
A NEW PROOF OF THE MCKINSEY-TARSKI THEOREM

G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, J. VAN MILL

Abstract. It is a landmark theorem of McKinsey and Tarski that if we interpret modal
diamond as closure (and hence modal box as interior), then S4 is the logic of any dense-in-
itself metrizable space [14, 17]. The McKinsey-Tarski Theorem relies heavily on a metric
that gives rise to the topology. We give a new and more topological proof of the theorem,
utilizing Bing’s Metrization Theorem [8, 10].

1. Introduction

It is a famous result of McKinsey and Tarski [14] that the modal system S4 is the logic of
any dense-in-itself separable metrizable space when interpreting ♦ as closure (and hence �
as interior). Rasiowa and Sikorski [17] proved that the McKinsey-Tarski Theorem remains
true for an arbitrary dense-in-itself metrizable space (that is, the separability condition can
be dropped harmlessly). On the other hand, dropping the dense-in-itself condition results
in new logics, and a complete classification of them can be found in [6].

Both the original proof of McKinsey and Tarski [14, Sec. 3] and the proof of Rasiowa
and Sikorski [17, Sec. III.7 and III.8] rely heavily on a metric generating the topology of
a given dense-in-itself (separable) metrizable space X to show that every finite subdirectly
irreducible closure algebra is embeddable in the closure algebra of X. The result follows
since S4 has the finite model property.

In the recent literature many simplified proofs of the McKinsey-Tarski Theorem have
been produced for specific dense-in-itself metrizable spaces such as the real line [1, 7, 16],
the rational line [3], and the Cantor discontinuum [15, 1]. These new proofs utilize relational
semantics of S4 that was not available to McKinsey and Tarski. The proof technique of
[7] produces an interior mapping of the real line onto any finite quasi-tree (such mappings
correspond to the isomorphic embeddings used in the original proofs of the McKinsey-Tarski
Theorem), which is obtained by iteratively removing a copy of the Cantor discontinuum from
the corresponding real intervals. This technique does not utilize the usual metric of the real
line.

The aim of the present paper is to give a new proof of the McKinsey-Tarski Theorem,
which makes the aforementioned idea work for an arbitrary dense-in-itself metrizable space.
The new proof is more topological in that a metric is never used explicitly. Such is possible
because of Bing’s Metrization Theorem which characterizes metrizable spaces as exactly
those spaces that admit a σ-discrete basis [8, 10]. It is this σ-discrete basis that encodes a
blueprint for the interior mapping onto any finite rooted S4-frame.

We conclude by giving an example of a dense-in-itself hereditarily paracompact space
whose logic is stronger than S4. This indicates that the McKinsey-Tarski Theorem does not
generalize to the setting of hereditarily paracompact spaces.
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2. Classical approach

We start by outlining the original proof that S4 is the logic of any dense-in-itself metrizable
space. We recall that S4 is the least set of formulas in the basic propositional modal language
(with �) that contains the classical tautologies, the axioms:

• �(p→ q)→ (�p→ �q),
• �p→ p,
• ��p→ �p,

and is closed under Modus Ponens ϕ, ϕ→ψ
ψ

, substitution ϕ(p1,...,pn)
ϕ(ψ1,...,ψn)

, and necessitation ϕ
�ϕ . As

usual, we use the standard abbreviation ♦ϕ := ¬�¬ϕ.
An S4-algebra is a pair A = (B,�), where B is a Boolean algebra and � : B → B satisfies

Kuratowski’s axioms for interior:

• �(a ∧ b) = �a ∧�b,
• �1 = 1,
• �a ≤ a,
• �a ≤ ��a.

Every such interior operator has its dual closure operator ♦ : B → B, defined by ♦a = ¬�¬a.
Fixpoints of � are called open elements and fixpoints of ♦ are called closed elements of A.

Remark 2.1. S4-algebras were introduced by McKinsey and Tarski [14] in the ♦-signature
under the name of closure algebras. Rasiowa and Sikorski [17] call them topological Boolean
algebras, and Blok [9] calls them interior algebras. In the modern modal logic literature
it is common to call them S4-algebras. We follow McKinsey and Tarski in working with
S4-algebras in the ♦-signature.

Typical examples of S4-algebras come from topology: If X is a topological space, then
AX := (℘(X), c) is an S4-algebra, where ℘(X) is the powerset of X and c is the closure
operator of X. By the McKinsey-Tarski Representation Theorem [14, Thm. 2.4], each S4-
algebra is isomorphic to a subalgebra of AX for some topological space X.

The modal language is interpreted in an S4-algebra A = (B,♦) by evaluating propositional
letters as elements of B, the classical connectives as the corresponding Boolean operations,
and the modal box as the interior operator and hence modal diamond as the closure operator
of A. A formula ϕ is valid in A, written A |= ϕ, provided it evaluates to 1 under all
interpretations. It is well known (see, e.g., [17, Sec. XI.7]) that S4 ` ϕ iff ϕ is valid in every
S4-algebra. In this notation, the McKinsey-Tarski Theorem can be stated as follows:

Theorem 2.2 (McKiney and Tarski). S4 ` ϕ iff AX |= ϕ for every dense-in-itself
metrizable space X.

Proof. The left to right implication is obvious. For the right to left implication, if S4 6` ϕ,
then we must find a valuation on AX refuting ϕ. This can be done in three steps. We recall
(see [14, Def. 1.10]) that an S4-algebra is well-connected if ♦a ∧ ♦b = 0 implies a = 0 or
b = 0.

Step 1 (Finite Model Property): If S4 6` ϕ, then there is a finite well-connected
S4-algebra A refuting ϕ (see [14, Thm. 4.16]).

For Step 2, we require the key notion of a dissectable S4-algebra. For two elements x, y of
a Boolean algebra B, write a− b := a∧¬b, and say that x1, . . . , xk ∈ B are disjoint provided
xi ∧ xj = 0 for each i 6= j.

