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Abstract

Blockchains are structures that allow to establish trust by relying on crypto-
graphic primitives to ensure that the information encoded in them cannot be
changed. Bitcoin is the first example of a blockchain and an important amount
of the research is concerned with replicating its advantages in other settings.
Another avenue of research focuses on improving on the flaws of Bitcoin, like
how it incentivises parallelisation and is vulnerable to quantum attacks. An
important limitation of Bitcoin is that its immutability guarantees can only be
maintained in a large network at a large cost, making it unusable for many
applications. In this thesis, we present a blockchain protocol that avoids these
issues by ensuring immutability through proofs of work based on sequential com-
putation. By separating the proofs of work from the consensus mechanism, we
avoid the incentives for parallelisation found in Bitcoin while maintaining simi-
lar guarantees that the information contained within cannot be changed. First,
we present the security guarantees that serial proofs of work contribute to the
blockchain structure. We then construct a protocol in a modular way through
the universal composability framework in an idealised setting and prove that
it is secure. Next, we get rid of many of the idealising assumptions and show
that our model is still secure. Finally, we introduce a new setting for the use
of blockchains, with peers maintaining personal blockchains that form a web of
trust. We believe that the models presented in this work will be able to replicate
the immutability guarantees of Bitcoin in a permissioned setting while avoiding
some of the setbacks of that model.
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1Introduction

Trust is one of the fundamental building blocks of our society. At the same
time, building trust is a long and difficult process, as humans are selfish and
fickle. As trust is a necessary component in any interaction between individu-
als, institutions that act as facilitators of trust have been an essential part of
civilisation. Two people that do not trust each other can make use of an inter-
mediary that they both trust to conduct any operation that requires confidence.
The need for a facilitator of trust is considered an unfortunate necessity, as it
involves additional costs that one would prefer to avoid, but is still easier than
building trust with every other person. An important issue with this system is
that it still requires to put trust in people, either directly or indirectly, which
opens the door to the possibility of corruption. Ideally, there could be a way
to transfer that trust into something that cannot be compromised, something
that lies beyond the control of anyone. Mathematics is something that complies
with these characteristics, but can we use it to solve this problem?

Enter Bitcoin. In the present world, the value of a currency is linked to
the government which issues it. However, Bitcoin has no institution backing
it, because it does not need one. Bitcoin is a transaction ledger built over a
blockchain, a data structure which, as its name suggests, consists of a chain of
blocks of information. The advantage of this structure is that any block can
only be changed if every block that comes after it in the chain is changed as well.
This, combined with the fact that creating a block requires serious computa-
tional investment, means that no one can (realistically) change what is written
in the blockchain. This is made possible by proof-of-work functions. Originally
created as a way to defend against spam email, proofs of work are cryptographic
puzzles that require applying a hash function to partially random inputs until
the output has a certain property. The choice of hash functions ensures that
there is no option other than brute force when trying to solve a proof of work.
Therefore, changing a record requires a lot of work and time. In practice, it
becomes virtually impossible to change any record in the past. This means that



anyone has the assurance that whenever a transaction is recorded it cannot be
erased. Similarly, transactions cannot be back dated to appear to have hap-
pened before they did. The cryptographic assurances permit anyone to trust
the blockchain, without needing to trust any of the people maintaining it.

Bitcoin achieved something that was long thought to be impossible. It cre-
ated a currency that people trust without the support of a central bank or
government. This has created a lot of buzz around the idea of blockchains, with
blockchain-based solutions appearing for anything from property registries to
healthcare records. The ability to bypass intermediaries for cheaper and more
efficient systems can affect any aspect of modern life. However, not all prob-
lems are created equal and blockchains are not a one-size-fits-all solution. The
Bitcoin blockchain can only realise its full potential in a particular setting. Ad-
ditionally, it has many problems, including serious scalability and sustainability
concerns. The purpose of this thesis is to build a blockchain that avoids the
issues of Bitcoin without sacrificing the property of immutability. Our system
does not intend to change or substitute the Bitcoin blockchain, but presents an
alternative that can maintain the same guarantees in a different setting.

1.1 Contributions of this thesis
The main contribution of this thesis is the presentation of an alternative proof
of work for blockchains. We seek to address the issues inherent to the Bitcoin
blockchain structure, particularly the fact that its security is directly linked to
the amount of processors computing the proofs of work. This makes it unfeasi-
ble for this blockchain to be used efficiently in smaller networks. Additionally,
it implies a tremendous waste of energy in order to maintain the correct func-
tioning of the network. With a lot of interest in using blockchains in private
networks (which are considerably smaller), we present a blockchain that can
conserve similar immutability guarantees even when the chain is maintained
by only one agent. Our security guarantees are similarly based on computing
power, but in such a way that participants have no incentive to parallelise the
work. By ensuring that the work to be executed must be sequential, we are only
interested in the computational power of a single core. This makes our security
assumptions stronger, as they are based on the speed of individual processors.
We achieve this by ensuring that our proofs of work are serial : every step takes
the output of the previous step as an input.

We present notions of security for blockchains based on clock time, where
we consider a blockchain secure based on how much time it takes to build a
different blockchain that is structurally indistinguishable from it. We also show
that our proofs of work act as a timestamping mechanism, proving that certain
records could not have been added after a certain point in the past. These two
notions are similar to the properties found in Bitcoin that we wish to emulate,
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although in a very different setting. We will focus on a permissioned setting,
where all participants are known and not anyone can join. Here we will build an
idealised blockchain protocol using our proof-of-work chains and we will prove
that the resulting blockchains are secure. Our protocol will take advantage of
the setting to do things that cannot be done in the Bitcoin blockchain, like the
elimination of misbehaving agents. After this, we will present a more realistic
protocol, prove its security and enhance it with a randomness generator. We
will follow this by presenting a new setting for blockchains, where they can be
used and maintained by individuals creating a web of trust.

In Terry Pratchett’s book Making Money , Moist von Lipwig is put in charge
of the Royal Mint and Bank and tasked with making a convoluted system work
again by disrupting the current status quo with new ideas. Similar to the way
Bitcoin achieved the impossible by shifting trust from a central bank towards an
incorruptible force, cryptography, Moist von Lipwig shifts the value of currency
from gold towards the work of golems. Because they are both incorruptible,
trusting in either cryptography or golems permits the system to work, even
when people are purposefully trying to stop this. Our protocol Lipwig takes
inspiration from this fact, as we will lean on impossible-to-parallelise work to
achieve immutability guarantees. The golems that safeguard our protocol will
be our serial proofs of work, incorruptible and always at work.

The structure of this thesis is as follows: First, in Chapter 2 we will briefly
present the history, challenges and advantages of blockchain. We will also
present the serial proof-of-work functions which will support our protocol as well
as a base for universal composability, the modelling paradigm we will use in this
thesis. In Chapter 3, we will present the concept of proof-of-work blockchains
or PoW chains and prove that they provide the immutability guarantees that
we want. In Chapter 4 we will define the necessary components to build the
model and we will present an idealised version IdealLipwigτ with a set round time
τ . Chapter 5 will relax some conditions of the previous model and construct
Lipwigω, a less rigid model where proofs of work may vary in strength (but must
be at least as strong as ω). Finally, in Chapter 6, we will abandon the classical
blockchain setting and present a model of independent, personal chains which
are secured through a distributed web of trust.
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2Preliminaries

In this chapter we will present the necessary background for the thesis. First,
we will present a survey of blockchain literature, focusing on academic work but
touching on the most important points of real-world implementations. We will
then present the theoretical background behind our serial proofs of work, which
are the essential building blocks of our construction. Finally, we will present the
universal composability framework which we will use to construct the protocols
in Chapters 4 and 5.

2.1 The Blockchain
A classical problem in distributed computing is that of consensus. Is it possible
to have different agents agree even when some of them are actively trying to
prevent it? This problem becomes relevant in the context of computer science
because processors can, and will, fail and the computation must still succeed.
This problem is known as the Byzantine Generals problem (or in a more practi-
cal context: Byzantine Fault Tolerance) and was originally presented in [PSL80]
under another name. This setting considers participants that can act arbitrar-
ily and/or maliciously. Numerous solutions for this problem have been found
[CL+99, LVCQ16, MXC+16], under different network properties and with vary-
ing communication complexity. Original solutions of this problem all considered
a setting in which all participants are known from the beginning. In [Oku05] it
was shown that if the network is unknown, it is impossible to create agreement
over all the parties, even if there is only a single participant which does not
follow the protocol. This problem arises from an attack commonly known as
Sybil, in which the adversary creates multiple identities to overrun the network.
Without a way to prevent a participant from arbitrarily creating new identities,
it is impossible to have a way for the system to work. The possibility of reach-
ing consensus in an unknown network became especially relevant after the rise
of the internet. However, no practical solutions appeared until the advent of
Bitcoin.



2.1.1 Bitcoin
After the 2008 financial crisis, trust in financial institutions was gravely shaken.
That year, someone (or someones) calling themselves Satoshi Nakamoto pre-
sented a system called Bitcoin that would remove the need for a central bank
to maintain a currency [Nak08]. In 2009, the network implementing this system
came into existence. Bitcoin is essentially a ledger maintained by a network
of participants called miners which maintain the ledger through the internet.
Any person can become a miner simply by installing the code and running the
protocol. Consensus is achieved in this network where anyone can join through
the existence of proofs of work. Originally presented as a way to prevent spam
in [DN92], proofs of work are cryptographic puzzles where someone runs a hash
function over certain inputs until the output fulfills a certain property. The
addition of these proofs of work prevented the possibility of a Sybil attack, as
any participant’s power in the network is determined by the amount of compu-
tational power they have access to, not by the number of identities they hold.
Bitcoin promised to create a decentralised, democratic and self-sustaining cur-
rency independent of any individual entity’s control and (mostly) fulfilled those
promises.

Bitcoin introduced the structure of a blockchain which consists of a series of
blocks chained together through hash pointers. Each of these blocks contains a
part of Bitcoin’s ledger, which grows as new blocks are added to the chain. To
add the next block of the chain, any miner can take the transactions that exist
in the system, order them and create a block containing them and a pointer to
the last block in the chain. After that, they must repeatedly input the candi-
date block and a random nonce to the SHA256 function until the output has an
initial segment of a certain length that consists of only zeroes. If they manage
to do this, they send the block and the nonce to all the other participants in
the network. These participants can check whether the desired property is met
and therefore accept the block. After this, every miner creates a new candidate
block pointing to the newly mined block. Miners will only accept blocks that
fulfill this property, making it impossible for anyone to arbitrarily create a chain,
regardless of how many participants they control. This system is exactly what
allows Bitcoin to survive Sybil attacks, as it is irrelevant how many identities a
person has. The only way a participant can gain more power in the network is
by acquiring more computational power.

Bitcoin is adaptive and responds to the amount of power that is being in-
vested in it. The system expects a new block to be created every ten minutes
of real time and will update the difficulty of the proof of work accordingly to
maintain this time between blocks. A reason for this wait time is the possi-
bility that more than one miner finds a valid block at similar times. When a
miner gets a chain that differs with their own, they keep the longest one and
work over that one. If both chains are the same length, the miner continues to
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work over the one they currently hold1. This introduces some practical issues,
as something might disappear from the blockchain as a different, longer, chain
appears. However, after a block has a certain number of blocks that follow it,
blockchains that do not contain that block will be more and more rare, up to
the point where that block is considered a permanent part of the chain2. The
blockchain structure then prevents anyone from changing older blocks.

The proofs of work not only serve to choose which participant has the right
to create a new block, they are also fundamental in ensuring that the ledger
cannot be changed. If someone were to change any record in a block, the hash
of the new block and the nonce would no longer fulfill the necessary properties
to count as a valid block (with practical certainty). Therefore, a new nonce
must be found for the new block to be accepted by the rest of the miners.
While this would take some time, it is not enough to ensure that the ledger can-
not be changed. Immutability is achieved thanks to the blockchain structure.
The blocks of the blockchain are connected through hash pointers (also using
SHA256), which means that changing a block implies changing the next one, as
it needs to update the hash pointer to the previous one. Therefore, changing a
block implies changing all of the ones that came after it, including the ones that
are being added to the chain while the process of rewriting the chain is going
on. Supposing that the party trying to change the blockchain does not control
more than half of the computational power, their modified chain, or fork, will
grow slower than the chain. Therefore, the fork will never be long enough to
substitute the chain. This implies that once something is found on the chain
with enough blocks in front of it (deep enough in the chain), it will be there
forever.

All of this machinery is needed to realise the goal of Bitcoin: creating a cur-
rency that is not controlled by a central authority. The ledger registers all the
transactions that are done with Bitcoins. To prove that someone has enough
money to do a transaction, they can show the records of receiving the money.
The receiver can also check whether the money has been already spent or not.
For the system to work, it must be impossible for someone to spend the same
money twice. As long as they control the money, someone could create as many
transactions as they want, but only one will be added to the chain. Therefore,
this must happen before the transaction can be considered complete. After a
transaction is encoded in a block that is deep enough, the transaction may be
considered as final. As we saw before, it becomes almost impossible for anyone
to erase this transaction so they can spend the money again. This system does
bring up some questions: if Bitcoin is just a ledger of transactions, where does
the money come from? New Bitcoins are minted every time a block is created,
and they belong to the party mining the block. This is the way someone may

1The Bitcoin system no longer works like this, now the one with the highest difficulty is
chosen, but this technicality is not important for this presentation.

2In practice, a transaction in Bitcoin should not be considered completely finalised until
the block it is found on has five blocks after it.
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acquire new Bitcoin, but it also solves a separate problem. Mining new blocks
is a time and energy consuming process, so the miners should have an incentive
to do it and maintain the network running. By rewarding miners for creating
new blocks, the system maintains itself.

The great triumph of Bitcoin is that it was able to engender trust in a set-
ting where there was none. Bitcoin is maintained by a network of parties that
do not know each other or their motivations and have no reason to trust each
other. The system works because parties transfer the trust they have in the
cryptography unto the other participants. Bitcoin allows mutually distrustful
parties to trust each other based only on the cryptographic security offered by
the blockchain. Before the appearance of Bitcoin, reaching consensus in an un-
known network was thought to be impossible [Oku05].

While the appearance of Bitcoin was sudden, its parts come from at least
thirty years of research in computer science. The blockchain structure comes
from an attempt to create a time-stamping mechanism for digital files [BHS93].
Here, documents are ordered relative to each other by forming a chain, where
each document points at its predecessor and is signed by its creator. Therefore,
if someone gets a document from a trusted source, all the documents that pre-
cede that document can be considered ordered. Our blockchain will actually
realise this goal with the added advantage that no trusted party is needed, as
the serial proofs of work will take its place. Merkle trees are another important
component of Bitcoin, as they permit an efficient way to store and verify infor-
mation [Mer80]. Not even the idea of using proofs of work to create something
akin to electronic cash is new to Bitcoin, as a system known as Hash cash was
created in 1997 [Bac01], which used hash-based proofs of work as cash. How-
ever, it relied on a central authority and had no built in mechanisms to protect
from double spending. The true contribution of Bitcoin is taking all of these
disjoint pieces and putting them together in a real-world system [NC17].

Due to the fact that Bitcoin appeared seemingly out of nowhere, it took
some time to formally understand how it worked. The first comprehensive pa-
per in Bitcoin presented the abstraction of the Bitcoin blockchain and proved its
security in a partially synchronous setting [GKL14]. This paper was followed
by numerous other papers presenting different aspects of Bitcoin. The same
team followed up their work with a proof of Bitcoin with chains of variable dif-
ficulty in [GKL17]. In [PSas16], Bitcoin is proved secure in the asynchronous
model and [BMTZ17] presents a fully-composable treatment of Bitcoin. Other
work has shown ways in which the Bitcoin blockchain can (or cannot) be used,
like [BCD+14] which presents the possibility of sidechains that depend on the
Bitcoin blockchain and [PW16] which shows the issues with using Bitcoin as
a random number generator. Academic efforts have also helped to find issues
with the Bitcoin model, most notably [ES14b] showed that Bitcoin miners are
incentivised to deviate from the protocol in a certain way in order to maximise
their profit In other words: Bitcoin is not incentive compatible.
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Unfortunately, the fact that it is not incentive compatible is not the only
problem facing Bitcoin. In practice, Bitcoin has failed to achieve some of its
goals. For starters, the implementation of the puzzle made it advantageous
for miners to join in groups, known as mining pools, in order to minimise the
variance of the payouts [MKKS15]. This means that the mining power was con-
centrated in groups, instead of being completely distributed over the miners.
This meant that the possibility of a certain entity having more than half of
the mining power became a realistic possibility, something that seemed unfea-
sible from a purely theoretical standpoint. This happened in June 2014 when a
mining pool known as GHash controlled 51% of the mining power [ES14a]. For-
tunately, this situation was resolved without the network being affected. The
issue of centralisation was further compromised when it became profitable for
investors to build Bitcoin mining farms to acquire rewards. Bitcoin mining be-
came a feasible business operation where maximising profits goes hand in hand
with scaling towards large operations, which further affected individual miners
and centralised the network. This reality is made possible by the possibility of
parallelising the computations necessary to compute proofs of work. An unin-
tended consequence of this is the energy that it takes to maintain the network
due to the difficulty increase caused by having specialised mining facilities. It
is estimated by [ene17] that the Bitcoin network uses almost the same amount
of electricity as the whole country of Iceland. This has direct economic and
environmental consequences which make the current system unsustainable in
the long run. Looking towards the future, it has been shown that quantum
computers need less work to find a valid proof of work per block due to an
algorithm known as Grover’s search [Gro97]. This means that someone with
access to a quantum computer has an advantage when issuing blocks and could
possibly gain control of the network. Additionally, quantum computers could
be used to undermine the immutability of the blockchain, as it could become
feasible to fork the blockchain. There are other, more practical, issues with the
Bitcoin blockchain, over which there are very contentious arguments. These
issues, however, are not of particular interest for us in this setting.

2.1.2 Beyond Bitcoin
While Bitcoin was the first implementation of a blockchain, it is far from the only
one. In 2015, Ethereum appeared [Eth16]. Based on the proof-of-work paradigm
presented in Bitcoin (also known as the Nakamoto paradigm), Ethereum ex-
tended the abilities of blockchains by building a platform for smart contracts,
that is, contracts that can execute on their own. These contracts are main-
tained in the blockchain and remove the need of an intermediary to guarantee
the fulfillment of a contract. This system has multiple applications that go
beyond a simple cryptocurrency and it has created even more interest in the
applicability of blockchains. There exist many other blockchains with different
implementation goals. Both zcash [Wil16] and Monero [vS14] try to guarantee
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privacy, using zero-knowledge proofs and ring signatures respectively.

The issue of sustainability of the blockchain is something that must be solved
for blockchains to become widely used in other applications. The search for al-
ternatives to Nakamoto for a consensus protocol for permissionless networks
has been the focus of considerable work. A setting known as proof of stake,
where the creator of the next block is chosen by a lottery where the odds cor-
respond to the amount of money they control, has been suggested and widely
studied. While it was originally questioned because of the possibility of an
attack known as nothing-at stake [Poe14], there have been numerous propos-
als for this system. In [KRDO17], a provably secure protocol is shown, based
on a multi-party-computation implementation of coin-flipping which requires a
highly synchronous network. In [DPS16], they present a system that is robust
against participants that routinely disconnect from the network. The protocol in
[Mic16] presents a hybrid proof-of-stake/byzantine-fault-tolerance setting based
on random information encoded in the blocks. All three protocols solve the is-
sues presented in [Poe14] in different ways. Work in proof of stake is not limited
to academic efforts, as Ethereum plans to switch from a Nakamoto paradigm to
proof-of-stake consensus with their own implementation of it [But17].

Research on blockchain primarily focuses on the consensus mechanism, but
it is not limited to proof-of-stake. In [PS16b], byzantine-fault-tolerance is used
in conjunction with proof of work to create a protocol that is responsive, that is,
it depends directly on the delay of the network and not on a bound. Although
presented as an improvement over Bitcoin, [KJG+16] presents a different way to
use byzantine-fault-tolerance in a permissionless setting. The work in [PS16c]
focuses on creating a system that is robust against what they call sleepy partic-
ipants, players who regularly disconnect from the network.

While one of the fundamental contributions of Bitcoin was the possibil-
ity of creating trust in a network where anyone can join without permission,
blockchains also have a purpose in a permissioned setting. The creation of trust
between mutually untrusting parties still has a place in permissioned networks.
Because in a permissioned setting all the participants are known, Nakamoto
consensus is not necessary and can be substituted by byzantine-fault-tolerance,
which is considerably more efficient. The use of blockchains and their poten-
tial in permissioned networks have revived study in this field and new methods
have been created, that are more robust [LVCQ16] and specifically tailored for
use in blockchains [MXC+16]. While some people have voiced concerns about
these implementations [Sir17], the stronger setting permits the network to sac-
rifice robustness for efficiency and scalability. We will create a permissioned
blockchain that solves some of the issues of existing permissioned blockchains,
in particular immutability. Permissioned blockchains sacrifice the strong im-
mutability guarantees provided by proofs of work, but we will see that this is
not necessary. Currently, implementations of private blockchains depend on the
Bitcoin blockchain to prove that the information has not been modified. For
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example, Exonum3 adds a hash of the state of their blockchain to a Bitcoin
transaction in order to have a proof of immutability. This process of adding
pointers to a blockchain has been used to timestamp events [GMG15]. We will
use a similar process to secure our own blockchain, although we will not depend
on an external blockchain for it.

There has been some work on distributed ledgers that do not share the same
blockchain structure as Bitcoin. In [PS16a], a blockchain is presented where
transactions are not added directly in blocks but in fruits which are then con-
tained in the blocks. A scaling proposal for Bitcoin, Bitcoin-NG [EGSVR16],
proposes having two different types of blocks, one type of block that deter-
mines who is allowed to record transactions and microblocks which actually
contain these transactions. Other more extreme proposals include the appendix
of [Mic16], which presents the concept of blocktrees, which are a combination
of blockchains and Merkle trees. Another proposal known as Mimblewimble
claims to provide privacy in a blockchain that remains short by being able to
eliminate transactions that are no longer relevant (the money has already been
spent)[Pev17]. A modification of particular interest is the one found in Hyper-
ledger’s Fabric blockchain [Hyp17]. Built for a permissioned setting, partici-
pants running Fabric only save the records that they are involved with and not
all of them, as is done traditionally. The modification to the structure which we
will present is minor compared to some of these proposals but has far reaching
consequences.

2.2 Serial Proofs of Work
Many of the scalability issues on Bitcoin are related to the proof of work. As we
mentioned before, the fact that the work can be parallelised causes many issues.
On the other hand, the immutability guarantees it provides are dependent on
the amount of computational power invested in the network. Therefore, a small
network will not enjoy the full advantage that proofs of work provide unless they
artificially invest a lot of computational power, which is counterproductive. We
will attempt to solve this problem by using serial proofs of work; by serial we
mean functions where parallelisation does not provide any advantage. We want
to have a function that proves that a participant invested enough time com-
puting it. Functions like this have been used in order to time-lock information
[MMV11], that is, encrypt information in such a way that it can be decrypted
by anyone after an amount of time has passed. This requires it to be quick to
encrypt but slow to decrypt. In our case, we will use it the other way around:
slow to compute and quick to verify. Similar to the Nakamoto paradigm, the
parties will apply this function to a block in the chain. We will then demand
some properties for our proofs of work: unpredictability, easy verifiability and
practical impossibility of precomputation.

3http://exonum.com/index
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These three properties are all properties that would be desirable if we were
interested in creating public and verifiable randomness. To ensure fair random-
ness, one could want to permit outside participants to contribute to the random
seed, without giving them a way to influence the random output. In [LW15], the
authors present a source of public randomness that is publicly verifiable as well
as being able to be contributed to by anyone. The unpredictability of the model
comes from the fact that it takes a certain amount of clock time to compute
the random number. This prevents an adversary from influencing the seed in
such a way that the probability distribution of the output is modified to her
advantage. Although this is theoretically possible, an adversarial party would
have to have access to a significantly faster processor to be able to find out how
to modify the seed in such a way that the result has the expected properties.
This particular fact about the function, that it takes at least time τ to compute
(but considerably less to verify whether it was computed correctly), is exactly
what we want for our serial proof-of-work function.

