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ABSTRACT

It has been suggested that our understanding of numbers is rooted in the perception of
numerosities. A capacity, that of assessing the approximate number of objects in a scene,
which is believed to be available also to other species.

The present work fits within the current debate on whether a ‘true sense of number’
is perceptually available. We will provide a comprehensive review of the behavioral,
neurophysiological, and computational findings that seems to support the claim, and the
limitations of the approaches taken.

Importantly, we will argue that without a clear stated definition of numerosity, it’s
impossible to answer the question. We will therefore provide a formal definition of
numerosity, and show how the framework of tolerance homology might be used to cast
light on the debate.
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INTRODUCTION

As man possesses the same senses as the lower

animals, his fundamental intuitions must be the

same.

Charles Darwin, The descent of man

Numbers. Are they fundamental intuitions? At first, we might be inclined to say

no. Numbers are such abstract, ineffable entities that they must require a great

deal of intellectual machinery to be grasped. We might be inclined to consider

numbers as an offspring of language. ‘No language, no numbers’ seems a pretty innocent

expression. Indeed, the Pirahã, a small and isolated population living on the Maici river

bank, don’t have numerals. Admittedly they have a fancy language, one that can be

whistled, and a culture without history, no god nor religion. If that of number is a cultural

concept shaped in thousand of years, then it’s quite natural Pirahã don’t possess the

concept. And yet their intellectual abilities are our own. Their perceptual capacities

are the same and yet they don’t have words for colors. It’s surely harder to claim that

colors are not “fundamental intuitions.” Pirahãs are a strong case for the advocates of

the Whorfian Hypothesis, but perhaps surprisingly, Frank et al. [48] have convincingly

shown that, when numerical tasks don’t involve a memory component, they are no worse

than us. Language, they suggest, act like a compressor and the underlying perceptual

faculties are unaltered. This suggested that numbers are not indivisible entities. It seems

like there is something in the concept of number that might be considered a fundamental

1
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CHAPTER 1. INTRODUCTION

intuition. Something we share with Pirahã. In a certain sense, Darwin’s idea is appealing.

It suggests that we, speakers of a language with numerals, the Pirahã with no numerals

and Monkeys, with no language whatsoever, share a fundamental intuition with respect

to numbers.

Fundamental intuitions are fleeing and Darwin’s remark is vague. The suggestion

that the fundamental intuitions must be the same can be read in a Kantian or in an

anti Kantian way. If we take Darwin to be an associationist then a priori intuitions have

no place in his remark. However, reading the passage in a Kantian way suggests that

the way we construct the world out of the manifold of sensory data “goes beyond the

information given 1." Interpreted in this fashion, having the same senses is regarded as

sharing the way the sensory data are organized, up to a certain degree. In this spirit,

cognitive neuroscience is advocating a Kantian project, a quest in the search of the

intuitions our mind2 contributes to shape the sensory impressions.

Replacing the term ‘understanding’ with the term ‘mind’, however, is only morpholog-

ical sugar unless we take a stance on what we mean by mind. We share Minsky [105]’s

view: “the mind is what the brain does.” Therefore, the search for fundamental intuitions

in mathematical cognition can be put simply as asking how do population of neurons

encode distance, size, location, duration and number, and how numerical cognition might

arise from the interaction of these neural codes. Although at first it might seem we

are taking Kant’s ideas too freely, it may help to recognize that we are pursuing the

Transcendental Idealism, in brief the stance that we don’t know anything about objects

in themselves. We will return to this significant matter in chapter 2, in the interim it is

sufficient to recognize that this philosophical excursus is not an exotic rambling into the

wild mind of philosophers, but it’s a sketchy portrait of the tacit assumption made by the

working scientists.

Seeking an explanation that goes all the way down to the neural level is the long

term stand of psychology in general and of mathematical cognition in particular. It’s by

no mean the objective of this thesis to try to lay down a theory so broad, yet, I maintain

that a cognitive theory that is totally blind and uninterested in the neural level is quite

ill posed 3.

I’ve always read with a sort of incredulity and admiration Locke’s Epistle to the

1cf. Bruner [17] and Stenning and Van Lambalgen [159] for a discussion on how this connects to Kant.
2“Understanding” or “spontaneity” in Kant’s terms.
3In particular, it seems to me there is a gap between the quest in trying to understand our concept

of number and the hypothesis that this is based on a more foundational sense of numerosity, the former
described in abstract terms, the latter mostly in neurophysiological terms.

2
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reader, and I feel I am in a similar circumstance, where people much smarter and

knowledgeable than I am, are tackling this problem. It’s therefore even more ambitious

to me “to be employed as an under-labourer in clearing the ground a little, and removing
some of the rubbish that lies in the way”4.

Housekeeping

Housekeeping may be felt as a mundane task. A mere reorganizing of thoughts, concepts,

techniques and methods in a jumble. However, sometimes reshuffling things around it’s

sufficient to highlight aspects previously not considered and therefore to reorganize the

material.

Before starting with any cleaning let’s have a look at the building condition. There

are three critical points we have to look into,

1. foundation

2. infrastructures

3. neighborhood

The edifice has no foundation. The central concept, the one of numerosity has not been

formally defined. Numerosity is taken to be the number of items in a scene, where what

counts as an item varies as much as what counts as a scene. The most clear definition

has been given in Nieder and Dehaene [111]: numerical quantity refers to the empirical
property of cardinality of sets of objects or events (also called numerosity). The cardinality

of a set is a technical and well defined term that doesn’t apply to sounds or images. The

use of the term ‘numerosity’ instead of ‘cardinality’ to be technically uncommitted points

in the direction of a lack of definition.

The district is under developed. This is made apparent in two situations. On one side,

the main findings may be appreciated only from report of data and not directly from

the data. As a matter of fact, only a handful of papers are connected to an open access

repository. Metadata are totally useless in the text, but it is the common practice to

give ceremonious descriptions of technical details. Some notable exceptions exist where

experiments are described exceptionally well, however it is hard to make a point out

of this exercise in technical writing. On the other side, for only a few models in the

4Locke [93], Epistle to the reader.
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CHAPTER 1. INTRODUCTION

field the code is available5. By papers’ inspection and by mail communications, I got the

strong impression that nobody else but the authors actually “shook down” the models6.

The fact that in the numerical cognition literature, so many models are abandoned and

dismissed is weird when compared to what happens in other fields. ACT-R, Emergent,

Nengo Models, to name a few, all are shared on-line. A notable exception is Testolin et al.

[164]’s effort to promote the use of a simple deep network tool for neuroscientists. Coding

the models in an unitary framework is therefore a work that will keep me busy well after

this thesis and it might be seen as a continuation of what they have started.

Neighbors don’t get along. Although interdisciplinarity is advocated and always

praised, it’s rarely practiced. There is an almost total lack of communication among fields

pursuing closely related objectives. Philosophy of mathematics is practically absent and

the brief incursions have usually more the flavor of historical curiosities rather than

insightful proposals. No different is the exchange between the AI community and the

neuroscience one 7.

Contributions of this thesis

Save point one, the situation is not serious, and it’s quite subjective. Briefly having the

code it’s helpful, but not necessary, and walking into the philosophical minefield might

help to discern what is possible from what is ill posed. Notwithstanding, rewriting the

simulations’ code from the few specifications given in the literature it’s not a trivial task.

This is especially the case in computational cognitive modeling. In machine learning,

we wish the algorithms to be as efficient as possible, and if a different implementation

of an algorithm leads to better performances, it is considered a better one. In cognitive

modeling, although the architectures are similar, we have more restrictions, both with

respect to learning rules and with respect to the interpretation of the network’s behavior.

Moreover, although it’s often assumed that a network might scale flawlessly, the gener-

alization is almost never achieved by simply adding more units. Particularly the code

for Dehaene and Changeux [35] and Verguts and Fias [179] models, despite they are

5This makes the peer reviewed community quite small, and the code, when available, obsolete.
6Even in a recent review (Anobile, Cicchini, and Burr [7]) the authors claim the model of Dehaene

and Changeux [35] is able to account for Weber fraction and invariance by describing summarily how the
model supposedly achieves these results. When it comes to be precise about the model, alas, they admit
that it’s not certain that the same behavior emerges in a more powerful network.

7For the first we note the often quoted Kronecker’s phrase “God made the integers, all the rest is the
work of men”, and for the latter we notice the close similarity of crowd estimation algorithms to the one
studied in the cognitive literature.

4



considered the leading models, is not publicly available. The reader might have a look at

Dehaene-Verguts model in the online support material of this thesis8, to appreciate how

easier it is to understand the models’ assumptions, and how deeper the understanding of

the models goes, once the code is provided 9. For what concerns behavioral experiments,

we are working on a JavaScript library, Stimulus, to run psychophysical experiments in

a web browser with minimal performance loss compared to standalone softwares. This

will give us, and hopefully the mathematical cognition community, an easier and faster

tool to assess the models’ hypotheses. Especially, we are devising this tool to assess the

plausibility of the definition of numerosity we will provide in chapter 6.

The lack of a definition of ‘numerosity’ is, indeed, the most serious issue. Being

stimuli modal by their nature, a modality independent definition that is blind to these

differences is ill posed. Visual numerosity is mostly spatial and auditory numerosity is

mostly temporal, as is tactile numerosity. This implies we need at least a definition of

visual numerosity and a definition of auditory numerosity, and only once we have these

two in place, we should seek for a way to encompass both into one definition. We will

focus on visual numerosity, and the main task of this thesis is to argue that the correct

way of modeling it is by considering visual numerosity as a topological invariant. The

idea of considering a topological framework arose in connection with recent findings that

topological properties affect numerosity judgments. Interestingly, when I was trying to

lay down a definition of numerosity, I come across a, strangely neglected, paper by Kluth

and Zetzsche [80] tackling the same problem10. Although the formalism we will propose

comes from algebraic topology, whilst the one in Kluth and Zetzsche [80] is inspired by

results in differential geometry, our definition aligns with theirs. The two approaches

might be regarded as complementary, whilst they use infinitary methods to describe

human behavior, we resort to finitary tolerance homology. Importantly, the two choices

lead to different insights with respect to the proposed definition.

8Available at https://github.com/bramacchino/numberSense/blob/master/Competitive_VergutsFias.ipynb
9We invite the reader to have a look at the weights definition, and try to change their values. Interest-

ingly an uncommitted network is unable to generate the desired behavior.
10The fact that this interesting paper is not considered in the mathematical cognition literature seems

to us not to be associated only with the fact that it’s a recent publication, but especially for that lack of
communication among fields we referred to.

5
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CHAPTER 1. INTRODUCTION

Overview

The definition we seek involves the concept of representation. Asking what is visual

numerosity is asking how the brain represents numbers given a visual scene. Whilst

the need of representations is widely accepted, what counts as mental representation

is highly dependent on the perspective. In chapter 2 we will therefore offer a theory of

representation that will help us in shaping a definition of numerosity. With a theory

of representation at hand, we will specify the referent. Therefore in chapter 3 we will

look at the behavioral results that constrain and inform the psychological theories, and

we will review various effects that have been observed. In chapter 4 we will analyze

the details of the numerosity representations (encoding, decoding procedure), and the

corresponding computational models. In chapter 5 we will provide an overview of the

current research in the neurophysiology of numerical cognition, its limits, and how it

can be linked to the computational models. We will then move on chapter 6 suggesting a

more modality dependent approach, more directly linked to the theory of representation

proposed, namely visual numerosity as a topological invariant, and we will analyze in

chapter 7 the computational models of visual numerosity proposed in the literature.