Definition 2.3. [14, Def. 3.4] An S4-algebra A = (B,♦) is dissectable if for every open a ∈
B\{0} and every pair of integers n ≥ 0 and m > 0, there are disjoint u1, . . . , un, a1, . . . , am ∈
B \ {0} such that
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• The elements u1, . . . , un are open;
• ♦a1 = · · · = ♦am;
• u1 ∨ · · · ∨ un ∨ a1 ∨ · · · ∨ am = a;
• ♦a− a ≤ ♦ai ≤ ♦uj for each i ≤ m and j ≤ n.

.

Step 2 (Dissection Lemma): If X is a dense-in-itself metrizable space, then AX is
dissectable (see [14, Thm. 3.5] for the separable case, and [17, III.7.1] for the general case).

Step 3 (Embedding Lemma): Every finite well-connected S4-algebra is embedded into
every dissectable S4-algebra (see [14, Thm. 3.7]).

Now, suppose S4 6` ϕ. By Step 1, there is a finite well-connected S4-algebra A refuting ϕ.
By Step 2, AX is dissectable. Therefore, by Step 3, A is isomorphic to a subalgebra of AX .
Thus, since ϕ is refuted on A, it is refuted on AX , and the proof of the McKinsey-Tarski
Theorem is complete. �

The proof of the Dissection Lemma makes nontrivial use of a metric that generates the
topology on X. In the next section, we will discuss how this can be avoided using the modern
approach.

3. Modern approach

The modern approach utilizes the relational semantics of modal logic. This semantics has
its roots in the work of Jónsson and Tarski [12], and became the dominant semantics after
the work of Kripke [13].

An S4-frame is a pair F = (W,R), where W is a nonempty set and R is a reflexive and
transitive binary relation on W . As usual, for w ∈ W and A ⊆ W , we write:

• R[w] := {v ∈ W | wRv} and R−1[w] := {v ∈ W | vRw};
• R[A] := {v ∈ W | ∃w ∈ A : wRv} and R−1[A] := {v ∈ W | ∃w ∈ A : vRw}.

Each S4-frame F gives rise to the S4-algebra AF := (℘(W ), R−1). By the Jónsson-Tarski
Representation Theorem [12, Thm. 3.14], every S4-algebra A is isomorphic to a subalgebra
of AF for some S4-frame F. In fact, if A is finite, then A is isomorphic to AF.

The modal language is interpreted in F by interpreting formulas in AF. A formula ϕ is
valid in F, written F |= ϕ, provided AF |= ϕ. The completeness of S4 with respect to the
algebraic semantics together with the Jónsson-Tarski Representation Theorem yields that
S4 ` ϕ iff ϕ is valid in every S4-frame.

The relational semantics of S4 is a particular case of its topological semantics (see, e.g.,
[2, Sec. 2.4.1]). For an S4-frame F = (W,R), call A ⊆ W an R-cone if A = R[A], and let τR
be the set of all R-cones. Then τR is a topology on W such that R−1 is the closure operator,
and each w ∈ W has the least open neighborhood R[w]. Such spaces are usually referred to
as Alexandroff spaces.

Let F = (W,R) be an S4-frame. We call F rooted if there is r ∈ W such that R[r] = W ;
such r is called a root of F. For finite F, it is well known (and easy to see) that AF is
well-connected iff F is rooted.

A map f : X → Y between topological spaces is called interior if it is continuous (V
open in Y implies f−1(V ) is open in X) and open (U open in X implies f(U) is open in Y ).
Equivalently, f is interior iff cf−1(A) = f−1(cA) for each A ⊆ Y .

Remark 3.1. It is well known (and easy to see) that if X and Y are Alexandroff spaces,
then f : X → Y is an interior map iff it is a p-morphism (R−1[f−1(x)] = f−1(R−1[x]) for
each x ∈ X).
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We say Y is an interior image of X provided there is an interior mapping from X onto Y .
Interior images will play an important role in our story since AY is isomorphic to a subalgebra
of AX iff Y is an interior image of X. In particular, AF is isomorphic to a subalgebra of AX

iff F viewed as an Alexandroff space is an interior image of X. Thus, proving the McKinsey-
Tarski Theorem amounts to showing that every finite rooted S4-frame F is an interior image
of every dense-in-itself metrizable space X.

We can further restrict the class of finite rooted S4-frames. Let F = (W,R) be an S4-
frame. The equivalence classes of the equivalence relation {(w, v) | wRv and vRw} on W
are called clusters. A quasi-chain is a subset Q of W such that wRv or vRw for w, v ∈ Q.
We call F a quasi-tree if F is rooted and R−1[w] is a quasi-chain for each w ∈ W .

Remark 3.2. The relation R induces a partial ordering on the set of clusters such that
quasi-chains in F correspond to chains in the poset P of clusters, and F is a quasi-tree iff P
is a tree (see Figure 1).
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Figure 1. A quasi-tree F and its poset of clusters P .

It is well known (see, e.g., [7, Cor. 6]) that S4 is complete with respect to the class of
finite quasi-trees. Therefore, if S4 6` ϕ, then there is a finite quasi-tree T refuting ϕ. Thus,
to prove the McKinsey-Tarski Theorem, it is sufficient to show that every finite quasi-tree
T is an interior image of every dense-in-itself metrizable space X.

Let us examine what it takes for an onto interior map f : X → T to exist. We recall that
the depth of T , denoted depth(T ), is the greatest n ≥ 1 such that there are w1, . . . , wn ∈ W
satisfying wiRwi+1 but not wi+1Rwi for each i ∈ {1, . . . , n− 1}.

If depth(T ) = 1, then T is a single cluster, consisting say of m points (see Figure 2).

T

�
�

�
�· · ·• •

r1 rm

Figure 2. A single cluster quasi-tree T .

We recall that a space X is m-resolvable provided there is a partition {A1, . . . , Am} of X
such that each Ai is dense in X; such partitions are called dense. By [5, Lem. 5.9], T is an
interior image of X iff X is m-resolvable. It follows from Hewitt’s theory of resolvability (see
[11]) that every dense-in-itself metrizable space is m-resolvable. Therefore, if depth(T ) = 1,
then it is a consequence of Hewitt’s theory of resolvability that T is an interior image of X.

Suppose depth(T ) > 1 and C is the root cluster of T = (W,R) consisting of m points.
Then W \C 6= ∅, and there are w1, . . . , wn ∈ W such that {C,R[w1], . . . , R[wn]} is a partition
of W (see Figure 3).