We will therefore base our serial proof-of-work function on the function sloth
defined in [LW15]. This function is based on modular square roots and is sim-
ilar to the one found in [JM13]. The advantage of using modular square roots
is that the only way we know how to compute them is by squaring the input
repeatedly until we arrive back to it. On the other hand, verification consists
simply of squaring the root that we found. This provides the asymmetry be-
tween the computation and verification time. Currently, the fastest way to find
a square root of a number is by performing log2(p)− 2 squarings over it. These
operations cannot be parallelised, as the result of each squaring is necessary to
perform the next one. While there is no way to ensure that this is the fastest
way to execute this computation, we are comfortable making the assumption
that no faster algorithm will be found. Assumptions of the sort are common
in public-key cryptography, where security lies on the impossibility to speed up
number-theoretic computations.

It might seem then that the way to proceed would be to find the minimum
p such that computing a modular square root takes a time greater than τ given
the assumptions over the rate of the participants computing it. There are two
issues with this approach. The first one is the size of p, which would have to
be so large as to be unwieldy. More importantly, it would provide a structure
that is too rigid, as changes in the rate or the expected run time would imply
a new choice of p. Therefore, it is better to find a significantly smaller p and
then iterate the modular square root as many times as we need. The fact that
we are iterating a function permits us to modify the runtime of the function as
we require by changing the number of iterations. This flexibility allows us to
adapt the proofs of work for advances in computing power or simply to change
the time that it takes for blocks to be issued.

The choice of p does not depend solely on its size. If p is a prime such that
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p ≡ 3 mod 4, for every x ∈ Fp we know that either x or −x is a square. We
also know that we can calculate the square root of x by raising it to the p+1

4 -th
power. Of course, every square (except 0) has two distinct square roots: y and
−y. To determine which of the two roots we are interested in, we see that y and
−y have different parities when we use the canonical representation of elements
in the field (so −y = p − y). Therefore, we are interested in computing the
function that, given an x, first checks whether x is a square. If it is a quadratic
residue, it outputs the even square root of x, otherwise, it outputs the odd
square root of −x. Note that this function is a permutation over the field. The
issue with repeatedly iterating this function is that there is a way to shorten
the computation time through analytic means. Therefore, we must add another
permutation between each iteration of the function. This permutation must be
easy to compute in both directions and prevent further shortcuts. It was shown
in [LW15] that a permutation that adds one to odd numbers and subtracts one
from the even numbers is fulfils this purpose. However, because of the large
amount of instances of the function being called, we might be interested in
using a permutation that varies depending on the input, in order to stop the
possibility of precomputation. This, however, is not something we take into
account in the current model. In this thesis, we will call the composition of the
square-root function and the permutation PoW. We will use it to instantiate a
process Golem that is similar to sloth but can be run for any amount of time,
continuing to iterate the function.

2.3 Universal Composability
The appearance of Bitcoin preceded any formal study on its properties. While
[Nak08] explained the basic ideas behind how and why Bitcoin worked, a formal
model of security of it did not appear for a couple of years. The main chal-
lenge for modelling was the fact that a framework for the study of blockchain
structures did not exist. Instead of taking a concept and defining it according
to a framework, it was necessary to find a setting which could properly express
all the necessary properties of the Bitcoin protocol. In [GKL14], a version of
Universal Composability (UC) [Can01] was used. Further study in blockchain
has followed this modelling technique, both to study Bitcoin or to describe new
protocols. This thesis will be no different, as we will use an extended version of
UC presented in [CDPW07], which adds a global setup to the model. We choose
this extension because we will assume the existence of a public-key infrastruc-
ture for all our messages. As our work corresponds mostly to the permissioned
setting, it is natural to think that there exists a global setup over which the
protocol will be built.

The primary idea behind universal composability is having a general model
for security analysis that captures composable protocols instead of making in-
dividual models for each application [Can16]. One of the greatest advantages
of this modelling technique is that it helps construct modular protocols, where
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parts can be changed without affecting the security of the whole. The basic idea
of the model is simple: given an environment Z and a functionality ϕ, if there
exists a protocol Π which realises ϕ in such a way that it is indistinguishable to
Z whether it is running ϕ or Π then we say that Π securely realises ϕ. However,
Z does not generally run Π directly, but does it through a simulator. This
simulator is added because otherwise ϕ and Π would have to be equivalent in
order for them to be indistinguishable for Z. The main implication of this idea
is that security of a system is reflected only in its effects on the environment,
not in the actual structure of the protocol.

The UC framework works over interactive Turing machines (ITM) and con-
tains two probabilistic polynomial-time algorithms Z and A. The environment,
represented by Z, is the algorithm that is running the protocol and the one that
must not be able to distinguish between an ideal functionality and a protocol
that realises it. The parties that run the protocol are instantiated by Z and the
environment gives them an initial input and sees their output. The adversary
A’s purpose is to interrupt the execution of the protocols in such a way that the
environment Z can distinguish a protocol from an ideal functionality. While
the adversary is limited by the setting, it is allowed to take over participants
and deviate from the protocols being run. The adversary is also in charge of
delivering the messages of each participant. While it is not allowed to drop
messages, it can decide to change the order with which they are delivered and
can delay them up to a certain point. If A is unable to affect the protocol in a
meaningful way for Z, the protocol is considered secure.

To prove whether a protocol successfully realises an ideal functionality, we
must show that if the correct conditions are met, the environment Z will not
be able to distinguish whether it is the protocol or the ideal functionality that
is being run. Because the ideal functionality and the protocol are different
(otherwise, it is not interesting), then the environment could very easily see
the differences during the execution. However, the environment cannot directly
interact with the protocol’s execution. In particular, the adversary is charged
with delivering messages between the parties, which the environment cannot
access. What we must then prove is that given a compliant execution (that is,
one which fulfills the properties we expect from it), the view of the environment
is the same as the view the environment would have of the ideal functional-
ity. Note that we are only interested in executions of the protocol that follow
the properties that we have set out, in particular those that have the correct
amount of participants where adversarial parties do not exceed a certain propor-
tion. The environment can only act in ways permitted by the protocol and at
the appropriate times. The adversary can arbitrarily deviate from the protocol
as long as certain limitations are met. Therefore, we will be interested in pairs
of Z and A that conform to certain properties for each particular protocol. The
environment Z can create parties according to what is determined in the pro-
tocol. After they are created, they will follow the protocol and Z will only be
able to interact with them in predefined ways. The environment cannot directly
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communicate with the adversary A either.

The UC model was created with multi-party computation in mind and there-
fore it generally cares about information leakage when computing the protocol.
Because the honest parties are not attempting to keep anything secret, infor-
mation leakage is not relevant in the blockchain setting, so we will ignore it. We
are only interested in the ability of the adversary to modify the protocol so it
does not do what is expected. UC can also be very fine grained, focusing on
the ports of each participant and how they are connected. We will avoid this
dimension of the model by assuming the participants have access to an ideal
broadcast functionality that permits them to communicate. There is no need
for private communication in the main blockchain abstraction (which does not
have to be the case for the actual implementation). We will use a formalisation
similar to the one used in [PS16b], where we do not explicitly define an ideal
functionality, but only the properties that we expect from it. We then prove
that the protocols we present realise these properties given an appropriate pair
(Z,A).

There always exists the possibility that a participant might guess a signa-
ture or that two inputs to a random oracle have the same outputs. To ensure
that this does not cause problems, these events must be so unlikely that their
probability of occurrence is negligible. To quantify this, we must introduce the
concept of a negligible function. We say that a function negl is negligible if
for every positive polynomial poly there exists a positive integer z such that for
all x > z we have that |negl(x)| < 1/poly(x).

To prove that a protocol Π works as expected, we will define a random vari-
able denoting the view of all participants in the protocol given that Z and A are
probabilistic polynomial-time algorithms. The random variable exec(Z,A)[Π] is
defined over all the random coins of all n participants, A and Z as well as the
random oracles. Every instance of exec(Z,A)[Π] will constitute an execution of
Π, which we will call view. We are interested in showing that a property holds
for an execution of a protocol Π. We represent this property by defining a set
of functions property over exec(Z,A)[Π]. If the property encoded in property
holds in a particular view, we will have property(view) = 1 and 0 otherwise.
We are interested whether a property holds in all executions of a protocol, not
only a particular one. We mean that for every property there exists a negligible
function negl such that

Pr[view← exec(Z,A)[Π] : property(view) = 0] < negl(λ)

where negl is a negligible function in our security parameter λ.

A main advantage of using a system like UC is that it permits us to build
protocols in a modular way. We will take advantage of this feature by build-
ing our protocols through components which we can swap depending on the
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needs. In particular, our construction will use consensus as a black box with
certain properties. As long as those properties are accomplished by a consensus
algorithm, we can insert it into our protocol. This structure gives the model
flexibility as well as the ability to combine it with other consensus protocols.

15



3The Proof-of-Work
Chain

One of the fundamental aspects of the Bitcoin blockchain is the immutability
that the proofs of work provide. While most of the attention over the proofs
of work focuses on their role in consensus, the purpose they serve in securing
the state of the chain is fundamental. The proofs of work coupled with the
blockchain structure ensure that any change in a block can only be achieved
by a considerable investment of computational power. If we want to change
one block of the chain, the probability of constructing a new valid blockchain
decreases exponentially in how many blocks follow after the changed block. Be-
cause a new chain will only be accepted by someone if it is at least as long
as the one which that agent currently has, it becomes practically impossible
to change the content inside of the chain. Security is compounded by the fact
that the chain is constantly growing, making it even harder to catch up to.
This property permits the users of Bitcoin to trust that their money will not
suddenly disappear. The fact that blockchains can intrinsically generate trust
has made them an interesting topic to study, as the ability to transfer the trust
put in cryptography unto unknown agents has facilitated many things that were
previously thought impossible.

Not everything about the proofs of work in Bitcoin is good. The process of
finding a valid proof of work requires participants to brute force a hash function,
a process colloquially known as mining, until a desired value is achieved. With
Bitcoin’s proofs of work (which we will refer to as Nakamoto proofs of work),
if someone has more processors working on mining, they are more likely to find
a valid hash. This fact is important because agents are incentivised to create
blocks by receiving a fixed amount of Bitcoin for each block they generate. In
practice, this incentive has led various investors to build dedicated mining fa-
cilities, undermining the distributed nature of the Bitcoin network. Because
the difficulty of the mining process is (roughly) determined by the amount of
participants, it now takes a considerable amount of computing power to main-
tain the network. Computation can only happen through electrical energy: it



is estimated that the current power needed to maintain the Bitcoin network is
close to the output of a medium-to-large nuclear reactor [Bit17]. Thus, there
are already concerns over the sustainability of the Bitcoin network.

The assurance that no one can easily change the saved information is a desir-
able property for data storage, especially because it can engender trust between
mutually untrusted parties. However, because of the possibility of parallelisa-
tion, these guarantees can only be maintained in a network with a considerable
amount of computational power invested in it. The creation of trust can be
achieved in one of two ways: in a sufficiently large network, like for Bitcoin,
or by a deliberate investment of computational power by the parties. Due to
these issues, the Nakamoto proofs of work do not fit in permissioned networks,
which are considerably smaller than the Bitcoin network. Therefore, we would
want to create an immutability guarantee that is independent of the size of the
network. If we do not want the size of the network to affect the guarantee, then
we need the computing power invested in a proof of work to not be subject to
parallelisation.

The Nakamoto proofs of work are designed to function like a lottery, with
each execution of the function acting as a ticket for the participant who called
it. A lottery system encourages parallelisation, as having more cores comput-
ing proofs of work means having more tickets. As the proofs of work are the
primary mode of consensus, the lottery system makes sense. However, if we
separate the proofs of work from consensus process, we can avoid the lottery
setting so the immutability guarantees are not linked to the incentive structure.
We do this in order to avoid creating incentives for parallelisation. Even if the
function cannot be parallelised, if we rely on any property of the output (be-
sides it being properly computed) a participant could be motivated to compute
multiple instances of the proof-of-work function. This is part of the reason why,
in contrast with Nakamoto proofs of work, we will not use our proofs of work
for consensus. Changing this fact means fundamentally altering the structure
of the proofs of work, so we can choose to build them in such a way to realise
the properties that we want.

When we speak of the immutability of the Bitcoin blockchain we speak of
computing power, but the way it is reflected in practice is in time. The more
computational power is invested in computing proofs of work, the less time it
takes to find one. Therefore, we would like a way to encode the time spent
during computation in a function and make it impossible to reduce this time by
using several computational units to compute it. A way to prevent the use of
parallel computations is by using a function that is inherently serial. It cannot
be computed by separate processors as the result of the previous instance is
necessary to start computing the next. This system is not enough, as it could
be possible to analytically define the composition to avoid the iterated compu-
tation. To avoid this analytic shortcut, we add a permutation between every
instance of the function. Not any function will work for this purpose, but we
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know at least one that will. Modular square roots composed with permutations
provide a good candidate for these functions, as seen in Section 2.2. They can
be adapted so that their computation takes a certain amount of clock time; they
also provide a pseudorandom output, as seen in [LW15]. Thus, the proofs of
work can additionally provide a public source of randomness for other purposes,
something that has been explored for the Bitcoin blockchain with negative re-
sults [PW16].

The idea of serial proofs of work does not come without caveats, but the
assumptions made are reasonable and in accordance to empirical evidence. The
time spent for computing a function is a direct consequence of processor speeds.
Therefore, the time spent in a computation cannot be strictly encoded without
knowledge of the processor which computed it. We can avoid this issue if we
consider the immutability guarantees over the strongest processor that could
realistically be used for this purpose. Moore’s law could suggest that the security
of the blockchain might be undermined by the advance of processor technology.
However, current technological design focuses on building multi-core processors
instead of faster single cores. Because of the sequential nature of the proofs
of work, they must be computed in one single core, making these advances
irrelevant. We will later show that as long as the processors computing the
proofs of work speed up at the same rate as the technological advances, earlier
blocks with weaker proofs of work will still be immutable due to the blockchain
structure.

3.1 Security of the Serial Proofs of Work
Most of the literature in blockchain protocols focuses on the security of the
protocols themselves. The results regarding the security of the blockchain are a
direct consequence of the protocol. The serial proof of work’s primary purpose
regards the structure of the blockchain itself and not the protocol. To prove the
security properties provided by the blockchain structure, we will create a simple
protocol with only one participant who is maintaining a personal blockchain.
Due to the fact that the blockchain is maintained by exactly one person, there
is no need for any consensus mechanism. Therefore, the security properties that
we will prove in this chapter are intrinsic to the structure. This fact means
that any existing protocol can incorporate serial proofs of work as a part of the
protocol to acquire the security properties that we will prove.

The idea of serial proofs of work is innately related to time, so we need to
define what we mean by time. In this work, we will consider time broken up in
discrete time steps as if they were ticks from a clock. It is important to note
that time steps explicitly represent the passage of time in the physical sense
and not as something that can be affected by the computational power of the
processors involved in the computation.
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Our blockchain depends on two different functions that we will model as ran-
dom oracles: hash functions and the serial proof of work. When a participant
queries the random oracle with an input, it checks if it has been already queried
with said input. If this is not the case, the oracle picks a number uniformly at
random and outputs it to the participant, storing it in memory. If a participant
queries a value that has already been queried, the oracle outputs the previously
queried result instead. The first function we model in this way is the hash
function H(·) : {0, 1}∗ → {0, 1}λ, where λ is our security parameter. This
model is the common way to represent hash functions in the literature due to
the fact that hash functions should be collision-resistant, which means that it
is very hard to find two distinct strings x and y such that H(x) = H(y). Every
participant can query this oracle a polynomial amount of times at every time
step, and get the result immediately.

We are also interested in having a proof-of-work function that behaves as
a random oracle. However, the modelling will not be as straightforward as for
our hash function. Instead, we will define a process Golem to generate proofs
of work which has access to a random oracle PoW : {0, 1}λ → {0, 1}λ.1 The
random oracle PoW will have the same lazy sampling structure as H. This is a
standard approach to proofs of work in the literature, although recently a new
abstraction of the concept of a proof of work has been presented in [GKP17].
While we do not follow that construction, it is important to note that our proof
of work is consistent with the abstraction presented in that work. Our proof of
work will consist of a process that iterates PoW until it gets an instruction to
stop. When the process stops, it will output the current output of the iteration,
as well as a count of how many iterations were computed. However, we also
want to represent the difference in computing power that different players have.
This means that we will have not one process, but many of them, depending
on each participant’s rate γ. Intuitively, the rate represents the number of
times that a participant can compute PoW sequentially in a time step. The
computing power that each participant invests in computing the proof of work
is encoded in γ. Note that the computing power in this case refers to the power
of a single processor, as computing PoW sequentially is a process that cannot
be parallelised. Therefore, we define a family of processes Golemγ with γ ∈ Q+

which work in the following way:

1Note that both random oracle functions share the same parameter λ. This modelling
choice simplifies the notation as well as the intuition. As a matter of fact, [LW15] suggests
that it would actually be better to have λ considerably higher for PoW than for H (2048
versus 256). We can change the λ belonging to PoW by simply changing the hash function
(or partitioning the information and concatenating the hashes of the partitions) used inside
of Golem. This change will not affect anything else in the model but we will keep it as is to
avoid adding another parameter.
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Golemγ

On input start(x): Set s = 0 and y = H(x)

Every 1/γ time steps

• s← s+ 1
• y ← PoW(y)

On input halt:

• Output (y, s)

Note that this functionality does something that the participants are not
allowed to do in other cases: it receives the result of a computation before the
end of a time step. Whenever participants call PoW outside of Golemγj , they
will get the result at the end of the time step, so they cannot emulate Golemγj

without calling it directly. We must set a lower bound on γj as otherwise a
participant aj could speed up the computation of Golemγj by querying PoW
directly instead of Golemγj if γj < 1. Therefore, we will only work with γj ≥ 1.2

Whenever Golemγj is successfully executed for t time steps with input x, it

will output
(
PoWb

t/γjc
(
H(x)

)
, bt/γjc

)
. In the rest of this thesis, we will abuse

notation and write simply PoW(x) when we mean PoW
(
H(x)

)
3. In cases where

we are talking of running this protocol in a context where the rate is not rel-
evant, we will refer to it simply as Golem. Note that s is the number of times
that PoW was iterated, we will call s the strength of a proof of work. Each
participant aj in our model will have access to Golemγj and will compute proofs
of work by calling this process. In practice, if we would run the proof of work
for ten minutes we would have iterated PoW for more than a hundred thousand
times, so the supposition that at least one instance of PoW can be computed in
a time step is a valid one.

The random-oracle model represents the fact that there is no way to shorten,
predict or (effectively) precompute the computation. Note that any participant
can query PoW a polynomial number of times in each time step, but that should
not be enough to find shortcuts. A property that we want from this random
oracle is pre-image resistance: if an agent has access to a value y in the range
of PoW, he cannot find an element x in the domain such that PoW(x) = y in

2This modelling choice can be prevented by making it impossible for each participant
to query PoW directly, however, this is not a natural constraint. On the other hand, it is
possible to re-scale the size of the time steps in order to ensure that the rate will be fast
enough, especially considering that the amount of iterations per minute is in the order of tens
of thousands, according to [LW15].

3When we presented our proof-of-work function in Section 2.2, we mentioned that it in-
cluded a permutation between every iteration of the modular square root. Our hash function
H is not that permutation. In this model, the permutation is considered to be part of PoW.
While it may be interesting to study the properties of this permutation, we will not do so in
this work.
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polynomial time with a non-negligible success probability (relative to the secu-
rity parameter λ).

The proofs of work that the participants compute will be encoded in each
block. However, to represent the proof of work computed over x we cannot
simply write Golemγj (x), as the process will output numerous distinct values
depending both on how long the process was left running and the value of γj .
Thus, to represent the proofs of work that have been computed, we will simply
write

(
PoWs(x), s

)
.

An important aspect about our proofs of work is that while they take a long
time to compute, it must be easy, and therefore quick, to verify them. Thus,
every participant has access to a function verifyPoW which takes a triple (x, y, s)
as an input and verifies whether PoWs(x) = y. Each participant can make poly-
nomially many queries to verifyPoW and get the result at the end of the time
step. This means that while computing multiple iterations of PoW takes time,
the verification is considerably quicker. This invertibility is what caused us to
choose the function presented in Section 2.2 as our candidate function. This
function fulfills this characteristic, as reversing a square root is achievable by
simply squaring the root. This is a fundamental part of the protocol, as we
want the work to be time consuming to perform but easily verifiable.

First, we will define our setting and the components of our blockchain and
then show that the immutability guarantees which we seek are indeed present.
We will refer to these blockchains as proof-of-work chains or PoW chains as
we will also deal with different blockchains in Chapters 4 and 5. As the name
suggests, the PoW chain contains the proofs of work that the participant is con-
tinually computing. After a proof of work is completed, the participant builds
a new block and computes the proof-of-work function over that block. We will
name our only participant a1, who will maintain the blockchain PC1. We will
refer to 1 as the index for a1.

Our model for PoW chains requires a public-key infrastructure, as each block
is signed by the participant who is computing it. This serves both as a way to
prove ownership of the chain and as a security measure. We assume that the
participant has access to an ideal signing functionality Σ which is unforgeable.
The participant is assigned a public and secret key, pk1 and sk1 respectively,
and may query the signing oracle to sign something (Σ.sign1) or to verify that
a signature is valid (Σ.verify1). The participant may make polynomially many
queries to either sign or verify a signature and get a response by the end of
the time step. The signature scheme is not particularly relevant in this initial
setting but will be in the following chapters.

Our PoW chains consist of signed blocks which contain pointers to the pre-
vious block in the chain, as seen in Figure 3.1. Formally, we define it as follows:
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PC1[i− 1] PC1[i]

proof

link

id st linkLedger

G

Sig PoWs
(
H(PC1[i − 1])

)H(PC1[i − 1])

1 i 0λ

{0, 1}∗

σ1

Figure 3.1: The proof-of-work chain maintained by a1. The block on the left
includes the names of the components while the one in the right represents how
they are constructed. σ1 represents the signature of the rest of the elements of
the block by the a1.

Definition 3.1 (PoW block). We say that PCj [i] = (st, id, link, linkLedger, G, proof , Sig)
is the i-th PoW block of aj where B = (st, id, link, linkLedger, G, proof ) if

• st = i is the round when the block was created,

• id = {j} is the index of the player who maintains the chain,

• link ∈ {0, 1}λ ∪ {⊥} is a hash,

• linkLedger ∈ {0, 1}λ ∪ {⊥} is the link to the previous ledger block,

• G ⊆ {0, 1}∗ ∪ {⊥} may contain additional information,

• proof = (PoWs(link), s) for some s ∈ Z+

• Sig = {Σ.signj(B)} is a signature of the block by aj.

To refer to the first component of a block PCj [i], we will use the notation
PCj [i].st. We will use equivalent notation for every other component of the
block.

Definition 3.2 (PoW chain). A PoW chain of aj for a genesis block
PCj [0], PCj, is a sequence of PoW blocks PCj [0], . . . PCj [p] where B = (PCj [0] =(

0, {j}, H(pkj),⊥,⊥,
(
PoW(H(pkj)), 1

)
PCj [0] =

(
0, {j}, H(pkj),⊥,⊥,

(
PoW(H(pkj)), 1

)
, {Σ.signj(B)}

)
and there is a monotonous increasing sequence im with i0 = 0 such that for

all PCj [im] with m > 0 we have that PCj [im].link = H
(
PCj [im−1]

)
.

Let len(PCj) be the length of PCj, that is, the amount of non-genesis blocks
contained in the chain. We define last(PCj) as the last block of PCj (the one
with the greatest st) and PCj [i, r) as the blockchain starting from PCj [i] until,
but not including, PCj [r].
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Note that PoW blocks do not necessarily point to the block with the preced-
ing st. This distinction is to allow the possibility of participants who temporarily
stop running the protocol. Therefore, it is possible that PCj [i] does not exist
while both PCj [i − 1] and PCj [i + 1] do. However, in this initial model this
is not the case, so we will always have that PCj [i].link = H(PCj [i − 1]) and
therefore len(PC1) = last(PC1).st.

