarity of the
approach, there is no bottom-up way to build up a natural logic model of reasoning
with (iterated) generalized quantifiers – we will take a rather circular approach and
often introduce notions (e.g. that of monotonicity) by means of examples, before we
can formally introduce them in a later chapter. We will thus circle back to the same
ideas from different perspectives various times, hoping that they reciprocally clarify one
another.

Firstly, in chapter 2, we will expand on the role of logic in the psychology of reason-
ing – where we focus on two natural language fragments that feature inferences with
generalized quantifiers and iterated generalized quantifiers, respectively. As for the first
fragment – Aristotle’s syllogisms – we will see competing theories that try to explain
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human performance and make predictions regarding their difficulty. In evaluating
these theories against each other, we will find our reasons to go with the natural logic
approach, which we will introduce in some detail in chapter 3. This is mostly a a matter
of representation: as natural logic uses natural language representations, it is both flexible
and expressive enough to be cognitively plausible.

Secondly, we will introduce generalized quantifiers in chapter 4. We will focus on
their relationship to natural language and their semantic properties that allow for the
formulation of inferences and extend the relevant semantic notions to iterated quantifiers
where possible. We will however also see that the interpretation of quantifier expressions
such as MOST is not always clear – and that the inferential properties of generalized
quantifiers sometimes depend on their precise interpretation. We will thereby motivate
a simplicity constraint stating that interpretation-dependent inferences should only be
included if they prove useful, and not just when they are possible.

Thirdly, we will present NQL, a natural logic for reasoning with (iterated) generalized
quantifiers, in chapter 5 that is an extension of the model in Geurts (2003). NQL will
account for a larger variety of single quantifiers, more inferences based on semantic
properties, inferences on the combined semantic properties of iterated quantifiers and
more. We will motivate the inference rules and their weight-assignments with a large
array of empirical evidence and semantic considerations whenever possible. We see
our main contribution in this extension of Geurts’ model to a larger array of inferences,
weight assignments that are better grounded in psychological research and thereby
a complexity measure that better aligns with empirical data – we will see that the
complexity measure of our logic will show a good correlation with mean success rates
in experiments on syllogistic and related reasoning.

Finally, we will evaluate our logic in chapter 6 and see that it outperforms comparable
models where comparison is possible and provides good predictions where not. We will
further derive some testable predictions of our model in chapter 7, propose adequate
experiments to test them and provide some philosophical context for our focus on the
inferential properties of natural language expressions in chapter 8.

The natural logic approach brought forward here does not claim to give a full-fledged
model of reasoning, we can rather state that a natural logic model for reasoning is almost
necessarily incomplete, it presupposes a successful processing of interpretation and
understanding (Braine 1978). It only claims that it is a very particular hammer that suits
a very particular nail.

2 Of Logic and Reasoning

Variations of deductive reasoning have been heavily studied in psychology and logic
throughout the last decades. But this paradigm and its logical import into psychology
has come under pressure from various directions (e.g. Evans 2002, Chater & Oaksford
1999) – we will spend some time trying to defuse these criticisms and then argue in favor
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of a logic-based approach. After all, we owe the reader some motivation.
Critiques of investigations into deductive reasoning and the involvement of logic in

these endeavors have often focused on the fact that ”this paradigm was developed in a
context of logicist thinking that is now outmoded“ (Evans 2002, 978) and that logic can-
not be the proper normative standard against which human reasoning is to be evaluated.
This is a reaction to somewhat logicist statements that ”logical forms

[
...
]

are concerned
with the ideal, with ’how we ought to think‘.“ (Henle 1962, 366), thereby proclaiming
logic the science of thought (ibid.). This more recent skepticism against logic and the
deduction paradigm mirrors a change of ideas on rationality and thinking which comes
with an increased focus on pragmatic and other non-logical factors in reasoning, e.g.
propositional content (though we will see later on that a logic can account for pragmatic
and other factors by assigning informative weights to inference rules). Throughout
our work, we will focus on syllogistic and related modes of reasoning, i.e. a variety of
reasoning forms closely related to what one could call everyday deductions like this one:

Some linguists are semanticists.
All semanticists are philosophers.
Some linguists are philosophers.

Deductive reasoning however goes far beyond that: adopting Evans’ (2002) termi-
nology that later experiments by Wason and others (e.g. Wason 1983) introduced the
modern paradigm, we might call syllogisms and their psychological investigation the
classical paradigm. Kicking off the modern paradigm, Wason introduced the selection
task to investigate the logical capacities of participants (this variant here is taken from
Stenning & van Lambalgen 2012). For the experiment, a reasoner is confronted with four
cards:

A K 4 7

Reasoners are informed that they can only see one side (but not the other), and that each
card has a number on one side and a letter on the other. Their task is to select the cards
that one must turn to test the rule ”If there is a vowel on one side, then there is an even
number on the other side“ without turning any unnecessary cards. If propositional logic
is taken to be the adequate normative standard, only 5% of all participants manage to
select the correct cards (A and 7).

Evaluating the results against standard predicate logic, one can indeed only conclude
that people are illogical and irrational (Evans 2002, 980). A way of rehabilitating logic
was however found in the work of Stenning & van Lambalgen (2012), claiming that ”the
unargued adoption of classical logic as criterion of correct performance is thoroughly
antilogical“ (Stenning & van Lambalgen 2012, 45) – and this for a variety of reasons. One
can formalize the selection task in a multitude of logics which may even assign different
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interpretations to the logical constants: implication in standard logic is material (i.e. p→
q is wrong if and only if p and ¬q are true), a standard that was unfortunately adopted
by psychologists for their evaluation of how logical subjects reason in experimental
setting. But the meaning of logical connectives is by no means fixed across all logics – a
problem that refers to the correct interpretation of reasoning tasks (Evans 2012, 990). In
this vein, Stenning & van Lambalgen (2012) explicitly distinguished between reasoning
to and from an interpretation: a reasoner first needs an interpretation (what they call a
logical parameter setting) before she can reason accordingly. The evaluation of Wason’s
selection task in terms of standard logic thus means evaluating subjects according to
a normative standard that they did not apply themselves and were not in any way
aware of. For the remainder of this work, we will however, for the most time, disregard
reasoning to an interpretation and focus on reasoning from it: we will assume that the
interpretations of logical constants are fixed as we introduce them further below. That
being said, we will shortly see a natural logic with a directional entailment relation
(Braine 1978) accounting for the results of the selection task.

While we do not wish to spend too much time on the general adequacy of logical
modeling paradigms, it is probably safe to say that much of the recent criticism that logic
had to endorse can be traced back to an uncalled-for equalization of logic and predicate
logic or propositional calculus (with the umbrella-term standard logic usually being used).
In Oxford & Chater’s work, for example, ”logic“ is clearly to be read as standard logic,
in effect equating the both. They write, for example, ”...standard logic, which mental
logic and mental models assume to be normative...“ (Oaksford & Chater 2001, 349). 2

We will now look at the syllogistic fragment in some detail, compare theories that aim to
explain experimental results and then go on to argue why logic is the right way to go
here.

2.1 The Syllogistic Fragment

The analysis of syllogistic reasoning can look back upon a rich history – its logical
investigation presumably started with Aristotle, while its psychological aspects came
into focus some 100 years ago: Khemlani & Johnson-Laird (2012) note Störring (1908) as
the first to investigate the psychology of deductive reasoning. Since then, the psychology
of reasoning has seen a large variety of theories that aim to explain the why, the how,
and the what of such inferential practices. We will take a moment to break this down
here. According to a meta-study by Khemlani & Johnson-Laird (2012), there are three
main kinds of theories regarding syllogistic reasoning: firstly, heuristic theories that
emphasize principles that could underly intuitive responses. Secondly, two kinds of
theories that emphasize deliberative reasoning – with methodological focus either on

2A logician can consequently respond to their favored example of logic being unable to account for
non-monotonic inferences in everyday life by pointing out that there are indeed rich non-monotonic logics
which can account for defeasible reasoning (Strasser & Antonelli 2016).
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logical or set-theoretical notions. As a matter of further complication, these theories
differ in what they call good and bad inferences.3

Syllogisms proof to be a good starting point for our endeavor, in fact, psychological
studies that are concerned with human reasoning using quantification expressions are
more often than not restricted to syllogistic reasoning. With the syllogistic fragment, we
get a first study of quantification, a variety of inferential patterns and a large array of
empirical data (assembled in a meta-study by Chater & Oaksford 1999, see table 1) that
a model of syllogistic reasoning has to account for.

Syllogistic reasoning is deductive reasoning, and ”in daily life, individuals reason
in a variety of contexts, and often so rapidly that they are unaware of having made
an inference“ (Khemlani & Johnson-Laird 2012). Not all of this constitutes deductive
reasoning and not all deductive reasoning is syllogistic reasoning – given, however, that
humans are clearly able to perform deductive reasoning in everyday life (or at least
while playing Sudoku or participating in a psychological experiment), this issue is worth
investigating. Moreover, syllogistic reasoning has the advantage to be constituted of –
formally – relatively simple reasoning patterns (some, however, prove to be – cognitively
– quite difficult, as we will see) and empirical data of syllogistic reasoning can thus serve
as a first benchmark for any formal theory of reasoning. By no means, however, is a
theory of syllogistic reasoning to be confused with a theory of deductive reasoning and
even less so with a theory of reasoning – as is exemplified by the selection task above.

Formally, syllogisms are inference schemes (inferences that hold for every proper as-
signment of variables) using the quantifier expressions EVERY, SOME, NO, and SOME...NOT.
For historical reasons, we adopt the shortcuts ”A“ for EVERY, ”I“ for SOME, ”E“ for NO

and ”O“ for SOME...NOT.4 They consist of three quantified sentences (two premises
and one conclusion) and three variables (which we will call A, B, and C). All three
variables occur in the premises, while the one variable that occurs in both, called B, is
not appearing in the conclusion. Aristotle noticed four figures, representing possible vari-
able configurations in the premises. Figures do thus take different combinations of the
variables A, B, and C into account, but not yet the different assignments of quantifiers,
which is called a syllogisms mood.

Figures and Moods
For i ∈ {1, 2, 3}, let Qi be any of the Aristotelian quantifiers. The four figures,
representing the possible variable configurations are

3Throughout this investigation into different paradigms of syllogistic reasoning, we will see a variety of
normative standards for reasoning, each of which makes sense in their own way. We will thus often not use
the terminology of validity to classify a favored class of inferences but simply use good, which is less rich in
implications and accounts for the relevance of non-logical theories.

4The symbols are derived from the first two vowels in affirmativo and nego, which mean ”I affirm“ and ”I
deny“, respectively.

9



Figure 1
Q1(B, C)
Q2(A, B)
Q3(A, C)

Figure 2
Q1(C, B)
Q2(A, B)
Q3(A, B)

Figure 3
Q1(B, C)
Q2(B, A)

Q3(A, C)
Figure 4

Q1(C, B)
Q2(B, A)

Q3(A, C)

Assigning Aristotelian quantifiers to the Qi gives the syllogism its mood.

We will later see theories that use the concept of figures and moods to explain experi-
mental results. Given that there are these 4 figures and 4 possible assignments for every
Qi (thus 43 moods), we end up with 4 · 43 = 256 possible syllogisms, most of which are
not good inferences in any sense of the word. Lets look at a bad example to make the
notation clear:

OA3E
SOME(B, NOT C)
ALL(B, A)

NO(A, C)

Where 3 states the fact that the argument has figure 3, and O, A, and E state that
the major premise is an O-proposition, the minor premise an A-proposition and the
conclusion an E-proposition, respectively. Khemlani & Johnson-Laird (2012) however
note, that there are 512 syllogisms, if one allows conclusions of the form Q3(C, A) (as
it was done in scholastic logic). For the lack of a catchy name, we will henceforth call
these 512 inferences the extended syllogistic fragment. Case in point is the Aristotelian
syllogism AA4I, which is contrasted with the ”extended“ AA4A:

AA4I
ALL(C, B)
ALL(B, A)

SOME(A, C)
AA4A

ALL(C, B)
ALL(B, A)

ALL(C, A)

Note that the label alone does not tell us whether a conclusion is of the form Q3(C, A)

or Q3(A, C). We will thus explicitly state if a label refers to a syllogism from the extended
fragment. The Aristotelian AA4I with its restriction on the form of the conclusion is
endorsed much less by participants in experimental settings than its extended counter-
part AA4A – a fact that will later be mirrored in our natural logic, which even offers an
explanatory account for such and similar inferential preferences.

Syllogisms lend themselves to psychological experimentation and to formalization:
on the formal side, syllogisms are reasoning patterns in an apparently simple fragment
of natural language. Furthermore, the subject-predicate form in syllogistic reasoning
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mirrors its presence in natural language. Syllogisms are thus of a form close to natural
language and are readily extended to reasoning with other generalized quantifiers
such as MOST, which are not expressible in first-order logic (see for example Chater &
Oaksford 1999). On the psychological side, syllogisms can be presented in experimental
settings as for the subjects to either make or judge a conclusion of given premises – a
relatively simple experiment. Regarding this psychological perspective, Khemlani &
Johnson-Laird (2012) however note the important fact that

”the principal moral of these results is that individuals use a variety of strategies in
reasoning...“ (Khemlani & Johnson-Laird 2012, 6)

This carries within an important corollary: if reasoners use a wide variety of strate-
gies, the modeling of a single strategy cannot be sufficiently explanatory (for a more
extensive study of different strategies in syllogistic reasoning, see for example Newstead
1989).

2.2 Syllogistic Reasoning in Practice

The results of Chater & Oaksford’s meta-study are presented in table 1. We will get a
quick look at the multitude of explanatory accounts for their results before we zoom in
on three theories that offer predictions regarding the cognitive difficulty of syllogisms.

One explanatory account is to focus on figural effects, i.e. that reasoners prefer certain
conclusions in certain figures: subjects are biased towards A-C conclusions in figure 1,
towards C-A conclusions in figure 2 and slightly biased towards A-C conclusions in
figures 3 and 4, making conclusion against this bias difficult (Khemlani & Johnson-Laird
2012, 5). Note however that this presupposes the acceptance of A-C conclusions, which is
contrary to the classical theory of syllogisms containing 256 syllogisms. The explanatory
account of figural effect is thus only explanatory in the extended syllogistic fragment.

Atmosphere theory states that reasoners prefer to draw conclusions that fit the mood
of the premisses and goes back to Sells (1936). More specifically, if one of the premises
contains a NO, reasoners are biased towards a NO-conclusion as well and if one of the
premises contains a SOME, reasoners are biased towards a SOME-conclusion. Otherwise,
the bias is towards affirmative conclusions (Begg & Denny 1969). The takeaway is, that
reasoners might take the quantifier expressions in the premises as hints towards which
quantifier expression to use in the conclusion. Khemlani & Johnson-Laird (2012) note
that most valid syllogisms indeed overlap with the atmosphere effect. Figural effects and
atmosphere propose heuristics stating that variable assignment (figure) and quantifier
assignment (mood) of the premises indicate the correct solution. They do however lead
to conclusions when the correct answer would be that nothing follows from the premises
and do not allow for statements about the cognitive difficulty of different tasks.

Other theories suggest that drawing conclusions from two syllogistic premises in-
volves deliberate reasoning using sets. Using Venn diagrams, the three sets involved
in syllogistic reasoning, A, B, and C, can be represented as three circles, a perspicuous
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Table 1: Percentage of times a syllogistic conclusion was endorsed as reported in Chater
& Oaksford (1999). All numbers are rounded to the closest integer and valid conclusions
are marked as gray. If two conclusions are marked as valid, the first one is valid only in
predicate logic. AA1A for example is a valid syllogism in predicate logic, while AA1I is
in Aristotelian logic (relying on existential import).

premises conclusion premises conclusion premises conclusion
& figure A I E O & figure A I E O & figure A I E O

AA1 90 5 0 0 AO1 1 6 1 57 IO1 3 4 1 30
AA2 58 8 1 1 AO2 0 6 3 67 IO2 1 5 4 37
AA3 57 29 0 0 AO3 0 10 0 66 IO3 0 9 1 29
AA4 75 16 1 1 AO4 0 5 3 72 IO4 0 5 1 44
AI1 0 92 3 3 OA1 0 3 3 68 OI1 4 6 0 35
AI2 0 57 3 11 OA2 0 11 5 56 OI2 0 8 3 35
AI3 1 89 1 3 OA3 0 15 3 69 OI3 1 9 1 31
AI4 0 71 0 1 OA4 1 3 6 27 OI4 3 8 2 29
IA1 0 72 0 6 II1 0 41 3 4 EE1 0 1 34 1
IA2 13 49 3 12 II2 1 42 3 3 EE2 3 3 14 3
IA3 3 85 1 4 II3 0 24 3 1 EE3 0 0 18 3
IA4 0 91 1 1 II4 0 42 0 1 EE4 0 3 31 1

AE1 0 3 59 6 IE1 1 1 22 16 EO1 1 8 8 23
AE2 0 0 88 1 IE2 0 0 39 30 EO2 0 13 7 11
AE3 0 1 61 13 IE3 0 1 30 33 EO3 0 0 9 28
AE4 0 3 87 2 IE4 0 1 28 44 EO4 0 5 8 12
EA1 0 1 87 3 EI1 0 5 15 66 OE1 1 0 14 5
EA2 0 0 89 3 EI2 1 1 21 52 OE2 0 8 11 16
EA3 0 0 64 22 EI3 0 6 15 48 OE3 0 5 12 18
EA4 1 3 61 8 EI4 0 2 32 27 OE4 0 19 9 14

OO1 1 8 1 22
A = all E = no OO2 0 16 5 10
I = some O = some...not OO3 1 6 0 15

OO4 1 4 1 25
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representation that allows for the making of inferences (e.g. Shin 1992). This yields
a feasible method that is at the same time sufficiently flexible – Peirce’s diagrams for
example can account for all of predicate calculus but, according to their creator, lose
all psychological plausibility (Peirce 1958). Furthermore, number of researchers have
considered natural set theory, a hypothesis stating that humans have a natural way to
deal with a plurality of objects (e.g. Seuren 2010). While this hypothesis has, to the best
of our knowledge, not been tested yet, this could yield an alternative to create formal
models of syllogistic reasoning focusing on sets.

