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Abstract

The following investigation is focused on the intersection of symbolic and distributional
approaches to natural language semantics. Broadly speaking, we analyze symbolic
approaches to semantics in order to learn how the performance of distributional
models can be improved that are applied to compositional language tasks. Specifically
then, we set out to discover empirical justification for the often claimed advantage of
employing higher-order tensors in semantic vector space models.

Using an earlier natural language inference experiment, and adjusting it towards
a more stringent test of generalization performance, we are able to find clear signs in
support of the conjectured advantage of tensor models. In our experiments, a clear
difference emerges in generalization performance between a conventional matrix-
based tree-structured neural network and a tensor-based variant of the architecture.

To discover the cause for this performance difference, we visualize sentence repre-
sentations of models trained on the semantic task. We find evidence of linearization of
complex data in the tensor model, such as hyperplane separation of negated expres-
sions, and the systematic organization of quantified expressions. We then suggest an
explanation of our prediction results, by linking the observed properties of the model
representations with the logical requirements of the inference task.
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Chapter 1

Introduction

Symbolic models of language are fully general; distributional models actually work
would be an inappropriate way to introduce a thesis that aims for a nuanced analysis
of the two complementary approaches. So we won’t.

Natural language semantics as a field of research has existed for centuries, and our
understanding of the rules that describe the language we speak have been examined
closely, and with increased formal sophistication. The method by which the under-
standing was gained is grounded on symbolic representations, and to many, it appears
the only way to gain a well-founded understanding of the subject.

More recently however, a new approach has emerged, in its latest incarnation
referred to as distributional semantics. The symbolic definitions and descriptions of the
previous approach are replaced here by data-driven methods, and a firm statistical
foundation. The focus of this thesis will mostly lie on the latter approach, but with a
keen interest in gaining additional insights from the former approach.

The major themes of this thesis relates to compositionality of language, and the
question how compositionality can be accounted for in models of distributional se-
mantics. We will see soon that a related question emerges, regarding the ability or
inability of models that solely learn by example, to generalize from the cases they
have seen to cases that are new to them. The two themes, of compositionality and
generalization, will eventually converge and form a more specific question, regarding
the role of higher-order tensors in distributional models.

To address these questions, we experimentally evaluate two related models, one
based on a conventional function learned from the data, the other being based on a
higher-order tensor. We then describe our qualitative analysis of the experimental
results, by visualizing and interpreting the representations the models learned from
the data.

While we cannot hope to fully and conclusively answer the questions raised above,
we hope that our analysis adds some insight into the question how the compositional
mechanisms encountered in symbolic models can be successfully integrated into
distributional models of semantics.
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Chapter 2

Symbolic and Distributional
Semantics

This chapter is intended to provide the necessary background to follow the analysis of
this thesis. We begin by outlining two approaches to natural language semantics in the
symbolic tradition. Next, we introduce some central concepts of linear and multilinear
algebra, required to follow the technical details of the models discussed throughout
this thesis. The last part of the chapter reviews the literature of distributional semantics.
We begin by discussing models of distributional semantics operating at a word level,
followed by a review of compositional models, using a broad division of compositional
distributional approaches into two classes.

Model Terminology In our analysis we plan to use the following nonstandard
terminology, intended to disambiguate two model classes that will be frequently
discussed: The recursive neural network (Socher, 2014) and the recurrent neural
network (Elman, 1990) are both commonly abbreviated as ‘RNN’, in addition to being
named similarly. For reasons that will be outlined in Chapter 4, we usually prefer to
describe the model of Socher (2014) as a tree-structured recurrent neural network,
using the abbreviation tRNN. Analogously, we abbreviate the related recursive neural
tensor network as tRNTN in our thesis.

2.1 Symbolic Approaches

In this section we will focus on semantic theories in the symbolic tradition. We will
sketch, and briefly discuss theories of formal semantics, mainly with the goal to provide
the background for our later contrast with distributional approaches to semantics. We
then describe NatLog, a computational model of natural language inference, and the
symbolic system that generated the training data for the models of Chapters 5 and 6.
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2.1.1 Formal Semantics

Tradition demands that discussions of formal semantics begin by citing the well-
known principle of compositionality. Despite its abstract nature, the principle can be
interpreted as the foundation of modern theories of formal semantics — providing a
motivation to discuss it besides tradition.

Principle of Compositionality The principle of compositionality, generally associ-
ated with the works of Gottlob Frege (Frege, 1892), is commonly phrased along the
lines of: “The meaning of a complex expression is determined by the meanings of its
constituents and the rules used to combine them.” In its abstract form, the principle
leaves many aspects of semantic analysis unspecified. Nonetheless, two constraints
can be identified: Studying the meaning of language requires analyzing the meaning
of individual components, as well as the rules by which we construct larger expressions
from smaller ones.

Closely related to compositionality is the notion of recursion. Recursively defined
processes are widely believed to underly the capacity of speakers of a language to
build and understand arbitrary expressions of the language. By recursive syntactic
processing, speakers can, in principle, build an infinite set of complex expressions
from a finite set of simple “building blocks”. By a parallel recursive semantic process,
speakers are then able to express and understand a potential infinitude of distinct
meanings.

From Principles to Theories The following lucid description of compositionality
is offered by Barbara Partee:

The compositionality requirement . . . is almost uncontroversial when stated
informally. But formalizing it requires an explicit theory of syntax, an
explicit theory of semantics, and an explicit theory of the mapping from
one to the other.’

Based on the general description of a grammar in Montague (1970b), Partee (2014)
adds that these “explicit theories” can be understood as syntactic and semantic alge-
bras, together with a homomorphism instantiating the mapping. While still allowing
considerable theoretical variation, the principle gained concreteness under this view:
The objective of the syntactic algebra is to construct complex expressions (phrases and
sentences) from the basic ones (words) by recursive operations, ideally deriving a set
of expressions that is identical to the expressions encountered in natural language.?

While natural language expressions can be ambiguous, once a (logical) transla-
tion has been determined — possibly several distinct translations for an ambiguous
expression — by the homomorphism requirement we ensure that any element of the
syntactic algebra is mapped to a unique element of the semantic algebra. The latter

1 Partee (2001). Parenthetical remarks omitted.

2 If smaller, the grammar is a fragment, if larger, it derives expressions not found in reality.
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provides expressions with meaning, often through model-theoretic interpretation,
while the homomorphism requirement ensure that each expression is assigned exactly
one such interpretation, thus formally specifying the “meaning functionality” demand
expressed abstractly by the original principle.>

In this form, the principle admits a general framework of formal semantics, se-
mantic theories using the language of mathematics, following the spirit of Frege’s
principle. Next, we will sketch the basic principles of Montague Semantics — arguably
the most influential semantic theory, and the proposal which established the formal
understanding of compositionality in the sense outlined above.

Montague Semantics Montague Semantics or Montague Grammar, developed
mostly in a series of seminal papers Montague (1970a,b, 1973), is widely considered
to be the first successful attempt to fully formalize the semantics of natural language,
or at least some fragment of it.

While the earlier Montague (1970a) showed that the direct interpretation of ex-
pressions, without an intermediate logical language, is possible in principle, the system
developed in Montague (1970b) and Montague (1973) proved to be more popular,
proceeding by translation of natural language expressions into an intermediate logical
language, followed by interpretation by model-theoretical semantics. It is the latter
approach we will outline in here.

In broad terms, Montague’s innovative proposal consists of the compositional
translation from natural language to a logical language, such that (syntactic) deriva-
tion proceeds in parallel to assignment of semantic representations. This parallel
definition ensures that each derivation of a sentence is assigned a unique and appro-
priate meaning by the theory. The synchronous processing of syntax and semantics
is made available by Montague’s highly expressive intensional logic, a higher-order
typed (intensional) logic, enriched by lambda abstraction allowing the construction of
appropriate functions at each derivation step.

Our sketch of Montague’s system omits several features that were revolutionary at
the time, but are now standard techniques of the field, such as generalized quantifiers,
or ‘extensionalizing’ intensional expressions via possible worlds. We refer interested
readers to Gamut (1991) or Heim and Kratzer (1998) for thorough introductions to
semantic systems in the spirit of Montague’s proposal.

Toy Grammar We exemplify the meaning derivation process, outlined in general
terms above, by an example sentence and a toy syntax, given in the form of a (sim-
plified) categorial grammar. Table 2.1 describes the syntactic categories and their
corresponding semantic types: Names are of syntactic category PN (proper nouns),
and semantic type e, a basic type of entities, interpreted as elements of the domain of
discourse. Transitive verbs are of category TV, interpreted as a function from entities
to a function from entities to truth values, of type (e —(e — t)). Composition of a

3 Note that by choice of a homomorphism between syntax and semantics, every syntactic expression is
assigned just one meaning, however, different expressions can share this meaning.
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Class  Syntax Semantics Expressions
basic
S S t sentence
PN PN e proper noun (names)
complex
N S/PN e—t common noun (plural)
ITvV S\N e—t intransitive verb
vV (S\N)/N e—(e—t) transitive verb
ADJ N/N (e—>t)—>(e—t) adjective (predicative)

CON (N\N)/N (e—>t)—>((e—t)—>(e—1)) conjunction (nominal)

Table 2.1: Correspondence between syntax and semantics

transitive verb with its object results in category VP (a verb phrase), interpreted as
a function from individuals to truth values, (e — t). Finally, the full sentence is of
category S, of basic type t of truth values, and interpreted as ‘true’ or ‘false’.

The left side of Fig. 2.1 is a parse tree of the example sentence “Gottlob loves
Yoshua”, under the syntactic rules expressed by the complex syntactic types in Table 2.1.
Analogously, the right tree shows the result of assigning each node on the left a meaning.
The meaning of the names are logical constants, interpreted as domain elements,
while the meaning of the verb is a lambda expression over two individual evaluating
whether they stand in the relation denoted by the relational constant. These meaning
assignments are lexical, while the assignments of the remaining nodes result from
rules that are the semantic analog to the syntactic phrasal rules. They correspond here
to function-argument application, first for the object of the transitive verb, then the
subject. The phrasal nodes on the right also contain the expressions resulting from
beta reduction, replacing free occurrences of a parameter variable with the argument
value. The topmost node, representing the meaning of the entire sentence, yields ‘true’
if the denoted individuals stand in the denoted relation, and ‘false’ otherwise.

Note that the bidirectional arrow between trees should not be read as saying that
every sentence has a unique logical translation, and therefore, a unique meaning. It is
intended to show that sentences, given a particular syntactic derivation are assigned a
unique interpretation.

Criticism and Alternatives The field of modern formal semantics increased the for-
mal understanding of language meaning substantially over the past decades. Nonethe-
less, criticism of the approach can be raised, of which we give two examples.

One argument relates to the observation that formal semantics is mainly concerned
with structural, compositional aspects of meaning. Analysis of the meaning basis,
i.e. lexical content, has arguably received less attention. In Section 2.2 we will
see that major progress in this area was recently made by non-symbolic machine
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[love(y)(g)] € D, = {0,1}

AN T

PN S\PN [gottlob] =g e D, [[ApAgllove(q)(p)]]([lyoshual)
A . = [Aqllove(q)()]

Gottlob (S\PN)/PN PN Gottlob [ApAq[love(q)(p)]] [[yoshua] =y € D,

loves Yoshua
loves Yoshua

Figure 2.1: Translation to logical language

learning models, raising the question whether similar approaches could be applied to
compositional meaning analysis.

Another point concerns the limited integration of individual semantic theories. Mon-
tague’s original proposal was a “method of fragments” — identifying a well-delineated
syntactic fragment of the language, then formally describing this fragment. Modern
semantic theories mostly no longer take this approach, opting instead for the descrip-
tions of particular semantic phenomena that are not confined to a syntactic fragment.
Consequently, no part of the language can be set aside and semantically described
in completion, which is a requirement however for computational models of symbolic
semantics (Partee, 2001).

The theoretical question whether there are viable alternatives to symbolically
grounded semantics is part of a long-running debate, for example, in the discussion
of the binding problem. We will not attempt to directly answer this complex question
here, but will indirectly address it throughout our analysis.

2.1.2 Natural Logic and Language Inference

Natural logic generally describes logical systems encoding reasoning patterns encoun-
tered in natural language, in contrast to classically defined logic, centered around
the notion of formal validity of inference, or logical reasoning. The term natural logic,
and the framing of the problem in a modern logical context, is due to Lakoff (1970).
One application of natural logics is the modeling of natural language inference (NLI),
automated systems performing reasoning tasks over natural language expressions.
Natural logic is linked to the monotonicity properties of generalized quantifiers. We
illustrate monotonicity by example: “No European sings” entails “No German sings”, as
well as: “No European sings loudly” — when replacing a general expression by a more
specific one, entailment holds. The property of admitting entailment from general to
specific is referred to as downward monotonicity. Under the perspective of generalized
quantifiers, we can interpret ‘no’ as relating its two arguments, ‘European’ and ‘sing’.
Downward entailment holds for either of them, and we say that ‘no’ is downward



Chapter 2. Symbolic and Distributional Semantics 8

Symbol Name Example Interpretation

X =7y equivalence (couch, sofa) X=Y

xCy forward entailment (excl.)  (crow, bird) XcyY

x Jy reverse entailment (excl.) (bird, crow) XDY

x A y  negation (able, unable) XNY=0AXUY=U
x | y alternation (cat, dog) XNY=0AXUY+U
X -y cover (animal, non-dog) XNY#0AXUY=U
x #y  independence (hungry, hippo) all other cases

Table 2.2: The seven basic relations of MacCartney’s logic*

monotone in both arguments. Consider next that “Every European sings” entails “Every
German sings”, but does not entail “Every European sings loudly”. However, “Every
European sings loudly” entails “Every European sings” — we say ‘every’ is downward
monotone in its first argument and upward monotone in its second argument.

MacCartney Logic and NatLog The natural logic developed in MacCartney (2009)
is described by the author as an extension of the monotonicity calculus by Valencia
(1991) and van Benthem (1991). The logical model has been implemented compu-
tationally as the NatLog system, outlined for example in MacCartney and Manning
(2009). The inference mechanism of MacCartney’s natural logic operates directly on
natural language expressions, without intermediate translation to a logical language —
similar to the original Montague framework mentioned in Section 2.1.1.

Traditionally, inference of language is modeled in terms of two relations, entail-
ment, and contradiction, sometimes adding a third, independence. MacCartney’s
system defines seven relations, in order to adequately cover the entire spectrum of
natural language inferences. The seven basic relations, with examples and their set-
theoretic definitions, are listed in Table 2.2. Some relations are familiar (equivalence,
entailment, independence). Note that entailment is split over two relations, with two
corresponding symbols: forward entailment and reverse entailment. Next, ‘negation’
relates mutually exclusive concepts whose union covers the entire domain; ‘alternation’
relates mutually exclusive items whose union does not cover the domain; ‘cover’ relates
overlapping concepts whose union covers the domain.

The basic relations are related to monotonicity by the projective properties of
expressions. For example, “fail to x” is downward monotone: “fail to sing” entails “fail
to sing loudly”. Its projective property with respect to C, the entailment relation inside
the logic, is characterized by a direction reversal: “Sing loudly” C ‘sing’, but: “fail to
sing loudly” O “fail to sing”. In total, these projective properties of expressions over
the basic relations characterize how context influences the composition of inference —
in a sense which will be made more precise next.

4 Table adapted from MacCartney and Manning (2009).
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Compositional Entailment The system described so far only derives direct lexical
instances of entailment, i.e. from one word to another. Extension to the (propositional)
sentence level is intuitively straightforward, by interpretation of propositions as sets
of possible worlds. For instance, “all dogs bark” and “not all dogs bark” are related by
the basic relation ‘negation’; their sets of worlds are disjoint, and the union of their
worlds contains all possible worlds (by the law of excluded middle).

The next extension consists of adding compositionality to the system, to allow
inferences beyond a single step. To this end, the logic is equipped with a simple proof
calculus. Compositional derivations proceed via a sequence of edit operations, i.e.
an algorithmic replacement process, which encodes both lexical knowledge and the
monotonicity contributions by the context, e.g. of quantified subexpressions. The
atomic edit operations are:

substitutions are one-for-one lexical replacements yielding the relation that holds
between the replaced items, e.g. ‘sofa’ — ‘couch’ yields: =

deletions replace a complex expression by a simpler one, usually on items under
entailment, e.g. “red car” + ‘car’ yields: C

insertions are defined symmetrically to deletions, so for items under reverse entailment,
e.g. ‘car’ — “red car” yields: O

Given a premise and a hypothesis, complex inferences are performed as a series of
these edits, in which the edit sequence transforms the premise into the hypothesis. The
(predicted) relation holding between the premise and hypothesis is then determined
as follows: Each edit of the sequence is associated with a relation (e.g. the relation that
held between two words that were substituted). These chained edits are then joined
to form (ideally) a single predicted relation. The main complexity of this process is
to determine how relations are joined, given their context. To this end, the process
is defined as a function of the monotonicity or projective properties described above,
ensuring that the outcome of joining takes into account the monotonicity properties
of the context in which the edit that generated the relation took place.

Limitations of the Logic MacCartney and Manning (2009) evaluate an implemen-
tation of the logic on several semantic tasks, and performance on the tasks suggests
that the edit-based proof calculus is sufficient for the primary aim of the system of
modeling natural language inference. Seen as a formal logic however, the authors
note that the deductive power of the system is strictly lower than that of classical
first-order logic. For one, the system does not allow combination of multiple premises,
i.e. the classical syllogisms based on two premises and one conclusion are not directly
representable in the system.

Another limitation, more relevant in the context of our own analysis, is that
MacCartney’s natural logic turns out to be semantically incomplete. MacCartney (2009)
shows that there is no (deterministic) way to derive an edit sequence establishing the
duality of existential and universal quantifier.
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This duality, commonly known as the de Morgan’s laws for quantifiers in classical
first-order logic, expresses:

VxP(x) = =[3-P(x)] 2.1)
JxP(x) = -[V-P(x)] (2.2)

This deductive limitation in terms of quantifier equivalences will gain practical rele-
vance in Chapter 6, where its effect was instrumental for one of the results.

2.2 Distributional Semantics

We turn now to the models of distributional semantics, explaining the rationale behind
the models and discuss their advantages and limitations.

The following sections presuppose some basic knowledge of linear algebra and
tensor calculus. For readers who want to refresh their memory, a brief linear algebra
primer is provided in Appendix A. In this primer we also introduce the basic concepts
behind higher-order tensors, and briefly touch on a few related points, such as tensor
factorization and the difference between the definition of tensors in the machine
learning literature and in pure mathematics.

Distributional Hypothesis Models of distributional semantics, or semantic vector
space models, are a class of semantical models based on statistical and machine
learning techniques, usually understood as realizations of the distributional hypothesis.
Following Firth (1957), the hypothesis is often expressed as: “A word is characterized
by the company it keeps”. The related idea, of language meaning being defined
by language usage, can be traced back further to a central concept of Wittgenstein
(1953). Paraphrasing, the hypothesis states that semantic similarity can be expressed
by distributional similarity, suggesting that statistical analysis of language is an effective
way of determining word meaning.”

Spatial Representation While the above suggests a method to gather semantic
information, we also require a formal system to represent the information. All models
discussed here are vector space models, in which words correspond to elements of that
space, i.e. each word is represented by a vector. Given this representation, semantic
similarity between words can be defined in terms of distance between their vector
representations. More generally, a vector space representation enables spatial or
geometric interpretation of semantic meaning, providing the semantic theory with the
complete formal machinery of (finite) vector spaces. In particular, a natural extension
of compositional semantics is provided, leading to the models discussed in Chapter 3.

5 We will sometimes refer to the methods of this section as belonging to contextual distributional
semantics, in contrast to compositional distributional semantics.
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animal large small USB
MOUSE 8 2 4 3
ELEPHANT 9 5 1 0
CAR 1 4 3 0

Table 2.3: Idealized context-counts for MOUSE, ELEPHANT and CAR

2.2.1 A Simple Example Space

Table 2.3 is an idealized illustration of co-occurrence counts and a corresponding
semantic space for three nouns, ‘mouse’, ‘elephant’ and ‘car’. Values in this table
indicate how often a target word, i.e. the word we aim to represent as a vector,
appeared near certain other words in a corpus. For example, ‘mouse’ and ‘animal’
co-occurred eight times, while ‘car’ and ‘animal’ did so only once. Based on these
hypothetical counts, our semantic space would be four-dimensional, with vectors
consisting of raw co-occurrence counts. In reality, dimensionality is usually in the
order of hundreds, and raw counts are transformed into (weighted) frequency values.

Using cosine similarity defined in Appendix A on pairs of these word vectors,
we can calculate their semantic similarity: 0.86 (mouse, elephant), 0.57 (mouse,
car), 0.61 (elephant, car). This would then represent, as intended, that ‘mouse’ and
‘elephant’ are more similar to each other than either of the two is to ‘car’ (animals
vs. non-animal), and that ‘car’ is (slightly) more similar to ‘elephant’ than to ‘mouse’
(being somewhat more similar in size). Note also the co-occurrence of ‘mouse’ with
a seemingly unrelated word, ‘USB’, intended to illustrate the problem of polysemy.
In most models, the vector representation of ‘mouse’ would be a ‘mix’ of contexts
where ‘mouse’ refers to a rodent and contexts where the word refers to a computer
component.

2.2.2 Models and Parameters

We now present some important choices and parameters in the definition of distribu-
tional semantic models, exemplifying these choices by relevant models implementing
them in certain ways.

Context Several parameters and modeling choice are left to be defined in specifying
a full semantic space model. First, the definition of what constitutes context. Com-
monly, this context is defined as “the N neighboring words of the target word”, where
N is the context window, another parameter. An early successful implementation
of this classical context definition, populating vectors by (weighted) co-occurrence
counts of neighboring words, is the Hyperspace Analog to Language (HAL) system by
Lund and Burgess (1996). However, other choices are possible, for example, context
being defined on a character, i.e. sub-word level, to allow sharing of contexts across
morphologically similar words Bojanowski et al. (2016). Other models, such as (LDA)
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topic models, use an entire document as context, deriving a low number of (latent)
topics which are defined by distributions over words.

