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Abstract. We study the problem of fairly dividing a set of goods
amongst a group of agents, when those agents have preferences that
are ordinal relations over alternative bundles of goods (rather than
utility functions) and when our knowledge of those preferences is in-
complete. The incompleteness of the preferences stems from the fact
that each agent reports their preferences by means of an expression
of bounded size in a compact preference representation language.
Specifically, we assume that each agent only provides a ranking of
individual goods (rather than of bundles). In this context, we consider
the algorithmic problem of deciding whether there exists an alloca-
tion that is possibly (or necessarily) envy-free, given the incomplete
preference information available, if in addition some mild economic
efficiency criteria need to be satisfied. We provide simple character-
isations, giving rise to simple algorithms, for some instances of the
problem, and computational complexity results, establishing the in-
tractability of the problem, for others.

1 INTRODUCTION
The problem of fairly dividing a set of goods amongst a group of
agents has recently started to receive increased attention in the AI lit-
erature [6, 10, 15, and others]. The study of the computational aspects
of fair division, in particular, finds a natural home in AI; and fair divi-
sion is immediately relevant to a range of applications in multiagent
systems and electronic commerce.

To define an instance of a fair division problem, we need to specify
the type of goods we want to divide, the nature of the preferences that
individual agents hold, and the kind of fairness criterion we want to
apply when searching for a solution. In this paper, we are concerned
with indivisible goods that cannot be shared: each item needs to be
allocated to (at most) one agent in its entirety. This choice renders
fair division a combinatorial optimisation problem.

Regarding preferences, most work in fair division has made the as-
sumption that the preferences of individual agents can be modelled as
utility (or valuation) functions, mapping bundles of goods to a suit-
able numerical scale. This assumption is technically convenient, and
it is clearly appropriate in the context of applications with a universal
currency, rendering preferences interpersonally comparable. On the
other hand, from a cognitive point of view, assuming such cardinal
preferences may be questionable, as it requires an agent to be able to
attach a number to every conceivable state of the world. In this pa-
per, we make instead the (much weaker, and arguably more realistic)
assumption that agents have ordinal preferences, and for the sake of
simplicity we assume that these preferences are strict orders (which
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is a common assumption in fair division and voting). That is, each
agent i is equipped with a preference relation �i: A �i B expresses
that agent i prefers the set of items A over the set of items B.

The third parameter is the criterion used to define what makes an
allocation “fair”. Restricting attention to ordinal preferences rules
out some criteria. For instance, the Rawlsian (or egalitarian) ap-
proach to fairness ties social welfare to the welfare of the worst-off
agent [16], which presupposes that interpersonal comparison of pref-
erences is possible. Instead, we focus on the important criterion of
envy-freeness [13]. An allocation is envy-free if each agent likes the
bundle she received at least as much as any of the bundles received
by others. Besides envy-freeness, a secondary criterion we shall be
working with is Pareto efficiency, which also only requires ordinal
preferences. An allocation is Pareto efficient if there is no other allo-
cation making some agents better and no agent worse off.

A challenging aspect of devising methods for fair division with in-
divisible goods is its combinatorial nature [9]: the space of possible
bundles grows exponentially in the number of goods. If there are 20
goods, each agent would, in principle, have to rank over one million
bundles. This leads to the following dilemma: either we allow agents
to express any possible preference relation on the set of all subsets
of items, and end up with an exponentially large representation, as
in the descending demand procedure of Herreiner and Puppe [14],
which, while of great theoretical interest, is computationally infeasi-
ble as soon as the number of goods is more than a few units; or we
restrict the range of preferences that agents may express. The latter
is the path followed by Brams and King [8] and Brams et al. [7], who
address the problem using the following approach: Elicit the prefer-
ences Bi of each agent i over single goods (the assumption is that this
is a strict linear order) and induce an (incomplete) preference order
�i over bundles as follows: for two bundles A and B, infer A �i B
if there exists an injective mapping f : (B \ A) → (A \ B) such
that f(a) Bi a for any a ∈ B \ A. That is, �i ranks A above B if a
(not necessarily proper) subset of A pairwise dominates B, i.e., if A
is definitely preferred to B given the limited information (provided
in the form of Bi) available—under reasonable assumptions on how
to “lift” preferences from single goods to bundles.4 From a “compu-
tational” perspective, we might say that Brams and coauthors [7, 8]
are using Bi as a compact representation of �i. In fact, their ap-
proach coincides precisely with a simple fragment of the language of
conditional importance networks (CI-nets), a compact graphical rep-
resentation language for modelling ordinal preference relations that
are monotonic [5]. The fragment in question are the so-called (ex-