Finally, we will ignore the complicating issue that there are large individual differ-
ences in syllogistic reasoning: Khemlani & Johnson-Laird (2012) report that in experi-
ments at a highly selective university, 55% of all inferences made were valid, whereas in
experiments at a non-selective university, 37% of all inferences made were valid. Further,
the proportion of valid inferences drawn per participant ranges from 85% to 15% validity.
While these differences are important to keep in mind, we will henceforth work with
the mean success rates reported in the meta-study by Chater & Oaksford (1999) as in
table 1. Figural effects, atmosphere theory and Venn diagrams have in common that
they suggest solutions to syllogisms but not their difficulty – we will now look at three
paradigmatic theories that have something to say about that.

2.3 Formal Accounts of Syllogistic Reasoning

An immediate observation is, unsurprisingly, that some good inferences are easier than
others. We will henceforth refer to this as the cognitive difficulty of an inference – the three
formal accounts below differ from atmosphere, figural effects and Venn diagrams in the
sense that they not only want to give the correct conclusion (or the one endorsed by most
reasoners) but also a measure of complexity that aligns with the cognitive difficulty of
inferences. The guiding principle is thus to develop a measure of computational complexity
that aligns with, or even predicts, the cognitive difficulty observed in experiments. As a
matter of further complication, all these theories yield different normative standards, i.e.
labeling different syllogistic inferences as good.

2.3.1 Natural Logic

An early account that aimed to investigate the psychology of reasoning with a logical
model was given by Rips (1983 and 1994). Reasoning was thereby understood as proof in
a natural deduction system while the cognitive difficulty of a sequence of inferences was
conceptualized as the length of proof of a conclusion from assumptions. Rips introduced
further inference rules to account for the fact that some inferences, e.g. the syllogism
AA1A, are of low cognitive difficulty while its proof in natural deduction systems takes
seven steps. While Rips’ work is certainly to be understood as the ancestor of much
work into natural logics that followed, it became increasingly clear that it faces a variety
of problems connected to its first order logic representations (exhaustively discussed in
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Johnson-Laird 1997). We will thus focus on a later model brought forward by Geurts
(2003), which we will also extend later on. We will however later revisit the distinction
between natural deduction and natural logic and their common focus on the inferential
properties of logical constants that correspond to natural language expressions. The
general idea of focusing on monotonicity-properties of quantifiers as to create a natural
logic for reasoning with them stems from van Benthem (1986, Chapter 7) and Sanchez
Valencia (1991).

Exemplifying (natural) logic based approaches to syllogistic reasoning with the work
of Geurts (2003) brings with it the benefit of already getting a first glimpse at what will
be happening later. They present a natural logic that emphasizes the importance of
monotonicity for comprehension of quantifiers and inferences involving quantification.
Their logic pivots on semantical properties of quantifiers and aims to show that the
study of formal semantics – here in the case of generalized quantifiers – provides insight
for the psychology of deduction. Similar to natural deduction systems, inference rules
lie at the heart of the natural logic approach, highlighting the close tie between inference
and interpretation. Monotonicity will be defined formally below but we can already
introduce the idea by means of examples here. Consider the sentences

(i) All flowers are vermilion. (ALL(A, B))

(ii) No flowers are red. (NO(A, C))

Sentence (i) entails ”All flowers are red“ (ALL(A, C)) while (ii) entails ”No flowers are
vermilion“ (NO(A, B)) because the set of all vermilion things is a subset of all red things
(ALL(B, C)). More specifically, we have a variant of the syllogism AA1A:

AA1A
ALL(vermilion, red)
ALL(flowers, vermilion)
ALL(flowers, red)

We will usually say that the determiners ALL and NO put their second argument in
upward- and downward-entailing positions, respectively (are right-side upward mono-
tone and right-side downward monotone, respectively). We can already see how this
allows for monotonicity-based inferences as the ones in (i) and (ii) above:

Mon↑
Q ↑ (A, B)
ALL(B, C)
Q ↑ (A, C)

Mon↓
Q ↓ (A, B)
ALL(C, B)
Q ↓ (A, C)

where Q ↓ (A, B) and Q ↑ (A, B) mean that the quantifiers put their second argu-
ment in a downward and upward entailing position, respectively.5 Geurts’ logic is
part of a tradition stating that syllogistic reasoning (and by extension reasoning with

5We wish to add that we use different names as well as different notation than Geurts (2003) – this is
due to the fact that these rules will be expanded and then referred back to throughout our work.
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generalized quantifiers) is essentially monotonicity-based reasoning. While these two
inference rules do much of the work required in the syllogistic fragment, some other
rules are necessary to account for all of it:

Conv
Q(A, B)
Q(B, A)

pConv
NO(A, B)
ALL(A, NOT B)

where Conv (symmetry) is only applicable if Q is either SOME or NO and hinges on the
symmetry property that we will introduce formally later and pConv (pseudoconversion)
only works with NO. These rules are already sufficient to prove all 15 syllogisms that
are valid in predicate logic. Foreshadowing our later discussion on existential import,
we need another rule to make all syllogisms that are valid in Aristotelian logic provable
(Geurts 2003, 243):6

exImp
ALL(A, B)
SOME(A, B)

As to fit the empirical data provided by Chater & Oaksford (1999), Geurts (2003) assign a
cost to each inference rule. A reasoner starts out with 100 points of which the costs of the
inferences are subtracted: each use of either Mon↑ or Mon↓ costs 20 points, every use of
pConv 10 points and every proof that contains an O-proposition (particular negative)
costs an extra 10 points (thus implying that Conv and exImp are for free). Geurts’ model
leads to the predictions in table 2.

Table 2: Comparison between the experimental data in Chater & Oaksford’s (1999)
meta-study (in brackets) and Geurts’ model. Syllogisms are ordered in decreasing order
of mean success. Predictions that are more than 10% apart from the actual performance
are marked as gray.

AI1I (92) 80 IA3I (85) 80 EA3O (22) 40
IA4I (91) 80 OA3O (69) 70 AA4I (16) 60
AA1A (90) 80 AO2O (67) 70 EA4O (8) 40
AI3I (89) 80 EI1O (66) 60 AA1I (5) 60
EA2E (89) 80 EI2O (52) 60 EA1O (3) 40
AE2E (88) 80 EI3O (48) 60 EA2O (3) 40
EA1E (87) 80 AA3I (29) 60 AE4O (2) 40
AE4E (87) 80 EI4O (27) 60 AE2O (1) 40

Their model reaches a good fit with the syllogisms that constitute good sequences of
inferences from an Aristotelian or predicate logic viewpoint: the model predicts much
of the variance that occurs in mean success (r2 = 0.87) and its predictions show strong

6This system allows a solution to more than just the syllogisms that are valid in Aristotelian or predicate
logic. Some of the additional ones are proven in appendix B.
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correlation with actual human performance (Pearson r = 0.93).7 Zhai et al. (2015) used
the same logic but had the weights directly learned from the data – we do however
think that the ratio of parameters to datapoints invites overfitting, eventually making
the weights less informative. We wish to point out two weak spots of Geurts’ theory: the
theory only applies to valid syllogisms, highlighting a lack of generality. Furthermore,
the weights of the inference rules seem somewhat arbitrary. Both critiques were already
pointed out by the authors themselves.

2.3.2 Mental Models

Mental models theory has its foundation in the work of Johnson-Laird (e.g. Johnson-
Laird & Bara 1984, Johnson-Laird 2010). Its assumption is that reasoners construct
mental models which are consistent with the information they have received so far,
where each mental model represents a possibility that is consistent with the present
information state. So if A and B are two atomic propositions, the mental models for
statements using operators from standard logic would be as in table 3.

Table 3: Fully explicit mental models representations for some logical connectives. ”A
and B“ for example is represented by one model, others by two or three.

Connective MMs
A and B A B

A xor B
A
¬A

¬B
B

A or B
A
A
¬A

B
¬B

B

If A then B
A
¬A
¬A

B
B
¬B

A iff B
A
¬A

B
¬B

We can already see that these connectives differ in how many mental models they
require for their representation – which can be used to measure their difficulty (Johnson-
Laird 2010, 3). As every model (one line) is a possibility, a conclusion is deemed necessary
if it holds in all of the models. A is thus a necessary conclusion from the premise ”A and
B“ but not from the premise ”A xor B“. Mental model theory assumes that reasoners
represent sets by building mental models of their members, aim to maintain semantic
information, are parsimonious and engage in a search for counterexamples against a

7Geurts (2003) reported r = 0.83 – the analysis presented here is made on the data in table 2.
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model (Khemlani & Jonson-Laird 2012, 19). A mental model of ”All semanticists are
philosophers“ would thus look like the following:

semanticist philosopher
semanticist philosopher
semanticist philosopher

philosopher
philosopher
...

This highlights that the set of semanticists might not fully exhaust the set of philosophers.
According to Johnson-Laird (2010, 2), this kind of representation is iconic, i.e. corresponds
to what it represents as much as possible (this is opposed to a symbolic representation,
whose form has only conventional connections to its content). As is custom in mental
model theory, we will take a step away from this iconic representation and adopt the
convention that squared brackets around a letter mean a set is exhaustively represented
by a symbol. More concrete, we will understand ”All semanticists are philosophers“ as

[semanticist] philosopher
...

instead of a representation akin to the one above, with
[
...
]

being an implicit model for
all cases where the antecedent is wrong. Let us apply this to syllogisms (examples from
Khemlani & Johnson-Laird 2012). On the left hand side, we see two syllogistic premises
of the form AE4, on the right side its representation as a mental model.

All A are B. [A] [B] ¬C
No B are C. [A] [B] ¬C

[C]
[C]

...

This conjoins mental models for both premises: all As are Bs, as noted above, is repre-
sented by

[A] B
...

whereas no Bs are Cs by

[B] ¬C
[C]
...

stating that everything that is a B is a not-C and that there are other things which
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are Cs. Note that in syllogistic reasoning, only the relationship between A and C is of
interest. Combined, this states that all As are not-Cs , that there are Cs and only things
that are not-As can be Cs, yielding the conclusion ”No A are C“. We will now see a pair
of premises (AI4) that requires two mental models:

All A are B. [A] B C [A] B
Some B are C. [A] B B C

C [A] B
... C

...

While the first model yields the conclusion ”Some A are C“, the second model is a
counterexample to this conclusion – the correct answer is thus that nothing follows from
premises AI4: no statement about the relation between A and C is true in all models
consistent with the premises. Mental model theory gives raise to a complexity measure,
that is somewhat related to that of proof-length which will be introduced further below:
the more models a syllogism takes, the more difficult it is.

This search for counterexamples – akin to falsificationism in philosophy of science
– that the mental model theory imposes upon reasoners is however not supported
by empirical evidence: reasoners do not try to engage in falsification but verification
(Khemlani & Johnson-Laird 2012, 19). Furthermore, mental model theory suffers from
a lack of flexibility – it is not clear how quantifiers beyond the syllogistic ones can be
expressed in mental model theory (Chater & Oaksford 1999).

2.3.3 Probability Heuristics

Theories of reasoning that invoke logical tools and methodology have recently been
under pressure from theories that try to give reasoning – even the presumably paradig-
matic case of the usefulness of logic, deductive reasoning – a probabilistic foundation.
The probability heuristic model has been proposed by Chater & Oaksford (1999) and
Oaksford & Chater (2001). They state that human reasoning in experimental settings is
usually evaluated against the wrong normative standards – the right normative standard
being probability heuristics, not logic. Thus, if human performance is evaluated against
the standard of logic, the results of reasoning experiments shed bad light on human
capacities, as they tend to make logically bad inferences. If one would however evaluate
human performance against probability heuristics, there would be another story to tell:
then, humans would carry their everyday-reasoning heuristics into the experimental
setting and reason according to them. The evaluation would then have to conclude, that
humans manage to follow their normative standard, given by probability heuristics,
even in an experimental setting (Oaksford & Chater 2001, 349).

As for their model, it is relying on five heuristics, three of them generate conclusions
(G1-G3) and two of them test them (T1-T2):
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• G1: choose the quantifier of the conclusion to be the same as the quantifier in the
least informative premise (the min-premise) where informativeness is an (intuitive)
ordering of the propositions involved in syllogistic reasoning (A>I>E>O) that
we will come back to in chapter 5.

• G2: the next most preferred conclusion is the one that is probabilistically entailed
by the one from G1 (the min-conclusion).

• G3: if just one of the possible conclusion subject noun phrases matches the subject
noun phrase of just one premise, then the conclusion has that subject noun phrase.

• T1: be confident in the conclusion generated by G1-G3 in proportion to the infor-
mativeness of the most informative premise (the max-premise).

• T2: avoid producing or accepting SOME...NOT conclusions.

They furthermore introduce what they call probabilistic semantics for quantifiers, thus
defining quantifiers by means of conditional probabilities (Chater & Oaksford 1999, 200).
So, for example, ALL(A, B) means that the conditional probability of B, given A, is 1,
i.e. P(B|A) = 1 and SOME(A, B) means that P(B|A) > 0 and that there are things that
are both A and B (existential import). While this approach makes it easy to extend their
model beyond the syllogistic fragment, it is not clear how the probabilistic semantics of
cardinal quantifiers or even iterated quantifiers can be given. Let us look at two examples
of syllogistic reasoning using probability heuristics (taken from Chater & Oaksford 1999).

AI1I

ALL(Y, X) max-premise
SOME(Z, Y) min-premise
I-type conclusion by G1
SOME(Z, X) by G3

IE2E

SOME(X, Y) max-premise
NO(Z, Y) min-premise
O-type conclusion by G2
SOME(X, NOT Z) by G3
E-type conclusion by G1
NO(Z, X) by G3

Where the latter is valid in neither predicate logic nor Aristotelian logic. Oaksford
and Chater give an interesting argument for favoring probabilistic over logical models
that directly relates to our cause. They state that

”The most important feature of PHM [probability heuristic model] is that it can
generalize to syllogisms containing quantifiers, such as Most and Few, that have no
logical interpretation“ (Oaksford & Chater 2001, 354)

As we will see later on, this again is a claim that can only be supported by equating
logic and predicate calculus. As we promote deductive inferences on natural language
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surface, we can rely on the expressiveness of natural language and interpretations of
quantifiers that rely on quantification over sets, not only over individuals. Generality of
the kind that is described by Oaksford and Chater is even a strength of the natural logic
approach presented later.

A proper reason for the appreciation of the probability heuristic model might thus
be to aim for a unifying theory of reasoning, i.e. the aim to formalize different cognitive
capacities in one theory, e.g. probability theory. However, we wish to point out that
probabilistic models, while sailing under the unifying flag of probabilistic modeling still
have large variation, like different logics. A proper comparison of the two approaches
would thus mean to compare all probabilistic models with all logical models.

2.3.4 Evaluation

We can now compare the three main approaches introduced above – some results can
be seen in table 4.8 No matter what preference one has, these results are at least a little
bit funny: all three theories distinguish three identical categories of cognitive difficulty
on this set of syllogisms (indicated by the additional horizontal lines in the table). If
one was to choose their favorite theory of syllogisms, this choice can thus not be made
on grounds of fit with empirical data and predictions. Note furthermore that all three
theories, by making the same predictions, classify IE1O and EI1O as equally hard – while
the mean of correct responses is 16% in the former and 66% in the latter. This calls for
a more flexible complexity-measure that allows for differentiating between IE1O and
EI1O in terms of cognitive difficulty.

All three theories have shown advantages and disadvantages. The reason to extend
Geurts’ (2003) logic is twofold: firstly, it offers generality in the sense that it can account
for a larger variety of natural language quantifier expressions (as it uses natural language
representations, it inherits parts of the flexibility of natural language) and is thus easily
extended to quantifiers such as MOST while also carrying with it the normative aspect
that some quantifiers such as FEW do not allow for many inferences because they have
unfavorable monotonicity properties. This is contrasted by mental model theory’s
inability to go beyond Aristotelian quantifiers and the fact that the PHM’s probabilistic
semantics cannot account for cardinal quantifiers. Its generality continues in the sense
that we can apply an extended version of Geurts’ logic to iterated quantifiers that we
will introduce later on – it is hard to see how probability heuristics or mental models
could operationalize iterated quantifiers while natural logic can rely on their linguistic
treatment in generalized quantifier theory and monotonicity-entailments similar to the
ones introduced above. We thus plan to go beyond the syllogistic fragment in ways that
are supported by neither mental model theory or probability heuristics. Secondly, their

8A small disclaimer: some of the numbers reported in Oaksford & Chater (2001) differ from those in
the original study in Chater & Oaksford (1999) – the success rates for the EI- and IE-syllogisms have been
switched, e.g. the success rate for EI3O has been switched with that for IE3O. In such cases, we will stick to
the original numbers reported in Chater & Oaksford (1999).
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Table 4: Comparison of mental model theory (MM), the probability heuristic model
(PHM) and Geurts’ natural logic (NatLog) for some valid syllogisms. For mental model
theory, we count the number of mental models involved in solving the syllogism, for
PHM we state the heuristics involved (both taken from Oaksford & Chater 2001) and for
NatLog the scores in Geurts’ system. The entries in the NatLog-column labeled with
an asterisk were not provided by Geurts (2003) themselves and the one entry without
a number is not a valid inference in Geurts’ system. The additional proofs in Geurts’
model are in appendix B.