If an onto interior map f : X → T exists, then set G = f−1(C) and Ui = f−1(R[wi])
for each i ∈ {1, . . . , n}. A direct calculation shows that {G,U1, . . . , Un} is a partition of X
such that G is m-resolvable and nowhere dense (icG = ∅), Ui is open, and G ⊆ cUi for each
i ∈ {1, . . . , n}.
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Figure 3. Partition of T : the root cluster C and the sub-quasi-trees T1, . . . , Tn.

Thus, the existence of f amounts to the existence of such a partition of X, which is the
simplified version of the dissectability of X. How can we build such a partition without using
a metric generating the topology? We will see in the next section that this is achievable using
Bing’s Metrization Theorem. As our guiding example, we consider the case of the real line
R as described in [7].

Since R is homeomorphic to any nonempty bounded open interval, it is sufficient to show
that there is an onto interior map f : (a, b) → T , where (a, b) is an arbitrary nonempty
bounded open interval. The proof is by induction on depth(T ), and we only discuss the
inductive step in which depth(T ) > 1.

Construct the Cantor set C inside (a, b) by the usual process of taking away open “middle
thirds”. Let the root cluster C of T consist of m points. Since C is m-resolvable, there is an
interior map f from C onto C. Our aim is to extend f to the entire (a, b). As depth(T ) > 1,
there are w1, . . . , wn ∈ W such that {C,R[w1], . . . , R[wn]} is a partition of W . By the
inductive hypothesis, we may let f map each removed open “middle third” onto one of the
quasi-trees, say Ti whose underlying set is R[wi]. For the sake of illustration, suppose (c, d)
is a removed open “middle third” and f sends it to T1. Then we construct the Cantor set
inside (c, d) and proceed by induction (see Figure 4). Therefore, the mapping f is defined
iteratively by moving “upward” through T and sending appropriately chosen “copies” of the
Cantor set to the “lower” parts of T . Notice that the role of G is played by the initial copy
of the Cantor set in (a, b), and the roles of the Ui are played by the removed open middle
thirds, which themselves contain a copy of the Cantor set containing f−1(wi).

Our goal for the remainder of the paper is to mimic this proof in the setting of an arbitrary
dense-in-itself metrizable space.

4. The new proof

In this section we present a new proof of the McKinsey-Tarski Theorem, in which the
Embedding Lemma is replaced by the Mapping Lemma, and the key Dissection Lemma by
the simpler Partition Lemma. To prove these two lemmas, we require some preparation. The
section is divided into four subsections. The first subsection presents the auxiliary lemmas,
culminating in Lemma 4.5; the second subsection proves the Partition Lemma (Lemma 4.13);
the third subsection the Mapping Lemma (Lemma 4.22); and the fourth subsection shows
that the McKinsey-Tarski Theorem does not generalize to the hereditarily paracompact
setting.
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Figure 4. Depiction of f : (a, b)→ T .

4.1. Auxiliary lemmas. We start by recalling some basic definitions; see, e.g., [10]. For a
topological space X, we recall that i and c stand for the interior and closure operators of X.
As usual, we call U ⊆ X regular open if U = icU .

Definition 4.1. Let X be a space and A a family of subsets of X.

(1) Call A discrete if each x ∈ X has an open neighborhood U such that {A ∈ A |
A ∩ U 6= ∅} consists of at most one element.

(2) Call A σ-discrete if A =
⋃
n∈ω An and each An is discrete.

(3) Call A closure preserving if c
⋃

B =
⋃
{cB | B ∈ B} for each B ⊆ A .

Remark 4.2. It is easy to see that if A is discrete, then A is pairwise disjoint. Moreover,
if A is discrete and B ⊆ A , then B is discrete. Furthermore, if A is finite, then A is
closure preserving.

Lemma 4.3. Let X be a space, B an open subset of X, and U a closure preserving family
of nonempty regular open subsets of X such that {cU | U ∈ U } is pairwise disjoint. Then
B ⊆

⋃
U iff B ⊆ c

⋃
U .

Proof. We only need to prove the right to left implication. Suppose B ⊆ c
⋃

U . Let U ∈ U
and set V = U \ {U}. Then c(U)∩

⋃
{cV | V ∈ V } = ∅ and B ⊆ c

⋃
U = c(U)∪

⋃
{cV |

V ∈ V }. Therefore, B ∩ cU = B \
⋃
{cV | V ∈ V } = B \ c

⋃
V is open in X, so

B ∩ cU ⊆ icU = U . Thus, B =
⋃
{B ∩ cU | U ∈ U } ⊆

⋃
U . �

Lemma 4.4. Let X be a nonempty dense-in-itself regular space and Y a nonempty open
subspace of X.

(1) There is a nonempty regular open subset U of X such that cU ⊂ Y .
(2) For each n ≥ 1, there is a family U consisting of n nonempty regular open subsets

of X such that {cU | U ∈ U } is pairwise disjoint and c
⋃

U ⊂ Y .

Proof. (1) Let x ∈ Y . Since X is a dense-in-itself T1-space, Y \{x} is a nonempty open subset
of X. As X is regular, there is a nonempty open subset V of X such that cV ⊆ Y \ {x}.
Thus, U := icV is as required.

(2) Induction on n ≥ 1. Applying (1) renders the base case n = 1. Suppose n ≥ 1 and there
is a family V consisting of n nonempty regular open subsets of X such that {cV | V ∈ V } is
pairwise disjoint and c

⋃
V ⊂ Y . Then Y \c

⋃
V is a nonempty open subset of X. Applying

(1) yields a nonempty regular open subset W of X such that cW ⊂ Y \ c
⋃

V . The family
U := V ∪ {W} is as required. �
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Lemma 4.5. Let X be a dense-in-itself regular space, F a closed discrete subspace of X, and
U1, . . . ,Un families of subsets of X such that U :=

⋃n
i=1 Ui is a closure preserving family

of nonempty regular open subsets of X satisfying {cU | U ∈ U } is pairwise disjoint and
c(U) ∩ F = ∅ for each U ∈ U .

