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PSL Research University
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Abstract

Different agents may have different points of view. Following a popular approach in the
artificial intelligence literature, this can be modelled by means of different abstract argu-
mentation frameworks, each consisting of a set of arguments the agent is contemplating
and a binary attack-relation between them. A question arising in this context is whether
the diversity of views observed in such a profile of argumentation frameworks is consistent
with the assumption that every individual argumentation framework is induced by a com-
bination of, first, some basic factual attack-relation between the arguments and, second,
the personal preferences of the agent concerned regarding the moral or social values the
arguments under scrutiny relate to. We treat this question of rationalisability of a profile
as an algorithmic problem and identify tractable and intractable cases. In doing so, we
distinguish different constraints on admissible rationalisations, e.g., concerning the types of
preferences used or the number of distinct values involved. We also distinguish two different
semantics for rationalisability, which differ in the assumptions made on how agents treat
attacks between arguments they do not report. This research agenda, bringing together
ideas from abstract argumentation and social choice, is useful for understanding what types
of profiles can reasonably be expected to occur in a multiagent system.

1. Introduction

The model of abstract argumentation introduced by Dung (1995) is at the root of a vast
amount of work in artificial intelligence. In a nutshell, this model abstracts away from the in-
ternal structure of an argument and simply represents argumentation frameworks as directed
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graphs, where the nodes are arguments and the edges are attacks between arguments—in the
sense that one argument undercuts or contradicts another argument. Different semantics
provide principled approaches to selecting sets of arguments that can be viewed as coher-
ent when advanced together. The simplicity and generality of this framework, as well as
its links with nonmonotonic reasoning, have stimulated a number of directions of research,
e.g., at the level of the definition of the semantics, of their computation, of the expressivity
of such frameworks, or regarding their application in a multiagent system.

In recent years, a number of authors have addressed the problem of aggregating several
argumentation frameworks, each associated with the stance taken by a different individual
agent, into a single collective argumentation framework that would appropriately represent
the views of the group as a whole. Examples include the contributions of Coste-Marquis,
Devred, Konieczny, Lagasquie-Schiex, and Marquis (2007), Tohmé, Bodanza, and Simari
(2008), Bodanza and Auday (2009), and Dunne, Marquis, and Wooldridge (2012). Aggre-
gating argumentation frameworks is a form of graph aggregation (Endriss & Grandi, 2017):
We are given a profile of attack-relations, one for each agent, and are asked to compute
a suitable compromise attack-relation. This is an interesting and fruitful line of research,
bringing together concerns in abstract argumentation with the methodology of social choice
theory,1 but it raises one important question: For a given profile of argumentation frame-
works, is it in fact conceivable that such a profile would manifest itself? That is, how do we
explain the differences in perspective of the individual agents for a given profile? Why do
they sometimes report different arguments? And why do they sometimes report different
attacks even between those arguments they agree on? In this paper, we propose a formal
model for studying such questions.

The point that the attack-relation should not be viewed as absolute and objective, but
may very well depend on the individual circumstances of the agent considering the argu-
ments in question, has been made before by multiple authors (e.g., Bench-Capon, Doutre,
& Dunne, 2007; Amgoud, Dimopoulos, & Moraitis, 2008; Baumann, 2012; Booth, Kaci, &
Rienstra, 2013; Grossi & van der Hoek, 2013; Gabbriellini & Torroni, 2013). A widespread
explanation for such diversity of views is that agents have different preferences regarding
the arguments at hand. For instance, arguments may come from different sources, which
agents may trust to varying degrees. Or the arguments may be attached to different moral
or social values, which the agents may prioritise differently. This perspective still assumes
an underlying ground truth, which however may be interpreted differently, depending on
the agents. The same position is also taken by Searle (2001), who puts the case very clearly:

“Assume universally valid and accepted standards of rationality, assume per-
fectly rational agents operating with perfect information, and you will find that
rational disagreement will still occur; because, for example, the rational agents
are likely to have different and inconsistent values and interests, each of which
may be rationally acceptable.” (page xv)

1. The approach sketched here must be clearly distinguished from a second approach combining abstract
argumentation and social choice theory found in the literature, which addresses the question of how to
aggregate different extensions (or labellings) for a common argumentation framework. This is the ap-
proach of, amongst others, both Caminada and Pigozzi (2011) and Rahwan and Tohmé (2010). Bodanza
and Auday (2009) compare the two approaches explicitly. We point the reader to the recent survey by
Bodanza, Tohmé, and Auday (2017) for a detailed description of all of these works.
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In the literature on abstract argumentation, frameworks for modelling this phenomenon
have been proposed by several authors, including both Amgoud and Cayrol (2002) and
Bench-Capon (2003). Here we adopt a preference-based approach, in the value-based variant
due to Bench-Capon (2003). In his model, whether argument A ultimately defeats argument
B does not only depend on whether A attacks B in an objective sense, but also on how
we rank the importance of the moral or social values attached to A and B: If we rank the
value associated with B strictly above that associated with A, we may choose to ignore any
attacks of A on B. Thus, differences in their preferences can explain why different agents
may report different attacks.

Regarding the fact that agents may also report different sets of arguments to begin
with, the most natural explanation is simply that the agents are not all aware of the same
arguments. (We shall mostly stick to this interpretation in this paper). However, depending
on the context, it may sometimes also be reasonable to assume that an agent chooses, on
purpose, not to report certain arguments. For instance, it may be the case that certain
values are ‘taboo’ for some agents, and that they prefer not to refer to them and thus
choose to suppress any arguments relating to those values.2 Or agents may choose to ignore
arguments they consider irrelevant, with the aim of minimising communication.

At the technical level, the question we ask in this paper thus is the following: Given
a profile of argumentation frameworks pAF1, . . . ,AFnq, one for each agent, defined over
possibly different sets of arguments, can this profile be explained in terms of a single master
argumentation framework, an association of arguments with values, and a profile of prefer-
ence orders over values pě1, . . . ,ěnq, one for each agent? Or, as we shall put it: Can the
profile of argumentation frameworks observed be rationalised? To be able to answer this
question in the affirmative, for every agent i, we require AFi to be exactly the argumen-
tation framework we obtain when the master argumentation framework with its associated
values is first restricted to the arguments agent i is aware of and then any attacks that are in
conflict with the preference order ěi are being cancelled. We are also going to consider an
alternative notion of rationalisability, where we assume each agent is aware of all arguments
but consciously chooses not to report some of them. In this case, rationalisation is possible,
if we can obtain AFi by first cancelling the attacks in conflict with ěi and then restricting
the resulting attack-relation to the arguments agent i has been observed to report. In both
cases, we may impose various constraints on admissible rationalisations. For example, we
may make certain assumptions regarding the preferences of agents or we may limit the
number of values that may be used for rationalisation.

Of course, alternative justifications for the fact that individual argumentation frame-
works may differ could be given instead. The preference-based explanation adopted here
is not the only option. In particular, agents may interpret arguments differently, espe-
cially when their knowledge is incomplete (Black & Hunter, 2012). Also, while we adopt
Bench-Capon’s value-based approach as the technical foundation on the basis of which to
construct our framework and for which to prove our results, there are alternative models of
preference-based argumentation, for instance relying on meta-level argumentation (Modgil,
2009). We do not wish to commit to one specific view on the complex question of how to
best model preferences in argumentation—see the works of Amgoud and Vesic (2011) and

2. Similar ideas have been explored for the definition of a semantics that attempts to only make use of
certain arguments if absolutely necessary (Cayrol, Doutre, Lagasquie-Schiex, & Mengin, 2002).
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Modgil and Prakken (2013) for recent contributions to this debate. By confining ourselves
to this setting, we favour conceptual simplicity and emphasise our methodological contribu-
tion, perhaps at the price of limiting expressivity—more sophisticated argumentation and
preference models may score better in this respect and thus be better suited to modelling
real-world scenarios. Having said this, there are of course several successful applications
of value-based argumentation frameworks, be it in the legal domain (Grabmair & Ashley,
2011), the modelling of political debates (Cartwright & Atkinson, 2009), or ecological policy
making (Tremblay & Abi-Zeid, 2016). We refer to Atkinson and Bench-Capon (2016) for a
recent overview of several additional applications. This combination of conceptual simplic-
ity and relevance to applications makes this setting a perfect candidate to commence the
study of the rationalisability of the argumentative stances of a group of agents.

Still, we believe that our general point is relevant beyond such specific modelling choices,
and we see our contribution to be first and foremost as a methodological one. The same type
of investigation could be undertaken for other models as well.3 In a sense, this multiplicity of
models is precisely what makes our contribution useful: by providing a collection of results
that allow checking whether a profile can be rationalised on such grounds, we provide
evidence for guiding the modelling process. The good news is that in many—albeit not
all—of the cases analysed in this paper, verification of rationalisability can be performed
efficiently, even when the assignment of values to arguments is not known beforehand.