6
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2
REPRESENTING NUMBERS

A mathematician is a device for turning coffee

into theorems.

Alfréd Rényi

2.1 Abstraction, Representation and Information

I f we take at face value Rényi definition of mathematics, mathematical cognition

is the field of research that aims to understand how coffee can be turned into

theorems. Less metaphorically, how the brain (its neurons, neurotransmitters,

structures, and so on) acts during a complex mathematical task. In the present thesis we

are interested in a subfield of mathematical cognition, numerical cognition, which aims

to understand how numbers are cognized and represented. In Newell’s [109] terms, we

are interested in seeing how the “cognitive wheels turn” and “the cognitive gears grind”

during the numerical cognitive behavior.

As mentioned in chapter 8, explanation in computational neuroscience invokes the notion

of representation. Representations, broadly speaking, serve to relate the internal state

of the agent to its environment. We might say that representations “stand-in for” some

external state of affairs.

Although there is an almost universal agreement to the usefulness of the concept,

the nature of what counts as representation depends on the approach. Representations

7



CHAPTER 2. REPRESENTING NUMBERS

are symbols in the classicist approach, whilst they are real valued vectors in a high

dimensional feature space encoded via “subsymbols” in a connectionist approach. These

differences are mirrored in the respective computational models. We wish to avoid

falling into the sterile discussion of past decades between classicists and connectionists

culminated in Fodor and Pylyshyn’s [45] provocative paper 1. In particular, a sprout of that

argument is the still often claimed belief that connectionist architectures can be seen at

most as implementation of classical architectures. Regrettably, the term ‘implementation’

is quite misguiding. In fact, it might suggest that somehow a connectionist network is at

a different level of abstraction from a classic model. It can be, but it doesn’t need to be 2.

The terms ‘translation’ and ‘interpretation’ seem to be more to the point. Specifically, even

assuming that two “theories” can be bi-interpretable doesn’t imply that we can pick one

or the other indifferently. Which paradigm is better suitable can be assessed on a case per

case basis. Indeed, such is the current state of practice, where depending on the situation

a symbolic or a connectionist architecture is preferred, and it is quite common to pursue

an hybrid approach. Moreover, to what extent the two theories are bi-interpretable is

ongoing research under the label of “neural symbolic integration”. When singling out a

meaning of representation, the classicist/connectionist distinction can be furthermore

problematic. The often spurious separation into symbolic and subsymbolic may indeed

give the impression that logic might be the right tool for cognitive processes, but not for

perceptual ones. On the contrary, it is difficult to find a better tool to bridge higher level

cognitive representations, such as language meaning, with low level perceptual features

than logic 3.

Nonetheless, the connectionist approach, if carefully designed, might provide a slight

advantage, when it comes to define representations, with respect to the classical ap-

proach. A neural network is a theoretical tool that forces the experimenter to state

the representational assumptions in a testable form. That is, if carefully specified, a

connectionist model can be indeed taken as abstracting neuronal networks, and the

representations can be seen as neuronal representations. In the theory of representation

we are about to delineate, this is favorable and the majority of models analyzed in this

1The reader may refer to Garson [52] for a clear and up to date overview of the issue.
2Indeed, ‘connectionist models’ is just an umbrella term comprising a wide variety of approaches, some

of which are better seen as statistical inference engines. For a thorough discussion on the matter, we refer
the reader to Kohonen [82, chapter 2]. In particular we share the view that especially many supervised
learning models, although they look like (neuronal) networks, may not describe low level neuronal anatomy
or physiology at all: they should rather be regarded as behavioral model or general models of learning,
where the nodes represent abstract processor and communication channels, respectively.

3An example of this approach is the logic of vision in Van Der Does and Van Lambalgen [175].

8



2.1. ABSTRACTION, REPRESENTATION AND INFORMATION

thesis are artificial neural networks. This doesn’t mean that the neural grounding cannot

be achieved by means of a symbolic approach. Nor, particularly, that the route down the

Marr [101]’s path has to go through a connectionist approach.

No matter how representations are structured, they relate the internal state to the

environment. But what grounds these representations? Prima facie it seems desirable to

have

some description of this processing that yields the right predictions without

descending all the way to the neuron-by-neuron level (Lycan [95, pag. 259]).

As Van Der Does and Van Lambalgen [175] show, this can be done to a certain

extent by investigating the model theoretic core underlying a mathematical construct

used in psychophysics such as Gaussians, Laplacian and other operators. But the full

extent of this grounding is achieved via models that are informed at the neuronal level.

We agree with Eliasmith [39] that a neuron-by-neuron grounding is not a bad idea

after all, and that a fruitful information theoretic view on representations as neural

codes ( cf. Eliasmith and Anderson [41]) better characterizes representations in a neural

system. This characterization of the cognitive inquiry as an information processing task

allows us to characterize the above mentioned Marr’s three levels of inquiry4. Defining

representations in information theoretical terms, and grounding them at the neuronal

level, stresses the fact that the three levels cooperate to give an explanation of the

task at issue. This simple move allows us to avoid a common pitfall. It’s not rare to see

authors claiming that their models are just ‘computational’ to underlie the fact that

no algorithmic level, nor implementation is addressed. Grounding representations on

the neuronal level implies that those models might not be computational level models

after all, if it turns out such an implementation is not possible. It seems that the

term ‘computational’ referred to that practice is just chosen to replace the disgraced

‘phenomenological’ term. Phenomenological models, however, have no place in Marr’s

framework, and the assumption that a phenomenological model might be used as a

computational one is either originated by a strong abuse of terminology, or it arises from

a misinterpretation of the framework.

The theory of representation we have in mind is borrowed from Eliasmith and

Anderson [41] and Eliasmith [39, 40], and the textbook Dayan and Abbott [28] to which

the reader is referred for a more in dept technical analysis.

4For a description of Marr’s level as information processing stages we invite the reader to look at
Stenning and Van Lambalgen [159, chapter 11].

9



CHAPTER 2. REPRESENTING NUMBERS

In the next section, we will give an overview of the theory that is sufficient for our

purposes. This is needed because the term representation is used in a variety of ways,

sometimes to indicate an encoding, sometimes to indicate a decoding, sometimes as a

vague term. With a clear stated notion in the back of one’s mind, these different uses are

immediately discernible. This will allow us to disentangle some seemingly incompatible

positions and clearly indicates why and how a theory that goes all the way down to the

neural level, as stated in the introduction, can be addressed.

2.2 Neurosemantics

The simplest communication system one can imagine is made up by a transmitter or

sender, a channel, and a receiver (Figure 2.1).

Figure 2.1: Schema of a communication system

Codes are then defined by the complementary encoding and decoding procedures. A

sender sends the encoded information through a channel, possibly noisy, that is then

decoded before reaching the receiver. The minimal information relation is therefore a

three place relation schematizable as

carries(channel, inf ormation, receiver)5.

By mirroring this schema the representation relation may be stated by using the standard

terminology in ‘vehicles represent content w.r.t. a system’:

represent(vehicles, content, system)

Therefore, defining representations as codes requires defining encoding and decoding

procedures, and (possibly different) input and output alphabets. Describing representa-

tions in these terms is broad enough to allow us to extend the concept of representation

to that of transformation. In this way, a transformation of a representation is still a

representation6. This gives us a powerful tool to talk directly about representations at a

higher level on the hierarchy and thus of all mental representations:
5These three objects are necessary and sufficient to define Information in Shannon’s terms.
6This is achieved via a transformational decoder such that the transformed representation can be

extracted directly from the stimulus.
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2.2. NEUROSEMANTICS

That is, since all mental representations can be described as some combina-

tion of scalars, vectors, and functions, and those mathematical objects can

be neurally represented, these methods can be used to describe all mental

representations (Eliasmith [39, pag. 1043])

Although powerful, defining the representation relation in such terms misses the

contribution of the referent. If we assume that referents are contents, as suggested by

causal theories, then accounting for misrepresentation becomes quite cumbersome. On

the other side, if we take contents to be referents, there is no place for truth conditions in

determining of meaning. For these reasons, Eliasmith proposes the fourth place relation

‘vehicles represent content regarding a referent w.r.t. system’:

represent(vehicles, content, re f erent, system)

Incidentally, it could be helpful to see the introduction of referents in the relationship as

somehow mirroring the Fregean sense (Sinn).

So far, we have been uncommitted about the four arguments of the representation

relation, and we have been only moved by the close relationship between information

processing and biological systems.

By system (the receiver), we mean the whole nervous system.

Vehicles, that we might call representations, are physical objects that carry repre-

sentational content (namely, neurons and population of neurons described by the pair

encoder and decoder7).

Referents are measurable external objects that representations assign properties

to. But how are referents and vehicles related? Being they measurable quantities, we

can assign random variables to them. The dependence of two random variables X ,Y
is summarized by the mutual information I(X ;Y ), that captures the relation between

change in one and change in the other. That is, if X ,Y are independent random variables

such that P(X ,Y )= P(X )∗P(Y ) then I(X ;Y )= 0. The set of relevant events (referents)

are thus the ones that maximize the mutual information I(X ;Y ). Notice that all there is

to know about the stimulus and the response relation is contained in the joint probability

P(X ,Y ), that is to compute the mutual information I(X ;Y ) we need the joint probability

or a conditional probability, and the marginal probability it is conditioned over.

This corresponds to what Eliasmith [40] dubbed Statistical Dependence Hypothesis

(SDH):
7Clearly, this is an oversimplification: glia cells and neurodynamics might carry representational

content as well. Allowing these representations into the theory simply requires the availability of an
encoding and decoding procedure. The oversimplification, therefore, shouldn’t be harmful.
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CHAPTER 2. REPRESENTING NUMBERS

Definition 2.1. The set of causes relevant to determining the content of neural responses

(referent of a vehicle) is that set that has the highest statistical dependence with the

neural responses under all stimulus conditions and does not fall into the computational

description.

Where the computational description refers to the neural functioning provided by the

theory of representation and computation (that is, we want the referent to be outside the

system).

Contents may be taken to be the properties ascribed to a referent by a vehicle,

therefore content is determined by decoders8. If no information about the stimulus can

be extracted from the spiking neurons, then it makes no sense to say that it represents

the stimulus.

Working with a four place relation instead of the standard three place relation

prompts us to define the relation between content and referent. This requires choosing

a perspective among first person perspective and third person perspective. We don’t

refer to the experimenter perspective as opposed to a first person perspective intended

as a phenomenological favorite access (Dennett [37]). In this respect, we advocate a

third person perspective. What we are interested in is a third person perspective filtered

thorough the subject perspective.