4 The problem of lifting preferences over items to sets of items has been
studied in depth in social choice theory [3]. Indeed, pairwise dominance is
closely related to the axiom of “(weak) preference dominance” put forward
by Sen in the context of work on formalising freedom of choice [17].



haustive) SCI-nets, which we will define in Section 2.2.
We will model agent preferences using SCI-nets. Each SCI-net

induces an incomplete preference order over bundles, with the in-
tended interpretation that the agent’s true preference order is some
complete order that is consistent with the known incomplete order.
This requires a nonstandard approach to defining fairness criteria.
Here, again, we follow Brams and King [8] and Brams et al. [7] and
define an allocation as being possibly envy-free if it is envy-free for
some set of complete preferences that are consistent with the known
incomplete preferences; and we say an allocation is necessarily envy-
free if it is envy-free under all possible completions. We define pos-
sible and necessary Pareto efficiency accordingly.

The main question we study in this paper is then: Given partially
specified agent preferences, modelled in terms of SCI-nets, does there
exist an allocation that is possibly (necessarily) envy-free? As the
allocation that simply disposes of all goods (i.e., that does not as-
sign any goods to the agents) is always both possibly and necessar-
ily envy-free, to be interesting, this question needs to be asked un-
der some efficiency requirements. In particular, we will ask whether
there exists such allocations that are complete (i.e., that allocate every
item to some agent) or possibly (necessarily) Pareto efficient.

Some of our results are positive: we are able to provide simple
characterisations of situations in which an allocation of the desired
kind exists, and these characterisations immediately suggest an algo-
rithm for computing such an allocation. Other results are negative:
deciding existence of an allocation of the desired kind (and thus also
computing such an allocation) often turns out to be intractable.

The remainder of the paper is organised as follows. In Section 2 we
define the model of fair division we shall be working with. In partic-
ular, this includes the language used to specify agent preferences and
several fairness and efficiency criteria. In Section 3 we give the main
results of this paper; namely, we show that while it is easy to com-
pute possibly envy-free allocations that are also complete or possibly
Pareto efficient, requiring necessary envy-freeness makes the prob-
lem NP-hard. The concluding Section 4 includes a short discussion
of related work. (For lack of space, some proofs are only sketched.)

2 THE MODEL
LetA = {1, . . . , n} be a finite set of agents and G = {x1, . . . , xm}
be a finite set of goods (n ≥ 2 and m ≥ 1). An allocation π : A →
2G is a mapping from agents to sets of goods such that π(i)∩π(j) =
∅ for any two distinct agents i, j ∈ A; thus, goods are indivisible. An
allocation π with π(1) ∪ · · · ∪ π(n) = G is called complete.

In this section, we define criteria for identifying fair (or efficient)
allocations of goods. These criteria will be defined in terms of the
preferences of the individual agents over the bundles they receive.

2.1 Basic terminology and notation
A strict partial order is a binary relation that is irreflexive and tran-
sitive. A linear order is a strict partial order that is complete (i.e.,
X � Y or Y � X whenever X 6= Y ). A binary relation � on 2G

is monotonic if X ⊃ Y implies X � Y . If � (or B) is a binary re-
lation, then � (or D) represents the reflexive closure of that relation
(i.e., X � Y if and only if X � Y or X = Y ). Given two binary
relations R and R′ on 2G , we say that R′ refines R if R ⊆ R′.

2.2 Preferences: SCI-nets
The preference relation of each agent i ∈ A is assumed to be a linear
order�?i over the bundles (subsets of G) she might receive. However,

as argued above, eliciting �?i entirely would be infeasible; so we do
not assume that �?i is fully known to us (or even to the agents them-
selves). Instead, for each agent i we are given a strict partial order
�i representing our partial knowledge of �?i , and the true prefer-
ence of i is some complete refinement of�i. The strict partial orders
�i are generated from expressions of a suitable preference represen-
tation language. In this paper, we focus on the language of SCI-nets,
i.e., precondition-free CI-nets in which all compared sets are single-
tons [5]. We now introduce SCI-nets;5 for full CI-nets see [5].

Definition 1 (SCI-nets) An SCI-net N on G is a linear order on G,
denoted by BN (or simply B, when the context is clear). A strict
partial order � on 2G complies with N , if (i) � is monotonic and
(ii) S ∪ {x} � S ∪ {y} for any x, y such that x BN y and any
S ⊆ G \{x, y}. The preference relation �N induced by N is the
smallest strict partial order that complies withN .

abcd abc abd

acd bcd

ab ac ad

bc bd cd

a b

c d ∅

Figure 1. Preference relation induced by SCI-net a B b B c B d. Dotted
arcs are obtained by monotonicity; arcs obtained by transitivity are omitted.