The remainder of the paper is organised as follows. Section 2 presents the relevant back-
ground regarding value-based argumentation. Section 3 formally introduces the problem of
rationalising a given profile of argumentation frameworks provided by a group of agents,
and it presents the different types of constraints on solutions we will consider. Section 4
analyses the single-agent case in detail, while Section 5 investigates the multiagent case.
Section 6 presents the alternative approach to defining rationalisability, where agents are
assumed to choose not to report certain arguments rather than simply not being aware of
them. Finally, Section 7 discusses a number of application scenarios and Section 8 concludes
with a review of open questions and possible directions for future work.

2. Notation and Terminology

Following Dung (1995), we define an argumentation framework (AF) as a binary attack-
relation declared over a set of arguments. In this paper, we are going to restrict ourselves
to scenarios for which the set of available arguments is finite.

Definition 1 (AF). An argumentation framework is a pair AF “ xArg,áy, where Arg is a
finite set of arguments and á, the attack-relation, is an irreflexive binary relation on Arg.

If Aá B holds for two arguments A,B P Arg, then we say that A attacks B.

Example 1. Pollution is becoming a major health problem in big cities. City councils are
facing the question of possibly banning polluting vehicles, and specifically diesel cars, from
the city centres. A city council might entertain the following arguments:

3. While some preference-based approaches are special cases of the one used here—e.g., in the work of Am-
goud and Cayrol (2002) each argument is mapped to a different value—others would require extensions,
e.g., allowing several values per argument, as in the work of Kaci and van der Torre (2008).
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pAq Diesel cars should be banned from the inner city center in order to decrease pollution.

pBq Artisans, who deserve special protection by the city council, cannot change their vehi-
cles, as that would be too expensive for them.

pCq The city can offer financial assistance to artisans.

pDq There are only very few alternatives to using diesel cars. Specifically, the autonomy
of electric cars is poor, as there are not enough charging stations around.

pEq The city can set up more charging stations.

pF q In times of financial crisis, the city should not commit to spending additional money.

pGq Health and climate change issues are important, so the city has to spend what is needed
to tackle pollution.

The following graph shows the AF generated by these arguments, together with a natural
attack-relation á between them:

A

BC

DE

FG

Observe that for this AF it is ambiguous whether or not we should accept argument A and
ban diesel cars: Accepting either tA,C,E,Gu or tB,D,F u is intuitively admissible.

Next, we introduce preferences. Recall that a preorder is a binary relation that is reflexive
and transitive, and a weak order in addition is also complete (Roberts, 1979). We use
preorders and weak orders to model preferences. Using a preorder means allowing for
strict preferences, indifferences, and incomparabilities, while using a weak order excludes
the possibility of two items being incomparable. We will use the terms ‘preference order’
and ‘preorder’ synonymously, i.e., a ‘complete preference order’ refers to a weak order. The
strict part of a preference order ě is denoted as ą and its indifference part as „. Thus, we
write x ą y if x ě y but not y ě x, and we write x „ y if both x ě y and y ě x.

Following Bench-Capon (2003), we define an audience-specific value-based argumentation
framework (AVAF) as an AF equipped with a function associating each argument with the
social or moral value it advances, combined with a preference order declared over those
values. While the mapping from arguments to values is fixed and the same for everyone,
the preferences over values are those of a particular agent (the “audience”).

Definition 2 (AVAF). An audience-specific value-based argumentation framework is defined
as a 5-tuple xArg,á,Val, val,ěy, where xArg,áy is an argumentation framework, Val is a
finite set of values, val : Arg Ñ Val is a mapping from arguments to values, and ě is the
audience’s preference order on Val.

We call xVal, val y the AVAF’s value-labelling. Let “val be the equivalence relation on argu-
ments induced by val: A “val B if and only if valpAq “ valpBq.

153



Airiau, Bonzon, Endriss, Maudet, & Rossit

Now suppose an agent is presented with an AF and a value-labelling. In Bench-Capon’s
model, this agent will uphold a proposed attack Aá B and therefore accept that A defeats
B, unless she strictly prefers the value associated with the attackee B to the value associated
with the attacker A (Bench-Capon, 2003).

Definition 3 (Defeated Arguments). Given an AVAF xArg,á,Val, val,ěy, we say that
argument A P Arg defeats argument B P Arg, denoted AÝB, if and only if we have Aá B
but it is not the case that valpBq ą valpAq.

We call Ý the defeat-relation induced by the AVAF. We stress that saying ‘it is not the
case that valpBq ą valpAq’ is the same as saying ‘valpAq ě valpBq is the case’ only when the
preference order ě is complete.

Note that for any given AVAF xArg,á,Val, val,ěy the induced defeat-relation Ý is,
just like an attack-relation á, an irreflexive binary relation on Arg. Thus, we can (and
will) think of xArg,Ýy as just another AF.

Example 1 (continued). Recall our earlier example about the arguments pondered by our
city council. We can associate the arguments presented in this example with four types
of values. Arguments A and G concern environmental responsibility (value env), B and
C are about social fairness (value soc), F promotes economic viability (value econ), and
D and E pertain to infrastructure efficiency (value infra). We thus have that Val “
tenv, soc, econ, infrau, as well as that valpAq “ valpGq “ env, valpBq “ valpCq “ soc,
valpF q “ econ, and valpDq “ valpEq “ infra.

Let us now assume that a particular councillor wants to promote the values of envi-
ronmental responsibility and infrastructure efficiency over the other two values. So her
preferences might be given by the following weak order:

env „ infra ą soc „ econ

This induces a defeat-relation Ý for our councillor that corresponds to the following graph:

A

BC

DE

FG

For instance, the attack from B to A got removed, because valpAq “ env ą soc “ valpBq.
Overall, three attacks got removed. For the new AF it is unambiguously clear that A should
be accepted (the only argument attacking A is itself attacked by an argument without any
remaining attackers), and thus that diesel cars should be banned from the city centre.

In the sequel, we are going to use standard set-theoretical operations (e.g., X, Ď) on binary
relations (understood as sets of pairs). Furthermore, R´1 “ tpx, yq | yRxu is the inverse
of a binary relation, R` is its transitive closure, and R˚ is its reflexive-transitive closure.
R ˝R1 is the composition of R and R1. We also define R`val :“ pRY“valq

˚ ˝R ˝ pRY“valq
˚,

which is like the usual transitive closure, except that we can move to arguments with the
same value, even if not connected by R. Finally, for any binary relation R defined on some
set S, we use RæS “ RX pS ˆ Sq to denote the restriction of R to S.
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3. The Rationalisability Problem

Let N “ t1, . . . , nu be a finite set of agents (or audiences). Suppose each of these agents
supplies us with an AF, not necessarily over the same set of arguments.4 We call this a
profile of AF’s. As we think of each AF in such a profile as the result of having imposed
the corresponding agent’s preferences on some underlying master AF, we write individual
AF’s as xArgi,Ýiy (rather than as xArgi,áiy). Here, Argi is the set of arguments agent i
is aware of and Ýi is the defeat-relation on Argi adopted by i. A profile of such AF’s is
denoted as AF “ pxArg1,Ý1y, . . . , xArgn,Ýnyq. Let Arg :“ Arg1 Y ¨ ¨ ¨ Y Argn denote the
set of all arguments at least one agent is aware of.

Now we may ask whether the profile we observe can be rationalised (i.e., whether it can
be explained)—in terms of a common master AF and a common value-labelling, together
with a profile of preference orders, one for each agent. This question gives rise to the
rationalisability problem defined next.5 In fact, we define an entire family of rationalisability
problems, parameterised by a set of constraints imposed on the solutions admitted. We will
soon see several concrete examples for such constraints.

Definition 4 (Rationalisability). A profile of AF’s, AF “ pxArg1,Ý1y, . . . , xArgn,Ýnyq,
is called rationalisable for a given set of constraints, if there exist an attack-relation á on
Arg “ Arg1 Y ¨ ¨ ¨ Y Argn, a set of values Val with a mapping val : Arg Ñ Val, and a profile
pě1, . . . ,ěnq of preference orders on Val, all meeting said constraints, such that, for all
agents i P N and all arguments A,B P Argi, it is the case that A Ýi B if and only if
Aá B but not valpBq ąi valpAq.