3.1.1 Proofs of Constant Strength
We wish to show that the serial proofs of work offer immutability in the sense
that changing something done in the past requires an investment of time and
therefore the ability to compute proofs of work faster. We will start in a setting
where the strength of the proofs of work is always the same and a block is cre-
ated in regular intervals called rounds. In this model, we will slightly simplify
the structure of our blockchain. The component linkLedger of a block is not
relevant to this particular model, so in this chapter we will assume that it will
always be equal to 0λ.

In this protocol SingleLipwigτ , the participant a1, who we will call the main-
tainer of the chain, will add a string Gi to the chain in every round i as
PC1[i].G. Each round will last τ + 1 time steps in which Golemγ1 will be run-
ning for τ of them and the last step is used to create the block. In this case, we
will say that the round has round time τ . We will then prove that if a1 wants
to change Gi for an arbitrary string after the block has been created, she will
not be able to do so without stopping the creation of new blocks.

Round i of SingleLipwigτ

The round begins upon reception of the output from Golemγ1

• Set σ = Σ.signj
(
H(PCi[i− 1]), 0λ, Gi,PoW

τγ1(PC1[i− 1])
)

• Append
(
H(PC1[i − 1]), 0λ, Gi,PoW

τγ1(PC1[i − 1]), σ
)

to PC1 as
PC1[i]
• Query for Golemγ1(PC1[i])
• After τ time steps, input halt to Golemγ1(PC1[i])

We do not present round 0 of the protocol, where a1 gets a genesis block
PCi[0] and calls Golemγ1 with it as input for τ time steps. The clock is set such
that t = 0 is the moment when a1 queries for Golemγ1(PCi[0]). This means
that the moment a1 adds PC1[1] to her chain, τ + 1 time steps have passed.

This model differs from the paradigm in blockchain modelling, as there is
no adversary. This means that our definition of security cannot be based on an
adversary trying to affect the execution of the protocol. The primary focus of
this work is showing that the blockchain structure enhanced with serial proofs
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of work cannot be modified unless certain conditions are met. The immutability
guarantees ensure that, as long as the protocol is running, no one can change the
contents of the chain unless they have a faster processor. The process of chang-
ing the contents of at least one block and creating a new valid blockchain will be
known as rewriting the blockchain. Whenever the new chain diverges from
the original one will be known as the rewriting point. On the other hand, if
at a certain point, the maintainer of a chain maintains more than one different
copy of it, this will be known as a fork. The implication from the immutability
guarantees is that not even the agent in charge of maintaining the blockchain
can rewrite it unless certain conditions are fulfilled. On the other hand, a1 can
very easily fork the blockchain at any time.

If the maintainer of the blockchain is unable to change it, this permits an
outside party to trust the contents of the chain without having to trust the
person who created it. While the structure is not enough to show that the
records are correct, an outsider can use the guarantees encoded in the proofs of
work to know that something was registered at least a certain time ago. This
is important because it prevents the maintainer of the chain from arbitrarily
changing the contents of the chain. With this goal in mind, we will show that
the serial proofs of work help to time lock the information encoded with it. We
will first show that changing any block in the chain requires the re-computation
of the proofs of work.

To be able to assert the following lemma we must also discuss the possibility
of precomputation. There is nothing stopping the adversary from preemptively
computing PoW with random inputs in the hope that one of those inputs will be
valid. However, because the adversary can only make a polynomial amount of
computations the probability of finding the right one is negligible. That being
said, if the adversary starts with a random input and continuously computes
PoW over it, she would gain a huge advantage in the case that she finds a
useful input. There are ways to prevent this, like using a keyed permutation
inside of PoW, which would slow down the verification but make it that any
advantage achieved by precomputation is of only one instance of PoW. We
do not explore this possibility in this model, as precomputation will only be
useful with negligible probability, but it is something that could be useful in an
implementation.

Lemma 3.3. If H and PoW are random oracles with security parameter λ,
suppose a1 has a PoW chain PC1 of length i + k computed with rate γ1 and
constant round time τ . If a1 changes the value of a block PC1[i] then he must

change every block in PC1[i+ 1, i+ k+ 1) as well and must compute PoWbτγ1c

k times.

Proof. Suppose a1 has changed PC1[i] to a (structurally correct) block PC∗.
Note that it is not necessary to recompute the proof of work of PC1[i] if its
contents are changed. Because H(PC1[i]) = H(PC∗) only with negligible
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probability, then we have that PC1[i + 1].link 6= H(PC∗) except with negli-
gible probability in the security parameter λ. Similarly, the advantage of A by
precomputation is also negligible. Therefore she must change PC1[i + 1].link
and must change PC1[i+ 1].proof as well, by definition of PoW blocks. Chang-
ing PC1[i + 1].proof implies computing PoWτγ1(PC∗). By induction on the
blockchain, this fact is true for every block following PC1[i+ 1], of which there

are k. Therefore, all blocks after PC1[i] must be changed and PoWbτγ1c must
be computed k times.

It is important to note that this proof is not for chains computed in SingleLipwigτ

but is a general proof for all proof-of-work chains computed with constant
rounds. This means that this property is a consequence of the PoW chain
structure and not of any particular protocol. The fact that it is easy to verify
proofs of work might suggest that it can be easier to first set PC1[i].proof [1] and
apply the inverse of PoWs, for some s, to it to choose link. While this means
that we do not need to calculate PoW, the probability of finding a valid block
PC∗ such that H(PC∗) = PoW−s(PC1[i].proof [1]) is negligible, as we require
pre-image resistance from PoW. This means that any attempt to fork or rewrite
the chain can only be achieved by doing the required work.

As opposed to Nakamoto proof of work, which provides a probabilistic argu-
ment to show the difficulty finding a valid block, serial proofs of work provide
a deterministic guarantee of a lower bound on the time the block was created.
The difference lies on the fact that finding a serial proof of work will always
be achieved after the requisite time, which is not true of a Nakamoto proof
of work. The security for Nakamoto proofs of work grows exponentially over
the number of blocks but the relation to clock time is based on the number of
processors computing the proof of work. The security in serial proofs of work
grows only linearly but (unless there is a significant advance in processor tech-
nology) the time necessary to create blocks cannot be shortened. This means
that an infinite amount of processors take no time to compute Nakamoto proofs
of work but take as much time to compute serial proofs of work as the fastest
processor. Therefore, security of serial proofs of work is directly related with
real clock time, as building faster processors is considerably more complicated
than building more of them. This fact implies that when we see a PoW chain,
if we know the speed of the fastest processor available (be it available in general
or to the particular agent maintaining the chain), we can be sure that the block
has been created at a certain point in the past.

Definition 3.4. Given a blockchain PC, we call a block PC[i] time-locked by
S with respect to γ∗ when the block had to be created at least S time steps ago.

Theorem 3.5. Let PC be a blockchain created in SingleLipwigτ with H and
PoW parametrised by λ and rate γ1 such that len(PC) = i+ r. Any block PC[i]
is time-locked by

r(τγ1/γ∗ + 1)
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if γ∗ is the fastest rate that a1 has access to, except with negligible probability
in the security parameter λ.

Proof. By Lemma 3.3, to create a block with r blocks in front of it, it is necessary
to compute the proofs of work in the following r blocks. Because of the serial
nature of the proofs, this can only be achieved by calling Golem for r times in
a row. The only way to avoid doing this computation is by finding a collision
in the random oracles, which has negligible probability. Because a1 has access
to Golemγ∗ then every call would take τγ1/γ∗ time steps. Because a1 must make
r calls to it in sequence and making a valid block takes one time step while
Golemγ∗ is not running, the block must have been created at least τrγ1/γ∗ + r
time steps ago.

We have shown that the structure of the blockchain itself can serve to times-
tamp the information encoded inside of it. This is true of the blockchain regard-
less of the way it was created. In practice, this property is important because it
ensures that changes to the blockchain can only happen with a faster processor
and after a certain time has passed. To model this situation, we will create the
following game between a1, who acts as a prover, and a verifier V.

Definition 3.6. We define the round-based Prover-Verifier (PV) game
for a blockchain protocol Π between a participant P with rate γ and a verifier V
as follows:

• The verifier outputs a triple of integers (i, r, s), with i > 0 and r, s ≥ 0 to
the prover

• At the end of round i+ r − 1, with r ≥ 0, V outputs a uniformly random
string x ∈ {0, 1}λ to P

• At the beginning4 of round i+ r + s the prover sends a blockchain BC to
V. The prover wins if the blockchain is correctly constructed according to
Π, x is encoded in block BC[i] and len(BC) = i+ r + s

This game represents the situation where the party maintaining the chain
must covertly change something in a block that is r blocks deep. The prover
will win the game if she5 successfully creates a blockchain where x is encoded
in a block that is r + s blocks deep. In this game, the prover can only make
a polynomial amount of computations, and therefore a polynomial amount of
forks. Because the prover cannot predict the value x (and cannot create 2λ forks
in which each block has a different value of x), this means that the prover must
rewrite the blockchain in order to do it. However, the prover has only a limited
time to do so. More importantly, this cushion of time that the prover has to
rewrite the blockchain must also be represented in the rewritten blockchain.
The verifier knows the rate of the protocol, but the prover may have access to

4After one time step, so she has the opportunity to create the block
5For this game, we will use female pronouns for the prover a1 and male pronouns for the

verifier V.
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Figure 3.2: An example of the round-based PV game with r = 3 The prover
has rate γ∗ = 2γ1. The bottom chain is the rewritten one while the one on top
represents the expected chain. Each colored semicircle represents an interval of
time; the semicircles with the same colors happen at the same time. When the
rewritten chain catches up to i + 3, the original chain has added a new block
that the rewritten chain has to catch up to. The rewritten chain is long enough
by round i+ 6, meaning that P can only win the game if s ≥ 3

a stronger rate. The ability of the prover to win a game is determined by r
but also by the rate she might have access to, γ∗. For SingleLipwig we know
that by Theorem 3.5 the prover will not be able to arbitrarily rewrite the chain.
However, we can strengthen the result by finding values for r and s. It is easy
to see that unless r = 0, if the prover can only compute proofs of work at the
rate of the protocol, she will never be able to win.

Lemma 3.7. Suppose P and V are playing the round-based PV game for
SingleLipwigτ with rate γ. If H and PoW are random oracles with security
parameter λ, if P only has access to Golemγ then she can only win if r = 0

Proof. For P to win the game, she needs to create r+ s blocks in s rounds. By
Theorem 3.5 it takes r + s rounds for P to create these blocks. Therefore, she
can only win the game if r + s = s.

Lemma 3.8. Suppose a1 is running SingleLipwigτ with verifier V and H and
PoW are random oracles with security parameter λ. Suppose that at time step
i + r, a1 becomes able to query PoWγ∗ with γ∗ > γ1 and starts doing so in
SingleLipwigτ . If at the same time a1 starts rewrites the block PC1[i] at round
i+ r, the new chain PC∗ will always have brγ1/γ∗c blocks less than the original
PC1
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Proof. Now that a1 has access to a faster processor, every new block will have
stronger proofs of work, as they will contain proofs with τγ∗ iterations of PoW
instead of τγ1. However, the old blocks will continue to have strength τγ1. In
particular, blocks in PCi[i + r,) will have strength τγ1. This means that the
new chain will catch up to block PC1[i + r] in rτγ1/γ∗ time steps. During this

time, the main chain will have added
⌊
rτγ1/γ∗

τ

⌋
= brγ1/γ∗c blocks. Starting from

this point, we have the same situation than in Lemma 3.7, meaning that the
distance between the main chain and the new chain will always be of brγ1/γ∗c
blocks.

The serial proofs of work give us a guarantee that if the participant did
not start computing a fork at the same time as she adds the blocks that she
wants rewritten, she is not able to create a rewritten chain that is as long as the
original one. This is only true, however, as long as she is not able to calculate
proofs of work in a quicker way. Access to a faster processor will mean that she
will eventually catch up to the chain; however, it implies an investment of time.
We will define a notion of security to characterise this property.

Definition 3.9. Given random oracles H and PoW and the execution of a
round-based protocol Π with verifier V, we say a blockchain BC is θ(γ∗, r)-
secure if a prover with access to Golemγ∗ cannot win the round-based PV game
for s = θ(γ∗, r). We say BC is totally secure if the prover cannot win the
game for any s given r > 1.

Theorem 3.10. Let H and PoW be random oracles with security parameter λ.
A chain created by SingleLipwigτ with rate γ is θ(γ∗, r)-secure with

θ(γ∗, r) =

⌈
rγ

γ∗ − γ

⌉
− 1

Proof. We are interested in showing that a prover cannot win the PV game
when s ≤ rγ1

γ∗−γ1 . We have already proven in Lemma 3.7 that if γ∗ ≤ γ, then
the prover can never win, so then the chain is totally secure.

In order for P to win the game, she needs to be able to compute r + s
proofs of work in the time between getting x (round i+r) and having to output
the blockchain containing it (round i + r + s). Therefore, she has s rounds to
compute r+ s proofs of work. Because she has access to Golemγ∗ , each proof of
work takes her γ/γ∗ of a round. Therefore, she needs that

s ≥ (r + s)
γ

γ∗

Therefore, P can only win the game when the following holds:

s ≥ rγ

γ∗ − γ
− 1

This means that if s is less than this quantity she cannot win, so the chain is
secure.
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Figure 3.3: This plot represents an attempt rewriting the i-th block, starting in
round i+4. The proofs of work in the rewritten chain PC∗ are being computed
with a rate of γ∗ = 2γ1. In round i+8, the rewritten chain becomes long enough
to be acceptable.

We can also prove this without explicitly using the PV game: We know
that every round is comprised by τ time steps. We know that PoWγ∗ computes
proofs of work in τγ/γ∗ time steps and γ/γ∗ ≤ 1. This means that for every block
that should be added to the chain, the prover will have τ − τγ/γ∗ = τ(γ

∗−γ/γ∗)
time steps each round to compute the proofs of work for the r blocks that she
needs to catch up. To compute the necessary proofs of work P needs rτγ/γ∗

time steps. Due to the advantage every round, she takes

rτγ1/γ∗

τ(γ
∗−γ1/γ∗)

=
rγ1

γ∗ − γ1
rounds to do so.

For a visual example, Figure 3.2 represents this process for γ∗ = 2γ1 and
r = 3. The graph in Figure 3.3 shows the difference of the rates and how it
permits the rewritten chain to catch up.

We have now shown not only that a faster rate is necessary to rewrite the
blockchain, but we have also found how much time would someone need to be
able to do so without disrupting the protocol.

3.1.2 Proofs of Variable Strength
Previously, we assumed that proofs of work were always of the same strength,
determined by the length of the round, which was fixed in the beginning. We
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will relax this assumption by giving a1 the ability to stop the computation of
PoW at (almost) any time. This frees a1 from the rigid round structure and
permits him to create blocks as she sees fit. There will be some limitations
though: while in simpleLipwig we had a parameter τ determining the length of
a round, this new protocol will have a parameter ω which will fulfill a similar
role, acting as a lower bound. However, ω will not set a bound for the minimum
number of time steps, as τ does, but for the strength of the proofs of work that
will be added to the blocks. Indirectly, this will in turn create a lower bound
on the time spent to create each block. Similarly to SingleLipwig, the protocol
starts by calling Golemγ1 on the genesis block, until its output will have strength
ω.

Round i of SingleVarLipwigω

The round begins when a1 gets an output Wi−1 from Golemγ1

• Set t = 0
• Set σ = Σ.signj

(
H(PCi[i− 1]), 0λ, Gi,Wi−1

)
• Append

(
H(PC1[i− 1]), 0λ, Gi,Wi−1, σ

)
to PC1 as PC1[i]

• Query for Golemγ1(PC1[i])

Each time step

• Increase t by 1

If tγ1 ≥ ω

• a1 may input halt to Golemγ1

The main difference in this protocol is the ability of a1 to choose when to
stop the round. This, in turn, implies that the strength of the proofs of work
encoded in the blocks will differ from one block to the next. This introduces
some changes in the proofs, but mostly the structure remains the same. In this
setting, we are interested in the strength of a given proof of work. Therefore we
will define a function str, which given a proof of work will output its strength:
str(PoWs(x), s) = s. In certain cases we will speak of the strength of a PoW
block, in which case we mean the strength of the proof of work included in the
block. We will abuse notation and apply str to a block PC1[i], to refer to the
strength of PC1[i].proof.

It might not be entirely clear why SingleVarLipwig requires a parameter ω to
act as a lower bound for the strength of the proofs of work. Is there a difference
between a block of strength 10 and ten blocks of strength 1? The answer lies in
the time that Golemγ1 is not running. In each round of the protocol, there is a
time step in which a1 is creating a new block. That time step is not represented

30



in the proof of work, as no work is being done there. In general, this time
step of wasted time is not important, as rounds are expected to be considerably
longer than one time step. If we compare to other blockchains like Bitcoin,
with rounds of approximately ten minutes, each round will have more than tens
of thousands of time steps. Therefore, that one time step in which Golemγ1 is
not active is not important. However, if we do not demand a minimum proof of
work strength, a1 could create rounds that last two time steps, meaning that for
every time step spent computing there is a time step where no computation is
done. This implies that only half of the total time is spent computing proofs of
work. For the immutability guarantees to work as we expect them to, we want
to minimise the amount of time in the protocol where a proof of work is not
being computed. This fact will affect our modelling decisions in the following
two chapters.

First, we will prove that we can also timestamp blocks in this setting. As we
do not have rounds anymore, we have to focus on the strength of the protocol.

Theorem 3.11. Let PC1 be a blockchain created in SingleVarLipwig with H
and PoW parametrised by λ such that len(PC1) = i + r. Any block PC1[i] is
time-locked by

r +

r∑
k=1

⌈
str
(
PC1[i+ k]

)
γ∗

⌉
if γ∗ is the fastest rate that a1 has access to, except with negligible probability
in the security parameter λ.

Proof. We will prove this by induction on the distance from the last block.
Clearly last(PC1) = PC1[i + r] could have been created at any time, as it has
no blocks in front of it. Therefore, our base case holds.

Suppose that the block PC1[i+ 1] is time-locked by

r − 1 +

r−1∑
k=1

⌈
str
(
PC1[i+ 1 + k]

)
γ∗

⌉
Because PC1[i+1] has a pointer to PC1[i] then it had to be created at least one
time step after it. More importantly, because it has a proof of work of strength
str(PC1[i+ 1]) computed over a pointer of PC1[i], the shortest time needed to

compute it is

⌈
str
(
PC1[i+1]

)
γ∗

⌉
plus the one time step needed to build the block.

Therefore, PC1[i] must have been created at least

r − 1 +

r−1∑
k=1

⌈
str
(
PC1[i+ 1 + k]

)
γ∗

⌉
+ 1 +

⌈
str
(
PC1[i+ 1]

)
γ∗

⌉
time steps ago, which is lesser or equal than

r +

r∑
k=1

⌈
str
(
PC1[i+ k]

)
γ∗

⌉
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In order to prove similar security guarantees as the ones in the previous
model, we will need a similar game. However, as we lose the round structure,
we have to be more flexible and worry about time steps instead of rounds.

Definition 3.12. We define the Prover-Verifier (PV) game for a blockchain
protocol Π between a participant P with rate γ and a verifier V as follows:

• The verifier outputs a triple of integers (t0, t1, t2) with 0 < t0 < t1 < t2 to
the prover

• At time t1, V outputs a uniformly random string x ∈ {0, 1}λ to P

• At time t2 + 1, the prover sends a blockchain BC to V. The prover wins

if x is encoded in a block BC[i] and
∑len(BC)
k=i+1

(
str(BC[k])/γ + 1

)
≥ t2 − t0

Note that the index of the block BC[i] is not important, the only thing
that is relevant is whether the block is time-locked by t2 − t0 according to γ.
Similarly, we need a new definition for a chain to be θ-secure.

Definition 3.13. Given random oracles H and PoW and the execution of a
protocol Π with verifier V, we say a blockchain BC is θ(γ∗, t)-secure if a prover
with access to Golemγ∗ cannot win the PV game for t2 = θ(γ∗, t1). We say BC
is totally secure if the prover cannot win the game for any t2 given t1 > 1.

Theorem 3.14. Let H and PoW be random oracles with security parameter λ.
A chain PC1 created by SingleVarLipwigω with rate γ is θ(γ∗, t1)-secure where

θ(γ∗, t1) =
γ∗t1 − γ(t0 + 1)

γ∗ − γ
− 1

Proof. To win the game, the prover P needs to be able to compute proofs of

work such that
∑len(BC)
k=i+1

(
str(BC[k])/γ+1

)
≥ t2−t0. Because changing the number

of blocks does not affect this, she needs simply to have this

str(PC1[i+1])/γ + 1 ≥ t2 − t0
where x is encoded in block i.
In other words, she needs to be able to compute a proof of work of strength

(t2 − t0 − 1)γ in the time between t1 and t2. Therefore, she needs the following

(t2 − t0 − 1)
γ

γ∗
≤ t2 − t1

Following what we did in Theorem 3.10, this implies that for the prover to
win, she needs

t2 ≥
γ∗t1 − γ(t0 + 1)

γ∗ − γ

While having variable proofs of work introduces more complications to the
functioning of the blockchains, they present a more realistic setting while main-
taining most of the properties we desire from the PoW chains.
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4An Idealised Model

In the previous chapter we presented the PoW chain in a setting with a single
agent. This is not the standard setting for a blockchain, usually blockchains act
as ledgers maintained by all participants in a network. In this chapter and the
next we will present a blockchain in this context, where it acts as a distributed
ledger of a cryptocurrency. However, the idea of each participant owning a per-
sonal PoW chain will be kept, with the ledger chain inheriting the immutability
guarantees from each individual PoW chain. While most of the literature on
blockchains centers on the consensus protocol, our work focuses on the struc-
tural properties of the blockchain and therefore uses consensus as a black box.
We will work on a permissioned setting, which makes reaching consensus con-
siderably simpler and of less interest. We do this to highlight the structural
properties of the serial proofs of work, but this does not mean that serial proofs
of work are incompatible with a permissionless setting.

To model our protocol IdealLipwigτ , we present the following properties of
our setting:

Interactive Turing Machines We will work in a standard Interactive Tur-
ing Machine (ITM) model where every participant is spawned and con-
trolled by the environment Z and an adversary A, which are probabilistic
polynomial-time algorithms. There is a global clock that all participants
have access to.

Time There are two distinct aspects of time in our protocol: time steps and
rounds. Time will be divided in time steps, in which each participant can
make a polynomial amount of computations. Each time step corresponds
to a tick of the global clock. Additionally, every message sent will arrive
by the end of the time step, meaning that we are working in a synchronous
setting. On the other hand, our protocol will be based in rounds, indexed
by i ∈ {1, 2, . . . }, each of which will correspond to a block being added to
all the blockchains. In IdealLipwigτ , each round will last a fixed amount of



time steps, bookended by the execution of the Golem protocol. A round
will start with a call to Golem and end whenever Golem outputs a result. In
contrast with other protocols, the length of rounds is set at the beginning
of the protocol and is not a consequence of block creation. Later, we will
relax this assumption on the length of the round and will allow them to
vary in length.

Adversary We will represent the percentage of honest players by Q ∈ [1/2, 1].
At the beginning of the protocol, at most 1 − Q percentage of the total
participants will be considered to be corrupt. These parties are controlled
by an adversary A who determines their every action. These participants
do not need to follow the protocol and can interact with Z in ways outside
of what is prescribed by the protocol. At any time during the protocol,
the adversary can corrupt a participant (as long as there are less than
(1 − Q)n − 1 corrupt participants) by issuing a message corrupt(j) to
Z. However, this corruption is not immediate and the adversary will only
gain control of the new node in the next round. This means that while the
corruption of participants is dynamic, it can be seen as static within each
round. Once a participant is corrupted, it cannot become honest again.1

Due to the structure of our protocol, attempts to fork the blockchain can
be identified by any honest participant. Therefore, we wish to make a
distinction between participants who are under the control of the adver-
sary (which we will call adversarial) and the participants that are actively
attempting to undermine the protocol in such a way that they are discov-
ered, which we will refer to as antagonistic. The adversary is interested
in not appearing as antagonistic, as that will imply losing power in the
form of honest parties removing antagonistic parties from the protocol.
This implies that the protocol is protected not only by the security guar-
antees but also because the adversary is incentivised to cooperate with
honest players and take part in the protocol in an honest way.