Syllogism Theory Mean (%)
MM PHM NatLog

AA1A 1 G1 80 90
AI1I 1 G1 80 87
IA3I 1 G1 80 88
AI3I 1 G1 80 89
IA4I 1 G1 80 88

EA1E 1 G1 80 92
AE2E 1 G1 80 85
EA2E 1 G1 80 89
AE4E 1 G1 80 91

AO2O 2 G1+T1 70 67
OA2O 2 G1+T1 -∗ 56
AO3O 2 G1+T1 70∗ 66
OA3O 2 G1+T1 70 69

EI1O 3 G2+T2 60 66
IE1O 3 G2+T2 60∗ 16
EI2O 3 G2+T2 60 55
IE2O 3 G2+T2 60∗ 30
EI3O 3 G2+T2 60 48
IE3O 3 G2+T2 60∗ 33
EI4O 3 G2+T2 60 27
IE4O 3 G2+T2 60∗ 44
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complexity measure proofs to be the most flexible – as the inference rules are weighted,
derivations relying on different rules will yield a different measure of complexity. By
this, we hope to obtain a better fit to the data and some testable predictions – a goal that
we think both mental models and probability heuristics have too a static complexity
measure for. Predictions of this kind are possible as weights assigned to inference rules
are informative, i.e. have a concrete interpretation.

2.4 Beyond Syllogisms: Iterating Quantifiers

Syllogisms is not all there is to reasoning. Somewhat surprisingly, not much empirical
investigations have been done that extend the existing data on syllogistic reasoning
in a direction that is of interest for one who studies the psychology of quantification.
Geurts & van der Silk (2005) did an experiment on reasoning with iterated quantifiers
investigating how their combined monotonicity properties interact with the cognitive
difficulty of inferences. For lack of a better name, we will henceforth call the natural
language fragment involved in their experiment on reasoning the quantifier iteration
(QI) fragment. We have already seen examples of monotonicity-based inferences using
single quantifiers – the inferential properties of iterated quantifiers will turn out to be
quite similar. Consider the following inference:

Most pigeons annoyed more than three tourists.
All tourists are human.
Most pigeons annoyed more than three humans.

Understanding a formula φ(A, B) to mean that ”A annoyed B“, we can formalize this as

Q1Q2φ(A, B)
ALL(B, C)
Q1Q2φ(A, C)

where Q1 is MOST and Q2 is MORE THAN THREE. This inference is a relatively easy
one – the interaction of the two quantifiers involved is just of the right kind: both MOST

and AT LEAST THREE are right-side upward monotone, and put the argument B in an
upward-entailing position.

Other combinations are harder: Geurts & van der Silk (2005) note that the mono-
tonicity properties of quantifiers have clear combinatorial properties which allow for a
straightforward generalization of monotonicity onto iterated quantifiers (as exemplified
in the example above), we will later see some counterexamples to this assertion. For the
fragment that they introduce, we can however observe some regularities: when both
Q1 and Q2 have the same right-side entailment properties, they together put the second
argument in an upward entailing position, if they have different right-side entailment
properties, they together put the second argument in a downward entailing position.
Geurts & van der Silk (2005) note the following in their evaluation: inferences that
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involve upward entailment are easier than inferences that involve downward entail-
ment, inferences that involve two quantifiers with the same (right-side) monotonicity
properties are easier than those who do not and inferences that involve downward
entailing cardinal quantification (e.g. using AT MOST FIVE) involve more cognitive diffi-
culty. Participants in their study had to determine whether reasoning patterns of the form

Table 5: Success rates in the QI-fragment, where the numbers in the %-row represent
the percentage of successful assessments of an argument as valid or not. Mean response
for inferences that conform to the given definition of validity are marked as gray.

QA QB Minor % QA QB Minor %
EVERY MORE THAN ALL(B, C) 91 MOST MORE THAN ALL(B, C) 91

ALL(C, B) 69 ALL(C, B) 67
FEWER THAN ALL(B, C) 71 FEWER THAN ALL(B, C) 62

ALL(C, B) 58 ALL(C, B) 60
AT LEAST MORE THAN ALL(B, C) 96 SOME MORE THAN ALL(B, C) 87

ALL(C, B) 69 ALL(C, B) 67
FEWER THAN ALL(B, C) 53 FEWER THAN ALL(B, C) 60

ALL(C, B) 51 ALL(C, B) 62
AT MOST MORE THAN ALL(B, C) 51 NO MORE THAN ALL(B, C) 69

ALL(C, B) 38 ALL(C, B) 53
FEWER THAN ALL(B, C) 36 FEWER THAN ALL(B, C) 73

ALL(C, B) 49 ALL(C, B) 64

QA A played against QB B.
All B were C. / All C were B.
QA A played against QB C.

were valid or not with QA ∈ {EVERY, MOST, AT LEAST, SOME, AT MOST, NO} and QB ∈
{MORE THAN, FEWER THAN} and only one of the two possibilities of the minor premise
present. That means, essentially, participants had to decide whether a presented argu-
ment used a valid monotonicity inference. The results can be seen in table 5. Participants
got a definition of validity of the form ”If the premises are true, the conclusion must
be true as well.“. There are several things to note about this fragment: firstly, other
than syllogisms, it is exclusively concerned with monotonicity-inferences. Secondly,
those inferences are concerned only with the second arguments of quantifier expressions.
We will see later on that Geurts’ (2003) logic can readily be extended to account for
monotonicity-inferences on iterated quantifiers in the QI-fragment and beyond. We will
however also meet the limits of the (combinatorial) monotonicity-grounded approach as
some quantifier expressions, e.g. MOST, have no left-side monotonicity properties and
not all monotonicity properties combine in the same way.
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3 Natural Logic – A Logical Approach to Reasoning

We have seen in both datasets that some inferences prove to be easy, while others are
hard an show success-rates below chance-level. Consequently, Braine (1990, 133) notes
that, for many people, ”logical reasoning seems to present an odd and difficult, but
erudite, mixture of the obvious and the counterintuitive“. We are convinced that much
of this variation in cognitive difficulty can be explained by a semantic analysis of the
expressions involved. The natural logic approach, in short, tries to present a logic whose
inferential properties capture essential syntactic or semantic properties of the natural
language fragment it aims to model. We will now talk about natural logic in general and
then converge to a closer look at some natural logics. The first step in the direction of
natural logic models is to look at natural deduction.

While natural deduction is related to other systems of deduction, e.g. Hilbert-Frege
style proof systems, it does have a different emphasis: the goal is to create a system
focusing on inferences, where said inferences are specified in a cognitively more plausible
way or are at least not too cumbersome. The meaning of the logical constants in natural
deduction (connectives and quantifiers) is defined by introduction and elimination rules
– but still the same as in standard logic. These rules specify when and how one can
make inferences that feature the operator in question as main operator in the conclusion
(introduction rules) or the premises (elimination rules).

Conjunction-Introduction and -Elimination
Introduction and elimination rules state when one can draw an inference that
introduces or eliminates a logical connective. See here introduction (I) and elimination
(E) rules for conjunction:

(I)
A1 A2

A1 ∧ A2
(E)

A1 ∧ A2

Ai

where i ∈ {1, 2}.

We will omit the rest of Gentzen’s system as we are only travelling through and its
rules are overly familiar to logicians anyway. An inference rule validates the transition
from one step to the next in an argument and this approach reflects the opinion that
inference rules are cognitively more plausible than rules of proof and axioms. Whereas
in a Hilbert-Frege style system, every inference has to be brought back to the axioms,
this is not the case in natural deduction (see Sundholm 1983). But a system building up
on axioms not only makes claims about human reasoning, but also its foundations and
primitives and is largely inadequate as a model of human reasoning (see Braine 1978, 3
for further discussion of this point). We will return to the idea of favoring the inferential
properties of logical constants that aim to mirror that of certain natural expressions
(like Gentzen’s rules for ”∧“ mirror the inferential properties of the natural language
expression ”and“) at a later point. For now we should just realize that this is similar to
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our natural logic approach: both highlight the semantic properties of logical constants
that lead to inferences.

Gentzen’s theorem shows us how expressive his natural deduction system is – it
clearly proves powerful (in fact equivalent to Hilber-Frege style proof systems), but still
cognitively inadequate and limited in expressive power: most generalized quantifiers lie
beyond its expressibility. Equally important is, however, that with language, we do not
only have a means of saying something or expressing some information, but there are
also forms of reasoning that operate directly on ”the surface of natural language“ (van
Benthem 2007, 5). A natural logic is not only interested in inferences but in inferences
that relate strongly to natural language. We thus have two distinct justifications for
our pick of natural logic: other systems of inference are not expressive enough and
we wish to have inferences operating on natural language representations (as we will
see in more detail later, SOME(A, B) is just a much more plausible representation than
∃x(A(x) ∧ B(x)) – Barwise and Cooper call this the ”norotious mismatch“ between the
representational capacities of predicate calculus and natural language). Natural logic is
thus not only about reasoning, but also about language and how the two interact: some
parts of natural language allow for the extraction of formal properties that in turn allow
for the modeling of reasoning.9

We will have a further discussion on natural logics and how to situate them in a
cognitive modeling enterprise later on in chapter 8. For now, we will take a quick look
at a variety of natural logic models to get a get a glimpse of what they might do.

3.1 Natural Logic – the Road so Far

Despite these introductory remarks, it is still not easy to pin down what natural logic
actually is – a natural logic is a set of inference rules that act on the surface of natural
language. But that does not come with any a priori constraints on how a natural logic
should look like. We can however say that with each natural language, we get a variety
of terms that allow for reasoning, e.g. expressions such as ”or“, ”and“, and ”necessarily“,
but most importantly – in our case – quantifier expressions such as determiners. These
natural language expressions allow their users to reason with them. We have already
seen in the last chapter that such a set of inference rules for simple natural language
reasoning can offer a simple, but informative model of reasoning that aligns reasonably
well with human performance. This already outlined the path that we wish to travel
but before we go further into this direction, we will have a quick stop and look at what
is left and right of us. We will introduce various formal approaches to the capturing of
inferential properties of natural language expressions and then decide why we can or

9There is no context-independent criterion whether more or less expressive power is better. The logic
used needs to be primarily adequate. This concerns the natural language fragment that they aim to provide
insight about (more often than not: Aristotle’s syllogisms) and the goal of the modelers: some have rather
cognitive motivations (emphasizing the reproduction of empirical data) while others have rather logical
motivations (thus emphasizing metalogical properties such as completeness and soundness).
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cannot call them a natural logic.
Braine (1978) introduces a natural propositional logic that tries to capture the infer-

ential properties of the natural language words that correspond to the connectives of
propositional logic – the logic, for example, gives up on the truth-functionality of entail-
ment: the conditional is understood as directional, meaning that, for example, p→ q does
not imply ¬q→ ¬p. An ”if...then...“ statement thus only allows inferences from infor-
mation about p to information about q but not in the other direction. By defining logical
connectives in a cognitively more plausible way, this logic can better account for human
performance on reasoning tasks, e.g. Wason’s selection task that was introduced above.
Braine’s work can quite easily be classified as a work of natural logic – it investigates
natural language expressions (that correspond to the connectives of propositional logic)
and their inferential properties in a way that fits human performance. The motivation
for this can thus be said to be cognitive, disregarding computational or even metalogical
properties completely.

Endrullis & Moss (2015) discuss a proof system that is concerned with the inferential
properties of MOST (interpreted as ”strictly more than half“) – the fragment that their
logic models is given by sentences of the form ”All X are Y“, ”Some X are Y“, and ”Most
X are Y“. They proof that their system is sound and complete and provide a proof search
algorithm, highlighting the low complexity of their logic. Their approach emphasizes
the importance of the motivation that leads to the use of a natural logic: while ours is
rather cognitive, they emphasize logical, algorithmic, and complexity results. This case
proofs to be an interesting one as its classification as natural logic is not entirely clear –
the proof system however operates on natural language sentences and tries to capture
the inferential properties of MOST from a computational viewpoint but is trading these
additional computational insights for a loss in cognitive plausibility. The proof system
does for example not contain any manifestation of existential import – we will later
argue against the cognitive plausibility of this. Nevertheless, this logic captures some
inferential properties of ALL, SOME and MOST.

Another approach to MOST was offered by Strößner (2017). She introduces a prob-
abilistic entailment rule into a modal predicate logic that can be read as ”therefore,
probably“. A statement of the kind MOST(A, B) then allows for a probabilistic inference
that an individual of kind A is also of kind B. This assigns probability not to the resulting
proposition, but to the inference. With this new logical constant, given the statement
”most semanticists are linguists“, one can make the probabilistic inference that a given
semanticist is ”therefore, probably“ a linguist. This logic specifies the inferential prop-
erties of the determiner MOST in a probabilistic way but gives up on natural language
representation – we can thus not call this approach a natural logic as it loses its most
characteristic property, its connection to natural language. Furthermore, one can call
into question the flexibility of this model: similarly as the probability heuristics model
with its probabilistic semantics that was introduced above, this model cannot deal with
cardinal quantifiers.
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Keenan (2003 and 2004) studies inferential properties of quantifiers that are related
through complement and postcomplement relations. In that vein, the quantifier NO STU-
DENT is the postcomplement of EVERY STUDENT because we can infer ”every student
passed“ from ”no student did not pass“ and vice versa. Keenan thus states that the
semantic properties of quantifiers allow for inferences on their duals: if a quantifier Q1

can be characterized as the dual of another (e.g. Q1 = ¬(Q2¬)), this allows for some
inferences between them. Highlighting the inferential relationships between quantifiers
of all kind operating on natural language representations makes for a natural logic –
Keenan however offers no additional insights, e.g. alignment with empirical data or
testable predictions.

Finally, we wish to remark that the ”natural“ approach is expanding: Seuren (2010)
offers an overview over natural set theory approaches that, similarly to Braine’s propo-
sitional natural logic (above) tries to give a more plausible meaning to set-theoretical
operations such as ”∪“ and ”∩“. We will however not further review this approach here
and continue our way toward a bigger picture of natural logic. Furthermore, Bowman et
al. (2015) use neural networks to learn distributional semantics word representations
and investigate whether they, by that, learn inferential relationships between words, e.g.
that from something being a turtle follows that it is not a chair.

3.2 A Natural Logic Roadmap

We have seen different motivations for using natural logic models. Here we will try to
carve out the main ones and then propose a natural logic methodology. As we have seen,
one of the unifying characteristics of natural logic is that it operates on natural language
– as a corollary of this, a natural logic model operates on representations that preserve
the essential properties of natural language representations. With this comes great
expressibility and thereby flexibility (as opposed to first order logic representations).

We have furthermore seen that natural logics vary in their motivations - while
one can focus on cognitive plausibility – as Braine (1978) did –, one can also focus on
metalogical properties or even automatic theorem provers – as Endrullis & Moss (2015)
did. Accordingly, one might want to have one’s natural logic to be informed by the
psychology of reasoning and then formulate appropriate reasoning rules. We will give
a quick overview over the most important points. We can now formulate, in a concise
way, which factors proof to be important for a natural logic.

Natural Logic Roadmap

1. identify suitable language fragment and core semantic or syntactic principles
that inferences can be build on, e.g. monotonicity

2. formulate goal (cognitive, logical, exploratory)

3. formulate appropriate inference rules – if corresponding to goal, let them be
informed by empirical results
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4. if corresponding to goals: formulate complexity measure that captures the
cognitive difficulty of inferences on the fragment

5. evaluate logic according to initial goals

Our logic is concerned with what is a good inference and how hard it is to get there – we
will later talk about the philosophical implications of seeing the inferential characteristics
of natural language expressions as their defining ones. We are convinced that natural
logics should operate under a simplicity constraint: inferences should be added to a logic
only if they are useful – one should aim for the minimal logic that models the fragment in
question.