We refer to xArg,áy as the master AF, and consequently to á as the master attack-
relation. Some comments on how to interpret Definition 4 are in order. Given the presumed
existence of xArg,áy, val : Arg Ñ Val, and pě1, . . . ,ěnq, we think of the observed profile
AF “ pxArg1,Ý1y, . . . , xArgn,Ýnyq as having come about as the result of the following
process. First, each agent i P N becomes aware of some subset Argi Ď Arg of the full
set of arguments, and thus of the AF xArgi, páqæArgi

y, i.e., of the restriction of the master
attack-relation to the set of arguments she is aware of. Then, in a second step, agent i
removes any attacks in this AF that are at odds with her preferences, i.e., we get A Ýi B
for A,B P Argi if and only if A páqæArgi

B but not valpBq ą valpAq. Thus, we have made a
specific modelling choice when defining rationalisability: We assume that agents first choose
(possibly unconsciously) the subset of arguments to report, and only then reduce the attack-
relation defined on that subset according to their individual preferences. Another option
would have been to assume that the agents first reduce the master attack-relation according
to their own preferences, and then choose a subset of arguments to report (e.g., those that
they deem most relevant or significant). We consider the first interpretation more natural

4. A common assumption in the literature on the aggregation of AF’s is that every individual agent reports
an AF over the exact same set of arguments (Bodanza & Auday, 2009; Dunne et al., 2012; Tohmé
et al., 2008). Here, we instead follow Coste-Marquis et al. (2007), who have argued that allowing for
differences in the individual sets of arguments is more realistic. Note that the case of a single shared set
of arguments is covered by our model as a special case.

5. A different problem of rationalisability has recently been proposed by Dunne, Dvor̆ák, Linsbichler, and
Woltran (2014): Suppose you are given a set of subsets of arguments. Can these subsets possibly
correspond, for a given semantics, to the different extensions of some single AF?
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and shall adopt it for much of this paper. Nevertheless, in Section 6 we are also briefly
going to investigate the alternative semantics sketched here.

Definition 4 can be instantiated for different types of constraints. In this paper, we are
going to consider the following constraints (but others may be of interest as well):

• the master attack-relation á may be fixed,

• the value-labelling xVal, val y may be fixed,

• the number of values |Val | may be bounded from above by some constant k,

• the preference orders ěi may be required to be complete.

In addition, we will consider one restriction of the problem, namely the case where all
individual argument sets coincide (i.e., where Argi “ Argj for all i, j P N ). We are also
going to treat the single-agent case (with n “ 1) in some detail.

With these definitions in place, we may now ask: For a given set of constraints, can we
characterise the class of all profiles of AF’s that can be rationalised? And can we check
efficiently whether a given profile is rationalisable?

4. The Single-Agent Case

We first consider the single-agent case of the rationalisability problem. This is not only
useful for gaining an understanding of the multiagent case, but is also interesting in its
own right. For example, it may be the case that there is some ‘ground truth’ available
and we know what the correct attack-relation is (e.g., due to the logical structure of the
arguments), but that a specific agent is still reporting a different AF. Can this subjective
AF be explained in terms of the value-based model? That is, is this framework compatible
with what we know to be the ground truth?

Example 2. Consider a scenario with three arguments, Arg “ tA,B,Cu, with a fixed
master attack-relation á such that A á B, B á C, and A á C. Suppose we observe a
single agent who only declares A Ý B and B Ý C. Below, the master attack-relation is
shown on the left and the observed individual attack-relation is shown on the right:

A B

C

A B

C

Can we rationalise this omission of the attack of A on C? Clearly, rationalisation requires
A and C to be labelled with distinct values, say vA and vC , and our agent must prefer vC to
vA for Aá C to get cancelled. Are two values enough? The answer is no: If we reuse, say,
value vA to also label argument B, then B á C would get cancelled as well. Similarly, if we
reuse vC for B, then Aá B would get cancelled. Thus, we need a third value vB. Now there
is a rationalisation, with the agent’s preference order ranking vC above vA, and vB being
incomparable to the other two values. Observe that, even with three values, rationalisation
is impossible if we require the preference order to be complete, i.e., if we require it to not
leave any two values incomparable.
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In the single-agent case, we are given an AF xArg,Ýy. A solution consists of an AVAF
xArg,á,Val, val,ěy, over the same set of arguments Arg, that induces Ý. In this section, we
are going to consider this problem for several types of constraints on solutions. Our aim is to
provide polynomial-time algorithms for computing solutions and, where possible, to provide
exact characterisations of those solutions. We begin with the simplest of all scenarios,
where there are no constraints imposed on permissible rationalisations, and observe that
the problem of rationalisability is trivial in this case:

Fact 1 (No Constraints). In the absence of constraints, every single AF is rationalisable.

Proof. Given the AF xArg,Ýy to be rationalised, let páq :“ pÝq, choose the value-labelling
xVal, val y arbitrarily, and let pěq :“ ValˆVal, i.e., our agent is indifferent between any two
values. Then it is easy to check that Ý is induced by the AVAF xArg,á,Val, val,ěy.

Our proof shows that the same result also applies to rationalisation under any set of con-
straints referring only to Val and val. It also continues to apply if we require the preference
order to be complete. The main insight here is that any natural instance of the single-agent
problem that is nontrivial will involve a constraint on the master attack-relation. Therefore,
for the remainder of this section, we only consider rationalisability problems with a given
fixed master attack-relation.

Proposition 2 (Fixed Attack-Relation). A single AF xArg,Ýy is rationalisable by an
AVAF with a given fixed master attack-relation á if and only if all of the following three
conditions are satisfied:

piq pÝq Ď páq;

piiq pázÝq is acyclic;

piiiq pÝq X pázÝq` “ H.

Proof. In this setting, there are no constraints on xVal, val y. The first important insight
then is that having more values available means more flexibility: we can rationalise if and
only if we can rationalise by labelling every argument with a distinct value. Thus, we may
think of the arguments themselves as representing values: w.l.o.g., assume that Val “ Arg
and that val is the identity function. Hence, we can think of ě as operating directly on
arguments and need not consider values any longer.

Condition piq is required, as our agent can never add (but only remove) edges. Let
R :“ pázÝq denote the set of edges to be removed. We must have R´1 Ď pąq to ensure that
the agent’s preference order does indeed remove all of these edges. The second important
insight now is that it is never beneficial to add more pairs to the preference order than we
are absolutely forced to. That is, we should choose ą as small as possible, namely as the
transitive closure of R´1. We then still need to check two things. First, we need to check
that pR´1q` is the strict part of some preorder, i.e., that it is transitive and irreflexive.
This is equivalent to condition piiq, i.e., to R being acyclic. Second, we need to check that
we are not removing any edges that should in fact stay, i.e., we need to make sure that
pÝq XR` “ H, which is condition piiiq.

All three conditions can be checked in polynomial time, so we obtain a tractability result:
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Corollary 3 (Fixed Attack-Relation). Whether a single AF is rationalisable by an AVAF
with a given fixed master attack-relation can be decided in polynomial time.

Note that our proof of Proposition 2 shows that requiring the preference order to be strict
(i.e., not allowing any indifferences) does not affect rationalisability. On the other hand,
our proof does not apply in case the preference order is required to be complete (this case
will instead be covered by Proposition 6 below).

As discussed, a crucial ingredient of Proposition 2 and its proof was the fact that there
were no constraints on the value-labelling. We now investigate what happens when we add
such constraints, and first consider the most extreme case where the full value-labelling is
fixed from the outset. This is a natural scenario to consider in those cases in which we are
willing to assume that the question of which value a given argument relates to is a matter
that can be settled in an objective manner.

Proposition 4 (Fixed Value-Labelling). A single AF xArg,Ýy is rationalisable by an AVAF
with a given fixed master attack-relation á and a given fixed value-labelling xVal, val y if and
only if all of the following three conditions are satisfied:

piq pÝq Ď páq;

piiq the relation
Ť

ApázÝqBtpvalpAq, valpBqqu is acyclic;

piiiq pÝq X pázÝq`val “ H.

Proof. As for Proposition 2, condition piq reflects that our agent cannot add new edges.
The crucial difference to the scenario of Proposition 2 is that now we cannot remove
edges between arguments that are labelled with the same value. Let R :“ pázÝq be
the set of edges we need to remove. At the level of the values, this induces the relation
Ť

pA,BqPRtpvalpAq, valpBqqu mentioned in condition piiq. As before, the best we can do is
to choose as small a preference order as possible, so we should use the transitive closure of
the inverse of that relation on values. Condition piiq then amounts to checking that this
is indeed a well-formed preference order. Note that acyclicity implies irreflexivity, so we
are correctly checking that we are not trying to remove an edge between two arguments
labelled with the same value. Finally, we need to check that we are not removing any edges
that should stay. This is taken care of by condition piiiq. To see this, note that R`val is the
set of edges getting removed.

Also this characterisation immediately provides us with a polynomial-time algorithm. Thus,
we obtain the following result:

Corollary 5 (Fixed Value-Labelling ). Whether a single AF is rationalisable by an AVAF
with a given fixed master attack-relation and a given fixed value-labelling can be decided in
polynomial time.