Similarity Another modeling choice, although not strictly part of the “meaning
extraction” architecture itself, is the similarity or distance metric. Choosing a par-
ticular metric, like cosine similarity, implicitly encodes certain assumptions about
what constitutes semantic similarity, in addition to being motivated by statistical
considerations.

Weighting While all models, in some form, derive semantic information from the
analysis of lexical co-occurrence, i.e. are based on context counting, most do not use
unprocessed counts to populate the vector components, but instead transform them by
weighting schemes. Intuitively, these processing steps can be seen as adjusting counts
for word frequency, giving more weight to words that are rare but informative. For
example, a word that occurs frequently and across several unrelated meaning contexts,
is semantically less informative than a word that occurs infrequently, and only within a
small number of related contexts. Weighting is aimed at discounting the contribution
of the former words, while giving more weight to the latter. A popular method used
for this purpose is pointwise mutual information (PMI).

Dimensionality Several approaches perform dimensionality reduction on the derived
representations. A common processing pipeline, described for example in Baroni
et al. (2014b), roughly proceeds as follows: construct co-occurrence matrices from
corpus analysis, re-weight counts by PMI, compress matrices by non-negative matrix
factorization (NMF) or singular value decomposition (SVD). The dimensionality
reduction step is motivated by two main concerns: computational efficiency, and
possibly greater generalization capacity of the model Levy and Goldberg (2014). The
latter effect can result from merging (similar) contexts, i.e. associating a word with
contexts of similar words even though it might have never appeared directly in these
contexts itself, thus allowing the model to uncover additional similarities.

Objective A fundamental choice not explicitly mentioned so far is the objective of
the algorithm analyzing the data. The classical method, described above, is aimed
at counts of context items of a given word. A recent class of models, neural word
embeddings, instead aims to predict, either (the most likely) word given a context,
or the (most likely) context for a given word. We will discuss the difference between
objectives in the next section.

2.2.3 Neural Word Embeddings

Neural network-based word representations gained popularity in recent years. We
will sketch the idea behind these models, and mention some reasons brought forward
to explain their success.
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Sparse vs. Dense Word-level models of distributional semantics can be distin-
guished by the type of their vectorial representation. First, sparse representations —
high-dimensional spaces in which dimensions directly correspond to contexts, conse-
quently leading to vector representations that are numerically sparse across compo-
nents, since a word does not appear in every context. The classical counting approaches,
possibly including count re-weighting, but excluding dimensionality reduction, would
fall into this category. Second, dense representation — (usually) lower-dimensional
spaces, in which dimensions are the result of compressing (classically) derived counts
by dimensionality reduction, or are constructed densely immediately, i.e. as embed-
dings.

History The latter approach is taken by models referred to as neural language
models of word embeddings. These models are usually traced back to early suggestions
by Hinton (1986), and Bengio et al. (2003), who applied a (regular) neural architecture
to the task of deriving word meanings. Embeddings gained an immense boost in
popularity after the proposals by Mikolov et al. (2013b) and Mikolov et al. (2013a),
implemented as word2vec. These methods can be understood as feedforward neural
networks without hidden layers and nonlinear activation functions, which the authors
identified as computational bottlenecks of the previous models.

word2vec The embeddings created by word2vec consist of two distinct, but closely
related algorithms. The first model, Continuous Bag-of-Words (CBOW), learns to predict
a word, given a context of surrounding words. A “projection layer” turns discretely
encoded (sparse) word representations into continuous (dense) representations, which
are then fed into a matrix — shared for all context words regardless of their position,
hence the name “bag-of-words” — for an output prediction of the most likely middle
word for a given context. The second models is trained to predict in the opposite
direction; given a word, the goal is to maximize the log probability of its surrounding
context, i.e. the model learns to predict the context, given an individual word. Note that
the context words do not need to appear as a consecutive sequence in the corpus, i.e.
the total number of context words is fixed by a parameter, but individual words can be
skipped — referred to by the algorithm’s name. The above sketch of the algorithms only
describes the “bare-bones” method, omitting for example negative sampling, which
can roughly be understood as an approximation of the softmax function needed for
the conditional probability training objective.

Embedding Advantages In contrast to previous proposals of neural embeddings,
the word2vec models were developed with a focus on computational efficiency, based
on several optimization steps (e.g. the removal of a hidden layer, negative sampling
instead of softmax). As a result, word models could be trained on much larger datasets
than before. For example, word2vec contains a pre-trained word model, trained on a
100 billion word subset of the Google News dataset. The popularity of these models
can partly be explained by their importance for models of deep learning, which owe at
least part of their success in recent years to the use of pre-trained embeddings. Neural
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Figure 2.2: word2vec embedding of great and neighboring embeddings®

embeddings sparked additional interest due to linguistic regularities seen in these
models, suggesting an interpretation in terms of semantic features. We will discuss
these regularities in the following paragraph.

It is currently an open question whether the representations of neural word models
are substantially different from those of the classical word models. A study by Baroni
et al. (2014b) concludes that (prediction-based) neural embeddings generally outper-
form the classical (count-based) methods. This result has been challenged by Levy and
Goldberg (2014), which formally establish a close correspondence between the neural
models and models factorizing PMI matrices, i.e. claiming that prediction models
are equivalent to counting models. Further empirical evidence for this claim was
provided in Levy et al. (2015), showing that counting models can achieve performance
similar to embeddings by improved hyperparameter choices. In response to these
rebuttals, Arora et al. (2015) argue formally and empirically that embedding models,
like those of word2vec, are not reducible to matrix factorization if one makes realistic
assumptions regarding model dimensionality. Further, these models impose the linear
structure on the data by their low-dimensional, nonlinear architecture, suggesting that
embedding models are more powerful than classical higher-dimensional approaches.”

Linguistic Regularities Neural embeddings gained widespread attention for their
representation of relatively complex syntactic and semantic relational information,
at odds with linguistic expectations of a syntactically shallow, unsupervised model.
Further, these linguistic relations can be extracted from the model by simple linear

6 1st/2nd/3rd principal component of 200D word2vec embeddings. Plot generated with TensorFlow
Embedding Projector (Smilkov et al., 2016).

7 While word2vec models contain no hidden layers with nonlinearities, they are nonlinear models due
to their training objective, log of (approximated) softmax.
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operations over representations, suggesting that embeddings contain non-trivial linear
structure.

Several well-known examples of such relations were presented in Mikolov et al.
(2013c). Here, the authors observe that a relation-specific, constant vector offset exists
between the vector representations of word pairs standing in the given relation. Based
on this offset, the embedding space can be queried for an answer to analogy questions
of the form: “word 1 is to word 2 as word 3 is to word 4”, where words 1, 2, 3 are given,
and word 4 needs to be found in order to answer the question. Expressed in terms of
vector space operations, using cosine similarity to measure semantic similarity, the
analogy query is given by:

argmax,,, (cos (v4, V5 = Vi +V3,)) (2.3)
The following are some well-known results derived by this query:

Vking ~ Vman * Vwoman ¥ Vqueen

Vparis ~ VFrance T VItaly © VRome
Vv

v

Vapple ~ Vapples car ~ Vcars

The first result can be understood as the vector form of the analogy “man is to woman
as king is to queen”, expressed in terms of basic linear algebraic operations. This
example has been interpreted as evidence that embeddings contain structure encoding
a gender relation or feature. Similarly, the next two examples suggest the model
learned to relate countries and their capitals, as well as a syntactic relation between
singular and plural word forms.

2.2.4 Limitations and Relation to Compositionality

While the relevance of the previous results should not be easily dismissed, it seems
doubtful whether purely context-based models can model meaning in its full generality,
over arbitrary types of expressions.

Limits of Context Learning An apparent limitation relates to the meaning of
sentences, widely believed to require accounting for compositionality. A purely distri-
butional, non-compositional approach to sentence meaning is likely to face serious
obstacles due to an unanalyzed treatment of sentences or phrases. Sparsity of data is
one such obstacle. Individual words occur abundantly across different contexts, but the
frequency of combinations of words declines with the length of the sequence. While
short phrases still occur frequently enough to enable some form of meaning deriva-
tion by contextual analysis alone, full sentences occur too rarely for a context-based
approach aimed at general sentence meaning.

Another obstacle concerns meaning derivation of logical operators, e.g. negation.
To learn the meaning of (sentential) negation by context analysis alone, its logical
meaning would have to be fully expressed in the context distributions of sentences
and their negation. Aside from intuitive and formal semantic objections, such an
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assumption is countered empirically. Researching distributional patterns of contrasting
word pairs, Mohammad et al. (2013) show that highly contrasting items (including
aspectual negation) occur in very similar contexts — indicating that logical negation
cannot be learned by context analysis alone.?

Generalization Capacity Finally, another concern relates to the capacity of speakers
of generalization over meanings of expressions. Human speakers frequently encounter
sentences they have never heard before, yet, they easily derive their meaning by
knowing the meaning of the individual components (words) and how to combine them
systematically (the rules of composition). It seems clear to us that the purely contex-
tual distributional models are capable of some generalization, considering empirical
evidence such as the structure exposed by the analogy results, or formal results like the
linearizing effect of embeddings shown by Arora et al. (2015). It seems similarly evi-
dent to us however that distributional approaches without any mechanism accounting
for compositionality are unlikely to be capable of full generalization. Otherwise, the
meaning of complex expressions of arbitrary depth and structural complexity would
be fully defined by their usage distributions. This notion however is both at odds
with linguistic theory and unwarranted from a statistical perspective, considering the
aforementioned problem of data sparsity with respect to sentence length.

Combination of Approaches The limitations outlined here seem to motivate com-
positional extensions of the distributional approaches. At the same time, the success
in some aspects of meaning derivation of these models is undeniable. Distributional
approaches constitute a major step forward in the derivation of lexical meaning — an
area of research comparably underappreciated by symbolic theories of meaning. It
also seems to be widely accepted that several breakthrough results achieved by deep
learning models in recent years were made possible by including (pre-trained) word
representations. The goal therefore seems to be to combine distributional models with
compositional processing. Under this view, the question: “What are the limitations of
distributional models in deriving sentence meaning?”, could perhaps be rephrased
as: “What are the limitations of current distributional models when used as input for
further compositional processing?”

8 Kruszewski et al. (2017) confirm that logical negation eludes context analysis, but show that conversa-
tional negation — negation under a restricted set of alternatives — is susceptible to it.
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Chapter 3

Compositional Distributional
Semantics

In the previous chapter, we saw an outline of the symbolic approach to compositionality,
as well as the areas of success and limitations of context-based models of Section 2.2.
Next, we will turn to the literature on compositional distributional semantics. In broad
terms, the models of this approach extend the contextual methods of distributional
semantics by elements that allow for the derivation of phrasal and sentential meaning.

3.1 Two Classes of Compositional Approaches

Before continuing our review, we first propose a (nonexhaustive) classification of
recent compositional approaches to distributional semantics. The classification, far
from covering the entire field, is merely intended as a lens through which we suggest
viewing the literature. It will allow us to focus the discussion on two prominent
research directions, and maximize the contrast of their comparison. We suggest then
a division along the following classes:

type-based (or typed) approaches, with models of this class employing higher-order
tensors under an explicit syntax-semantics correspondence

approximative approaches, generally relying on machine learning techniques to
indirectly represent and approximate the effects of composition

Examples of the type-based approach are the framework of Baroni et al. (2014a), or the
approach outlined in Coecke et al. (2010). We refer to this class of models as type-based
approaches, because they can be understood as a translation of symbolic semantics to
a vector space framework, by defining a correspondence between syntactic categories,
semantic types and tensor order.

The second research direction we identify are models that account for composition-
ality by selectively including insights from linguistic theory, where such insights are
interpreted from a machine learning perspective. We suggest that models like Elman
(1990) or Socher et al. (2013b) belong to this class. Where the type-based approach
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can be seen as explicitly stating the compositional rules, models of the second approach
are aimed instead at learning the parameters of composition, generally through some
form of approximation.!

Before reviewing the literature under the view of this classification, we will discuss
two studies that do not fall under it, but which had a major impact on the entire field
of compositional distributional semantics.

3.2 Types of Composition Functions

This section discusses two landmark articles, Mitchell and Lapata (2008) and Mitchell
and Lapata (2010), which frequently serve as a starting point in the literature of
compositional methods in distributional semantics. These early investigations of
compositionality should be seen in the context of another highly influential study;,
Turney and Pantel (2010), published at around the same time. Where the studies
of Mitchell and Lapata provide an overview of composition methods, the study of
Turney and Pantel (2010) covers the entire field of distributional semantics, classifying
and discussing models, their methods and underlying assumptions. Up until the
point when the embedding models of Section 2.2.3 rose to prominence, the study of
Turney and Pantel provided a near-complete overview of the methods of (count-based)
distributional semantics.

Shared Model Features Input to all models consists of word vectors constructed by
contextual word models, as described in Section 2.2. In the evaluation of Mitchell and
Lapata (2010) composition is implemented as the application of a function mapping
two vectors (the composition input) to another vector (the composition output), in a
single composition step. Recursive extensions of the following definitions seem to be
straightforward, but were not investigated, since the experimental setup only requires
a fixed number of composition steps.

3.2.1 Additive Composition
The general definition of the additive class of models is:
z=Vx+ Wy

where V, W are matrices, and composition is given by matrix multiplication.
The simplest instance of this class is given by vector addition:

z=x+y

which we obtain from the general definition by letting V, W be identity matrices.
The authors note several limitations of this approach, among them, insensitivity
to word order, due to commutativity of vector addition. Consider for example that

1 Our approximative class is rather broadly defined, and further subdivision is likely necessary.
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recursive application of vector addition would derive identical meanings for the phrases
“man bites dog” and “dog bites man”. The model’s only advantage seems to be its
conceptual simplicity and absence of parameters requiring optimization. Yet, despite
its simplicity, the method performs comparably well on the task.

Adding scalar weights for each vector results in the weighted additive model:

z=ax+py

Here, left and right input vectors are scaled (uniformly, for each vector) by parameters
a, f which are optimized on a development set. For a # f, this introduces some
limited form of syntactic awareness, since left and right input are scaled differently
during composition.

Blending Problem While adding weights partially counteract the problem due to
commutativity described above, the authors observe another fundamental problem,
referred to as blending of meaning: Summing, or, equivalently, under cosine evaluation,
averaging components of the input vectors results in a blend of features in the output.
The problem is illustrated by the example phrase “brown cow”. Its intended meaning
refers to something that is both brown and a cow, i.e. the composed meaning is
more specific than that of its constituents, ‘brown’ and ‘cow’, individually. Additive
composition however appears to have the opposite effect: the output vector is a sum
of the constituents’ components, forming a blend of their properties, thus deriving a
less specific, “in-between” meaning, according to the authors.

3.2.2 Multiplicative Composition

Multiplication of components is suggested as a solution to the blending problem above,
leading to a general form of multiplicative models:?

z=Vxy

where V is a 3rd-order tensor mapping the two constituent vectors x, y to output
vector z. Composition is consequently a bilinear function of the constituents.
The first example of this class is composition by element-wise product:

z=x0y

Here, the i-th component of output z only depends on the i-th components of input x,
z, in analogy to vector addition above. However, the interaction between components
is now multiplicative instead of additive, as before.

Consider then why multiplication of components can be seen as a solution to the
blending problem: Additive interaction does not relate input components directly; i.e.
the components of input vectors are added (possibly scaled by a constant factor) to
the output vector, independently of any other components. Instead, if composition is

2 Multiplicative models can refer to the entire class, or only the element-wise product model.
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defined in terms of component multiplication, values interact directly by their products.
For example, consider some component with a high numerical value interacting (by
multiplication) with another component with a value (near) zero . Despite its high
value, the meaning contribution of the former is limited by its interaction with the
latter, effectively barring it from significantly influencing the meaning of the composite
expression. If additive composition can be seen as feature blending, then this type of
interaction can be thought of as feature filtering.3

Tensor-Based Composition While multiplicative interaction might solve the prob-
lem of meaning blending, the simple multiplicative model above is still insensitive to
word order. To rectify this problem, the tensor product model is introduced:

zZ=xQYy

While the element-wise product before only allowed interactions between components
with identical indices, the full tensor product of two d-dimensional vectors x and y,
seen as a d X d matrix, contains the products of all possible component combinations
over the two vectors. This model can be related to earlier proposals, such as Smolensky
(1990), where the tensor product acts as a universal operator for variable binding.

Note that the tensor product is not commutative, so composition is no longer
insensitive to word order. The downside is an exponential increase in dimensionality
(from constituents of R4 to output of Rdz), and a uniform meaning contribution of all
component combinations, due to a lack of parameters.

Two more complex multiplicative models are introduced, both defined on the basis
of higher-order tensors. The first, circular convolution, performs modular addition
along the diagonals of the tensor product in matrix form, compressing the tensor
product to a vector of the same size as the input. The second, dilation, is defined in
terms of a 4th-order tensor, and can be seen as a basis-independent variant of the
element-wise product model, where the output consists of input vector y scaled in the
direction of input vector x by a constant factor.

3.2.3 Combined Models

Combined models, models using both additive and multiplicative composition, are
briefly mentioned in Mitchell and Lapata (2008), defined as:

z=ax+py+yx0Qy

We can see that this class is simply the summation of the previously defined weighted
additive and element-wise product models.

The combined class is of additional interest because it shares some characteristics
with the RNTN architecture and its tensor-based composition function. While the
combined model above and the RNTN tensor differ in complexity, they both combine

3 Terminology of Grefenstette and Sadrzadeh (2015).
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additive and multiplicative elements for composition, and can be seen as belonging to
the same class of models therefore.*

3.2.4 Experiments

Mitchell and Lapata (2008) and Mitchell and Lapata (2010) evaluate the models by
comparing their predictions to human judgment on a (phrasal or sentential) similarity
task. For the model prediction, two phrases are processed compositionally, each phrase
yielding a single vector. These vectors are then compared by cosine similarity, yielding
a prediction of their semantic similarity. The same phrase pairs are judged by humans,
and model performance is defined as correlation between the model’s prediction and
the human rating.

In the first set of experiments, multiplicative models generally outperform ad-
ditive models across word class categories. In particular, the element-wise product
model significantly outperforms (almost) all other models. The only exception is the
verb+object category, where the dilation model performs approximately equal. The
simplest additive model (vector addition) performs badly across categories, but the
weighted additive model comes close to the performance of the multiplicative models,
taking second or third places across categories, in an evaluation consisting of seven
compositional and two non-compositional models.

In a second set of experiments using a LDA topic model, results are less conclusive,
with no individual model outperforming all others across classes. Further, the gap
between additive and multiplicative models all but disappears. The weighted additive
model continues to perform well in this setting, while performance of the element-wise
product suffers.

Significance of Results The results of Mitchell and Lapata (2008, 2010) have
occasionally been used as evidence against (syntactically) complex composition, due to
the relatively strong performance of the simple element-wise models. Such conclusions
seem doubtful however, considering that the task of Mitchell and Lapata (2010) used
composition input from syntactically shallow bag of word models, and comparably
inexpressive versions of the complex composition operations. While the input vectors
are possible structured meaningfully, they likely require additional ‘restructuring’
during composition. The parameter-free tensor product model, while being non-
commutative, has no means of imposing structure on the input, or reshaping the
structure to fit the task. The parametrized models possess some means to do so:
The weighted additive models can balance the left against the right argument, while
dilation adjusts to which degree one input vector scales the meaning of the other.
Yet neither of them fully reshapes input on a more fine-grained level, in contrast, for
example, to a fully parametrized linear or bilinear map. In conclusion, it seems that the

4 Combined models are also called “mixture models” in the literature. Note however that other authors
use ‘mixture’ to refer to the unstructured composition by pointwise operations.



Chapter 3. Compositional Distributional Semantics 22

complex composition method were at a disadvantage compared to the simple methods,
given that their effective syntactic sensitivity was limited by a lack of parameters.

It seems that if an investigation similar to Mitchell and Lapata (2010) would be
undertaken today, more powerful versions of the original composition methods would
need to be included in the evaluation. More generally, major advances in the field
since the original publication seem to require an update to the study. A step in this
direction is Milajevs et al. (2014), applying composition methods similar to those of
Mitchell and Lapata (2010) to vectors from two different count-based word models
and neural word embeddings. The results are somewhat inconclusive, with neither of
the two classes of word models generally outperforming the other. It should be noted
critically however that the embeddings where used “off the shelf” from word2vec,
while the two count-based models were trained by the authors for the study. While
they were not trained directly on the task, they contain parameters (e.g. window
size) that could allow some degree of (implicit) task fitting, thus casting doubt on the
symmetry of the comparison.

3.3 Type-Based Compositional Models

In this section, we discuss the models of the type-based or typed approach to composi-
tional distributional semantics, following our classification of Section 3.1. Informally,
the approach can be seen as a ‘translation’ of the symbolic semantic theories of Sec-
tion 2.1.1 into a vector space setting, through the use of tensors. Following the example
of formal semantics, the typed approaches analyze expressions under a parallel as-
signment of syntactic categories and semantic types, the latter determining the order
of the tensor representing an expression of a given type. As a result, composition in
the typed models structurally matches composition of symbolic theories. However,
given the vector space representation, lexical content can be learned from corpus data,
using techniques similar to those of Section 2.2.

3.3.1 Background

In the following discussion, we largely identify the typed approach with the research of
two groups: the proposals of Baroni and Zamparelli (2010) and Baroni et al. (2014a)
on the one hand, and the framework developed in Clark et al. (2008) and Coecke
et al. (2010) on the other. While similar in many respects, in cases where we need to
distinguish between the two, we refer to the proposals of the first group as the Trento
framework, and to the proposals of the second group as the Oxford framework — using
the names of the universities the authors of the earliest articles were affiliated with at
the time of publication.