4 Generalized Quantifiers

We will now shift our attention towards the other topic that dominates the title of this
work: generalized quantifiers. These are known as such because, historically speaking,
their formal, model-theoretic study was an extension of the study of the existential
(∃) and universal (∀) quantifiers. The study of quantification is at the intersection of
linguistics, logic, mathematics and psychology and is – from a ”natural“ viewpoint –
especially interesting because, as Peters & Westerståhl (2006) note

”Quantifiers are one of very few expressive devices of language for which it is
known how to break out of the circle of language and explain what a word means
other than essentially in terms of other words’ meanings.“ (Peters & Westerståhl
2006, Preface)

This indicates that interpretation is unproblematic – we will however later see ex-
amples that poof such an assumption to be too optimistic. But this and their relatively
straight-forward model-theoretic semantics (together with further background in Ap-
pendix A) makes them attractive for the formal study of natural language. We are
however not mainly interested in their extensional but inferential properties, as those
invite the use of natural logics.10

The introduction of modern studies of generalized quantifiers to linguistics is usually
attributed to Barwise & Cooper (1981) and is mainly motivated by the inadequacy of
first order logic to study aspects of natural language quantification – both existential
and universal quantification are rather atypical from a natural language perspective. On

10Let us first fix a technicality: there is a large variety of quantifiers that are usually classified in types
<n1, ..., nk> with k ∈N\0 and ni ∈N\0. We will however restrict ourselves to type <1,1> quantifiers and
also refer to them as binary quantifiers. The appendix A offers some technical background on this and
how the definitions of quantifiers offered in a bit are properly derived from set-theoretic semantics. The
restriction to type <1,1> quantifiers essentially means that we will only use quantifier expressions that
follow the syntactic form of a determiner combined with a set expression (see below). When talking about
quantifiers, we will henceforth mean type <1,1> quantifiers, unless stated otherwise.
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top of that observation, there is the well known result that some quantifiers (e.g. MOST)
cannot be expressed in terms of first order logic at all (Barwise and Cooper 1981, 160).11

A syntactic discussion of binary quantifiers can start by clarifying the relationship
between them and determiners in noun phrases (NP) in the English language. While the
expressions mostly associated with generalized quantifiers are of the kind MOST, MORE

THAN HALF and MANY, those are determiners, not quantifiers. It takes the combination
of a determiner with a set expression to obtain a generalized quantifier (Barwise and
Cooper 1981), reminiscent of the structure of noun phrases in the English language:

Quantifier

Determiner Set Expression

pigeonsmost

NP

Determiner Noun

pigeonsmost

MOST is thus not a quantifier but a determiner – MOST PIGEONS on the other hand
is a quantifier. This analysis fits well into our natural logic perspective: if our formal
treatment can mirror language, it is considerably more adequate than first order logic
representations, which tend to be linguistically quite different from their natural lan-
guage expressions (while still being logically equivalent, see examples below). Barwise
and Cooper (1981, 164 ff.) call this ”the notorious mismatch between the syntax of noun
phrases in a natural language like English and their usual representations in traditional
predicate logic“, which they illustrate using the following example. Analyzing the
following sentences that consist of a noun phrase followed by a verb phrase (left-hand
side)

(i) Harry flies fly(h)
(ii) Some pigeon flies ∃x(pigeon(x) ∧ f ly(x))

(iii) Every pigeon flies ∀x(pigoeon(x)→ f ly(x))
(iv) Most baby-pigeons fly (no FOL translation of this sentences)

one sees that the NPs here (Harry, some pigeon, every pigeon, most baby-pigeons)
likely belong to the same syntactic category but translate to first order logic quite dif-
ferently (right-hand side), introducing differences, where there are none in natural
language. Thus, disregarding the syntactic similarities of these sentences in natural
language, the first-order representation of (ii) and (iii) does not contain a representation
of the NP (while (i) does) and (iv) is not even translatable to first order logic. Even

11On a sidenote, it is not only first order logic that showed difficulties with formalizing MOST. Similarly,
van Benthem’s approach of semantic automata, i.e. using finite state machines to capture and formalize the
meaning of quantifiers, cannot be used to formalize MOST (van Benthem 1986, 153).
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worse, (ii) can at best be translated as ”something is a pigeon and flies“, which might
be logically equivalent, but proves linguistically different. First order logic’s notorious
mismatch thus calls for a more adequate form of representation. As a corollary of these
considerations, we can conclude that first order logic is insufficient for a study of infer-
ences involving generalized quantifiers. This provides with the motivation to use the
natural logic approach: natural language representations are both flexible and powerful
enough to be cognitively plausible, whereas first order logic is not. Let us now look
at the definitions of some quantifiers – how they fit into a model-theoretic setting is
explained in Appendix A.

Some Generalized Quantifiers
If Q(A, B) is a quantifier, we can usually define it by only referring to the two sets A
and B. Here are some quantifiers that we will be using:

ALL(A, B)⇔ A ⊆ B

SOME(A, B)⇔ A ∩ B 6= ∅

NO(A, B)⇔ A ∩ B = ∅

NOT ALL(A, B)⇔ A− B 6= ∅

MOST(A, B)⇔ |A ∩ B| > |A− B|
FEWER THAN THREE(A, B)⇔ |A ∩ B| < 3⇔ |A ∩ B| ≤ 2

MORE THAN TWO(A, B)⇔ |A ∩ B| > 2⇔ |A ∩ B| ≥ 3

AT LEAST THREE(A, B)⇔ |A ∩ B| > 2⇔ |A ∩ B| ≥ 3

AT MOST TWO(A, B)⇔ |A ∩ B| < 3⇔ |A ∩ B| ≤ 2

TWO(A, B)⇔ |A ∩ B| = 2

We will henceforth shorten the cardinal quantifiers as to not explicitly write any
numbers, e.g. AT MOST instead of AT MOST THREE. Quickly extending our syntactic
discussion above, we note that a multitude of grammatical structures allow for quan-
tification: quantification expressions can themselves be NPs (”EVERYTHING is going
down“) or adverbs (for a detailed discussion of this, see Peters & Westerståhl 2006, 4
ff.). The syntactic forms of quantification furthermore vary from language to language.
Peters & Westerståhl (2006, 11) for example note that the North American language of
Strait Salish is known not to use determiners as to express quantification. This fact is
of significance for the study of generalized quantifiers – we can however not account
for it in this work. As the motivation for our work is a cognitive one, we rely on the
availability of empirical data to evaluate our model. To the best of our knowledge, the
only suitable data available is in English.

Another justification for the limitation to English determiners is the fact that the road
we chose is one less traveled than many others – to compensate for this, we need to limit
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the scope of our investigation.

4.1 Characterizing Quantifiers: Montonicity and Symmetry

With our attention successfully restricted, we can now go on and take a closer look at the
formal properties of the quantifier expressions that caught our interest. The formulation
of a natural logic for reasoning with generalized quantifiers will hinge on the description
of inferences through monotonicity- and symmetry-properties.

4.1.1 Monotonicity

Some quantifiers will be hard to characterize in terms of their monotonicity properties
– and MOST will prove to be especially trying. Let us look at the definition and see
what we can do with it (we will largely follow the presentation and notation of Peters &
Westerståhl 2006).

Monotonicity
A function F is called monotone increasing relative to an ordering ≤1 of the arguments
and an ordering ≤2 of the values iff

x ≤1 y⇒ F(x) ≤2 F(y)

In terms of generalized quantifiers, ”≤1“ is inclusion and ”≤2“ implication, thus
stating that Q is left-side monotone increasing (or left-side upward monotone) iff

A ⊆ A′ ⇒ Q(A, B)→ Q(A′, B)

and left-side monotone decreasing (or left-side downward monotone) iff

A′ ⊆ A⇒ Q(A, B)→ Q(A′, B)

Analogous, Q is called right-side monotone increasing (or right-side upward monotone) iff

B ⊆ B′ ⇒ Q(A, B)→ Q(A, B′)

and right-side monotone decreasing (or right-side downward monotone) iff

B′ ⊆ B⇒ Q(A, B)→ Q(A, B′)

Monotonicity inferences directly follow from this definition, which in some ways extends
beyond binary quantifiers. Quantifiers can be increasing in one of the arguments while
being decreasing in the other. Some quantifiers like MOST even are right upward
monotone, while being neither left upward nor left downward monotone. We will get
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to this later and first look at some examples of monotonicity and inferences based on
monotonicity.

Monotonicity Profiles
As a shorthand for the monotonicity properties of a quantifier Q, we will talk about
its monotonicity profile. As an example, instead of stating that a quantifiers is left-
side downward monotone and right-side upward monotone, we will say that its
monotonicity profile is ↓↑. To make the monotonicity profile of a quantifier explicit,
we will often also write ↓ Q ↑. If a quantifier does not have any monotonicity
properties on a side, we will write a dot instead. Examples are

↓ ALL ↑
↑ SOME ↑
↓ NO ↓
↑ NOT ALL ↓
·MOST ↑
↓ FEWER THAN THREE ↓
↑ MORE THAN TWO ↑
↑ AT LEAST THREE ↑
↓ AT MOST TWO ↓
·TWO·

4.1.2 Symmetry and Conversion

Another property of generalized quantifiers that allows for inferences is symmetry. But
while most quantifiers that we have seen so far has some kind of monotonicity properties
that allow for inference, most quantifiers do not when it comes to symmetry. Let’s look
at the definition.

Symmetry and Conversion
A type quantifier Q is called symmetric if and only if, for all A and B,

Q(A, B)⇒ Q(B, A)

the inference associated with this property is called conversion.

The entailment does not need to be bidirectional and already has all generality. This will
later allow for the definition of a powerful inference – that will however be restricted to
smaller class of quantifiers. Some examples are:

(i) (a) Some pigeons are birds.
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(b) Some birds are pigeons.

(ii) (a) No pigeons are philosophers.

(b) No philosophers are pigeons.

Whereas the following examples clearly show the limits of possible inferences on grounds
of symmetry, as the pairs of sentences do not imply each other.

(i) (a) All pigeons are birds.

(b) All birds are pigeons.

(ii) (a) Most pigeons are birds.

(b) Most birds are pigeons.

And so on. The truth of the statements only depends on the intersection of two sets, thus
allowing for an inference based on symmetry.

4.2 Some Remarks on Quantifier Interpretation

Model theorists often make the simplifying assumption that the meaning of basic expres-
sions is fixed by context. We will, in principle, follow this lead here – Barwise & Cooper
call this the fixed context assumption (Barwise & Cooper 1981, 163) – meaning that we take
the interpretation of quantifier expressions to be clear. While this is a strong assumption
for context-dependent determiners such as FEW, it is usually taken for granted for most
determiners and we will do the same for those in the syllogistic- and the QI-fragments.
We will however take a moment to justify their interpretations – especially that of MOST –
but notice that the precise interpretation of quantifier expressions is often not as relevant
for natural logics as long as their inferential properties are preserved.

4.2.1 Aristotelian Quantifiers

Aristotle used the square of opposition to organize the syllogistic quantifiers and the
relationships that hold between them (Westerståhl 1989, 582).

ALL NO

SOME SOME...NOT

contradictory

contrary

subcontrary

su
ba

lt
er

n subaltern
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While the relationships between these quantifier expressions seem relatively clear, we
wish to point out the fact that in this picture, ALL implies SOME. This validates the
inference

exImp
ALL(A, B)
SOME(A, B)

that we have already seen above. A simplifying assumption that we make is to equate
synonyms: we will consider ALL, EACH, EVERY, etc. to be the same. We will use this
point to introduce two further quantifier expressions as semantic primitives. As the
Aristotelian SOME...NOT is not usually considered a quantifier, we will define SOME NOT

as
SOME NOT(A, B)⇔ A− B 6= ∅

which is defined the same way as NOT ALL introduced above but more similar to the
Aristotelian form which is predominantly used in experiments. Analogous, we introduce
a primitive for ALL...NOT

ALL NOT(A, B)⇔ A ∩ B = ∅

which is the same as NO. We will use these new quantifier expressions extensively when
proving syllogisms in Appendix B. The reason why we prefer SOME NOT(A, B) over
SOME(A, NOT B) is that the latter makes use of a negation with unclear semantics. Note
that both ALL NOT, just as ALL, has existential import. Many of the proofs in appendix
B will heavily rely on deriving O-propositions from ALL NOT statements, i.e. on ALL

NOT’s existential import.

4.2.2 The Curious Case of MOST

We have seen further above – exemplified with a quote by Peters & Westerståhl – that
quantifiers often have straightforward interpretations. We will now consider MOST,
which is quite telling concerning the connection between interpretation and inferential
properties.

Barwise & Cooper (1981, 163) note that the meaning of MOST depends on the model
– whereas the meanings of the logical quantifiers ∀ and ∃ do not. While their fixed
context assumption mitigates this issue by stating that the semantics of the non-logical
determiners is contextually fixed, we can also bring forward empirical evidence that
supports the interpretation given above that MOST(A, B) is true if and only if more As
are Bs that As are not Bs.

Pietroski et al. (2009) design experiments to inquire the quantifier representations
that reasoners form. Using such methodology, one can give empirical bite to semantic
distinctions – an endeavor that is highly welcome in natural logics. We have already
introduced MOST as a comparative quantifier and their research indicated that this is
indeed the cognitively most plausible representation – competing with an understanding
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relying on bijections, making any counting capacities unnecessary. This corresponds
to our earlier assertion that generalized quantifiers should represent sets: the relation
”>“ holds between the two respective cardinalities of two sets, while the one-to-one
correspondence-relation holds between the individuals in those sets (Pietroski et al. 2009,
581). This resolves which of the two representations is cognitively more plausible.

Taking a step back, there is a variety of opinions on not only the representation, but
also the meaning of MOST. Other researchers found that MOST is actually the superlative
of MANY (see for example Kotek et al. 2015 and Hackl 2009). In this interpretation, MOST

would not be seen as a semantic primitive but a function of the meaning of its parts many
and -est. Hackl (2009) provides two main arguments for this position: firstly, one needs
to distinguish comparative and superlative morphosyntax. Proportional quantification
that is based on comparative morphosyntax usually has direct opposites (witness MORE

THAN HALF versus LESS THAN HALF) while proportional quantification that is based
on superlative morphosyntax does not – with MOST being the primary example, as
there is no such quantifier as FEWEST (Hackl 2009, 64). According to them, then, MOST

is in an entirely different category of proprotional quantifiers than MORE THAN HALF.
Secondly, they provide empirical evidence that subjects in experimental settings choose
different verification strategies for MOST and MORE THAN HALF while maintaining the
same model-theoretic semantics. From the perspective of natural logics, we can observe
that this distinction does not matter: MANY and MORE THAN HALF have the same
right-side monotonicity properties (both are right-side upward entailing). Discussing
the interpretation of MOST is thus not prevalent from an inferential viewpoint – yet. We
will later see that MORE THAN HALF allows for more inferences beyond monotonicity
(Similarly, the logic proposed by Endrullis & Moss (2015) that was introduced shortly
above pivots around the interpretation of MOST as MORE THAN HALF). We will thus
stick to the somewhat orthodox interpretation of MOST as MORE THAN HALF.

4.2.3 Cardinal Quantifiers

The last kind of quantifier that we wish to look at in this chapter is cardinal quantifiers.
While we think that the interpretations of cardinal quantifiers are relatively straight-
forward, there are still some remarks to be made. Geurts et al. (2010) highlight the
difference between superlative and comparative quantifiers, e.g. between the two
sentences

(i) Berta had at least three beers.

(ii) Berta had more than two beers.

Note that we introduced the interpretations of these two kinds of sentences to be the
same above. Geurts et al. (2010) however argue that superlative and comparative
quantifiers give raise to different inferences, highlighting that superlative quantifier
expressions (AT LEAST, AT MOST) are cognitively more difficult than comparative ones
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(MORE THAN, FEWER THAN). So, while their model-theoretic interpretation remains the
same, of the two inferences

(i) Berta had three beers.
Berta had more than two beers.

(ii) Berta had three beers.
Berta had at least three beers.

only the first one is a good inference as (ii) opens up the possibility of Berta having
more than three beers – which the premise clearly states she did not have. Geurts et al.
thus reject the two quantifiers having the same meaning for pragmatic reasons. Our
resolution to this conundrum will again be to emphasize that it is not important from
our viewpoint: important is that both interpretations do not differ in their monotonicity
properties – which they do not. We will generally uphold a simplicity constraint stating
that interpretation-dependent rules should only be introduced when they are useful (e.g.
exImp) and not just when they are possible.

4.3 Quantifier Iteration

Our technical treatment of iterated generalized quantifiers will be rather quick.12 Con-
sider a sentence like ”MOST A played against AT LEAST THREE B“ which can be formal-
ized as follows:

Q1, Q2φ(A, B)

Is it clear that we cannot make any symmetry-based inferences as the symmetry of the
statement depends on the relation φ(·) just as much as on the quantifier expressions
used. Crucially, however, monotonicity based inferences are still possible. We will
introduce the notion of a combinatorial monotonicity profile, an extension of the notion
of monotonicity profiles introduced above, to fully appreciate this.

Combinatorial Monotonicity Profiles (CMP) Similar as single quantifiers, most iter-
ated quantifiers put their arguments in positions that allow for monotonicity infer-
ences. Iterated quantifiers then have a monotonicity profile similar to those of single
quantifiers. So, for example,

↓ Q1, Q2 ↑

means that the iteration of Q1 and Q2 puts the first argument in a downward entailing
position and the second argument in an upward entailing position.

The work of Geurts and van der Silk (2005, 108) suggests that the combined (right-
side) monotonicity profile of two iterated quantifiers depends only on their respective
right-side monotonicity properties, but this is not the case. The interaction that they

12Strictly speaking, iterated quantifiers are a type of polyadic quantifiers – so if Q1 and Q2 are both type
<1>, their iteration is type <2>. Technically, iterating two quantifiers gives raise to one single quantifiers
that can have semantical properties as introduced above. We will however not get too technical here and
refer to Peters & Westerståhl 2006, 346ff.
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propose is that if Q1 is right-side downward entailing, this reverses the direction of
entailment of the second quantifier. This suggests the following interaction that is
reminiscent of how subtraction and addition interact in arithmetics:

↑ ↓ ·
↑ ↑ ↓ ·
↓ ↓ ↑ ·
· · · ·

Where a point indicates that a quantifier expression has no monotonicity properties on
the relevant side (e.g. the left side of MOST). Consider however the following examples:

(i) ↓NO↓ A played against ↑SOME↑ B. CMP ↓ NO, SOME ↓
(ii) ↓NO↓ A played against ↓ALL↑ B. CMP ↓ NO, ALL ↑

(iii) ↓NO↓ A played against ·MOST↑ B. CMP ↓ NO, MOST·
(iv) ↓ALL↑ A played against ↓ALL↑ B. CMP ↓ ALL, ALL ↓

While (i) conforms to this matrix and puts B into a downward entailing position, (ii)
does not – the second argument is still in an upward entailing position. Even worse
so, (iii) does not lead to any inference, as the second argument is neither in an upward
or downward entailing position (the inference would require more information about
the sets involved). As another counterexample, (iv) involved two right-side upward
monotone quantifiers that together put their second argument in a downward-entailing
position.

The iteration scheme that Geurts and van der Silk (2005) suggest for all quantifiers is
thus only working for the combinations of quantifiers in their fragment. While this does
not interfere with our plan of creating a complexity measure for inference rules, it does
interfere with our plan of creating general inference rules. With the monotonicity switch
indicated in the scheme above not being valid for all combinations of quantifiers, we
cannot create general rules that account for all quantifier expressions. This does not mean
that no monotonicity-inferences are possible but that they are not a straightforward
generalization of the case of single quantifiers. We can however state that left-side
monotonicity properties are unproblematic: those are directly inherited from the first
quantifier.