Briefly the representational content problem can be addressed by means of two con-

ditional probabilities: p(response|stimuli) vs p(stimuli|response). The former char-

acterizes the observer perspective. Notice that this is what we obtain in a standard

experimental settings. However, from the point of view of the subject that probability

doesn’t make any sense9. The latter characterizes the subject perspective, namely the

problem of inferring the stimuli in the world from the “neural response”.

A look at Fig 2.2 clarifies the point. All there is to know about the probabilistic

relation between a stimulus and a response, the referent-vehicle relation, is given by the

joint probability p(r, s). The left part of the graph corresponds to the animal perspective.

That is, from the joint distribution P(n,v) (spiking rate and velocity) the conditional

probability p(v|n) is inferred and so it is the graph of the best estimate of the velocity

given some spike rate. The right part of the graph, instead, corresponds to the observer

perspective. The graphs on top show how the representational content can be highly

different given a perspective.

8That is, a decoder tells us what properties of the encoded signal are “saved” by the neural signal.
9In fact, without p(s) this is insufficient for a full characterization of the representation relation.
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2.2. NEUROSEMANTICS

Figure 2.2: Figure from Rieke et al 1997

That representations need both perspectives is often overlooked, and seemingly

contradictory point of views are in several cases just different, and importantly not

incompatible perspectives10. This happens frequently in numerical cognition. On one

side, we have those that advocate

there is no reason to think that number is a complex parameter of the external

world, one that is more abstract than other so-called objective or physical

parameters such as color, position in space, or temporal duration. In fact,

provided that an animal is equipped with the appropriate cerebral modules,

10The conditional probabilities are linked via the Bayes’s law.
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CHAPTER 2. REPRESENTING NUMBERS

computing the approximate number of objects in a set is probably no more

difficult than perceiving their colors or their positions (Dehaene [32]).

On the other side, this illusory simplicity is challenged by those claiming

it is easy to see that there is no such single visual attribute unambiguously

related to the number of dots. Strictly speaking, it is impossible to see nu-

merosity at all. The only possibility is to rely on an intermediate impression

of numerosity which is formed on the basis of a certain stimulus attribute,

more or less closely correlated with the number of objects. The visual number

can be communicated to the observer only through a certain set of visual

attributes, none of them being the visual number as such (Allik, Tuulmets,

and Vos [2]).

The scenario envisaged by Dehane focuses mostly on the (external) observer side.

Numerosity is out there, we know it, and we can capture how to compute the approximate

number of objects by looking at p(response|numerosity). Allik, on the other side, is

thinking about p(numerosity|response): none of the visual attributes and therefore the

responses are the numerosity itself, but somehow the subject has to infer the numerosity

from these responses. The representational content is therefore different and both

positions are partial and need to be complemented in order to achieve a computational

theory of numerical cognition.

In conclusion of this discussion on representations, we wish to highlight how the

problem of misrepresentation is easily addressed within this theory. What the SDH

picks is the “conceptual content” (determination of decoders over all stimulus conditions),

which however may be different from the “occurent content”:

Definition 2.2. The referent of an occurent representation is the cause that has the

highest statistical dependency with the representation under the particular stimulus

conditions in which it is occurent.

To sum up, in order to understand our capacity to deal with numbers, it is crucial

to identify the type of number representations that our brain uses. We have to identify

the referents, the vehicles (that is the encoding and decoding procedures), and pick a

perspective11.

11The most complicated part of this plan is, unsurprisingly, picking up the referents. This is especially
true considering the fact that addressing this issue is almost impossible without a clear definition of what
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2.3. REPRESENTING NUMEROSITY AND FEARING NATURAL NUMBERS

Given that the standard psychophysical experiments in numerical cognition involve

dot arrays in a screen, starting out with visual numerosity seems a promising approach.

Although numerosity is at this stage still a vague term, and it will be our effort

through this thesis to give the necessary concepts in order to propose a formal defi-

nition, we remind the reader that we were prompted to investigate numerosity from

the suggestion that number might not be a primitive concept, and that some kind of

fundamental intuitions, which we share with other species, can be its primitives. With

this we wish to point out that, although we cannot claim to have a computational theory

of numbers, unless we have all the components of the representation relations, the way

we fill in the details is not constrained by the representational theory proposed. A back

and forth between levels reshapes, step after step, the concepts, constraining the space

of possibilities on the higher levels, and narrowing down the guesses needed for reverse

engineering the neural code.

In fact, although the definition that we will propose for numerosity is mainly intended

for visual numerosity, there is another line of research, that starts from the higher level

in the hierarchy seeking those representations that should be foundational. The starting

point is therefore the representation of natural numbers.

2.3 Representing numerosity and fearing natural
numbers

Natural numbers are abstract entities. This makes finding an adequate representation

even harder. At first sight, how might we know a vehicle represents a referent if we

don’t know what this referent is? This might suggest to give an account of what things

our number words and numerals name or stand for. However, this is a dangerous and

possibly fallacious path, in Mayberry’s [102] words,

the beginning of wisdom is to realise that there simply are no such things

as “natural numbers”, that natural numbers as “mathematical objects” are

illusions, non-entities, mere artifacts of our notation, reified and alienated

products of our counting and calculating procedures, and that, consequently,

to devise a theory of what “they” are as particular objects is utterly otiose

“we wish” to represent. Anyway, assuming what it requires to be shown, it is still possible to give the
encoding and decoding procedures. The interested reader may found a clear example, in line with the
present discussion, in Le Mouel and Pouget [87] (unpublished, but freely available on line).
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and, indeed, productive of quite unnecessary confusion (Mayberry [102, pag.

258]).

Naturally, the above sentence provokes strong reaction, but such a “philosophical

position” highlights the impasse in which the cognitive psychologist finds herself. When

working at this level of abstraction, the researcher has to rest on an intuitive definition of

numbers that avoids any pitfall into philosophy of mathematics. That natural numbers

don’t necessitate any definition seems to be, probably surprisingly, a widespread opinion

even among mathematicians. That this doesn’t create a problem is captured by Jouko

Väänänen [174], according to whom “mathematicians argue exactly but informally”,

which “has worked well for centuries”. An intuitive pretheoretic concept of number is

the sequence of which we don’t know nothing else other than that it is generated from

zero by successive iterations of the operation of passing from a number to its immediate

successor12. As far as it goes, such a characterization should suffice. Indeed, as Rips,

Asmuth, and Bloomfield [139, pag. 9] pointed out, this seems to be the one implicitly or

explicitly assumed by many cognitive scientists.

By this, we don’t want to claim that a dialogue between mathematicians, philoso-

phers of mathematics and cognitive scientists wouldn’t be profitable. As stressed in the

introduction, the opposite is advised. We just want to point out that, once one is aware of

the informality of the definition, and importantly of the limitations of it, its adoption is

legitimate. Failing to account for the limitations, however, might result in empirically

misguided inferences. For example, from the fact that the structure of finite ordinals,

with the ordinal operations (+o, xo) is isomorphic to the structure of the numerosities

with the cardinal operation (+c, xc), one might be inclined to infer that an ordinal defi-

nition suffice13. However this assumption might mask comprehension. In Gelman and

Gallistel’s [55] proposal the infant comes to understand that the last word in the counting

sequence denotes the cardinality of the enumerated set (cardinality principle). If the

child associates with the number words only the ordinal position, for example, then it

might appear she doesn’t yet know the cardinality principle, whilst in fact, she might

already have inferred it. Moreover it might not be the case that the operations an infant

uses are the standard binary operations we usually associated with natural numbers,

12Although intuitive, the definition is in fact circular. It implies that a collection is finite if it can be put
in correspondence with an initial segment of the natural numbers, that is if it can be counted out. But it
can be counted out if the iteration of the successor function is finite. The appealing of the definition comes
from the belief that a definition by recursion doesn’t need justification. A fallacy reminiscent of the sorites
paradox (cf. Mayberry [102]).

13This seems to be the hypothesis behind Gelman and Gallistel’s [55] counting principles.
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2.3. REPRESENTING NUMEROSITY AND FEARING NATURAL NUMBERS

and might be the plus-one, minus-one, unary operations, applied only to ‘Spelke-objects’,

roughly a persistent object, or a pair of persistent objects (Spelke [157]).

This brings up a fundamental distinction of intents. On the one hand, if mathematical

cognition’s research is trying to single out the ‘intended model’, that is to seek the

representations underlying the intuition that there is a paradigmatic structure of the

natural numbers, then a formal theory of natural numbers, such as Peano arithmetic, is

of little use. In fact, if those intuitions were again formalized according to a given theory,

the explanation will be circular and not informative. This is what the majority of scholars

address. For them, an informal definition should suffice: paraphrasing Jouko Vaananen’s

statement, mathematical cognitive scientists should argue exactly but informally. On

the other hand, if what is claimed is our possession of the concept of natural numbers,

then mirroring it by means of a formal theory seems appropriate. Less straightforward

is which theory is the one to use as benchmark. Are cognitively experienced natural

numbers the “standard” natural numbers? To answer this question, one can embark in

a different project and try to see which among various different mathematical theories

is the closest to psychological reality. From this point of view, it could be the case that

cognized natural numbers are not the PA, ZFC numbers defined in standard mathematics,

but a different, and admittedly more exotic, kind of natural numbers. In this respect we

observe that there are only few studies in mathematical cognition in which “big” natural

numbers are investigated(e.g. Rips [137]). 9223372036854775807 is a number as much

as 2, but surely doesn’t behave cognitively in the same way14. The exoticism is therefore

necessary. More broadly, the history of the concept of infinity, from the Greek horror
infiniti to the embracing of its paradoxes, and the confused statements that children

give when prompted, suggests us not to blindly assume that the concept is naturally

available.

Therefore, what we can do with just an intuitive definition is asking ourselves

what are the cognitive foundations, the representational primitives out of which the

natural number representations are built. Which constraints do we have in seeking

representations? Are these representations innate or are they learned from more basic

representations? In the context of core cognition (Carey [20]), and in the neural equivalent

(Dehaene and Cohen [36], Dehaene [29]), for example, is hypothesized that, when we

learn and practice science and mathematics, we take capacities of the mind and the

brain that evolved to serve other functions, and we harness them for new purposes15. In

14For the curious reader, the number presented is 263 −1, that is the largest 64 bit number, usually, the
largest number representable by a computer. In Python for example type sys.maxint or sys.maxsize.

15This concept recalls exaptation in evolutionary theory.

17



CHAPTER 2. REPRESENTING NUMBERS

the representational framework proposed, this means that the representations we seek

are transformations of earlier representations. As Carey [20] (by extending Dehaene’s [

32] proposal) lists, those encompass number line, representation of space and continuous

quantities, time, length, distance, iterative capacities, logical capacities, relational and

order capacity, the syntactic/semantic representation of numbers in natural language,

and the system of parallel indexing of small sets in mid level attentional systems.

This list is daunting. Way too broad and too abstract to actually have one’s hands dirty.

What one can do is to hypothesize how these capacities must be organized in order for the

concept of natural number to emerge. From all the items in the list, particular relevance

is given to the approximate number sense (ANS), a specification of the representation of

continuous quantities, and to the parallel individuation system (PIS)16.