If B is a discrete family of open subsets of X, then there are families V1, . . . ,Vn of subsets
of X and a closed discrete subspace D of X such that:

(1) Ui ⊆ Vi for each i ∈ {1, . . . , n}.
(2) The family V :=

⋃n
i=1 Vi is a closure preserving family of nonempty regular open

subsets of X such that {cV | V ∈ V } is pairwise disjoint.
(3) c(V ) ∩ (F ∪D) = ∅ for each V ∈ V .
(4) If B ∈ B and B 6⊆

⋃
V , then:

(a) For each i ∈ {1, . . . , n} there is Vi ∈ Vi such that cVi ⊆ B.
(b) The set B ∩D contains at least two elements.

Proof. Let C = {B ∈ B | B 6⊆
⋃

U }. Suppose that C = ∅. Set Vi = Ui for i ∈ {1, . . . , n}
and D = ∅. Then D is a closed discrete subspace of X and V = U . Therefore, conditions
(1)–(4) are satisfied trivially.

Suppose that C 6= ∅. Let B ∈ C . Then B 6⊆
⋃

U . By Lemma 4.3, B 6⊆ c
⋃

U , so
B \c

⋃
U is a nonempty open subset of X. Because F is a closed discrete subspace of X and

X is dense-in-itself, B \(F ∪ c
⋃

U ) is a nonempty open subset of X. Lemma 4.4(2) delivers
a family {B1, . . . , Bn} of nonempty regular open subsets of X such that {cB1, . . . , cBn} is
pairwise disjoint and

⋃n
i=1 cBi = c

⋃n
i=1Bi ⊂ B \ (F ∪ c

⋃
U ). Let DB consist of any two

points in the nonempty open subset (B \ (F ∪ c
⋃

U )) \
⋃n
i=1 cBi of X. Set Vi = Ui ∪ {Bi |

B ∈ C } and D =
⋃
{DB | B ∈ C }.

Claim 4.6. D is a closed discrete subspace of X.

Proof. Let x ∈ cD. Since B is a discrete family, there is an open neighborhood U of x
such that {B ∈ B | U ∩ B 6= ∅} consists of at most one element. Because ∅ 6= U ∩ D ⊆
U ∩

⋃
C ⊆

⋃
{U ∩ B | B ∈ B}, there is B′ ∈ C such that {B ∈ B | U ∩ B 6= ∅} = {B′}.

Note that DB′ \ {x} is finite and hence closed since DB′ consists of two points. Therefore,
U \ (DB′ \ {x}) is an open neighborhood of x, and so

∅ 6= (U \ (DB′ \ {x})) ∩D = (U \ (DB′ \ {x})) ∩
⋃
{DB | B ∈ C }

=
⋃
{(U \ (DB′ \ {x})) ∩DB | B ∈ C } = (U \ (DB′ \ {x})) ∩DB′ ⊆ {x},

giving that (U \ (DB′ \ {x}))∩D = {x}. This shows that D is both closed and discrete. �

We now verify that conditions (1)–(4) hold. Clearly condition (1) holds by the definition
of the Vi. That condition (2) holds follows from Claims 4.7, 4.8, and 4.10 below.

Claim 4.7. Each V ∈ V is a nonempty regular open subset of X.

Proof. Since for each B ∈ C and i ∈ {1, . . . , n}, the families {B1, . . . , Bn} and Ui consist
of nonempty regular open subsets of X, each V ∈ Vi = Ui ∪ {Bi | B ∈ C } is a nonempty
regular open subset of X. The result follows since V =

⋃n
i=1 Vi. �

Claim 4.8. The family {cV | V ∈ V } is pairwise disjoint.

Proof. Suppose V,W ∈ V are distinct. If V,W ∈ U , then cV ∩ cW = ∅ since {cU |
U ∈ U } is pairwise disjoint. If V ∈ U and W 6∈ U , then W ∈ {B1, . . . , Bn} for some
B ∈ C . Therefore, cW ⊆

⋃n
i=1 cBi ⊂ B \ (F ∪ c

⋃
U ) ⊆ B \ cV ⊆ X \ cV , which

gives cV ∩ cW = ∅. The case W ∈ U and V 6∈ U is similar. If V,W 6∈ U , then
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V ∈ {B1, . . . , Bn} and W ∈ {B′1, . . . , B′n} for some B,B′ ∈ C . If B = B′, then cV ∩cW = ∅
since {B1, . . . , Bn} = {B′1, . . . , B′n} and {cB1, . . . , cBn} is pairwise disjoint. If B 6= B′, then
B ∩B′ = ∅ since B is discrete, and hence pairwise disjoint. Thus,

cV ∩ cW ⊆

(
n⋃
i=1

cBi

)
∩

(
n⋃
i=1

cB′i

)
⊆

[
B \

(
F ∪ c

⋃
U
)]
∩
[
B′ \

(
F ∪ c

⋃
U
)]
⊆ B ∩B′ = ∅,

and hence {cV | V ∈ V } is pairwise disjoint. �

Claim 4.9. The family D := {Bi | B ∈ C and i ∈ {1, . . . , n}} is discrete.

Proof. Let x ∈ X. Since B is discrete, there is an open neighborhood Nx of x such that
{B ∈ B | B ∩Nx 6= ∅} consists of at most one element. If {B ∈ B | B ∩Nx 6= ∅} is empty,
then {Bi | B ∈ C , i ∈ {1, . . . , n}, Bi ∩ Nx 6= ∅} is empty because Nx ∩ Bi ⊆ Nx ∩ B for
each B ∈ C and i ∈ {1, . . . , n}.