The final single-agent scenario we want to consider here is one where we are not given the
full value-labelling but merely an upper bound on the number of values that may be used
for rationalisation.6 This scenario comes about when there is no unique objective mapping

6. Thus, this scenario requires solving the decision problem corresponding to the optimisation problem of
computing the minimal number of values needed for rationalisation.
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from arguments to values and we are looking for a “simple” explanation for an observed
defeat-relation only involving a limited number of different values. (For instance, when
values correspond to different sources providing information, their number may be known.)
From an algorithmic point of view, this is the most demanding problem considered so far.
Still, at least for the case of complete preferences, also for this problem we are able to
establish the existence of a polynomial-time algorithm, as the following result shows.

Proposition 6 (Bound on Values). Whether a single AF is rationalisable by an AVAF with
a given fixed master attack-relation, a given upper bound on the number of values, and a
complete preference order can be decided in polynomial time.

Proof. We are going to show how to translate our problem into an integer program with
at most two variables per inequality. Deciding feasibility of such programs is known to be
polynomial (Hochbaum & Naor, 1994).

Let xArg,Ýy be the AF,á the master attack-relation, and k (with k ď |Arg |) the upper
bound on the number of values. Observe that, if rationalisation is possible with fewer than
k values, then it certainly is possible with exactly k values. As the rationalising preference
order is required to be complete, w.l.o.g., we may assume that Val “ t1, . . . , ku and that ě

is the usual relation ě defined over the natural numbers. Clearly, if pÝq Ę páq, then
rationalisation is impossible. So, from now on, assume that pÝq Ď páq.

For every argument A P Arg, introduce an integer variable xA. We use inequalities of
the form 1 ď xA and xA ď k to ensure that each such variable must take a value from Val.
Thus, these variables encode val. We have to be able to model two types of constraints.
First, if Aá B but not A Ý B, then we must ensure that the value of B is strictly preferred
to the value of A: xA ` 1 ď xB. Second, if A Ý B (and thus, by our assumption, also
A á B), then we must ensure that the value of B is not strictly preferred to the value
of A: because of completeness, this can be written as xB ď xA. The integer program thus
constructed is feasible if and only if rationalisation is possible.

Let us reiterate that our proof makes use of the condition that the rationalising preference
order should be complete. Without it, we would not be able to map requirements of the
form valpBq ­ą valpAq into linear constraints. Assuming completeness of the preference
order (i.e., excluding the possibility of an agent not being able to compare the importance
of two given values) is sometimes reasonable, but certainly not always. Whether single-agent
rationalisability for a bounded number of values remains polynomial for possibly incomplete
preferences is a nontrivial open question of some interest.

Recall that Example 2 has demonstrated that there indeed are single-agent scenarios
where rationalisation is possible with incomplete preferences but impossible with complete
preferences. We conclude this section with one further observation on the impact the choice
of preference order can have on rationalisability. We show that, even when rationalisation is
possible with a complete preference order, imposing that requirement may radically increase
the number of values we need to use.

Proposition 7 (Value Ratio). The ratio between the number of values required to rationalise
a given AF by an AVAF with a given fixed master attack-relation and a complete preference
order and the number of values required in case the requirement to use a complete preference
order is dropped, in the worst case, cannot be bounded from above by a constant.
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Proof. We are going to exhibit a generic example where rationalisation with an incomplete
preference order is possible with just three values, while rationalisation with a complete
preference order requires Ωp|Arg |q values. As we can increase the number of arguments
arbitrarily, this proves the claim. So, suppose we are given a master attack-relation that
consists of a repetition of the same simple gadget of three arguments each (besides A1):

A1 A2 A3 A4 A5 A6 A7 ¨ ¨ ¨

Now suppose we observe an agent with the following individual defeat-relation, where the
first edge in each of the gadgets is missing:

A1 A2 A3 A4 A5 A6 A7 ¨ ¨ ¨

If we permit incomplete preferences, then rationalisation is possible with just three values,
tv1, v2, v3u: To achieve rationalisation, we label the arguments with values in such a way
that valpAkq “ vk1 whenever k ” k1 mod 3, and for the preference order we set v1 ą v2 and
declare v3 incomparable to both v1 and v2.

Now suppose we require complete preferences. To preserve the mutual attacks in the
middle of each gadget, we must have valpAk`2q „ valpAk`3q „ valpAk`4q for all k ě 0. At
the same time, to ensure that the attacks that need to get removed actually do get removed,
we must have valpAk`1q ą valpAk`2q for all k ě 0. But this is only possible, if we label
each gadget with a new value. Therefore, the number of values required for rationalisation
is linear in the number of arguments.

Thus, in principle, the number of values required for rationalisation can grow arbitrarily
when we exclude the possibility of an agent declaring two values preferentially incomparable.
Of course, the particular AF’s used in the proof of Proposition 7 are highly contrived and we
should not necessarily expect this growth in the number of values required to be quite that
significant in practice. Indeed, a recent experimental study carried out by Greige (2016)
shows that, when profiles to be rationalised are generated at random, then exhibiting a
scenario where rationalisation is possible with complete preferences but requires strictly
more values than rationalisation with arbitrary preferences is extremely rare.

5. The Multiagent Case

We now turn to the multiagent case. In presenting our results for each type of constraint
considered, we are specifically going to focus on the extent to which the (positive) results
obtained for the single-agent case carry over to this more general scenario. To get started,
recall that we have seen that, in the absence of constraints, every single AF can be ratio-
nalised (Fact 1). The following example shows that this result does not generalise to profiles
with (at least) two AF’s.

Example 3. Consider a profile of two AF’s over a common set of three arguments. Suppose
A Ý1 B, B Ý1 C, and C Ý1 A, while pÝ2q “ H, as shown below:
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A B

C

A B

C

Any value-labelled AF and preference profile that could possibly rationalise this profile would
have to have an attack-relation á that includes, at least, the attacks Aá B, B á C, and
C á A, as otherwise these edges could not have occurred in the first AF. But this means that
the second preference order, so as to be able to cancel these attacks, must at least include
the comparisons valpBq ą2 valpAq, valpCq ą2 valpBq, and valpAq ą2 valpCq. But then ě2 is
not acyclic, thereby contradicting our assumptions on well-defined preference orders. Thus,
this profile cannot be rationalised, even in the absence of any kind of constraint.

We are first going to investigate the question of when we can decompose a given multiagent
rationalisability problem into a set of n single-agent rationalisability problems that can be
solved independently of each other (but that still require us to provide a global solution
involving a common master AF and a common value-labelling). Example 3 shows that
this kind of decomposition is not possible when we do not impose any constraints during
rationalisation (i.e., for the scenario covered by Fact 1). On the other hand, for the scenarios
of Propositions 2 and 4, it is easy to see that decomposition is possible:

• If the only constraint is that the master attack-relation is fixed, then every agent’s
rationalisability problem can be solved independently.

• If the only constraints are that the master attack-relation and the value-labelling are
fixed, then every agent’s rationalisability problem can also be solved independently.

But what if the master attack-relation is not given? Consider the generic profile AF “

pxArg1,Ý1y, . . . , xArgn,Ýnyq. Any rationalisation of AF must involve a master attack-
relation á with páq Ě pÝ1qY ¨ ¨ ¨Y pÝnq, because no agent can create an edge not already
included in á. Any additional edges in á will make rationalisation only harder, if they
make a difference at all. Thus, rationalisation is possible at all if and only if rationalisation
is possible with the fixed master attack-relation páq :“ pÝ1q Y ¨ ¨ ¨ Y pÝnq. Given these
insights, together with Corollaries 3 and 5, we obtain the following result:

Proposition 8 (Decomposable Cases). Whether a profile of AF’s is rationalisable can be
decided in polynomial time by solving the problem independently for each agent, in at least
the following cases:

paq No constraints are given.

pbq The master attack-relation and/or the value-labelling is fixed.

Thus, of all the constraints we have considered here, only the one specifying an upper bound
on the number of values actually leads to a ‘genuine’ multiagent rationalisation problem.
Let us now consider this problem in some detail.

For the remainder of this section, we are always going to assume that a fixed mas-
ter attack-relation á is part of the constraints considered. By our reasoning above, any
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tractability result obtained under this assumption immediately extends to the case where
no master attack-relation is specified.

Our first result on multiagent rationalisation with a bound on the number of values to
be used is negative: in the most general case this problem is intractable.

Proposition 9 (Bound on Values: General Case). Deciding whether a profile of AF’s is
rationalisable by an AVAF with a given fixed master attack-relation and a given upper bound
(of at least 3) on the number of values is an NP-complete problem.