Related Approaches One of the earliest proposals to use the tensor product as a
universal operator for meaning combination was made by Smolensky (1990). While
not directly analyzing composition, the proposal addressed the related binding problem.
Structures (expressions) are decomposed into structural roles (similar to the categories
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Class _Syntax Old Type Space Tensor
basic
S S t S RS
N N e—t N RN
complex

mv S\N e—t NS RSXN
v (S\N)/N  e—(e—t) N (N—S) RSN
ADJ N/N (e—t)—(e—t) N—>N RNXN

CON (N\N)/N  (e—t)—((e—t)—(e—t)) N-—-(N—-N) RN

Table 3.1: Syntax-semantics correspondence (symbolic and tensor-based)”

of Section 2.1.1), which are instantiated by fillers, the possible values of the role
variables. Binding between the two is defined as the tensor product of a role and its
filler. The arguments in favor of the tensor product here are similar to those we saw
in the context of structured composition, in Section 3.2. Other proposals include Aerts
and Gabora (2005a,b), approaching semantic modeling with an (adjusted) tensor
formalism used in physics, or Van de Cruys et al. (2013), who propose a form of latent
factor analysis with tensors to model composition.

3.3.2 Typed Tensor Model

This section presents an adapted version of the syntax-semantic interface of Baroni
et al. (2014a), integrating some elements of Maillard et al. (2014).

Syntax-Semantics Interface In Section 2.1.1 we saw that compositionality of
meaning in formal semantics is given by a parallel assignment of syntactic structure
and semantic content, where syntactic analysis of an expression determines the object
or function type representing it, which are constructed parallelly through lambda
expressions. From Appendix A.0.3 we recall that tensors allow us to represent general
functions from vector spaces to vector spaces, in way that resembles the functions of
typed lambda calculus.

This seems to suggest that we can translate functions of symbolic semantics to
multilinear maps, represented by tensors of appropriate shapes, by associating basic
types with basic vector spaces, and complex types with functions over these spaces.®
Functional application, implemented by the reduction operations of lambda calculus in

5 Adapted version of the syntax-semantics interface of (Baroni et al., 2014a, Section 3.6).

6 Representation of arbitrary lambda expressions by multilinear maps, Vi x...xV, — W, including
functions from complex types to complex types, e.g. predicative adjectives of type ((e — t) —(e — t)), is
guaranteed formally by the axioms of monoidal categories (Coecke et al., 2010, Section 3.1), or given
practically by reshaping of tensors before composition by general matrix multiplication or matrix-vector
multiplication (Baroni et al., 2014a, Section 3.3).
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Figure 3.1: Derivation under the syntax-semantics interface of Table 3.1

symbolic theories, corresponds to tensor contraction in the vector space models, or
matrix multiplication for matricized tensors.

This idea is made formally precise in the category-theoretic framework of Coecke
et al. (2010), by establishing a correspondence between syntax, given by a pregroup
grammar P (similar to categorial grammars) and semantics, given by a vector (tensor)
space FVect. Expressions of natural language are then mapped to elements of an
object of the category FVect X P, i.e. expressions are mapped to an object representing
both its syntactic structure (essentially, a parse of the expression), and the meaning of
the expression, under this parse, expressed in the vector space. It should be easy to
see that this mapping resembles the one seen in the symbolic approach, i.e. assigning
to each expression a category and a type. Formalizing this intuition is clearly more
challenging, and is one of the achievements of Coecke et al. (2010).

Tensor-Based Derivation Table 3.1 is the updated version of Table 2.1, relating
language expressions, syntactic categories (based on a simplistic categorial grammar),
the previous interpretation of these expressions as functional types, and the new
vector space semantics, i.e. the tensor-based interpretation of the current system. Note
that the type-based approach establishes a new correspondence between expressions,
syntactic categories and meaning, but that there is not necessarily a full correspondence
between old and the new meanings. For example, basic types in the symbolic theories
were individuals of type e, and truth values of type t. We will consider next the reasons
for another choice for the basic categories in a vector space setting, i.e. why common
nouns are the primitives of the new system, rather than being complex types like in
the symbolic approach.

Fig. 3.1 is a derivation of example sentence “dogs chase cats”, analogously to the
symbolically defined derivation in Fig. 2.1. As before, the phrase structure rules define
one (of possibly several) syntactic derivations of the sentence, while the category-type
correspondence of Table 3.1 specifies the interpretation of an expression of a certain
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category. The composition of expressions, marked here by enclosing the tensors in
square brackets, consists in applying the function tensor to its argument tensors, where
the application process is specified by semantic rules defined in analogy to the syntactic
rules. Functional application itself can be implemented in different ways, e.g. by
tensor contraction, matrix multiplication, or matrix-vector multiplication, depending
on the form the tensors take in a particular model.

3.3.3 Basic Spaces of Models

Similar to the basic types of the symbolic approach, certain vector spaces in the typed
approach are basic (or atomic) spaces, as seen in the syntax-semantics interface of
Table 3.1.

Sentence Spaces Note first that, in principle, one can follow the symbolic theories
and define a two-dimensional “truth value” space. A suggestion to this effect is worked
out in Coecke et al. (2010). However, by doing so, the models lose one of their most
interesting properties: the ability to compare sentences on a more fine-grained level
than by simple comparison of truth values, i.e. measuring similarity of sentences
e.g. by spatial distance. As an example, consider that in a binary sentence space, the
similarity between sentences “The sun is shining” and “It is rather warm today” is
the same as the similarity between “The sun is shining” and “There is no greatest
integer” (if the weather statements are true in the model). Since this is usually not a
desirable feature, the sentence space is mostly set to be a higher-dimensional space.
A proposal to this effect can be seen in Grefenstette et al. (2011). Here, sentences
containing transitive verbs are represented in space N®N, for N the space of nouns
— also the space of arguments of intransitive and transitive verbs. Sentences based
on intransitive verbs are instead represented in the simple noun space N itself. This
decision is based on the reasoning that sentences with transitive verb relate basic
concepts (features) across the arguments of the transitive verbs, in contrast to simple
(unary) predication over an argument in intransitive verb sentences. Then, the space
for transitive verb sentences should be able to represent this additional structural
complexity, i.e. defining it as the tensor product of the individual noun spaces.

Learning Space While the choice of the sentence space is effectively a choice of the
model output space, determining the second atomic space can be seen as a choice of
the model input space, i.e. the space in which learning takes place primarily. Often,
this will be the space of nouns, since the word class carries substantial lexical meaning,
and is comparably ‘simple’, being representable by vectors.

Note that learning the content of higher-order objects is in principle, and practice,
also possible. For example, the proposal of Grefenstette et al. (2013) extends the
linear regression method of Baroni and Zamparelli (2010), which learns the content of
vectors like nouns, to a multi-step regression method that can learn the word content of
higher-order objects like transitive verbs. But even then, noun vectors are the primary
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objects of learning: in a first step, noun content is derived, which then becomes the
input to the next regression step that learns the content of transitive verbs.

3.3.4 Limitations of Typed Approaches

The type-based approach is characterized by a high formal and conceptual clarity that
is possibly unique among the compositional model. At the same time, we can think of
several problems affecting it.

Dimensionality Problems The objection relates to the problem of dimensionality
mentioned in Appendix A.0.3, i.e. the intractable nature of higher-order tensors in
high-dimensional tasks. Recall that parameter size grows exponentially with the order
of the tensor, and that full-rank third-order tensors already are hardly practical in
high-dimensional spaces. Note then that the type-based tensors go well beyond third-
order: Ditransitive verbs, like ‘give’, are fourth-order tensors, while some prepositions,
like ‘with’ in “x eats y with a 2”, are fifth-order tensors. Even higher typed expressions
exist, and further complications might arise if the typed approach would incorporate
type shifting. The latter is a standard technique in formal semantics, where in cases
of type mismatch, the type of an expression can be lifted (raised), possibly further
increasing tensor order.

Related to parameter explosion is the problem of sparsity of data. If learning the
word content of tensors would proceed without deconstructing expressions based on
them, examples of these expressions would be too infrequent for learning to succeed.
Further, their meaning would not be derived correctly — for example, “drinking water”
and “drinking wine” would not relate through their common verb. If instead learning
methods break apart such expressions, as in the multi-step regression of Grefenstette
et al. (2013), data sparsity can be avoided, but higher computational cost is incurred
by the iterated learning methods.

The approach can therefore only be made to work if tensor approximation methods
are employed, as seen in Appendix A.0.3. Proposals to this effect exist: Grefenstette
et al. (2013) and Polajnar and Clark (2014) use low-rank third-order tensors for
transitive verbs. Nonetheless, the dimensionality problem is likely to persist: Third-
order tensors can usually be made tractable with dimensionality reduction methods,
but tensors of very high order often remain intractable even then.” It seems overly
optimistic therefore to expect that tensors of order five or above will become practically
usable in the near future, given the available dimensionality reduction or approximation
techniques.

Conceptual Limitations Another point of criticism of the type-based approach
stems from a primarily linguistic concern. The rigorously defined translation of
symbolic theories into vector spaces can both be seen as a major advantage, and as a

7 While some tensors of very high order can be made tractable due to their structural properties, in
general, tensors of such order tend to be intractable (Hackbusch and Kiihn, 2009).
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burden in the task of creating a model of meaning. Leaving the practical concerns of
the previous paragraph aside for now, it might well be that the typed approach has an
initial advantage over other compositional distributional methods, given that it builds
upon years of research in the symbolic field.

At the same time, this also suggests that any limitations applying to the symbolic
approach are inherited by these models. It seems that the typed approach is bound to
whatever progress (or lack thereof) is made in formal semantics, since the autonomous
choices of the approach are mainly related to the implementation of an external theory
in a new setting.

A related objection stems from linguistic inquisitiveness. Delegating the task of
compositional analysis proper to another field can be seen as a lost opportunity from
a linguistic point of view. Rather than only investigating compositional semantics
in symbolic frameworks, any attempt to derive additional knowledge, for example
by the analysis of semantic vector space models, should be welcomed. The class of
approximative models about to be described could be a promising tool to achieve such
a goal. In order to achieve it, however, models need to be understood sufficiently,
both on the level of their architectures (which generally seems to be true), and on
the level of model instances resulting from training (which seems less generally true).
This latter process, the analysis of the patterns learned by models during training,
could however be an important tool to gain new insights into semantic processing,
and could add a new perspective to the field of formal semantics itself.

3.4 Approximative Compositional Models

In the final section of our literature and model overview, we focus on the class of
approximative compositional models, understood here as architectures accounting for
compositionality not by explicitly specifying compositional rules, as seen in Section 3.3,
but by indirect means, generally aiming to approximate composition.

Our overview is focused on neural architectures, although other model classes could
be included here as well. We motivate this restriction by the following considerations:
The models at the core of our analysis are neural networks, and we limit our discussion
to the close relatives of these models. Further, although compositional processing
is not exclusively the domain of neural networks, recent formal results suggest that
functional composition and neural network architectures are intimately related in the
context of deep learning architectures Mhaskar et al. (2016); Montufar et al. (2014);
Pascanu et al. (2013).

3.4.1 Recurrent and Recursive Neural Networks

The following models account for compositionality, and in particular: for arbitrary
sentence length, by recursive definitions.

Recursion One way to think of compositional semantic analysis is to describe its goal
as the derivation of meaning of complex expressions, and in particular, of full sentences.
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Semantic meaning, in full generality, is either expressed by complex expressions, or, in
word-level models, usually depends on the meaning of complex expressions. As noted in
Section 2.2, non-compositional models of distributional semantics face the challenge of
deriving this general meaning without the ability to deconstruct complex expressions.
This suggests as a possible minimal requirement for compositional models the ability
to break down expressions into smaller components, such that the model output given
a complex expression is defined as a function of these smaller components. In other
words, such models should be based on a recursively defined derivation process.

Recurrent Networks A relatively simple, but powerful architecture satisfying this
requirement is the recurrent neural network (RNN), proposed in Elman (1990). It
is also known as Elman network, and in some cases referred to as the simple RNN
to distinguish it within a larger class of related models, based on similar recurrent
(recursive) definitions.

The function learned by an RNN model is defined as a recursion over an input
sequence of vectors x, . .., x,. This sequence of input vectors can be chosen quite
generally, for example, as vectors representing the words of a sentence, or, breaking
input down further, as the characters of a sentence.

At input step x; of input sequence x, the output z; of an RNN is given by:

z; = fWhhz, |+ Whx, + b") (3.1)

where z; € RH, and H is the dimension of the hidden layer, X; € RX, whh ¢ RHXH
is the matrix of hidden-to-hidden connections, W"* € RF*X the matrix of input-
to-hidden connections, b" € RH is a bias vector, and f an element-wise nonlinear
function, called the nonlinearity of a layer.® Frequent choices for this nonlinearity are
the sigmoid function, tanh, or a rectified linear unit (ReLU). Note that many models
place an additional layer between the hidden layer at step i and model output at
i. However, this step can be seen as external to the core of the recursively defined
process of Eq. (3.1).

For finite input sequences, the general recursive definition can be replaced by
an unfolded version of the model instance. Given an input sequence of length n, the
network can be seen as a chain of n + 1 hidden layers or states, where each state has
two outgoing connections (one to the next hidden layer, one being the output at the
current step), and two incoming connections (one being the output of the previous
hidden layer, one for the input at the current step). The i-th state of this chain is the
model representation of the input sequence up to and including input element i, given
by summing the linear combination of the i-th input vector, the linear combination
of the (i—1)-th state or output, and the bias vector, then applying the element-wise
nonlinearity f to the resulting vector.

Using simple RNN models, the work of Mikolov (2012) constitutes an early, in-
fluential exploration of RNNs applied to language tasks. In general, however, most

8 Here, and in most of this section, we follow the concise model definitions of Goldberg (2016), sometimes
with minor notational adjustments.
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notable results produced by RNN architectures in recent years were in fact extensions
of the architecture, often produced by the highly successful class of LSTM models,
which will be discussed later in this section.

Recursive Networks A notable structural extension of the simple RNN architecture
is the recursive neural network, referred to as tRNN in this thesis. The tRNN in the
form described here was introduced in Socher et al. (2010), based on the proposals of
Pollack (1990) and Goller and Kiichler (1996). We will describe this architecture in
detail in Chapter 4, and for now will only briefly remark how it differs from the simple
RNN. The tRNN can be seen as a generalization of RNNs in terms of input structure,
in the following sense: While the input sequence of a simple RNN is unstructured,
and composition invariably proceeds in one direction, the tRNN architecture allows
for the compositional process to be structured by syntactic analysis of the input. In
practice, this syntactic analysis is usually provided externally, by providing the model
with a parse tree for a given input sentence.

A variant of the tRNN is the recursive matrix-vector model (MV-RNN), introduced
in Socher et al. (2012). Composition order is the same as in a tRNN, given by tree-
structured inputs. However, the parameters of the MV-RNN composition function are
no longer purely global (or task-specific), but bound to individual words as well. Each
word is assigned both a vector of size R"” and a matrix of size R™". Composition of
two nodes in a tree is performed by applying the matrix of one node to the vector
of the other, resulting in two vectors of size R". These vectors are concatenated and
mapped back to a single vector of size R" by a global weight matrix. We can see then
that composition in the MV-RNN allows for composition arguments to modify each
other, similar to the mechanism of the typed approach of Section 3.3.

The MV-RNN model can be seen as a hybrid architecture, combining elements of
the approximative approach (e.g. using nonlinearities) and of the type-based approach
(e.g. words modifying each other), and in particular resembles the adjective-noun
model of Baroni and Zamparelli (2010). Yet, certain key differences suggest the model
is not an instance of the typed approach. The MV-RNN treats words symmetrically
with respect to composition — regardless of its class, each word is represented by a
matrix and vector, allowing both words to modify each other. This seems to be in
marked contrast to the typed approach, where the representation of a word depended
on its syntactic category, determining whether words act as functors or arguments.

3.4.2 Memory Mechanisms

A major challenge when training deep neural networks — networks consisting of many
stacked hidden layers — is the vanishing gradient problem. This cause for this problem
relates to the training algorithm of networks, which passes information (gradients)
down the network as a chain of products. Since individual terms of this chain are often
small, their product tends to decrease with the length of the chain, to the point of
vanishing. As a result, lower layers of a deep network only receive a greatly diminished
learning signal, thus negatively affecting learning success.
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Long Short-Term Memory The seminal work of Hochreiter and Schmidhuber
(1997) presented a solution to the problem, by introducing the long short-term memory
architecture (LSTM). We only describe the general idea behind the approach here,
and refer the reader to Graves (2008) for a technical explanation of the mechanisms.

The LSTM architecture, based on the (simple) RNN model of Eq. (3.1), adds
memory cells and (control) gates, allowing a higher degree of retainment of gradient
information across network layers. Memory cells are vectors retaining past gradient
information, where access to these cells is controlled by three types of gates (input,
output, and forget gates). Intuitively, these gates can be seen as vector space versions
of logic gates, interacting with the components of the memory cells by pointwise
multiplication with values near 0 or 1, i.e. soft boolean values. During training, stored
gradient information and the gates interact to preserve old and select new gradient
information that will be passed downwards in the network. This mechanism leads
to major improvements in training effectiveness of deep networks, and most major
results in recent years by models of the RNN class were produced by LSTMs, or further
model extensions of the RNN architecture, with added LSTM gates.

RNN models using LSTM gates generated major results on several language tasks.
In an early study of LSTMs and language processing, Gers and Schmidhuber (2001)
showed that their model can learn simple context-free and context-sensitive languages,
e.g. strings of the form a”b". In Graves (2013), LSTM models are used to generate
novel sentences after being trained on Wikipedia data, and learn to produce sentences
in realistic script (i.e. the model learned handwriting).

Replacement for Tree-Structured Networks? While the models we use in our
own experiments do not use LSTM gates, they are related by a possible overlap in
the function they serve. LSTM models have been suggested as a replacement for the
explicit syntactic information provided to the tRNN models, due to their ability to
store (training) information across the processing of long input sequences, such as
sentences. While syntactic information that is given to the tree-structured networks
explicitly, LSTM models possibly can rely on implicit syntactic information through
their storage mechanism.

The question whether syntactically guided processing is a necessary feature of
distributional models is not fully answered yet. Recently, tRNN models lost much of the
popularity they gained in the years before, and most of the currently popular models
(such as convolutional networks) do not rely on any explicit syntactic information.
At the same time, there are also recent state-of-the-art results that were achieved by
models using syntactic information, in combination with other processing mechanisms
Kokkinos and Potamianos (2017).

Note also that it is possible to combine the two architectures, i.e. enrich tree-
structured networks with a memory mechanism. The proposals of Le and Zuidema
(2015) and Tai et al. (2015) extend the tRNN architectures with LSTM gates, aiming
to improve training efficiency of deep networks, and ideally, to yield better results in
modeling long distance dependencies.
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3.4.3 Tensor-Based Architectures

In the following, we introduce the family of multiplicative, or tensor-based archi-
tectures. Included in this class is the tRNTN model, which is the focus of our own
investigation in the next chapters.

Arity of Functions The final aspect of composition and composition approximation
to be covered in detail here relates to the representation of functions of several
arguments, i.e. to the arity of functions. Correspondingly, we discuss here architectures
based on higher-order tensors, or models that define some form of multiplicative
interaction between input arguments.

Recall that in Appendix A.0.3, we pointed out the relation between (vector space)
functions of multiple arguments and higher-order tensors, by taking the perspective
on tensors as multilinear functions. Next, in our discussion of the study of Mitchell and
Lapata (2010), we saw the recurring theme of additive and multiplicative composition
and argument interaction. The latter type of interaction corresponded to composition
by the tensor product or the simpler element-wise product, or was given by higher-order
tensors.

Recursive Tensor Network We begin our discussion of tensor-based models with
the recursive neural tensor network, proposed in Socher et al. (2013b), and abbreviated
here as tRNTN. Extending the previously mentioned tRNN architecture, composition
in an tRNTN is shaped as well by tree-structured input. In addition, the composition
layers of the tRNN contain a full-rank third-order tensor term. The model architecture
and training algorithms will be described in detail in Chapter 4, and their performance
analyzed in Chapters 5 and 6.
The trained composition function of the tRNTN is defined as:

z=f(V,(x®y), + W[x;y] + b) (3.2)

Here, z € R is the layer output for input x,y € R? b € R? the bias, V,, the
matricized third-order tensor V € R¥X(@xd), (x ® y), the vectorized tensor product of
x, Y, [x; y] the concatenation of vectors x and y, and f the layer nonlinearity.

Adding a tensor term is motivated in Socher (2014) by the observation that in
standard RNN or tRNN models, input vectors only interact indirectly, through the
parameters of the composition function, which are reshaped during training by signals
passed through the layer nonlinearity. Instead, the author argues, direct interaction of
the input seems preferable, and can be implemented by adding a higher-order tensor
term to the layer.

We will next describe two different multiplicative extensions of the (simple) RNN
architecture, both of which are closely related to the tRNTN.

Multiplicative Integration Wu et al. (2016) proposes the generally defined multi-
plicative integration (MI) design, as an extension that can be implemented in various
network architectures. In the terminology of Wu et al., the sum of the linear state
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combinations in a standard RNN, i.e. Wz, ; + W"*x, in Eq. (3.1), is the additive
building block of the architecture. The MI design replaces the additive building block
by pointwise multiplication of the terms, resulting in a simple version of the MI design.

Adding vector terms to gate (scale) each product independently, they derive the
general MI equation, where the output for x; is given by:

z; = f(a® Whhzl-_l ) thxi + b0 Whhzi_l + f, 0 thxi + bh) (3.3)

The adjustment can be understood as implementing a mutual gating behavior, i.e. the
first summand of Eq. (3.3) allows the current input term to enable, disable, or generally,
scale the impact of the state history term, and vice versa. Note that the original RNN
function is contained in Eq. (3.3), and that we can recover it by setting « to be the
zero vector, and f3;, B, one vectors. Analyzing the gradient calculations of MI-adjusted
architectures, Wu et al. (2016) conclude that the newly derived composition functions
have desirable convergence properties compared to those of the unadjusted models.

The empirical evaluation of Wu et al. (2016) begins by implementing MI-adjusted
variants of a simple RNN and an LSTM, resulting in the MI-RNN and MI-LSTM archi-
tectures. These models are tested on several tasks, including semantic relatedness
and paraphrase detection. The authors find that the MI models perform well across
the board, easily outperforming the baseline models, and coming close to the best
reported performance on some tasks.

Multiplicative RNN  Sutskever et al. (2011) propose a different multiplicative ex-
tension of the basic RNN architecture, introducing the tensor RNN, and the related
multiplicative RNN (mRNN). The tensor RNN is based on the second-order RNN
architecture of Pollack (1991), while the definition of the mRNN additionally relates
to the proposal of Taylor and Hinton (2009), in which restricted Boltzmann machines
were extended by factorized third-order tensors.