Network Assumptions In this first model, we assume the network contains
a fixed number of participants, n, and that no participants can be added
to the network after the start of the protocol. These participants are
always active and participating in the protocol. In Chapter 5, we will
weaken both of these assumptions, allowing participants to join during the
execution of the protocol and letting them stop participating temporarily.
All participants are connected to each other, so the network is perfectly
connected and every message arrives immediately to all the recipients. To
simulate this in our abstraction, every participant outputs a message to
the adversary A who must then deliver the messages to every participant.
The adversary must deliver the messages within the same time step, but
can deliver them in any order she pleases. All communication by honest
parties is directed to all participants, but the adversary is able to send

1For clarity in the presentation, we will refer to the adversary using female pronouns, while
we use male pronouns for the participants.
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messages to a subset of the participants without them (directly) realizing
that it was not broadcast to everyone.

The network in which we will present our model is a permissioned one.
This means that the number and identity of the participants is known by
all of them. This allows for simpler and more efficient consensus mecha-
nisms, as well as more favorable network properties. This does not entail
that the serial proof of work only has a place in such a network. The
reality is actually the opposite, as the investment of computational power
and time to maintain PoW chains help prevent Sybil attacks, the bane of
permissionless networks. This seems to suggest that there is a possibility
to bootstrap a permissionless model from the permissioned one, in the
style of [PS16b], but this goes beyond the scope of this work. Our choice
on permissioned networks also allows the existence of a particular feature
in our model: the expulsion of misbehaving agents.

Public-Key Infrastructure At the beginning of the protocol, the environ-
ment Z spawns n participants aj and assigns a public and a secret key
to each one, pkj and skj respectively. Every public key is known to all
the participants as well as the relation between keys and identities. Each
participant aj has access to the ideal signing functionality Σ through the

queries Σ.signj and Σ.verifyk for k ∈ {1, . . . , n}. The signature scheme
is assumed to be unforgeable, so A cannot forge any signature or find
the secret keys belonging to uncorrupted participants. All communication
between participants will be authenticated by signatures, so participants
will always know who sent a certain message. Whenever the adversary
corrupts a party aj , it gains access to the functionality Σ.signj and may
sign any message with that key, even if it does not originate from player
aj .

Random Oracles This model will use the same random oracles H and PoW
presented in Section 3.1. Participants will still interact with PoW through
Golem, as in the previous chapter.

Transaction Pool To simplify the choice of transactions, every participant
is running an instance of a protocol TxsPool. In every time step, the
environment Z inputs a (possibly empty) set of valid transactions to the
instance of TxsPool of all participants. Participants can query TxsPool
in two ways: they can input receive, in which case they get a set of all
transactions contained in TxsPool or they can input clean as well as a
list of transactions. In this case, the set of transactions are eliminated
from TxsPool. The transactions will be generated by the environment,
simulating the creation of transactions by users of a cryptocurrency. In
practice, there is a possibility that two transactions conflict with each
other, as someone might try to spend the same money twice. In this
case, at most one of the transactions could be added to the ledger. For
simplicity, no conflicting transactions will be generated, which means that
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every transaction should be added to the blockchain. This assumption
works to simplify the security proof of the protocol and can be removed
without consequences for the modelling. To simplify notation, we will
refer to T as the transaction space, that is, every valid transaction is
contained in the set.

Participant Indices We will work in a network with n participants aj , who
will be identified by the index j. In similar models, the identity of the
participants will correspond to their public key, with any participant being
able to have multiple identities by having multiple public keys. However, a
permissioned setting guarantees that there is a one-to-one correspondence
between keys and participants. More importantly, it allows us to have a
link between indices and keys that can exist in practice and not just in
the abstraction. Each participant will have an index associated to them
and every player will know which index corresponds to which identity
(and public key). This is especially relevant because the indices induce an
ordering over the players. We will take advantage of this ordering to avoid
relying on consensus protocols to order the signatures and proofs of work
that will be added to the blocks. Whenever we speak of proofs of work or
signatures being ordered we refer to the order induced by the indices: that
is, the signature of participant aj comes before the signature of participant
aj+1. For modelling purposes, we will also have a function ind which takes
as input a set of proofs of work or signatures and outputs the indices of
the participants who issued them. The set of the indices of all players will
be represented by N = {1, . . . , n}. Our protocol includes the possibility
of misbehaving players being removed from the protocol, so the set of
participants might change during the execution. The current set of active
indices will be encoded in each block, which also allows participants to
access this list during the execution of the protocol.

4.1 Components and Definitions
This model combines the standard model of a blockchain as a distributed ledger
that is maintained by multiple agents with the models presented in Chapter
3, where a PoW chain is maintained individually by each participant. In the
following model each participant will keep two chains: the ledger chain, which
is maintained by the network, and their own personal PoW chain. While the
ledger chain works in the same way as a traditional blockchain, with partici-
pants agreeing on the next block to be added, each participant has their own
PoW chain. After a proof of work is completed, the participant builds a new
block and computes the proof-of-work function over that block. These chains
run parallel to the main ledger chain and are linked to it by hash pointers be-
tween each block. While PoW chains are maintained by only one participant,
they do not have to be kept private. This means that every change in any PoW
block can be recognised by looking at the ledger chain and vice versa.
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There is a natural question that follows this construction: Why have the PoW
chains in the first place? Why not do the proof of work over the main chain
instead? The primary concern is that our security is based on time needed to
compute the proofs of work. Therefore, any wait time between executions of the
proof-of-work function will weaken the overall strength of the proof. Because
PoW chains do not depend on what the network does, participants can (almost)
immediately start computing the next instance of the function after finishing
the previous one. Therefore, we do not have to worry about any delays in
the creation or reception of the block, as we would do if we were working over
the ledger chain. In the previous chapter we saw that in every round, there
is one time step where the proof-of-work function is not running. This is not
a problem, as that one time step is always necessary when creating blocks.
However, if there was more time where the proof-of-work function is not being
computed, this wait time could be exploited to rewrite the chain. Using personal
PoW chains instead of waiting for a block built by consensus ensures that no
time will be lost this way. As an additional advantage, PoW chains provide
another dimension to the blockchain by providing each agent with a personal
chain that inherits the security guarantees of the ledger chain and therefore the
whole network. In this context, all PoW chains have the same level of security,
but this will not be the case later. Additionally, the use of PoW chains permit
us to build an ecosystem of blockchains which compound their security in a
stronger network, as explored in Chapter 6.

4.1.1 The Ledger Blockchain
Having defined the PoW chains in the previous chapter, we will focus on the
definition of the blockchain which fulfills the traditional role, the ledger chain.
In general, the ledger chain is a “bigger” PoW block, containing multiple proofs
of work and signatures while PoW blocks contain only one. An important
difference is that in this chain the link to the PoW chains is found with the
proofs of work, not as an independent component. While they have a similar
structure, the ledger chain is more rigid, as a stricter structure is desirable for
something that is maintained by the entire network instead of by each agent
individually. To simplify the definition, we must first define the concept of a
signature space.

Definition 4.1 (Signature space of M). Suppose we have n participants in
the protocol, denoted by aj with j ∈ N and let there be a set of bitstrings
M ⊆ {0, 1}∗, we call Σ

(
M
)

the signature space of M if

Σ
(
M
)

= {Σ.signj(m) | j ∈ N,m ∈M}

Similarly, we define ΣJ
(
M
)

with J ⊆ N as

ΣJ
(
M
)

= {Σ.signj(m) | j ∈ J,m ∈M}
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In the case |J | = {j} we simply write Σj
(
M
)
.

Given that definition, we can continue to define our ledger chain.

Definition 4.2 (Ledger block). We say that BC[i] = (st,NA, link, T,G, P, Sigs)
is a ledger block when

• st = i is the round where the block was created,

• NA ⊆ N is the set of indices of the active participants,

• link ∈ {0, 1}λ ∪ {⊥} is the link to the previous block,

• T ⊆ T is an ordered list of transactions,

• G ⊆ {0, 1}∗ encodes proofs of cheating

• P ⊂ {0, 1}λ×{0, 1}λ×Σ
(
{0, 1}λ×{0, 1}λ

)
is an ordered set of triples, such

that if (x, y, z) ∈ P then there exists j ∈ NA such that z = Σ.signj(x, y),

• Sigs ⊆ Σ{(st,NA, link, T,G, P )} is an ordered set of signatures of the
tuple (st,NA, link, T,G, P ).

In the same way as proof in the PoW chain, P contains the proofs of work.
However, here the proofs of work are represented as triples consisting of the
proofs themselves, hash pointers of the blocks in which they are contained and
a signature by the maintainer of that particular PoW chain. In contrast, G
fulfills a very different purpose in the ledger chain. Here we will record the
attempts of the adversary to fork the chain. Every time there are two blocks
from the same round signed by the same participant, a pointer to those blocks
will be added to G in the ledger block. This will permit participants to record
malfeasance in the chain itself, creating an immutable record of this.

Definition 4.3 (Ledger chain). A ledger chain with genesis block BC[0],
BC, is a sequence of ledger blocks BC[0] . . . , BC[p] where for every i > 0 we
have that BC[i].link = H(BC[i− 1]) and

BC[0] =
(

0, N,⊥,⊥,⊥, Ps,Σ
(
0, N,⊥,⊥,⊥, Ps

))
where N is the set of indices of all participants initialised before the start of the
protocol and Ps = {(⊥, H(PCj [0]),Σ.signj(⊥, H(PCj [0]))) | j ∈ N}.

Let len(BC) = p be the length of BC. We define last(BC) = BC[p] as the
last block of BC and BC[i, r) as the blockchain starting from BC[i] until, but
not including, BC[r]. To define the ledger encoded in the chain, we will write
BC.T

We have connected the ledger chain with the PoW chains through the proofs
of work in P . However, we want the connection to go both ways, for that we will
use the component linkLedger which we had ignored in the previous chapter. In
every PoW block, linkLedger will contain a hash of the ledger block that was
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Figure 4.1: The blue ledger chain and the red PoW chain. Blue components
point to the ledger chain and red ones point to the PoW chain. The proofs of
work can be found in the proof component of the PoW blocks and in P for the
ledger blocks.

computed the previous round. This means that the content of each block in the
ledger chain will be reflected in every proof of work, albeit in an indirect sense.
This will entail that a change in the ledger chain will forcibly imply a change
in the PoW chain as well, meaning that the work for PoW must be done again.
There are many properties that must be fulfilled for a PoW chain and a ledger
chain to be connected, as we will see now.

Definition 4.4. A PoW chain PCj, is valid according to a ledger chain
BC if the following properties hold:

• For all 0 < i ≤ len(BC), PCj [i].linkLedger = H(BC[i− 1])

• len(PCj)− 1 ≤ len(BC)

• There exists k ∈ BC[0].NA such that k ∈ PCj [0].id

• Let k be such that PCj [k].link = H(PCj [0]), then j ∈ BC[k].NA

• For all i ≤ len(BC), if there exists a triple (x, y, z) ∈ BC[i].P such that
z = Σ.signj(x, y) then x = PCj [i].proof and y = H(PCj [i])

4.1.2 Verification
To be able to participate in the protocol, the participants must verify that
the inputs they are receiving are valid in regards to the ledger chain they are

39



maintaining. They must also be able to validate whether the proof-of-work
function was computed correctly as well as the validity of signatures.

Proofs of Work We have already presented a way to verify whether a proof
of work was computed correctly in the previous chapter. We present the
function verifyPoW again, which takes a triple (x, y, s) as input and verifies
whether y = PoWs(x). If we want to see whether the proofs of work in a
PoW block PCj [i] are properly computed, we would evaluate verifyPoW
over (PCj [i].link, PCj [i].proof) (which is a slight abuse of notation, as
PCj [i].proof is a pair). It is important to note that each participant can
make unlimited queries to verifyPoW and that the query takes only one
time step and is not dependent on the rate γj of the participant.

PoW blocks For a participant aj to characterise whether a PoW block is valid,
he must take into account the structure of the block and whether it is
consistent with his ledger chain as well as the PoW chain where it belongs.
Checking the structure of the block implies not only checking whether
it follows the definition, but also whether PCk[i].linkLedger is equal to
H(BC[i− 1]). This means that the block points to the appropriate ledger
block. Ledger blocks also point to PoW blocks, although not necessarily.
If it is the case, then there exists a triple (x, y, z) in BC[i].P such that
z = Σ.signkx and the following properties must be verified

1. PCk[i].link is equal to y

2. PCk[i].proof is equal to x

If this is not the case, aj must query for PCk[i− 1], verify it and then use
H(PCk[i−1]) in place of y (it is not necessary to check the second property
as long as the block is well constructed). Note that this procedure works if
and only if the preceding chains are consistent and valid. We will call this
procedure verifyPC and any participant may query the environment for it
a polynomial amount of time per time step. If the block is successfully
verified, verifyPC outputs 1, in any other case it outputs 0. While in certain
cases it is necessary to have the rest of the PoW blockchain to verify a
block, for simplicity in the presentation we will only include PCk[i] and
BC as the inputs to verifyPC. Note that verifyPC makes use of verifyPoW
to check whether the proofs of work are computed correctly.

Ledger Block and Transactions Participants are also interested in verifying
blocks from the ledger chain. To verify BC[i], they should check whether
it points to the right block in the chain and whether it contains enough
correct proofs of work by the participants. Besides the structural prop-
erties of the block, we must also ensure that the transactions contained
within it are valid. To simplify this, we will define two functions to do
this verification. One which only takes into account the consistency of
the transactions, verifyTxs and one which solely checks the structure of
the block itself, verifyBC. The former takes a blockchain and a (possibly
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empty) set of transactions and checks if the transactions in the blockchain
are consistent and whether the set can be added to it without breaking
consistency. It also checks that all transactions are valid, as only the envi-
ronment may create valid transactions but the adversary may input fake
transactions. The latter takes a blockchain BC[0, i) and a block BC[i],
with i ≥ 2, and checks whether the following properties hold:

• BC[i].st = i

• BC[i− 1].NA ⊆ BC[i].NA ∪ ind(BC[i].G)

• BC[i− 1].NA \BC[i].NA 6= ∅ iff there exist records in BC[i].G such
that ind(BC[i].G) = BC[i− 1].NA \BC[i].NA

• BC[i].link is equal to H(BC[i− 1])

• Let |BC[i].NA| = m, |BC[i].P | > Qm where every element of P is
of the form (x, y, z) with z = Σ.signj(x, y).

• BC[i].G contains records of the form (M,B,B∗), where M ⊆ BC[i−
1].NA and M ∩BC[i].NA = ∅

• Let |BC[i].NA| = m, |BC[i].Sig| > Qm where every s ∈ Sig is of
the form s = Σ.signj(id,NA, link, T,G, P ).

• The order of the elements of P and Sig corresponds to the order
induced by the indices

• If there exist (x, y, z) ∈ BC[i].P and (x∗, y∗, z∗) ∈ BC[i− 1].P such
that z = Σ.signj(x, y) and z∗ = Σ.signj(x∗, y∗) then verifyPoW(y∗, x) =
1

Note that while verifyTxs checks if the transactions in the chain itself are
consistent, verifyBC checks only whether the new block would fit at the
tail of the chain, but does not check if the chain itself is constructed cor-
rectly. However, this would be easy to do by defining a function that uses
verifyBC recursively.

Cheating An important part of our protocol is the ability to recognise and
expel cheaters from participating. We are interested in preventing people
from forking the chain and, because the blocks are signed, it is possible
to infallibly recognise when this happens. If two different blocks with the
same round identifier are signed by the same participant, it can only be
because of an attempt to fork the chain. Because our signature scheme is
assumed to be unforgeable, this can only happen if a party purposefully
tried to maintain two different chains2. An attempt at forking can be
recognised both in ledger and in PoW blocks. We will take advantage of
the similarity in their construction to create a function that can work on
both types of blocks, which we will call checkCheat.

2We will see that it is impossible for an honest party to accidentally sign the incorrect
ledger block.
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If we have two PoW blocks that belong to the same participant, we have
proof that the creator of that block is attempting to fork a chain. However,
if we have two ledger blocks that belong to the same round, we only have
definite proof of cheating by the people who signed both blocks. Because
honest parties will have one of the two blocks in their chains already, it
would be tempting to define everyone who signed the blocks from the fork
as an antagonistic party and remove them from the protocol. However, we
are interested in punishing only overt attempts at cheating: when someone
signed two distinct blocks in the same round.

Given two blocks, we want to know if they imply that a certain set of
participants were cheating. Although the two block structures that we
work with are different, they have the same overall structure. In particular,
the last element of the tuple contains signatures of the rest of the block,
which is what we care about. This means that given a block B, which
might be either a ledger or PoW block, the seventh element, B.Sig, is a
set of signatures. In the same way, the first element, B.st, is a round
identifier. Therefore, we define checkCheat the following way:

checkCheat(B,B∗) =


∅ if B and B∗ are of different type

ind(B.Sig) ∩ ind(B∗.Sig) if B.st = B∗.st

∅ otherwise

Having a cheating detection mechanism inside of the protocol allows the
protocol to regulate itself. While we will work in a permissioned setting where
consequences can be executed outside the model, having a mechanism inside of
it allows us to regulate behaviour from the inside in order to not rely on outside
compliance to keep the protocol functional.

4.2 Consensus
Our blockchain protocol is more focused on the structure of the blockchain itself
than on the creation of a consensus mechanism. We will have a subprotocol,
named Consensus which will choose and distribute a block each round to all the
participants for them to add to their copy of the ledger chain. This subpro-
tocol will itself call another protocol BFT which is the protocol that ensures
that all parties agree on something. We use the name BFT because there are
Byzantine-Fault-Tolerance protocols that fulfill the properties that we need, for
example the one presented in [LVCQ16]. These protocols require a complete
knowledge of the network participants and (in most cases) a public-key infras-
tructure. However, any protocol that can ensure the same characteristics may
be substituted in here.

Following the universal composability framework, we will treat BFT as an
ideal functionality that is called by each participant by inputting the indices of
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the other participants who will be running the protocol, comm, as well as a set
containing a log that the parties have agreed on beforehand, hist. At initiali-
sation, each participant inputs a set of elements I from which the output will
be constructed. At the end of the execution, BFT will output a set constructed
from the inputs of the parties. If enough (more than a fraction Q of the total)
participants are honest, BFT will output the same set to all participants. The
participants running this protocol have access to every aspect of the public-key
functionality. The protocol BFT has access to verification functions over the
inputs (to check that they are valid) and the output (to ensure that it fulfills
expected properties), we will elaborate more on this topic later. It works in the
following way:

Inputs Each participant aj in BFT is allowed to input only the following:

• The initialisation input start(comm, hist, I)

• The input halt stops the execution of the protocol by aj

Outputs

• After a successful execution (one without a halt input) BFT outputs an
ordered list of records O.

To characterise a correct execution of this protocol, we define the liveness
parameter LBFT ∈ N, which is a function of the number of participants n. We
also define the network delay δ ≥ 0, which represents the number of time steps
that A is allowed to delay a message by an honest participant. A compliant
execution of BFT by the pair (Z,A) given n and LBFT fulfills the following
properties:

Bounded Network Delay Every message output by an honest participant
reaches every other honest participant at most δ time steps after it was
sent.

Initialisation Agreement If an honest party receives input start(comm, hist, I),
then every honest party in the execution that received a start input, re-
ceived it with the same hist and comm and with a different sk.

Static Corruption Given that the participants in comm are running the pro-
tocol, no more than (1−Q)|comm| of the participants are controlled by A
at the beginning of the execution and no participants become corrupted
during the execution of BFT.

Close Start and Stop If an honest party receives an input start(comm, hist, I)
or halt before any other honest party, all honest parties in comm will re-
ceive it within δ time steps.

An important property encoded in the system is the idea of a consistent
record. Participants in our protocol will call BFT whenever they need to agree
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on something. Each instance of BFT depends on the type of information the
participants are agreeing on, and therefore entails different rules. An adver-
sarial party may try to input records that are not valid. The participants in
the protocol have a way of recognising these records and preventing them from
being added to the output. In our protocol we are interested in using it to agree
on many different things, so we will differentiate these instances by a super-
script. When the participants want to agree on the ordering of transactions,
we will write BFTT . Transactions have specific rules that must be fulfilled to
create a valid ordering of them, encoded within verifyTxs. When we use BFT
for proofs of work (PoWP ) or signatures (PoWS), the necessary conditions are
different (verifyPoW and {Σ.verifyk | k ∈ N} respectively). In the cases where it
is necessary to have information beyond what is added as an input (like in the
case of transactions), we will use the variable hist. We will speak of consistent
outputs when they fulfill the requisite properties. We will also speak of maxi-
mally consistent outputs when no element in any participant’s input can be
added without violating these restrictions.3

We want the BFT protocol to be secure. In this case security means that
the adversary cannot make an honest party accept a different ledger and that
it cannot stop a particular record from being added to the ledger of accepted
records. This is captured by the following:

Consistency Whenever an honest node outputs a set log after being given hist
as an input, hist + log is consistent, where + denotes concatenation.

Liveness At most LBFT time steps after receiving a start input, BFT will end
and output a maximally consistent subset of the union of all inputs.

Agreement When BFT outputs a set O to an honest participant, it will output
the same set O to all other honest participants within δ time steps. If an
honest participant inputs halt to BFT after another honest party has
received O, they will receive O regardless of the halt input.

BFT is a straightforward protocol which does not require interaction from the
environment and outputs a single result. We can look at it as a non-deterministic
function from the inputs in the start command to the output generated at the
end of the execution. We will introduce an abuse of notation and say that
BFT(comm, hist, I) is equal to the final output of an execution of BFT with
initialisation input start(comm, hist, I) which successfully terminated. The
fact that we will use BFT every round might seem insecure due to the result
in [LLR06] which shows that deterministic byzantine-fault-tolerance protocols
cannot be sequentially composed indefinitely. However, this is not a problem in
our case, as that weakness depends on the fact that it is impossible for parties
to recognise to what instance of the protocol a message belongs to. However,
they present a workaround that permits unlimited instances based on session

3Note that due to our restrictions on transactions, all transactions will be consistent with
each other, so the maximally consistent set will be all of the transactions
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identifiers. While this is generally problematic, as the common information
must come from an external source, information from the previous ledger block
will act as the identifier.

4.2.1 The Consensus subprotocol
The protocol BFT, while powerful, does not capture all of the properties we
want from the process of choosing a new block. It does not include the pro-
cess of ejecting antagonistic participants from the protocol or how participants
that do not take part in consensus get a block. In particular, it does not take
into account the process of signing the block. For that, we will define another
protocol that extends BFT in the following ways:

Participation of non-committee members In this simple model, every par-
ticipant should be participating in the BFT instance if they are following
the protocol. However, as we relax our network assumption (for example,
by permitting late spawning) we will have a way for new participants to
start contributing proofs of work and signatures before they are able to
participate in the process of choosing the transactions in a block.

Termination Whenever this protocol is run, it will not stop until it gets an
input to halt. Whenever it gets an input halt, it will run all subpro-
tocols until termination and then stop, outputting the same block to all
the honest participants. This implies that termination is not immediate
after receiving an input, receiving an input to halt simply entails that
the protocol can terminate and that the protocol will stop whenever the
subprotocols reach a successful execution .

Antagonistic Elimination If a proof of cheating is input to the protocol, the
antagonistic parties will be expelled from the protocol and will be unable
to continue to influence the protocol. This event will not interfere with
the execution of the protocol but the consequences of it will be reflected
on the output.

The interaction of the environment with this subprotocol is defined by the
following:

Inputs

• The initialisation input start(BC, comm,W,TxPool, G)

• The input halt stops the execution of the protocol by aj

• The input cheat(B,B∗) which contains two distinct blocks from the same
round that were signed by the same participant

Outputs

• After a successful execution, Consensus outputs a signed block (block , S∗)
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Consensus will make extensive use of the BFT protocol for agreement and
will be run by a subset of all participants. In the models in this thesis, this will
consist of all non-antagonistic participants, but the conditions can be modified
so that only a subset of the participants will run it. We will see more about this
in the next chapter. Using BFT is necessary, as there must be total agreement
on the content of the block due to the fact that the block includes contributions
(proofs of work and signatures) from everyone. Therefore, there is a minimum
time necessary for this protocol to function correctly, based on the time it takes
to run BFT enough times to be in total agreement on transactions and sig-
natures. We will call the upper bound for this time interval LConsensus. This
protocol also has access to all the verification functions that we defined previ-
ously. While we assume that these functions are the ones that we mentioned,
these can be redefined in case they are attempted to be used in a different setting.