Proof. NP-membership is immediate. To prove NP-hardness we provide a reduction from
Graph Colouring, which is known to be NP-hard (Karp, 1972). Recall that in Graph
Colouring we are given an undirected graph G “ xV,Ey and ask whether it is possible
to colour the vertices in V using at most k ě 3 colours such that no two vertices with the
same colour are linked by an edge in E.

So take any instance of Graph Colouring with graph G “ xV,Ey and bound k. Let
m :“ |V |. We build an instance of our rationalisation problem for m arguments, n :“

`

m
2

˘

agents, and a bound of k on the number of values as follows. First, let Arg :“ V be the full
set of arguments, and let the master attack-relation á be an arbitrary orientation of G.
Second, for every pair A ­“ B P Arg we create exactly one agent i, with Argi “ tA,Bu and
an empty defeat-relation pÝiq “ H. (That is, there indeed are

`

m
2

˘

agents.) Now consider
any edge pA,Bq in G. As either A á B or B á A, but neither A Ýi B nor B Ýi A,
the corresponding agent i must strictly rank valpAq and valpBq, i.e., they must be different.
As this is so for all edges in G and all agents, any two arguments linked in G must get
labelled with distinct values. Hence, G is k-colourable if and only if the profile of AF’s we
constructed can be rationalised using at most k values.

This is bad news. But are there special cases where rationalisability is tractable after all?
In the remainder of this section, we are going to explore this question. First, note that
restricting attention to complete preferences does not help. Indeed, in the rationalisability
problem used in our reduction, all agents already have preference orders that are complete
(for each agent, we only had to specify her preferences with respect to the two values used
to label the two arguments she is aware of).

Second, recall that Graph Colouring is not NP-hard for k “ 2 colours, so our proof
of intractability does not cover the case of exactly two values. Whether Proposition 9 can
be strengthened to a bound of k “ 2 or whether rationalisation with two values is tractable
is an interesting open question.

Third, recall that our proof of Proposition 9 very heavily relies on the fact that different
agents may be aware of different sets of arguments. This often is a reasonable assumption
(Coste-Marquis et al., 2007), but the special case where all agents consider the exact same
set of arguments certainly is also of interest. Whether deciding rationalisability for this
special case is tractable (say, for the case of complete preferences, where the corresponding
single-agent problem is tractable) is yet another interesting open question.

However, if we combine the two restrictions just considered, we are able to obtain a
positive result. That is, if all agents are aware of the exact same set of arguments and if
we are allowed to use at most two values, then deciding rationalisability is tractable:
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Proposition 10 (Two Values and Common Argument Sets). Whether a profile of AF’s
over a common set of arguments can be rationalised by an AVAF with a given fixed master
attack-relation and using at most two values can be decided in polynomial time.

Proof. Let AF “ pxArg,Ý1y, . . . , xArg,Ýnyq be a profile of AF’s over the common set of
arguments Arg, let á be the master attack-relation we are given, and let v1 and v2 be
the values we are allowed to use for rationalisation. We begin with three observations
that allow us to restrict the range of rationalisability problems we need to be able to
handle. First, whether an agent is indifferent between v1 and v2 or whether she considers
them incomparable has the same effect. So, w.l.o.g., we may restrict attention to complete
preferences. Second, in case the profile is unanimous, i.e., in case the n defeat-relations are
all the same, we are left with a single-agent problem, which by Proposition 6 can be solved
in polynomial time. So, w.l.o.g., we may assume that the profile of AF’s is not unanimous
and thus—as every agent reports the same set of arguments—that the profile of preference
orders also is not unanimous. Third, as always, rationalisation is only possible in case
pÝiq Ď páq for all i P N . Furthermore, in case pÝiq “ páq, we can assume v1 „i v2 and
consider the rationalisation problem for the remaining agents independently. At the same
time, rationalisation with v1 „i v2 is impossible when pÝiq Ă páq. So, w.l.o.g., we may
assume that no agent fully agrees with the master attack-relation and that for every agent i
we have either v1 ąi v2 or v2 ąi v1.

We are going to reduce our rationalisability problem to the following tractable variant of
Graph Colouring with two colours: We are given an undirected graph G “ xV,E ­“, E“y
with two kinds of edges, and ask whether it is possible to colour the vertices in V using
only two colours in such a way that no two vertices with the same colour are linked by
an edge in E ­“ and no two vertices with distinct colours are linked by an edge in E“.
This problem can be solved in polynomial time, because we can reduce it to an instance of
the standard Graph Colouring problem by replacing each edge px, yq P E“ with a new
dummy vertex z and two normal edges px, zq, pz, yq P E ­“.

We now build such a graph for our given rationalisability instance, with Arg being the set
of vertexes. For any two arguments A and B, if there exists an agent i such that Aá B but
not A Ýi B, then A and B must get labelled with different values, so we assert pA,Bq P E ­“.
On the other hand, if Aá B and A Ýi B for all i P N , we cannot immediately infer that
A and B must get labelled with the same value, but only that every agent must like the
value attached to A at least as much as the value attached to B. However, together with
our assumptions that all agents have strict preferences and that the preference profile is not
unanimous (i.e., that at least one agent prefers v1 to v2 and at least one agent prefers v2

to v1), we can make this inference and thus assert pA,Bq P E“. By construction, the given
profile is rationalisable under the given constraints if and only if the graph we have built
can be coloured using only two colours, so we are done.

As Graph Colouring is intractable for more than two colours, this construction cannot
be generalised to higher bounds on the number of values. We also would like to emphasise
that our proof exploits the fact that every agent is assumed to be aware of the same set
of arguments. Without this assumption, it would be wrong to claim that absence of una-
nimity of the profile of AF’s implies absence of unanimity of the preference profile. This in
turn means that we cannot reduce the rationalisability problem to a problem with equality-
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and inequality-constraints, but instead require more complex constraints to reason about
the preferences of the agents. As previously mentioned, this leaves some room between
Proposition 10 (tractability for two values and common arguments) and Proposition 9 (in-
tractability for k ě 3 values and arbitrary arguments) and the complexity of rationalisability
when we impose only one of these two restrictions is unknown.

Proposition 10 suggests that rationalisability becomes easier when the argument sets
the agents report are all exactly the same. The following simple observation shows that the
opposite is also true: if the argument sets are all radically different from each other, then
rationalisation also becomes easy.

Fact 11 (Mutually Exclusive Argument Sets). Any profile of AF’s of the form AF “

pxArg1,Ý1y, . . . , xArgn,Ýnyq, with Argi X Argj “ H for all pairs of agents i, j P N , can be
rationalised using just a single value.

Proof. Observe that for |Val | “ 1 there is only a single value-labelling and that therefore
the preference orders are irrelevant. The master attack-relation páq “ pÝ1q Y ¨ ¨ ¨ Y pÝnq

achieves rationalisation in this case, as it ensures pÝiq “ páqæArgi
for all i P N .

If all agents report mutually disjoint sets of arguments and we are given a fixed master
attack-relation, we might require more than just one value to achieve rationalisation. Note
that this case is covered by Proposition 8.

Recall that in case there is no bound on the number of values (or, equivalently, if k “
|Arg |), we already know that rationalisation is tractable (as this follows from Proposition 8).
Our final result in this section shows that the rationalisability problem remains tractable
when the bound k is ‘large’—in the sense of only reducing the number of allowed values by
a constant d (relative to the maximum k “ |Arg |).

Proposition 12 (Large Bound on Values). Let d P N be an arbitrary constant. Whether a
profile AF “ pxArg1,Ý1y,. . ., xArgn,Ýnyq is rationalisable by an AVAF with a given fixed
master attack-relation and at most k :“ |Arg1 Y ¨ ¨ ¨ Y Argn| ´ d values can be decided in
polynomial time.

Proof. Let m :“ |Arg1 Y ¨ ¨ ¨ Y Argn|. There are p :“
`pm2 q

d

˘

ways of selecting d pairs from
amongst all pairs of distinct arguments. This number is exponential only in d (not in m).
Thus, as d is constant, p is polynomial. Note that p is a (generous) upper bound on the
number of ways in which we can divide the m arguments into k “ m´ d clusters: for any
desired division into k clusters, there exists a choice of d pairs such that we obtain that
clustering by merging exactly those pairs.

Note that it is not important which value is used to label a given argument: if rational-
isation is possible at all, then it remains possible after any given permutation of the values.
The class of all clusterings with k clusters thus represents all relevant value-labellings with
k values. Also note that, if rationalisation is possible with fewer than k values, then it
certainly is possible with exactly k values. So we only need to check labellings with exactly
k values.