The mRNN and the MI-RNN models of the previous passage are closely related.
Essentially, the extensions only differ in their choice of the multiplicative operation
added to the state transition function. Note that both proposals, aside from adding
a multiplicative component, make no changes to the basic RNN architecture, i.e.
input/output dimensionality and syntactic structure of composition remain unchanged.

The output of the tensor RNN for input x; is defined as:’

z=f (V&};)zi_l +Whr, + bh) (3.4)

where Vhh
(x;)

we can think of V(};f) as assigning a different weight matrix to the character encoded

is a full-rank third-order tensor. If the input x; € RM uses 1-of-M encoding,

by x;, for a total of M characters.

? We adjust the notation of (Sutskever et al., 2011, Equation 3) to unify definitions across Egs. (3.1)
to (3.4).
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As discussed in Appendix A.0.3 and Section 3.3, full-rank tensors are generally
intractable, and Sutskever et al. (2011) factorize tensor V&’?) by:

Y = VI diag (Vf xxl.) ek (3.5)
Here, V', V/" are input independent, dense matrices, diag(V/ *x;) is an input de-
pendent, sparse matrix, i.e. the transformation of vector V/* x; into a diagonal matrix.
The value of dimension f determines the parameter size of the model and the expres-
siveness of the factorization. Replacing V&}_‘) by *V(};}?) in Eq. (3.4) yields the definition
of the mRNN. l l

Context Conjunction Sutskever et al. motivate their mRNN proposal by the follow-
ing argument, describing how a character-level network processes linguistic structure:
Consider a character sequence ‘ing’, which could be a likely continuation of previously
encountered character sequences ‘fix’ or ‘break’, but not of a sequence ‘multipl’, for
example. We assume next that the model successfully learned hidden representations
for ‘fix’ and ‘break’ such that both representations encode information about ‘ing’ being
a frequently encountered continuation. We would then ideally like to represent the
conjunction of a history, e.g. ‘fix’ or ‘break’, with an input character, ‘i’, such that in
case their conjunction is true, a continuation of the sequence by character ‘n’ becomes
more likely.

So far, the argument suggests that context conjunction seems to be a useful feature.
In order to represent (fully general) logical conjunction — a binary connective, or two-
place function — the model should be capable of representing multiplicative interaction
of two arguments, which is naturally expressed by a third-order tensor. We can
informally think of this tensor as a bilinear function from a history space and current
input space to a space of likely continuations. This function encodes, for example, that
the conjunction of some history and some input character will likely be continued by
a particular character sequence. This likely continuation corresponds to the vector
resulting from composition of the hidden-to-hidden matrix selected by the current
input character, with the input vector itself, V(’;’?)zi_l. The resulting vector is one of the
terms that, in combination, determine the current hidden state, thereby influencing
the next state and the predictions licensed by it.

Evaluation and Extension Sutskever et al. employ the mRNN architecture as a
generative model: After initialization by arbitrary starting values, full prediction
sequences are generated by sampling from the model’s output distribution, then
feeding the result back to the model as input for the next prediction step. Among
other datasets, the authors train the model on English Wikipedia articles. While the
resulting sentences are nontrivially structured and (mostly) grammatical, they exhibit
a clear lack of semantic coherence above the word level, suggesting that the model’s
representation of sentence meaning is rudimentary.

Irsoy and Cardie (2014) compare the mRNN architecture to matrix space models
— approximately corresponding to the typed model class of Section 3.3. The authors
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conclude that the mRNN can be approximately seen as a matrix space model with
parameter sharing: In matrix space models, a matrix or vector is explicitly assigned to
every word. In contrast, mRNN models ‘extract’ such matrices and vectors from the
input words by a tensor, and require fewer parameters than matrix space models in
computing a similar function.

In Krause et al. (2016), the mRNN model is combined with LSTM gates, and evalu-
ated against regular LSTM models. The authors note that their combined multiplicative
LSTM (mLSTM) architecture contains two multiplicative components, both from the
mRNN and the LSTM mechanisms. However, the authors remark, these components
serve complementary purposes: multiplicative argument interaction and gating of
gradient histories, and a combination therefore justifiable.

3.4.4 Conclusions

In the preceding two chapters, we reviewed some of the literature relevant for our
investigation. We noted there that symbolic models provide a solid foundation of
the compositional aspects of natural language semantics, while such a foundation is
arguably lacking in the purely distributional models. Further, we saw that higher-order
tensors can potentially be used to integrate some of the advantages of the symbolic
approach into distributional models — either directly, or “by approximation”. Recursive
neural networks are one example of a distributional model architecture motivated by
compositional insights. An extension of this architecture incorporates higher-order
tensors to compose expressions, and seems to satisfy many of our requirements for an
compositional distributional model. The following chapter will introduce these two
models in greater detail then.
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Chapter 4

The Recursive Neural Tensor
Network

4.1 Feedforward Neural Networks

Artificial neural networks or simply neural networks are a class of machine learning
models inspired by biological systems of cognition like the human brain. One of the
earliest formal models of such systems was the logical calculus of nervous activity of
McCulloch and Pitts (1943), forming the basis of modern neural network architectures.
Closely related is the perceptron classifier of Rosenblatt (1958), becoming the first
computationally implemented model of neural networks in the late 1950s.

Feedforward Networks Perceptrons form the basis of modern feedforward neural
networks (FFNN), also known as multilayer perceptrons (MLP). Inspired by neural
activity of biological brains, the computational units of the model are termed neurons.
Grouping neurons by layers, one can define connections between units of different
layers. In a fully connected network, a single neuron of layer n receives the output
values of all neurons of layer n — 1 as its input. The neuron calculates a weighted sum
over this input, then passes the result through an activation function for the output of
the unit. In models consisting of multiple layers, we distinguish between the input
layer, the output layer, and layers in between, called the hidden layers of the network.

Fig. 4.1 is a graphical representation of such a layered arrangement of units. We
use superscript for layer indices, and subscript to index units within a layer. Each
single neuron is represented here by two separate nodes: A node marked by f(-),
representing the neuron’s calculation of a weighted sum and application of an activation
function, followed by an indexed node, denoting the (scalar) output of the unit, used
as input for the next layer. Arrows connecting units across layers are associated with
a scalar value, specifying the weight of a value in the calculation of the weighted sum
by the unit receiving the input.

For example, hé is the output of the second neuron of the first hidden layer, given
by passing the weighted sum: wilx1 + wizx2 + w;’3x3 through the activation function
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Figure 4.1: Simple feedforward neural network with two hidden layers

f. Here, W%,3 is the weight assigned to the output of the third unit of the input layer
during calculation of the weighted sum of unit h;. Fig. 4.1 also contains two bias
nodes, b! and b2. These units receive no input, and produce a constant output that is
used as additional (weighted) input by all other units of the layer.

Vectorized Notation We can think of the network of neurons in Fig. 4.1 as defining
a complex function ¥ from multiple input values to multiple output values. Doing
SO suggests a more concise notation of the network, describing ¥ as a function from
vectors to vectors. We can represent each layer as a vector, with components given by
the output values of units, and connection weights between a layer of m units and a
layer of n as a matrix of shape n X m. Fig. 4.1 can then be compactly represented by
the following equations for ¥™2(x), defining a feedforward neural network with two
hidden layers:

P2 (x) = 2
h' = f(W'x +b")
h* = f(W?h' +b?)
z=Wh?

“4.1)

Model input x, bias b' and the output of the first hidden layer h' are 3-dimensional
vectors, h? and b? are 4-dimensional vectors, and model output z is a 2-dimensional
vector. The 3 x 3 matrix W contains the weights between input layer and first hidden
layer, 4 x 3 matrix W2 those between first and second hidden layer, and 2 x 4 matrix
W? the weights between the second hidden layer and output layer.

Representing unit output as vectors, and connection weights between layers as
a matrix, we can equivalently describe the weighted sums of neurons by matrix
multiplication. For vector h; representing the output of the i-th layer of a network,
and matrix W the weights between the i-th and (i + 1)-th layer, the transition from
layer i to i + 1 is given by Wh; = z, where we call z the net input of layer i + 1.

As noted previously in Appendix A, matrices corresponds to linear maps, and
we can say that the parameters of a (fully connected) network layer given by W
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compute a linear transformation of layer input x. The set of all adjustable (trainable)
parameters of a network will be referred to as 8. Given the network layout of function
¢, parameters 0, and input x, we can numerically compute output z = ¥ (0, x).

4.2 Activation and Cost Functions

In this section we describe the nonparametric functions of neural networks. While the
layer transformations defined by matrices are parametric, i.e. defined by weights that
are adjusted during training, these functions generally do not change.

4.2.1 Activation Functions

Various activation functions can be used in place of f in Eq. (4.1) or other neural
network architectures. Activation functions are applied element-wise, i.e. a function
defined over scalars is applied separately to each component of a vector.

Sigmoid functions are frequently employed as activation functions. One example
of a sigmoid is the logistic function:

1
1+e™

flx) =

with values bounded in [0, 1], and forming an approximate ‘S’ shape, i.e. a continuous
version of the classical step function used in early network models.
Another common sigmoid activation function is the hyperbolic tangent, or tanh:

The function range of tanh is [—-1, 1], with a graph of a similar shape to that of the
logistic function.

More recently, rectified linear units (ReLU) have been employed successfully in
neural networks, in particular, in deep network layouts, due to their non-saturating
behavior. The simple ReLU function is defined as:

f(x) = max(0, x)

In contrast to the ‘S’ shape of sigmoid functions, the graph of a ReLU function is given
by two straight lines connecting at an angle at the origin. Since they consist of linear
‘pieces’, rectifiers belong to the class of piecewise linear functions.

The simple ReLU maps all negative input values to zero, which is not always
desirable. The leaky ReLU scales down negative values by a constant factor instead:

f(x):{x ifx>0

0.01x otherwise
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Nonlinearity The activation functions above are all examples of nonlinear functions,
and the terms activation function and nonlinearity are often used interchangeably. Even
so, network layers could be defined to employ linear activation functions, the simplest
example being the identity function. Doing so would however change which functions
such networks can represent: The composition of several linear maps is another
linear map, and networks using linear activation functions in all layers would in total
compute a linear function. As a consequence, these networks would be incapable of
representing nonlinear data, and could not solve problems defined on such nonlinear
structure. The classical example of a problem that is not linearly separable is the
representation of the XOR function, which was shown to be unsolvable by a single
layer perceptron in Minsky and Papert (1969)."

Layers with nonlinear activation functions on the other hand are able to linearize
data that was not linearly separable originally. The composition of such layers, i.e.
the function computed by the complete network, ¥, is nonlinear as well, and able
to represent problems that a linear function cannot. In particular, for a large class
of nonlinear activation functions, formal results show that all functions of practical
interest to us can be (approximately) expressed by a linear combination of their output.
Two of the earliest and most well-known of these results, established independently
by Cybenko (1989) and Hornik et al. (1989), are commonly referred to as universal
approximation theorems for neural networks.

Softmax A special case of a nonparametric function of a network layer is the softmax
function. Unlike the nonlinearities of the hidden layers, the purpose of this function is
not linearization of data, but to represent model output as a probability distribution
For vector x € R¥, the softmax of x is:

eXi
k
s

softmax(x;) = '
e’

The components of softmax(x) sum to 1, and we can interpret the resulting k-
dimensional vector as a discrete probability distribution of k classes. Used in the
last layer of a network trained on a classification task, we can then interpret model
output as a probabilistic prediction over k possible outcomes.

4.2.2 Cost Functions

In order to train neural network models, i.e. adjust model parameters 6, we need to
define a training objective, according to which the current values of 8 are evaluated.
In supervised learning, the training objective generally consists of minimizing a cost
value, also called loss or error. This scalar value is given by the cost function of a model,
which is defined over the output of the model and a target solution.

1 The SLP is unable to solve the XOR problem because it lacks a hidden layer. Both a nonlinear activation
function and one or more hidden layers are needed for a solution.
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A simple cost function used for binary classification tasks is hinge loss:
C(z,t) = max(0,1 —z - t)

Here, z is the one-dimensional model output, i.e. the model prediction which of two
classes an input example belongs to, and ¢ is the target label, with classes represented
as elements of {—1, 1}. If prediction and target share the same sign (i.e. z and t are
both negative or both positive), and |z| > 1, hinge loss is 0, i.e. the model has learned
the intended classification. Otherwise, loss will be greater than 0, and increases
linearly with the distance between prediction and target.

The quadratic cost function, or mean squared error is defined as follows:

C(z,t) = 0.5 ||z — ]|}

where ||-||% is the square of ||||,, the Euclidean distance of z and t, or equivalently, the
L? norm of their difference, given by:

Iz, tll2 = V(z = t)(z — 1) (4.2)

The (categorical) cross entropy cost, or negative log-likelihood, is used when model
output is interpreted as a probability distribution over (discrete) classes:

Clz,t) = — Z log(z;)t;

where t is a d-dimensional vector with the target distribution over d labels or classes,
and z is the prediction of the model over these classes, e.g. the output of a softmax
layer, and log is the natural logarithm.

The next definition is a special case of general cross entropy, and the cost function
employed in the models of Chapters 5 and 6. For models that learn a hard classification,
i.e. if only their prediction over the target label matters, we can simplify cross entropy
for the cost of the correct label:

C(z,t) = —log(z,)
where t is the index of the target relation R, in the output of the softmax layer, i.e. z,
is the probability the model assigns to R,.
4.3 Recursive Neural Networks

In this section we describe the forward pass of the recursive neural network, and the
linguistic motivation for the architecture. We also discuss the limitations of the model,
which lead to the tensor-based variant defined in the following section.
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Sequence Processing The feed-forward architecture of Eq. (4.1), while shown to
be powerful both formally and empirically, is ill-equipped to deal with input sequences
of arbitrary length. In principle, we can construct an FFNN model for sequences of
any given length, by matching input layer dimensions and sequence length. However,
we are unable to use a single model instance to process sequences of different length,
i.e. we cannot share parameters across different input sizes. Naively, we could try to
share weights by setting input layer dimensionality to the highest expected sequence
length, then pad all shorter sequences by ‘dummy’ vectors. Several problems would
arise however — for example, dimensionality of such a model would be unnecessarily
large for all but the longest input sequences.

A more principled solution consists in recursively defining composition, as seen in
the case of the (simple) RNN architecture of Eq. (3.1). Due to the recursive composition
process of the RNN, sequences of arbitrary length can be processed by one model
instance, i.e. weights can be shared across examples of different length. Nonetheless,
the architecture has sometimes been criticized as being syntactically limited, since
composition proceeds in linear order over all sequences, ignoring their (assumed)
syntactic structure. The recursive neural network is intended to address this limitation
by composing words and phrases according to their position in a tree-structured
representation of a sentence.

tRNN Architecture In the form presented here, the recursive neural network, or
tree-structured recurrent neural network (tRNN), was introduced in Socher et al.
(2010). The tRNN is closely related to the tree-structured network architecture of
Goller and Kiichler (1996), which was itself based on the recursive auto-associative
memory (RAAM) of Pollack (1990). Socher et al. (2010), and the related proposals
collected in Socher (2014), streamlined the presentation of the architecture and
introduced several new variants of it, used in the construction of language models. As
a result of this work, tRNN models gained substantial popularity in the field of natural
language processing.?

The tRNN composition process structurally resembles the one defined in symbolic
models of semantics. Intuitively, it can be understood as follows: In sentence processing
tasks, model input is a parse tree of a sentence, together with vector representations
of its words. At each tree node, a recursive composition function reduces two d-
dimensional input vectors to a single d-dimensional output vector, representing the
subtree rooted at the current node. Composition proceeds until a sentence is reduced,
for the model output, to a single d-dimensional vector.

Tree-Structured Network Graph Formally, the order of composition in a tRNN
model corresponds to a directed acyclic graph (DAG), specifically: a directed rooted
tree with fixed branching factor two.? Tree nodes which are not parents of any other

2 Arguably, this popularity has waned again in the more recent past, with tRNNs often being replaced
by LSTMs, which themselves were superseded by convolutional networks, which in turn ...

3 All definitions here are based on binary tree input, but extensions to n-ary trees are straightforward.
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Figure 4.2: Bracketed input sequence and corresponding parse tree

nodes are called leaf nodes, and correspond to individual words of the input sequence.
Parent nodes result from the composition of its child nodes, and correspond to inside
representations that encode the entire subtree rooted at the node. We assume that tree
structure information is provided externally, so model input is a sentence, its parse
tree, and vectors for all words of the sequence. Tree input can be encoded in the form
of bracketed expressions — see Fig. 4.2 for an example of such an expression and its
corresponding parse tree. Alternatively, trees can be represented as sets of triplets
of the form (p — ¢; c,), where p is the parent node of child nodes c;, ¢,, which can
either be leaf nodes or the parent node of another triplet.

Given an input sentence, the network graph for the forward pass of the model
is constructed analogously to the parse tree of the input. Computing the activation
vectors attached to the nodes of the graph proceeds bottom up, by composition of word
vectors (the leaf nodes), previously computed internal node vectors, or a combination
of the two. Formally, this bottom-up computation is given by the recursively defined
tRNN composition function, defined next.

Composition Function For triplet (z,. X y) of input s, where x, y are word
vectors attached to leaf nodes, or activation vectors computed by Eq. (4.3), the com-
position of x and y for the activation vector of z, ,,) is given by:

Z(x,y) = f(W[x’y] + b) (4.3)

Here, [x; y] € R?? is the concatenation of x, y € R%, and W € R%*?9 defines the linear
transformation of 2d-dimensional input to d-dimensional output. Since dimensions
of child and parent vectors are identical, z, ,,) can be the input for composition by
Eq. (4.3) at the parent node of z(,. ,, thus allowing for a complete recursive reduction
of input s to a single d-dimensional vector.

Applying Eq. (4.3) to the example of Fig. 4.2 yields the root node representation:

f(W[f(W[f(W[vnot;vall] + b) ;Vpets] + b) 5
f(W [vnot;vwalk] + b)] + b)

Model Variants We described the tRNN architecture used in the models of Chap-
ters 5 and 6, but briefly mention here some existing variants of the architecture. Input
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Figure 4.3: Global tree structure and local composition in tRNN forward pass.
Rectangles represent vectors and colored circles their components; red and yellow
denote left and right children of a parent node. Two-colored vectors at the base of a
node represent their concatenation, used as input for the linear transformation by
matrix W. The output of this transformation, in green, is fed into nonlinearity f.
The resulting activation vector is colored according to its input position in the next
composition step. Model output at the root node is blue.

other than sentences can be processed by tRNN models, including images, split up
into image segments (Socher, 2014, Section 3.1). While we defined model output at
the root node only, activations of internal nodes can be used as well, e.g. to predict
sentiment ratings for phrases below sentence level (Socher, 2014, Section 4.3). Parse
trees were assumed to be provided as external input, while a variant of the model can
learn to parse input sentences itself (Socher, 2014, Section 3.1).

The model we described uses unlabeled tree input, i.e. without syntactic categories
of tree nodes. Given labeled tree input, the syntactically untied tRNN (Socher, 2014,
Section 4.1) defines the composition of nodes x, y with labels X, Y as:

230, v) = S (W Vs y] + b)

where matrix W*Y) is chosen depending on the syntactic labels of the child nodes.
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4.4 Recursive Neural Tensor Networks

While the tRNN model of the last section globally accounts for linguistic structure, by
performing a hierarchical forward computation analogously to a parse tree of the input
sentence, local composition at the tree nodes remains additive. As discussed previously,
this type of function seems inadequate for the representation of composition including
function words, such as adjectives, transitive verbs or negation.

The syntactic structure of composition in the tRNN suggests that the composition
process is defined by a function of the constituent vectors, in analogy to the functions of
formal semantics. In reality, tRNN composition input is a concatenation of constituents,
which is equivalent to the addition of two independent mappings over the arguments.
This representation seems to contradict our understanding of functional application
in compositional models of semantics.

A possible alternative is the recursive matrix-vector model of Socher et al. (2012),
where each word is represented by a matrix and a vector, and composition is defined by
symmetric functional application of the constituents. The requirement that words can
act as functions on other words is satisfied here, but due to the added word represen-
tations, model complexity quickly grows with vocabulary size. A preferable solution
seems to be employing higher-order tensors, allowing for an adequate representation
of argument structure, while still using a single, global composition function.

Tensor Layer by Slices With the above considerations in mind, the recursive neural
tensor network (tRNTN) is proposed in Socher et al. (2013a,b). The previous tRNN
composition function of Eq. (4.3) is augmented by a third-order tensor term, and
composition is given by the sum of a linear map and a bilinear map of layer input.
Defined by tensor slices, the tRNTN composition function is then:*

2y = FETVEDy + Wixsy] + b) (4.4)

where x,y € R¢ is the composition input, and V € R¥*4*4 is a full-rank third-order
tensor defining a bilinear map from R¢ input spaces to an R¢ output space. The
remaining terms are identical to those of Eq. (4.3).

V) the i-th of d slices of V, determines the i-th component of zy, € R, the output
vector of the tensor term, as follows:

zy; = xTV(i)y

We can think of the tRNTN layer output z as resulting from three d-dimensional terms:
tensor output z), defined above, zy,,, the linear combination of concatenated input
arguments parametrized by W, and the constant term z;, = b. Summing, and applying
the nonlinearity, yields the layer output, z = f(zy + zy, + z3).

4 We define the tensor function of Socher et al. (2013a) and Bowman et al. (2015), which differs from
the tensor of Socher et al. (2013b), where input consists of concatenated child vectors, i.e. [x;y]in
place of x and y in Eq. (4.4).
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Matricized Tensor Layer Rather than using the definition by slices of Eq. (4.4), we
will usually describe the tRNTN in matricized form, which allows for a more intuitive
exposition of the multiplicative interaction of arguments. We can then equivalently
define the tRNTN composition as follows:

Z(y) = [(Vn(x®y), + W[x;y] + b) (4.5)

where V_ is the matricization of third-order tensor V € R¥4*? and (x ® y), the
vectorization of the tensor (or Kronecker) product of input vectors x and y. All other
terms are identical to Eq. (4.4).