Given the protocol, we must characterise a compliant execution of Consensus.
Given an environment-adversary pair (Z,A), we say the pair is (n,Q,LBFT, δ)-
valid w.r.t. Consensus if the following properties hold:

Bounded Network Delay Every message output by an honest participant
reaches every other honest participant at most δ time steps after it was
sent.

Initialisation Agreement Whenever an honest party is initialised by an input
start(BC, comm,W,TxPool), every honest party in the execution that
received a start input, received it with the same BC, comm, W .

Valid Initialisation When an honest party receives the initialisation input
start(BC, comm,W,TxPool), BC must be a valid ledger chain, W must
have at least |last(BC).NA|Q+1 blocks Bj of which at least Q-percentage
of them must come from honest players and have the property that if(
x, y,Σ.signj(x, y)

)
∈ last(BC).P then verifyPoW(y,Bj .proof) = 1. The

set TxPool must be a subset of T and include only valid transactions.

Static Corruption Given that comm participants are running the protocol,
no more than (1 − Q)|comm| of the participants who received a start

command are controlled by A at the beginning of the execution and no
participants become corrupted during the execution of Consensus.

Close Start and Stop If an honest party receives an input start or halt

before any other honest party, all honest parties in comm will receive it
within δ time steps.

Cheating Timeliness Whenever a cheat input is received by an honest par-
ticipant, it is received by all honest participants. Furthermore, no cheat

inputs are received after receiving a halt input by honest parties. Note
that we cannot prevent the adversary from inputting cheat at inoppor-
tune times. However, this will not affect the execution of the protocol, as
honest parties will ignore this input when it arrives too late.
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Consensus for participant aj

On input start(BC, comm,W,TxPool):

• Set Ni = last(BC).NA ∪ ind(W ) and G = ∅
• Set W c = {formatPoW(x) | x ∈W, verifyPC(x,BC) = 1}
• Set commTxs = ind(WC) ∩ comm

If j ∈ commTxs and |commTxs| ≥ Q|comm|

• Call BFTT with input start(commTxs, BC.T,TxPool)
• Let T be the output of BFTT

• Broadcast T

Else

Wait until (1−Q)|comm|+ 1 participants send the same T , save T

On input halt: Wait until BFTT successfully terminates

• Let block =
(
len(BC) + 1,Ni, H

(
last(BC)

)
, T,G,W c

)
• Broadcast block
• Call BFTS with input start

(
comm,∅, {Σ.signj(block)}

)
• Let S∗ be the output of BFTS

• Output (block , S∗) and halt

On input cheat(B,B∗): Set Ch = checkCheat(B,B∗)

If Ch ∩ comm 6= ∅

• Update comm = comm \ Ch and Ni = Ni \ Ch
• Update commTxs = commTxs \ Ch
• Eliminate contributions from participants in Ch from W c and

ignore communications from them
• Add (Ch, B,B∗) to G

If running BFTT and halt has not been input

• Input halt to BFTT

• Call BFTT with input start(commTxs, BC.T,TxPool, sk)

The function formatPoW(x) is a function that takes a PoW block and en-
codes it in the way that it will be represented in the blockchain. That is, as
a triple including the proof itself, a hash of the block and the signature of the
block. Note a simple abuse in notation, where (block, S∗) represents a fully
formed ledger block, and not a pair between an unsigned block and its signa-
tures.
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It is very important that the signatures are agreed upon perfectly, as ev-
erything else in the block. If someone does not have the same signatures as
everyone else, their block will be different and therefore their PoW chain will
be too. We need to ensure agreement between all participants. That is why we
have to make sure that every participant receives the same set of signatures,
with no exceptions. Therefore, we use BFT to agree over the signatures. Be-
cause the adversary is in charge of delivering the messages, she has a lot of
power over this process and can easily make it fail even when we add waiting
times to each communication round. Instead of trying to find a particular so-
lution for this issue, we instead use something that we already have access to:
BFT. it is important to note that the implementation of BFTS does not need
to be the same as BFTT . Due to the difference in the nature of the data that
we are agreeing upon, it would make sense to have different implementations of
consensus for each of these instances.

We define security in the Consensus protocol as follows:

Definition 4.5. An execution of Consensus is said to be secure against (1−Q)-
corruption with liveness parameter LBFT if for any n > 0 and for any pair (Z,A)
that is (n,Q,LBFT, δ)-valid w.r.t. Consensus, there exists a negligible function
negl such that for every λ ∈ N, except with negl(λ) probability, the following
properties hold for exec(Z,A)[Consensus]:

Structural Consistency : For any honest participant, if they input a valid
BC in the start command, the chain resulting from concatenating the
output (block , S) at the end of BC is valid w.r.t. verifyBC.

Content Consistency : For any honest participant, if they input a valid BC
in the start command, the transaction contained in the output are valid
with the ones in BC w.r.t. verifyTxs.

Liveness : If a valid transaction tx is contained in TxPool in the start input
of an honest party, then tx ∈ block .T

Agreement When an honest party receives (block , S) as an output from Consensus,
every other honest participant receives the same (block , S).

Given this construction of the protocol, we can prove that Consensus is secure
and therefore does what we expect of it

Lemma 4.6. Given a compliant execution of Consensus, every execution of BFT
by Consensus is compliant.

Proof. We need to fulfill the following properties:

Bounded Network Delay By Bounded Network Delay of Consensus
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Initialisation Agreement If an honest party receives input start(comm, hist, I),
then every honest party in the execution that received a start input, re-
ceived it with the same hist and comm. Whenever an honest party re-
ceives an initialisation input, it contains either an empty hist in the case
of BFTS or the transactions in BC for BFTT . Due to Consensus’s Ini-
tialisation Agreement, we know that BC is the same for all participants.
commTxs is the same for all participants, as it is based over W and BC
(same by Initialisation Agreement of Consensus) and modified only by the
cheat command, which is broadcast and verifiable by everyone.

Static Corruption By Valid Initialisation of Consensus, W must contain a
Q-majority of valid PoW blocks from honest parties which appear in the
previous block. All of the parties that contributed a valid PoW block will
be in commTxs by construction, an no one else. Thus, the committee for
BFT will have a Q-majority.

Minimum Run By construction, Consensus will always wait for BFTT and
BFTS to finish running.

Close Start and Stop Follows from Consensus’s Close Start and Stop, Bounded
Network Delay and Cheating Timeliness.

Theorem 4.7 (Consensus from BFT). Suppose that the signature scheme is
secure, that H and PoW are independent random oracles parametrised by λ.
Suppose that BFT is secure against (1−Q)-corruption with liveness parameter
LBFT for Q > 1/2. Then Consensus is secure against (1−Q)-corruption given a
pair (Z,A) that is (n,Q,LBFT, δ)-valid w.r.t. Consensus.

Proof. To ensure security, we must show that the following properties hold:

Structural Consistency : We must ensure that verifyBC holds for BC +
(block , S), however, we only care about the last block (which we will refer
to as BC[i] for clarity) as we assume that the rest of BC is valid due to
Valid Initialisation. We need the following properties to hold, given that
|BC[i].NA| = m:

• BC[i].st = i: By construction

• BC[i].NA ⊆ BC[i− 1].NA: BC[i − 1].NA was input to Consensus
and elements can only be eliminated from it, not added, before it
gets added to BC[i]

• BC[i].link is equal to H(BC[i− 1]): By construction

• |BC[i].P| > Qm: Follows from Valid Initialisation

• G consists of outputs from checkCheat, which have the form that we
expect
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• |BC[i].Sigs| > Qm: Because every honest party follows the protocol
and due to the Agreement property of BFT, every honest party agrees
on the same block and therefore their signature is valid and added to
the block. As we saw previously, our bounds on communication also
ensure that there is agreement over the signatures of the block. By
Static Corruption, there will be at least Qm participants to sign the
block.

• Ordering of P and Sigs: By construction

• If there exist (x, y, z) ∈ BC[i].P and (x∗, y∗, z∗) ∈ BC[i− 1].P such
that z = signj(x, y) and z∗ = signj(x∗, y∗) then verifyPoW(y∗,x) = 1:
Follows from Valid Initialisation.

Content Consistency : Follows directly from consistency of BFT

Liveness : If a valid transaction tx is contained in TxPool in the start input
of an honest party, then it will be input into every instance of BFTT run
in that round. Eventually, one instance of BFTT will run for LBFT steps
and terminate. Therefore BFTT will output a maximally consistent subset
of the union of the transactions. because all transactions that were input
are assumed to be consistent, tx will be in the output of BFTT

Agreement : The st and link come directly from BC, which are the same by
Committee Agreement. T, P and Sigs are consequences of running BFT,
and therefore inherit Agreement from there. NA comes from BC but can
change because of cheating. Similarly, G is empty unless there is cheating.
By construction, whenever an honest party changes any of them, every
honest party will change both.

4.3 The Idealised Broadcast Protocol
Having defined the subprotocol to agree on each block, we now turn our atten-
tion to the main protocol. The principal goal of this main protocol, IdealLipwigτ ,
is to maintain the blockchains and collect proofs of work. Most of the work of
the protocol happens in Consensus but IdealLipwigτ is in charge of maintaining
the desirable context over which we will want to run Consensus. The protocol
extends Consensus in the following ways:

Continuous Execution While the previous protocols we have explored in this
chapter reach an output and stop, the IdealLipwigτ protocol is always
being run, maintaining the blockchains in the process. As such, it has an
initialisation procedure and runs continuously, without running towards
an output.

Adaptive Corruption In other protocols we assumed static corruption. As
the protocols run only within one round of IdealLipwigτ , it is reasonable
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to assume that it would not be enough time for an adversary to corrupt
them. However, within IdealLipwigτ we will include adaptive corruption.
The adversary A can send a message corrupt(aj) to Z at any time. If A
has not reached its threshold of corrupted participant, it will gain control
of aj at the beginning of the next round. This permits us to assume
that every subprotocol only has to protect against static corruptions. In
practice if a participant is corrupted at any point within a round, we treat
it as if he had been corrupted at the beginning of the round.

Transaction Introduction The protocol IdealLipwigτ is connected to a trans-
action pool TxsPool. At every time step, Z adds valid transactions to
Txs. At any time, any participant may query TxsPool for transactions to
input into Consensus. At the end of each round, each participant inputs
the most recent ledger block to TxsPool, which erases every transaction
registered in that block from it.

Connection with Golem In this protocol, each participant can run the pro-
tocol Golemγ defined in the previous chapter. Because we assume every
participant has the same rate, we will avoid using the subscript for the
rate and will refer to the rate of every player as γ in all this chapter.

We will make a very important simplification in this protocol, and that is
that communication is immediate, that is δ = 0. While both BFT and Consensus
are more robust and can still work given a network delay, this model will assume
there is no delay and communication is immediate (that is, at the end of each
time step, each participant receives every message sent during that time step).

The protocol IdealLipwigτ works as follows: At the beginning of the protocol
Z initialises n parties, the adversary might choose to corrupt any number of
them (within its limits) at that time or wait to corrupt them later. Then, Z
randomly generates private and secret keys pkj and skj for each of them and
stores them. It outputs BC[0], PCj [0],PoW(PCj [0]) as well as all the relevant
keys to each participant aj . The protocol for participant aj is defined as follows:

Ideal Broadcast Protocol IdealLipwigτ for aj

Initialisation

Upon activation by Z

• Receive (pkj , skj) and the list of pairs (k, pkk) from Z
• Receive BC[0], PCj [0] from Z
• Receive

(
PoWτγ(PCj [0]), τγ) from Z and immediately start

Round 1
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Round i

The round begins upon reception of the output of Golemγ :
Gi =

(
PoWs(PCj [i− 1]), s

)
PoW Chain Maintenance:

• Set σ = signj
(
H(PCj [i− 1]), H(BC[i− 1]),⊥, Gi

)
• Append

(
H(PCj [i−1]), H(BC[i−1]),⊥, Gi, σ

)
to PCj as PCj [i]

• Query for Golemγ(PCj [i])

Pre-Consensus:

• Let comm = last(BC).NA
• Broadcast PCj [i]
• Let P be the set of every PoW block received
• Broadcast P
• Upon reception of the PoW block sets, take the majority P ′

and count how many participants sent it.

– If less than (1− Q/2)|comm|+ 1 participants agree on P ′,
broadcast runBFT and in the next time step, set P ∗ =
BFTP (comm,∅, P ).

– Otherwise, wait one time step. If no runBFT message is re-
ceived set P ∗ = P ′. Otherwise , set P ∗ = BFTP (comm,∅, P )

• Input receive to TxsPool, get back Txs
• Call Consensus(BC, comm, P ∗,Txs,⊥)
• After τ − (2LBFT + 5) time steps, input halt to Consensus
• Wait until Consensus outputs a block, add it to BC
• Input clean BC[i].T to TxsPool

• After τ time steps since the beginning of the round, input halt
to Golemγ

Cheating Recognition

Whenever aj receives a signed block B∗ that is different from the one
in the same stage B

• Broadcast (B,B∗)
• If Consensus is running and halt has not be input: input
cheat(B,B∗) to Consensus
Otherwise: Wait until the next instance of Consensus is run-
ning, then input cheat(B,B∗)

On input chain: Output BC
On input PoWchain: Output PCj
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When agreeing over the proofs of work, we have a similar situation that we
had in Consensus to agree over the signatures. One would think that because
IdealLipwigτ assumes a perfectly synchronous network it can be possible to agree
on proofs without resorting to BFT, considering that the adversary has consider-
ably less power to disrupt the protocol. However, due to the adversary’s ability
to send different messages to different participants, she can still affect this pro-
cess. Our solution does not manage to completely solve this. While our bound
prevents the adversary from interrupting the protocol, we cannot prevent her
from forcing a call to an instance of BFTP . This is unfortunate, as we must take
into account a complete run of BFT (taking LBFT time steps) when we set the
length of the rounds, τ , even if we could avoid running BFTT in some rounds
of the protocol. Note that we are not constrained to always use BFT to agree
on the proofs of work, as the order of the proofs is determined by the ordering
on the indices. It is notable that the threshold for ensuring agreement is higher
than having agreement between all honest parties. This is due to an attack that
the adversary can employ to split the honest parties into two groups that hold
different sets but believe that (1− Q/2)|comm| other parties have the same set.

Lemma 4.8. Given an execution of IdealLipwigτ with honest percentage Q, n
participants and adversary A, if honest parties accept less than (1 − Q/2)n + 1
equal sets of proofs of work when creating P ∗, A can split the honest parties in
two groups such that each group has a different P ∗ and does not realise it.

Proof. We will present an attack in which A splits the honest parties in such a
way that every honest participant receives one of two distinct candidate sets (P1

or P2) from (1−Q/2)n different participants. Given n participants in the protocol
and an honest percentage of Q, the adversary divides the honest parties into
two sets (H1 and H2) with Qn/2 participants each and divides the adversarial
participants into other two sets (A1 and A2) with (1−Q)n/2 participants each.
When sending proofs of work, A1 sends PoWs only to H1 and A2 sends them
only to H2. In the next step, all adversarial parties send the PoWs from H1,
A1 and A2 (a total of Qn/2 + 2(1−Q)n/2 = (1− Q/2)n) to H1 and the PoWs from
H2, A1 and A2 to H2. This means that the honest parties will have distinct
sets with (1− Q/2)n PoWs.

Given this result, we know that the adversary cannot convince every honest
participant that everyone else got the correct P ∗. However, she can still convince
one that this is the case to force the execution of BFTT . She does not need to
do this, as simply sending a message runBFT will do the trick.

Given the protocol, we must characterise a compliant execution of IdealLipwigτ .
Given an environment-adversary pair (Z,A), we say the pair is (n,Q,LBFT, δ)-
valid w.r.t. IdealLipwigτ if the following properties hold:

Ideal Network Properties Every message output by an honest participant
reaches every other honest participant by the end of the time step in which
it was sent. That is, δ = 0
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Simultaneous Initialisation All n parties are initialised at the same time at
the beginning of the protocol. Before they are initialised, the adversary
might communicate to Z which parties it wishes to corrupt. These parties
will start the protocol already corrupted, as long as they constitute no
more than (1−Q)n participants.

Valid Initialisation At the beginning of the protocol, every participant re-
ceives the same correctly constructed BC[0] and also receives valid PCj [0],(
PoWτγ(PCj [0]), τγ

)
and a pair of keys (pkj , skj) that are shared by no

other participant. They also receive the correct list of association between
indices and public keys.

Adaptive Corruption At any round A might send a message corrupt(aj) to
Z. At the beginning of the next round, A will gain control of aj as long as
that means that no more than (1−Q)n participants are being controlled
by A.

Timeliness Every participant queries Golemγ at the same time

Minimum Run We have that τ LConsensus + 1 = O(2LBFT)

We assume that all non-adversarial parties follow the protocol to the letter.
Because we assume at least Q of the participants are honest, this entails that
verifyPoW(BC,PCk[i]) will always be true for all honest ak. Therefore, at least
Q of the participants of Consensus will be honest, which means that it will work
as expected. Therefore, a valid (because of consistency in Consensus) block will
be issued at every round and, due to correctness of Consensus, will be adopted by
all honest parties. More formally, we define security in the IdealLipwigτ protocol
as follows:

Definition 4.9. Given random oracles H and PoW parametrised by λ, IdealLipwigτ

is said to be secure against (1 −Q)-corruption with liveness parameter LBFT if
for any n > 0 and for any pair (Z,A) that is (n,Q,LBFT, Q, δ)-valid w.r.t.
IdealLipwigτ , there exists a negligible function negl such that for every λ ∈ N, ex-
cept with negl(λ) probability, the following properties hold for exec(Z,A)[IdealLipwig

τ ]:

Consistency : If an honest participant aj is queried chain at time t and
outputs BC and an honest participant ak (possibly equal to aj) is queried
chain at time t∗ ≥ t and outputs BC∗, we have that BC ≺ BC∗. If t = t∗

we have that BC = BC∗

Liveness : If a valid transaction tx appears in TxsPool in round i then either
tx ∈ BC[i] or tx ∈ BC[i+ 1]

Lemma 4.10. Given a compliant execution of IdealLipwigτ , every execution of
Consensus by IdealLipwigτ is compliant.

Proof. We must prove the following hold
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Bounded Network Delay Follows from IdealLipwigτ ’s Ideal Network Proper-
ties

Initialisation Agreement Consensus is initialised with the following variables
that must match:

• BC: Every participant has the same genesis block from Valid Ini-
tialisation of IdealLipwigτ . So in Round 1, this holds. Every other
block is generated by Consensus. Because of Consensus’s Agreement,
by induction, every honest participant always holds the same BC.

• comm: As seen in the previous point, every honest participant holds
the same BC, so last(BC).NA is always the same. This implies comm
has the same initial value. However, this can change when cheating
is encountered, but because everyone becomes aware of cheating, it
will be changed accordingly by everyone.

• W: W depends on BC, P ∗ and verifyPC, all of which are equal for
everyone (BC by Consensus’s Agreement and P ∗ by BFT’s Agree-
ment)

• R: All participants receive an empty string ⊥

Valid Initialisation By construction. There are enough proofs of work in W
because honest participants always create a proof of work.

Static Corruption Follows directly from the bounds on adversarial power.

Close Start and Stop By construction, follows immediately.

Cheating Timeliness By construction, if the announcement of cheating would
be too late, honest participants wait one round before inputting cheat.

Lemma 4.11. Given a compliant execution of IdealLipwigτ , every execution of
BFT by IdealLipwigτ is compliant

This proof follows a very similar route to Lemma 4.6, so we refrain from
writing it. The only important point to note is the time step skipped when
running BFTT in order to fulfill Close Start and Stop for BFT.

Theorem 4.12 (IdealLipwigτ from Consensus and BFT). Suppose that the sig-
nature scheme is secure, that H and PoW are independent random oracles
parametrised by λ. Suppose that Consensus and BFT are secure against (1−Q)-
corruption with liveness parameter LBFT for Q > 1/2. Then IdealLipwigτ is secure
against (1−Q)-corruption given a pair (Z,A) that is (n,Q,LBFT, δ)-valid w.r.t.
IdealLipwigτ .

Proof. Consistency : Whenever any participant adds a block to the chain, it
comes from Consensus. By the Agreement property of Consensus, this will
also be the same. By construction of IdealLipwigτ , every participant will
get a new block at the same time.
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Liveness : Suppose a valid transaction tx appears in TxsPool in round i, there
are two cases:

• tx appears before querying TxsPool: tx is contained in the Txs
pool that is input into Consensus. Liveness in Consensus implies that
tx will be contained in the block issued at the end of the execution
of the subprotocol.

• tx appears after querying TxsPool: tx remains in TxsPool and
is not eliminated when the participant inputs the accepted block.
Therefore, in the next round, when TxsPool is queried, tx will be in
the set it outputs. Then we follow the previous proof to show that
tx ∈ BC[i+ 1]

4.4 Immutability
In this chapter we have constructed a model of a blockchain that uses serial
proofs of work. While we use these proofs of work to ensure that the partici-
pants are investing work into maintaining the blockchain, they do not take part
in the process of choosing a new block. The primary purpose of the serial proofs
of work is to ensure immutability of the chain. Even in a permissioned network,
where there is a certain baseline for trust, a big advantage of blockchains is
the ability to transfer trust from the participants to cryptography. Because
cryptography is not subject to outside pressures in the same way people are,
the ability to shift trust away from agents is very useful. Serial proofs of work
ensure that a certain amount of work has to be performed by the participants if
they want to modify the blockchain in any way. More importantly, it requires an
investment of time, as it is impossible to parallelise the work needed to create a
proof of work. This is the main advantage over using Nakamoto proofs of work,
especially in a permissioned network.

Besides their use as in cryptocurrencies, blockchains show potential to be ap-
plied in other aspects. In particular, blockchains are being suggested as a way
for different companies to cooperate, as they do not need to trust each other to
know that previous information was not modified, which would be the case with
traditional ledgers. This use case would require a permissioned blockchain, like
the one we are building here. Due to the fact that permissioned blockchains have
a more advantageous setting, we do not need protocols that are as robust as the
permissionless setting. This permits the use of protocols which use byzantine-
fault tolerance to agree on blocks. However, there have been criticisms of these
implementations. Agents running the protocol in a permissioned setting will
likely run the same software, not only for the protocol itself but also the same
operationg system, meaning that there is a practical possibility that the whole
network might fall under the control of the adversary. In this case, an adversary
would be able to create an arbitrary number of valid blockchains that will be
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indistinguishable from the real blockchain [Sir17]. Therefore, the immutability
claims disappear. Proofs of work prevent these situations from happening, as
the adversary cannot create new chains without investing the requisite compu-
tational power and time.

In our protocol, each participant uses one single core to compute the serial
proof of work. Because they are serial, running them in multiple cores is use-
less. Because they build on each other, it is impossible to start computing one
before all the previous ones have finished computing. Because they are signed
by each participant, there is no incentive for anyone to compute more than one.
Therefore, the only leverage an adversary can have is access to a faster core
that permits them to take less time to calculate one. Even then, they cannot
pre-compute future proofs of work because they need to know the ledger block
to have a PoW block over which they will apply PoW. This shows that we do
not fall into the same pitfalls as the Nakamoto proofs of work, but can we ensure
immutability with these new proofs of work?

In the previous chapter we have already shown that PoW chains achieve im-
mutability through the serial proofs of work. We are then interested in showing
that this immutability can be borrowed by the ledger chain. While the ledger
chain contains all the proofs of work computed by the participants for their
PoW chains, these are not computed over the blocks of the ledger chain, but
over the PoW blocks. This means that the security guarantees that we have on
the PoW chains do not translate directly to the ledger chain. In particular, the
ledger chain alone cannot prove its own immutability, as it is necessary to have
access to at least one linked PoW chain. While this is not ideal, it is also not
too much of an issue, as every participant will maintain their own PoW chain.

An important thing to note is that the process in which a participant main-
tains their PoW chain in IdealLipwigτ is the same as the one he would follow in
SingleLipwigτ , but instead that the component linkLedger of the block includes
the hash of the current ledger block instead of an arbitrary string. In essence,
the protocol SingleLipwigτ is contained in IdealLipwigτ . Therefore, we can im-
port all the theorems we have for the immutability of PoW chains into this new
setting. This is not enough to show the immutability of the ledger chain, but
we will show that it inherits the immutability guarantees from the PoW chains
it is connected to.