Suppose B′ ∈ B is the unique element of {B ∈ B | B ∩ Nx 6= ∅}. If B′ 6∈ C , then
{Bi | B ∈ C , i ∈ {1, . . . , n}, Nx∩Bi 6= ∅} is empty. Suppose B′ ∈ C . If x 6∈ c

⋃n
i=1B

′
i, then

U := Nx \c
⋃n
i=1B

′
i is an open neighborhood of x and {Bi | B ∈ C , i ∈ {1, . . . , n}, U ∩Bi 6=

∅} is empty.
If x ∈ c

⋃n
i=1B

′
i, then since {cB′1, . . . , cB′n} is pairwise disjoint, there is a unique j ∈

{1, . . . , n} such that x ∈ cB′j . Therefore, U := Nx \
⋃
{cB′i | i 6= j} is an open neighborhood

of x and {Bi | B ∈ C , i ∈ {1, . . . , n}, U ∩Bi 6= ∅} = {B′j}. Since x ∈ cB′j and U is an open
neighborhood of x, we have U ∩B′j 6= ∅. If U ∩Bi 6= ∅ for some B ∈ C and i ∈ {1, . . . , n},
then ∅ 6= U ∩Bi ⊆ Nx ∩B gives B = B′ and ∅ 6= U ∩B′i = (Nx \

⋃
{cB′i | i 6= j})∩B′i = ∅

for i 6= j. Thus, D is discrete. �

Claim 4.10. The family V is closure preserving.

Proof. Let W ⊆ V . Using D as defined in Claim 4.9, we have that V = U ∪ D and
W = (W ∩U ) ∪ (W ∩ D). Since D is discrete, so is W ∩ D . Therefore, W ∩ D is closure
preserving (which follows from [10, Thm. 1.1.11] since a discrete family is locally finite).
Because U is closure preserving, so is W ∩U . Therefore,

c
⋃

W = c
⋃

((W ∩U ) ∪ (W ∩D)) = c
(⋃

(W ∩U ) ∪
⋃

(W ∩D)
)

= c
⋃

(W ∩U ) ∪ c
⋃

(W ∩D)

=
⋃
{cV | V ∈ W ∩U } ∪

⋃
{cV | V ∈ W ∩D}

=
⋃
{cV | V ∈ (W ∩U ) ∪ (W ∩D)} =

⋃
{cV | V ∈ W }.

Thus, V is closure preserving. �

Claim 4.11. Condition (3) holds.

Proof. Let V ∈ V . If V ∈ U , then cV ∩ F = ∅ by assumption. Moreover, cV ∩ D = ∅
because for each B ∈ C , from

DB ⊆
(
B \ (F ∪ c

⋃
U )
)
\
⋃n

i=1
cBi ⊆ B \ (F ∪ c

⋃
U ) ⊆ X \ c

⋃
U ⊆ X \ cV

it follows that D =
⋃
{DB | B ∈ C } ⊆ X \ cV . Thus, cV ∩ (F ∪D) = ∅.

If V 6∈ U , then V = B′j for some B′ ∈ C and j ∈ {1, . . . , n}. From

cB′j ⊆
⋃n

i=1
cB′i ⊆ B′ \ (F ∪ c

⋃
U ) ⊆ B′ \ F ⊆ X \ F
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it follows that c(B′j) ∩ F = ∅. Also, from

DB′ ⊆
(
B′ \ (F ∪ c

⋃
U )
)
\
⋃n

i=1
cB′i ⊆ X \

⋃n

i=1
cB′i ⊆ X \ cB′j

it follows that c(B′j) ∩DB′ = ∅. Since B is pairwise disjoint, we have

c(B′j) ∩D = c(B′j) ∩
⋃
{DB | B ∈ C } =

⋃{
c(B′j) ∩DB | B ∈ C

}
=

(
c(B′j) ∩DB′

)
∪
⋃{

c(B′j) ∩DB | B ∈ C \ {B′}
}

⊆ ∅ ∪
⋃{

c(B′j) ∩B | B ∈ C \ {B′}
}

⊆
⋃
{B′ ∩B | B ∈ C \ {B′}} = ∅.

Therefore, cV ∩ (F ∪D) = ∅, and hence condition (3) holds. �

Claim 4.12. Condition (4) holds.

Proof. Suppose B ∈ B and B 6⊆
⋃

V . Then B 6⊆
⋃

U since U ⊆ V . Therefore, B ∈ C .
Let i ∈ {1, . . . , n}. Then cBi ⊆

⋃n
j=1 cBj ⊆ B \ (F ∪ c

⋃
U ) ⊆ B. Since Bi ∈ Vi, condition

(4a) holds. Because B is pairwise disjoint and DB′ ⊆ B′ for each B′ ∈ C , we have

B ∩D = B ∩
⋃
{DB′ | B′ ∈ C } =

⋃
{B ∩DB′ | B′ ∈ C } = B ∩DB = DB.

Thus, B ∩DB consists of two elements, and hence condition (4b) holds. �

This completes the proof of Lemma 4.5. �

With these preliminary results established we are ready to prove the Partition Lemma.

4.2. The Partition Lemma. This subsection is dedicated to proving the Partition Lemma,
and it is exactly here where Bing’s Metrization Theorem will be utilized.

Lemma 4.13 (Partition Lemma). Let X be a dense-in-itself metrizable space, F a non-
empty closed discrete subspace of X, and n ≥ 1. Then there is a partition {G,U1, . . . , Un}
of X such that

(1) G is a dense-in-itself closed nowhere dense subspace of X containing F .
(2) Each Ui is an open subspace of X such that there is a discrete subspace Fi of Ui with

cFi = Fi ∪G.

Proof. By Bing’s Metrization Theorem (see, e.g., [10, Thm. 4.4.8]), X has a σ-discrete basis
B =

⋃
{Bm | m ≥ 1}, where each Bm is a discrete family of open subsets of X. By

Lemma 4.4(2), there is a family V 0 = {W1, . . . ,Wn} of nonempty regular open subsets of X
such that {cW1, . . . , cWn} is pairwise disjoint and c

⋃
V 0 ⊂ X \F . Put V 0

i = {Wi} for each
i ∈ {1, . . . , n} and D0 = F . Then V 0

1 , . . . ,V
0
n , V 0 =

⋃n
i=1 V 0

i , and D0 satisfy the conditions
of Lemma 4.5.