A more detailed view of the matricized tensor V, and the vectorized Kronecker
product of input vectors x, y is given by:

[ %11 ]
W ]
Vn(x®y), = :
N |y
[ XqYdl

Here, tensor V is represented by its mode-3 matricization, defined in Appendix A.0.3,
resulting in the d x d? matrix V,,. The Kronecker product of input x, y is given in
vectorized form, arranged as a d? X 1 column vector. We denote here by superscript
indices v . .. v(9) the slicing index of the mode-3 matricization. These indices also
allow us to connect the slice definition with the matricized definition: In the matricized
view, the d slices of Eq. (4.4) are vectorized, and vertically stacked row-wise to form
matrix V,,. Composition of V,, with d2 X 1 column vector (x ® y), is given by matrix
multiplication, and yields a d-dimensional vector, the tensor term of Eq. (4.5), and
equivalent to the tensor term of the slice definition.

In the previous definitions we described composition of constituents belonging to
R¢ spaces, for a composition output in R?. We can in principle define composition
over arbitrary dimensions, e.g. by some tensor } € R” X(PXq) 5 1n order to allow for
composition of arbitrary constituents, we will generally demand that their dimensions
match, thus constraining the mapping to RPPXP)_ For recursively defined composition,
such as in the tree-structured networks described here, we demand additionally that
input and output dimensions match, thus constraining the mapping further to the
case of our definitions, }V € RP*(P*p) 6

5 parentheses and index order here mark, purely for convenience, a mapping from R? x R to R”.

® Note that the models of Chapter 5 also employ the functions of Egs. (4.3) and (4.5) in a non-recursive
composition step, and input and output dimensions differ in this case.
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Figure 4.4: Global structure and tensor composition of tRNTN forward pass. The
syntactic structure of the tRNTN forward pass is identical to the tRNN one, but local
composition is multiplicative rather than additive. Node input in orange is given by
the Kronecker product of child vectors. The (matricized) tensor V is applied to this
vector by matrix multiplication. The graph only depicts calculations of the tensor
term; the full function of Eq. (4.5) corresponds to summing green vectors at each
node of Figs. 4.3 and 4.4, and adding the (omitted) bias term.

4.5 Contrasting Additive and Multiplicative Composition

Using the definitions of the previous sections, we can now describe in greater detail
how additive and multiplicative composition differ in the two recursive neural network
architectures we described here.

Reinterpreting Additive Composition By a basic algebraic equivalence we can
split the tRNN d X 2d transformation matrix W, which is applied to concatenated
child vectors, into two separate matrices, such that each matrix half contains the
transformation parameters for a single child vector. We can then replace the standard
tRNN definition, repeated below as Eq. (4.6), by the equivalent Eq. (4.7), where W*
and W7 are the d X d matrix halves transforming child vectors x and y separately.
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Figure 4.5: Additive vs. multiplicative composition in tRNN and tRNTN mod-
els. Close-up view of the composition process shown in previous Figs. 4.3 and 4.4.
Subfigures 4.5a and 4.5b of this graph equivalently depict tRNN composition. 4.5b
visualizes Eq. (4.7), emphasizing that additive composition is a sum of independent
linear maps for the left child (red) and right child (yellow). Accordingly, we separate
the input for transformation W, split into W*, WY, for a more accurate depiction of
additive composition than 4.5a. Input for tensor V in 4.5c is the tensor product of
child vectors. The resulting 9-dimensional vector is colored orange to emphasize the
direct interaction of left and right child components given by their products.

For ease of comparison, we repeat the tensor layer definition as (4.8) below:

z=f(Wlx;y] + b) (4.6)
= f(Wc + WYy + b) 4.7)
= f(Vmx®y), + Wlx;y] + b) (4.8)

Comparing Egs. (4.7) and (4.8) we can naturally contrast additive and multiplica-
tive composition behavior. It follows from Eq. (4.7) that the additive transformation
of a tRNN does not contain parameters which scale component combinations over
child vectors x and y. While composition output is a weighted sum of all components,
the parameters of W apply to components individually, in effect, composing them
independently. In contrast, the mapping given by V,, in Eq. (4.8) applies to the
product of child vectors x and y, i.e. the tensor parameters define a weighted sum of
component combinations over the constituents.

Additive and Multiplicative Negation In our example of Fig. 4.5, composition
arguments are ‘not’ and ‘walk’, i.e. the model has to represent negation of an expression.
In the additive model, composition is a weighted combination of the features that
define ‘not’, and the features of ‘walk’. Informally, we can think of the representation
as a (weighted) average of the separate meanings of the constituents, apparently
contradicting our linguistic intuitions of how negation should be represented. In
contrast, composition output in the multiplicative model is given by a weighted sum
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of (product) combinations of the features of ‘not’ and ‘walk’. Here, components of the
negation expression can directly ‘interact’ by multiplication with the components of
the negated expression. Accordingly, the tensor representation appears to be closer to
our linguistic conceptions of negation.

4.6 Learning

4.6.1 Learning by Gradient Descent

Gradient descent, or in practice more commonly: stochastic gradient descent (SGD)
is widely used as the fundamental algorithm in training neural networks. Given a
differentiable, convex multivariate function defining the network error on a given task,
SGD in fact guarantees convergence to a global (error) minimum.

In practice, most tasks and their objective functions do not satisfy the convexity
requirement, yet there is mounting evidence that SGD performs well in practice on
these problems as well. Dauphin et al. (2014) describe the problem of saddle points as
constituting a major challenge for high dimensional non-convex optimization, more
so than local minima.

Note that adjusting the parameters of function ¥ in the direction of the gradient
constitutes the greatest increase of the value of ¥ (x). Since our goal is minimizing the
output of the network function, i.e. the error, we adjust parameters by taking a step
in the direction of the negative gradient.

The parameter updates defined by gradient descent can be written in vectorized
form as follows:

9n+1 = en - UVG(P(Q, X, t)

Where 0, . ; is the new parameter set of the network function resulting from updating
the current parameters 6, by the (adjusted) gradient. We write Vo (6, x, t) for the
gradient of the cost with respect to the parameter set 6, for input x and target ¢, both
assumed to be fixed for the calculation of the gradient.”

4.6.2 Backpropagation

An adjusted backpropagation algorithm for neural networks defined on tree-structured
input, termed backpropagation through structure, was proposed in Goller and Kiichler
(1996).

So far, the output of the error function told us by how much the model is off from
the target solution, we still need to know how to improve the adjustable parameters
of the model in order to reduce the error. Gradient descent provides us with the
general format to do so, but in an implementation of a non-trivial model, we also
require an efficient way to perform the necessary calculations. A naive approach

7 Note that (0, x, t) refers to the network function including the cost calculation. We could instead
explicitly separate the cost function and the actual model by writing: C(¥ (6, x), t).
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might consist of a layer-wise application of the (multivariate) chain rule, the more
efficient way to proceed is via backpropagation (BP), or rather, in the case of our model,
backpropagation through structure.

The backpropagation algorithm is sometimes characterized as “the chain rule
plus dynamic programming” in the computer science or machine learning literature.
Alternatively, based on viewing BP as a top-down sequence of matrix-vector calculations,
the algorithm can be characterized as exploiting associativity of matrix multiplication
in order to perform the required computation faster than a naive implementation
proceeding in the reverse direction.

Backpropagation Equations The BP algorithm is defined by four fundamental
equations: a formula for the delta error of the final output layer; a formula to recursively
calculate a lower layer’s delta error, given the layer immediately on top, and two
formulas allowing calculation of the gradients w.r.t. the trainable parameters, given
the delta error of the corresponding layer.

In training the tRNN, two important differences need to be noted between back-
propagation through structure (the name given to training an unrolled tRNN via
backpropagation) and backpropagation as employed in FFNN. First, the requirement
to sum up all layers’ gradients w.r.t the trainable parameters before performing exactly
one update at the end of one parameter update run (i.e. at the end of processing one
minibatch of training input). Second, since intermediate layers take two vectors from
preceding layers (leaf nodes or intermediate nodes themselves) as input, the delta
error has to be split up between the child nodes, so that only that part of the error
vector is passed into the branch of the tree that has contributed to the error calculated
at the higher level of the tree.

Tensor Gradients One additional complication comes from the update now being
necessary as well for the tensor, i.e. calculating the gradient vector for a bilinear
map. The crucial difference to the matrix calculation is that now, we derive over two
arguments multiplied with each other, instead of a single argument, resulting in the
gradient calculation on the tensor component being (in vectorized form):

OE
W = 5l+1x®y

4.6.3 Advanced Optimization

Gradient descent, or more commonly, stochastic gradient descent, is the general
optimization algorithm used to train most neural network models. Various methods
exist that ‘optimize’ gradient descent-based optimization, for example, algorithms that
adjust the step size of parameter updates during training.

Adaptive Learning Rates As noted in Section 4.6.1, successful training requires
scaling down gradients by a learning rate before using them to update parameters.
The simplest solution is to use a constant learning rate, in which case its value becomes
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an important hyperparameter of the model. More sophisticated optimization methods
exist that adjust a manually set learning rate during training, or completely remove
the need for a manually specified rate. These adaptive learning rates can further be
allowed to vary between different parameters. AdaGrad, and its variant AdaDelta,
are algorithm implementing such a parameter-dependent adaptive learning rate, and
are the optimization algorithms used in the models of the following chapters. These
methods, similar to momentum methods, keep track of historical gradient information,
and use this history to scale the current gradient before updating weights. Letting the
learning rate vary between weights is motivated by the idea that infrequently updated
parameters, or parameters that are only changed by a small amount, should receive a
learning rate ‘boost’ compared to those that are updated more frequently.®

AdaGrad The AdaGrad (“adaptive gradient”) algorithm was introduced by Duchi
et al. (2011). It was widely adopted in the following years, often used to train deep
neural networks. By now, it has been largely superseded by its more recent variants,
such as AdaDelta (defined next) or Adam (Kingma and Ba, 2014).

Section 4.6.1 introduced the basic update rule of gradient descent methods, where
0,111, the i-th parameter of 6 at step n + 1 is given by:

0n+1,i = Hn,i —N9n,i

where 7 is the step size or learning rate, and g,, ; is used as a shorthand for the i-th
element of Vo (6, x, t) at step n, i.e. the gradient with respect to the i-th adjustable
network parameter.

Based on the regular update rule, the AdaGrad update is given by:

9n+1,i = en,i - # In,i
Gt €

Here, G,, is a diagonal matrix containing the gradient history collected over previous
updates, and its entry G,, (; ;) contains the sum over the squared gradients with respect
to parameter i up until the current update step n. As before, 7 is a fixed, initially
specified learning rate, which is however scaled here by the gradient history term in the
denominator. € is a small constant added for numerical stability in implementations
of the algorithm.

In vectorized form, the AdaGrad update rule is defined as:

n
9n+1 = en —-———=0g,
VG, +¢€
Note that the update rules defined above still need to be adjusted for the number
of examples seen during the gradient calculation. Usually, this means scaling the
equations above for the hyperparameter of minibatch size.

8 While the usual motivation of adaptive algorithms like AdaGrad is to ensure that parameters are
updated sufficiently despite input sparsity, we briefly discuss in chapter Chapter 5 why these methods
seem to gain additional importance in the training of tensor models.
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AdaDelta AdaDelta, introduced in Zeiler (2012), is a variant of the AdaGrad al-
gorithm, intended to mitigate the tendency of the original method to indefinitely
accumulate historical gradients, eventually suppressing updates entirely. Instead of
collecting all previous gradients like AdaGrad, the history of AdaDelta is given by a
moving average of gradients (or updates), effectively ‘forgetting’ historical gradients
that were encountered in the distant past.

The history of AdaDelta is given by the following moving average over gradients:

E[¢*], = pE[g*],_, + (1= p)gn (4.9)

where g, is the gradient at step n as before, g2 the vector of its squares, and p is a
manually set constant, determining the decay of influence of historical gradients on
the current gradient (update). Note that due to recursive multiplication of the decay
factor p, Eq. (4.9) defines an exponential moving average.

Based on the history of squared gradients, the AdaDelta parameter update is:

0,,,=0——"1 (4.10)

1/E[gz]n +€ o

4.6.4 Regularization

Regularization techniques are used to reduce the generalization error of models, i.e.
their aim is to keep performance on unseen data — usually measured on a test set —
close to the model performance on the training data. Regularization is particularly
relevant in complex models, with a large number of trainable parameters, to prevent
the model from overfitting.

Regularization Methods Various regularization techniques are in use, the simplest
one being early stopping, i.e. interrupting training once model performance on out-of-
sample error begins to degrade. L' and L? regularization both implement a form of
weight decay — we will describe these two methods in detail in the following paragraph.
Another method that gained popularity in recent years is dropout, introduced in Hinton
et al. (2012), which prevents overspecialization of the learned function by randomly
disabling a subset of weights at each iteration. Batch normalization (Ioffe and Szegedy,
2015), a widely employed algorithm for normalizing layer input, while not explicitly
introduced as a regularization method, has been shown to improve generalization
capacity of models, similar in effect of explicit regularization.’

Weight Decay Weight decay, arguably the most widely employed regularization
technique, adds a regularization term to the training objective that ‘penalizes’ weights
which deviate greatly from their prior value. Two types of weight decay are frequently

9 There is mounting (empirical and formal) evidence that the different methods are strongly linked. For
example, Collobert and Bengio (2004) relate the effects of early stopping and L? regularization, while
Wager et al. (2013) establish a link between L? regularization and dropout.
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used, L' and L? regularization. Both inhibit weight specialization by adding a term
summing over network parameters 6, thereby progressively increasing the cost of
weights with high (absolute) values.

L' regularization adds the sum of absolute values of € to the training objective:

A2 10;]

while L? regularization adds the sum of squared values:

A 2
5 %i0;

Here, A is the regularization coefficient, a constant value to scale the impact of the
regularization term. Note that A is frequently multiplied by % in L2 definitions to
cancel out the square when taking the derivative. We can equivalently express L?
regularization in terms of the L? norm of Eq. (4.2) as:

3lell;

4.7 Conclusions

The architectures we described in this chapter appear to be capable of performing
well on compositional tasks, due to the structurally guided processing mechanism
they employ (visualized in Sections 4.3 and 4.4). In addition, the tRNTN architecture
employs a (full-rank) third-order tensor as part of its composition function, which
potentially adds to the expressiveness of the model.

The next step is then to put these models to the test: first, in a replication of the
main results of Bowman et al. (2015), then, in an extension of these experiments that
aims to evaluate whether the models are able to generalize sufficiently.
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Part I1

Results and Discussion
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Chapter 5

Language Inference with Neural
Networks

We describe in this chapter the natural language inference task of Bowman et al.
(2015), and report the results of our replication of the main experiments of this study.

5.1 Quantified Inference Task

The quantified inference task of Bowman et al. (2015) is aimed to simulate natural
language inference, with the goal of learning which type of inference relation holds
between two expressions given to the model. The data used to train and test models
is generated by an adapted (and reduced) version of the natural logic of MacCartney
(2009), previously introduced in Section 2.1.2. The relations that the model should
predict are the seven basic relation of the natural logic. Examples of pairs of input
sentences are shown in Table 5.1.

The model uses as its architectural core the tRNN and tRNTN of the previous
chapter. A pair of sentences, together with a target relation, i.e. the relation that
is correct and needs to be learned by the model, is given as input. Each sentence is
processed by a separate network based on either the tRNN or tRNTN architecture.
This part of the modeling process is performed by what the authors call the composition
networks. As seen in the previous chapter, the final output of these networks is a
single vector, the model representation of the entire sentence. While the sentences
are processed separately, the weights of the two composition networks are shared, i.e.
trained over all inputs.

The two resulting vectors are then fed into a separate comparison layer, employing
the same function as the composition layer below, but with a distinct set of parameters
defining the function of the layer. As the final step, the output of the comparison
layer feeds into a softmax classifier layer, which represents the model’s belief of which
relation holds for the pair, expressed as a probability distribution. The highest valued,
i.e. “most likely” relation is selected, by applying the max function to the softmax
layer output, resulting in the relation predicted by the model for a given pair of input
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Symbol Sentence Pair Example

X=y ((all warthogs) walk) ((all warthogs) walk)

xCy ((all warthogs) walk) ((all warthogs) move)

x3dy ((all warthogs) move) ((all warthogs) swim)

xMNy ((all warthogs) walk) ((not_all warthogs) walk)

x|y ((all warthogs) swim) ((all warthogs) walk)

X~-y ((all warthogs) (not walk)) ((not_all warthogs) swim)

X#y ((all warthogs) (not walk)) ((not_all warthogs) (not swim))

Table 5.1: Examples of NatLog basic relations used in training data

sentences. The model layout of the quantified inference task, instantiated by an
example from the data, is shown in Fig. 5.1.

Language and Vocabulary The synthetic language that is used to generate the
data consists of 20 lexical items: 10 quantifiers, a ‘symbol’ for negation, 5 nouns and 4
verbs. The quantifiers set contains ‘all’, ‘some’, ‘most’, and two numerical expressions
(‘two’ and ‘three’). The remaining 5 items are distinct symbols of their negation. This
choice, of representing quantifiers and their negation as distinct, non-compositional
symbols will become relevant in our further experiments shown in Section 6.2.

5.2 Model Implementation

We opted for a low-level implementation of the investigated models, by the reasoning
that doing so should facilitate a deeper analysis of the model internals. Basing our
implementation on one of the established machine learning frameworks like TensorFlow
or Theano presumably would have been easier, but also would have limited our ability
to perform a low-level analysis on the individual components of the architecture, in
particular, the tensor term.

For example, the complete low-level control over the composition mechanism
allowed us to perform an initial investigation whether a computationally tractable,

[all reptiles swim / some turtles swim}

[some turtles swim]

swim

all reptiles swim

all reptiles

Figure 5.1: Model layout of the Quantified Inference Task

some turtles
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Reported Replication

Train Test Train Test
25/75 tRNN 99.6 99.2 97.8 964
30/90 tRNN - - 100 99.6
16/45 tRNTN - - 100 99.9
25/75 tRNTN 100 99.7 100 100

Table 5.2: Classification accuracy (%) reported by Bowman et al. (2015) and of our
replication (average over 3 training runs using early stopping)

‘minimal’ tensor layer is expressive enough to duplicate our main results of Chapter 6
for which a full-rank tensor was used.!2

5.3 Replication of Quantified Task Results

The data provided by Bowman et al. (2015) contains different sets, presumably corre-
sponding to different splits of the data into training and test portions. Unfortunately,
the authors are not explicit about their motivation behind the split, and further, do
not specify which sets where used for their results on the quantified inference task.
We could not determine the systematicity of these sets, and did not find significant
differences between them in our own experiments. In all of our experiments, we use
therefore the strategy of testing models for a single training run across all data sets, to
establish that no major performance differences emerge. We then report our results
as an average of several training runs on only one of the sets, usually the £1 set of
Bowman et al. (2015), since multiple training runs across all sets were prohibitive
due to training time.

The first step of the experimental evaluation of the tensor network consisted in a
replication of the results reported by Bowman et al. (2015). Our attempt to replicate
the original results succeeded fully, even reaching accuracy scores above the reported
results in some cases.

Table 5.2 shows the reported results of Bowman et al. (2015) and our own repli-
cation results. We could not replicate the results of the tRNN model with dimension
25/75 (composition network/comparison layer), hindered by the fact that the authors
did not provide details of all relevant hyperparameters. Instead, we were able to repli-
cate (and slightly improve) the reported results by increasing model dimensionality
and using optimized hyperparameters. In particular, we manually tuned the strength
of L2 regularization, since the higher dimensional tRNN tended to overfit otherwise.

1 We report the initial results of this architectural adjustment in Section 6.5.2.

2 Example functions of our research code are shown in Appendix B. The full code and data are made
available on: https://github.com/backslashvarphi/.
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As a consequence of having trained a higher-dimensional tRNN than the original
study, we could also more closely compare the tensor and matrix network in terms
of their total number of parameters. Recall that in the cubic tensor, the number of
tensor weight grows much faster than the quadratic matrix layer. Comparing a model
using a lower dimensional tensor and a higher dimensional matrix brought us closer
to a ‘fair’ comparison between the models in terms of the total number of trainable
parameters. The 16/45 tensor contains around 18,000 trainable weights, in contrast
to the 8,500 weights of the 30/90 matrix model. We noted also that further increasing
the dimensions of the matrix model did not improve results.

While the results of Bowman et al. (2015) report a small, but noticeable difference
between the tRNN and the tRNTN, it seems that we were able to level the difference
by our increased dimensional tRNN model. As will be seen in Chapter 6 however, we
eventually succeeded in sharpening the contrast between these two models by an
adjustment of the data and using a new testing regime.

5.4 Other Experiments

Our main goal was a replication of the maximally complex artificial task (“quantified
experiments” in Bowman et al. (2015)), as a prerequisite for the analysis of Chapter 6.
However, we also performed some experiments on the natural language data sets of the
original study, both to confirm the correctness and efficiency of our implementation,
and to determine whether the reported results of Bowman et al. (2015) are aligned
with our own findings.

The natural language experiments of Bowman et al. (2015) are based on the SICK
data set of Marelli et al. (2014). The set contains around 10,000 natural language
sentences, from image and video captioning data. The dataset provides target relations,
and parse trees. This data set only uses three target labels, ‘neutral’, ‘entailment’, and
‘contradiction’.

The model layout we used was simpler than that of Bowman et al. (2015): we
did not use pre-trained embeddings, and omitted the additional layers between the
vocabulary matrix before and the composition network used in the original model.
Despite these simplifications, the tensor model reached a performance of 99%,/72%
after about 500 epochs, with layer dimensions 16/45 (for a total of around 53k
adjustable parameters). While our results stay below the reported values (98%/77%),
our experiments seem to confirm that the model is in principle able to learn the task
to a satisfactory degree.
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Chapter 6

Model Representations and
Generalization

The previous chapter gave an account of our preliminary results, in particular, a
replication of the experiments on language inference and reasoning with quantifiers
and negation by Bowman et al. (2015).! An independent confirmation of these findings
appears to be a prerequisite for further analysis — however, replication on its own
cannot provide much additional insight into the inner workings of the models which
produced the results.