The semantics of quantifier-expressions will not only give raise to the inference rules,
but will also partially be responsible for their weight-assignments: as we can see in
the algebra above, some quantifier iterations give raise to a change in the directionality
of monotonicity-entailments. We can already speculate that this requires additional
processing.
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5 A Natural Logic for Reasoning with Generalized Quantifiers

It is now time to present our natural logic. We will creatively call the entirety of inference
rules and weight assignments natural quantifier logic (NQL) and wish to remind that
this logic can only make predictions about good inferences and offers no hypotheses on
when and why reasoners make bad inferences (although we will see later on that such a
hypothesis is possible in some cases). First, we will fix vocabulary and syntax for our
model.

Vocabulary

• basic terms: A, B, C ... (large letters)

• Binary quantifier expressions: ALL, SOME, NO, SOME NOT, MOST, FEWER

THAN, MORE THAN, AT LEAST, AT MOST

• Arrows indicating monotonicity properties and brackets: ↑, ↓, ↑↑, ↑↓, ↓↑, ↓↓ ),
(

Syntax

• If A and B are basic terms and Q is a quantifier, then Q(A, B) is a sentence

• If A and B are basic terms and φ is a relation, then φ(A, B) is a formula

• If φ(A, B) is a formula and Q1 and Q2 are binary quantifiers, then Q1, Q2φ(A, B)
is a sentence

We further need inference rules, which we will now present step by step.

5.1 Inference Rules

We will start with reasoning on single quantifiers, make our way toward quantifier
iteration an then extensively motivate our weight assignments that assign each inference
rule a complexity which, as we will later show, correlates with cognitive difficulty..

5.1.1 Single Quantifiers

Inference Rules for Single Quantifiers
The following inference rules allow for proving all syllogisms that are valid in
predicate calculus and / or Aristotelian logic (and more).

Mon↑
Q ↑ (A, B)
ALL(B, C)
Q ↑ (A, C)

Mon↓
Q ↓ (A, B)
ALL(C, B)
Q ↓ (A, C)
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↑Mon
↑ Q(A, B)
ALL(A, C)
↑ Q(C, B)

↓Mon
↓ Q(A, B)
ALL(C, A)

↓ Q(C, B)

Conv
Qs(A, B)
Qs(B, C)

pConv
NO(A, B)
ALL NOT(A, B)

exImp
ALL(A, B)
SOME(A, B)

With Qs denoting any symmetric quantifier (NO, SOME, all cardinal quanti-
fiers, etc.) and Q ↑, Q ↓, ↑ Q, and ↓ Q are binary quantifiers with the indicated
monotonicity properties..

Note that with its use of left-side monotonicity properties and the generality in quantifier
assignment, this already extends far beyond Geurts’ model. While this introduces all
monotonicity-based inferences, we will later-on make one more distinction between
them: those that do and those that do not feature a negative context – with the latter
proving to be harder. Monotonicity inferences involving a SOME NOT or ALL NOT are
considerably harder. We wish to furthermore emphasize that there is no conversion rule
for SOME NOT.

5.1.2 Inference Rules for Iterated Quantifiers

(Right-Side) Monotonicity Based Inference Rules
The following inference rules account for all of the QI-fragment with its limitation on
the second quantifier.

Mon↑↑
Q ↑ QM ↑ φ(A, B)
ALL(B, C)
Q ↑ QM ↑ φ(A, C)

Mon↑↓
Q ↑ QF ↓ φ(A, B)
ALL(C, B)
Q ↑ QF ↓ φ(A, C)

Mon↓↑
Q ↓ QM ↑ φ(A, B)
ALL(C, B)
Q ↓ QM ↑ φ(A, C)

Mon↓↓
Q ↓ QF ↓ φ(A, B)
ALL(B, C)
Q ↓ QF ↓ φ(A, C)

Where Q is any binary quantifiers with the indicated monotonicity proper-
ties, and QM and QF are MORE THAN and FEWER THAN, respectively. These inference
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schemes hold for all generalized quantifiers with the right monotonicity properties.

These inference schemes make only use of monotonicity properties exactly because the
Geurts-fragment is exclusively concerned with monotonicity inferences. We wish to
highlight that these inferences are restricted to the QI-fragment. The examples that were
introduced at the end of the last chapter show that this approach runs into problems
outside of it as the there are special combinatorial properties with our restrictions on
QM = MORE THAN and QF = FEWER THAN. We will for now concede that, as our goal
was to model this specific fragment, this is not further problematic and come back to
this issue later. We mentioned above that we cannot introduce any inference analogous
to Conv as symmetry for iterated quantifiers depends on the relation φ. We can further
extend this to account for left-side monotonicity inferences, whose directionality only
depends on the first quantifier expression:

(Left-Side) Monotonicity Based Inference Rules
The following inference rules account for all of the QI-fragment.

↑↑Mon
Q1 ↑ Q2 ↑ φ(A, B)
ALL(A, C)
Q1 ↑ Q2 ↑ φ(C, B)

↑↓Mon
Q1 ↑ Q2 ↓ φ(A, B)
ALL(A, C)
Q1 ↑ Q2 ↓ φ(C, B)

↓↑Mon
Q1 ↓ Q2 ↑ φ(A, B)
ALL(C, A)

Q1 ↓ Q2 ↑ φ(C, B)
↓↓Mon

Q1 ↓ Q2 ↓ φ(A, B)
ALL(C, A)

Q1 ↓ Q2 ↓ φ(C, B)

Where Q1 and Q2 are again being binary quantifiers with the indicated monotonicity
properties. These inference schemes hold for all generalized quantifier with the right
monotonicity properties.

5.1.3 Beyond

We can imagine a variety of ways to take our logic beyond these fragments of natural
language. Firstly, we could iterate more quantifiers to account for sentences such as
”MOST philosophers played AT LEAST THREE games of chess against MORE THAN TWO

linguists“ – this would however rapidly increase complexity and go beyond our technical
treatment of binary quantifiers.

Secondly, while we stated above that MOST does not have any left-side monotonicity
properties, this is actually not true – but to fully capture the monotonicity behavior of
MOST’s first position, we have to make a quick digression and talk about smoothness. We
will present the result here and let the rest take place in Appendix A.
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Smoothness A quantifier Q is smooth iff the following two conditions hold:

(i) Q(A, B) ∧ A ⊆ A′ ∧ A− B = A′ − B⇒ Q(A′, B)

(ii) Q(A, B) ∧ A′ ⊆ A ∧ A ∩ B = A′ ∩ B⇒ Q(A′, B)

This allows us to get a better grasp of proportional quantifiers – they are all smooth
(Peters & Westerståhl 2006, 187). The inferences that MOST should allow in a natural
logic based on left-side monotonicity properties are thus exactly the ones that in the
definition of smoothness. While this completes our treatment of monotonicity, we note
that we will not make use of smoothness in our natural logic – making such inferences
requires very specific information about the sets A, A′, and B and not only semantic
information.

Thirdly, we could introduce additional rules that capture semantic properties of
specific quantifiers. So, for example, MOST in its interpretation as MORE THAN HALF

would allow for the inference

MOST(A, B)
MOST(A, C)
SOME(B, C)

This extension of the model could however not rely on already existing data and – to
the best of our knowledge – could also not rely on psychological literature that informs
us about the difficulty of this kind of inference. This is furthermore an interpretation-
dependent inference, which we wish to avoid as far as possible

Lastly, we could also pay more attention to the relationships between single quanti-
fiers: akin to the rule that we call exImp, we could also say that MOST implies SOME in a
similar way:

MOST(A, B)
SOME(A, B)

We could define this kind of inference for a variety of quantifiers but would relatively
quickly run into difficulties regarding their respective interpretations: recalling our
section on cardinal quantifiers above, we know that inferences that rely on the interpre-
tation of a quantifier expression soon run into possible counterexamples. The model
as it stands right now relies mostly on the monotonicity properties of quantifiers and
not their interpretation – extending it in the last two ways mentioned here would make
it dependent on the adequacy of the interpretations that we offer. And there is by no
means a unique viewpoint on this in the literature. We will thus leave the model as
it is and focus on weight-assignments and predictions. We furthermore think that a
simplicity constraint is appropriate demanding that we only add quantifier-specific
inference rules if it is useful (as exImp is necessary to account for all valid syllogisms),
not just when it is possible.
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5.2 Complexity: a Weighted Number of Reasoning Steps

We will now motivate a complexity-measure for this logic. There are three crucial ideas:

• the number of reasoning steps from premises to a conclusion is the length of its
proof in natural logic

• some reasoning steps are harder than others

• we can account for this difference in difficulty by assigning a weight (cost) to
inference rules, summing up to different costs for different proofs

We will try to motivate the assignment of weights to inference rules with either se-
mantical or psychological considerations and see that a major difficulty is to find a
non-arbitrary relationship between the difficulties of inferences that do not have any
telling semantic relationship, e.g. monotonicity- and symmetry-grounded inferences or
monotonicity-inferences of single and iterated quantifiers. In those cases, we will also
rely on a good fit to the data. We can immediately note two things: first, monotonicity
inferences are easy (see for example syllogisms like AA1A and ↑↑-inferences in the
QI-fragment that only involve monotonicity). Secondly, monotonicity inferences are
hard (see for example ↓↓-inferences in the QI-fragment that only involve monotonicity).
We will thus spend much time talking about the variations of monotonicity inferences
and try to zoom in on their differences and commonalities. One of the main results of our
exercise in weight-assignment will be that while existential import should be part of our
logic, inferences based on existential import are quite unlikely to be made, one reason
being that the involvement of the quantifier expression ALL means that they often have
to compete for reasoners attention with the somewhat more exciting monotonicity-based
inferences.

The number of reasoning steps is operationalized as the length of proof from a set of
premises to a conclusion. The assignment of weights is especially important since all
inferences in the QI-fragment have length 1 while showing large variation in cognitive
difficulty. Before we introduce our complexity-measure, we will talk about ideas on the
difficulty of reasoning with quantifier expressions that will not factor into our model.

As in our discussion of Geurts’ (2003) logic, we noted that they weight proofs in the
syllogistic fragment that involve an O-proposition (SOME...NOT) as cognitively more
difficult than others. This approach gives raise to a better fit to the data, but we will not
consider this here: our complexity measure should be a weighted number of reasoning
steps that hence only weights inferences, but not propositions. Weighting propositions is a
step away from our focus on proof-length. While Geurts argues that such a proposition
is harder because it contains a negative, Newstead (2003, 195) points out that with the
same argument, proofs that involve an E-proposition (NO) should be harder as well.
One could however argue that this is not the same kind of negation and that NO is
a primitive while SOME...NOT is not. From such a viewpoint, it would truly be the
alteration of the primitive SOME that would cause additional cost. The experimental
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evidence regarding this issue in fact points into no clear direction, with Hardman &
Payne (1995) and Roberts et al. (2001) claiming that people are not in any way more
reluctant to draw O-conclusions than other types. We will later propose a way that
accounts for Geurts’ point but at the same time maintains focus on inferences and proof
length, this stance however demands fr more testing.

Similarily, Szymanik & Zajenkowski (2010) conducted an experiment to confirm their
prediction that the use of computational resources has an impact on performance of
cognitive tasks. Based on the theory of semantic automata (van Benthem 1986), they
predicted that quantifiers that are recognized by acyclic (i.e. without any loops) finite
automata (first order quantifiers), quantifiers that are recognized by finite automata (e.g.
quantifiers that express parity, such as AN EVEN NUMBER OF), and quantifiers that can
only be recognized by push-down automata (proportional quantifiers such as MOST)
make cognitive tasks harder: finite automata are without memory, while push-down
automata have a limited memory – proportional quantifiers thus require more cognitive
ressources. Their predictions were confirmed by an experiment in Polish. Accordingly,
we could weight inferences on proportional quantifiers more than others.

A similar distinction between quantifiers was done by Szymanik & Thorne (2017),
who conducted a frequency analysis of generalized quantifiers on a corpus derived
from Wikipedia and found a correlation between frequency and complexity. One first
immediate insight of their frequency analysis is that AT MOST appeared only 619 times,
while NO with its 464′755 appearances one of the most frequent quantifiers in these
corpora. While it is certainly a plausible proposition that the processing of more frequent
quantifiers is easier, we will also dismiss this here, the reason being – similarly to the
issue of O-propositions – that we wish to create a measure of difficulty of inferences,
not expressions or propositions. Though it might yield an explanation why inferences
involving NO proof to be so much easier than inferences involving AT MOST in the
QI-fragment. Similarly, we will ignore the interactions between quantifiers except for
those that are grounded in monotonicity. Let us look at those first.

5.2.1 Monotonicity I and II: Directionality and Harmony

Recall that the four combinations of right-side monotonicity properties for two iterated
quantifiers are ↑↑, ↑↓, ↓↑ and ↓↓. This immediately allows for the clarification of two
points: how many of the quantifiers involved ”go up“ and whether both have the same
directionality. We propose a cost-based system in which less favorable inferential prop-
erties add cost: directionality raises cost according to how many downward monotone
quantifiers are involved (normalized such that all values are between 0 and 1 – the
increased difficulty of downward inferences was argued by Geurts & van der Silk (2005,
104) and Clark (1973 and 1974) – and harmony gives raise to cost when the two quantifiers
do not have the same directionality.

Note that while harmony is a yes-or-no question, directionality is not – two se-
quential quantifiers either exhibit harmony or not, but downward-directionality comes
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Table 6: Combinatorial monotonicity profiles (CMP) and the quantifier pairs that corre-
spond to them in the QI-fragment

CMP Quantifier Pairs

↑↑ (every, more than), (most, more than),
(at least, more than), (some, more than)

↑↓ (every, fewer than), (most, fewer than),
(at least, fewer than), (some, fewer than)

↓↑ (at most, more than), (no, more than)

↓↓ (at most, fewer than), (no, fewer than)

in different magnitudes. Furthermore, non-iterated quantifiers have no costs related
to harmony, as there cannot be any dissonance in their upward- and downwardness.
We can now make a more perspicuous overview over what pairs of quantifiers in the
quantifier-iteration fragment exhibit harmony and directionality (table 6).

Recalling table 4, we can see that the significant difference connected to the use of
AT MOST cannot be explained by the semantic criteria used here: inferences involving
AT MOST are – from a perspective of monotonicity – not different from the ones that
involve NO in the major premise. This motivates our following investigation into the
informativeness of generalized quantifiers.

5.2.2 Monotonicity III: a Hierarchy of Informativeness

Our conception of informativeness is a semantic one. Informativeness is another recur-
ring topic in the discussion of generalized quantifiers – and there are different approaches
to its conceptualization. Oaksford et al. (2002), for example, use experimental methods
to fix a hierarchy of informativeness of generalized quantifiers: ALL > MOST > SOME >
FEW > NONE > SOME...NOT, as e.g. a statement involving ALL is less probable than the
same statement with SOME. We think, however, that this approach is misleading.

From a semantic point of view, ALL and NO are the most informative. There are
various different ways to say why this is the case: Katsos et al. call it the totality of
ALL and NO, while our approach states that ALL and NO are somewhat on top of a
monotonicity-based semantic food chain, that is, more informative quantifiers allow for
inferences that less informative ones do not.

Semantic (Right-Side) Informativeness
The quantifiers ALL and NO are informative, i.e. they allow for the inferences

ALL(A, B)⇒ Q ↑ (A, B)
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NO(A, B)⇒ Q ↓ (A, B)

for any right-side upwards monotone quantifier Q ↑ and for any right-side down-
wards monotone quantifier Q ↓, respectively.

Case in point is the existential-import rule introduced further above. This discussions
also mirrors the classification of Aristotelian quantifiers into universal and particular
ones: the universal ones prove to be more informative and imply their subaltern particu-
lars. We state that inferences using informative quantifiers are less costly. Note that the
notion of semantic (right-side) informativeness is sufficient for the QI-fragment, as it is
only concerned with right-side monotonicity inferences.

5.2.3 Monotonicity IV: Negativity and the Monotonicity-Rollercoaster

A further factor that concerns the the case of iterated quantification is that monotonic-
ity may change its direction. In a sentence with two iterated quantifiers of the form
Q1Q2φ(A, B), formed according to the rules of the QI-fragment, which might state ”All
As played against at least two Bs“, the second quantifier Q2 puts the second argument B
in either an upward or downward entailing position. However, if the first quantifier Q1

is downward entailing, it turns the entailment direction of the second quantifier upside
down. This monotonicity-rollercoaster requires additional processing – thus, if one has
two right-side monotone quantifiers Q1 ↑ and Q2 ↓, the two sentences

(i) Q1 ↑ Q2 ↓ φ(A, B)

(ii) Q2 ↓ Q1 ↑ φ(A, B)

both have their second argument in a downward entailing position, but (ii) is harder than
(i) because it requires the additional processing of changing the direction of entailment.
A monotonicity inference of the kind in (ii) is thus harder than an inference of the kind
in (i). In the same way, in

(iii) Q1 ↑ Q1 ↑ φ(A, B)

(iv) Q2 ↓ Q2 ↓ φ(A, B)

(iii) requires no change of direction while (iv) does. This change of direction adds addi-
tional cost. We can observe a similar phenomenon occurring independent of iteration.
Consider syllogism AO2O:

AO2O
ALL(C, B)
SOME NOT(A, B)
SOME NOT(A, C)

This inference only involves one application of Mon↓. But SOME is right-side upward
monotone – the NOT before the second argument however changes its directionality. This
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adds additional cost and justifies a difficulty-based distinction between monotonicity
inferences.13

5.2.4 Conversion and Pseudoconversion

As mentioned above, some generalized quantifiers are symmetric, i.e. they allow for the
inference

Q(A, B)⇒ Q(B, A)

to be made. Key examples are SOME and NO, but also cardinal quantifiers of different
sorts: AT LEAST X, FEWER THAN Y, EXACTLY THREE, etc. As noted above, Geurts
(2003) claims that while pConv has small cognitive cost, Conv itself has none. This was
criticized by Newstead (2003) who is especially reluctant to accept the low cognitive
cost of pConv. In absence of any empirical evidence on this (Newstead 2003, 195), we
will settle somewhere on the middle ground: Conv is not without any, but with very
small cognitive cost, so is pConv. We concede that this procedure is somewhat ad hoc
but blame this on the lack of specific experimental data. Our stance will later however
be partially justified by an increased fit to the data on syllogisms.