To summarise, we have shown that our original rationalisation problem can be reduced
to polynomially many (namely, p) new rationalisation problems—each of them for the same
fixed master attack-relation and its own fixed value-labelling. But each of these individual
problems is polynomial by Proposition 8 (item d), so we are done.
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6. Rationalisability under Expansion Semantics

Recall that in Section 2 (in the discussion following Definition 4), we briefly mentioned an
alternative approach to defining the rationalisability problem. The basic idea was that,
rather than assuming that agents first become aware of a subset of the set of all alternatives
and then reduce the master-attack relation restricted to that subset in line with their own
individual preferences, they might instead first reduce the master attack-relation according
to their preferences and only then choose which subset of arguments to report. In this section
we explore this idea further. In the remainder of the paper, we shall refer to the concept of
rationalisability fixed by Definition 4 as rationalisability under the standard semantics and
we shall contrast that semantics with the alternative semantics to be defined next.

We require some additional terminology. Given two argumentation frameworks xArg,Ýy

and xArgc,Ýcy, we call the latter an expansion of the former, if it is the case that Arg Ď Argc

and pÝq “ pÝcqæArg. The expansion of a profile of AF’s then is defined accordingly:
pxArgc1,Ýc

1y, . . . , xArgcn,Ýc
nyq is an expansion of pxArg1,Ý1y, . . . , xArgn,Ýnyq if, for every

agent i P N , it is the case that xArgci ,Ýc
iy is an expansion of xArgi,Ýiy.

Definition 5 (Rationalisability under Expansion Semantics). A profile of AF’s, AF “

pxArg1,Ý1y, . . . , xArgn,Ýnyq, is called rationalisable under the expansion semantics for a
given set of constraints, if there exist an expansion AF c “ pxArg,Ýc

1y, . . . , xArg,Ýc
nyq of

AF with Arg “ Arg1 Y ¨ ¨ ¨ YArgn, an attack-relation á on Arg, a set of values Val with a
mapping val : Arg Ñ Val, and a profile pě1, . . . ,ěnq of preference orders on Val, all meeting
said constraints, such that, for all agents i P N and all arguments A,B P Arg, it is the case
that A Ýc

i B if and only if Aá B but not valpBq ąi valpAq.

In other words, AF is rationalisable under the expansion semantics, if we can find a profile
AF c of AF’s that has the following three properties:

• each agent i reports the same set of arguments, namely Arg “ Arg1 Y ¨ ¨ ¨ YArgn;

• AF c is an expansion of AF , i.e., pÝiq “ pÝ
c
i qæArgi

for all i P N ;

• AF c is rationalisable under the standard semantics.

Observe that when all agents agree on the set of arguments, i.e., if Argi “ Argj for all
i, j P N , then the standard semantics and the expansion semantics coincide.

On top of the various types of constraints considered so far, we may also impose con-
straints on the kinds of expansions we permit. We consider three such constraints here:

• We say that the profile AF can be rationalised under the expansion semantics using
a maximal expansion, if—on top of the conditions stated in Definition 5—we have
pÝc

i q “ pÝiqY rpáqX pArgiˆArgYArgˆArgiqs for all i P N , where Argi “ Arg zArgi.

• We say that the profile AF can be rationalised under the expansion semantics using
a minimal expansion, if—on top of the conditions stated in Definition 5—we have
pÝc

i q “ pÝiq for all i P N .

• We say that the profile AF can be rationalised under the expansion semantics using a
disjoint-value expansion, if—on top of the conditions stated in Definition 5—we have
tvalpAq | A P Argiu X tvalpAq | A R Argiu “ H for all i P N .
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Thus, when using a maximal expansion, we assume that every agent accepts all of the
attacks involving (one or two) arguments she does not report, while when using a minimal
expansion, we assume that every agent accepts none of those attacks. We may think of
this as two possible default assumptions of how an agent deals with attacks she does not
explicitly report, either because she is not aware of them or because she consciously chooses
not to mention them: she either accepts all of those other arguments (maximal expansion)
or she rejects them all (minimal expansion). When we do not impose either a maximality
or a minimality constraint, then we are free to choose which of those ‘virtual’ attacks to
include in the expansion. The disjoint-value expansion is intended to model the idea that
the reason that an agent does not report a given argument is that she considers the value
attached to that argument a ‘taboo’. Thus, the values assigned to the arguments she does
report and the values assigned to those she does not report cannot overlap.

In principle, the full research agenda of analysing the rationalisability of an observed
profile of AF’s under different kinds of constraints, as initiated in this paper for the standard
semantics, may also be carried out for the expansion semantics. Rather than attempting to
do so here, we restrict ourselves to a small sample of results that illustrate the relationship
between the standard semantics and the expansion semantics. We begin by showing that,
in the absence of any constraints pertaining to the kind of expansion sought, the expansion
semantics in fact coincides with the standard semantics.

Proposition 13 (Standard and Expansion Semantics). Rationalising a given profile of
AF’s for a given set of constraints is possible under the standard semantics if and only if
doing so is possible under the expansion semantics.

Proof. For the left-to-right direction, suppose we have found a rationalisation of a given
profile AF “ pxArg1,Ý1y, . . . , xArgn,Ýnyq under the standard semantics. Note that, by
Definition 4, such a rationalisation in fact involves agent preferences that range over the
full set of values, even those values assigned only to arguments a given agent is not aware
of. Now, for each agent i P N , define Ýc

i as the result of reducing the union of Ýi and
páqæArgzArgi

with ěi, where á is the master attack-relation found under the standard
semantics, Arg is the set of all arguments, and ěi is agent i’s preference order found under
the standard semantics. It is now easy to check that this constitutes a valid rationalisation
under the expansion semantics.

For the other direction, suppose that, under the expansion semantics, we have found a
way to rationalise AF , and suppose we have used some specific expansion AF c “ pxArg,Ýc

1

y, . . . , xArg,Ýc
nyq to do so. Now restrict attention to how this rationalisation acts on each

xArgi,Ýiy, keeping in mind that Ýi and Ýc
i coincide on Argi. As inspection of Definitions 4

and 5 confirms, in this manner we obtain precisely the conditions of rationalisability under
the standard semantics.

Importantly, in the proof of the left-to-right direction of Proposition 13 we made use of the
assumption that there are no constraints on the type of expansion required (because the
set of constraints imposed is the same under both semantics). Once we impose such con-
straints, the expansion semantics (potentially) becomes more restrictive. We are now going
to illustrate this point with several results regarding the case of maximal expansions. We
start with an example that shows that when we require complete preferences and maximal
expansions, then the standard semantics and the expansion semantics differ.
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Example 4. Consider a profile of three agents, with Arg1 “ tA,B,Cu and both A Ý1 B
and C Ý1 B, Arg2 “ tA,Bu and B Ý2 A, and Arg3 “ tA,Cu and A Ý3 C. This profile is
shown below, with the arguments a given agent does not report being represented in grey:

A B

C

A B

C

A B

C

Now suppose we want to rationalise this profile using complete preferences and suppose all
other constraints are as favourable as possible, i.e., we are allowed to use three values,
tvA, vB, vCu, and the master attack-relation á to be used is exactly the union of the three
individual defeat-relations, i.e., páq “ tpA,Bq, pB,Aq, pA,Cq, pC,Bqu. Fix valpAq “ vA,
valpBq “ vB, and valpCq “ vC . The following complete preferences achieve rationalisation
under the standard semantics: vC ą1 vA ą1 vB, vB ą2 vA, and vA ą3 vC .

Using the expansion semantics with the maximal expansion, on the other hand, ratio-
nalisation is not possible. To see this, note first that the completed profile AF c we would
have to rationalise in this case is the following: A Ýc

1 B, C Ýc
1 B; B Ýc

2 A, A Ýc
2 C,

C Ýc
2 B; and A Ýc

3 C, C Ýc
3 B, A Ýc

3 B, B Ýc
3 A. This is shown below:

A B

C

A B

C

A B

C

But this profile is not rationalisable using complete preferences: For agent 2, we certainly
have to have vB ą2 vA in order to remove the attack from A to B. Then, if we choose
vC ą2 vA, the attack from A to C would get removed, while if choose vA ě2 vC , we would
get vB ą vC by transitivity and thus the attack from C to B would get removed.

This example notwithstanding, we are now going to see that in the absence of strong
constraints, any profile that can be rationalised under the standard semantics can also be
rationalised under the expansion semantics with maximal expansions. The basic intuition
is that, if we have a sufficiently large number of values at our disposal, we can set things up
in such a way that each agent is indifferent between the values of any of the arguments she
did not report. We now turn this intuition into a precise result for the case of a fixed master
attack-relation. Recall that, for the standard semantics, this case is covered by part (b) of
Proposition 8, in conjunction with Proposition 2.

Proposition 14 (Maximal Expansions). Rationalising a profile of AF’s by an AVAF with
a given fixed master attack-relation is possible under the standard semantics if and only if
doing so is possible under the expansion semantics using a maximal expansion.