As discussed earlier, �N is the partial order we obtain when we lift
the order BN on G to an order on 2G by invoking the principles of
monotonicity and pairwise dominance, as proposed by Brams and
coauthors [7, 8]. We can give yet another characterisation of �N , in
terms of a utility function: Given SCI-net N and A ⊆ G, for every
k ≤ |A| we denote with AN(k) the k-most important element of A;
i.e., if x ∈ A and #{y ∈ A | y �N x} = k then AN(k) = x. Given
a vector w = (w1, ..., wm) ∈ (R+)m inducing the additive utility
function uw : 2G → R with uw(A) =

∑
xi∈A wi, and SCI-net

N = xθ(1) B · · · B xθ(m) (for some permutation θ of {1, . . . ,m}),
we say that w andN are compatible if wθ(1) > · · · > wθ(m).

Proposition 1 (Dominance) Given an SCI-net N and bundles
A,B ⊆ G, the following statements are equivalent:

(1) A �N B
(2) There exists an injective mapping f : (B \A) → (A \B) such

that f(a) BN a for any a ∈ B \A.
(3) There exists an injective mapping g : B → A such that g(a) DN

a for all a ∈ B and g(a) BN a for some a ∈ B.
(4) Either A ⊃ B, or the following three conditions are satisfied:
• |A| ≥ |B|;
• for every k ≤ |B|, AN(k) DN BN(k);
• there exists a k ≤ |B| such that AN(k) BN BN(k).

(5) For any w compatible withN we have uw(A) > uw(B).

The proof is simple; we omit it due to space constraints.

2.3 Criteria: envy-freeness and efficiency
For the fair division problems we study, each agent i ∈ A provides an
SCI-net Ni. This gives rise to a profile of strict partial orders (�N1

, . . . ,�Nn). For any such profile (whether it has been induced by
SCI-nets or not), we can ask whether it admits a fair solution.

As our agents are only expressing incomplete preferences, the
standard notions of envy-freeness and efficiency need to be adapted.
For any solution concept, we may say that it is possibly satisfied (if

5 What we call “SCI-nets” here were called “exhaustive SCI-nets” in [5].



some refinement of the preference profile to a profile of linear orders
satisfies it) or that it is necessarily satisfied (if all such refinements
do). The following definitions are a synthesis of those introduced
by Brams and King [8] and Brams et al. [7].6 While the results re-
ported in the sequel apply to scenarios where each agent expresses
her preferences in terms of an SCI-net, we state these definitions in-
dependently from the preference representation language in use.

Definition 2 (Modes of envy-freeness) Given a profile of strict par-
tial orders (�1, . . . ,�n) on 2G , an allocation π is called

(i) possibly envy-free (PEF) if for every i ∈ A there exists a linear
order �?i refining �i such that π(i) �?i π(j) for all j ∈ A;7 and

(ii) necessarily envy-free (NEF) if for every i ∈ A and every linear
order �?i refining �i we have π(i) �?i π(j) for all j ∈ A.

Next we establish alternative characterisations of PEF and NEF allo-
cations, which are more “computation-friendly”.

Proposition 2 (PEF and NEF allocations) Given (�1, . . . ,�n),
• π is NEF if and only if for all i, j, we have π(i) �i π(j);
• π is PEF if and only if for all i, j, we have π(j) 6�i π(i).

Proof. The first point is obvious: π is NEF iff for every i and j, and
every �?i refining �i we have π(i) �?i π(j), i.e., iff π(i) �i π(j)
holds for every i, j. For the second point, suppose π(j) �i π(i)
for some i, j; then π(j) �?i π(i) holds for any refinement �?i of �i,
which implies that π is not PEF. The converse direction is less imme-
diate, because the condition Ci: “for all j, π(j) 6�i π(i)” only guar-
antees that for every i and every j 6= i there exists an refinement�?ji
of�i such that π(i) �?ji π(j). Assume thatCi holds and let the rela-
tion Ri be defined by Ri = [�i ∪{(π(i), B) | B 6= π(i) and B 6�i
π(i)}]. We show that Ri is acyclic. First, suppose there is an X such
thatXRiX . Then by definition ofRi,X �i X (X 6= π(i) by defini-
tion ofRi), which cannot be the case since�i is a well-defined strict
order. Suppose now that there exists an irreducible cycleX1, . . . , Xq
of length at least 2 such that X1RiX2 . . . RiXqRiXq+1 = X1, and
Xj 6= Xk for every 1 ≤ j 6= k ≤ q. From the definition of Ri,
for every k ≤ q we have either Xk �i Xk+1 or (Xk = π(i) and
Xk+1 6�i π(i)). Because �i is acyclic, there is at least one k such
that Xk = π(i). Because the cycle is irreducible, there is at most
one k such that Xk = π(i). Therefore, there is exactly one k such
that Xk = π(i); without loss of generality, let k = 1. We have
(a) X2 �i π(i) and (b) for every j 6= 1, Xj �i Xj+1, that is,
X1 = π(i)RiX2 �i X3 �i . . . �i Xq �i X1 = π(i). Be-
cause �i is transitive, X2 �i X3 �i . . . �i Xq �i π(i) implies
X2 �i π(i), which contradicts (a). Therefore, Ri is acyclic, and its
transitive closureR?i is a strict partial order. Take�?i to be any linear
order refining R?i . Because Ri contains �i, �?i refines �i; and for
every j, because π(j) 6�i π(i), by construction of Ri we have that
π(i)Riπ(j), therefore also π(i) �?i π(j). 2