2.3.1 Numbers in the scrum

How those representations are to be organized in order to support the concept of natural

number is subject of strong debate. We can identify three major contenders:

- Natural numbers are innate, while abstract number sense and possibly other

capacities in the list are just ancillary

- Core systems are foundations. Throughout life, representing and reasoning about

natural numbers depends on them.

- Core systems are scaffolding. Once the natural number system is constructed, it

has a life of its own.

Nativists

Nativists are of the opinion “rather be on a subs bench than in the scrum”. Without

denying the representations in the list might play a role, they contend their foundational

nature. Being an opposition party gathers different approaches. Gallistel and Gelman

[51] and Gelman [53] propose that the presence of ‘preverbal numbers’ is innate and

that the child learns a bidirectional mapping along with them. However, this account

doesn’t explain the developmental trajectory, suggesting a much briefer learning pattern

than the one actually observed. Leslie, Gelman, and Gallistel [90, 89], and Izard et al.

16In chapter 4 we will explain why the hypothesis of an approximate number sense (ANS) has emerged
and what is its supposed role. For the remaining of the chapter it is sufficient to assume that numerosity
are encoded approximately via overlapping Gaussians.
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[74] maintain that exact equality and successor functions are sufficient and necessary

to build up the natural numbers, and are not learned for other primitives. However,

whether and when the child understands the successor function, and whether ordinal

numbers are learned before cardinal numbers is still debated (cf. Kaminski [77]). Bloom

[15] and Hauser, Chomsky, and Fitch [62] maintains that numbers are built in natural

language, in particular in the recursive capacity that is a hallmark of human language.

However, Gelman and Butterworth [54] strongly criticize this approach by claiming

that dissociation between language and numbers is possible. Moreover the claim that

natural language, as a cognitive capacity, is recursive, it’s not an innocent and self

evident position17. It’s probably in Rips, Asmuth, and Bloomfield [140, 139] and Rips and

Hespos [141] that the nativist approach has its peak. Here, it is claimed that there is no

difference between cognitive and mathematical natural numbers. These are taken as

any list that obeys Peano-Dedekind axioms, or a cognitive plausible version of Peano-

Dedekind axioms, although to what this cognitive plausible version amounts to remains

unanswered18.

Foundationalists

This thesis is championed by Dehaene [32], in his words these abilities (ANS) not only
enable us to quickly work out the numerosity of sets, but also underlie our comprehension
of symbolic numerals such as Arabic digits. In essence, the number sense that we inherit
from our evolutionary history plays the role of a germ favoring the emergence of more
advanced mathematical abilities. (For a recent update of this view, called neuronal

recycling , and its possible extension to reading and language skills see Dehaene [30]

and Dehaene and Cohen [36]). In particular, as noted in Graziano [59], there is a will

to distance from the nativist, in the sense that the language-less features of numerical

competence are the basis of numerical cognition, and yet to accept the idea that language

is necessary. The main claim is that the ANS encode both symbolic and non symbolic

numerosities. In particular, it is suggested that number symbols simply operates with

narrower tuning curves (Nieder and Dehaene [111], Piazza et al. [120], Verguts and Fias

[179]).
17The classical ‘competence/performance’ dichotomy is blurred out at the cognitive level (see Stenning

and Van Lambalgen [159, pag. 371], and the Turing Equivalence of recursion and iteration is often
confounded for a claim that, cognitively and neurally speaking, one can be replaced by the other (Luuk
[94]).

18En passant, in Rips, Asmuth, and Bloomfield [139, pg. 58, commentary)] this seems to refer to the
use of the least number principle and not to the induction schema. A more thorough approach has been
given by Krysztofiak [85].
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Recent behavioral and neurophysiological studies, however, suggest that the non

symbolic and symbolic numbers are more distinct, and that the latter form a system

of discrete, categorical, representations, rather than being coded simply by narrower

tuning curves (Cohen Kadosh et al. [25], Lyons, Ansari, and Beilock [97, 96], Holloway

et al. [70]). The outcome of these studies suggests a greater importance on how a symbol

is related to other symbols, than how its related to the quantity it represents (in terms

of ANS). The fact that, at the neural level, network overlapping has been observed,

prompted the hypothesis that the detachment might be a learned one, fostering the

developmentalists view.

Developmentalists

Given the difficulties of the Nativists and Foundationalists, respectively violating Oc-

cam’s razor and the aforementioned studies, a third position gained momentum. As a

middle way between the two positions, Spelke [158] maintains that natural numbers

concept emerges thorough the combination of core knowledge and natural language. And

that the use of natural language to combine core representation rapidly and productively

is fundamental. A stronger position is advocated in Carey [20, 21], within the core cog-

nition proposal. Natural numbers are Bootrstrapped from the earlier representations

of the ANS and the parallel individuation system (PIS). In particular it is suggested

that the ANS grants the concept of progression, and the PIS the one of discreteness.

Tangential to our concerns, but fundamental in Carey’s system, is the “discontinuity

hypothesis” underling the “Quinian bootstrapping”19. Carey proposes that by combining

the two systems we should be able to “bootstrap” our knowledge developing the concept

of exactness and successor. Importantly the new conceptual system developed is not

translatable into its foundational system.

The discontinuity claim is the more problematic, and taken Carey’s approach as

a whole, there are no mathematical or computational models to support the theory.

Indeed, as noted in Rips, Asmuth, and Bloomfield [138], the only model for Carey’s

Bootrstrapping Theory, Piantadosi, Tenenbaum, and Goodman [119], is not a model

of Bootstrapping but of Fodorian hypothesis and testing. Indeed it’s more in line with

Spelke’s proposal than with Carey’s one (for example the ANS has no use in the model)

and recursion play the same role that nativist advocates.

We therefore take some liberty from Carey’s actual proposal, and we will briefly

present her proposal omitting the discontinuity hypothesis. Carey’s suggestion, although
19Natural numbers learnability is taken as a paradigmatic example of discontinuity.
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interesting, is quite vague about the details, therefore our reconstruction of her argument

might differ from her actual assumptions. Briefly the proposal might be summarized in

four (possibly five) steps.

1. The child starts memorizing a short list of ordered numerals S (e.g. one, two, ...,
ten) as an uninterpreted place holder structure.

2. She later links S to a mental representation of ‘set numbers’ induced by the Parallel

Individuation System. That is the name one is mapped into the object file {O1}, the

numeral two into the object file tracking any two objects {O1,O2}, and three into

{O1,O2,O3} 20.

2b. The child is then able to link S to a mental representation of “magnitude ordering”

given by the ANS 21.

3. From 2 and 2b the child realizes a parallel exists between ‘syntactical order’ and

‘representation’ 22.

4. This helps the child realizing that the meaning of the next element on the numeral
list is the set size given by adding one to the set size named by the preceding numeral.

5. The concept of natural numbers might arise by taking the limit of the sequences

generated by successive applications of step 4.

Step 5 embodies a passage from a potential infinite, implicit in the numerals grammar,

to an actual infinity through a limit operation. This last step is the one Rips is interested

in, whilst Carey seems to have doubt that this mature stage is ever reached in numerical

development. Only through a lengthy historical process the concept of natural numbers

arises as a cultural invention.

20The limit of the infant PIS is taken to be around three objects. This mapping is acquired via what
Carey dubs a “modeling process” (see Carey [20] pag. 307, 418): induction, abduction, analogy, limited case
analyses and thought experimentation).

21 Carey doesn’t explain how this is achieved. We might, for example, represent the ANS ordering as
the partial order naturally induced by set inclusion over the tolerance classes associated to the tolerance
relation given by the Weber fraction. Assuming the child has access to the ANS implicit ordering, the link
might be established via “modeling processes”.

22 This require a refinement of the partial order into a linear order. For example the child has to infer a

rule of the form
x < y z ∈ P ∧ y ∈ P

x < z
.
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2.4 Summary

In the introduction we claimed that definitions in neuroscience involve the concept of

representation. Here we built upon Eliasmith’s [40] ‘neurosemantics’ proposal of ground-

ing representations at the neural level. An information theoretic approach suggests us

to see representations as neural codes. In information theory codes are seen through the

complementary encoding and decoding procedures between two alphabets. Interpreting

representations as codes therefore requires finding these procedures. We stressed that,

to define the decoding procedure, taking the subject’s perspective saves us from common

mistakes. This simple shift is of paramount importance to assess whether the concept

of numerosity might be linked to a representation of numerosity. Importantly, from the

decoding procedures, a hierarchy of representations arises naturally, and supports our

proposal of seeking lower level representations first. Although there is a great deal

of research on visual numerosity, much attention comes from the goal of numerical

cognition of defining our understanding of natural numbers. In the proposed framework

this corresponds to a representation at the highest level in the hierarchy. Working at

this level prompted a lot of speculations and we briefly exposed the main approaches

taken. With the exception of hard core nativists like Rips, Asmuth, and Bloomfield [139],

lower level representations are considered important to define the concept. We didn’t

take any stance on the debate but noted that a firmer ground is indeed needed.
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3
BEHAVIORAL OBSERVATIONS, OR WHAT (ALMOST)

EVERYONE FINDS

There is a great difference between the Idols of

the human mind and the Ideas of the divine.

That is to say, between certain empty dogmas,

and the true signatures and marks set upon the

works of creation as they are found in nature.

Francis Bacon, Novum Organon

When it comes to single out the capacities our mind possesses, an intuitive ap-

peal to appearances may lead astray1. We have seen in chapter 2 that most

researchers (except for ‘nativists’) share the view that, among the representa-

tions our mind needs to build up the concept of number, the approximate number sense

and the parallel individuation system play a major role. Thus, in this chapter, and in

chapter 4, we will delve into these topics deeper. In particular, here we will provide an

excursus about the behavioral experiments devised in order to assess our numerical

competence, while in the following chapter, we will investigate various theories that have

been proposed to account for these results.

1The philosophically inclined reader may read this as an application of Kant’s transcendental argument
to cognitive science. Here we are not simply interested in what are the necessary intuitions that a mind
must possess for a given capacity to arise, but we want both to ascertain what those capacities are and
what actual conditions are necessary for the given capacity to arise in our mind
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FINDS

3.1 Behavioral observations

Behavioral observations and hypotheses explaining them are usually presented together.

We have decided to disentangle the findings both from the theories that generates

them and from the hypotheses that can explain such facts. Moreover the behavioral

observations cluster various findings. Outward similar behavior can be elicited by differ-

ent underlying mechanisms. This remains the case also when behavioral findings are

correlated to neurophysiological one 2.