5.2.5 Existential Import

Peters & Westerståhl (2006, 124) note that native speakers of English usually take state-
ments including ALL or EVERY to imply that they do have instances, i.e. that the
restriction A in ALL(A, B) is actually non-empty. Similarly, Geurts (2007, 258) notes that
this assumption, call it the existential import of universal statements, has been unchallenged
for over 2000 years – and that it has been part of all psychological investigations into syl-
logistic reasoning. While this might just be due to the tradition manifested in Aristotle’s
square of opposition, there are also some proper empirical arguments to make this case.
On the empirical side, we can note the experiment of Rips (1994), in which 65% of the
participants endorsed the argument

EVERY A is B
EVERY B is C
SOME A is C

which is valid only if EVERY (in our case: ALL) is taken to have existential import
(Geurts 2007, 258). Another issue factoring into our decision to include existential import
is experimental design: as Khemani & Johnson-Laird (2012, 4) note, subjects are usually
informed that individuals of all relevant sorts exist. This means that subject probably do
not actively avoid exImp inferences because they do not know whether the variables are
empty. It is thus safe to make an exImp inference, and subjects know that.

13We make use of the fact that negation is harder to process, e.g. shown in Wason (1961).
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In the discussion of such an inference rule, we have to distinguish two different
questions: firstly, whether it is cognitively plausible, i.e. whether our logic should feature
such a rule. And secondly, how difficult its application is, i.e. how much complexity its
application should import into a sequence of reasoning. As for the first aspect, we have
already established that our logic should feature the rule above – both from a cognitive
and a formal perspective. In light of this, the resolution of the second question might
seem somewhat paradoxical.

The work of Katsos et al. (2016), while concerned with quantifier acquisition, offers
some important insight. As part of their study, they investigate how adults deal with
underinformative quantifiers (note that SOME, if ALL proves true, is underinformative by
the standards of all theories that were introduced above). For the relevant part of their
study, 536 adults (across 31 languages representing 11 language types) were confronted
with the following situation: five boxes and five items were presented, between zero and
five of the items were situated in boxes. They then had to decide whether a statement
using a quantifier was true or false, e.g. that SOME items were in boxes.

In 84% of all cases were the statement was true but underinformative (e.g. using
SOME when all items were situated in boxes), the statement was rejected by the partici-
pants (Katsos et al. 2016, 9246). Furthermore, Chater & Oaksford’s meta-analysis (1999)
suggests that it is exactly the syllogisms involving the exImp rule that prove hard for
people.

This is somewhat paradoxical because other experimental evidence suggests that
the existential import of universal statements is cognitively plausible. It seems however
that making the actual inference exImp can prove implausible to cognitive agents as
it exchanges an informative statement for an underinformative one. We conclude that
above inference accentuating existential import should be part of our logic – but that
its application is of high cognitive difficulty. This mirrors our stance that while people
would often accept inferences involving existential import, it is not straightforward to
explicitly make them oneself, as they substitute an informative with an uninformative
statement.14

5.3 The Difficulty of Reasoning with Single Quantifiers

The inference rules and their weight-assignment will connect all the semantic and psy-
chological dots that we encountered along the way. We will start with single quantifiers

14On a pragmatic sidenote, this approach is supported by Grice’s (1967) view that a statement such
as ALL(A, B) has primarily the task of communicating information, not only the recitation of true facts.
As a consequence of this, pragmatically, statements are not only evaluated for their truth – but also,
and primarily, for their informativeness and relevance. Confronting a subject in an experiment with
the statement ALL(A, B) thus implies that this is informative and relevant. Exchanging this informative
statement with a less informative SOME(A, B) is thus against Gricean pragmatic principles (see also
Newstead 2003). While a participant might endorse the inference in Rips’ data (see above), she might not
actually make the inference herself.
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and continue to relate their monotonicity inferences to their more volatile counterparts
on iterated quantifiers. The weights for inferences on single quantifiers are as in table
7. The proofs in Appendix B show that syllogisms that only require one monotonicity-

Table 7: Weights for the inference rules used on the syllogistic fragment. Mon stands for
all monotonicity inferences and MonN for monotonicity inferences involving SOMENOT

or ALLNOT.

Inference Rule exImp MonN Mon pConv Conv
Weight 60 30 10 5 5

inference are about equally hard – no matter whether the inference is on the left or right
side or goes up or down. We will assign a cost of 10 to these. We have already argued
that monotonicity inferences involving SOME NOT or ALL NOT are harder than those who
do not. The appropriate relationship between the two is indicated by syllogisms OA3O
and AO2O who only involve a single application of a monotonicity rule with SOME NOT

or ALL NOT – giving the weight MonN = 30 to those. We furthermore stated that exImp
should be part of the logic but raise very high cost as reasoners are reluctant to draw this
inference. While this was supported by related evidence, we will later suggest to further
test this. Our stance on Conv and pConv is that they both should involve relatively little
cost but not none (as Conv did in Geurts’ logic).

5.4 Relating Single and Iterated Quantifiers

Participants in Geurts and van der Silk’s (2005) experiments on reasoning with gen-
eralized quantifiers rightly judged valid monotonicity inferences to be correct with a
mean success varying between 36% and 96%. We will now use our collected remarks on
monotonicity above to create weights that do this variation justice.

We noticed that the directionality of the quantifiers involved has an impact on the
cognitive difficulty of iterated quantifiers in the sense that downwardness increases
cost. Further, cost is increased if the two quantifiers do not have the same directionality
(harmony) and if the first quantifier switches the directionality of the second (in the QI-
fragment, this is the case whenever the first quantifier is right-side downward entailing).
Cost decreases however if one of the informative quantifier expressions is in the major
premise (ALL and NOT). All factors are normalized s.t. assigned values are between 0
and 1 (directionality and hierarchy allow for values 0, 0.5, and 1 while hierarchy and
switch only allow for values 0 and 1). The results of this are summed up in table 8.
Where there are two values, the first one holds when the first quantifier is NO or ALL

and the second one if not (note that the second quantifier in the QI-fragment is fixed to
MORE THAN or FEWER THAN).

We realized further above that monotonicity inferences on iterated quantifiers need
not be harder than those on single quantifiers. We will define the base cost of a mono-
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Table 8: Costs assigned to combinatorial monotonicity profiles according to upwardness,
harmony and switch. ”Negative points are gathered that state to which factor an
inference relates to the basic cost of 15.

CMP Up/Down Harmony Switch Hierarchy Overall
↑↑ 0 0 0 0/1 0/1
↑↓ 0.5 1 0 0/1 1.5/2.5
↓↑ 0.5 1 1 0/1 2.5/3.5
↓↓ 1 0 1 0/1 2/3

tonicity inference on iterated quantifiers to be 15, reflecting that they need not be harder
but that their difficulty increases faster when the aggravating factors discussed above
come into play. The cost of an inference is then given by multiplying the basic cost 15
with the factor in table 8. The weights according to this procedure can be seen in table 9.
For example, Mon↓↑ gets 0.5 directionality points, 1 harmony point, 1 switch point and

Table 9: Weights for the inference rules in the QI-fragment as computed above. Numbers
are rounded up.

Inference Mon↑↑ Mon↑↓ Mon↓↑ Mon↓↓
Complexity 0/15 23/38 38/53 30/45

1 hierarchy point, if the first quantifier is NO. That sums up to 2.5 and 3.5, respectively,
yielding complexity 15 · 2.5 = 38 and 15 · 3.5 = 53, respectively for Mon↓↑-inferences
(rounded to next integer). Hypothesizing that this model can be readily extended to
left-side inferences, we see that their weights are:

Inference ↑↑Mon ↑↓Mon ↓↑Mon ↓↓Mon
Complexity 0/15 23/38 23/38 15/30

Recall that they are meant to be generally easier because left-side monotonicity entail-
ments cannot switch directions. This extension of the model will later lead to interesting
predictions.

6 Natural Logic at Work

We think that this logic is adequate for the task of modeling the syllogistic- and the
QI-fragment. Going back to our natural logic roadmap (chapter 3.2) – the inference rules
presented account for all of the valid inferences in the QI-fragment, all syllogisms that
are valid in Aristotelian logic or predicate calculus or both and even defines some others
as good (e.g. AO3O, see table 4). Our cognitive goals imposed two constraints on the
logic: firstly, apart from the logic having to account for the whole fragment, inference
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rules should be informed and justified by semantical reasoning or empirical results
from psychology. We have extensively done this in chapter 5. Secondly, we imposed a
simplicity constraint to make away with rules that are not necessary to account for the
whole fragment. We have seen this in our decision not to include inferences based on
smoothness above. It follows immediately, that our logic is incomplete, but completeness
has never been the goal. It is even doubtful that it makes sense to apply the traditional
metalogical vocabulary to NQL: both notions of soundness and completeness are relative
to a fixed semantics. And while we have given semantics for generalized quantifiers
above, we also noted that when it comes to their inferential properties, we prefer to
remain deliberately unclear about their semantics – we prefer interpretation-independent
inferences over interpretation-dependent ones as far as this is possible. We had argued
further above that we prefer talk about good and bad inferences over talk about valid
and invalid ones as in chapter 2, we have seen a variety of normative standards none of
which has a priori priority over the others. One possible consequence of our cognitive
motivation is thus to disregard the traditional metalogical vocabulary for the analysis of
NQL.15 We will now get to the last step of our roadmap and evaluate our model against
our initial goals that seem more fitting than an analysis of its metalogical properties.
Before we will get to this evaluation, however, we will have to make some remarks on
how to interpret our results and the relationship between the complexity of a rule and
mean success of reasoners in a task.

6.1 Complexity and Mean Success

The weights of the inference rules in our logic operationalize their respective complexity,
which should align with the difficulty that reasoners experience as observed in exper-
imental settings. The complexity of an inference from premises to conclusions is the
weighted length of proofs as computed in appendix B for valid syllogisms. There are several
interpretations of this: firstly, the weights relate the difficulty of one step to the difficulty
of another, the model indicates, for example, that simple monotonicity inferences are
not very hard – but still harder than conversion and pseudoconversion. Secondly, the
weighted lengths of proofs relate the difficulty of one inference from premises to a con-
clusion to others, stating for example that the syllogism AI1I is much harder than EA1O
because the latter’s weighted length of proof is much shorter. Thirdly, the weighted
length of proofs shows strong correlation with the mean success rates in experimental
settings as given in tables 1 (syllogistic fragment) and 5 (QI-fragment). And, indeed, this
will for now be the primary measure of adequacy of the weights.

This marks the point where the interpretation of the model’s results become a bit
difficult – the model has a quantitative aspect here in the sense that it can be used to

15Some might infer that NQL cannot be called a logic – we do however think that this is not true. This is
still a systematic study of certain forms of arguments, providing a system of inferences based on semantic
properties. The irritation that our stance might give raise to, we think, is due to its motivation.
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predict the mean success of reasoners on an inference: the weights can be interpreted
as cost that is subtracted from an initial ”cognitive reservoir“ of 100 units (as done in
Geurts 2003). The values given by that not only correlate with the mean success rates in
experiments but align with them, i.e. have a strong positive correlation (in fact, subtract-
ing the weighted length of proof from 100 in effect only switches the algebraic sigh of
the Pearson r coefficient – if we report a Person r of 0.96 for the syllogistic fragment, the
weighted length of proof would give raise to a Pearson r of -0.96, without any changes
to r2). We will look at two examples to make this clearer.

Proof of AI3I: [
1
]

ALL(M, P) premiss[
2
]

SOME(M, S) premiss[
3
]

SOME(S, M) Conv on
[
2
]

[
4
]

SOME(S, P) ↑Mon on
[
1
]

and
[
3
]

Complexity = Conv + Mon = 15, thus predicted mean success Success = 100− 15 = 85.

Proof of AE2O:[
1
]

ALL(P, M) premiss[
2
]

NO(S, M) premiss[
3
]

ALL NOT(S, M) pConv on
[
2
][

4
]

ALL NOT(S, P) Mon↓ on
[
4
]

and
[
1
]

[
5
]

SOME NOT(S, P) exImp on
[
4
]

Complexity = pConv + MonN + exImp = 95, this predicted mean success Success =
100− 95 = 5.

While the step from complexity to accuracy is not entirely unproblematic and demands
for a stronger commitment, we will later on make use of this to make predictions for
further research. For now, we will make the step from correlation with mean success rates
to prediction of mean success results – but beware of the fact that the appropriateness of
this stance depends on whether the empirically testable hypotheses that can be derived
from the model proof adequate.

6.2 The Syllogistic Fragment

Recall the complexity-hierarchy of inferences for the Syllogistic fragment that we intro-
duced above and that is grounded in semantical and psychological considerations:

Inference exImp MonN Mon pConv Conv
Complexity 60 30 10 5 5
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In the appendix B, we prove all syllogisms that are valid in Aristotelian logic or predicate
calculus (or both) and compute the model’s predictions using these weights. These
proofs are intended to be minimal, we do however not have any proof that they actually
are. Note that all proofs need only between one and four inferences, there is thus not
much space for shortening. We will however leave this open for further research. The
results, i.e. the model’s predictions for valid syllogisms, can be seen in table 10.

Table 10: Comparison between the experimental data in Chater & Oaksford’s (1999)
meta-study (in brackets) and our model. Syllogisms are ordered in decreasing order of
mean success. Predictions that are more than 10% apart from the actual performance are
marked as gray.

AI1I (92) 90 IA3I (85) 90 EA3O (22) 5
IA4I (91) 85 OA3O (69) 70 AA4I (16) 25
AA1A (90) 90 AO2O (67) 70 EA4O (8) 0
AI3I (89) 85 EI1O (66) 65 AA1I (5) 30
EA2E (89) 85 EI2O (52) 60 EA1O (3) 5
AE2E (88) 90 EI3O (48) 60 EA2O (3) 0
EA1E (87) 90 AA3I (29) 30 AE4O (2) 0
AE4E (87) 85 EI4O (27) 55 AE2O (1) 5

A statistical analysis is, unfortunately, not very telling: Geurts’ model left relatively
little room for improvement. The model predicts almost all variance (r2 = 0.93) and has
strong correlation with performance (Pearson r = 0.96, compare that to r2 = 0.87 and
Pearson r = 0.93 in Geurts’ original model). We wish however to point out that while,
in our model, four predictions are more than 10% apart from the actual performance,
in Geurts’ original model, 13 predictions are (making for more than half of them – see
table 2) and while in our model, two predictions are more than 20% apart from the mean
success rates, in Geurts’ original model, 9 prediction are.

In light of our model’s stance on existential import (reasoners accept it but are
reluctant to draw inferences from it), the difference between AA1A and AA1I is very
telling – we will come back to these two syllogisms later.

6.3 The Quantifier Iteration Fragment

Our weight-assignment and the inferences that model reasoning on the syllogistic frag-
ment is a refinement of Geurts’ model but already adds a new dimension of inferences
by accounting for left-side monotonicity inferences. The rules and weights on the QI-
fragment mark an original contribution that has to be evaluated accordingly – we cannot
compare the results of statistical analyses, as we did regarding the syllogistic fragment.
The inferences in this fragment are specifically designed to investigate the impact of
different combinatorial monotonicity profiles on reasoning. We will omit the proofs for
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this fragment as they all have length 1. The results are in table 11: we obtain r2 = 0.88
and Pearson r= 0.94. NQL is thus well capable of capturing the general trends and
predicts much of the variance in the empirical data. We can see that the model predicts
actual cognitive difficulty on this fragment reasonably well – it is however appropriate to
test the measure’s generality beyond the QI-fragment: while modeling the QI-fragment
was our initial goal, showing the measure’s generality would show that the methodology
brought forward here that combines semantic and psychological insights is indeed very
fruitful.

Table 11: Predictions of the natural logic for the QI-fragment. Predictions that are more
than 10% away from the original results are marked as gray.

DetA DetB Minor % # NatLog
AT LEAST↑ MORE THAN↑ ALL(B, C) 96 1 85
EVERY↑ MORE THAN↑ ALL(B, C) 91 2 100
MOST↑ MORE THAN↑ ALL(B, C) 91 2 85
SOME↑ MORE THAN↑ ALL(B, C) 87 3 85
NO↓ FEWER THAN↓ ALL(B, C) 73 4 70
EVERY↑ FEWER THAN↓ ALL(C, B) 71 5 77
MOST↑ FEWER THAN↓ ALL(C, B) 62 6 62
SOME↑ FEWER THAN↓ ALL(C, B) 60 7 62
NO↓ MORE THAN↑ ALL(C, B) 53 8 62
AT LEAST↑ FEWER THAN↓ ALL(C, B) 53 8 62
AT MOST↓ MORE THAN↑ ALL(C, B) 38 9 47
AT MOST↓ FEWER THAN↓ ALL(B, C) 36 10 55

We have earlier discussed that it is our goal to connect weight-assignments to seman-
tic properties or psychological research – the results here however indicate that other
aspects have to be taken into consideration: the role of specific quantifiers and their
interactions with one another. The results in Geurts and van der Silk’s (2005) experiment
compared with our semantically motivated weights indicate indeed a special role for AT

MOST – we should however not rush no conclusions. AT MOST is semantically equivalent
to FEWER THAN, it would be interesting to see whether the same effect can be observed
with both quantifiers.