6 Brams and coauthors [7, 8] use a different terminology: our necessarily
(resp. possibly) envy-free allocations correspond to their allocations that
are not envy-possible (resp. that are not envy-ensuring), and our necessar-
ily (resp. possibly) Pareto efficient allocations correspond to their Pareto-
ensuring (resp. Pareto-possible) allocations. We believe that applying the
standard modalities of “necessary” and “possible” to basic fairness and ef-
ficiency criteria is the most systematic way of defining these notions.

7 The usual definition of envy-freeness only requires that each agent should
be at least as happy with her share as with the share of anyone else, i.e., that
π(i) �?i π(j) holds for all i, j ∈ A. Here, π(i) �?i π(j) and π(i) �?i
π(j) are equivalent, because π(i) �?i π(j) is equivalent to π(i) �?i π(j)
or π(i) = π(j), and of course we have π(i) 6= π(j).

Example 1 Let m = 5, n = 2, N1 = a B b B c B d and N2 =
d B c B b B a. Consider the allocation π defined by π(1) = {a, d}
and π(2) = {b, c}. We have {b, c} 6�1 {a, d} and {a, d} 6�2 {b, c},
therefore π is PEF. However, π is not NEF, but the allocation π′ such
that π′(1) = {a, b} and π′(2) = {c, d} is NEF (hence also PEF).

Recall that for a profile of linear orders (�?1, . . . ,�?n) on 2G , an allo-
cation π′ is said to Pareto-dominate another allocation π if π′(i) �?i
π(i) for all i ∈ A and π′(j) �?j π(j) for some j ∈ A.

Definition 3 (Modes of dominance) Given a profile of strict partial
orders (�1, . . . ,�n) on 2G and two allocations π and π′,

(i) π′ possibly Pareto-dominates π if π′ Pareto-dominates π for some
profile of linear orders (�?1, . . . ,�?n) refining (�1, . . . ,�n).

(ii) π′ necessarily Pareto-dominates π if π′ Pareto-dominates π for
all profiles of linear orders (�?1, . . . ,�?n) refining (�1, . . . ,�n).

We get characterisations of possible and necessary Pareto dominance
that are similar as those of Proposition 2.

Proposition 3 (Pareto dominance) Given (�1, . . . ,�n),
• π′ necessarily Pareto-dominates π if and only if (a) for all i, we
have π′(i) �i π(i) and (b) for some i, we have π′(i) �i π(i);
• π′ possibly Pareto-dominates π if and only if (c) for all i, we have
π(i) 6�i π′(i) and (d) for some i, we have π(i) 6�i π′(i).

Proof. For the first point: (a) and (b) together clearly imply that π′

necessarily dominates π. Conversely, assume π′ necessarily domi-
nates π. Then, by definition, π′ Pareto-dominates π for all profiles
of linear orders refining the partial orders. Exchanging the position
of the two universal quantifiers immediately gives (a). Now, sup-
pose that there is no i such that π′(i) � π(i). Then for each i
there is at least one refinement �?i such that π(i) �?i π′(i). Let
P ? = (�?1, ...,�?n). P ? refines (�1, ...,�n), and for P ?, π′ does
not Pareto dominate π, which contradicts the initial assumption, and
we are done. The proof for the second point is similar. 2

Definition 4 (Modes of efficiency) Given a profile of strict partial
orders (�1, . . . ,�n) on 2G , an allocation π is called

(i) possibly Pareto efficient (PPE) if there exists no allocation π′ that
necessarily Pareto-dominates π; and

(ii) necessarily Pareto efficient (NPE) if there exists no allocation π′

that possibly Pareto-dominates π.