Proof. The right-to-left direction follows from Proposition 13. For the left-to-right direction,
assume the given AF is rationalisable under the standard semantics. Recall from the proof
of Proposition 2 that this means that there also must be a rationalisation under which every
argument is assigned its own value. Now, for each agent i P N , take the preference order ěi
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used for the latter rationalisation as far as the values corresponding to the arguments in Argi
are concerned, and complete it to a preference order over the full set of values, corresponding
to Arg, by declaring any of the new pairs of values preferentially incomparable. This achieves
the required rationalisation.

We stress that the construction used in the proof of Proposition 14 involves incomplete
preferences. If we add the constraint that preferences must be complete, then the proof does
not go through any longer and the corresponding claim would be false (as is demonstrated
by Example 4).

Recall that Proposition 14 does not involve any constraints on the number of values to
be used. Indeed, we may require more values to rationalise a profile under the expansion
semantics using the maximal expansion than we require to rationalise the same profile under
the standard semantics. The following result shows that the ratio between the numbers of
values required can grow arbitrarily large.

Proposition 15 (Value Ratio for Maximal expansions). The ratio between the number of
values required to rationalise a given profile of AF’s by an AVAF with a given fixed master
attack-relation under the expansion semantics using a maximal expansion and the number
of values required to do the same under the standard semantics, in the worst case, cannot
be bounded from above by a constant.

Proof. To prove the claim, we will show how to construct a family of profiles of AF’s
and a master attack-relation with 2n arguments each, where n as usual is the number
of agents, such that, for each profile in that family, rationalisation under the standard
semantics is possible with two values, while rationalisation under the expansion semantics
with maximal expansions requires Ωp

?
nq (or, equivalently, Ωp

a

|Arg |q) values. Let Arg “
tA1, A2, . . . , A2nu and fix a master attack-relation as follows: páq “ tpAk, Ak`1q | k ă 2nu.
Suppose each agent i P N is only aware of the arguments A2i´1 and A2i and reports an
empty defeat-relation, i.e., Argi “ tA2i´1, A2iu and pÝiq “ H. We visualise this scenario
by indicating the master attack-relation and the AF reported by agent 3 below:

A1

A2

A3

A4

A5

A6

A7

A8

A9

¨ ¨ ¨

A9

A9

A2n

A9

A9

A9

A9

A5

A6

A9

A9

A9

¨ ¨ ¨

A9

A9

A9

Under the standard semantics, rationalisation is possible with just two values: simply set
valpA2k´1q “ v1 and valpA2kq “ v2 for all k ă 2n, and choose the preference order ěi with
v2 ąi v1 for every agent i P N . On the other hand, under the expansion semantics with
maximal expansions, we would have to rationalise a completed profile for which each agent i
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is only missing the edge from A2i´1 to A2i from the master attack-relation. Thus, for every
i P N we would have to require valpA2iq ąi valpA2i´1q but also valpAk`1q ­ąi valpAkq for
every k ă 2n except k “ 2i ´ 1. Due to the first condition, we must label every ordered
pair of ‘consecutive’ arguments pA2i´1, A2iq with distinct values. But due to the second
condition, we cannot use the same ordered pair of values for any two such ordered pairs
of arguments (i.e., valpA2i´1q ­“ valpA2j´1q or valpA2iq ­“ valpA2jq whenever i ­“ j). With
|Val | values at our disposal, we can create |Val | ¨ p|Val |´1q ordered pairs of distinct values,
i.e., we must have |Val | ¨ p|Val | ´ 1q ě |Arg | “ 2n and thus |Val | P Ωp

?
nq.

To conclude this section, let us contrast our findings for the case of maximal expansions
with the two other types of expansions we have defined.

For disjoint-value expansions, it is easy to derive results similar to Propositions 14
and 15. We shall restrict ourselves to informal statements. First, any profile of AF’s that
is rationalisable under the standard semantics for a fixed master attack-relation is also
rationalisable under the expansion semantics with a disjoint-value expansion. The proof is
the same as for Proposition 14, except that there is no need to alter the agents’ preferences
over the values corresponding to arguments they are not aware of. Thus, the same result
also holds if we require preferences to be complete, which was not the case for maximal
expansions. Second, the number of values required for rationalisation under the expansion
semantics with a disjoint-value expansion can be arbitrarily higher than the number required
under the standard semantics. To prove this, it suffices to consider scenarios where we have
one argument AS for every nonempty subset S of the set of agents N , with exactly the
agents in S being aware of AS . Rationalising such a profile using disjoint-value expansions—
if possible at all—requires one new value for every single argument. On the other hand,
under the standard semantics, a single value will be enough in some cases, e.g., when every
agent reports exactly the master attack-relation, restricted to the set of arguments she is
aware of.

For minimal expansions, interestingly, as the following example demonstrates, we cannot
obtain a result analogous to Proposition 14. Thus, this constraint makes the expansion
semantics significantly more demanding than the standard semantics.

Example 5. Consider again the profile of AF’s discussed in the context of Example 4, but
now assume that the agents use the minimal expansions. Then, after expansion, agent 3
will have the AF xArgc3,Ýc

3y with Argc3 “ tA,B,Cu and A Ýc
3 C. Her preferences over the

values assigned to the arguments have to allow her to remove the attack from A to B as
well as the one from B to A. But this is impossible, even with incomplete preferences and
an arbitrary number of values.

7. Application Scenarios

There are a number of different application scenarios where dealing with questions of ratio-
nalisability will be valuable. In this section, we list and illustrate some of them.

First, given the growing interest in the abstract argumentation research community in
questions of aggregation of AF’s (Coste-Marquis et al., 2007; Tohmé et al., 2008; Bodanza
& Auday, 2009; Dunne et al., 2012; Bodanza et al., 2017), it is important to have a clear
understanding for what types of scenarios the question of aggregation is in fact relevant.
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Our notion of rationalisability provides a suitable definition for this purpose. It allows for a
systematic scan of the different examples used in the literature—not to dismiss those failing
the test, but to point out that one must be careful with the interpretation used.

Example 6. Let us see whether the example given by Coste-Marquis et al. (2007, Ex-
ample 7) passes this test. We are given AF1 “ xtA,B,E, F u, tpA,Bq, pB,Aq, pE,F quy,
AF2 “ xtB,C,D,E, F u, tpB,Cq, pC,Dq, pF,Equy, and AF3 “ xtE,F u, tpE,F quy:

A B

C D

E F

A B

C D

E F

A B

C D

E F

This profile indeed does pass the test under the standard semantics. It can be rationalised
by using as master attack-relation the union of the individual relations. It is sufficient to
set vE ­“ vF , while A, B, C, and D can all take the same value, either that of E or that of
F . Thus, two values suffice.

Under the minimal expansion semantics, we observe that the profile is not rationalisable,
because for instance for the pair of arguments A and B, agent 3 would need to include at
least one of the two attacks. On the other hand, when using the maximal expansion, two
values suffice as in the standard case.

Under the disjoint-value expansion semantics, we have the following constraints, on top
of vE ­“ vF : tvC , vDu X tvA, vB, vE , vF u “ H, due to agent 1; vA R tvB, vC , vD, vE , vF u,
due to agent 2; and tvA, vB, vC , vDu X tvE , vF u “ H, due to agent 3. Hence, at least five
values are required, as only C and D can share the same value. Five values indeed suffice,
for instance by taking vE ą1 vF and vA „1 vB, vF ą2 vE and vB „2 vC , and vE ą3 vF .

The second application of our work concerns aggregation itself. In a scenario where multiple
AF’s need to be aggregated, we may use the notion of rationalisability to choose between
alternative aggregation techniques, depending on the result of the rationalisability test. For
example, if a profile turns out to be rationalisable for a given preference model (e.g., for
complete preference orders), we may reasonably assume that this model is a good abstraction
of reality and aggregate the AF’s by aggregating the inferred preferences (which is a much
better studied problem than that of aggregating AF’s). For instance, we may use the well-
known Kemeny rule (Kemeny, 1959; Zwicker, 2016) to aggregate the preferences,7 and then
apply the collective preference order obtained to the master attack-relation inferred.

Example 7. Consider the following profile of AF’s, in which each of the three agents reports
the same set of arguments tA,B,Cu:

7. For a given profile of preference orders, the Kemeny rule returns the preference order that minimises
the number of times an agent disagrees on the relative ranking of two alternatives. In other words, the
Kemeny rule minimises the sum of the Kendall tau distances between the outcome and the individual
preference orders.
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A B

C

A B

C

A B

C

The union of the individual AF’s together with the following preferences achieves rationalisa-
tion under the standard semantics: vC ą1 vA ą1 vB, vB ą2 vC ą2 vA, and vB ą3 vA ą3 vC .
Observe that this is the only rationalisation with complete and strict preferences. The result
of applying the Kemeny rule to this profile of preferences is vB ą vC ą vA (with a Kendall
tau distance of 3 from the collection of preferences). Hence, the aggregated AF with this
technique would be the same as the AF of agent 2.