This might lead back to our considerations about frequency (chapter 5). Or one can
come back to the considerations on cardinal quantifiers in chapter 4 which indicated
that different quantifiers might have different inferential properties. We do however
think that the right way to go here is to further investigate the adequacy of the model
brought forward here – we will now turn to empirically testable predictions that can be
derived and would shed additional light on the adequacy of the semantic, inferentialist
approach of this natural logic.
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7 Predictions

While NQL is grounded in semantic relationships and psychological evidence, it might
also seem somewhat post hoc – there is barely direct evidence accounting for the weight-
assignments but mostly related evidence. Luckily, the model allows for empirically
testable predictions. We will now discuss them and suggest experiments.

Firstly, the natural logic gives a reason why, for example, the ”extended“ syllogism
AA4A is endorsed so much more than the Aristotelian AA4I: reasoners are reluctant
to draw exImp inferences because often, when premises allow for this inference, they
also allow for some monotonicity inference (call this the AA-effect). And while the latter
preserves information, exImp gives up an informative statement (ALL(A, B)) for a less
informative one (SOME(A, B)) – reasoners have little reason to do so, if another, much
more exciting and information-preserving inference can be made. We wish to test our
theory’s prediction that reasoners are very reluctant to draw an exImp inference if an-
other inference preserves information. Reasoners tend to accept exImp but are reluctant
to make it. The way to test this, we believe, is to actually give reasoners multiple possible
conclusions for a set of premises (some of which indicate good, some of which indicate
bad inferences) – reasoners have to choose the ones that follow from the premises. For
example, given the syllogistic premises AA1:

NOALL(B, C)
ALL(A, B)

reasoners are presented with a set of conclusions that contains ALL(A, C) and SOME(A, C).
Similarly, one can test the extended AA4A against the Aristotelian AA4I where the
premises are ALL(C, B) and ALL(B, A) and the extended and Aristotelian conclusions
are ALL(C, A) and SOME(A, C).

Secondly, our logic predicts that monotonicity inferences that involve a NOT (SOME

NOT, ALL NOT) are harder than others (recall that this is our inferential operationalization
of Geurts’ idea that proofs involving O-propositions are harder than others). In an
inferential setting, this hypothesis allows for simple testing. The data in Chater &
Oaksford’s (1999) meta-study seems to be in favor of this hypothesis: the two syllogisms
OA3O and AO2O are precisely the only ones that only involve one application of
monotonicity rules involving SOME NOT or ALL NOT – and proof to be considerably
harder that those who do not. To test this hypothesis, one needs to obtain mean success
rates for derivations that involve monotonicity-inferences and a NOT more than the two
syllogisms OA3O and AO2O.

Thirdly, the theory predicts no impact regarding the choice of quantifiers as only
monotonicity- and symmetry-properties matter. This hypothesis is very likely to be
falsified – the work of Geurts & van der Silk (2005) on quantifier iteration suggests that
it is very likely that downward entailing cardinal quantifiers (e.g. AT MOST) are harder
to process. A more detailed investigation into this issue will however provide helpful
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directions for further investigations.
Finally, we wish to know if our weight assignment for reasoning on iterated quanti-

fiers makes sense outside of the QI-fragment. The model would predict, for example,
that 77% of all participants would correctly guess an inference of the form

NO↓ A played against ALL↑ B.
All B were C.
NO↓ A played against ALL↑ C.

to be valid. This again takes the quantitative aspect of the model very serious. Such a
test would however also shed light on the question whether one should actually take
it so serious. As can be seen from the weight-assignments for left-side monotonicity
inferences on iterated quantifiers, we can furthermore predict that they should generally
be easier, as they do not involve any directionality-switch. To sum up some of the
testable hypotheses that can be derived from our model:

• Reasoners accept exImp-inferences but are very reluctant to draw them themselves.

• Monotonicity inferences involving SOME NOT and ALL NOT are harder than those
who do not.

• Apart from the second hypothesis, the choice of quantifier is not as important as
its monotonicity properties

• Left-side monotonicity inference on iterated quantifiers are not harder than right-
side monotonicity inferences, they should in fact generally be easier as they cannot
involve a switch / directionality change

• The complexity-measure for the inferences operating on the QI-fragment can be
extended beyond it

8 Interlude: Logic, Cognition, and Philosophy

We have already seen a variety of ways in which natural logic suits our goal of modeling
(the cognitive difficulty of) reasoning with quantifiers. Using quantification over sets
– instead first order logic quantification over individuals – and subject-predicate form,
one gets a step closer towards natural language, inheriting much of its flexibility. First
order logic is however not completely inadequate to deal with generalized quantifiers:
van Lambalgen (1995) brings forwards an axiomatization for Q as FORALMOSTALL

(interpreted in a measure-theoretic sense where Qxφ(x) is interpreted as ”{x|φ(x)} has
measure 1“). While this gives proper proof-theoretic semantics for this quantifier, it does
not bring the generality and flexibility that we aim for.

It is quite telling that first order logic cannot operationalize MOST, as ”Proportional
quantifiers have played a central role in the development of formal semantics because

55



they set a benchmark for the expressive power needed to describe quantification in natu-
ral language“ (Hackl 2009, 63). While there is a possibility of using weak axiomatization
(see for example Mostowski 1995 and van Benthem & Westerståhl 1995) for MOST and
still obtain its proof-theoretic semantics, it seems that with every step in this direction,
we stray even further away from natural language. While we can confidently say that
first order logic does not suit our goals – both in expressive power and requirements
toward representations – we still maintain the inferential ways that were first walked by
natural deduction proof systems.

We will now take a step back to provide some philosophical context for our decision
to focus on inferential properties. Appendix A contains model-theoretical semantics
for generalized quantifiers, and indeed, such extensional semantics is the predominant
approach to quantifier meaning (e.g. Peters & Westerståhl 2006). There are however
alternatives: we have already seen in our discussion of Gentzen’s natural deduction
calculus that it defines the meaning of the logical constants through introduction- and
elimination-rules, i.e. through inference rules. Privileging inference over reference in the
order of semantic explanation has seen some defenders in philosophy.

As is often cited in the works of philosophers and semanticists, Ludwig Wittgenstein
prominently proclaimed that meaning is often the same as use:

”For a large class of cases of the employment of the word ’meaning‘ – though not for
all – this word can be explained in this way: the meaning of a word is its use in the
language.“ (Wittgenstein 1953/2009, 25e)

One semantic theory that this statement has given raise to is Robert Brandom’s inferen-
tialism (Brandom 2001). In his theory, our understanding of a concept is shown through
our correct use of it:

”The meanings of linguistic expressions [...] should be understood, to begin with, in
terms of playing a distinctive kind of role in reasoning.“ (Brandom 2001, 1)

Talk about concepts is thus talk about their distinctive role in reasoning – saying
that something is so-and-so is taking a commitment to the good inferences that can be
drawn from it. Mastering a concept thus means mastering its inferential use (Brandom
2001, 11 f.). Privileging inference over reference in the order of semantic explanation
means: there are good and bad inferences in everyday life, doings that are appropriate
and doings that are inappropriate. An endeavor such as a natural logic makes implicit
commitments explicit, it states which inferences are appropriate and which not, but it
does not define that. 16 It turns something that one can initially only do into something

16A similar picture is drawn by Nelson Goodman, stating that ”Principles of deductive inference are
justified by their conformity with accepted deductive practice“ (Goodman 1983, 63). Historically speaking,
then, what we call logic developed through a long phase of ”mutual adjustments between rules and
accepted inferences“ (Goodman 1983, 64), with large parts of logic developing a life of its own, going
far beyond accepted every day inferences. In this picture, logic is neither purely normative nor purely
descriptive, but a little bit of both and more: logical rules inform inferential practice and vice versa, but
parts of logic go far beyond inferential practice and are thus not as psychologically relevant. See also van
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that one can also say. In our treatment of quantifiers, this means for example: people (as
the experimental results show) are quite competent in the use of generalized quantifiers,
but a natural logic can make explicit, which inferences are appropriate and which not
(people do not need a semanticist to tell them what to do with SOME, but it takes one to
explicitly formulate the class of appropriate inferences involved).

Thus, in inferential semantics, ”practices of giving and asking for reasons have a
privileged, indeed defining, role“ (Brandom 2001, 14, our emphasis). This is contrary to
predominant semantic theories that focus on reference, denotation, and extension.

Now, there are some problems with this theory: inferences are not everything, that
people do with concepts. Large parts of any use-centric theory cannot be properly
formalized. But we believe that, restricted to our topic of generalized quantifiers,
we are in luck: from an inferentialist’ perspective, they are relatively well-behaved.
Inferentialism states that understanding a quantifier means knowing which inferences
it allows for. A natural logic as presented above can now make explicit what to do
with quantifiers (though it does not define them uniquely, it rather speaks of classes
of quantifiers that have certain monotonicity or symmetry properties). However, it
cannot constitute a full-fledged semantic theory – the logic presented above does not
distinguish between non-symmetric quantifiers that have the same monotonicity profile.
This discussion also allows us to draw a formal line between natural deduction and
natural logics (apart from the fact that the latter should operate on natural language
surface): while the former fully specified the semantics of all logical constants relevant
to it, a natural logic usually does not.

Inferentialism tries to reflect the shift occurring in the twentieth century towards the
explanatory priority of what humans do with language (e.g. Austin, Sellars, Wittgen-
stein). In the end, we do however have to say that extensional and intensional semantics
do not differ much from a cognitive scientists’ perspective: we initially approached
quantifiers traveling on extensional roads, which led to the same results. But inferential-
ism allows for a fresh perspective on how these results are situated in human practice. It
aims to make reasoners’ implicit commitments explicit in formalizing reasoning patterns
that are appropriate. The role of an inference rule is thus to make explicit, what before
was implicit in human practice.

The inferentialist approach thus defines what kind of inference is good and bad and
how hard the good ones are. It also informs about the essential semantic properties of
expressions, as those are the ones that we derive inferences from, the ones we put to
use. We have however also seen the limits of the inferentialist perspective: there are very
common, meaningful quantifier expressions that are low on inferential properties, such
as FEW.

Benthem (2008)
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9 Finale

We have now spent a considerable amount of time at the intersection of logic, linguistics
and psychology. We have thoroughly motivated our choice of modeling approach – this
motivation was mostly connected to the cognitive plausibility that comes with natural
language representations and the flexibility that a complexity measure grounded in
a weighted length of proof allows for. We can directly note the two main problems
that we encountered: firstly, there is almost only related empirical evidence for weight-
assignments, almost no direct evidence. There is thus some post-hoc’ness in the air.
Secondly, we have encountered some problems in accounting for all of the data with
our approach – by taking only a limited amount of semantic properties into account, we
cannot explain the differences between the cognitive difficulty of inferences using AT

MOST and inferences using NO (table 11).
That being said, there are obvious directions for further research. Firstly, we derived

empirically testable hypotheses from NQL and suggested experiments as to test them.
This is allowed by our use of informative weight assignments, which can thereby tested
for their adequacy.

Secondly, we saw limitations in the combinatorial approach to the monotonicity
profiles of iterated quantifiers – to the best of our knowledge, there are no mathematical
results that allow for a definition of combinatorial monotonicity profiles based solely on
the monotonicity profiles of the single quantifiers outside of the QI-fragment. Such a
result would however greatly expand natural language fragment modeled by NQL.

Thirdly, weights could be further optimized as to increase the fit with the empirical
data. We do however not think that this has priority: the statistical reference numbers are
already considerably high and the ratio of datapoints to parameters invites overfitting.
The important fact of the weights is that they are informative and that they put the
complexity of different inferences in relation to one another.

We have however seen that the connection of semantic and psychological results can
provide a powerful tool for the derivation of hypotheses. The natural logic approach
relies heavily on the fact that some natural language expressions show strong inferential
properties that can be put to use. NQL successfully models reasoning on the syllogistic
and QI-fragments, explaining much of the variance in mean success rates. The weights
are informative and well-grounded in psychological research, allowing for clear direc-
tions for further research. The fact that NQL managed to better capture the large variety
of cognitive difficulties in syllogistic reasoning much better than competing approaches
(recall table 4) invites the use of this approach to other realms of reasoning – we are
convinced that, as evidence stands now, this is the right hammer for this kind of nail.
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Appendices

A Generalized Quantifier Theory

We will give an overview over the model-theoretic semantics that lie at the heart of
generalized quantifier theory. For our presentation of generalized quantifier theory and
the quantifier-specific notation that we use throughout the book, we will largely follow
Peters & Westerståhl (2006).

There is however good reason to limit our investigation to quantifier expressions
that syntactically are either determiners in noun phrases (”MOST clowns are creepy“) or
noun phrases themselves (”EVERYONE is creepy“): these kinds of quantifiers have been
heavily studied and are also the ones that are present in Geurts & van der Silk’s (2005)
dataset that we derive our cognitive motivation from. The understanding of quantifier
expressions as determiners in NPs and of quantifier expressions as NPs will correspond
to the semantic distinction between type <1,1> and type <1> quantifiers that will be
introduced and used subsequently (Peters & Westerståhl 2006, 11).

Furthermore, the logical quantifiers ∃ and ∀ quantify over individuals (i.e. using
count nouns like ”lamp“ or ”book“), thereby ignoring quantification over collective count
nouns (”crowd“) or mass nouns (”furniture“, Peters & Westerståhl 2006, 1). Similarily, as
we will see later, we will only allow for first order quantification (over individuals), as
opposed to second order quantification (e.g. over relations between individuals as well).

A.1 Definitions: of Models, Truth and Quantifiers

We will need to have a language (syntax), a class of models or interpretations and to fix
the truth relation between sentences in the language and the models (we will explicitly
follow Peters & Westerståhl 2006).

Vocabularies and Models
A (first-order) vocabulary is a set V of non-logical symbols: individual constants,
predicate symbols (of various arities), and function symbols (also of various arities).
V is allowed to be empty. It is relational if it has only predicate symbols. A model (for
the vocabulary V) has the form

M = (M, I)

where M is a (usually non-empty) set – the universe – and I is an interpretation
function, which assigns a suitable interpretation I(u) to each item u ∈ V where
I(c) ∈ M if c is an individual constant; I(P) ⊆ Mn if P is a n-ary predicate symbol,
etc. We will assume throughout this work that our vocabularies are relational.

We assume a certain familiarity with the logical symbols ¬, ∧, ∨, →, ⇔, = and the
existential and universal quantifier, ∃ and ∀, respectively. As mentioned, the non-logical
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symbols are the ones appearing in our vocabulary V. Parentheses are used according to
the usual conventions. We now turn to the definition of formulas and sentences.

Formulas and Sentences
Let V be a relational vocabulary, i.e. only having predicate-, but no function-symbols.
The V-formulas are defined inductively as follows:

i If P is a n-ary predicate symbol and x1, x2, ..., xn are variables, then
P(x1, x2, ..., xn) is a V-formula.

ii If x and y are variables, the (x = y) is a V-formula.

iii If φ and ψ are V-formulas, then so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ) and
(φ↔ ψ).

iv If φ is a V-formula and x a variable, then ∀xφ and ∃xφ are V-formulas.

Nothing else is a V-formula. A V-sentence is a V-formula without any free variables.

We can now turn to the model theoretic semantics, hinging on the satisfaction relation

M � φ(a1, ..., an)

saying that φ(a1, ..., an) is true inM, where φ(x1, ..., xn) is a V-formula and a1, ..., an is
assigned to the free variables x1, ..., xn. If φ is a V-sentence, i.e. without free variables,
then we say

M � φ

Still assuming that our vocabularies are relational, the truth definition of first order logic
(FOL) goes as follows:

FOL truth definition following Peters & Westerståhl (2006).

i M � P(a1, ..., an) iff (a1, ..., an) ∈ I(P) when P(x1, ..., xn) is an atomic formula.

ii M � ai = aj iff ai is the same member of M as aj for an atomic formula xi = xj.

iii M � ¬φ(a1, ..., an) iffM 2 φ(a1, ..., an)

iv M � (φ ∧ ψ)(a1, ..., an) iffM � φ(a1, ..., an) andM � ψ(a1, ..., an) (and analo-
gous for the other connectives).

v M � ∀xφ(x, a1, ..., an) iff for all b ∈ M,M � φ(b, a1, ..., an).

vi M � ∃xφ(x, a1, ..., an) iff for some b ∈ M,M � φ(b, a1, ..., an).

Note that these truth definitions can only be understood by someone who already
understands English, i.e. who can make intelligible what and, all and some mean (Peters
& Westerståhl 2006, 58). We will revisit this point later on. Before we introduce a formal
treatment of generalized quantifiers, we need one more definition.
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Extension of a Formula in a Model
Given a formula φ = φ(x, y1, ..., yn) = φ(x, ȳ) and a ordered set ā of n objects in M,

φ(x, ā)M,x = {b ∈ M|M � φ(b, ā)}

is called the extension of φ inM.

For example, if one takes the familiar quantifiers of first order logic,

M � ∀xφ(x, ā)M,x iff φ(x, ā)M,x = M

M � ∃xφ(x, ā)M,x iff φ(x, ā)M,x 6= ∅

This notation denoting the extension of a formula allows us to define a quantifiers truth
conditions in set-theoretic terms and will be used heavily in what is to follow. If the
context is sufficiently clear, we will however sometimes leave out the superscripts and
write φ(x, ā) instead of φ(x, ā)M,x. Defining the semantics of generalized quantifiers
through their respective extensions is not our final goal but provides us with a helpful
intuition to later find suitable axioms and inference rules for our inferential (intensional)
semantics. Given this background, we can finally define generalized quantifiers. We
will thereby distinguish two semantic types. While there are more types, the ones we
introduce here are the ones relevant to our investigation and also the ones that are most
studied.

A.2 Type <1>: Noun Phrases

Type <1> quantifiers are a curious construction: while they are predominant in first
order logic, there are natural languages that do not even have any means of expressing
type <1> quantification.