Special attention must be held to the fact that the behavioral observations may not

be about ‘numbers’ (or numerosity) after all. Although this situation seems paradoxical,

the reader may convince herself of the difficulty of devising a behavioral experiment

that remove all confounding factors correlated with numerosity. An ideal numerosity

mechanism should be insensible about the shape and spatial distribution of objects in

the scene (see section 3.7). There is indeed an ongoing debate on whether there is a

dedicated (visual) mechanism for the ‘sense of number’ (Burr and Ross [19], Ross and

Burr [148], Arrighi, Togoli, and Burr [9]), or whether the representation of numerosity is

linked to other visual attributes such as density, or non visual attributes like coding of

duration (Tokita and Ishiguchi [168], Walsh [183], Tibber, Greenwood, and Dakin [166],

Dakin et al. [26], Durgin [38]). A limitation of most behavioral, and physiological, studies

is the small range of numerosities tested, usually in the range one to six3, and almost

never higher than thirty two. The assumption that on larger numerosities the behavioral

findings align is thus not granted. A recent review (Raphael and Morgan [133]) in fact

concluded that at the present stage, we cannot claim that numerosity is a perceptual

feature. However, Cicchini, Anobile, and Burr [24] suggest that the same data speaks for

two systems, one numerical, another based on density.

As a matter of fact this debate is a driving force behind this thesis, and we deem that

speaking about general magnitude effects is at this stage less committing.

3.2 Distance effects

The distance effect has first been recognized in the seminal work of Moyer and Landauer

[108] and it has by then occupied a prominent place in numerical cognition. Usually the

various kinds of distance effects are grouped into the broader term of distance effect,

2The simple fact that a given region represents two types of stimuli does not means that the underlying
neural codes are the same (see Lyons, Ansari, and Beilock [96] for an example).

3We will see that this range has a special characterization.
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Van Opstal and Verguts [177] pointed out that this obfuscate the origin of the behavioral

effects.

3.2.1 Comparison distance effect

This effect is apparent in the number comparison task and in the same-different task. In

the former, participants need to select the largest (or smallest) of two numbers. In the

latter, the participants have to indicate whether a item is equal or different than another

(therefore removing any ordinal decision). What is observed is a systematic dependency

of error rate and response time on the numerical separation between the items, where

reaction time (RT) smoothly decreases with the numerical distance between them. The

effect is modality independent, and has been observed both in stimuli containing dot

arrays, and in numerical stimuli presented in a symbolic form.

3.2.2 Distance priming effect

By priming we refer to a temporary change in the ability to identify a stimulus as a

result of a specific prior experience. A priming effects for numbers has been reported in

several studies (e.g., Heyer and Briand [68]; Reynvoet, Brysbaert, and Fias [136]). The

priming effect is inversely proportional to the numerical distance between the prime and

the target. That is, it’s easier to respond to a numerical stimulus when it is preceded by

a prime (number) that is numerically close, compared to when it is preceded by a prime

that is numerically far. Moreover, the effect is symmetric with respect to the priming

direction, that is the size of the priming effect for a given target, n, is the same for both

n+1 and n−1.
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3.3 Size effect (a.k.a. magnitude effect)

For a given numerical distance, pairs of small numbers are compared faster, and more

accurately, than pairs of large numbers. For example chimpanzees have no difficulty in

determining that an array containing two dots is more numerous than one containing

a single dot, even though these two quantities differ only by one unit. However, they

fail increasingly more often as one moves to larger numbers such as three versus four,

and so on. The effect is observed also when the subject is required to assess the relative

magnitude of symbolic numerals, and it appears to be modality aspecific.

3.4 Subitizing effect

As early as 1871, Jevons [75] reported a subject ability to identify with considerable

speed and accuracy the number of visual stimuli simultaneously presented. The term

‘subitizing’ has been proposed in 1949 by Kaufman et al. [78], and defined by Von Glasers-

feld [181] as “the immediate correct assignation of number words to small collections

of perceptual items”. The upper limit of this process is debated, but there is a certain

agreement to set it at three or four elements in the visual display, based on increased
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Figure 3.1: Subitizing effect. Error rate and response time are reported for numerosity 1
to 8. A discontinuity at 3 is clearly visible. Data from Piazza et al. [124].

latency and errors above this threshold. (Akin and Chase [1], Mandler and Shebo [100],

Sathian et al. [151], Piazza et al. [123], Ross [147]). Although Von Glasersfeld [181] goes

beyond this range. Interestingly in several animals the subitizing limit appears higher

than in human subjects (Davis and Pérusse [27]).

The typical experimental design is asking people to enumerate a patch of scattered

items as rapidly and accurately as possible. In the “subitizing” range error rate and reac-

tion time increase only slightly, above that range they grow faster, as can be appreciated

by inspecting Figure 3.1.

Although initial reports didn’t assess any interference with attention, more recent

studies highlight a connection between the subitizing ability and attentional resources.

Railo et al. [132] report that manipulating attentional resources can drastically reduce

the subitizing maximum to two items. Vice versa, enhancement in attention can improve

the subitizing range (Gliksman, Weinbach, and Henik [56]). Interference and correlation

with working memory capacity has also been observed (Piazza et al. [124]).
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3.5 SNARC effect

SNARC is an acronym for “Spatial Numerical Association of Response Code”, a term

minted by Dehaene as a tribute to Lewis Carrol’s

wonderfully nonsensical poem. “The Hunting of the Snark”, tells of the

relentless quest for a mythical creature, the Snark, that no one has ever seen

but whose behavior is known in exquisite detail

What is observed is that larger numbers elicit a faster response on the right side whilst

smaller numbers elicit a faster response on the left side. The direction effects is associated

with reading habits (Dehaene, Bossini, and Giraux [34], Shaki and Fischer [154]) and is

flexible and instable in bilinguals (Fias [44]).

3.6 Transfer Effect

We take here some liberty with respect to our commitment to present the data disentan-

gled by the hypothesis that inspired the experiments generating them. In the case of

the transfer effect, it’s not only the explanations that clash, but the very effect that is in

question. Indeed, this is the most controversial of the behavioral findings here presented.

With transfer effect we term the findings that the behavioral signature for number

symbols transfer to those of symbolic manipulation. We mean this in a strong sense. As

we have seen, distance and size effects are observed in both numeral and dot arrays.

However the fact that the same, or better a closely similar signature, is observed, if it

can suggest a relation, of course it doesn’t imply one 4. If the developmental trajectories

for the symbolic acquisition, and successful use of numerals, are predicted by what we

termed ‘general magnitude effects’, however, we would be in a better position to claim a

relation. The way this is usually expressed is by saying that the Abstract Number Sense

(ANS)5 correlates and predicts mathematical abilities 6. Piazza et al. [122] cautiously

report a correlation between ANS and number knowledge, but no correlation where

found between ANS and calculation abilities. On the contrary, Libertus, Feigenson, and

4For example (Van Opstal and Verguts [177]) show how distance effects may arise as a byproduct of a
decision mechanism.

5That is, the subjective signature of the general magnitude effects. ANS is one widely accepted
hypothesis on the explanation of those signatures, and we will dedicate much of the next chapter to explain
it.

6The term ‘math abilities’ has to be taken with a grain of salt, what it’s meant is simply elementary
arithmetical and numerical skills.
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Halberda [91] and Mazzocco, Feigenson, and Halberda [104] conclude that the ANS’

precision predicts performance on school arithmetic, but does not predict non numerical

abilities. A recent study (Lindskog, Winman, and Poom [92]) suggests a correlation with

math anxiety. However, Sasanguie et al. [150] found no correlation between ANS acuity

and symbolic number processing, and in a large scale (170 children), one year long study

(Göbel et al. [57]) the authors found no correlation with ANS7.

That the effect is dubious is not surprising. As we pointed out in section 3.1 the

very nature of the behavioral observations here presented is puzzling. Recall that for

both developmentalists and foundationalists (cf. chapter 2) the numerical content in the

approximate number system is required to build the natural number concept, therefore,

if no transfer were observed, it would be very much less direct the way to adopt the ANS

as a building block. We are dubious, however, that this is the right strategy to assess

that. Checking the transfer effect requires proving a negative: an empirically impossible

task. That this has long been the strategy of choice is correlated to the lack of a formal

definition of numerosity we highlighted in chapter 8. The definition we will put forward

in 6 will gives us another strategy correlated with the interference effect we are now

going to look at.

3.7 Interference effect

As we pointed out in chapter 8 invariance is assumed by “definition”. As such the degree

of invariance is mostly not reported, but implicitly, in the literature. However, as briefly

mentioned, interference effects are quite widespread.

Allik, Tuulmets, and Vos [2] report size invariance in numerosity comparision, but

dependence on spatial arrangement, in particular to proximity (two proximal dots

have less impact than two far apart on numerosity estimation). Ross [147] found that

mixing sizes disrupt numerosity estimation (more specifically the Weber ratio increases).

Hurewitz, Gelman, and Schnitzer [72] report that cumulative area interferes with, and

predicts numerosity estimation, interestingly even in the subitizing range.

Numerosity is influenced by topological invariants such as connectivity and insid-

e/outside relationship. In He et al. [64, 65], connecting and enclosing items led to robust

numerosity underestimation, with the extent of the underestimation increasing monoton-

ically with the number of connected/enclosed items. The same effect has been reported

even when participants were explicitly told the lines were irrelevant and after extensive

7Although predictive power with Arabic number identification.
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training (Franconeri, Bemis, and Alvarez [46]). The underestimation is present no matter

the contours are real or illusory (Kirjakovski and Matsumoto [79]). Similarly Im, Zhong,

and Halberda [73] report that grouping dots by proximity induces underestimation.

3.8 Weber’s law

Collectively, Comparison Distance Effect and Size effect are usually reported compressed

into a single law: “the time to judge the numerosity of two stimuli is a function of the ratio

of the numerical magnitude they represent”. Weber’s law states that the just-noticeable

difference between two stimuli is proportional to the magnitude of the stimuli. This is

an old stand finding in psychophysic that date back to 1834 8, and has hold true as an

approximation for various senses within a specific bandwidth of the external stimuli.

Let’s call the initial intensity I and, let ∆I be the minimal amount needed to detect

a difference (JND). In discrimination experiment we are interested to found ∆I as a

function of I (s.t. I+DI is just discriminable from I). Therefore Weber’s law is usually

stated by the linear equation

∆I = w∗ I

or more generally ∆I = w∗ (I + I0) (to account for very small values, that is w∗ I0 is the

absolute threshold, the smallest intensity we can reliably detect) where w is a constant

called Weber fraction. In Fechnerian’s terms the differential change in perception is a

geometric progression of the differential change in stimulus

dψ= w∗ dI
I

By integrating,
∫

dψ= ∫
w∗ dI

I we obtain Fechner’law

ψ= w∗ ln(I)+C

8For an historical overview and limits of the law see Hecht [66].
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3.9 Summary

Experiments similar to the one in our demo9 have been widely used to assess numerosity

perception in both humans and animals. Whether these experiments target numerical

competence, or other non numerical mechanisms are at play, is currently a matter of

a strong debate. We reviewed various effects, and noticed that the transfer effect, to

wit the observation that performances in the above tasks correlate with arithmetical

achievement, faintly suggests that numerical competence is indeed addressed. The

results of the experiments are however inconclusive and discordant results are reported

in the literature. The interference effect, the observation that numerosity perception is

not totally invariant to various transformations of the visual stimulus, is frequently

disregarded. The interference effect will play a major role in chapter 6 where we indicate

how the proposed definition of numerosity can be lifted to cast some light into the

aforementioned debate. For the numerosities in the range one to three (possibly four)

a subitizing effect is observed, reaction time and error rate in this range increase only

slightly. The perception of numerosities obeys the Weber-Fechner law according to which

relative differential sensitivity remains the same regardless of size, as observed in the

size effect and in the comparison distance effect. An interference of numerosity with

space has also been observed (SNARC effect) which direction is correlated to the reading

direction of the tested subjects.