Above concepts naturally extend to the case where preferences are
modelled using a representation language, such as SCI-nets. For ex-
ample, given a profile of SCI-nets (N1, . . . ,Nn), an allocation π is
PEF if π is PEF for the profile (�N1 , . . . ,�Nn).

3 COMPUTING ENVY-FREE ALLOCATIONS
In this section, we consider the problem of checking whether, for a
given profile of SCI-nets, there exists an allocation that is (possibly or
necessarily) envy-free, and that also satisfies a secondary efficiency
requirement (in particular completeness).

3.1 Possible envy-freeness
We first ask whether a given profile of SCI-nets permits an allocation
that is both PEF and complete. It turns out that there is a very simple
characterisation of those profiles that do: all that matters is the num-
ber of distinct goods that are ranked at the top by one of the agents (in



relation to the number of agents and goods). As will become clear in
the proof of this result, the algorithm for computing a complete PEF
allocation is also very simple.

Proposition 4 (PEF: general case) If n agents express their prefer-
ences over m goods using SCI-nets and k distinct goods are top-
ranked by some agent, then there exists a complete PEF allocation if
and only if m ≥ 2n− k.

Proof. First, suppose there are m ≥ 2n − k goods. Executing the
following protocol will result in a PEF allocation of 2n− k of those
goods: (1) Go through the agents in ascending order, ask them to pick
their top-ranked item if it is still available and ask them leave the
room if they were able to pick it. (2) Go through the remaining n−k
agents in ascending order and ask them to claim their most preferred
item from those still available. (3) Go through the remaining agents
in descending order and ask them to claim their most preferred item
from those still available. The resulting allocation is PEF, because for
no agent the bundle of (one or two) goods(s) she obtained is pairwise
dominated by any of the other bundles: she either is one of the k
agents who received their top-ranked item or she was able to pick
her second item before any of the agents preceding her in the first
round were allowed to pick their second item. The remaining goods
(if any) can be allocated to any of the agents; the resulting allocation
remains PEF and is furthermore complete.

Second, suppose there arem < 2n−k goods. Then, by the pigeon
hole principle, there must be at least one agent iwho receives an item
that is not her top-ranked item x̂i and no further items beyond that.
But then i will necessarily envy the agent who does receive x̂i; thus,
the allocation cannot be PEF. 2

Example 2 Let m = 6, n = 4, N1 = a B b B c B d B e B f , N2

= a B d B b B c B e B f , N3 = b B a B c B d B f B e and
N4 = b B a B c B e B f B d. We have k = 2 and m ≥ 2n − k.
Therefore, the algorithm returns a complete PEF allocation, namely,
if we consider the agents in the order 1 > 2 > 3 > 4: π(1) = {a};
π(2) = {d, f}; π(3) = {b}; π(4) = {c, e}. However, if f were
unavailable, there would not be any complete PEF allocation.

It is possible to show that Proposition 4 remains true if we require
allocations to be PPE rather than just complete:

Proposition 5 (PPE-PEF: general case) If n agents express their
preferences over m goods using SCI-nets and k distinct goods are
top-ranked by some agent, then there exists a PPE-PEF allocation if
and only if m ≥ 2n− k.

Proof. First, any PPE allocation is complete; therefore, if there
exists a PPE-PEF allocation, there also exists a complete PEF
allocation. Conversely, if we refine the protocol given in the proof
of Proposition 4 by allowing the last agent in round three to take
all the remaining items at the end, then that protocol returns an
allocation that is the product of sincere choices [8] by the agents
for the sequence 1, 2, . . . , n, n, . . . , 1, . . . , 1. By Proposition 1 of
Brams and King [8], any such allocation is PPE. 2

The complexity of determining whether there exists an NPE-PEF al-
location is still an open problem.

3.2 Necessary envy-freeness
Next, we turn attention to the problem of checking whether a NEF
allocation exists, given a profile of SCI-nets. This is a considerably

more demanding property than possible envy-freeness. For instance,
it is easy to see that a necessary precondition for the existence of a
complete NEF allocation is that all agents have distinct top-ranked
goods (because any agent not receiving her top-ranked good might
envy the agent receiving it, whatever other goods the two of them
may obtain). Another necessary precondition is the following:

Lemma 6 (NEF: necessary condition) If n agents express their
preferences over m goods using SCI-nets and a complete NEF al-
location does exist, then m must be a multiple of n.