For each m ≥ 1, define recursively families V m
1 , . . . ,V m

n of subsets of X and a closed
discrete subspace Dm of X as follows. Suppose for some m ≥ 1 the families V m−1

1 , . . . ,V m−1
n

and the closed discrete subspace Dm−1 are already defined so that V m−1 :=
⋃n
i=1 V m−1

i is a
closure preserving family of nonempty regular open subsets of X satisfying {cV | V ∈ V m−1}
is pairwise disjoint and cV ∩ Dm−1 = ∅ for each V ∈ V m−1. Then Lemma 4.5 applied to
Ui = V m−1

i , F = Dm−1, and B = Bm yields families V m
1 , . . .V m

n and a closed discrete
subspace D′m such that:

(1) V m−1
i ⊆ V m

i for each i ∈ {1, . . . , n}.
(2) The family V m :=

⋃n
i=1 V m

i is a closure preserving family of nonempty regular open
subsets of X such that {cV | V ∈ V m} is pairwise disjoint.
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(3) cV ∩ (Dm−1 ∪D′m) = ∅ for each V ∈ V m.
(4) If B ∈ Bm and B 6⊆

⋃
V m, then:

(a) For each i ∈ {1, . . . , n} there is Vi ∈ V m
i such that cVi ⊆ B.

(b) The set B ∩D′m contains at least two elements.

Set Dm = Dm−1 ∪ D′m. Then Dm is a closed discrete subset of X since a finite union of
closed discrete subsets of any space is closed and discrete. Therefore, we have:

(1) V m
i ⊆ V m+1

i and Dm ⊆ Dm+1 for each i ∈ {1, . . . , n}.
(2) The family V m :=

⋃n
i=1 V m

i is a closure preserving family of nonempty regular open
subsets of X such that {cV | V ∈ V m} is pairwise disjoint.

(3) cV ∩Dm = ∅ for each V ∈ V m.
(4) If B ∈ Bm and B 6⊆

⋃
V m, then:

(a) For each i ∈ {1, . . . , n} there is Vi ∈ V m
i such that cVi ⊆ B.

(b) The set B ∩Dm contains at least two elements.

For each i ∈ {1, . . . , n}, set Vi =
⋃
m∈ω V m

i , Ui =
⋃

Vi, and G = X \
⋃n
i=1 Ui. It remains to

prove that {G,U1, . . . , Un} is as desired.

Claim 4.14. {V m
i | i ∈ {1, . . . , n}} is pairwise disjoint for all m ∈ ω.

Proof. By induction on m ∈ ω. For m = 0, the family {W1, . . . ,Wn} is chosen so that
{cW1, . . . , cWn} is pairwise disjoint. Therefore, {V 0

i | i ∈ {1, . . . , n}} = {{W1}, . . . , {Wn}}
is pairwise disjoint, and hence the base case holds.

Let m ≥ 1 and {V m−1
i | i ∈ {1, . . . , n}} be pairwise disjoint. Observe that for each

i ∈ {1, . . . , n} we have

V m
i = V m−1

i ∪
{
Bi | B ∈ Bm−1 and B 6⊆

⋃
V m−1

}
.

Also, for any i, k ∈ {1, . . . , n}, V ∈ V m−1
i , and B ∈ Bm−1 such that B 6⊆

⋃
V m−1, we have

that V ∩Bk = ∅ because

Bk ⊆ c
⋃n

j=1
Bj ⊂ B \ (Dm−1 ∪ c

⋃
V m−1) ⊆ X \

⋃
V m−1 ⊆ X \ V.

Let V ∈ V m
i ∩ V m

j for some i, j ∈ {1, . . . , n}. Then V ∈ V m
i . If V ∈ V m−1

i , then the

above observations yield that V ∈ V m−1
j . So i = j by the inductive hypothesis. Suppose

V 6∈ V m−1
i . Then V 6∈ V m−1

j . Therefore, V = Bi and V = B′j for some B,B′ ∈ Bm−1
such that B,B′ 6⊆

⋃
V m−1. Thus, ∅ 6= V = Bi ∩ B′j ⊆ B ∩ B′. Consequently, B = B′, so

Bi = B′j, and hence i = j, yielding that {V m
i | i ∈ {1, . . . , n}} is pairwise disjoint. �

Claim 4.15. Vi is pairwise disjoint for each i ∈ {1, . . . , n}.

Proof. Let V,W ∈ Vi =
⋃
m∈ω V m

i be such that V ∩W 6= ∅. Then there are m′,m′′ ∈ ω
such that V ∈ V m′

i and W ∈ V m′′
i . Let m = max{m′,m′′}. Then V,W ∈ V m

i ⊆ V m. Since
V m is pairwise disjoint, V = W . Thus, Vi is pairwise disjoint. �

Claim 4.16. For any m ≥ 1 and B ∈ Bm, if B ∩G 6= ∅, then B 6⊆
⋃

V m.

Proof. Let m ≥ 1, B ∈ Bm, and x ∈ B ∩ G. Then x ∈ G, giving that x 6∈
⋃n
i=1 Ui.

Since V m
i ⊆

⋃
m′∈ω V m′

i = Vi for each i ∈ {1, . . . , n}, we have
⋃

V m
i ⊆

⋃
Vi = Ui for

each i ∈ {1, . . . , n}, and hence
⋃

V m =
⋃⋃n

i=1 V m
i =

⋃n
i=1

⋃
V m
i ⊆

⋃n
i=1 Ui. Therefore,

x 6∈
⋃

V m, and hence B 6⊆
⋃

V m. �

Claim 4.17. Let D =
⋃
{Dm | m ∈ ω}. Then D ∩

⋃n
i=1 Ui = ∅.
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Proof. Since D ∩
⋃n
i=1 Ui =

⋃n
i=1(D ∩ Ui), it is sufficient to show D ∩ Ui = ∅ for all i ∈

{1, . . . , n}. Since D ∩ Ui =
(⋃

m∈ωDm

)
∩ Ui =

⋃
m∈ω (Dm ∩ Ui), it is sufficient to show that

Dm ∩ Ui = ∅ for each m ∈ ω. Since

Dm ∩ Ui = Dm ∩
⋃

Vi

= Dm ∩
⋃{

V ∈ V m′

i | m′ ∈ ω
}

=
⋃{

Dm ∩ V | m′ ∈ ω, V ∈ V m′

i

}
,

we only need to show that Dm ∩ V = ∅ for each m′ ∈ ω and V ∈ V m′
i . But it follows

from conditions (1) and (3) that Dm ∩ V ⊆ Dmax{m,m′} ∩ V ⊆ Dmax{m,m′} ∩ cV = ∅ since

V ∈ V m′
i ⊆ V max{m,m′}

i , completing the proof. �

Claim 4.18. The family {G,U1, . . . , Un} is a partition of X such that Ui is an open subset
of X for each i ∈ {1, . . . , n} and G is a closed subset of X containing F .