9Available at https://bramacchino.github.io/stimulus/demo.html and based on the library Stimulus
current in development.
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4
FUNCTIONAL AND COMPUTATIONAL MODELS

There are reasons to believe that the goal of

understanding the human mind strictly from

observations of human behavior is ultimately

untenable, except for small and limited task

domains.

Ron Sun, Introduction to computational cognitive

modeling

To account for the behavioral findings reported in chapter 3 various functional

and computational models have been proposed. With the notable exception of

the interference effect, distance, size, SNARC, and subitizing effects might be

explained by the proposed models, or by a combination of them. The transfer effect is

usually not addressed by the models, and it shouldn’t be, considering the fact that it’s

seen as the major clue to assess whether the proposed models account for numerical

competence or a generic magnitude. As clearly emerges from the preceding chapters, we

think that this line alone is insufficient for claiming that higher arithmetical abilities are

founded on mechanisms which signature is compatible with the observed effects. The fact

that the interference effect is not accounted, because contrary to the behavioral findings,

a total invariance is assumed, seems to us the major drawback of these models, if one

wish to apply them as building block of higher mathematical capacities. In this chapter

we will avoid this issue, that will be resumed in chapter 7. Taken at face value the

behavioral observations, it seems that two separate systems are at play. One responsible
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to the exactness of the subitizing range. Another, approximate, able to give an estimation

of numerosity 1.

4.1 Functional Models

ANS

4.1.1 Barcode Magnitude representation, (BMR)

The first representation of numerical information has been presented in a series of

arithmetical architectures ( Anderson et al. [4], Anderson, Spoehr, and Bennett [6], and

Anderson [5]). In the BMR number magnitude is coded as a moving bar of activation

on a topographic scale. Numerosity is encoded as a “discrete number line” where each

number is encoded by activating the corresponding node and its immediate neighbors.

That is assuming a fixed length of the moving bar, this representation might be seen as a

discrete version of the number line coding with logarithmic scaling described below. This

representation is however too crude. In the most basic form (the one used in the above

mentioned models) the BMR is represented as a finite subset of the natural numbers

equipped with a tolerance relation τ (i.e. a symmetric, reflexive, not transitive relation)

defined by the rule

n,m ∈ τ↔|n−m| ≤ 1

The problem for this account lies in choosing one as a threshold ad hoc. More generally

for any threshold n ∈N the maximum elements in the tolerance classes will form a linear

order2. To avoid this conclusion, in the models of Anderson and colleagues, it’s assumed

a skewed frequency with which numbers are encountered during learning. With this

frequency based accounts, the size effects emerges by a weakening of the connection for

larger numerosities3.

1Moving from a behavioral description to a neuronal implementation, there is an ongoing debate
whether the two systems are still separated, or if they might be instantiated in the same network
(Sengupta, Surampudi, and Melcher [153]).

2A winner takes all network to find the maximum is indeed quite trivial to construct in this case. For a
given numerical stimulus, the elements of an ordered tolerance class are activated. If we let the connection
weights to be excitatory in the right direction and inhibitory on the left direction, the network activation
will settle on the maximum.

3For example, by imposing a weakening of the inhibitory links in the WTA network for classes
representing larger numerosities so that the stable state requires longer to be reached.
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4.1.2 Numerosity code a.k.a. thermometer representation, a.k.a.
summation coding, a.k.a. monotonic coding

The variety of names epitomizes the popularity of this representation schema: a linear,

discrete implementation of cardinal semantics. Originally proposed in Zorzi and But-

terworth [187, 186], a thermometer representation encodes numerosity magnitude in a

standard set theoretical way s.t. numbers are represented by sets and bigger numbers

contains smaller numbers. In particular, a given number is defined as the set of active

nodes, and for N > M sets of active nodes, there is a K ⊂ N s.t. M,K are in one-to-one

correspondence. The size and distance effects are explained by referring to the similarity

of the corresponding representation vectors. In particular, in the case of binary vectors,

we have the following relations between the cosine similarity, the Tanimoto coefficient

and the Jaccard coefficient.

Let N and M be two numerosity vectors, then

cos(θ)= N ·M
||N|| · ||M|| ∝

N ·M
||N||2 · ||M||2 −M ·N = N ∩M

N ∪M
= sim(N, M)

This gives us an extremely concise way to see the similarity between two numbers n and

m, s.t. n > m as m/n. The distance effect is readily explained. Let’s defined the Jaccard

distance as the complement of the Jaccard coefficient dist(N, M) = 1− sim(N, M). For

an arbitrary number m and a set of successors of m, N = {m+1= n1 < n2 < ...< nk} we

have dist(m,n1)> dist(m,n2)> ...> dist(m,nk), for any k ∈N. If we define the subject’s

Weber’s coefficient as w = WR −1, with WR = q
p , q > p being the smallest ratio that

results in a probability of discrimination greater than 75% (Just Noticeable Difference),

then for every pair m,n the error rate is proportional to dist(m,n)∗WR−w. Importantly

the Weber’s parameter w is contributed by the decision process. Similarly in Zorzi and

Butterworth [186] the size effect is a byproduct of the decreasing weight connections

learned via Hebbian Rule, s.t. for two pairs of numbers with the same ratio, the larger

are connected to the output node (in the response system) via a weaker connection.

Consequently the time the net needs to cycle to win the competition increases for larger

numbers.

4.1.3 Number line models (a.k.a. place code, a.k.a. analog
magnitude)

Analog magnitude representations predate the literature, and it’s often considered the

standard model for numerosity representation. A tutorial overview of the model is
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available In the online support material, NumberLineModel.ipynb.

In [32] Dehaene narrates that the SNARC effect, the association of number and space,

promoted the metaphor of an oriented “number line”. The reports of subjects’ capacity of

automatically visualize numbers as disposed in a line, and the positioning of number

in a given line, are interpreted as decoders of an inner “number line”, a conscious and

enriched version of it. Less metaphorically, within the field of signal detection theory

(SDT, see Macmillan and Creelman [98]), it is assumed that numerosity judgment follows

Thurstone’s law of comparative judgment (Thurstone [165]). Briefly, the law states that

a stimulus triggers a process in which the external stimulus value n is transformed into

some value on an internal psychological continuum.

Appreciating the model requires a little digression in SDT. The basic components

of STD are a sensory process (which transforms physical stimulation into internal

sensations/representations) and a decision process (which decides on responses based on

this internal representation). In the simplest scenario, the response is a simple yes or no

(“yes, the stimulus was larger” or “no, the stimulus was not larger”). From the hitting

rate (HR) and the false alarm rate (FAR) detection sensitivity and response criterion are

computed. The specific way in which they are computed from the HR and FAR depends

on the specific model one adopts for the sensory process, and for the decision process. The

leading model is the Gaussian model, according to which the sensory process is assumed

to have a continuous output based on random Gaussian noise and that when a signal is

present it combines with that noise (i.e. it is assumed that noise and stimuli are i.i.d.).

By assumption, the noise distribution has a mean, µn , of 0 and a standard deviation,

σn, of 1. The mean of the signal-plus-noise distribution, µs , and its standard deviation,

σs, depend on the sensitivity of the sensory process and the strength of the signal. The

observer is credited with computing the log posterior ratio of two alternatives, and the

decision arises by comparing its value to a criterion. The noise in the observation used to

compute the log posterior ratio determines the observer’s errors.

Coding numerosity representation as Gaussians was originally proposed in Van

Oeffelen and Vos [176], and it has been extended during a 20 years period and put

together in Dehaene [30].

The ‘internal representation’ of numerosity is represented as a random variable X

with distribution

p(X ∈ [x, x+dx])= 1

σn
p

2π
exp− (x− qn)2

2σ2

The choices of the standard deviations σn and of the mean qn are restricted by
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Weber’s law. The simplest scenario, assumed in Van Oeffelen and Vos [176] and taken up

in Dehaene [33, 31], assumes the internal variability to be the same for any n, (σn =σ)

that take the value of the Weber’s ratio, therefore qn = log(n). Briefly this assumption is

referred to as logarithmic scale and fixed variance or as compressed number line model

(Figure 4.1[b.]). Alternatively, as proposed in Gallistel and Gelman [50], assuming the

internal variable scales linearly (qn = n) requires that also the internal variability scales

linearly (σn =σ∗n), (Figure 4.1[a.]).

When taken as phenomenological models, the two choices make practically identical

prediction w.r.t. discrimination and comparison behavior. The Gaussian hypothesis is

moreover transferred to neuronal representations. In Dehaene and Changeux [35] for

example the neuron tuning curves (the encoding part of the representation) mirror

exactly the internal representation. For a neuron that responds preferentially to a

numerosity p, the tuning curve is given by

f (n, p)= 1

w
p

2π
exp− (log(n)− log(p))2

2w2

The only difference w.r.t. the behavioral model lies in the exact value of the Weber

ratio w (the coarseness of the representation).

Subitizing

There is some debate over whether subitizing and estimation might be explained by

a common mechanism. In Vetter, Butterworth, and Bahrami [180] is proposed that

the ANS mechanism might explain the subitizing phenomena, given that neighboring

numerosities are more discriminable in the small number range. This implies that the

subitizing range is dependent on the Gaussian standard deviation (Weber coefficient),

therefore subjects with more acute number sense should have a larger subitizing range,

and infants a smaller one. In a study by Revkin et al. [135]), aimed at testing this

hypothesis. However, the authors found particularly low variability in the 1-4 range,

suggesting a separate mechanism is indeed in place. As implied by Sengupta, Surampudi,

and Melcher [153] study, the inhibition parameter alone in the decision system, starting

from a thermometer representation, can explain the subitizing phenomena.
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[a.]

[b.]

Figure 4.1: Number Line Model linear scale and normalized logarithmic scale. Figure b)
makes apparent that the width of the Gaussians is constant when plotted on a log scale

38



4.1. FUNCTIONAL MODELS

4.1.4 Pattern recognition model

Mandler and Shebo [100] based the subitizing effect of the recognition of a canonical

configuration. In a visual display, a small set of items, will form canonical configurations,

that can be recognized in parallel. One is a dot, two items form a line, three items a

triangle, and four items will look like a square (or a triangle with a dot inside). For

the mechanism to operate, it’s required that the items to be counted pop-out from the

background, and must occupy distinct and easily identifiable positions in space. In the

literature on subitizing, the pattern recognition model is mostly rejected. However the

evidence against the model is weak4. The under appreciation of the model seems to be a

lack of appeal when compared with the parallel individuation system representation we

will see briefly. As we’ve pointed out in section 2.3.1 the PIS underlying the subitizing

effect is assumed to be foundational to bootstrap the natural numbers, a subitizing

mechanism that explains away the discreteness of the succession for a spatial geometric

configuration therefore compromises the assumption. This is clearly not a sufficient

condition to discard a model, instead it would seem to us a necessary condition to

shakedown it properly, especially considering that it has recently regained attention and

plausibility (see for example Krajcsi, Szabó, and Mórocz [83]).