Proof. If m is not a multiple of n, then for an allocation to be
complete, some agent i must receive fewer goods than another
agent j. But any SCI-net (including that of i) is consistent with a
linear order ranking any bundle of size k above any bundle of size
less than k (for all k). Hence, such an allocation cannot be NEF. 2

If there are as many goods as there are agents (m = n), then check-
ing whether a complete NEF allocation exists is easy: it does if and
only if all agents have distinct top-ranked goods. The next most sim-
ple case in which there is a chance that a complete NEF alloca-
tion might exist is when there are twice as many goods as agents
(m = 2n). We now show that checking whether such an allocation
exists (and computing it) is intractable:

Proposition 7 (NEF: general case) If n agents express their pref-
erences over m goods using SCI-nets, then deciding whether there
exists a complete NEF allocation is NP-complete (even if m = 2n).

Proof. Membership in NP is straightforward from Proposition 2.
Hardness is proved by reduction from [X3C] (exact cover by 3-sets):
given a set S of size 3q, and a collection C = 〈C1, . . . , Cn〉 of sub-
sets of S of size 3, does there exist a subcollection C′ of C such that
every element of S is present exactly once in C′?

Without loss of generality, we have n ≥ q. To any instance 〈S,C〉
of [X3C] we associate the following allocation problem:
• 6n objects: 3n “dummy” objects {d1i , d2i , d3i |i = 1, . . . , n}, 3q

“main” objects {mi|i = 1, . . . 3q} and 3(n − q) “auxiliary” ob-
jects {oi|i = 1, . . . 3(n− q)}

• 3n agents {ci, c′i, c′′i |i = 1, . . . , n}. ci, c′i and c′′i are called agents
of type i and if Ci = {j, k, l}, their preferences are expressed by
the following SCI-nets:
ci: d1i B d2i B d3i B mj B mk B ml B o1 B o2 B o3 B . . . B

o3(n−q)−2 B o3(n−q)−1 B o3(n−q) B D BM ;
c′i: d

2
i B d3i B d1i B mk B ml B mj B o2 B o3 B o1 B . . . B
o3(n−q)−1 B o3(n−q) B o3(n−q)−2 B D BM ;

c′′i : d3i B d1i B d2i B ml B mj B mk B o3 B o1 B o2 B . . . B
o3(n−q) B o3(n−q)−2 B o3(n−q)−1 B D BM ;

where D (resp. M ) means “all other dummy (resp. main) objects
in any arbitrary order”. mj , mk and ml will be called “first-level
objects” for ci, c′i and c′′i .

Suppose there exists an exact cover C′ of C. C′ contains exactly
q subsets, therefore C \ C′ contains n − q subsets. Let f : C \
C′ → {1, . . . , n − q} be an arbitrary bijective mapping. Define the
allocation πC′ as follows:
1. every agent gets her preferred dummy object dji ;
2. ifCi ∈ C′ then every agent of type i gets her preferred (first-level)

main object (we will call these agents “lucky” ones);
3. if Ci 6∈ C′, every (unlucky) agent of type i gets an auxiliary ob-

ject: ci gets o3f(i)−2, c′i gets o3f(i)−1, and c′′i gets o3f(i).
Let us check that πC′ is a complete allocation. Obviously, every
dummy object is allocated (by point 1 above). Since C′ is a cover,



every main object is allocated as first-level object for some agent (by
point 2 above). Since f is a bijective mapping, every auxiliary object
is allocated (by point 3 above). Every agent gets exactly 2 objects, so
no object can be allocated twice and the allocation is complete.

Now, we check that πC′ is NEF. Since every agent receives her
top-ranked object and another one, then by Proposition 1, check-
ing that a does not necessarily envy b comes down to checking that
π(a)a(2) Ba π(b)a(2) (hence comparing only the ranks of the worst
objects in π(a) and π(b)).
• For each lucky agent a, rank(π(a)a(2)) = 4. Each other agent

gets either one main object or an auxiliary one. In both cases, the
rank is obviously worse than 4, hence preventing a from possibly
envying anyone else.

• The worst object received by any unlucky agent a of
type i (say w.l.o.g. ci) is her best one among the triple
{o3f(i)−2, o3f(i)−1, o3f(i)}. The worst object received by another
agent of type i (say w.l.o.g. c′i) is another one from the same triple,
that is obviously worse for ci. Hence no agent of type i can envy
any other agent of the same type. Let b be an agent of type j 6= i
(lucky or not). b receives her top-ranked object dkj (k ∈ {1, 2, 3}),
which is ranked worse than every auxiliary object for a, hence
preventing a from possibly envying b.

Conversely, assume π is a complete NEF allocation. We first note
that in π, every agent receives exactly two objects, among which her
preferred object; therefore, in π the assignment of all dummy objects
is completely determined.