But when rationalisation fails, this approach does not make sense, and we should look for
a different method of aggregation. In such a case, there is a more substantial disagreement
between the agents: maybe the model of preferences has to be changed, maybe the agents
differ on the assignment of values to arguments, or maybe the agents interpret the argu-
ments differently. Importantly, failure of rationalisation can also provide hints as to where
disagreement occurs.

A third application we foresee is in the context of online debating platforms, where
value-based argumentation systems already are used as a modelling tool (Pulfrey-Taylor,
Henthorn, Atkinson, Wyner, & Bench-Capon, 2011). In this context, AF’s are (typically)
not obtained via a one-shot process, but rather retrieved interactively, by monitoring the
utterances of the participants. Our approach could be used to detect inconsistencies as they
occur, and thus to trigger clarification questions on the fly.

Example 8. Suppose the following sequence of utterances occurs in a given debate:

• Agent 1: A defeats B.

• Agent 2: B defeats A.

• Agent 3: There is no defeat between A and B.

At this stage it is clear that this collection of AF’s cannot be rationalised, because agent 3
would have to both prefer the value of A over that of B, and the value of B over that of A. A
clarification is required to identify the mismatch. For example, the system could ask agent 3
whether she really believes there is no attack between A and B.

Interestingly, a similar dynamic perspective to solve inconsistencies in a framework mixing
opinion polling and argumentation has recently been proposed by Rago and Toni (2017),
albeit in their case the problem is to rationalise the votes of users. Interleaving the elicitation
of preferences over values within a dialectical process is also proposed by Bench-Capon et al.
(2007). But these authors take a different perspective. While we assume that an agent’s
preferences over values are fixed from the outset and just need to be ‘discovered’ during
rationalisation, they do not take this assumption for granted. Instead, the ranking of values
is built as part of the dialectical process, whereby an agent (in their case, just one agent)
aims at rationalising her position (i.e., the arguments she wants to see accepted or rejected).

This leads us naturally to our final point of discussion, which concerns the nature of what
is observed. So far we have assumed that the agents express AF’s, which we can observe
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directly. But in many situations, it may be more natural to assume that each agent only
reports the set of arguments she accepts (a so-called extension), or a (partial) labelling of
the arguments with the labels ‘accept’ and ‘reject’. Dunne et al. (2014) have addressed the
challenging problem of inferring an AF from such an extension (or a set of such extensions)
that could serve as an explanation for the behaviour observed. Of course, there often will
be many possible AF’s that could explain a given set of accepted arguments. Our approach
could be used to narrow down the range of possible explanations when performing this task
for several agents in parallel, by imposing the constraint that the profile of AF’s we infer,
one for each extension observed, should be rationalisable.

Example 9. Suppose there are three agents and three arguments. Agent 1 reports extension
tAu, agent 2 reports extension tA,Cu, and agent 3 reports extension tA,Bu. Suppose these
reports have come about by means of each agent applying one of the well-known semantics
proposed by Dung (1995) to some AF declared over the full set tA,B,Cu.8 For the sake of
simplicity, let us exclude the possibility of mutual attacks between pairs of arguments. Then
agent 1, who only considers A acceptable, must have one of the following three AF’s:

A B

C

A B

C

A B

C

Now, for agent 2, there must be no attack between A and C, while B must get attacked by
at least one of them. This leaves five possible cases:

A B

C

A B

C

A B

C

A B

C

A B

C

Finally, for agent 3, we can have no attack between A and B. She must have generated her
position on the basis of one of the following five AF’s:

A B

C

A B

C

A B

C

A B

C

A B

C

But now, in terms of rationalisation, we see that some combinations are impossible, such as
for instance the profile consisting of the third AF for agent 1, the second for agent 2, and
the third for agent 3. To see this, note that the master attack-relation would have to contain
both B á C (for agent 2) and C á B (for agent 3). But then agent 1 would have to have
one of these attack relations in her system, as she cannot both strictly prefer the value of
B to that of C and vice versa. While this does not allow us to uniquely define a profile of
AF’s, this method can nevertheless guide the search amongst the AF’s that are compatible
with the extensions observed.

8. The details of the formal definition of this kind of semantics are not important for our example. In a
nutshell, what matters here is that you cannot accept two arguments such that one attacks the other,
and if you accept an argument that is attacked by one of those you reject, then you also must accept an
argument that attacks that attacker. We further assume that you accept all unattacked arguments.
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Similar ideas may also have useful applications in the context of analysing people’s decisions
a posteriori. A recent example for an application of this kind is the analysis of a participa-
tory decision setting involving an environmental project in Québec, which was carried out
by Tremblay and Abi-Zeid (2016). In their work, they first extracted an AF with 20 argu-
ments, labelled by 7 values, from the debates they analysed. They then imposed a number
of technical constraints, eventually obtaining 18 subgraphs of the master AF as possible
candidates for the kind of AF that may in practice have guided the deliberations of the
committee responsible for taking a decision about which arguments to accept. They then
analysed each of these 18 AF’s in combination with one of the possible preference orders over
the 7 values, to test whether and how often the decision recommended by a given AF coin-
cides with the decision actually observed in practice. (That decision consisted in accepting
5 of the 20 arguments considered.) To make this analysis manageable, the choice of the 18
AF’s considered required a number of judgment calls. Here, the concept of rationalisability
may offer an alternative route. For a set of arguments we observe to have been accepted in
practice, we may first induce a number of possible AF’s that could explain this extension,
using the approach of Dunne et al. (2014), and then apply our rationalisation approach to
check whether any of these AF’s is rationalisable, given the constraints regarding values we
have been able to extract from the debate.

8. Conclusion

We have introduced the concept of rationalisability of a profile of abstract argumentation
frameworks, proposed a specific instantiation of the general idea in terms of social values
associated with the arguments and preferences over those values held by the agents, and
studied the resulting decision problem from an algorithmic point of view, for several types
of constraints on admissible solutions and two possible interpretations for the fact that
different agents may report different sets of arguments. We have been able to show that the
single-agent rationalisability problem is tractable for all the constraints considered. These
positive results extend to the multiagent case for several types of constraints. However, in
the presence of a constraint limiting the number of values we may use, the most general
variant of the multiagent problem is NP-complete.9 Finally, we have discussed possible
application scenarios where the notion of rationalisability may play a role.

While our technical results offer a good initial overview of the landscape of rational-
isability, our work also pinpoints a number of interesting open questions. Let us briefly
recall the three main technical questions we have left open. The first concerns the complex-
ity of single-agent rationalisability with a limited number of values for possibly incomplete
preferences: Does Proposition 6, which establishes tractability of this problem under the
additional assumption that preferences are complete, continue to hold when we drop the
completeness constraint? The second and the third open question both concern the multi-
agent rationalisability problem with a limited number of values: Does Proposition 9, which
establishes intractability of this problem for bounds k ě 3 on the number of values, continue

9. Recall that we have assumed attack relations to be irreflexive. The complexity of the rationalisability
problem is not affected by this assumption. As no assignment of values and choice of preference orders
can ever cancel out a self-attack, all you need to do on top of checking our existing conditions is checking
that all agents agree on all self-attacks.
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to hold for a bound of k “ 2? And does it continue to hold in case we restrict attention to
cases where all agents report the same set of arguments? We have been able to show that
the problem becomes tractable in case both of these restrictions are imposed together, but it
remains unclear how each of them alone affects complexity. Settling any of these questions
would constitute a valuable contribution to this area of research.

Besides addressing these concrete questions, future work might also be directed towards
identifying and analysing further constraints on rationalisation in general (besides, e.g.,
bounds on the number of values), further constraints on admissible expansions under the
expansion semantics (besides, e.g., the disjoint-valuedness constraint inspired by the notion
of ‘taboo’), and further restrictions of the general framework (besides, e.g., the restriction
to a common argument set).

Future work should also investigate alternative instantiations of the general idea of
rationalisability expounded here. For instance, as mentioned already in the introduction, the
model of Bench-Capon (2003) is but one approach to modelling the emergence of different
individual argumentation frameworks. Defining the rationalisability problem for competing
approaches is likely to be fruitful as well. Finally, it is important to keep in mind that
Dung’s model of abstract argumentation is just that: an abstract model of argumentation.
Other formalisms, which also model the internal structure of arguments, come closer to
real forms of argumentation occurring between people. Therefore, applying our approach
to such richer models of argumentation also is an important direction for future work.
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