4.1.5 Object-file/FINST representation

The subitizing range stroked for its resemblance with the multi objects tracking (MOT)

ability5 (Trick and Pylyshyn [171], Pylyshyn [131]). This prompted the hypothesis that

the same mechanism that account for it might explain the subitizing range6. Trick and

Pylyshyn [171] advocate for a parallel individuation system that identifies an object

with a spatio-temporal address (analogically dubbed FINST, finger of instantiation).

Once indexed in this way, the object can be represented in working memory by a mental

token such as an object-file (Kahneman, Treisman, and Gibbs [76]). Working memory

limitation, the number of available FINST, or both are then assumed as the cause of the

tracking limitation and of the subitizing range. Notice that quantity is not represented,

but implicitly in this account. There are no symbols for numbers (or magnitude), but a

symbol (file) for each individual in the attended set. The pre-attentional ability to single
4These comprise, misinterpretation of the model, subitizing effect in other modalities, simultagnosic

subjects studies, rebuked in Krajcsi, Szabó, and Mórocz [83].
5 The simultaneous visual tracking of several moving items.
6The reader is informed that both theories are highly debated. In the mathematical cognition com-

munity the MOT range is taken as a basis for the subitizing range. In the attentional community the
subitizing range is taken as evidence for the MOT signature
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out up to four objects, therefore, accounts partially for the faster reaction time by cutting

off visual search time. The parallel individuation system (PIS) is assumed to enable

the subject to form mental models of small collections of items (3-4). The hypothesis is

that when the first three or four numerals are learned they are connected to the pre

existing PIS mental models. However how this is achieved is unclear, and often at odds

with the infants’ abilities. Trick and Pylyshyn [171] propose that the infant counts the

FINSTs, this requires the toddler to be able to take set theoretic operations as Union and

Powerset, and the ability to count the element on any subset. In Feigenson, Carey, and

Hauser [43] and Feigenson and Carey [42], the ability to subitize is accounted for infants

as young as 12 months, an age in which they might not have yet acquired these abilities,

in particular the counting routine. This seemingly contradictory assumption is avoided

by separating an implicit counting procedure, already available innately, from an explicit

one learned (a strategy reminiscent of Gallistel and Gelman [51] proposal, we mentioned

in ??, from which inherits the same drawbacks). Alternatively, the counting procedure

might be replaced by the ANS output which tuning curves are enough separated to be

easily distinguishable. However in this latter case, it seems that the PIS doesn’t give

any gain. An alternative account was proposed in Le Corre and Carey [86], where it is

suggested that the “fullness” of one’s object files can be directly associated with a specific

cardinality, without invoking the ANS or any other mechanism to tally the occupied

object files.

The assumption that the subitizing and MOT range is derived from an architectural

constraint has yet not received a neurophysiological counterpart7, and might be at odds

with recent behaviorally findings.

Franconeri, Jonathan, and Scimeca [47], building upon previous work, suggests that

the limit on object tracking is not achieved by a fixed number of pointers (Pylyshyn [131])

or by a variable number of pointers (Alvarez and Franconeri [3]), but that there is no

limit per se on the number of objects that can be tracked in parallel, and that it’s spacing

that influence the number of objects that can be tracked at once. The hypothesis is still

under investigation (Bello, Bridewell, and Wasylyshyn [12]), and to our knowledge it

hasn’t yet received attention in the mathematical-cognition community.

7With only a small support from a neuropsychological study of neglect patients, ([182]), counterbal-
anced by one brain-imaging study that found instead that human parietal cortex activation increased
linearly with the number of items (Piazza et al. [121]
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4.2 Computational Models

4.2.1 Deahene & Changeaux, (1993)

In [35] numerosity detection system visual objects are presented as simplified one-

dimensional input normalized to a size-independent code. The activation are then

summed up and sent to numerosity detectors which activity mirrors the number line

code. Importantly, the model rests on the postulate that numerosity detection is present

at birth and therefore, was hardwired by a pattern of on-center off-surround units.

The model

Figure 4.2 The input is a vector of length 50 simulating a “retina”. Each object is

coded as a local Gaussian distribution so that the standard deviation of the distribution

corresponds to the object’s size. Up to five objects are randomly clumped to the input

vector avoiding overlap and touching (therefore, the maximum size of object is 9). Inputs

are projected into a (50× 9) location map. The connections to the location map are

set such that the receptive fields approximately mimic one-dimensional difference of

Gaussian (DOG) filters (σ ∈ {1, ...,9}). Each blob in the visual input, therefore, is detected

by the clusters whose receptive field approximately matches its size. Lateral inhibition

ensures that only few clusters will remain active in any given location. The location map,

therefore, achieves a certain size invariance. Whilst in the input retina objects’ size was

coded by the number of active clusters, in the location map different sizes are coded by

approximately the same number of active clusters in different positions.

Each cluster in the location map projects, with equal strength, to a layer of ‘summation

clusters’ with increasing threshold (monotonic coding). Summation clusters then project

to ‘numerosity clusters’ whose connections are set with central excitation and lateral

inhibition. In this way numerosity clusters respond only to a preferred numerosity.

Discussion

Although the model is hardwired, and it assumes that numerosity detectors are innate

components of the system, it shows the feasibility of extracting, in parallel, approximate

numerosity from a visual stimulus (although a one-dimensional simplification of it).

The variance in the representation derives from the approximate normalization in the

location map. The filters provide only an approximate match to the actual size of the

input object, this in turn implies that more than one location cluster might be activated
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Figure 4.2: Numerosity detection

for each input object. As we will briefly discuss in chapter 7 the preprocessing stage is

too coarse, and not easily generalizable. The last two parts of the network, the layers

of summation and numerosity clusters, directly assumes both the monotonic and the

number line code we reviewed in the previous section. Although learnability in a network

and neuronal development are only loosely associable, it would be interesting to assess

whether, and which kind of architecture, might learn the necessary connections. The

model of Verguts and Fias [179] we are about to review will answer these questions.
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4.2.2 Verguts & Fias, (2004)

Dehaene and Changeux’s [35] model achieved the selection of the correct numerosities

from the summation layer hard coding the weights. Given a summation field it’s indeed

not hard to see how to obtain this, it is sufficient that the corresponding weights are

positive, and each link to a unit lower in the scale has a negative weight. In this way the

winner unit is reached only by positive activations, whilst the other units are reached by

positive as well as negative activations. With their unsupervised architecture Verguts

and Fias [179] wanted to answer the question of whether number-neurons can develop

from a thermometer representation.

Testing the thermometer representation coding

Dehaene and Changeux’s [35] model assumes an intermediate layer of monotonic coded

neurons between the numerosity detection system and the location map. This step was

envisaged considering the fact that the object location map is number “sensitive”, but

not “selective”. When more objects are presented, more units will activate and, as a

consequence, there is more activity in the map as a whole. This information need to

be converted into a number-selective coding, this entails a non linear transformation.

More specifically given a spatial location coding, the task of the network is to output the

correct numerosity of the inputs by activating the corresponding units (and inhibiting

the other). The problem is a generalization of the XOR problem, and therefore, it cannot

be processed by a single layer network. Verguts and Fias [179] trained a multi layer

perceptron (MLP), with five input units, five hidden layer units and five output units,

representing numerosity one hot encoded. The activation function used was a standard

logistic function, and learning were achieved by back-propagating a least-square error

loss function. Analyzing the hidden layer weight connections revealed a monotonic

response. All connection weights to a given hidden unit were approximately equally

strong. The emergence of summation units from an uncommitted general network shows

that summation coding is a computationally natural solution to numerosity detection8.

Unsupervised learning network

As for Dehaene and Changeux [35] model, it’s assumed that a preprocessing stage

extracts the objects in the visual scene exactly and normalizes them with respect to

8Although, how this is achieved in a biological network is still unaccounted.
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a strong invariant. Given the results of the MLP simulation the inputs are encoded

with a thermometer representation, where each input is encoded as two units9 and

normalized. Normalization is biologically plausible and allows to use the dot product as a

measure for similarity. The activation is the classical linear function σiwixi. The output

layer, number field in Verguts and Fias terms (numerosity clusters in Dehaenes’s terms),

consists of 500 units. The learning rule is a slight modification of Kohonen learning rule

where no topographic ordering is assumed

∆wi j =αexp[−β(ymax − yi)](xi −wi j).

Here exp[−β(ymax − yi)] is the neighborhood function that defines how strongly the

connection should be changed, where β define the size of the neighborhood.

Results

Detailed operations of the network are provided in the Jupyter notebook Competi-

tive_VergutsFias.ipynb10. The network learns to represent the numerosity, and interest-

ingly it does so embedding a number line like “representation”.

Figure 4.3: Average responses of the number selective neurons

Calling these neurons, “numerosity neurons” is tricky. The encoding of the input

is indeed general enough to stand for any other feature that can be encoded via a

thermometer representation. However this uncommitment on the initial input implies

that a compressed coding can emerge in a quite natural way.

9This is quite confusing in the paper as an example given suggests otherwise. Personal communication
to the author confirmed this natural assumption.

10Available at https://github.com/bramacchino/numberSense/blob/master/Competitive_VergutsFias.ipynb.

44

https://github.com/bramacchino/numberSense/blob/master/Competitive_VergutsFias.ipynb
https://github.com/bramacchino/numberSense/blob/master/Competitive_VergutsFias.ipynb
https://github.com/bramacchino/numberSense/blob/master/Competitive_VergutsFias.ipynb


4.3. SUMMARY

4.3 Summary

Diverse functional and computational models have been proposed to account for the

behavioral observations we displayed in chapter 3. There is some debate over whether

the subitizing effect and the ability to estimate might be explained within a common

framework. With respect to the ability to estimate the number of objects within a

scene, two major representations have been proposed: monotonic coding, and number

line coding. The former encodes numbers as increasing pattern of activations, such

that larger numbers activate more units. Number line coding emerges from the signal

detection theory assumption that neuronal noise converts an external stimulus into some

value on an internal psychological continuum. It has been suggested that subitizing

depends upon our ability to recognize geometric shapes in stimuli consisting of few items.

Although this hypothesis has been criticized, it has recently regained support, and more

investigations are needed. The leading theory assumes that the ability to subitize comes

from an architectural limit to the ability to track objects pre-attentively. Computational

models of subitizing are scarce, and not really necessary in case the subitizing limit is

achieved by an architectural constraint. After attentive consideration, we have decided to

omit those models all together. However, the interested reader may have a look at [118]

model, for an attempt to unify subitizing and approximation in a single architecture. The

computational models for the ANS assume three processing stages: a location map, an

intermediate layer of monotonic tuned units and an output layer of numerosity detectors

embedding a number line code. As a whole, the architecture might be claimed to compute

numerosity. However, the extraction process is in these models assumed and the last

two layers are general enough to encode magnitude aspecifically. Although the models

cannot show that numerosity units are biologically relevant, they show that compressed

coding and summation units are computationally feasible solutions that might emerge

via a learning process from an initial uncommitted network.
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NEUROPHYSIOLOGY

I am a brain, Watson. The rest of me is a mere

appendix.