Now, suppose there is an agent a that gets a main object m(a)
which is not among her first-level ones. Let mj be one of her first-
level objects. Then some agent b receives both mj and a dummy ob-
ject, both ranked higher than m(a) in a’s SCI-net. Hence a possibly
envies b. From this we conclude that in π, the second object received
by an agent is either a first-level object, or an auxiliary object.

Moreover, if an agent of type i (say, ci) receives a first-level object,
then the other two agents of type i must also receive a first-level
object, for if it is not the case for one of them, she gets an auxiliary
object and possibly envies ci. Therefore, in π, for every i, either all
agents of type i receive a first-level object, or none.

Finally, define Cπ as the set of all Ci such that all the agents of
type i receive a first-level object. π being complete, every main object
must be given. Therefore,Cπ is a cover of S. Because no main object
can be given to two different agents, Cπ is an exact cover of S.

The reduction being polynomial, this proves NP-hardness. 2

Example 2, continued. There is no complete NEF allocation,
because m is not a multiple of n. If any one of the four agents is
removed, again there is no complete NEF allocation, because there
are two distinct agents with the same top object. If only agents 1 and
3 are left in, again it can be checked that there is no complete NEF
allocation. If only agents 2 and 3 are left in, then there is a complete
NEF allocation, namely π(2) = {a, d, e}, π(3) = {b, c, f}.

Proposition 7 extends to the case of PPE allocations:

Proposition 8 (PPE-NEF: general case) If n agents express their
preferences over m goods using SCI-nets, then deciding whether
there exists a PPE-NEF allocation is NP-complete (even ifm = 2n).

Proof. Given a sequence s of n agents, we can compute in polyno-
mial time the allocation πs that corresponds to the product of sincere
choices according to s (which is PPE by Brams and King’s charac-
terisation [8]), and check in polynomial time that it is NEF. Thus s is
a polynomial certificate for the problem, hence membership in NP.

For NP-hardness we can use the same reduction from [X3C].
Since every PPE allocation is complete, there is a PPE-NEF alloca-
tion only if there is a complete NEF allocation, hence only if there
is an exact cover. Conversely, assume that there is an exact cover.
Then the complete and NEF allocation obtained in the proof of
Proposition 7 is also PPE by Brams and King’s characterisation [8],
since it is obtained by a sequence of sincere choices by agents (all
the agents in sequence in the first round, then all the lucky agents,
and finally all the unlucky agents). 2

The hardness part of the proofs above extends to the case of NPE
allocations (but we do not know whether the problem is still in NP).

Proposition 9 (NPE-NEF: general case) If n agents express their
preferences over m goods using SCI-nets, then deciding whether
there exists an NPE-NEF allocation is NP-hard (even if m = 2n).

Proof. We can use the same reduction from [X3C]. Since every NPE
allocation is complete, there is an NPE-NEF allocation only if there
is a complete NEF allocation, hence only if there is an exact cover.
Conversely, if there is an exact cover C′, we will prove that the
allocation πC′ is NPE. Suppose that there is an allocation π′ that
possibly Pareto-dominates πC′ (assume w.l.o.g. that π′ is complete).
π′ must give exactly two objects to each agent (otherwise at least
one agent gets one object or less and π′ would not possibly dominate
πC′ ). If π′ is such that each agent gets her top-ranked object, then
π′ necessarily Pareto-dominates πC′ (since one object is fixed, the
complete SCI-net induces a complete order on the other one for
each agent), which is impossible since πC′ is PPE (from the proof
of Proposition 8). Thus at least one agent a does not receive her
preferred dummy object d, which, then, must go to another agent b.
It means that b receives in π′ an object that is worse than her worst
object in πC′ . We can easily check that πC′(b) �b π′(b), thus π′

cannot possibly Pareto-dominate πC′ . 2

In the special case of allocation problems with just two agents, a
complete NEF allocation can be computed in polynomial time:

Proposition 10 (NEF: two agents) If there are only two agents and
both express their preferences using SCI-nets, then deciding whether
there exists a complete NEF allocation is in P.

We assume w.l.o.g. that the number of objects is even (m = 2q),
for if not we know there cannot be any complete NEF allocation. We
have an exact characterisation of NEF allocations:

Lemma 11 Let n = 2 and π a complete allocation. π is NEF if and
only if for every i = 1, 2 and every k = 1, . . . , q, π gives agent i at
least k of her 2k − 1 most preferred objects.