Type <1> Quantifiers
For a universe M, we let QM be any set of subsets of M, and use at the same time (to
simplify notation) ’Q‘ as a new symbol as a variable-binding operator. Then Q is a
generalized quantifier of type <1>, whose meaning is given by

M � Qxφ(x, ā) iff φ(x, ā)M,x ∈ QM

The two quantifiers of first order logic, the familiar universal and existential quantifiers,
∀ and ∃, respectively, have this form. While these present the logically simplest case,
they are not dominant in natural language. Lets look at them.

(i) ∃xφ(x) – SOMETHING is φ

(ii) ∀xφ(x) – EVERYTHING is φ
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Quantification here is over the whole universe M. Note that those are different from

(i) ALL(A, B) – All As are Bs

(ii) SOME(A, B) –

Those quantifiers are restricted to the set A ⊆ M. We can however still express them
using first order logic:

(i) ∀x(A(x)→ B(x)) – Everything that is an A is also a B.

(ii) ∃x(A(x) ∧ B(x)) – There is something that is an A and also a B.

One can even formalize cardinal quantifiers

(i) AT LEAST 3(A, B)

(ii) ∃x∃y∃z(x 6= y ∧ x 6= z ∧ y 6= z ∧ A(x) ∧ B(x) ∧ A(y) ∧ B(y) ∧ A(z) ∧ B(z))

With cardinal quantifiers, the limits of first order quantification become obvious. While
they may be logically equivalent, they are linguistically quite different. We will however
not spend too much time with type <1> quantifiers – they will return from time to time
but for now, it is sufficient to note that while they can formalize the sentences above
logically properly, they do not provide linguistically equivalent sentences. Furthermore,
they are limited to quantification over individuals.

A.3 Type <1,1>: Determiners

While type <1> quantifiers are the only type used in first order logic, type <1,1> quanti-
fiers are actually predominant in the English language. With them, we can treat binary
relations between sets of stuff (Peters & Westerståhl 2006, 11).

Type <1,1> Quantifiers
A generalized quantifier of type <1,1> associates with each universe M a binary relation
QM between subsets of M. Using the same symbol as a variable-binding operator,
the meaning of a quantified formula Qx(φ, ψ), where φ = φ(x, x1, ..., xn and ψ =

ψ(x, x1, ..., xn) have at most the free variables shown, is given by

M � Qx(φ(x, ā), ψ(x, ā)) iff Q(φ(x, ā)M,x, ψ(x, ā)M,x)

Characterizing type <1,1> quantifiers like this makes clear that they are a restriction of
type <1> quantifiers in the following way: the first argument identifies a subset of the
universe M as the relevant domain of quantification (and is thus called the restriction),
while the second argument provides its scope. In the example ”MOST semanticists are
linguists“, the first argument, semanticists, restrict the domain of quantification to all
semanticists, while linguists identifies the scope. Let us consider some examples.
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(i) MOST(semanticists, linguists)

(ii) SOME(philosophers, semanticists)

(iii) ALL(philosophers, successful)

(iv) NO(linguists, philosophers)

(v) AT MOST 3(semanticists, psychologists)

We can note immediately that the determiner ALL shows some similarities to the
type <1> logical quantifier ∀, and as we noted further above, we can actually express
ALL(philosophers, successful) using ∀ as well. However, the determiner ALL requires
existential import, while the logical quantifier ∀ does not. As a consequence of this,
∀x(philosophers(x)→ success f ul(x)) would be true if there was no philosopher, while
ALL(philosophers, successful) would not.

Recalling the definition of a type <1,1> quantifier above, we can observe that the
right hand side of the definition states that two sets are in a relation Q with another
– and the relations are as we defined them in chapter 4. Note however that this is in
principle not the limit of the concept: quantifiers can also be relations between relations,
i.e. second order relations.

A.4 Monotonicity Revisited: Smoothness

To fully capture the monotonicity behavior of MOST’s first position, we have to make a
quick digression. Monotonicity behavior can be illustrated in number triangles, which
have the following form.

The use of number triangles to further characterize generalized quantifiers was
pointed out by van Benthem (1986) and subsequently advocated by Strössler (2017) and
Peters & Westerståhl (2006). Number triangles will point us to the fact that classifying
monotonicity properties on a yes-or-no scale is too coarse – especially in the case of
left-side behavior, one is in need of a more detailed classification to obtain all the mono-
tonicity profiles necessary to get hold of a proper natural logic based on monotonicity
properties. The idea behind number triangles is the following: some determiners can be
described using two numbers (Strößler 2017).

Number Triangles for Quantifiers
Let Q(A, B) be a quantifier with arguments A and B, m = |A ∩ B| and k = |A− B|
(note that |A| = m + k). The number triangle is given by a set of tuples formed as
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follows.

0, 0

0, 1 1, 0

0, 2 1, 1 2, 0

0, 3 1, 2 2, 1 3, 0

0, 4 1, 3 2, 2 3, 1 4, 0

... ... ... ... ... ...

Where the i-th row represents the situation for |A| = i− 1, the first row thus represents
the situation for |A| = 0 and the left hand side is m and the right hand side number is
k. Such a tree represents all possible relationships between m and k for all cardinalities
of A.
The number triangle for a quantifier Q is now a corresponding triangle where we set
a ”+“ for all the relationships between m and k that make Q(A, B) true and a ”−“ if
otherwise. Take for example the number triangle for MOST:

−
− +

− − +

− − + +

− − − + +

... ... ... ... ... ...

And the number triangle for NO:

−
+ −

+ − −
+ − − −

+ − − − −
... ... ... ... ... ...

Other authors have decided to leave the uppermost entry undefined (e.g. Strößler 2017),
but we decided to define it as ”-“ to emphasize our decisions regarding existential
import. Peters and Westerståhl (2006, 177 ff.) describe the relationship between the
number triangle for a quantifier Q and its monotonicity properties in detail.

If one was standing on a ”+“-position in the number triangle for any quantifier
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Q(A, B), the question is, in which directions one can ”walk“ without reaching a ”-“-
position. As for the example of NO above, the two safe directions would be southwest
(SW) and northeast (NE). We will now go on to define four different left-side monotonic-
ity profiles for quantifiers Q(A, B). Definitions for type <1> quantifiers go analogously,
but we will leave them out here.

(i) SE-Mon
Q(A, B) ∧ A ⊆ A′ ∧ A− B = A′ − B⇒ Q(A′, B)

(ii) SW-Mon
Q(A, B) ∧ A ⊆ A′ ∧ A ∩ B = A′ ∩ B⇒ Q(A′, B)

(iii) NW-Mon
Q(A, B) ∧ A′ ⊆ A ∧ A− B = A′ − B⇒ Q(A′, B)

(iv) NE-Mon
Q(A, B) ∧ A′ ⊆ A ∧ A ∩ B = A′ ∩ B⇒ Q(A′, B)

As we see here, this finer distinction between left-side monotonicity profiles allows
for more inferences. We can now define an additional kind of left-side monotonicity
behavior.

Smoothness A quantifier Q is smooth iff it is NE-Mon and SE-Mon, i.e. the following
two conditions hold:

(i) Q(A, B) ∧ A ⊆ A′ ∧ A− B = A′ − B⇒ Q(A′, B)

(ii) Q(A, B) ∧ A′ ⊆ A ∧ A ∩ B = A′ ∩ B⇒ Q(A′, B)

This gives us a better hold on the proportional quantifiers: they are all smooth. We
will shortly use (or rather: explain why we will not use) this concept in chapter 5.

B Syllogisms: Natural Logic Proofs and Complexity
Calculations

Recall the weights used for inference rules.

Inference Rule exImp MonN Mon pConv Conv
Weight 60 30 10 5 5

We will look at the proofs and associated complexity computations. The proofs are
ordered in terms of success in Chater & Oaksford’s (1999) meta-study (see table 1) and
contain all 24 syllogisms that are valid in Aristotelian or predicate logic, or both. It does
however not refer to the 256 additional extended syllogisms as there is no sufficient
empirical data available. The proofs are ordered in terms of success in the syllogism
meta-study. Here is AI1I:
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[
1
]

ALL(M, P) premiss[
2
]

SOME(S, M) premiss[
3
]

SOME(S, P) Mon↑ on
[
1
]

and
[
3
]

Model prediction: 100−Mon = 90

Proof of IA4I: [
1
]

SOME(P, M) premiss[
2
]

ALL(M, S) premiss[
3
]

SOME(M, P) Conv on
[
1
]

[
4
]

SOME(S, P) ↑Mon on
[
2
]

and
[
3
]

Model prediction: 100− Conv−Mon = 85

Proof of AA1A:[
1
]

ALL(M, P) premiss[
2
]

ALL(S, M) premiss[
3
]

ALL(S, P) Mon↑ on
[
1
]

&
[
2
]

Model prediction: 100−Mon = 90

Proof of AI3I: [
1
]

ALL(M, P) premiss[
2
]

SOME(M, S) premiss[
3
]

SOME(S, M) Conv on
[
2
]

[
4
]

SOME(S, P) ↑Mon on
[
1
]

and
[
3
]

Model prediction: 100− Conv−Mon = 85

Proof of EA2E:[
1
]

NO(P, M) premiss[
2
]

ALL(S, M) premiss[
1
]

NO(M, P) Conv on
[
1
]

[
3
]

NO(S, P) Mon↓ on
[
2
]

&
[
3
]

Model prediction: 100− Conv−Mon = 85

Proof of AE2E:
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[
1
]

ALL(P, M) premiss[
2
]

NO(S, M) premiss[
3
]

NO(S, P) ↓Mon on
[
1
]

&
[
2
]

Model prediction: 100−Mon = 90

Proof of EA1E:[
1
]

NO(M, P) premiss[
2
]

ALL(S, M) premiss[
3
]

NO(S, P) ↓Mon on
[
1
]

&
[
2
]

Model prediction: 100−Mon = 90

Proof of AE4E:[
1
]

ALL(P, M) premiss[
2
]

NO(M, S) premiss[
2
]

NO(S, M) Conv on
[
2
]

[
3
]

NO(S, P) Mon↓ on
[
1
]

and
[
3
]

Model prediction: 100− Conv−Mon = 85

Proof of IA3I: [
1
]

SOME(M, P) premiss[
2
]

ALL(M, S) premiss[
3
]

SOME(S, P) ↑Mon on
[
1
]

and
[
2
]

Model prediction: 100−Mon = 90

Proof of OA3O:[
1
]

SOME NOT(M, P) premiss[
2
]

ALL(M, S) premiss[
3
]

SOME NOT(S, P) ↑Mon on
[
1
]

and
[
2
]

Model prediction: 100−MonN = 70

Proof of AO2O:[
1
]

ALL(P, M) premiss[
2
]

SOME NOT(S, M) premiss[
3
]

SOME NOT(S, P) Mon↓ on
[
1
]

and
[
2
]
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Model prediction: 100−MonN = 70. Note that NOT changes directionality.

Proof of EI1O:[
1
]

NO(M, P) premiss[
2
]

SOME(S, M) premiss[
3
]

ALL NOT(M, P) pConv on
[
1
]

[
4
]

SOME NOT(S, P) Mon↑ on
[
2
]

and
[
3
]

Model prediction: 100− pConv−MonN = 65

Proof of EI2O:[
1
]

NO(P, M) premiss[
2
]

SOME(S, M) premiss[
3
]

NO(M, P) Conv on
[
1
][

4
]

ALL NOT(M, P) pConv on
[
3
]

[
5
]

SOME NOT(S, P) Mon↑ on
[
2
]

and
[
4
]

Model prediction: 100− Conv− pConv−MonN = 60

Proof of EI3O:[
1
]

NO(M, P) premiss[
2
]

SOME(M, S) premiss[
3
]

SOME(S, M) Conv on
[
2
][

4
]

ALL NOT(M, P) pConv on
[
1
]

[
5
]

SOME NOT(S, P) Mon↑ on
[
3
]

and
[
4
]

Model prediction: 100− Conv− pConv−MonN = 60

Proof of AA3I:[
1
]

ALL(M, P) premiss[
2
]

ALL(M, S) premiss[
3
]

SOME(M, P) exImp on
[
1
]

[
4
]

SOME(S, P) ↑Mon on
[
2
]

&
[
3
]

Model prediction: 100− exImp−Mon = 30

Proof of EI4O:
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[
1
]

NO(P, M) premiss[
2
]

SOME(M, S) premiss[
3
]

SOME(S, M) Conv on
[
2
][

4
]

NO(P, M) Conv on
[
1
][

5
]

ALL NOT(P, M) pConv on
[
4
]

[
6
]

SOME NOT(S, P) Mon↑ on
[
2
]

and
[
5
]

Model prediction: 100− Conv− Conv− pConv−MonN = 55

Proof of EA3O:[
1
]

NO(M, P) premiss[
2
]

ALL(M, S) premiss[
3
]

ALL NOT(M, P) pConv on
[
1
][

4
]

SOME NOT(M, P) exImp on
[
3
]

[
5
]

SOME NOT(S, P) ↑Mon on
[
2
]

and
[
4
]

Model prediction: 100− pConv− exImp−MonN = 5

Proof of AA4I:[
1
]

ALL(P, M) premiss[
2
]

ALL(M, S) premiss[
3
]

SOME(P, M) exImp on
[
1
][

4
]

SOME(M, P) Conv on
[
3
]

[
5
]

SOME(S, P) ↑Mon on
[
2
]

&
[
4
]

Model prediction: 100− exImp− Conv−Mon = 25

Proof of EA4O:[
1
]

NO(P, M) premiss[
2
]

ALL(M, S) premiss[
3
]

NO(M, P) Conv on
[
1
][

4
]

ALL NOT(M, P) pConv on
[
3
][

5
]

SOME NOT(M, P) exImp on
[
4
]

[
6
]

SOME NOT(S, P) ↑Mon on
[
2
]

and
[
5
]

Model prediction: 100− Conv− pConv− exImp−MonN = 0

Proof of AA1I:
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[
1
]

ALL(M, P) premiss[
2
]

ALL(S, M) premiss[
3
]

SOME(S, M) exImp on
[
2
]

[
4
]

SOME(S, P) Mon↑ on
[
1
]

and
[
3
]

Model prediction: 100− exImp−Mon = 30

Proof of EA1O:[
1
]

NO(M, P) premiss[
2
]

ALL(S, M) premiss[
3
]

ALL NOT(M, P) pConv on
[
1
][

4
]

ALL NOT(S, P) ↓Mon on
[
2
]

and
[
3
]

[
5
]

SOME NOT(S, P) exImp on
[
4
]

Model prediction: 100− pConv−MonN − exImp = 5

Proof of EA2O:[
1
]

NO(P, M) premiss[
2
]

ALL(S, M) premiss[
3
]

NO(M, P) Conv on
[
1
][

4
]

ALL NOT(M, P) pConv on
[
3
][

5
]

ALL NOT(S, P) ↓Mon on
[
4
]

and
[
2
]

[
6
]

SOME NOT(S, P) exImp on
[
5
]

Model prediction: 100− Conv− pConv−MonN − exImp = 0

Proof of AE4O:[
1
]

ALL(P, M) premiss[
2
]

NO(M, S) premiss[
3
]

NO(S, M) Conv on
[
2
][

4
]

ALL NOT(S, M) pConv on
[
3
][

5
]

ALL NOT(S, P) Mon↓ on
[
4
]

and
[
1
]

[
6
]

SOME NOT(S, P) exImp on
[
5
]

Model prediction: 100− Conv− pConv−MonN − exImp = 0

Proof of AE2O:
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[
1
]

ALL(P, M) premiss[
2
]

NO(S, M) premiss[
3
]

ALL NOT(S, M) pConv on
[
2
][

4
]

ALL NOT(S, P) Mon↓ on
[
4
]

and
[
1
]

[
5
]

SOME NOT(S, P) exImp on
[
4
]

Model prediction: 100− pConv−MonN − exImp = 5

B.1 Additional Syllogisms in Geurts’ System

Geurts (2003) provided no data on the following syllogisms – but they are valid in their
system and we use the following proofs to supply the numbers with an asterisk in table
4 to complete it. Proof of IE4O:[

1
]

SOME(P, M) premiss[
2
]

NO(M, S) premiss[
3
]

ALL NOT(M, S) pConv on
[
2
][

4
]

SOME NOT(P, S) Mon↑ on
[
1
]

&
[
3
]

[
5
]

SOME NOT(S, P) Conv on
[
4
]

Proof of IE3O:[
1
]

SOME(M, P) premiss[
2
]

NO(M, S) premiss[
3
]

SOME(P, M) Conv on
[
1
][

4
]

ALL NOT(M, S) pConv on
[
2
][

5
]

SOME NOT(P, S) Mon↑ on
[
3
]

&
[
4
]

[
6
]

SOME NOT(S, P) Conv on
[
5
]

Proof of IE2O:[
1
]

SOME(P, M) premiss[
2
]

NO(S, M) premiss[
3
]

NO(M, S) Conv on
[
2
][

4
]

ALL NOT(M, S) pConv on
[
3
][

5
]

SOME NOT(P, S) Mon↑ on
[
1
]

&
[
4
]

[
6
]

SOME NOT(S, P) Conv on
[
5
]

Proof of IE1O:
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[
1
]

SOME(M, P) premiss[
2
]

NO(S, M) premiss[
3
]

SOME(P, M) Conv on
[
1
][

4
]

NO(M, S) Conv on
[
2
][

5
]

ALL NOT(M, S) pConv on
[
4
][

6
]

SOME NOT(P, S) Mon↑ on
[
3
]

&
[
5
]

[
7
]

SOME NOT(S, P) Conv on
[
6
]

Proof of AO3O:[
1
]

ALL(M, P) premiss[
2
]

SOME NOT(M, S) premiss[
3
]

SOME NOT(P, S) ↑Mon on
[
1
]

&
[
2
]

[
6
]

SOME NOT(S, P) Conv on
[
3
]
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