Before doing that, we will see that no participant in IdealLipwigτ can be
fooled by a rewritten chain. Every player maintains their own PoW chain, which
has a record of how the blockchain looked when each block was created in the
form of linkLedger. Therefore, any honest party will immediately recognise a
rewritten ledger chain.

Lemma 4.13. In protocol IdealLipwigτ , regardless of the percentage of partici-
pants controlled by the adversary, any attempt at replacing blocks in the ledger
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chain can be recognised by any honest party aj.

Proof. Suppose that at round i + r with r > 0, a block is presented in the
consensus stage that points to a ledger chain BC∗ that differs from the one held
by aj starting from block i. For BC∗[i, i+r) to be considered valid, each block on
it must have at least nQ valid signatures. Therefore, for every k ∈ {i, . . . , i−r+
1} we have that BC[k].Sigs∩BC∗[k].Sigs 6= ∅. Therefore, each honest party aj
can add all participants represented in

⋃
k∈{i−r,...,i−1}BC[k].Sigs∩BC∗[k].Sigs

to BC[i].G using the cheating recognition process and continue the protocol with
an unforgeable proof of the malfeasance of the participants.

Therefore, an honest party will never accept a rewritten blockchain unless
the adversary managed to erase his PoW chain and replace it with a new one.
However, this will require the adversary to have access to the participant’s
private key, which it can only manage by corrupting said participant. More
importantly, replacing a PoW chain requires time, as seen in Theorem 3.10. In
order to fool an honest participant, the adversary would have to rewrite his PoW
chain. As we have seen in the previous chapter, the problems with doing this
extend beyond acquiring access to the relevant secret keys. First, we will prove
that ledger blocks are time-locked through the hash pointers between them and
the PoW blocks.

Theorem 4.14. Let BC be a ledger chain created in IdealLipwigτ with H and
PoW parametrised by λ and rate γ such that len(PC) = i+ r. Any block BC[i]
is time-locked by

(r − 1)(τγ/γ∗ + 1) + 1

if γ∗ is the upper bound for the rate, except with negligible probability in the
security parameter λ.

Proof. Considering that for every j ∈ {1, 2, . . . , n} every PoW block PCj [i+ 1]
has a pointer to BC[i] and those blocks are time locked by (r − 1)(τγ/γ∗ + 1)
by Theorem 3.5, BC[i] must have been created at least one time step before
them.

We want to show that it is impossible for the adversary to construct a valid
ledger blockchain without investing enough time, even if she has access to suf-
ficient secret keys. To show this, we will use the round-based PV game we
presented in Section 3.1, with the difference that the prover has to provide both
her PoW chain as well as her copy of the ledger chain. In this version of the
game, the prover must add the random value x to the ledger chain. As we will
see, this will require to rewrite the PoW chains as well. To confirm whether a
pair of blockchains is valid V has access to all the verification functions presented
in Section 4.1.2 as well as the knowledge of the current round. Due to the cheat-
ing recognition mechanism in the model, the adversary knows that any attempt
at forking or rewriting the chain can result the participants under her control
being eliminated from the protocol. This is true regardless of the amount of
participants that the adversary controls. While we need a Q-majority of honest
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parties to ensure that the protocol works as expected, as long as there is one
honest party, the adversary cannot create a fork without it being noticed. Note
that this does not mean that the adversary cannot maintain a fork and keep it
secret from the honest parties, only that whenever any honest party sees the
fork, they will immediately recognise it and take action against the antagonistic
participants.

For this model, the adversary A will take the role of the prover P. For our
game to be interesting, we have to change the setup, as rewriting the chain
is impossible for the adversary. Especially when we consider that every block
needs to be signed by enough participants. It is impossible for the adversary
to construct a valid fork without fooling enough participants in order for them
to sign a fake block. Even then, the participants will be eliminated from the
protocol anyways for double signing blocks. The conditions of the protocol
prevent the appearance of any type of fork. Therefore, we will have to change
the setting in order for our PV game to be of any interest. We will then assume
that the adversary has control of the whole network. The implication of this is
that any security guarantee that we prove is independent from the public-key
infrastructure. We will assume that the adversary gains control of the network
at a certain point and then starts the process of rewriting the blockchain in some
point in the past (as having control of the network, it can immediately make a
polynomial number of forks starting from the block being created when A takes
control). This setting is not purely theoretical, but also reflects a situation
that can reasonably arise in applications. If a blockchain was subject to outside
inspection, like in cases of government regulation, it might be in the participants’
best interest to present a fake blockchain. Therefore, they could all cooperate
to make a fake chain to present to the regulating agency. At the same time,
they must continue to maintain the real blockchain so their operations continue
as normal. In this section we will prove that even in this setting, it is impossible
for A to rewrite the ledger chain if she does not have access to a faster rate. In
the same way, we will show that if she does have this computational advantage,
she will still need to invest sufficient time to be able to come up with a fake
chain.

Lemma 4.15. Suppose H and PoW are random oracles with security parameter
λ and A and V are playing the round-based PV game for IdealLipwigτ with rate
γ and n participants. For A to win, she must rewrite all n PoW chains starting
from block PCj [i+ 1].

Proof. In this setting, A has access to all private keys, so she can create valid
blocks of all kinds. When adding x to BC[i], A substitutes BC∗[i] for BC[i]
such that BC[i].link = BC∗[i].link and BC[i].P = BC∗[i].P . She follows this by
substituting the pointers for BC[i] to BC∗[i] in both the ledger block BC∗[i+1]
and all PoW blocks from round i+1. Then, A changes the pointers in the proofs
of work of BC[i+ 1] to the new PoW blocks with the modified pointer and then
changes the pointer of each block. Up to this point, the chains BC∗[0, i + 2)
and PC∗j [0, i+ 2) are valid without executing any proofs of work.
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In the case that r = 2, A can just continue to run the protocol directly
substituting the rewritten chains. Because they are of the right length, V will
not notice the difference. Otherwise, the pointers in BC can be changed to
the appropriate ones in BC∗ so that len(BC∗) = i + r. While we have that
verifyBC

(
BC∗[0, k), BC∗[k]

)
= 1 for all k ∈ {1, 2, . . . , i + r}, we have that

verifyPC(BC∗, PCj∗[k]) = 0 for k > i + 2 and all j ∈ {1, 2, . . . , n}. This is
due to the fact that the proofs of work are computed over pointers to the origi-
nal blocks. Therefore, in order for V to believe that the rewritten ledger chain
is valid, all linked proof of work chains must be rewritten as well starting one
block after the main chain was modified.

The previous lemma represents how the immutability of the PoW chains is
acquired by the ledger chain through having pointers that connect the chains.
Note that it is not only the ledger chain which gains security, as all PoW chains
also share the acquired immutability guarantees. In this case, the security of
PoW does not change, as the strength of the proofs of work is the same. This
will not be the case when we have participants with different rates. Thanks to
the previous result, we can see that if the prover wants to win the PV game for
IdealLipwigτ , then she must win the PV game for SingleLipwig for all the PoW
chains. We will use this fact to show the immutability guarantees of the ledger
chain.

Lemma 4.16. Given random oracles H and PoW with difficulty parameter λ.
Suppose the ledger chain BC constructed in IdealLipwigτ has length i+ r (with
r > 0), if the adversary A wants to rewrite BC[i], it will take her no less than
r rounds except with negligible probability in the security parameter λ.

Proof. By the previous lemma, in order to rewrite the ledger chain in block i, A
must rewrite all PoW chains at block i+1. To be able to do so, A must compute
the proof-of-work function over the modified PoW blocks. This is equivalent to
rewriting a the i + 1-st block of PoW chain in SingleLipwigτ , which by Lemma
3.3 takes rτγ time steps or r rounds.

If the adversary takes control of the network and tries to rewrite the chain
without continuing the process of creating blocks, it will be clear that the pro-
tocol has been compromised. Therefore, the adversary must continue to run the
protocol if she is interested in keeping the illusion that the protocol is working
correctly. For example, if the blockchain represents a cryptocurrency the ad-
versary is incentivised to hide the fact that she has control over the network
because a compromised currency would lose its value. This implies that even
when trying to rewrite the blockchain, the adversary must continue to grow the
original chain. This will be counterproductive, as it will be computationally
costly and, more importantly, will prevent her from ever accepting the modified
chain.

Lemma 4.17. In protocol IdealLipwigτ , if an adversary has control of the net-
work and wants to rewrite a block BC[i], she must start computing proofs of
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work for the fork before round i + 2 or the modified chain will fail to reach the
length of the original chain

Proof. By Lemma 4.16, it takes an adversary r−1 rounds to the r sets of proofs
of work necessary to successfully rewrite the chain. If she starts at any round
after i + 1, we will have r ≥ 2, which means that it will take her at least one
round to create the necessary proofs of work. For every block of the new chain
BC∗ that it creates, the original chain BC has grown by one block as well.
Therefore, she will never be able to catch up with the original chain.

The preceding lemmas show that the adversary cannot rewind the chain
without halting the protocol. This implies that serial proofs of work make it
effectively impossible to rewind the blockchain to a previous state to erase previ-
ous transactions. This would be of particular interest for chains that are subject
to regulatory oversight. If the verifier receives a chain, it can be sure that the
chain has been in existence for a certain amount of time. It is always possible
that the network is maintaining two distinct chains since the beginning, but
that implies serious computational cost, cooperation between all parties and
prescience of things it would want to keep hidden in the future. Serial proof of
work prevents the arbitrary creation of blocks even with control over the total-
ity of the network, which is a guarantee that cannot be managed by protocols
which do not use proof of work.

We now show that our ledger chain also fulfills θ(γ∗, r)-security from Defi-
nition 3.9 thanks to the connections with the PoW chains.

Theorem 4.18. Suppose H and PoW are random oracles with security param-
eter λ. A ledger chain BC created in IdealLipwigτ is θ(γ∗, r)-secure with

θ(γ∗, r) =

⌈
r − 1γ

γ∗ − γ

⌉
− 1

Proof. In Lemma 4.15 we proved that rewriting a block in the ledger chain
which is r blocks deep requires to rewrite all the linked PoW chains for r − 1
blocks. By Theorem 3.10 we know that this takes

θ(γ∗, r) =

⌈
r − 1γ

γ∗ − γ

⌉
− 1

rounds. Because all of the PoW chains can be computed in parallel, it takes at
least that many time steps to rewrite BC.

In this chapter, we have created a permissioned blockchain protocol that
fulfills the properties necessary for its correct functioning. We have also shown
how serial proofs of work provide this blockchain with immutability, by gaining
the guarantees that appear in the PoW chains. However, many properties of
this protocol are idealised and we will soften some of the assumptions in the
following chapter.
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5The Lipwigω Protocol

We have built a protocol IdealLipwigτ in which multiple participants maintain
a ledger chain in conjunction with their personal PoW chains. While we have
shown this protocol to be secure, its structure is too rigid for any meaningful
application. In particular, the supposition that rounds take a set time is too
strong. Fixing the length of rounds requires strong assumptions over the rate
of the participants as well as the worst-case scenario for the protocol. Further-
more, the round structure in IdealLipwigτ can only be maintained in a perfectly
synchronous network. Otherwise, there is a possibility that blocks will not be
created in time, which will make the protocol structure break down. By relaxing
the length of rounds by allowing them to depend on the time needed in choosing
a block, we present a setting that is closer to application. Not tying the exe-
cution of the protocol to a pre-set round length permits us to get rid of other
unrealistic assumptions, in particular that all participants can compute proofs
of work at the same rate. Without this supposition, we do not need to assume
that all participants have the exact same equipment and the same conditions.
We will base this new protocol on IdealLipwigτ but with ideas we developed in
SingleVarLipwigω. The overall structure will resemble the former, but we will
adopt the idea of a blockchain with proofs of work of variable strength from the
latter. Having already worked with them, we know the immutability guarantees
that we expect from the PoW chains remain in this new paradigm. However,
other challenges will appear when we try to build our new protocol Lipwigω.

An issue when modelling rounds with a set length is the concern that the
process of creating a new block might take longer than the current round. To
prevent this in IdealLipwigτ , we made sure that there would be enough time
by making the rounds take considerably longer than BFT, as well as adding
sufficient padding to make sure that everything terminates in time in the worst-
case scenario. This solution has the side effect of lengthening the wait time for
transactions to be added, as most transactions that happen in a certain round
will not be written in the ledger until the next round. Therefore, whether the
participants agree on a block quickly or not becomes slightly irrelevant as no



advantage is gained by having an efficient algorithm for consensus. This seems
like a waste, as the advantage of permissioned protocols over permissionless
ones is that a stronger setting allows for more efficient consensus mechanisms.
It would be desirable to take advantage of this fact and have each round finish
whenever a block is chosen. On the other hand, if agreeing on a block takes a
long time in a certain round, the protocol should not be affected.

An advantage of our serial proofs of work is that they provide a record of
the length of the round encoded in the strength of our proofs of work. Then, if
a round takes too much time to complete, we will have stronger proofs of work,
as Golem ran for a longer time. This means that if a round lasts longer than
expected, it will not affect the immutability of the blockchain. In Bitcoin, if
a block takes a long time to find it does not imply that trying to rewrite the
chain at that point will take any longer than at any other point. However, if
throughout the process of choosing a block we have serial proofs of work being
computed they will reflect the time spent computing it. Therefore, if we would
want to slow down the creation of blocks, we could do so without it compromis-
ing immutability. This feature is something unique to our protocol and could
be useful in a time of little activity in the network. For example, the volume of
transactions might fall during the night1 or during weekends. In a Nakamoto-
based system, blocks must be created continuously in order to maintain the
immutability guarantees, even if they are empty.

Our protocol has the flexibility of having rounds that can change length
during the protocol. To have a way to signal when a block should be issued,
we will define a functionality Semaphore which will communicate with Lipwigω

to signal the end of each round. Whenever a block is completed, participants
in Lipwigω will input it to Semaphore, so it will know when a new round has
started. In case we wish to model the system where rounds depend only on
block creation, Semaphore will simply send a halt instruction at the beginning
of every round. On the other hand, Semaphore can represent anything from a
simple policy based on time of day to a complex system that signals the creation
of blocks whenever certain external events happen. Untying the length of the
rounds to the computation of serial proofs of work allows for participants to
have proofs of work of varying strengths in their PoW chains. This fact will
permit us to showcase another advantage of our construction that will form the
building block of Chapter 6.

In the same way the ledger chain from IdealLipwigτ inherits the security
from the PoW chains, each PoW block in Lipwigω will be strengthened by the
strongest PoW block created that round. This fact will be especially relevant
in the case PoW chains are used for a purpose beyond maintaining the ledger
chain. While we do not focus on it in this presentation, PoW chains can be used
as ledgers on their own. If a participant has an especially high rate, everyone

1Assuming the blockchain is deployed in an area with similar time zones.
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else’s PoW chains will benefit from it by inheriting the time-lock security from
it. One might then ask what incentivises participants to compute the strongest
possible serial proofs of work. We expect participants to want to secure the
ledger chain as much as possible, something that is especially relevant in a per-
missioned setting, as all the actors are known. However, each participant may
think that their contribution is not especially important and therefore not invest
all the computational power they have available to compute proofs. However,
as long as one participant uses his full power, the blockchain will be secure. We
will see that this will be enough to act as an incentive for the rest of the par-
ticipants to invest all their computational power on the computation of proofs
of work, to avoid a tragedy of the commons. On the other hand, because we
constructed our proof of work to be resource-efficient, only utilising one core,
participants do not have a reason to avoid computing the proofs. Addition-
ally, an incentive could be created for participants to contribute stronger proofs
of work. For example, a participant could be randomly rewarded in a lottery
where each party’s winning probability is related to the strength of their proof.
In this work, however, we will assume every honest participant will compute the
strongest proofs of work they have access to.

This new protocol will not simply be an extension of IdealLipwigτ with looser
constraints in the round time. We will present a provably secure permissioned
blockchain protocol with assumptions that are reflected in reality. This new
model will no longer require perfect synchrony in the network. We will also in-
troduce the possibility of new participants joining the protocol at any moment.

After presenting this model, we will draft a extension of it in which we will
enhance our blockchain with a randomness generator using our serial proofs of
work. We do this not only to create an implementation of the public random
beacon presented in the same paper from where we take our proof-of-work func-
tion [LW15] but also because of the importance of randomness for consensus.
Many consensus protocols, like proof of stake, benefit from access to common
randomness. Finding a way to create trustworthy randomness from inside the
protocol without relying on any additional assumptions is another advantage of
our construction. The security of the random-number generator only relies on
assumptions that are already present in our model. While we will build Lipwigω

from the same building blocks Consensus and BFT that we used in the previous
chapter.

5.1 Constructing the Protocol
Our new protocol Lipwigω is built by modifying what we previously built for
IdealLipwigτ . We take advantage of composability by constructing a protocol
that uses both Consensus and BFT as they were defined in the previous chapter.
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Lipwigω

Initialization

• Receive (pkj , skj),γj the list of pairs (k, pkk) and ω from Z
• Receive BC[0], PCj [0] and Golem(PCj [0]) from Z
• Query for ledger chain, if non-empty wait until next ledger

block is broadcast and start in following round

Round i

The round begins upon reception of Golem(PCj [i− 1], γj)
PoW Chain Maintenance:

• Set σ = Σ.signj
(
H(PCj [i−1]), H(BC[i−1]),⊥,Golem(PCj [i−

1])
)

• Append
(
H(PCj [i−1]), H(BC[i−1]),⊥,Golem(PCj [i−1]), σ

)
to PCj as PCj [i] and broadcast it

• Query for Golem(PCj [i])

On input halt from Semaphore

Pre-Consensus, if j ∈ BC[i− 1].NA:

• Let comm = last(BC).NA
• After 2δ time steps: Let P be the set of every PoW block

received with strength at least ω
• Call P ∗ = BFTP (comm,∅, P )
• Input receive to TxsPool, get back Txs
• Call Consensus(BC, comm ∩ ind(P ∗), P ∗,Txs)

On input halt from Semaphore

• Input halt to Consensus
• Wait until Consensus outputs block , broadcast it and add

it to BC
• If aj was not running Consensus, wait until a valid block

is received and add it to BC
• Input clean(BC[i].T ) to TxsPool and input done to Semaphore
• Input halt to Golem and receive Golem(PCj [i])
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Cheating Recognition

Whenever aj receives a signed block B∗ that is different from the one
in the same stage B

• Broadcast (B,B∗)
• If Consensus is running and halt has not be input: input
cheat(B,B∗) to Consensus
Otherwise: Wait until the next instance of Consensus is run-
ning, then input cheat(B,B∗)

On input chain: Output BC
On input PoWchain: Output PCj

As we can see now, many design choices for Consensus that might have
seemed counter-intuitive or useless in the previous chapter are taken advantage
of in this new protocol. For example, Consensus halts only after an instruc-
tion from the environment, something which could have easily been avoided in
IdealLipwigτ , as the time when that command is issued is always the same. How-
ever, in this new setting, it is fundamental for the participants to have control
over when Consensus halts and issues a block.

Beyond changes like this, it is clear that Lipwigω does not differ a lot from
IdealLipwigτ . The differences are the following:

• The communication is no longer assumed to be synchronous, but now has
a delay of at most δ time steps. The adversary is tasked with delivering
messages and can order them in whichever way she wants as long as every
message arrives within δ time steps from when it was sent. This fact makes
us rely directly on BFT to determine the proofs of work that will be used
in Consensus. Note that because we chose to construct BFT and Consensus
in this setting in the previous chapter, there is no need to modify them.

• We have changed the initialisation conditions to not necessarily happen
at the start. A new participant queries for the chain to see if the protocol
has started and to see the current round. After this, they prepare to run
in the next round.

• Similarly to SingleVarLipwig, we have added a parameter ω that sets a min-
imum strength for proofs of work. Because the participants have different
rates, we cannot directly translate this bound into time steps. However,
the fact that Z has access to the rates of the participants means that it
is possible to ensure that rounds are long enough for proofs of work to be
completed.

• We have added an independent ideal functionality Semaphore as a beacon
to signal the end of a round.
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• The parameter that determines a lower bound for the length of the round,
ω, is a function of time and not a constant. Note that the use of ω is
different than in SingleVarLipwig, where ω’s role was simply to prevent
rounds that are too small to prevent a particular attack.

• The committee that runs Consensus will be the participants who sent a
valid proof of work. As we will see later, this fact will imply that the
proofs will have to be of a certain strength relevant to the strongest proof
that was issued that round.

There is a simplifying assumption that we make in this model that is of note.
The G component in the PoW blocks is set to ⊥, however, any participant may
add whatever he wants to it, in the style of SingleVarLipwig. We let it be ⊥ for
simplicity, as otherwise we would have to define where the information comes
from. If we permit participants to add anything to G instead of ⊥ does not
change the security of the model.

5.1.1 Variable Strength
In Section 3.1.2 we had presented a protocol where rounds could last as much
time as the participant wanted. This setting implied that the proofs of work
would be stronger as more time passed. This construction did not require us to
change many things of SingleLipwig. Unfortunately, doing this with more than
one participant implies issues which do not exist if there is only one participant.
Having multiple participants with different rates requires us to add parameters
to ensure the correct working of the protocol. These new issues stem from the
fact that we cannot use strict parameters, as we must account for different rates
as well as the delay in communication.

The first thing that will change is the definition of the minimum strength
parameter ω, as we must take into account the fact that not all participants
can compute a proof of the needed strength in the same time. To take that into
account we will define two parameters, γmin and γmax, that will bound the rates
of the participants in the protocol. Given the lower bound for the rates we will
define the minimum strength of the proofs of work as follows:

Definition 5.1. In the protocol Lipwigω given γmin, the minimum strength
parameter ω is a function over time steps t such that

ω(t) =

{
ω∗ for t < t∗

tγmin otherwise

where w∗ = t∗γmin and t∗ � 2δ.

This function says that there is a minimum strength for all proofs of work
ω∗. Once enough time passes for everyone to create a proof of strength ω∗, the
minimum strength grows at a constant rate based on γmin. The first thing to
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take into account with this definition is the fact that there is no direct way to
encode the length of a round. Without knowing the rate of a participant, we
cannot know the length of each round. Even then, if we cannot ensure that the
participant computed the proof of work during the whole round, the proof of
work gives us only a lower bound on the length of the round. Even from the per-
spective of each participant, the length of the round for other participants is not
perfectly known. Due to the delay of δ time steps on messages, the length of the
same round can differ by 2δ time steps according to different participants. This
delay seems to create an issue with actually enforcing that proofs of work are
correct when one sees the chain, as one needs to know t to determine the value
of ω. Here is where the bounds over the rate can help us. Given a ledger block
BC[i], let j be the index of the strongest proof of work found in BC[i].P . We
let the argument of ω be str(PCj [i])/γmin +2δ. While this is not the real minimum,
it is close enough for our purposes. More importantly, it does not require to
know the actual rates of the participants, but only the bounds. We will enhance
BFTP and our verification functions with the ability to recognise proofs of work
that have the requisite length. In particular, verifyBC must check whether the
proofs of work are of the requisite strength. Because this depends only on the
blockchain, the way to check if the proofs of work are of the expected strength
is by taking the strongest one, dividing it by the maximum rate and subtract-
ing 2δ to get t′. Every proof of work in the block would then be of strength ω(t′).

When an honest party is initialised in Lipwigω, it is given its rate γj ∈
[γmin, γmax]. This variable represents the power of the core that the participant
will assign to computing the proof of work. The rate determines how fast proofs
of work can be computed by each participant. Not having a fixed rate intro-
duces a potential complication: what happens if some participants are not able
to compute valid proofs of work within one round? If a participant’s rate is too
slow or the rounds are too short, some participants may not be able to con-
tribute a proof of work to the chain. We will demand a minimum strength for
proofs to be considered valid and added to the chain, which might further com-
plicate this problem. We will ensure that any compliant execution of Lipwigω

allows for rounds that are long enough for participants to compute a proof of
work that is long enough.

In the permissioned setting it is reasonable to assume that we know the rates
of the participants. If this were not the case, any participant could get a lower
bound on any other participant’s rate after they have contributed proofs of work.
The adversary’s rate, γA, is as fast as the fastest corrupted participant’s rate.
That is, all adversarial participants can call GolemA even if originally (before
being corrupted), their rate was lower.