Proof. W.l.o.g., the preference relation of agent 1 is x1 B1 . . . B1

x2q . Assume that (1) for every i = 1, 2 and every k = 1, . . . , q,
π gives agent i at least k objects among {x1, . . . , x2k−1}. Let I =
{i, xi ∈ π(1)} and J = Ī = {i, xi ∈ π(2)}. Let I = {i1, . . . , iq}
and J = {j1, . . . , jq} with i1 < . . . < iq and j1 < . . . < jq .
Let f be the following one-to-one mapping from I to J : for every
k = 1, . . . , q, f(ik) = jk. For every k ≤ q, because of (1), we have
that ik ≤ 2k−1. Now, since I∩J = ∅, J∩{1, . . . , 2k−1} contains
at most k − 1 elements, therefore jk ≥ 2k, which implies ik < jk
and xik B1 xjk . Thus f is a one-to-one mapping from I to J such
that for every i ∈ I , agent 1 prefers xi to xf(i). Symmetrically, we



can build a one-to-one mapping g from J to I such that for every
j ∈ J , agent 2 prefers xj to xg(j). This implies that π is NEF.

Reciprocally, assume there exists a k ≤ q such that π gives agent
1 at most k− 1 objects among {x1, . . . , x2k−1}. Then π gives agent
2 at least k objects among {x1, . . . , x2k−1}. This implies that for
any one-to-one mapping f from π(1) to π(2), there is some i ≤ k
such that xf(i) B1 xi, therefore π is not NEF. Symmetrically, if
there exists a k ≤ q such that π gives agent 2 at most k − 1 objects
among her 2k − 1 preferred objects, then π is not NEF. 2

Proof (Proposition 10). Let the preference relation of agent 1 be,
w.l.o.g., x1 B1 x2 B1 . . . B1 x2q . From that SCI-net, we build the
flow network shown in Figure 2 (edge labels x/y correspond to the
edge lower bound x and capacity y).
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Figure 2. The flow network corresponding to one agent.

We build the same flow network for agent a2 (nodes ak1 are now
called ak2 ) and identify, between the two networks, the nodes corre-
sponding to the same objects, the source s, and the sink t.

We claim (but do not show due to lack of space) that there is an
allocation π satisfying the condition stated in Lemma 11 if and only
if there is a feasible flow of value p in the latter network.

The problem of finding a feasible flow in a network with lower
bounds as well as capacities is known as the circulation problem
and is known to be solvable in (deterministic) polynomial-time [12].
Hence the problem of deciding whether there exists a complete NEF
allocation for a problem with two agents is in P. 2

4 CONCLUSION AND RELATED WORK
We have studied the problem of computing envy-free allocations of
indivisible goods, when agents have ordinal preferences over bundles
of goods and when we only know their preferences over single items
with certainty. Building on work from the (“non-computational”) fair
division literature, in particular the contributions by Brams et al. [7,
8], we have proposed a framework in which to study such questions,
we have provided a number of alternative characterisations of the
central concepts involved, and we have analysed the computational
complexity of computing allocations of the desired kind.

We have been able to show that computing an allocation that is
possibly envy-free is easy (whether paired with a requirement for
completeness or possible Pareto efficiency). We have also been able
to show that computing necessarily envy-free allocations is NP-hard
(whatever the secondary efficiency requirement); only for problems
with just two agents there is a polynomial (but non-trivial) algorithm.
The complexity of finding envy-free allocation that are necessarily
Pareto efficient is not fully understood at this stage. In particular, it
is conceivable that deciding the existence of allocations that are both
necessarily envy-free and necessarily Pareto efficient might not even
be in NP; we leave the full analysis of this question to future work.

Future work should also seek to extend our results to nonstrict
SCI-nets, where indifference between single goods is allowed. Prob-
lems that are still easy with strict SCI-nets, such as the existence of
a complete PEF allocation, could conceivably become NP-complete.
Intuitively, the more indifferences the agents express, the more com-
plete the preference relations and the closer the notions of possi-
ble and necessary envy-freeness, which means that possible envy-
freeness will be harder to guarantee.

Our work is part of a growing literature on computational aspects
of fair division. In particular, complexity aspects of envy-freeness
have been studied, for example in the works of Lipton et al. [15]
and de Keijzer et al. [11], who address the problem of finding envy-
free and complete (resp. Pareto efficient) allocations, when the agents
have numerical additive preferences. Bouveret and Lang [6] also ad-
dress the same problem, for various notions of efficiency, in a context
where the agents have utilities expressed in compact form. However,
none of these computational works concerns ordinal preferences, and
none have considered possible or necessary satisfaction of fairness
criteria. There is also a related stream of works on the Santa Claus
problem, consisting in computing maxmin fair allocations (see e.g.,
Bansal and Sviridenko [2], Bezáková and Dani [4], Asadpour and
Saberi [1]). These works encode fairness by an egalitarian collective
utility function and do not consider envy-freeness.
Acknowledgements This research has been partially supported by
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