Accordingly, in the current chapter we aim to address some of the latent questions
that remain after a replication and comparably basic quantitative evaluation of the
results: What are the limits of the inference system learned by the model? How are
the components of this inference system represented inside the model? Finally, and
more broadly, our goal is to assess whether the claim is justified that the model learned
to “reason logically” in a general sense.

6.1 A Glimpse into the Black Box

The field of machine learning, and in particular, neural network research, has some-
times been criticized as taking a “black box” approach to scientific modeling. These
model often yield impressive practical results, the argument goes, but the solutions
emerging from them are inherently opaque, and do not advance our understanding of
the modeled phenomena themselves. We suggest to place the analysis of this chapter
within the context of this discussion then, going beyond simply reporting of barren
performance results, instead attempting to gain a better understanding of these models
that seem to defy direct interpretation.

L A closely related set of experiments is described in Bowman (2014). For additional commentary by
the author on using MacCartney (2009) natural logic, see Sections 3.3 and 5.4.2 of Bowman (2016).
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Motivation The authors of Bowman et al. (2015) claim, quite generally, that the
results of their experiments indicate that neural network models are able to “learn
logical semantics”. As discussed in Chapter 2, distributional semantic models evidently
perform well on tasks requiring the extraction and representation of lexical information,
but it is less certain whether they can also perform well on tasks based on structural
semantic processing. Accordingly, the assertion of Bowman et al. warrants further
investigation, since a confirmation of their claim could be a substantial addition to the
debate whether logical reasoning, widely considered to require symbolic treatment,
can be represented by models without symbolically defined logical mechanisms.?

Choice of Experiments We considered two of the experiments of Bowman et al.
(2015) as potential candidates for further analysis as outlined above: the quantified
inference task — the structurally most complex of the experiments using synthetic
language data, and the SICK experiment — the natural language experiment based on
the SICK textual entailment challenge.

The SICK experiment (Bowman et al., 2015, Section 6) seemed appealing, con-
sidering that modeling actual language data is the eventual goal of natural language
processing. Our replication of the SICK experiment (see Chapter 5) produced results
sufficient for further investigation, yet we eventually opted for the synthetic language
experiment. For our investigation, we were mainly interested in a clearly delineated
model behavior on logical aspects of the task, as well as the ability to analyze model
internal representations of logical components. For both of these key desiderata, the
SICK experiment proved to be less than ideal.

First, the ‘messiness’ — or complexity — of natural language data complicated the
separation of (structural) logical aspects of reasoning and lexical semantic aspects.
Second, since our goal was to analyze and interpret the model internal representations,
the higher dimensionality of the models used to run the SICK experiment proved to be
problematic. For example, our results on model representations of logical constants
(Section 6.4 of this chapter) were enabled by the relatively low dimensionality of
models that were able to solve the quantified inference task. In higher-dimensional
models, a similar ‘direct’ interpretation of learned representations presumably would
have not been possible, despite employing dimensionality reduction techniques on the
model output and internal representations.>

Quantified Inference Task Following the reasoning above, we focused our analysis
on the inference experiments using artificial language data with quantifiers and
negation (Bowman et al., 2015, Section 5). The controlled environment of an artificial

2 We will eventually arrive at a nuanced conclusion regarding the question. At the risk of spoiling the
surprise, it seems that symbolic approaches are perhaps not completely doomed yet.

3 In principle, dimensionality reduction allows visualization of even higher dimensional data. However,
the results of Section 6.4 rely on a particular reduction method (PCA), and a small number of resulting
(informative) dimensions. Other techniques, such as t-SNE, could visualize more complex data, but
would not preserve the global organization of model representations that we were interested in.
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language allowed us to cleanly distinguish different components, for example, to
analyze particular logical constants in isolation. Further, the comparably low model
dimensionality allowed us to extract representations from the trained networks that
(almost) directly correspond to the internal representations — permitting an undistorted
view into the “black box” of our models.

Despite the synthetic nature of the language data, we believe the quantified
inference task is of considerable interest, since it contains a wide range of language
phenomena encountered in actual language data. The data consists of recursively
constructed sentences, includes quantification and negation, and requires accounting
for interaction between lexical and structural semantic information, as well as non-
trivial syntax/semantics interplay. We also describe in the following section how the
original task was adjusted to make the learning process more challenging, by adding
a ‘missing’ aspect of compositionality to the data.

Nonetheless, since we are analyzing a synthetic data task, applicability of our
results to larger natural language tasks cannot be taken for granted, and further
evidence or formal arguments in favor of their generality is required. We will discuss
these limitations, and conversely, the extent to which our results seem applicable to
language task in general in the results discussion of Section 6.5.

Analysis Steps We outlined above — in general terms — the goals of our analysis:
assessing to which degree the investigated models learned a general form of reasoning,
and to gain an understanding of how the models solved the reasoning tasks ‘internally’.
Another (related) objective is to find evidence whether the more complex, theoretically
well-justified model outperforms the simpler model in practice. In other words, we
want to know whether the three-way (tensor) model has any significant advantage
over the two-way (matrix) model, to justify its added complexity.

Our first step, intended to heighten the performance distinction between the two
models, consists of a subtle adjustment of the logical language used to generate the task
data. This adjustment, mainly affecting model training, increases the task difficulty,
while potentially also rendering the data structurally more informative. Next, we
employ a different set of sentences for testing the trained models on unseen data. The
new test set, motivated by logical considerations, replaces the original random test
cases, and should provide a better measure of the models’ generalization capacity.

The previous steps constitute the quantitative part of our analysis, which will be
followed by the qualitative analysis of learned representations extracted from the
trained models. Here, we focus mainly on representations of logical constants of the
task language, i.e. the classically interpretable quantifiers and the negation operator.

Finally, we will discuss both quantitative and qualitative results in tandem, and
suggest a causal link between the two.
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Original CompQuant Examples

not_all not all (((not all) warthogs) walk)
not_most not most (((not most) mammals) (not move))
no not some (((not some) turtles) growl)

1lt_two 1t two (((1t two) reptiles) (not walk))
1t_three 1t three (((1t three) (not pets)) (not swim))

Table 6.1: Original and adjusted compositional quantifiers (CompQuant)*

6.2 Increasing the Task Difficulty

As noted in Chapter 5, model performance on the quantified inference task was close
to perfect, with both tRNN and tRNTN models achieving nearly 100% prediction
accuracy on training and test data. Designing models that perform well is evidently
the purpose of applying machine learning methods to natural language tasks. Yet,
instances of extremely high model performance can also invite additional scrutiny,
both of the methodology and the investigated task.

One concern that can be voiced is that the task was potentially too simple, only
allowing limited conclusions to be drawn from the results achieved on it. A related
concern regarding task difficulty arises from the specific goals of our analysis. Since
both model architectures perform close to the maximum, we are unable to determine
whether a substantial capacity difference exists between the simpler tRNN model and
the more complex tRNTN model. A higher task difficulty is likely to decrease the
performance of both models, yet ideally, might not affect both models equally, thereby
exposing a potential performance difference.

Finally, the reported performance raises doubts whether the holdout method was
implemented with sufficient consideration for the properties of the particular task.
Specifically, the possibility needs to be considered that the original train/test data
split is unsuitable as a test for model generalization on a logical reasoning task. This
last concern will be the topic of Section 6.3, while we address here the previous issue
by increasing the general difficulty of the task.

Incomplete Compositionality There are several ways to reach the objective of
increasing the difficulty of the quantified inference task of Bowman et al. (2015). For
example, we could increase the vocabulary size of the language used to generate the
task data, by adding lexical items to an existing word class (nouns and verbs) or a
new one. However, since our main interest lies in the logical aspects of the task, we
instead focused on the logical expressions of the task language rather than the content
words. Taking a closer look at the data, we were able to identify the potential for a
selective difficulty adjustment among these expressions.

4 Verbatim data excerpts, highlighting the effect of a single input character on the implicit task definition.
Original data: negation and quantifiers connected — non-analytical quantification step. Adjusted data:
separate symbols — compositional quantification step.
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We noticed that the data of Bowman et al. (2015) includes a connecting character
between quantifiers and ‘not’, effectively representing quantified expressions and their
negation non-analytically (see Table 6.1 and corresponding footnote). For example,
‘all’ and ‘not all’ are distinct symbols, not further decomposable by the model. As a
result, no systematic relation is established by the data between quantified expressions
and their negation, deviating from an otherwise compositional task.

Since the experimental section of Bowman et al. (2015) makes no mention of
this peculiarity, we can only speculate as to why the data is structured in this way.
Possibly, the authors wanted to avoid the ‘ambiguity’ that would result from associating
a single symbol with the negation of both lexical terms (“not mammal”) and logical
expressions (“not some”). If so, introducing a second negation symbol, i.e. distinct
“lexical negation” and “logical negation”, could perhaps be motivated as a concession
to the demands of a data-driven approach. Even so, from a semantic perspective, these
‘non-compositional’ quantifiers appear to be both unwarranted and undesirable, and
should be replaced by their compositional counterparts.

Our difficulty adjustment consists then in extending task compositionality to the
quantification step of sentence construction, removing the (non-analytical) negated
quantifier expressions, and replacing them by a combination of ‘not’ and the appropri-
ate quantifier. A similar replacement is made for expressions of the form “(exactly)
three” and “less than three”.

CompQuant Data We use the £1 data set of Bowman et al. (2015) for this data
adjustment, and for the further experiments of this section. As before in Section 5.1,
our experiments use a single data set (of five) since no discernible differences could
be found between single model runs on these sets, and no motivation of the splits is
offered or could be derived by us. For brevity, we will from now refer to training or
test data that we adjusted for quantifier compositionality as CompQuant data.

The original data contained 5 quantifiers (all, most, some, three, two), in addition
to their negated forms, for a total of 10 language elements. Removing the negated
forms, adding a symbol for “less than”, and reusing the negation symbol for nouns
and verbs for quantified expressions, our adjustment decreases the number of symbols
by 4 in total. Despite this reduction of the vocabulary size, the overall difficulty of the
task increases. For one, the composition process now requires an additional processing
step for negated (and “less than...”) sentences . While this increase of complexity
might seem minor, recall that task complexity is comparably constrained due to short
sentences being generated by the language. In terms of (internal) network nodes
required for the compositional processing of one sentence, our adjustment increases
the maximum number from 4 to 5, i.e. a noticeable increase in comparison to the
original task complexity.

Further, replacing the separate symbols arguably makes it harder for models
to merely memorize the distinct cases — as opposed to finding a general solution.
Previously, distinct symbols (represented by distinct vectors of the model vocabulary)
were assigned to each type of quantified expressions, making it easier for models to
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Replication CompQuant
Train Test Train Test
30/90 tRNN 100  99.6 98.3 97.7
25/75 tRNTN 100 100 100 99.9

Table 6.2: Replication results (original data) and CompQuant results (original data
with substituted quantifiers of Table 6.1).°

fit the different cases individually by adjusting the weights of the associated vectors
during training. Memorization is still not excluded, but seems less likely now, since
negated (and “less than”) expressions now globally share the respective symbol. While
potentially also improving the generality of model solutions, at face value, the more
systematic data representation should be harder to fit on a per case basis, and therefore,
pose a greater challenge for models that attempt to solve the task unsystematically.

Initial Results As a first application of the higher-difficulty task language, we train
tRNN and tRNTN models on the adjusted training set, using the hyperparameters of
the best models of Chapter 5, then evaluate their performance on an adjusted version
of the original test set. The results of this experiment are reported in Table 6.2. We
note first that the performance gap between the tRNN and tRNTN observed in our
replication results persists under the new task setup. Further, performance of the two-
way tRNN noticeably suffers (—1.9 percentage points), while the three-way tRNTN
performance is mostly stable (—0.1 points). We conclude then that these initial results
confirm our assumptions about an increased task difficulty, expressing themselves
mainly in a performance degradation of the simpler model.

Nonetheless, the difference between the two models is still comparably small, and
the continued performance of the tensor model near the ceiling confirms our doubts
about the suitability of the original test data. Consequently, we do not want to claim
that these results already establish a significant (qualitative) difference between the
two architectures, i.e. answer our question whether the tensor model is better suited
for a logical reasoning task. In the following section however, when applying the same
data adjustment to a new set of test sentences, we observe a much clearer performance
difference between the two models.

6.3 Evaluating Generalization by De Morgan’s Laws

We want to test the model on sentences that are not simply ‘unseen’, but that addi-
tionally correspond to an actual generalization of the cases encountered during the
training phase. Any definition of test cases that constitute such a proper generalization

5> Average accuracy over 3 training runs with early stopping. Models are trained with the optimized
hyperparameters of Section 5.1.
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should be seen then in relation to the task the model is supposed to learn. In the
context of this analysis, we need to determine then which examples of inferences in the
natural logic of MacCartney (2009) can be considered as meaningful generalizations
of the training examples.

Improved Generalization Test In a related investigation of the results of Bowman
et al. (2015), Veldhoen and Zuidema (2017) use pairs of equivalent sentences to probe
the models for their capacity to generalize. In particular, sentences that (under a
classical interpretation) are equivalent by the duality of the existential and universal
quantifier — also called the De Morgan laws for quantifiers — seem to pose a fitting test
of generalization due to a crucial limitation of MacCartney’s natural logic.

As mentioned in Section 2.1.2, MacCartney’s natural logic is unable to derive
syntactically the equivalence of sentences due to the De Morgan laws for predicate
logic. The general form of the duality as it would be stated in a system of predicate
logic is repeated below:

VxP(x) = =[3-P(x)] (6.1)
AxP(x) = =[V-P(x)] (6.2)

The inability of MacCartney’s natural logic to derive the validity of these equiva-
lences consequently influences the data used to train and test the models of Bowman
et al. (2015), since the system generating this data is based on the logic. As a result,
the models of Bowman et al. are not presented with any meaningful examples of
equivalent sentences. While the training data contains sentences that are labeled
equivalent, the only instances encountered during training are trivial equivalences,
given by pairs of identical sentences.

By the natural logic definition of equivalence (see Table 6.3) the intended interpre-
tation is given by extensional equality of two sets representing propositions.® Clearly,
plain identity does not capture the intended general definition of equivalence of the
system — yet, these are the only cases encountered by the models during training.
Using equivalent sentences as test cases can therefore be seen as probing models for
actual instances of generalization.

Before testing the models on these sentences however, we believe it is necessary to
first derive which model prediction we can reasonably expect. Essentially, we will argue
that a prediction of equivalence itself cannot be expected, but a weaker prediction that
is nonetheless informative seems to be possible. The aspects taken into account here
are the characteristics of the underlying logic, and of the machine learning approach,
in which a general case has to be learned from individual examples.

6 Technically, MacCartney’s relations only seem to be defined explicitly for sets of individuals, i.e.
for predicates of type (e,t). MacCartney (2009) remarks however that corresponding definitions for
sentences (propositions) could be based on sets of models or possible worlds.
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Symbol Name Shorthand Interpretation
= equivalence EQ X=Y
C forward entailment (excl.) FOR XcyY
| reverse entailment (excl.) REV XDY
A negation NEG XNY=0AXUY=U
| alternation ALT XNY=0AXUY #U
- cover cov XNY#0AXUY=U
# independence INDY all other cases

Table 6.3: NatLog basic relations and their interpretation

6.3.1 Expected Model Predictions

Two questions need to be answered to determine what predictions the models we
trained should ideally arrive at: (i) Do the De Morgan equivalences hold in the logical
system implicitly defined by the training data?, (ii) If so, what is the maximally
informative prediction the models could derive for these sentences?

De Morgan Laws and Natural Logic To answer the first question, recall that we
cannot simply query MacCartney’s natural logic itself, due to its inability to derive
equivalences based on the De Morgan laws.” Therefore, any argument in favor or
against has to proceed by external reasoning. However, our question is greatly simpli-
fied since the data of Bowman et al. was generated by a system that is only (loosely)
based on MacCartney’s natural logic, not by a full implementation of it. In particular,
the data generation system entirely dispenses with the more complex elements of
MacCartney’s monotonicity apparatus, in particular, the rules for compositional entail-
ment. Instead, the system of Bowman et al. only makes use of the static elements of
the natural logic, i.e. simple inferences over content words and quantifiers.

The remaining fragment of the logic used to generate the task data however clearly
seems to license a classical interpretation. In particular, all and some reduce to classical
universal and existential quantification, and accordingly, we expect the De Morgan
equivalences to hold within the data logic, and thus, in the logic (ideally) learned by
the models. A final piece of evidence in support of the above claim stems from the
preliminary results of an experiments in which the original data is reconstructed in a
classical first-order language. Here, the equivalences can be derived by an automated
theorem prover, suggesting that the task data itself licenses the De Morgan equivalences
(Mathijs Mul, personal communication).

Equivalence and Entailment The question remains then which prediction we can
expect of the models for the equivalent sentences presented after the training com-
pleted. Since the models encountered the equivalence relation only as the target label

7 For a detailed argument why MacCartney’s edit sequences (the system’s basic proof calculus) cannot
derive such equivalences, see (MacCartney, 2009, Section 6.5.4).
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for identical sentences, we cannot expect any systematic relation between equivalent
sentences and the equivalence label itself. Specifically, the equivalence label was only
assigned to identical sentences, and identical sentences only appeared under this label.
Hence, even a hypothetical model able to perfectly learn from data would be unable to
connect these isolated instances of the equivalence label to any (potentially learned)
semantic notion of equivalence.

Although we cannot expect the models to predict the equivalence of equivalent
sentences by its intended symbol, we can nonetheless pursue our generalization test as
originally intended. Under the classical definition, (logical) equivalence and entailment
are directly related: Sentences ¢ and i are (logically) equivalent if and only if ¢ entails
¥ and ¢ entails ¢. We can therefore expect the prediction that equivalent expressions
stand in an entailment relation — assuming the models succeeded to learn a sufficiently
general form of inference.

Exclusive Entailment and ‘Definition by Data’ A complication arises however due
to the definition of entailment as exclusive or strict entailment in MacCartney’s natural
logic. We can see by the definitions of Table 6.3 that the forward entailment relation
holds between (predicates) X and Y in case X is a proper subset of Y; similarly, for
the definition of reverse entailment.® Entailment is defined in such a way, because
MacCartney (2009) aims build an inference system in which the basic relations are
mutually exclusive, to allow maximally informative reasoning over given sentence pairs.
Consequently, the ‘containment relations’ of the system (equivalence, forward and
reverse entailment) are mutually exclusive as well — it might seem therefore that our
predicted predictions will not be derivable by our models after all.

At this point, we need to take a look at the actual training data, and which
interpretation is licensed by it. Consider the following training example:

((all turtles) walk) 3 ((all reptiles) walk)

Note first that the data contains nouns that are intended to form a subclass of another
noun, such as ‘turtles’ and ‘reptiles’, or ‘warthogs’ and ‘mammals’. These classes and
subclasses are used to learn (and test) lexical inferences under the basic relations of
Table 6.3. The example above seems to conform then to an exclusive interpretation of
entailment, or at least, does not contradict such an interpretation. Worlds in which
all reptiles walk form a subset of worlds in which all turtles walk, as expressed by
the reverse entailment label interpreted as a subset relation. Until now, without a
symbolic definition of the target relation, the model might still be ‘agnostic’ regarding
the question whether the subset relation that emerges during training is strict or not.

However, the data only contains examples of entailment that are based on sets of
entities where one is a proper subset of the other (like “turtles/reptiles”), and thus, all
examples point towards an exclusive interpretation. Without any counterexample (i.e.
an example of inclusive entailment), and considering that the model is designed to fit

8 As noted previously, an extension of the predicate definitions to the sentence case needs to be assumed,
e.g. by a possible world interpretation.
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the given data, it is most likely that an exclusive entailment relation will eventually
emerge during training.’

As it turns out, one of the above assumptions is unwarranted however, as we
noticed when analyzing the data in detail. Perhaps by an oversight of the authors,
predicate ‘turtles’ happens to be the only subclass of predicate ‘reptiles’ in the actual
data; similarly, for the other nouns. Hence, regardless of the (noun) names assigned
to the input words, which suggest a strict subset relation via world knowledge, the
‘subset’ class of entities (turtles) is not guaranteed to be a strict subset of the larger class
(reptiles). Extending the “fitting the given data” remark of the previous paragraph,
we can now add “... and only the given data”. In other words, it is unlikely that model
training will fit weights to a strict entailment interpretation, since no corresponding
data points exist.'?

In consequence, while entailment might not be derivable from equivalence in
natural logic due to the symbolic definition of an exclusive entailment relation, in the
“definition by data” on which our models rely, an inclusive definition of entailment
should emerge. It is easy to see then that the equivalent sentences we will use as a
new test case should in fact license a prediction of entailment.

6.3.2 Prediction Results

In the previous sections, we argued why equivalent sentences seem to constitute
a proper test of model generalization. We further explained why the maximally
informative prediction we expect from models that learned to generalize should be
entailment. After answering these preparatory questions, we can finally put the models
to our new test.

Test Data The new test set consists of 160 distinct sentences. Nouns and verbs of
the task language instantiate x and y in the following equivalences derived by the De
Morgan laws:

alxy = noxnoty (6.3)
alxnoty = noxy (6.4)
some x y = not all x not y (6.5)
somexnoty = notallxy (6.6)

The full set of 160 sentences results from repeating the inference of Egs. (6.3) to (6.6)
in reversed order. This duplication is motivated by the order sensitivity of input, and
intended to fully test model predictions over both forward and reverse entailment.

? We should say that the model is likely to be fitted mostly to an exclusive interpretation, since some
interpretation ‘looseness’ is enforced by the L2 regularization term.

10 While random moves of the training process towards fitting this more specific interpretation, and thus,
less general parameter configuration should be countered by — once more — the impact of regularization.
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Softmax Output Prediction (max)

INDY FOR EQ REV NEG COV AILT FOR+REV

30/90 tRNN 0 7 0 17 0 33 44 28
25/75 tRNTN 0 21 0 76 0 1 2 100

Table 6.4: Equivalence test, aggregate results (%). Original data.!