Proof. Let i ∈ {1, . . . , n}. Because Ui =
⋃

Vi and each V ∈ Vi is a (regular) open subset of
X, Ui is an open subset of X. Also Ui ⊇ Wi 6= ∅ since Vi ⊇ V m

i ⊇ V 0
i = {Wi}.

To see that {U1, . . . , Un} is pairwise disjoint, let x ∈ Ui ∩ Uj. Then there are mi,mj ∈ ω,
V ∈ V mi

i , and W ∈ V
mj

j such that x ∈ V and x ∈ W . Let m = max{mi,mj}. Then
V ∈ V m

i ∩ V m
j , giving V m

i ∩ V m
j 6= ∅. Claim 4.14 then yields i = j, and so {U1, . . . , Un} is

pairwise disjoint.
Clearly G = X\

⋃n
i=1 Ui is a closed subset of X. Because {U1, . . . , Un} is a pairwise disjoint

family of nonempty sets and G = X \
⋃n
i=1 Ui, we only need to verify that G is nonempty to

conclude that {G,U1, . . . , Un} is a partition. But, by Claim 4.17, ∅ 6= F = D0 ⊆
⋃
{Dm |

m ∈ ω} = D ⊆ X \
⋃n
i=1 Ui = G, completing the proof. �

Claim 4.19. G is a nowhere dense and dense-in-itself subspace of X.

Proof. Since G is closed, to see that G is nowhere dense, let iG 6= ∅. Then there are m ≥ 1
and a nonempty B ∈ Bm such that B ⊆ G. By Claim 4.16, B 6⊆

⋃
V m. By condition (4a),

there is (a nonempty) V1 ∈ V m
1 such that cV1 ⊆ B. But then

∅ 6= V1 = B ∩ V1 ⊆ G ∩ V1
⊆ G ∩

⋃
V m
1 ⊆ G ∩

⋃
V1

= G ∩ U1 = ∅,

which is a contradiction.
To see that G is dense-in-itself, let m ≥ 1 and B ∈ Bm be such that B ∩ G 6= ∅. By

Claim 4.16, B 6⊆
⋃

V m. By condition (4b), B ∩G ⊇ B ∩D ⊇ B ∩Dm contains at least two
points. �

Claim 4.20. For each i ∈ {1, . . . , n}, there is Fi ⊆ Ui that is discrete and cFi = Fi ∪G.

Proof. Let i ∈ {1, . . . , n}. Each V ∈ Vi is nonempty, and hence we may choose xV ∈ V . Set
Fi = {xV | V ∈ Vi}. Since Ui =

⋃
Vi, we clearly have that Fi ⊆ Ui. By Claim 4.15, Vi is

pairwise disjoint, and so {xV } = V ∩ Fi for each V ∈ Vi. As each V ∈ Vi is an open subset
of X, we have that Fi is discrete.

Let x ∈ G, m ≥ 1, and B ∈ Bm be arbitrary with x ∈ B. Then x ∈ B ∩ G, and
so B 6⊆

⋃
V m by Claim 4.16. By condition (4a), there is V ∈ V m

i such that cV ⊆ B.
Therefore, V ∈ Vi, and so B ∩ Fi ⊇ V ∩ Fi = {xV } 6= ∅, giving x ∈ cFi. Thus, G ⊆ cFi,
and hence Fi ∪G ⊆ cFi.
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For the reverse inclusion, suppose x 6∈ Fi∪G. Then x 6∈ G, so x ∈
⋃n
j=1 Uj. If x 6∈ Ui, then⋃

{Uj | j 6= i} is an open neighborhood of x that is disjoint from Fi. If x ∈ Ui, then x ∈ V
for some V ∈ Vi (such V is unique by Claim 4.15). Noting that x 6= xV (since x 6∈ Fi) gives
that V \ {xV } is an open neighborhood of x that is disjoint from Fi (since V ∩ Fi = {xV }).
In both cases, x 6∈ cFi. Thus, cFi ⊆ Fi ∪G, and the equality follows. �

This completes the proof of the Partition Lemma. �

4.3. The Mapping Lemma. In this subsection we prove the Mapping Lemma, which yields
a new proof of the McKinsey-Tarski Theorem. This requires the following lemma.

Lemma 4.21. A dense-in-itself metrizable space X is m-resolvable for every m ≥ 1.

Proof. For each m ≥ 1, we recursively construct a pairwise disjoint family {A1, . . . , Am} of
dense subsets of X. Put X0 = X. Suppose Xn is a dense subset of X for some n ∈ ω.
Then Xn is a dense-in-itself metrizable space. By [11, Thm. 41], Xn is resolvable. So there
is An+1 ⊆ Xn such that An+1 and Xn+1 := Xn \ An+1 are both dense in Xn. Therefore,
Xn = cXnAn+1 = c(An+1) ∩ Xn ⊆ cAn+1, and similarly Xn ⊆ cXn+1. Thus, both An+1

and Xn+1 are dense in X since Xn is dense in X. An easy inductive argument gives that
Xm ⊆ Xn whenever m ≥ n since by definition Xn+1 ⊆ Xn. To see that {A1, . . . , Am} is
pairwise disjoint, without loss of generality let i > j ≥ 1. Then

Ai ∩ Aj ⊆ Xi−1 ∩ Aj ⊆ Xi ∩ Aj = (Xi−1 \ Aj) ∩ Aj = ∅.

Clearly
{
A1, . . . , Am−1, X \

⋃m−1
i=1 Ai

}
is a dense partition of X of cardinality m ≥ 1. �

Lemma 4.22 (Mapping Lemma). Let X be a dense-in-itself metrizable space and F a
nonempty closed discrete subspace of X. Then there is an interior mapping of X onto every
finite quasi-tree T such that the image of F is contained in the root cluster of T .