For the protocol to run correctly it will be necessary for the rounds to be
long enough that sufficient participants can create proofs of work of the req-
uisite strength. Enforcing this restriction means that a round must last more
than t∗ time steps, with t∗ being the value in the definition of ω. We will force
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every round to be at least as long as it is needed for enough honest parties to
finish computing their proofs of work before the round ends. We are comfort-
able enforcing this because in practice a minimum strength should be chosen in
function of the expected time for consensus. The purpose of ω is just to ensure
that participants are actually computing the proof of work as expected. While
the minimum strength is enforced by the participants, in our extension of the
model presented in Section 5.3, we will show a way to enforce it in a more direct
manner.

We will use Semaphore to determine the length of the rounds in Lipwigω. As
mentioned earlier, Semaphore is purely an abstraction of the conditions that we
use to determine the length of rounds. Therefore, we will treat it as an ideal
functionality that is only concerned with sending orders to stop the round. We
will treat Semaphore as a central, public, independent and authenticated bea-
con that can communicate with each participant instantly, that is, the network
delay δ does not apply to messages to and from Semaphore. At the same time,
it is impossible to access the history of the messages sent by Semaphore to try
to find the history of the creation of the blockchains. Therefore, while we have
very strong assumptions over Semaphore, the security of the protocol does not
depend on it.

One important difference between IdealLipwigτ and Lipwigω is that the latter
allows for participants to join at any time. When a participant joins the protocol,
he must first query for the current chain. He must have some assurance that
the chain that he received is the correct one and not generated by the adversary
to confuse him. This is a problematic event in certain protocols, in particular
protocols which do not use proofs of work to directly create consensus like
[PS16b, DPS16]. Systems based on proof on work do not have these issues,
as it is computationally unfeasible for the adversary to maintain valid forks
[Nak08, GKL14]. Our protocol’s use of proofs of work makes maintaining forks
complicated for the adversary, the fact that the blocks are signed makes it
almost impossible. Even if the adversary were to take control of the network, it
cannot arbitrarily create a fake blockchain that a new participant would accept2.
Therefore, a new participant will be able to identify the correct chain unless the
adversary has control of the network for a long enough time. In that case, this
is effectively irrelevant as the whole protocol has been compromised.

5.1.2 Security Proof
We must now prove that the protocol is secure.

Given the protocol, we must characterise a compliant execution of Lipwigω.
Given an environment-adversary pair (Z,A) and a minimum strength function

2While we have not proved this explicitly for this protocol yet, this can be seen as a
combination of Theorem 3.11 and Lemma 4.16
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ω with parameters ω∗ and t∗, we say the pair is (n,Q,LBFT, δ, γmin, γmax)-valid
w.r.t. Lipwigω if the following properties hold:

Bounded Network Delay Every message output by an honest participant
reaches every other honest participant after at most δ time steps after it
was sent.

Timely Initialisation Before the start of the protocol, parties are initialised
by Z. Before they are initialised, the adversary might communicate to Z
which parties it wishes to corrupt. These parties will start the protocol
already corrupted, as long as they constitute no more than (1−Q)n par-
ticipants. At the beginning of any round, new participants may be created
by the environment.

Valid Initialisation At the beginning of the protocol, every participant re-
ceives the same correctly constructed BC[0] and also receives valid PCj [0],
PoW(PCj [0]), γj ∈ [γmin, γmax] and a pair of keys (pkj , skj) that are
shared by no other participant. They also receive the correct list of asso-
ciation between indices and public keys.

Adaptive Corruption At any round A might send a message corrupt(aj) to
Z. At the beginning of the next round, A will gain control of aj as long
as that means that no more than (1−Q) of the active participants in that
round are being controlled by A.

Timeliness Every participant queries Golem within δ time steps

Minimum Run Every round must last enough time for all honest participants
to contribute a block. If there is at least one participant with rate γmin

this is equivalent to saying that all rounds must last at least t∗ time steps.

Definition 5.2. Given random oracles parametrised by λ, Lipwigω is said to be
secure against (1−Q)-corruption with liveness parameter LBFT if for any n > 0
and for any pair (Z,A) that is (n,Q,LBFT, Q, γmin, γmax)-valid w.r.t. Lipwigω,
there exists a negligible function negl such that for every λ ∈ N, except with
negl(λ) probability, the following properties hold for exec(Z,A)[Lipwig

ω]:

Consistency : If an honest participant aj is queried chain at time t and
outputs BC and an honest participant ak (possibly equal to aj) is queried
chain at time t∗ ≥ t and outputs BC∗, we have that BC ≺ BC∗ or
BC∗ ≺ BC. If t∗ ≥ t+ δ or aj = ak we have that BC ≺ BC∗

Liveness : If a valid transaction tx appears in TxsPool in round i then either
tx ∈ BC[i] or tx ∈ BC[i+ 1]

Lemma 5.3. Given a compliant execution of Lipwigω, every execution of BFT
by Lipwigω is compliant.

Proof. We need to fulfill the following properties:
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Bounded Network Delay By Bounded Network Delay of Lipwigω

Initialisation Agreement BFT is initialised with comm = BC[i− 1].NA and
hist = ∅. In Round 1 there is agreement in the genesis block by con-
struction. In any other round, if Lipwigω is secure then everyone agrees
on BC[i− 1] and therefore on BC[i− 1].NA.

Static Corruption Follows from Adaptive Corruption of Lipwigω, because par-
ticipants can only be corrupted at the beginning of each round and at least
Q of the active participants are honest.

Minimum Run By construction, Lipwigω can only continue after BFTP fin-
ishes running.

Close Start and Stop Whenever a block is created, it is broadcast. As it is
created with the requisite signatures, getting a block from only one person
is enough to know that it is valid. Let a1 be the earliest honest participant
to get block BC[i − 1], lets call this time 0. He immediately broadcasts
it and starts the next round. It takes two time steps for him to reach the
time when he needs to wait for other participants, he waits for 2δ time
steps, until time 2δ + 2, where he queries BFTP . Meanwhile, the latest
time an honest participant will accept a new block is time δ. Then they
will start the next round in the same way as a1, which means they will
call BFTP in time 3δ+ 2, within the limits. Honest parties will never halt
BFTT , so Close Stop is trivially true.

Lemma 5.4. Given a compliant execution of Lipwigω, every execution of Consensus
by Lipwigω is compliant

Proof. We need to fulfill the following properties:

Bounded Network Delay Follows from Lipwigω’s Ideal Network Proper-
ties

Initialisation Agreement Consensus is initialised with the following variables
that must match:

• BC: Every participant has the same genesis block from Valid Ini-
tialisation of Lipwigω. So in Round 1, this holds. Every other block
is generated by Consensus. Because of Consensus’s Agreement, by
induction, every honest participant always holds the same BC.

• comm: As seen in the previous point, every honest participant holds
the same BC, so last(BC).NA is always the same. On the other hand,
P ∗ is agreed upon using BFT, hence by Agreement of BFT, everyone
holds the same P ∗ (We can count on BFT fulfilling Agreement due
to Lemma 5.3). Therefore last(BC).NA∩P ∗ will be the same for all
participants.
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• W: Directly by BFT’s Agreement

Valid Initialisation The following inputs must fulfill certain properties

• BC: The first ledger block is correct by construction, assuming that
Lipwigω is secure, every following block must be valid by induction

• comm: As seen in the previous point, every honest participant holds
the same BC, so last(BC).NA is always the same. On the other
hand, P ∗ is agreed upon using BFT, by Agreement of BFT, everyone
holds the same P ∗. Therefore last(BC).NA∩P ∗ will be the same for
all participants.

• W: BFTP uses verifyPC to ensure that every PoW block is valid.
Minimum Run ensures that everyone can contribute a proof of work.
However, we have to prevent the possibility that the adversary starts
computing the proof of work earlier than she should in order to have
the proofs of honest parties counted as invalid as they are not strong
enough compared to theirs. However, because the round ends when
a block is completed (and is guaranteed to end within δ time steps
for every honest party), the adversary can only gain an advantage of
δ time steps to compute proofs of work. However, verifyBC allows a
2δ cushion for proofs of work, which negates this advantage.

Static Corruption Lipwigω’s Adaptive Corruption ensures that no partici-
pants become corrupted during the execution of Consensus.

Close Start and Stop Close start comes from the fact that after the exe-
cution of BFTT there is no longer any interaction needed before calling
Consensus. By Close Start and Stop of BFT, every party finished BFT
within δ time steps of each other, therefore they will start Consensus within
the same time. Close stop follows from the fact that Semaphore sends the
halt output to everyone at the same time.

Cheating Timeliness By construction, if cheating is discovered after a halt

command in a round, honest participants wait one round before inputting
cheat.

Theorem 5.5 (Lipwigω from Consensus and BFT). Suppose that the signa-
ture scheme is unforgeable, that H and Golem are independent random oracles
parametrized by λ. Let Ni be the set of participants at round i. Suppose that
Consensus and BFT are secure against (1−Q)-corruption with liveness parameter
LBFT for Q > 1/2. Then Lipwigω is secure against (1−Q)-corruption.

Proof. Consistency : Whenever any participant adds a block to the chain, it
comes from Consensus. By the Agreement property of Consensus, this will
also be the same. By construction of Lipwigω, every participant will get a
new block within δ time steps.
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Liveness : Suppose a valid transaction tx appears in TxsPool in round i, there
are two cases:

• tx appears before querying TxsPool: tx is continued in the Txs
pool that is input into Consensus. Liveness in Consensus implies that
tx will be contained in the block issued at the end of the execution
of the subprotocol.

• tx appears after querying TxsPool: tx remains in TxsPool and
is not eliminated when the participant inputs the accepted block.
Therefore, in the next round, when TxsPool is queried, tx will be in
the set it outputs. Then we follow the previous proof to show that
tx ∈ BC[i+ 1]

We have proved that this new protocol is secure, taking care of the new
details introduced by the rounds of variable length and the minimum strength
of the proofs of work.

5.2 Immutability
In previous chapters, we define immutability through the eyes of a verifier who
is an outsider. The idea behind this was to show that the structure of the
protocol itself was good enough to prove immutability, even to someone who is
not participating in the protocol. An assumption that we did in the previous
chapters was that the verifier knows the rates of the participants. This permits
him to directly confirm that the proofs of work were computed correctly. How-
ever, in this new setting we are not able to do that, as we allow players to have
varying rates. Additionally, delays in communication can make the interval be-
tween each block different for each participant. Therefore, we must be content
by having looser bounds for the guarantees in Lipwigω. On the other hand, the
setting will alow us to strengthen the security of the PoW chains of participants
with a slower rate.

The structure of Lipwigω is very similar to IdealLipwigτ and therefore similar
immutability guarantees will hold for the ledger chain in Lipwigω. However,
there are many new details to take care of. We have already seen similar PoW
chains in Section 3.1.2 and our proof will mirror them the same way the proofs
for IdealLipwigτ were based on the ones in Section 3.1.1. First, we will show that
these blockchains are time-locked not only by their own proofs of work, but by
the strongest proof created in each round. We will have to be careful defining
our parameters to be able to prove immutability with the additional concerns.

In this new setting we will see that the guarantees of PoW chains are
strengthened by being part of Lipwigω (as opposed to being seen as individ-
ual instances of SingleVarLipwigω). In Lipwigω, not only do the PoW chains
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secure the ledger chain but they also strengthen each other’s security through
it. The protocol is built in such a way that if a participant wants to have any
say in the structure of the ledger chain, he must submit a valid proof of work
in a signed PoW block. This fact gives every participant a record of everyone
else’s PoW chain in the form of a record in the blockchain. The cheating pre-
vention mechanism will then prevent anyone from changing their PoW chain.
Acting as a ledger for commitments of all PoW blocks is not the most impor-
tant role of the ledger chain. Due to the way we construct it in Lipwigω, the
ledger chain makes every block (including the blocks in the ledger chain itself)
as strong as the strongest block of the round. This relation implies that a block
is time-locked not by its own proof of work, but by the strongest combination
of proofs by all participants. To do this, we will slightly abuse notation by let-
ting maxj{str(BC[i].P )} represent the strength of the strongest proof of work
encoded in block BC[i].

Theorem 5.6. Suppose we are running Lipwigω with H and PoW parametrised
by λ and our ledger chain BC and all the PoW chains PCj are of length i+ r,
with r > 0. Any PoW block PCj [i] is time-locked for γmax by

r∑
k=1

(
maxj{str(BC[i+ k + 1].P )}

γ∗
− δ
)

where γ∗ is the fastest rate that a participant could have access to.

Proof. We will prove this by induction on the distance from the last block.
All PoW blocks PCj [i+r−1] from round i+r−1 had to be created at least

str(PCj [i+r])/γmax time steps earlier, which are the steps necessary to compute the
PoWs in PCj [i+r]. Because these blocks are represented in BC[i+r−1], these
blocks were created within δ time steps of each other. Therefore, they were all
created at least maxj{str(BC[i+r].P )/γmax − δ time steps ago.

For the induction step, we know that PCj [i−1] was created before PCj [i] by
construction. By our induction hypothesis, PCj [i] must have been constructed

at least
∑r
k=1

maxj{str(BC[(i+1)+k+1].P )}
γmax

−δ time steps ago. Additionally, we can

see that PCj [i] took at least maxj{str(BC[i].P )}/γmax − δ time steps to be created.

Therefore, PCj [i] is time locked by
∑r
k=1

maxj{str(BC[i+k+1].P )}
γmax

− δ.

Note that this proof represents only a lower bound on how long ago the block
was created. For certain blocks, this bound can be tightened, in particular for
the block with the strongest proof of work of each round, as in that case we can
get rid of the δ parameter. We have shown that PoW chains can enhance each
others’ security through their connection in the ledger chain. Now, we will show
that the ledger chain is time locked by the same mechanism.

Theorem 5.7. Let BC be a ledger chain created in Lipwigω with H and PoW
parametrised by λ such that len(PC) = i+ r with r > 1. Any ledger block BC[i]
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is time-locked for γmax by

r−1∑
k=1

maxj{str(BC[i+ k + 2].P )}
γmax

− δ

except with negligible probability in the security parameter λ.

Proof. A block BC[i] is pointed at by every PoW block PCj [i+ 1]. Therefore,
BC[i] must have been created before these blocks were. By Theorem 5.6, each
one of these blocks is time locked by

r−1∑
k=1

maxj{str(BC[(i+ 1) + k + 1].P )}
γmax

− δ

Therefore, so is BC[i].

Similar to what we did in the previous chapter, we will now show that
the PV game from Section 3.1.2 for Lipwigω has multiple PV subgames for
SingleVarLipwigω. Before we do this, we must discuss the differences between
these two protocols. As mentioned previously, the verifier does not know the
rate of any participant, so he must estimate it. This gives the adversary an ad-
vantage, as she can compute proofs of work that are weaker than they should,
and the verifier has no way of knowing. Additionally, delay in communication
means that rounds may have different lengths for different participants, which
also provides the prover an advantage. On the other hand it is important to
note that while the communication in the protocol may be delayed, the commu-
nication in the game is immediate. As we are assuming that all participants are
colluding, we will assume that there is no delay in the communication and the
rounds start and end for everyone at the same time. The clocks of the prover
and the adversary are synchronised so there is no ambiguity in the times t0, t1
and t2 that form the base of the PV game. We also assume that the prover
has the power to end a round at any time (that is, this does not depend on
Semaphore) so she is able to start computing a new block the moment she re-
ceives x from V. This gives the prover slightly more power than she would have
in the regular execution of the protocol, but these modifications help to simplify
the work without noticeably affecting the result.

We will make an additional assumption to simplify the notation, that when
the prover receives x, she adds it to BC[i] and immediately starts computing
the proof of work over PCj [i+ 1] which she stops at time t2− 1. While she can
add multiple blocks instead of only these two, it will make no difference in the
time necessary. As a matter of fact, it is slightly more advantageous to follow
this strategy, as in any other strategy she could lose strength by repeatedly
stopping Golem at the middle of a computation.

Definition 5.8. Given a PV game for Lipwigω with n total participants, a
verifier V considers a blockchain set {BC} ∪ {PCj |j ∈ N} to be valid if
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the random value x is found in BC[i] then, for all PoW chains in the set:
str(PCj [i+2])/γmin + 2 ≥ t2− t0 in addition to enough chains fulfilling verifyPC and
verifyBC.

Unfortunately, as we do not know the rate of the participants, we must as-
sume that they have the weakest acceptable rate. The verifier can be more
demanding if he happens to know the rate of any participant. If this is the case,
he can ensure that the PoW chain of that participant was computed according
to that rate instead of γmin . Additionally, he can use this rate to estimate the
rates of the rest of the participants.

It is clear that the results of Lemma 4.15 also apply in this setting: a change
in the ledger chain implies a change in every PoW chain starting from the next
block. Therefore, the PV game for Lipwigω can only be won by the prover if
she also wins all the SingleVarLipwigω-PV games for each PoW chain, assuming
that all participants have rate γmin . In these subgames, it is not necessary to
take into account

Theorem 5.9. Let H and PoW be random oracles with security parameter λ.
The ledger chain created by Lipwigω is θ(γ∗, t1)-secure where

θ(γ∗, t1) =
γ∗t1 − γmin(t0 + 1)

γ∗ − γmin
− 1

Proof. Follows directly from Theorem 3.14 and the transformation presented
above.

By knowing the rate of a participant, the verifier can strengthen Theorem
5.9 by using this rate instead of γmin and therefore have a stronger guarantee.
Additionally, if the verifier has access to blocks that were computed before the
challenge, knowing the rate of one participant will let him estimate the rate for
all the rest, in order to build a harder PV game.

Lemma 5.10. Suppose that H and PoW are random oracles with security pa-
rameter λ. Suppose a verifier V knows the rate γ∗ of a participant a∗ who is
running Lipwigω. Then, in round i, the verifier V knows that for every partici-
pant aj

γj ≥ γij = max
0<k≤i

{
str(PCj [k])

str(PC∗[k])/γ∗ + 2δ

}
Proof. Choose r such that

r = arg max
0<k≤i

{
str(PCj [k])

str(PC∗[k])/γ∗ + 2δ

}
According to a∗, round r lasted str(PC∗[k])/γV time steps. By construction of
Lipwigω, the longest it could have lasted for aj is 2δ time steps more. In that
case, the minimum rate that aj had to have to compute the proof of work in
PCj [r] is at least the value of the quotient over which we maximise r.
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We have shown that the security guarantees that we expect from the blockchain
still hold in Lipwigω. More importantly, we have seen how the structure of the
protocol allows PoW chains to become more secure thanks to their connection
to the network. Chains maintained with participants with lower rates benefit
from participants having a faster rate. The same mechanism that secures the
ledger chain secures each individual PoW chain. We have shown that Lipwigω

creates blockchains that cannot be arbitrarily modified, even through collusion
by all participants. We have also shown that anything encoded in any of our
blockchains is mathematically guaranteed to have been created a certain amount
of time ago. This guarantee is true even when there are no trusted parties,
meaning that we extend the results in [BHS93]. By using the blockchain as a
timestamping mechanism, we have gone full circle and used the basic hash-chain
structure for the goal for which it was originally proposed.

5.3 Random Number Generation
We have built a secure blockchain using serial proofs of work, but we can do
more with it. We chose to use a function which was previously used to generate
public, verifiable randomness to act as our serial proof-of-work function. Can we
also use it for its original purpose taking advantage of the blockchain? The idea
behind the unicorn construction in [LW15] is to create a source of randomness
that anyone can take part in but no one can control. This vision sounds very
similar to the idea behind blockchains, in which different participants collec-
tively create a ledger that they can all trust. Considering we are using similar
tools and assumptions, could it be possible to combine both of these ideas to
realise both systems? The answer is yes.

Our protocol Golem is an abstraction of the sloth function presented in
[LW15], which is the fundamental ingredient in the generation of random num-
bers. The basic idea is to seed that function with information that can be con-
tributed publicly. The protocol presented in that paper contemplates a website
where information can be contributed by anyone. After some time, this infor-
mation is combined with some additional non-controllable information (which
is also public) to add entropy and then sloth is run for a previously defined
number of iterations. This function allows to create a random string through
the guarantee that the only way to predict the output is by computing sloth
faster. Our ledger blocks fulfill all the properties which we desire from the seed.
The components of the block are contributed by everyone and both proofs of
work and signatures cannot be controlled by the participants. Proofs of work
are the output of a random oracle and signatures depend on the block that is
being signed as well as a previously assigned key. There is no need to add extra
information to create entropy, as the only thing that can be controlled directly
by the participants are the transactions. Even if the participants wanted to
influence the random number by the choice of transactions, they can only do
this without knowing the signatures that will be added later. Therefore, they
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cannot introduce information that they have full control over. Even if they
could add some information over which they have complete control, it has been
shown that this is not enough to influence the randomness of the output.

Simply running Golem is not enough to create randomness over which all par-
ticipants will agree. The number of iterations of PoW must be publicly known
and agreed upon by everyone. It should also be large enough to prevent the
possibility of precomputation. A good candidate for this value is ω∗, the pa-
rameter found in our minimum strength function ω. The value for ω∗ is encoded
into the protocol and cannot be modified by anyone3. Using the ledger block as
a seed evades most of the issues in the original implementation of unicorn. In
the setting of the original paper, it is important to carefully set the intervals in
which information can be contributed, something that we have automatically
in a round. More importantly, because a block is only signed at the end of the
round, no one has access to the completed block earlier than they should. At
the same time, because the last things added to the blocks are signatures, it is
impossible to predict them, as this will be effectively a forgery. This means that
any attempt to control the contributions to the block in order to influence it
will be incomplete. With this, we have a setting that mirrors the one presented
in [LW15]. Therefore, we can use those results to show that generating random
numbers over Lipwigω is secure.

We have shown that Lipwigω can create a source of randomness that realises
the expected properties of unicorn. Our interest in creating this randomness
is not based solely on the similarities between our proof-of-work function and
sloth, but also because randomness can be especially relevant in the consensus
stage of a blockchain. Implementations of byzantine fault tolerance that are
robust in asynchronous networks rely on a leader who determines a candidate
block over which the other participants agree [CL+99]. The choice of the leader
can be done in many ways, but using randomness over which all participants can
agree upon is a particularly simple and efficient way. Byzantine fault tolerance
is not the only protocol that benefits from randomness. Agreeing on a random
string is an essential part of proof-of-stake consensus, where block issuers are
chosen by a lottery where participants have different probabilities depending
on the amount of money they control [BGM16]. Implementations generate this
randomness in different ways [DPS16, KRDO17, Mic16] with different levels of
complexity and security. The advantage of our system is that no additional
assumptions are required to trust the randomness, as it is based on the same
building blocks of the protocol.

Using the randomness created from each block in the creation of the next
one has the additional advantage of indirectly enforcing the Minimum Run con-
dition of Lipwigω, as it would be necessary to compute the random string first

3In the case of the protocol in Chapter 4 which does not have an ω, we could use γτ instead
of ω
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to be able to create a new block. Unless the gap between γmin and γmax is too
high, this will probably ensure that the round lasts long enough for everyone to
create a valid proof of work.

One might ask whether this random string is in fact a proof of work over
the ledger blocks. This question is especially relevant if the string is going to be
encoded in the block. If we have a proof of work for the ledger chain in the form
of the random string, is it really necessary to have PoW chains to secure the
ledger chain? The problem with relying on this random string to offer security
is that it will not encode the total time needed to create each block, only enough
time to iterate PoW ω∗ times. This means that there will be potential to waste
time. On the other hand, trying to generate randomness without a fixed number
of iterations in mind introduces a consensus problem and, more importantly, a
way for a dishonest participant to manipulate the randomness (by stopping
at an iteration where the string has a desired property). Therefore, while the
random string does add a level of security to the ledger chain, it is incomparable
to the security provided by the PoW chains.

5.4 Practical Considerations
The current model contains multiple idealising assumptions that might not re-
flect the practicality of the actual implementation. While new use cases for
blockchains appear every day, there are many challenges that must still be over-
come. In particular, scalability continues to be a primary concern [CDE+16].
Due to the permissioned nature of our model, we do not fall into most of the pit-
falls related to blockchain scalability. However, recent advances in permissioned
blockchains, particularly Hyperledger’s Fabric [Hyp17], have introduced some
design choices for a more practical application. Our design decisions are made
to present a simplified model to prove security, but can (and should) be modi-
fied in an implementation. Here is where the choice of universal composability
shines, as having a modular protocol permits us to change the subprotocols used
in the protocol without having to prove security for the new system. In this
section we will briefly explain how to make slight modifications to our model
in order to accommodate the scalability concerns and suggest a more practical
implementation of our model.