The following example shows a single test pattern instantiated by lexical items:
((all pets) (not growl)) = ((no pets) growl)

Note that in the equations and the example above, we continue to use the original
(non-compositional) quantifiers of the original data of Bowman et al. (2015). We will
however test on both types of data, and accordingly adjust the test cases for models
trained on the CompQuant data (e.g. “no x y” — “not some x y”).

Original Data Results Table 6.4 reports the results of the new equivalence test on
models that were trained on the original data of Bowman et al. (2015). The first
seven columns (INDY ... ALT) report the output values of the softmax layer for each
relation, as an average over all tested sentences. These columns can be interpreted
as a probability distribution over the seven basic relations, for the 160 test cases
in aggregate. The rightmost column (FOR+REV) reports the model predictions of
forward or reverse entailment for a given test sentence, as the average over all 160
cases.'? In other words, a model prediction of either of the two entailment relations is
counted as a correct classification here.!

We can see in the final column that the matrix model (tRNN) classified equivalent
sentences pairs correctly (in the sense of Section 6.3.1), by a prediction of either
forward or reverse entailment, in 28% of the cases (44 of 160). Therefore, the model
performs almost exactly at the random baseline.'# By the same criterion, the tensor
model (tRNTN) correctly predicts entailment in 100% of the cases (160 of 160).

Columns 1 to 7 show that the tRNN models assign most of the ‘mass’ of softmax
probabilities to alternation (ALT) and cover (COV). Neither of these two relations
follows from equivalence. Alternation, the natural logic relation to describe “non-
exhaustive negation”, even amounts to a prediction in clear contradiction to the
intended interpretation. The matrix model, despite classifying by entailment only at

11 Results report average of 3 models from Chapter 5, trained on £1 data set. Consistency across models
will be discussed later in the section. Basic relations are abbreviated here by the shorthand of Table 6.3.

12 Note that columns FOR and REV do not exactly sum to the value of column FOR+REYV, since the
former two directly report averages of softmax probabilities, while the latter reports the average of actual
model predictions, i.e. the softmax column/relation selected by max.

13 Motivation for this correctness criterion is provided later in the section.

14 prediction of either of 2 entailments counts as success, of 7 relations in total, for a baseline of ~29%.
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Softmax Output Prediction (max)
INDY FOR EQ REV NEG COV AILT FOR+REV
30/90 tRNN 0 1 0 4 0 46 49 0
25/75 tRNTN 0 10 0 76 0 7 7 96

Table 6.5: Equivalence test, aggregate results (%). CompQuant data.

a random baseline, assigns softmax ‘weight’ above baseline to the two entailment rela-
tions (though still far less than the tensor model). However, the cover and alternation
probabilities outweigh those of the entailments by far, and the latter are therefore
rarely selected as the most likely relations in the final classification step.

In contrast, judging by the (aggregate) assignment of probabilities, the tRNTN
correctly interprets equivalence pairs as forms of entailment, with nearly all of the
mass centered around forward and reverse entailment. Reverse entailment outweighs
forward entailment by more than 3:1, despite input pairs being balanced with respect
to entailment direction. This observation will be discussed further later in the section.

Finally, note that neither the matrix nor the tensor model assigns any significant
weight to the equivalence label itself. This outcome should not be surprising, as
we argued before, since the suggested interpretation of the equivalence label by the
training data effectively was input sequence identity. Identity, however, is a highly
isolated, easily learned type of input, and therefore unlikely to be mistaken for any
other input configuration, including sentences in an entailment relation.'> Accordingly,
the “identity equivalence” relation learned by the models is given nearly zero prediction
weight by the models when presented with cases of actual equivalence — correctly so,
it should be noted, given how the relation was defined by the data.

CompQuant Data Results Table 6.5 reports our results of evaluating the models
trained on CompQuant data by the equivalence test set. The experimental setup is
identical to the previous one, except for an adjustment of the test set, replacing the
quantifiers to match those of the training data.

The combined entailment prediction average of the tRNN drops, from the previous
baseline performance of 28% to 0%. Of the 160 sentences we tested, the matrix
model did not predict any type of entailment for any of the sentences. The aggregate
softmax mass shifted from a small, but somewhat relevant concentration around
reverse entailment in the previous experiment to the cover relation in the current
experiment.

The tensor model performance is largely unchanged, although its performance
(measured as prediction of entailments) slightly drops under the new data regime.
Entailment predictions were made on all sentences in the previous experiment, while

15 qsolated’, because identical pairs do not license further relational inferences. “Easily learned”, because
trained independently, binary classification of input as identical/non-identical would be a trivial task for
the networks — for example, by fitting weights to perform subtraction, with a classification threshold of 0.



Chapter 6. Model Representations and Generalization 69

they now occur in 96% of all cases (153 of 160). The ‘misclassification’ cases of the
tensor are spread across the inference patterns of Egs. (6.3) to (6.6), and we cannot
find a systematic pattern in their distribution. We believe therefore that the most likely
explanation for the performance decline is due a general increase in task difficulty,
approximately in line with our initial results using the CompQuant data in Section 6.2.
One noticeable change however is the shift of ‘mass’ from forward entailment to cover
and alternation, when comparing the tensor model softmax output of the previous
experiment with the current one. We will discuss a possible explanation of this shift
that seems to take place in both types of models in the next subsection.

While the performance of the tRNTN slightly suffered, the performance of the
tRNN declined drastically. We mentioned previously that the CompQuant data would
allow us to exhibit a clear performance difference between the matrix and the tensor
models. Considering the gap in their ability to predict the intended entailment relation
- ‘never’, for the matrix model, ‘almost always’, for the tensor model — we believe this
claim is justified. By the previous reasoning about equivalent sentences as a plausible
test of generalization, this would further imply then a major difference in generalization
performance on the task between these two architectures.

6.3.3 Results in Detail

In the following, we will address some of the open questions related to our results of
the generalization experiments.

Differences by Inference Pattern It seems that a detailed analysis of prediction
differences depending on the inference pattern could be interesting from a logical
point of view. However, the results provide little room for such a distinction by logical
forms. The tensor model correctly predicted entailment for nearly every test case,
and thereby, across all inference patterns. The few misclassifications of the model
in the second experiment are spread across inference patterns without any apparent
systematicity. The matrix model on the other hand yielded zero entailment predictions
in the second experiment, and we cannot distinguish non-occurrences by case.

The single exception is the result of the matrix model in the first experiment. Here,
the tRNN predicted entailments in aggregate near a random baseline. However, most
of these were made on a single inference pattern, the equivalence of Eq. (6.4), for
sentences of the form: all x not y = no x y. We currently cannot say with certainty
whether the effect has a systematic reason, or is a random artifact of the training
process. Considering however that these entailment predictions completely vanished in
the tRNN when using the higher-difficult data, we tend to favor the latter explanation,
i.e. an effect without a systematic cause.

Results Variability Our results here use three models (i.e. training runs) per
model architecture. The predictions were highly consistent, in fact, nearly identical
across runs. While puzzling at first perhaps, we believe the most likely reason it is a
stabilization effect of the final prediction steps: a ‘squashing’ of values by the softmax
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T T
INDY FOR EQ REV NEG cov ALT

Figure 6.1: Softmax layer input. Pattern: no x y = all x not y.
tRNN (left), tRNTN (right).!®

layer activation function, followed by application of the max function. Minor (and
perhaps even moderate) differences are leveled by these steps, and models that are
‘internally’ different can appear indistinguishable on the outside.

To be sure then that our results are not merely a side effect of some leveling, we
also inspected the (weighted) softmax input, i.e. the state of the model before those
steps apply. Fig. 6.1 shows the input to the softmax layer of one model instance, over
all test sentences based on the inference pattern of Eq. (6.4). We can see then that, in
fact, the contrast between the two model types seems less stark than in the prediction
outcomes. For example, both architectures assign most of the prediction weight to the
same three relations here (FOR, REV, ALT). However, even at this incomplete state
of the prediction process, some clear differences emerge. The median values of the
two ‘correct’ labels (FOR, REV) are above the median value of the ‘wrong’ label (ALT)
in the tensor network, while the opposite is the case for the matrix model. Further,
the minimum softmax input values of the correct labels are roughly the same as the
maximum values of the wrong label in the tRNTN, while the reversed case holds in the
tRNN. In other words, the ‘raw’ model predictions match our previous results based
on the final model predictions, just in a less sharply contrasted form.

Data Imbalance We mentioned that we observe a ‘shift’ of predictive weight, from
entailment to cover, when comparing the first and the second experiment. We believe
this effect is likely linked to the distribution of relation examples in the data. The
relations independence, cover and alternation make up about 70% of the training
examples (INDY: 30%, COV: 21%, ALT: 19%), while the other four relations are
encountered substantially less frequently during training. This underlying ‘imbalance’
of relation examples could then explain two observations: the tendency of both models
to assign significant predictive weight to cover and alternation, and the above weight
‘shift’. Both could plausibly be seen as expressions of a prior given by the training data.
For example, upon increasing task difficulty, the tRNN predictions shift back to the
prior that was learned during training.

16 Box plots of 1st/3rd quartile, median, and minimum/maximum of values.
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We note however that this explanation is incomplete: while the data prior might
account for the predictive weight of cover and alternation, it seems to be contradicted
by the observation that independence is assigned only little weight in the tests, while
being the most frequent relation encountered during training. As a possible hypothesis,
we can perhaps suggest that independence is somewhat easier to ‘isolate’ for the
models. While other relations can overlap to a degree in their ‘meaning’ (if learned
only incompletely), the one relation expressing “absence of any informative relation”
seems to stand out somewhat.

Direction of Entailment In Section 6.3.1 we gave an account of the reasons why
a prediction of entailment is the most informative answer we can expect from the
models, given the limitations of the training data. In fact, a prediction of entailment
in both directions for a single equivalence test case would amount to a prediction of
equivalence in everything but the name. However, in our experiments, we accepted
the less informative answer of a single entailment prediction.

The weaker correctness criterion is justified, because the definition of model
prediction, and the respective training objective of our models did not permit the
stronger prediction. Note that model predictions are defined here as the single most
probable relation for a pair of sentences, and cost was given by negative log-likelihood
of the correct label. By this cost function, only model output over the target relation
directly influences cost, while the softmax distribution over the remaining labels
does not enter the calculation. Therefore, models were not trained for two relation
predictions over one sentence, and the weaker prediction is the best possible outcome
for these models.

An extension of the models to predict multiple relations would be an interesting
direction for future work. This can be achieved by replacing the current cost by general
negative log-likelihood, by which models learn a probability distribution over multiple
classes.!” Doing so would allow us to verify if the models learned the full ‘meaning’
of equivalence, i.e. whether a distribution emerges in which forward and reverse
entailment are the two most likely relations given a pair of equivalent sentences.'®

6.4 Visualization of Model Representations

The equivalence tests of the previous section seem to show a significant difference in
generalization performance between the simpler two-way tRNN models and the more
complex three-way tRNTN models. While interesting as an observation, we would
ideally like to understand how this difference comes about. For this reason, we now
turn to the inspection of the model internal representation, by using dimensionality
reduction techniques on parts of the model.

17 Both cost functions were defined in Section 4.2.

18 We would however have to replace the natural logic relations then, or at least, adjust them for our
purposes, since they are originally defined to be mutually exclusive.
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Figure 6.2: Tensor model.
Hyperplane separation of quantifiers and their negation

Visualization Method We tested several different techniques to inspect the model
representation of the processed sentences. The best results were achieved by using
principal component analysis (PCA), which takes a set of correlated values and turns
them into a set of linearly uncorrelated values by an orthogonal transformation.
Intuitively, PCA can be thought of as a rotation of the d-dimensional coordinate system
in which our data lives such that in the new coordinate system, the first dimension
(principal component 1) explains most of the data variance, the second dimension
explains most of the variance independent of the first component, and so on.
Visualization by PCA was preferable over other methods, because we intended to
explore the model internals without major distortions or loss of crucial information. The
advantage of a PCA analysis is that the global structure of our model representations is
preserved, in particular, how these models organize sentences they learned to classify.°
Other popular visualization (and dimensionality reduction) techniques, such as t-SNE,
were less suitable for this task. While t-SNE produces precise local ‘clusters’ of related
observations, the global arrangement of these clusters in the visualization coordinate
system is not representative of the global organization of the data points these clusters
contain within the original coordinate system of our models.

Quantifier Negation Fig. 6.2 is one of the clearest depictions of a systematic repre-
sentation of quantifier negation in the tensor model that we were able to extract.

19 By ‘global’ we mean data points that are far apart in the representation space constructed by the
model during training.
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Figure 6.3: Matrix model.
Organization inside quantifiers along nouns

Plotted are components 1/2/4 of a single run of the tensor model on the Com-
pQuant data. Coloring of the data points is chosen manually to mark the classes that
underly the observed spatial separation. Different colors mark the different quantifiers,
with solid circles for the non-negated quantifiers and transparent circles for their
negation. We see that, without exception, non-negated quantifiers are on one side of
a separating hyperplane, while their negations are on the other side.

In contrast, Fig. 6.3 depicts a similar plot for the matrix model. Across model runs,
we found no evidence that the matrix model found a “negation hyperplane” similar
to that of the tensor model. Instead, organization of Fig. 6.3 appears to proceed
along different nouns, i.e. each quantifier cluster contains an organization of all nouns
encountered within the scope of the quantifier. This observation appears to conform
to the observation of Veldhoen and Zuidema (2017), who observe that the matrix
model only learns many “local approximations” or clusters. While there are clear signs
of systematicity inside these clusters, they find no evidence of a global organization in

the matrix models.

Noun Negation Fig. 6.4 shows another plot of the tensor representations, using a
different component configuration, and coloring by nouns (e.g. red for ‘mammal’). As
before, solid vs. transparent mark non-negation and negation. In contrast to the case
of quantifiers, here, both negated and non-negated forms appear on the same side of
a separating line. However, we also observe that a diagonal displacement separates
the negated and non-negated nouns on each side, and it is therefore possibly that we
simply lack one additional principal component to depict another ‘perfect’ separation,

as in the previous case of quantifiers.
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Figure 6.4: Tensor model. Noun negation, all.

Verb Negation InFig. 6.5 depicts the organization of verbs and their negation in the
tensor model, showing the separation of verb ‘grow!l’ and its negation. ‘Grow!’ (solid
red) and “not growl” (hollow red) are separated by a horizontal line of separation.
Our results indicate that verb negation is the least ‘general’ representation in the
tensor model: while each verb and its negation are clearly separated, we could not
find evidence that the tensor model found a general representation that would capture
the negation of all verbs.

Figure 6.5: Tensor model. Negation of verb ‘growl’.
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Figure 6.6: Tensor model.
Quantifiers ordered by numerosity (view 1)

Quantifier Ordering Figs. 6.6 and 6.7 depict the organization of quantifiers in the
tensor model, colored here to highlight that the model appears to order quantifiers
based on their approximate numerosity. Consider here that the (logical) model learned
by the (network) model is likely to be interpreted as finite. We could therefore consider
an ordering of the quantifiers along some range of the finitely many values they could
take in the model. We see then that ‘all’ (blue), ‘three’ (dark green), ‘two’ (light green)
and ‘no’ (red) are arranged approximately corresponding to their implicit numerosity,
including their respective negations. Note however that ‘some’ (yellow) appears to be

fall outside of this ordering, for reasons that remain unclear.

Figure 6.7: Tensor model.
Quantifiers ordered by numerosity (view 2)

Hy
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6.5 Discussion

In this section, we suggest a link between the previous results, and conclude by a brief
discussion of possible extensions of the models and experiments.

6.5.1 Connecting the Results

Given the extracted model representations of the previous section, we can now suggest
an explanation for the prediction results of Section 6.3. We suggest that the relation
between the different results can be summarized as follows:

(1) In order to correctly derive the De Morgan equivalences, a sufficiently general
representation of negation is required.

(i) Linear separation in the tensor model by a single axis (nouns, verbs) or a single
hyperplane (quantifiers) constitutes a more general representation than local
clusters (matrix).

(iii) Higher expressiveness of the tensor allows representing negation by a single
general operation, which could explain the observed linear organization of negated
expressions.

The following paragraphs elaborate on these three key points.

Derivation of Equivalences A correct (approximative) derivation of the equiva-
lences following from the De Morgan law seems to require a correct, and sufficiently
general representation of negation by the models. A model that failed to learn a
general representation for the negation of verbs, nouns and quantifiers cannot system-
atically relate expressions and their negation, and therefore, is unlikely to be unable
to generalize well enough to predict an informative relation for the unseen cases of
equivalent sentences. An insufficiently general representation of negation then leads
to the prediction behavior we observed for the matrix model in our equivalence tests,
and fits the merely local organization we found in the PCA analysis of the matrix
model.

Systematic Representation of Negation We saw in the previous section that the
tensor model found linearly separated all word classes, i.e. nouns, verbs and quantifiers.
While the matrix model is able to linearize the data as well, it appears to do so by
gathering distinct input patterns inside local, separated clusters. This does however
not correspond to a general, model-wide representation of negation, in contrast to the
global separation of negated expressions in the tRNTN.

Negation by Slices A plausible explanation why the tensor model was able to learn
general representation of negation, resulting in a global separation of components
and their negation, is offered by the possibility of encoding the negation operation as
an individual slice of the higher-order tensor.
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In general composition of a third-order tensor with a single word (vector) results
in a single tensor slice, encoding the linear transformation associated with the word.
Consider then the negation symbol (‘not’), when multiplied with the trained, can
‘select’ a single matrix as well. The linear transformation associated with this matrix
could then be trained by the model perform negation — as a global negation operation
applying to all input cases.

An example of an analytically derived negation matrix can be seen in (Coecke
et al., 2010; Grefenstette, 2013). Here negation is a represented by a swap matrix,
which corresponds to a 90° rotated identity matrix . It is unlikely that the global,
task-trained composition function employed in the models of this section learns the
exact high-dimensional analog of such a swap matrix, due to the noise inherent in the
data. However, the possibility of representing a similar negation mapping is formally
guaranteed in a tRNTN model, by association of a tensor slice with a word vector for

3 7

not’.
Generalization to Novel Data A model that is able to employ a unique, globally
applied negation operation can plausibly be said to have learned a more ‘general’
form of negation than model that relies on local cluster of negated and non-negated
expressions. If the tensor did in fact learn such a negation matrix, it could serve as
an explanation for the global linear separation we observed in the tensor, but not the
matrix model. A global, and thereby, general separation of negation however appears
to be a necessary condition find an informative predictions on unseen sentences (i.e.
that have not been ‘memorized’ before), which are systematically related to another
unseen sentence, in a way that requires negation to be applied to the components of
the expression.

6.5.2 Limitations and Future Work

An important open question at the conclusion of our analysis is whether the results of
this chapter will extend to a larger task. Given that the results of this chapter are derived
in the context of a synthetic language, it is not certain how generally applicable they are.
Ultimately, to answer this question we should repeat our experiments on large-scale
natural language data. Doing so however requires employing a computationally more
efficient model, given that full-rank tensors are intractable for higher-dimensional
tasks.

Pointwise Multiplicative Layer To tackle this problem, we adjusted the tRNTN
architecture to make it computationally tractable. We replace the full-rank tensor
of the tRNTN by a rank-one tensor, resulting in an architecture based on what we
suggest to call a pointwise multiplicative layer (PML). This rank-one replacement
can be achieved by replacing the tensor product of Eq. (4.5) by the Hadamard (or
pointwise) product, resulting in:

z=f(V(xOy) + Wx;y] + b)
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Note that V here is a simple matrix, unlike the higher-order tensor V before. We essen-
tially enrich the normal linear layer of a tRNN by a linear combination of (pointwise)
multiplicative interactions between co-indexed components.

We trained the new architecture on the tasks of the previous sections, and observed
that the new architecture was able to converge to an optimal solution much faster than
any other model of our experiments. Our results are likely to be related to the reported
behavior of the MI-RNN architecture of Wu et al. (2016), as discussed in Section 3.4.3.
This similarity in convergence behavior is unsurprising, since the model of Wu et al. is
closely related to our PML model — essentially, the MI-RNN is the recurrent network
analog of our tree-structured model.

While the convergence behavior of the PML appears to be extremely promising,
another experiment we performed hinted at a crucial limitation. When using the
equivalence test set to evaluate the PML model, we discovered that its performance
on our generalization test based on entailment predictions was similar to the results
of the (matrix-based) tRNN.

It seems then that the step from a full-rank tensor to the other end of complexity,
a rank-one tensor, was perhaps too large, and we lost the generalization capacity of
the full-rank tensor in the process. As a next step, it might be worthwhile then to
employ the mRNN architecture of Sutskever et al. (2011), since the expressiveness
of its tensor can be reduced gradually by a parameter. Ideally, a range of tests using
different expressiveness parameters on the equivalence test set would then reveal at
which point of the tensor reduction the generalization capacity of the full-rank tensor
gives way to the less general behavior of the matrix model.
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Chapter 7

Conclusion

At the beginning of our investigation, we resolved to describe insights from symbolic
theories of semantics that could, perhaps even should be incorporated into distribu-
tional models of language. To this end, Chapter 2 not only provided the technical
background for our later analysis, but also offered suggestions which aspects of sym-
bolic semantics appear to be relevant for distributional models. Similarly, Chapter 3
investigated which of the established methods and architectures used in machine
learning models can be seen as (partially) implementing some of the aspects identified
in the previous chapter. We arrived at the conclusion that higher-order tensors seem
to be a key element in creating distributional models of semantics that are able to
sufficiently account for compositionality.

We then put our hypothesis to the test in Chapter 6, where we found a significant
difference in the generalization capacity between a conventional matrix-based neural
network model and a model employing a higher-order tensor. These differences
emerged when models were evaluated in their ability to predict the semantic relations
between a type of sentences that they had never encountered during training, as
a true test case of generalization. We finally suggested that these differences in
the prediction results likely result from a more general representation of negation
learned by the tensor model. As a technical reason, we suggested that the increased
expressiveness of the tensor-based composition function allowed the tensor model to
represent negation as a single, global operation over the entire data, thus avoiding the
locally organized, insufficiently general representation learned by the less expressive
matrix-based models.
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Appendix A

Linear Algebra and Tensor Primer

In this section we will introduce some basic concepts of linear algebra. We neither aim
for completeness, nor for full mathematical generality of definitions, taking instead an
applied perspective along the conventions of the machine learning literature. We refer
interested readers to Strang (2009) for a thorough introduction to linear algebra, and
to Hackbusch (2012) for a mathematical textbook on tensor calculus, or Kolda and
Bader (2009) for a shorter, application-oriented introduction to tensors.