Proof. Let the root cluster C of T = (W,R) consist of m elements, say C = {r1, . . . , rm}.
The proof is by induction on depth(T ).

First suppose depth(T ) = 1. Then W = C. By Lemma 4.21, X is m-resolvable. Let
{A1, . . . , Am} be a dense partition of X. Define f : X → W by f(x) = ri when x ∈ Ai. By
[5, Lem. 5.9], f is a well-defined onto interior map.

Next suppose depth(T ) ≥ 2. By the inductive hypothesis, for every dense-in-itself metriz-
able space Y , a nonempty closed discrete subspace Z of Y , and a finite quasi-tree S of depth
< depth(T ), there is an interior map g of Y onto S such that g(Z) is contained in the root
cluster of S. Let w1, . . . , wn ∈ W be such that {C,R[w1], . . . , R[wn]} is a partition of W as
depicted in Figure 3. For i ∈ {1, . . . , n}, let Ti = (Wi, Ri) be the generated subframe of T
such that Wi = R[wi]. Then Ti is a finite quasi-tree such that depth(Ti) < depth(T ) and
Ci := R−1i [wi] is the root cluster of Ti.

By Lemma 4.13, there is a partition {G,U1, . . . , Un} of X such that G is a dense-in-itself
closed nowhere dense subspace of X containing F and each Ui is an open subspace of X
containing a nonempty discrete subspace Fi such that cFi = Fi ∪G. Since G is a dense-in-
itself metrizable space, Lemma 4.21 yields a dense partition {A1, . . . , Am} of G. Also, each
Ui is a dense-in-itself metrizable space and Fi is closed relative to Ui because

cUi
Fi = c(Fi) ∩ Ui = (Fi ∪G) ∩ Ui = Fi.

By the inductive hypothesis, there is an interior map fi of Ui onto Ti such that fi(Fi) ⊆ Ci.
Define f : X → W by

f(x) =

{
ri if x ∈ Ai for i ∈ {1, . . . ,m},
fj(x) if x ∈ Uj for j ∈ {1, . . . , n}.
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Then f is well defined since {A1, . . . , Am, U1, . . . , Um} is a partition of X. It is onto because
W = C ∪

⋃n
i=1Wi, f(G) =

⋃m
i=1 f(Ai) =

⋃m
i=1{ri} = C, and fi maps Ui onto Wi. It is also

clear that f(F ) ⊆ f(G) = C (see Figure 5).

U1

Un

F1 Fn••••••• •••••••
���

G
F • • • • • • • • • • • • • • • • •

· · ·

b
bb

"
""�� ��C

�� ��C1

W1

T1

�� ��Cn

Wn

Tn
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���:
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Figure 5. Depiction of f : X → T .

To see that f is continuous, it is sufficient to show that f−1(R[w]) is open in X for each
w ∈ W . If w ∈ C, then R[w] = W , and so f−1(R[w]) = f−1(W ) = X. If w /∈ C, then
w ∈ Wi for a unique i ∈ {1, . . . , n}, and hence R[w] = Ri[w] ⊆ Wi. Because fi is an
interior mapping, f−1i (Ri[w]) is an open subset of Ui. Since Ui is open in X, we conclude
that f−1(R[w]) = f−1i (Ri[w]) is an open subset of X. Thus, f is continuous.

To see that f is open, let U be an open subset of X. Recalling that {G,U1, . . . , Un} is a
partition of X, we have

f(U) = f

(
U ∩

(
G ∪

n⋃
i=1

Ui

))
= f

(
(U ∩G) ∪

n⋃
i=1

(U ∩ Ui)

)

= f(U ∩G) ∪
n⋃
i=1

f(U ∩ Ui) = f(U ∩G) ∪
n⋃
i=1

fi(U ∩ Ui).

Each U ∩ Ui is an open subset of Ui. Since fi is interior, fi(U ∩ Ui) is an Ri-cone of Ti, and
hence an R-cone of T . If U ∩G = ∅, then f(U) =

⋃n
i=1 fi(U ∩ Ui) is a union of R-cones of

T , so is an R-cone of T .
Suppose U ∩G 6= ∅. We show that f(U) = W . Since {A1, . . . , Am} is a dense partition of

G, it follows that (U∩G)∩Ai 6= ∅ for each i ∈ {1, . . . ,m}. Therefore, {ri} = f(U∩G∩Ai) ⊆
f(U ∩ G) for each i ∈ {1, . . . ,m}, yielding that f(U ∩ G) = C. Since U ∩ G 6= ∅, we have
U ∩cFj 6= ∅, so U ∩Fj 6= ∅ for each j ∈ {1, . . . , n}. Let xj ∈ U ∩Fj. Then f(xj) = fj(xj) ∈
Cj, which is the root cluster of Tj. But f(xj) ∈ fj(U ∩ Uj), which is an Rj-cone of Tj since
fj is interior. Thus, fj(U ∩ Uj) = Wj. Consequently, f(U) = C ∪

⋃n
i=1Wi = W , and hence

f is open, completing the proof. �

We conclude the section by reiterating how the above delivers a modern proof of the
McKinsey-Tarski Theorem that S4 is the logic of any dense-in-itself metrizable space. Let
X be a dense-in-itself metrizable space. Then X |= S4. Suppose that S4 6` ϕ. Then there
is a finite quasi-tree T refuting ϕ. By the Mapping Lemma, T is an interior image of X.
Thus, X 6|= ϕ.

4.4. The hereditarily paracompact setting. Paracompact spaces are one of the most
important generalizations of metrizable spaces (and compact spaces); see, e.g., [10, Ch. 5].
However, the McKinsey-Tarski Theorem is no longer true already for hereditarily para-
compact spaces. In [4, Sec. 3] a countable dense extremally disconnected subspace X of
the Gleason cover of the closed real unit interval [0, 1] is exhibited whose logic is S4.3 :=
S4 + �(�p → q) ∨ �(�q → p). Clearly X is dense-in-itself. As a countable space, X is
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hereditarily Lindelöf, and hence hereditarily paracompact (e.g., by [10, Thm. 5.1.2]). There-
fore, there are dense-in-itself hereditarily paracompact spaces for which the McKinsey-Tarski
Theorem is no longer true.
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