The model that we have presented attempts to describe the abstraction
behind a blockchain protocol without focusing on the practical realities. There-
fore, we make several simplifying assumptions which need to be translated into a
practical setting, which might imply some complications. For starters, we know
that our assumption that PoW’s domain is the range of H does not translate
into reality, as we want the domain of PoW to be considerably larger4 than the
range of our hash function. Solving this is simple, by splitting the information

4Eight times larger, to be exact.
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to be hashed in eight distinct parts, hashing and concatenating them. However,
a more interesting solution would be to use Merkle trees to hash the block, with
the root of the tree taking the place of H where the partition of the block in
eight creates the leaves. This would allow for a way to have hash pointers that
can be reconstructed from proofs of work. Another change of the model will
be regarding the use of signatures. We assume a straightforward public key
infrastructure, where every participant signs each block, making the number of
signatures grow with the network. There are different ways to solve this issue,
either by limiting the participants who need to sign a block or by using more
more theoretically interesting constructions, like group signatures [STV+16].

While the protocol we presented uses the same protocol to agree on signa-
tures, proofs of work and transactions for simplicity, this is something we do
not need, and probably do not want, to follow in an implementation. Agreeing
in transactions requires creating consensus over which transactions should be
accepted and which should not, which might be more complicated than making
sure everyone received all of the signatures or proofs of work. Therefore, we
can use simpler (and faster protocols) for those instances and use a more robust
protocol to agree on transactions. An important detail that we did not model in
our protocol is the validation of transactions, assuming all the transactions that
players get are valid. This is a departure from the Bitcoin model, where the
block creators must determine the validity of each transaction before adding it
to a block. However, this idea is in line with newer proposals where transaction
validation and block creation are done by different participants. Effectively, our
protocol has a similar system in mind which we treat as a black box. In the
same way that we can plug in different consensus protocols, we can add different
validation methods in place of TxsPool, depending on what we want from it.

Having different participants executing different roles in the protocol is one
solution for the scalability problem. Due to the trust assumptions in permis-
sioned networks, it is more natural to have only a certain subset of participants
performing certain roles (although there certainly are permissionless models that
also do this, like [KKJG+17]). In particular, more recent implementations of
permissioned blockchains have only a subset of participants selecting and or-
dering transactions. With the building blocks we have presented in this thesis,
it is possible to create a variant of Lipwigω where only a certain subset of the
participants participates in the creation of new blocks. We only need to have
a way to select our subset, adapt our adversarial model accordingly and add
a couple of superficial changes to Consensus and verifyBC to be able to create
a protocol with the same security guarantees that Lipwigω provides and with
higher potential for scalability.

Another problem with scalability in blockchains is the fact that the ledger
can become too long; in the time of writing of [CDE+16] it took four days to
download the entire Bitcoin blockchain. Saving the whole chain requires storing
a large amount of information which may be unnecessary, but is necessary to
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ensure the integrity of the blockchain. While some proposals exist to prevent
this constant growth of the blockchain, like in [Pev17], implementations seem
to be going in the direction of participants only maintaining the parts of the
ledger that are relevant to them. Taking into account the version of Lipwigω

where only some participants add new blocks to the ledger chain, those same
participants could be the only ones who maintain the ledger chain in its entirety
while the relevant information is stored in each participant’s PoW chain. This
way, every participant is still actively contributing to the protocol while main-
taining only their chain. Any issue that might require checking a ledger block
can be achieved by querying for a specific block to the maintainers. Then the
participant can confirm the correctness of this block by the hash pointer found
in the relevant PoW block. This system could also help enforce privacy, with
the transaction information in the ledger encrypted and only accessible to the
parties who participate in each transaction, who would then maintain their own
ledger in their PoW chains.

The use of PoW chains can extend beyond just being a view of the current
state of the blockchain. They can be used to pre-commit transactions in such
a way that they must be added to the next ledger block. They can even act
as connectors between two different ledger chains, acting as a bridge sharing
security and possibly even transactions. In the next chapter we will see how
personal proof of work blockchains can do much more than secure a traditional
blockchain. PoW chains can be the building blocks that help create a web of
trust between peers in the internet.
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6Web of Trust

The thesis up to this point has focused on a blockchain as a distributed ledger
over which many participants achieve consensus. The appearance of the blockchain
in Bitcoin has associated the idea of a blockchain with a transaction ledger to
support a cryptocurrency (or more recently, as a platform for smart contracts).
However, this is not the only arena where a blockchain can be useful. In the
business world there has been growing buzz over the possibilities of blockchain
in areas so different as supply chain and land registries. Many of these applica-
tions are seen as ill fitting, as they do not take advantage of the decentralized
nature of the blockchain. Businesses with a centralized structure do not need
to execute costly consensus algorithms to keep track of activities that happen
within. The intriguing property of the blockchain is that it allows the creation
of immutable records that cannot be modified after the fact by anyone. The
combination of the blockchain structure with serial proofs of work ensures that
we can create an immutable ledger, regardless of the way it is created.

Therefore, we present a new setting in which each participant maintains a
personal blockchain with pointers to other participant’s chains. Each partici-
pant can use his chain however he sees fit. We expect them to use it as a ledger
of records that they wish to share (be it publicly or privately), focusing on the
fact that they were created sometime in the past. We will call this setting a web
of trust but, in contrast to other uses of the term1, the trust is gained through
proofs of work instead of trust in one particular actor. If a blockchain is shown
to be immutable and well constructed, outside parties can be certain that things
in the blockchain cannot be changed in the future. This property is desirable in
itself, but blockchains can provide even more. Blockchains supported by proofs
of work ensure that some work must be invested to create them. This work can
be translated as time under the right conditions. Thus, a blockchain can serve
as a timestamping mechanism, as the time invested in the creation of blocks
can act as a proof that something happened in the past. This possibility has

1Like in PGP.



been explored in [GMG15] and services exist already to add timestamps to the
Bitcoin blockchain. However, the Nakamoto model cannot be used in a setting
where chains are maintained by individual agents, as it would require a consid-
erably high difficulty parameter to be considered trustworthy, and that implies
a tremendous waste of energy. A fundamental motivation for the Nakamoto
protocol is consensus, which in some way justifies the energy waste. Without
the need of agreement in a personal chain, the energy waste inherent in the
Nakamoto protocol is too high for practical use. However, the investment of
time in serial proofs of work is a more direct way to create guarantees of the
passage of time.

Blockchains maintained in the style of SingleLipwig in Chapter 3 can serve
as personal time-stamping mechanisms2, where trust is handled by the serial
proofs of work. However, this setting is quite weak, as it is based on too many
assumptions: that the participant will continuously maintain the chain and that
the rate of computation of the proofs of work is considerably fast. Therefore, to
be able to effectively use this model we will need an additional structure. The
solution is simple: building a network of individual chains which compound
each other’s security. Every individual chain contains pointers to the blocks of
other chains. Therefore, it becomes possible to verify when one chain changes,
as pointers to the original chain exist in multiple other chains. Of course, the
other chains are not intrinsically trustworthy either. However, if the network is
sufficiently connected and there is at least one chain that can be fully trusted,
it is possible to create trust in the network as a whole. The trusted chain can
lend its trust to the other chains by maintaining pointers to the other chains.
If a chain corresponds to the pointers found in another chain, then it can be
considered at least as trustworthy as the chain that points to it. This rela-
tionship is transitive, meaning that the whole network can gain security from a
single chain, even if there are no direct connections. Note that if the rate of one
PoW chain is sufficiently high, this is reason enough to trust it. No more trust
assumptions are needed.

The idea of blockchains borrowing security from more trusted chains is not
a new one. In [BCD+14], the authors present a system where sidechains can be
built on top of the Bitcoin blockchain and therefore inherit the trust from Bit-
coin. While that work does things that go beyond what we are trying to do, like
transferring assets between chains, they depend on a pre-existing trustworthy
chain. The paradigm we present here is self sustainable, as the trust does not
need to extend beyond trust in the serial proofs of work. In practice, if there
is an entity that is trusted outside the network, the connections to it can be
deemed trustworthy. The important fact is that this pre-existent trust is not
necessary if the blockchain is maintained properly and a chain is of the correct
strength.

2We could also use proofs of variable strength like in SingleVarLipwig, but for simplicity we
will focus only on SingleLipwig.
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A setting like the one we are presenting gives rise to many adversaries with
distinct goals. One adversary might be interested in presenting different valid
chains. Another one might be interested in forking a particular chain or in
isolating a chain to remove the immutability guarantees that it acquires from
the network. These adversaries can have divergent and even opposing goals.
Furthermore, it can be undesirable for them to undermine the integrity and
security of the network. The adversary can be incentivised to not disrupt the
functioning of the network too strongly, as it will bring negative consequences
to her too.

6.1 Example
We present an example with three participants: Havelock, Moist and Cosmo
(H,M and C respectively) and an outside observer. Havelock has access to the
most powerful processor and can create proofs of work at the highest rate. He
also runs his chain with no interruption and always using the strongest proofs
of work possible. Moist, on the other hand, has a mediocre processor that runs
only at half the rate of Havelock’s and occasionally stops computing his chain.
Moist wants to prove to an outside observer that at certain point in the past, he
had registered something in a block in his chain, which at this point is k blocks
deep. Cosmo has managed to get a hold of a processor as strong as Havelock’s
as well as Havelock’s and Moist’s secret keys. His only goal is to stop the out-
side observer from believing Moist. This outside observer has knowledge of the
functioning of the blockchain but does not trust any of the participants.

Let BCH, BCM and BCC be Havelock’s, Moist’s and Cosmo’s blockchains
respectively. For simplicity, we assume that there is a rigid round structure,
which means that blocks are added at regular intervals. However, a participant
may choose not do add a block for a round, which is the case for Moist but not
for Havelock. Thus, at the point of time in which Cosmo acquires the secret
keys of the other participants we have that len(BCH) = i and len(BCM) = j.
Cosmo is interested in forking Moist’s chain from block BCM[j− k]. When the
outside observer asks for Moist’s chain, Cosmo may cut it at BCM[j − k − 1]
and hand that to the observer. Because the observer knows that Moist does not
necessarily add a new block at every round, he has no way of knowing the real
length of Moist’s chain, therefore he considers BCM[0, j−k) to be a valid chain.
However, Moist could present his (longer) chain which contains BCM[j − k].
Because the proofs are half as strong as the ones found in BCH, the observer
only has assurance that the block was created k/2 rounds ago, which might not
be enough. More importantly because we have that γC = γH = 2γM, for every
block that Moist can add to his chain, Cosmo can add two. Therefore, with
enough prevision, Cosmo may create enough blocks such that the chain with
BC∗M[j − k] instead of BCM[j − k] has stronger security.
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Therefore, the model itself does not offer many security guarantees. Cosmo
has enough opportunities to modify Moist’s chain because of the difference in
rate. There is a simple way to change this. Whenever Moist creates a block,
he sends it to Havelock, who will add a pointer to it in his next block. In this
case, when the outside observer arrives, he checks Havelock’s chain as well as
Moist’s. Because all of Moist’s blocks are reflected in Havelock’s chain, the ob-
server knows the length of Moist’s chain. In addition, Havelock’s chain always
adds a block and it has the fastest possible rate, so the observer knows how
much time has passed since a certain block of BCH was issued. This serves as
a lower bound for the time that has elapsed since any of Moist’s blocks were
created, as they are all reflected on Havelock’s chain.

Now, if Cosmo wishes to change Moist’s chain, he must not only change that
one chain but also Havelock’s. Fortunately for him, he has access to Havelock’s
secret key. Unfortunately for him, this will not be enough to change the chains.
While Moist’s chain is irregular in the creation of blocks, and can therefore be of
any length, Havelock’s chain must grow as time passes. Therefore, when Cosmo
tries to change it, it grows at the same rate. Very similar to what we showed
in Section 4.4, Cosmo will not be able to modify Havelock’s personal chain and
therefore will not be able to create a chain for Moist that an outsider will believe,
as it will not coincide with what is encoded in Havelock’s chain. Therefore, while
Moist’s rate is half of Havelock’s, by connecting with Havelock’s chain, Moist
inherits the security from a stronger rate. Following this principle, it is possible
to create a web of interconnected blockchains, each of them lending its security
to the others and enforcing the trust on the system.

6.2 Beyond
We have presented a very simplified example of the model, but it can be en-
riched in many ways. Firstly, the example is based on one ideal blockchain that
has the strongest proofs of work and is always running. Having one such chain
to which everything is directly connected is not a practical possibility. However,
the immutability guarantees that it provides, in particular the lower bound on
the time in which the block has been created, can be propagated by indirect
communication. In our example, if a new blockchain was created with pointers
recorded in Moist’s chain but not in Havelock’s, this new chain would still in-
herit the security from the stronger chain. The security in the block in Moist’s
chain which points to the new chain is bolstered by the block in Havelock’s
chain which points to it. Therefore, trust can be transferred through chains.

Another notion that is important to take into account is the idea of which
chains are connected with which others. Having a single trusted chain and
looking for the shortest route towards it is not the way it will be presented in
practice. For starters, it creates a centralising agent, when one of the major
strengths of blockchain is the ability of avoiding these structures. On the other
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hand, on a network where connections are evenly distributed between all the
participants, the strongest proofs of work at any given time are the ones which
provide security to the web. An additional advantage of the network structure
is that if someone is interested in attacking one chain, he must attack all the
others as well. Therefore, it is not only the strongest blockchain that defends
the network from the adversary, but all the chains that are a part of it.

While the presentation of this setting has focused on the security provided
by serial proofs of work, a security intrinsically linked with clock time, there
is no restriction that would dictate that all the chains in the network should
be based in serial proofs of work. The serial proof of work paradigm is partic-
ularly adapted to this role, because it provides a deterministic guarantee that
a certain time has elapsed from the creation of the block. This fact does not
mean, however, that blockchains with other structures cannot be part of the
network as well. While we focus on individual blockchains for the serial proof
of work, distributed blockchains could also take part in the network. This also
strengthens the network, as an adversary would now have to attack different
strategies to bring down the network.
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7Conclusion

To conclude, we will summarise the main results of this thesis and discuss ideas
for future work.

7.1 Summary of Results
The first part of this thesis consists of a survey of the current research in
blockchain. It starts with a presentation of Bitcoin: an explanation of its history
and its impact. After this, we mention the academic work that has been done
in order to study it formally, as well as the weaknesses that have been found.
We continue by mentioning the proposals for solutions for these issues, focusing
on the academic perspective but mentioning the most important examples in
practice. After this, we postulate that while permissioned blockchain protocols
exist, none of them have similar immutability guarantees to Bitcoin. We follow
this up by presenting a function that will provide the immutability guarantees
for the blockchains in this thesis. We present the properties of modular square
roots and its advantages. Finally, we briefly present the universal composability
framework that will be used to construct the protocols in Chapters 4 and 5.

The following chapter presents the concept of a proof-of-work blockchain,
PoW chain for short, through a couple of simple protocols. We define the struc-
ture of these chains as well as the two notions of security we are interested in.
Security is based in clock time; the first notion quantifies the time needed to
fork a blockchain and the second shows that a block in a chain must have been
created at least some time in the past. We describe a prover-verifier game where
the agent running the protocol attempts to fork the blockchain without a verifier
noticing that this is happening. In the first protocol, a block is added at a fixed
interval every time. We show that the prover can only fork the blockchain under
certain assumptions and that even then, she cannot do so arbitrarily. In the
second protocol, the prover is allowed to choose when to add a block, but that
time must then be represented in the blockchain. In this case we show that secu-



rity still holds as long as the verifier has a record of when each block was output.

The next chapter is concerned with the creation of the IdealLipwigτ protocol.
First, we define the concept of a ledger chain, which is maintained by the whole
network instead of individually, and we show how it can be connected with the
PoW chains that are maintained by each participant. After this, we define the
rules that each participant has to validate blocks, transactions and proofs of
work. Additionally, we present a way to find participants that try to create
forks and a mechanism to deal with them. After this, we present the building
blocks of our protocol’s consensus mechanism, BFT and Consensus, and prove
that they are secure under certain circumstances. We then build IdealLipwigτ ,
ensuring that the circumstances for the correct functioning of the consensus are
met, and we prove that it is secure in the classical blockchain protocol sense.
After this, we show that the immutability results from the previous chapter also
apply to all the blockchains in the protocol.

We then construct our main protocol, Lipwigω, by avoiding many of the ide-
alising assumptions needed to make IdealLipwigτ work. In Lipwigω we do not
assume perfect communication or strict rounds, yet the protocol’s structure is
similar to its predecessor. We use the same building blocks that we used in
the previous chapter, showing that the security guarantees continue to hold in
this new setting. We then prove that the immutability guarantees are still met
in this setting. Additionally, we provide context to the proofs in Chapter 3,
showing that constructions that seemed unnatural there are actually realised in
this protocol. We follow this by briefly explaining the possibility of generating
randomness over the blockchain, without the need of any additional assump-
tions. In the end, we present certain ideas to implement this protocol that are
in line with the current concerns for implementations of blockchains.

In the last chapter, we present a new blockchain paradigm where PoW
chains are maintained individually by participants but are interconnected by
hash pointers. Instead of a network of agents agreeing over a single chain, we
portray a web of individual blockchains that secure each other providing a web
of trust between peers. We present a simple example of how this system would
work and hint at the possibilities that this paradigm can have.

7.2 Further Research
In a field of study such as blockchain, implementation is a fundamental part of
the work that must be done. There are multiple protocols in this thesis, but they
all come from the same base. First, we would want to create a system to create
and maintain our PoW chains. Having built this, there are numerous roads
we can take. First, we could create a direct implementation of Lipwigω, with
the goal of using it as the architecture of the so-called consortium blockchain.
When following this road, we should take advantage of the specifications of our
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protocol to build a system that is modular, in order for it to be adaptable to dif-
ferent settings and consensus protocols. Another interesting direction would be
to enhance existing blockchains with serial proofs of work, especially ones with
modular structures, like Hyperledger Fabric. Enhancing existing blockchains
with serial proofs of work can increase their security and also their function-
ality, as they could serve as randomness generators. Finally, we could build
the necessary infrastructure to realise the web of trust we presented in Chapter
6, creating not only the blockchains but also a way to efficiently traverse the web.

On the theoretical side, the protocol and its components can be improved to
be more flexible and secure. We present a proof-of-work function with certain
desirable characteristics, but it is not the only one of its kind. We would want to
have a function that can provide additional security guarantees, like quantum-
safety, or one where the complexity gap between computation and verification is
larger. The time difference in computing a modular square root and squaring a
number is only linear, which we would like to improve. In [MMV11] some issues
are raised with number-theoretic-based slow functions and [MMV13] presents
an example of a slow function based on DAGs that might avoid some of these is-
sues. This function is also of interest because verification takes logarithmic time
over the size of the outputs. There are also some aspects of the protocol that
we would like to improve in order to allow for robustness in an asynchronous
setting. The current protocol is too rigid to work properly in such a setting,
but we believe it could be modified to account for asynchronous communication
and participants disconnecting and connecting from the protocol.

A natural question for a blockchain like this one is whether it can be ex-
panded into a permissionless setting, the natural habitat of blockchains. Due
to the fact that we are based on serial proofs of work, we already have a Sybil
protection built into our model. This, however, affects our cheating prevention
mechanism which becomes useless. Other parts of our protocol are based on the
participants knowing the identity of all other participants in the network, which
must be modified to continue to work. We believe that the inherent ability of
the serial proofs of work to generate common randomness might lead to a suc-
cessful blockchain protocol. Another interesting challenge would be the design
of an incentive for participants to invest computational power and create blocks.

However, we believe the true permissionless setting for serial-proof-of-work
based blockchains is the one presented in Chapter 6. While we have only pre-
sented the model broadly, there is still work to be done to prove the security
and advantages of this paradigm. This is an interesting challenge as it presents
a setting with multiple adversaries with different goals in mind. We believe
that serial proofs of work in this setting will allow people to maintain a se-
cure blockchain that can be used for anything from timestamping events and
documents to building an infrastructure of trust in the web. This implies nu-
merous challenges ranging from purely practical to highly theoretical, making
it a hopefully very fruitful area of study.

89



Bibliography

[Bac01] Adam Back. Hash cash: A partial hash collision based postage
scheme. URL http://www. hashcash. org, 2001.

[BCD+14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gre-
gory Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón,
and Pieter Wuille. Enabling blockchain innovations with pegged
sidechains. https: // www. blockstream. com/ sidechains. pdf ,
2014.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies
without proof of work. In International Conference on Financial
Cryptography and Data Security, pages 142–157. Springer, 2016.

[BHS93] Dave Bayer, Stuart Haber, and W Scott Stornetta. Improving
the efficiency and reliability of digital time-stamping. Sequences
II: Methods in Communication, Security and Computer Science,
pages 329–334, 1993.

[Bit17] http://realtimebitcoin.info/, 9 August 2017.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis
Zikas. Bitcoin as a transaction ledger: A composable treatment.
In Annual International Cryptology Conference, pages 324–356.
Springer, 2017.

[But17] Vitalik Buterin. Proof of stake faq. https://github.com/

ethereum/wiki/wiki/Proof-of-Stake-FAQ, 10 July 2017.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Foundations of Computer Sci-
ence, 2001. Proceedings. 42nd IEEE Symposium on, pages 136–145.
IEEE, 2001.

https://www.blockstream.com/sidechains.pdf
http://realtimebitcoin.info/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ


[Can16] Ran Canetti. Universally composable security: A tu-
torial. https://www.youtube.com/playlist?list=

PLqc9MPlwib9nSuyH4oUIwPsyDiZ4bwuEE, March 18 2016.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer,
Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine
Shi, Emin Gün Sirer, et al. On scaling decentralized blockchains.
In International Conference on Financial Cryptography and Data
Security, pages 106–125. Springer, 2016.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish.
Universally composable security with global setup. In Theory of
Cryptography Conference, pages 61–85. Springer, 2007.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or com-
batting junk mail. In Annual International Cryptology Conference,
pages 139–147. Springer, 1992.

[DPS16] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably se-
cure proofs of stake. Cryptology ePrint Archive, Report 2016/919,
2016. http://eprint.iacr.org/2016/919.

[EGSVR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert
Van Renesse. Bitcoin-ng: A scalable blockchain protocol. In NSDI,
pages 45–59, 2016.

[ene17] Bitcoin energy consumption index, 25 September 2017. https:

//digiconomist.net/bitcoin-energy-consumption.

[ES14a] Ittay Eyal and Emin Gün Sirer. It’s time for a hard
bitcoin fork. http://hackingdistributed.com/2014/06/13/

time-for-a-hard-bitcoin-fork/, 2014.

[ES14b] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In International conference on financial cryp-
tography and data security, pages 436–454. Springer, 2014.

[Eth16] What is ethereum? http://ethdocs.org/en/latest/

introduction/what-is-ethereum.html, 2016. 41fc2c03.

[GKL14] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol: Analysis and applications. Cryptology ePrint
Archive, Report 2014/765, 2014. http://eprint.iacr.org/2014/
765.

[GKL17] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol with chains of variable difficulty. In Annual In-
ternational Cryptology Conference, pages 291–323. Springer, 2017.

91

https://www.youtube.com/playlist?list=PLqc9MPlwib9nSuyH4oUIwPsyDiZ4bwuEE
https://www.youtube.com/playlist?list=PLqc9MPlwib9nSuyH4oUIwPsyDiZ4bwuEE
http://eprint.iacr.org/2016/919
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
http://hackingdistributed.com/2014/06/13/time-for-a-hard-bitcoin-fork/
http://hackingdistributed.com/2014/06/13/time-for-a-hard-bitcoin-fork/
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://eprint.iacr.org/2014/765
http://eprint.iacr.org/2014/765


[GKP17] Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos. Proofs
of work for blockchain protocols. Cryptology ePrint Archive, Re-
port 2017/775, 2017. http://eprint.iacr.org/2017/775.

[GMG15] Bela Gipp, Norman Meuschke, and André Gernandt. Trusted
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