A.0.1 Scalars, Vectors and Vector Spaces

We begin by introducing vectors, vector spaces, and operations over them, as well as
providing some basic intuitions for these concepts.

Vectors Nearly all (non-symbolic) semantic models we will discuss are so-called
vector space models. A d-dimensional vector space over the field of real numbers, R¢,
is the collection of vectors of d dimensions, the elements of the space, together with
operations (vector) addition and (scalar) multiplication. A vector x can be thought of
as an array of d (real) numbers, called scalars. If seen as an array, a single index is
needed to refer to each element of a vector.

Alternatively, vectors are sometimes described in the form of ‘arrows’ inside some
coordinate system, indicating the direction (angle) and magnitude (length) of a vector,
leading to a point (coordinates) in the space. In principle, this requires declaring
the basis of our space, a set of basis vectors by which all other elements of the space
can be uniquely expressed, as a linear combination of these basis vectors. In many
applications however, mentioning the basis is omitted, with the assumption that models
use the standard (natural) basis of Euclidean spaces. Given a basis (either implicit or
explicit), the d numerical values of a vector are often referred to as the components of
that vector.

We generally write «, f§ for scalars, and lowercase Latin letters for vectors, e.g.
x € R?, for d-dimensional vector x. We refer to the i-th component of vector x by
writing x; or x;. In some cases, we will however use the same notation to index
vectors themselves, for example, when saying that vector z; is the output of a function
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given input x;, which itself is the i-th element of a sequence of vectors x. When explicitly
listing the components of a vector, we will write them as an array of scalar values or
variables, enclosed by square brackets. To mark that a word, e.g. ‘car’, is represented
by some vector, we write v,;.

Vector Operations Vector addition of two vectors x,y € RY, x + Y, is a vector of
the same dimension as the input, given by:

X1 N X1+tn
=]
X4 Ya Xq+Ya
We call this type of function element-wise or pointwise, i.e. applying an operation to
the components of the two arguments with matching indices. Correspondingly, vector
subtraction, x — y, is defined as the pointwise subtraction of y from x.

Scalar multiplication of a scalar & € R with vector x € RY, written: ax, is a vector
of the same dimension as x, given by:

It will often useful to measure the distance between vectors, or, related, their
similarity. One frequently encountered metric is cosine similarity, defined as the
cosine of the angle between two vectors:

inJ’i
1

/Zl: XiX; /zi: ViVi

A.0.2 Matrices and Linear Maps

Next, we introduce matrices, matrix operations and linear maps, and relate them to
machine learning models.

Matrices As noted above, we can equate vectors with single index arrays. We now
consider an array of two indices, a matrix, which can be viewed as a table of values.
We will use uppercase letters to refer to matrices, e.g. W. We refer to the components
of a matrix by two indices, W, ; or W,; ), usually using the first index to refer to the
rows of the matrix, i.e. the horizontally arranged elements at an index, and the second
index to refer to its columns, i.e. the vertically arranged elements at an index.'

We will refer to a matrix W with m rows and n columns as an m X n matrix, or
say that matrix W is of shape (m, n). We note now that a vector can be described as a

1 This order of indexing is a matter of convention and sometimes differs.
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matrix with one of its two indices fixed, i.e. a d-dimensional vector can be expressed as
a d X 1 matrix, a column vector, or as a 1 X d matrix, a row vector. We list the elements
of a matrix in the form an array with two indices, i.e. a table of values, enclosed by
square brackets, writing w; ; for the (scalar) component of W at (i, ).

Matrix Operations The transpose of m X n matrix W, written as W', yields a n X m
matrix, given by: (WT)I-’ j = W, ;. The operation corresponds to a reflection of the
elements of the original matrix across its main diagonal — the latter being the sequence
of all entries of a matrix U, ,, such that x = y.

The vector operations described in the previous paragraph can be easily extended
to operations on matrices of identical shapes, as the pointwise addition, subtraction of
the elements of the matrix. Similarly, scalar multiplication multiplies all matrix entries
by a scalar value. We can also define a pointwise multiplication operation on matrices,
the Hadamard or element-wise product. The Hadamard product of matrices V, W of
identical shape is then:

Vow),;=V,;W,;

We now introduce matrix multiplication, the central operation of many models we
will discuss here. For m X n matrix V and n X p matrix W, we write U = VW for the
matrix multiplication of V and W, where m X p matrix U is given by:

Uij= Z Vik W
1<k<n
By this definition, each entry of the matrix product VW is the sum of entries across a
row of V multiplied by entries across a column of W.

A related operation is the dot product or inner product. The dot product of column
vectors v, w € R?, written v - w, is equivalent to the matrix multiplication of 1 X d row
vector v and d X 1 column vector w, or: v - w = v'w. For vectors v, w, we will often
write vw (without operator) for their dot product, v - w.

Linear Maps A linear map (or linear transformation) is a function f between vector
spaces V, W such that for any vectors x, y and scalar «, it holds:

fx+y)=fx)+ f(y)
flax) = af(x)

In other words, a linear map is a function preserving addition and (scalar) multipli-
cation, as defined above. In finite-dimensional spaces, such as those of (real world)
models of machine learning, and under the choice of a basis, matrices and linear maps
correspond to each other: every linear map can be represented by a finite matrix, and
every matrix describes a linear map. In particular, if W is a n X m matrix, then the
function given by matrix multiplication of W with an m-dimensional vector x, Wx,
defines a linear function from space R™ to space R", commonly written as W € R™*",

We write V o W for the composition of two linear maps V and W, which is a linear
map as well. In finite-dimensional cases, the composition of linear maps is given by
matrix multiplication.
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Network Layers As an example of the concepts introduced so far, we now briefly
consider the layers of a (feedforward) neural network. Fully connected layers of
these networks correspond to linear maps — ignoring momentarily the bias vector and
nonlinear activation function usually contained as well.

Consider the n-th layer of a neural network, where the layer input is a vector x
of d;, dimensions, x € R%, and the layer output is vector y € R%u, If we assume
that the trainable parameters of layer n form a d,,, X d;, matrix W", then the scalar
components of this matrix (also called its weights) parametrize a linear map from
R% to R%u, given by W"x. Expressing x € R%» in the form of a di, X 1 matrix, the
composition of W" with vector x proceeds by matrix multiplication. The resulting
vector, W'x = y € Rut is the linear transformation of input x by W", the trainable
parameters of layer n.

Most network layers also contain a constant (but trainable) bias vector, added to
the output vector y by vector addition. A linear transformation ‘shifted’ in such a way
by a constant vector is called an affine transformation. Finally, most networks pass the
resulting vector element-wise through a nonlinear function, called the nonlinearity of
the layer or network.

The trainable weights of a single neural network layer are one example of a linear
map. Other examples are certain elementary vector transformations, such as rotations,
reflections, or projections.

A.0.3 Tensors and Multilinear Maps

Next, we introduce higher-order tensors, showing three different but equivalent ways
to define them. Afterwards, we explain the dimensionality problem related to higher-
order tensors, and briefly sketch possible solutions to it.

Multidimensional Arrays So far we encountered arrays of up to two indices, i.e.
matrices. Generalizing, one can consider arrays with n indices. In general, we refer to
a ‘multidimensional’ array (in the sense of arrays with multiple indices) using n indices
as an n-th order tensor, or tensor of order or rank n.2 Under this view, a scalar is a
tensor of order zero, a vector a first-order tensor, and a matrix a second-order tensor.
Tensors of order three or higher are usually referred to as higher-order tensors. We
will use calligraphic uppercase letters to denote higher-order tensors, e.g. V, W.

Third-Order Tensor In analogy to the view of a matrix as a table of values with
two indices, a third-order tensor can be seen as a ‘cube’ of entries, resulting from
adding a third index. As we will see, third-order tensors also happen to be the most
relevant type of higher-order tensors in the context of the models we discuss here.
Extending the row/column terminology of matrices, the entries of a tensor along one
of its indices are referred to as fibers. Fixing all but two indices of a higher-order tensor
results in a “two-dimensional” segment of a tensor called a (tensor) slice. There are

2 We avoid the term rank since it carries another meaning in the context of factorization.
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three distinct ways to slice a third-order tensor: horizontally, laterally and frontally,
each representing a different way to divide the three-index array (tensor) into its two-
index components (matrices). This separation of a third-order tensor into its matrix
components will be relevant in the semantic interpretation of operations represented
by a (trained) tensor network layer.

Tensor Product We now introduce the tensor product of vectors. In the context of
our analysis, the tensor product is realized by the Kronecker product.> The Kronecker
product relates to the tensor product as follows: With respect to a choice of basis, the
Kronecker product is equivalent to the tensor product of vectors, represented in matrix
form. Note that the two terms are frequently used interchangeably in the machine
learning literature — likely due to the aforementioned practical equivalence in this
setting.

For m X n matrix V and p X q matrix W, their Kronecker product, V ® W is the
mp X nq matrix given by:

viaWoooo v W
Vew = :
Vi aW oo v W

m,n
In the context of the discussed models, we will mostly encounter the Kronecker product

of two vectors, represented in column form. In that case, the Kronecker product
corresponds to the outer product, vw ', for column vectors v, w.

Vectorization Forreasons that will become apparent later, it will often be convenient
to change the ‘shape’ of arbitrary matrices and represent them as vectors. We are able
to do so by the operation of vectorization. For m X n matrix W, vectorization of vec(W)
is the mn X 1 vector given by the components:

(Witse e Wi dse e s Wi oo s Wip )

arranged as a single column, i.e. the columns of W are “stacked on top of each other”.
Similarly, we can represent higher-order tensors as matrices, by matricization (or
flattening), which can be seen as a generalization of the vectorization operation. We
omit the (notationally cumbersome) general definition of mode-n matricization of
n-th order tensor V, denoted by V(,,). Instead, we describe the special case of mode-3
matricization of a third-order tensor — the only case needed for our purposes.*

The mode-3 matricization of tensor ¥ € RPX?*" is the r X pq matrix:
(1) (1) (1) e
Vil e Vip oo Vg1 oo Vb
(r) (r) (r) (r)
Vil e Vip oo Vg1 s Vb

3 The tensor product over vectors can be defined in terms of the more abstract (algebraic) tensor product
over vector spaces (Hackbusch, 2012)

4 For the general definition, see (Kolda and Bader, 2009, Section 2.5)



Appendix A. Linear Algebra and Tensor Primer 86

We denote here by superscript indices v(V) ... v(") the slicing index of the mode-3
matricization, running over r in V € RP*?*" Note that the ordering of the columns of
the matricized tensor is a matter of convention and only needs to be consistent within
one system.

Multilinear Maps So far, we took two different perspectives on tensors: as multidi-
mensional arrays, and as objects constructed by the tensor (or Kronecker) product. We
will sketch here one additional perspective, that of tensors as multilinear map. Viewing
tensors under this definition has the advantage that it will become apparent why
higher-order tensors are an important representational component in compositional
distributional models.

Intuitively, a multilinear map is a function combining elements of two or more
vectors spaces, mapping them to an element of one vector space, and preserving
linearity of the individual arguments. Given vector spaces Vi, ..., V,, W, we say that
a function f: V; X ... XV, — W is a multilinear map if for each variable v;, ranging
over V; in V; X ... X V,, when holding all variables other than the one indexed by i
constant, f(vy,...,V,) is a linear map. In other words, for each vector argument of f
considered separately, f behaves like a linear map — we say that f is linear in each of
its arguments.

By universality of the tensor product, multilinear maps and tensors are equivalent
in the following sense: every multilinear map f: V; X...xV, — W can be expressed
by a unique linear map g: V; ® ...®V, — W. This transformation of a multilinear
mapping of vectors to a linear mapping over tensor products of the vectors is sometimes
referred to as the linearization of multilinear maps by tensors.> Summarizing, we note
that the three perspectives, of tensors as multidimensional arrays, as multilinear maps,
and as functions over spaces constructed by the tensor product, are equivalent ways
to describe tensor V:

Ve®...0V, oW (A.1)
Vet VX xV, > W Vy is a multilinear map (A.2)
VyiV1®...9V, > W V, is a linear map (A.3)

Note also the relation between the order of a tensor and the number of arguments
(variables) of the corresponding multilinear map, i.e. a tensor V of order n + 1 is
equivalent to a multilinear map of n arguments.

Bilinear Maps and Interaction In the context of this thesis we will mostly encounter
third-order (cubic) tensors, corresponding to multilinear functions of two arguments,
called bilinear maps. Instantiating the general case of Egs. (A.1) to (A.3) by a third-

5 (Hackbusch, 2012, Proposition 3.22)
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order tensor and field R yields:®

VY € RPXPT (A.4)
Vi R xR?7 - R" V¢ is a bilinear map (A.5)
Vy: RPQR? - R" V, is a linear map (A.6)

Eq. (A.5), the view of a third-order tensor as a bilinear function is perhaps the most
transparent way to see that ) is a function of two vector space arguments (variables),
in contrast to linear maps (matrices), which describe functions of a single vector
space argument. Taking a compositional perspective on language (modeling), finding
adequate representations of functions of more than one argument appears to be a
necessity. Consequently, the bilinearity of tensor V constitutes the formal justifica-
tion for the frequent appeal for tensors in the compositional literature for functional
representations.

The representation of a tensor by Eq. (A.6) allows for a natural understanding
of multiplicative interaction between composition arguments.” The domain of Vg
is given by the tensor product of the input spaces. By definition of the tensor (or
Kronecker) product, the input of function V, consists therefore of products of all
component combinations of some vector pair (x € R,y € RY). It is evident then that
multiplicative interaction is representable by a bilinear tensor, but not a linear map
h: R™ — R", where the domain is a single space, and input is not given by products
over several vector arguments.

You Call That a Tensor? Considering tensors as arbitrarily shaped multidimensional
arrays, the meaning of ‘tensor’ followed in this introduction, is also the prevalent view
in most of the machine learning literature.® The reader should be aware however
that this meaning of the term is different from the way it is commonly understood
in most of pure mathematics and physics. In mathematical treatments tensors are
often defined by the tensor product of vector spaces, and the noun ‘tensor’ usually
refers to elements of the tensor product of a space and its dual space, i.e. a type (p, q)
tensor is an element of (V®...® V), ®V*®...® V"), . In contrast, ‘tensor’ in
machine learning commonly refers to elements of any tensor product of spaces, i.e.
a tensor here is, for example, an element of V@ W @ W, where V, W are arbitrary
vector spaces over the same field, not necessarily of the same dimension. The latter
definition is equivalent to the perspective of tensors as ‘multidimensional’ arrays of
arbitrary spatial dimensions at each index.

6 Indexing order in expressions like Eq. (A.4) varies in the literature. The same tensor can, for example,
also be written as 1V € R"¥(PX0),

7 The linguistic relevance of multiplicative interaction is a recurring theme of this thesis, and the concept
is introduced in Chapter 3. In Chapter 4 we discuss and visualize the differences between additive and
multiplicative interaction, on the basis of composition in recursive networks.

8 (Kolda and Bader, 2009, Introduction).
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Problem of Dimensionality While relevant, a technically detailed introduction
to tensor approximation methods is beyond the scope of this introduction. We will
however briefly mention some related terminology, and offer the basic intuitions behind
some concepts.

The tensors considered so far are referred to as full rank tensors in the context of
machine learning models, meaning that all components of a tensor are fully specified
numerically, i.e. stored, applied and updated when running the model employing the
tensor. One major problem in using higher-order tensors in machine learning is the
large number of parameters required to specify a tensor in this way. It is easy to see
the problem: the number of components (parameters) of a matrix, a second-order
tensor, is approximately quadratic in its dimensions, the number of parameters of
a third-order tensor is roughly cubic in its dimensions, and so on. In other words,
the size of tensors grows exponentially with tensor order. Even for moderately large
dimensions at each index of a tensor, this entails that using full-rank tensors quickly
becomes prohibitively expensive in terms of required storage, as well as making them
computationally intractable at runtime.

Dimensionality Reduction Due to the reason outlined above, there is substantial
interest in finding ways to make tensors more tractable, generally in the sense of
applying dimensionality reduction techniques. Many of these approaches take the
form of low-rank approximations of tensors. To provide the basic intuition behind
such methods, consider the following example: Say we could, more or less accurately,
represent some third-order tensor ) by the tensor product of three vectors u, v, w,
i.,e.V ~u®v®w. Itis easy to see that purely in terms of storage requirements, the
number of components needed to store vectors u, v, w, u + v + w, favorably compares
to the parameters of V € R**V*Y, This example is of course a major simplification of
the actual problem, since the result of approximation depends on whether a matrix or
tensor can in principle be approximated by a less complex combination of products
than the combination expressed by the full tensor (or matrix) itself. The degree to
which such an approximation is possible can be thought of as the intuition behind
the rank of a matrix or tensor. In the example above, we would call the tensor, being
fully representable by a single outer product of three vectors, a rank one tensor — the
opposite of a full-rank tensor in terms of ‘complexity’ required to fully represent it.

Tucker Decomposition Concluding, we will briefly sketch an actual decomposition
method used to reduce the complexity of higher-order tensors: the Tucker decomposi-
tion. A third-order tensor V is decomposed into a core tensor VV and three (orthogonal)
factor matrices, A, B, C, where the number of rows of the i-th factor matrix matches
the dimension of the i-th index of V. V is then approximated as a sum of products
over these factors, weighted by the components of V. If the dimensions of WV are
identical to those of V, the approximation is exact. Depending on the rank of V, a
good approximation can be achieved however by a core tensor of lower dimensions,
thus reducing storage and computation demands if the decomposition is used as a
proxy for V in applications.
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We will briefly come back to factorized tensor models in Chapter 3, contrasting
them with the (full-rank) RNTN model which formed the basis of our own analysis. For

a serious introduction to tensor decomposition, and an overview of relevant methods,
see for example Kolda and Bader (2009).
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Appendix B

Code Samples

Tensor Efficiency The following code shows the core functions for forward and
backward passes of the tensor model. Optimization of these functions turned out
to be crucial, given that the tensor term dwarfs all other components in complexity.
Compared to our initial implementation of these routines, our final, heavily optimized
version provided a major speedup, allowing us to train a larger number of models,
and ultimately, enabling a deeper investigation of the tensor architecture.

self.dW_cpr += delta_cpr.reshape((delta_cpr.shape[0], 1))\
@1_r_stack.reshape((1l_r_stack.shape[0], 1)).T
self.dV_cpr += delta_cpr.reshape((delta_cpr.shapel[0], 1))\
@l_r_prod.reshape((1l_r_prod.shape[0], 1)).T

self.dW_cpr += np.outer(delta_cpr, l_r_stack)

np.kron(id_word_dim, r_act)
np.kron(l_act, id_word_dim)

id_x_r
1_x_id

id_x_r = np.outer(id_word_dim, r_act)\
.reshape((r_act.size, id_word_dim.size))
1_x_id = np.outer(l_act, id_word_dim)\
.reshape((id_word_dim.size, 1l_act.size))
1_x_id = np.swapaxes(l_x_id, 0, 1)

id_r_1_stack = np.vstack([id_x_r, 1_x_id])
Jac_V_cpr = theta.V_cpr@id_r_1_stack.T

Jac_V_cpr = np.hstack([theta.V_cpr@id_x_r.T,\
theta.V_cpr@l_x_id.T])

self.dW_cps += np.outer(delta, l_r_stack)
self.dV_cps += np.outer(delta, 1l_r_prod)

self .dW_cps += delta.reshape((delta.shape[0], 1))\
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@1_r_stack.reshape((1_r_stack.shape[0], 1)).T

id_x_r
1_x_id

np.kron(id_word_dim, r_act)
np.kron(l_act, id_word_dim)

id_x_r = np.outer(id_word_dim, r_act)\
.reshape((r_act.size, id_word_dim.size))
1_x_id = np.outer(l_act, id_word_dim)\
.reshape((id_word_dim.size, 1l_act.size))
1_x_id = np.swapaxes(l_x_id, 0, 1)

id_r_1_stack = np.vstack([id_x_r, 1_x_id])
Jac_V_cps = theta.V_cps@id_r_1_stack.T

Jac_V_cps = np.hstack([theta.V_cps@id_x_r.T, theta.V_cps@l_x_id.T])

Regularization Term Correctness The following code blocks shows two different
ways of implementing the regularization term of the training routines. The first block
is the way this terms is usually implemented, while the second block follows the
formally correct way, suggested by Bengio (2012).

# Unscaled L2
self.dW_voc = self.dW_voc/mb_size + 12*theta.W_voc
self.db_cps self.db_cps/mb_size
self.dW_cps self .dW_cps/mb_size + 12*theta.W_cps
if tensor_settings in {1, 3}:

self.dV_cps = self.dV_cps/mb_size + 12*theta.V_cps
self.db_cpr = self.db_cpr/mb_size
self.dW_cpr = self.dW_cpr/mb_size + 12xtheta.W_cpr
if tensor_settings in {2, 3}:

self.dV_cpr = self.dV_cpr/mb_size + 12xtheta.V_cpr
self.dW_sm = self.dW_sm/mb_size + 12%theta.W_sm
self.db_sm = self.db_sm/mb_size

# L2 term scaled by data size
len_data = len(self.train_data.tree_data)
self.dW_voc = self.dW_voc/mb_size + (12xtheta.W_voc)/len_data
self.db_cps self.db_cps/mb_size
self.dW_cps = self.dW_cps/mb_size + (12*theta.W_cps)/len_data
if tensor_settings in {1, 3}:

self.dV_cps = self.dV_cps/mb_size + (12*theta.V_cps)/len_data
self.db_cpr = self.db_cpr/mb_size
self.dW_cpr = self.dW_cpr/mb_size + (12*theta.W_cpr)/len_data
if tensor_settings in {2, 3}:

self.dV_cpr = self.dV_cpr/mb_size + (12*theta.V_cpr)/len_data
self.dW_sm = self.dW_sm/mb_size + (12*theta.W_sm)/len_data
self.db_sm = self.db_sm/mb_size
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