Arthur Conan Doyle, The Adventure of the

Mazarin Stone

The computational models reviewed predict the existence of a hierarchy of several

types of units: summation units and numerosity detector units. In this chapter,

we will therefore, briefly seek for the neural representations that might be the

biological counterparts. It’s customary in the field to term these representations number
neurons and we are going to do the same. Without fear of being repetitive, we stress that

a less committed term would be ‘magnitude neurons’. The direct terminology and the

sometimes overexcited conclusions that flourish in the literature might, in fact, prompt

a stronger confidence than what is justified. Nieder and Dehaene [111] provided an

antidote in the section Abstractness and Specificity of Number Coding in the IPS. The

take home message is that the term ‘magnitude neurons’ is more akin to be correct

considering the fact that it is more plausible that ‘number neurons’ don’t exclusively

code for numerical information. From a philosophical standpoint, the fact that number,

time, space are probably interconnected in our representations is extremely interesting

and with a recognized Kantian flavor.

For a thorough appreciation of the chapter, a 3D functional brain atlas and connec-
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tome of the monkey brain might be helpful1.

5.1 Number neurons

In neurophysiological terms, that is in signal processing terms, the two representations

proposed correspond to two different families of filters. Summation coding is equivalent

to a bundle of low-pass and high-pass filters. The number line coding is equivalent to

neurons acting like bandpass filters.

5.1.1 Number line neurons: bandpass filters

In the seek of neurons, whose tuning curves resemble the number line model, Nieder and

Miller [115] sampled 352 neurons from the dorso lateral prefrontal cortex (LPFC) of two

rhesus monkeys. The monkeys were trained on a delayed match to quantity task (2IFC)

on a standard set of stimuli. The monkey task was to release a lever if the sample and test

stimuli matched in numerosity. Area, density, shape, border, geometrical arrangement

covaried to exclude the results indebted to interfering visual features2. Approximately

one third showed selectivity to numerosity, both during sample presentation and memory

delay. Neural activity formed neural filter functions consistent with a “number line”

representation of numerosity. That is, they fired maximally to a given number of dots,

and showed decreasing firing rates when the numerosity was smaller or larger than

their preferred value. Interestingly, asymmetries in the tuning curves were compatible

with the log-Gaussian hypothesis of a fixed-width Gaussian tuning curve once plotted as

a function of log(n). As stressed in chapter 2, the encoding part of the representation

is not enough to suggest that the animal is using this response to cognize about the

external stimulus. Nieder and Miller therefore checked for the bandwidth ratio, obtained

by dividing the neural sigma by the behavioral sigma, to infer the existence of a decoding

procedure. The bandwidth ratio was constantly 1.5 showing less sensitivity on the

neural representation than on the behavioral one. That the ratio is practically constant

1For example, see the freely available software Suma Anfi and the macaque 3d atlas provided by
Reveley et al. [134] at https//afni.nimh.nih.gov, or, alternatively, the online services reviewed in Majka
et al. [99].

2As we noted in chapter 3 this might be not enough. This remains the case at the neural level. Single
neurons may be simultaneously tuned to several modalities and may be reached by different nets. What
is extracted is the tuning function (not the response function) w.r.t. to external stimuli. However, unless
the input hierarchy is given, this is not enough to associate the neuron exclusively with a given external
signal. In particular, it’s evident by inspecting table 1 in Nieder, Freedman, and Miller [112] that density
and cumulative area cannot be mutually excluded.
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5.1. NUMBER NEURONS

Figure 5.1: Raster dot plot and tuning function for neuron encoding 20

suggests a direct relationship between behavior and (neural) representation. The higher

behavioral sensitivity is common in sensory physiology (e.g. Purushothaman and Bradley

[130]) and might be explained by the lower envelope principle (Parker and Newsome

[117]), according to which only the most sensitive neurons contribute to a decision.

A limitation of this study was the small range of numerosities tested. To overcome

this difficulty, Nieder and Merten [113] repeated the experiment collecting data for

numerosities up to 30. This time the bandwidth ratio was almost three fold (2.8), which

might suggest a limit of the neural representation capacity and an emergence of a

different mechanism.

Although we are mainly focusing on visual numerosity, “numbers” are abstract

entities. Thus, it’s interesting to see whether the discovered representations are modality

aspecific or specific. In Sawamura, Shima, and Tanji [152], the anterior part of the

parietal association area was active in numerical representation for action task. Two

snow monkeys were trained to select a movement (either push or turn) and repeat it

five times (or four in a second experiment) before shifting to the other movement. To

control for confounder, the time spent performing the block of five consecutive trials

varied between twenty and forty six seconds for a particular movement. They found a

focal region (of number selective cells) on a caudal portion of the superior parietal lobule
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Figure 5.2: Population responses of superior parietal neurons in numerical positions
relative to a position of peak response.

(SPL) in which neural activity was correlated with task performance3.

Cellular selectivity was found too coarse to act as a bandpass filter, so they resorted

to population coding. To see the activity profile of population responses relative to the

peak activity for each neuron, they calculated the mean activity during performance of

trials in each numerical position in a block, realigned relative to the most active position.

By normalizing the activity relative to the peak values and constructing a population

histogram, they found that the population responses showed unimodal distribution with

a distinct peak (see Figure 5.2). The vast majority of neurons (85%) were not “abstract”

number-selective neurons, but activity depended on whether the monkey’s movement

was push or turn.

The two studies, therefore, point two possible candidates for numerical representation

in PFC and PPC. However, on this basis, and given the stimuli differences, it is not

possible to infer their functional organization and respective contributions. In particular,

it is not clear where in the cortical hierarchy numerosity is first extracted4.

Thus, in a successive study, Nieder and Miller [114] analyzed the response of both

3Moreover, there was only a minor implication of inferior parietal lobule, somatosensory cortex, and
frontal cortex.

4 For example, it is known that the PPC, and the anterior inferior temporal cortex (aITC) provide the
PFC with a major source of visual input, that in turn sends feedback projections to both (Stuss and Knight
[163], see Figure 5.3). Therefore, “numerosity information” might be extracted in PPC, or aITC first and
sent to the PFC for memory purposes or extracted in the PFC and then sent back to the posterior areas.
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Figure 5.3: van Essen wiring diagram of the primate visual pathways
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populations. They discovered that there were proportionally a higher number of neurons

sensitive to numerosity in the F-IPS. Interestingly, the parietal cells differed from the

prefrontal neurons in two ways: they had a significantly faster latency, and they fired

less strongly during the delay. These findings suggest the F-IPS as the prime source of

numerosity processing, at least with respect to the LPFC. The fact that neurons in the

F-IPS were less affected by changes in stimuli appearance, whilst the tuning functions

reported by Sawamura, Shima, and Tanji [152] were more modality specific, suggests

moreover a more abstract representation in the F-IPS with respect to SPL.

A further analysis of the activity within the IPS has been carried on in Tudusciuc

and Nieder [173]. They analyzed the response properties of individual neurons in the

fundus of the intraparietal sulcus of monkeys simultaneously engaged in numerosity

and length discrimination tasks. They found that single neurons might encode spatial

quantity, numerical quantity, or both. The fact that those populations are intermingled

in a restricted area of the IPS suggests a cross talk. Restricting the attention to the small

population of neurons whose response was selective to numerosity, they found that, when

spike rate was integrated by spike train coding, numerical behavior could be predicted.

Although only a small range was tested (1-4), this result is suggestive. It might provide a

neural basis for the SNARC effect (chapter 3), and indicates the plausibility of a decoding

procedure cognitively available.

Although our divide and conquer approach suggests to capture a modality dependent

numerosity first and then try to encompass other modalities (and this is what we

are going to do in the next chapter), it’s helpful to know where one can aim. Nieder

[110] trained two rhesus monkeys to discriminate the number of sequentially presented

auditory and visual items using the usual delayed match-to-sample protocol. Sequentially

visual and auditory stimuli were to be matched against a multiple dot display. Given

the difficulty of the task, only numerosities from 1 to 4 were tested. They discovered

groups of neurons in the VIP and PFC that encoded either the number of auditory pulses,

visual items, or both. In the PFC, 25 (11%) of the 42 (18%) auditory and 67 (29%) visual

numerosity-selective neurons responded to both auditory and visual numerosity. In VIP,

six neurons (3%) of the 20 (10%) auditory and 22 (11%) visual numerosity-selective

neurons, responded to quantitative information bimodally. The proportion of neurons

responding to numerosity irrespective of modality supports the idea of a most abstract,

supramodal neuronal code of numerical quantity.

Somebody might say we are not just smarter monkeys. Checking if there is a human

homologous of the putative number neurons was therefore tested in a series of experi-
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Figure 5.4: x axis numerosity from 2 to 32. y axis average spiking rate. A) represents a
neuron positively tuned, whilst B) represents a neuron negatively tuned. The inset on
the top left indicates the standard reward stimulus in the trial.

ments by Piazza and colleagues (Piazza et al. [125, 120]) following a behavioral paradigm

in line with the one used by Nieder and colleagues in the mentioned studies. Since they

could not record from single human neurons, they took advantage of the functional

magnetic resonance imaging (fMRI) adaptation method. The paradigm consists of the

repeated presentation of a habituated specific numerosity (either 16 or 32) to habituate

neurons tuned to that number, so to elicit suppression, then displaying an occasional

“deviant” number (half or double of the habituation number), which elicits an activation

increasing with the numerical distance between adaptor and deviant. That is, the the

Gaussian evoked by the deviant stimulus allowed to read out the state of adaptation,

providing in turn tuning curves for numerosity in the hIPS.

5.1.2 Summation neurons: high/low pass filters

Most models in the previous chapter are dependent on this kind of coding. Indeed, the

last step in both Dehaene and Verguts’ models is reduced to a simple classification

problem. Something ANNs are extremely capable of managing. Moreover, the graded,

bell shaped, response might be dependent on the response of this summation neurons. It

has been proposed that LIP neurons function as neural integrators (Mazurek et al. [103]).

Roitman, Brannon, and Platt [145] hypothesized that the activity of LIP neurons would

encode the quantity of visual elements placed within their classical receptive fields (RF)

in a graded manner, independent of low level visual features. This extends the idea of
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neural integrators such that these neurons accumulate numerical quantity as well.

The monkeys’ sole task was to shift gaze to a visible target following the disappear-

ance of the fixation point, testing an implicit sense of number. The subtle reaction time

difference observed, however, suggests the monkeys were attending numerosity despite

no training nor requirement to do so. LIP neurons are particularly spatial selective,

therefore the target array of numerosity 2, 4, 8, 16, 32 was totally within the RF of the

LIP neurons, hence in the visual periphery, and shown for 400ms. The saccade target

was located in the opposite hemifield (outside the neuron RF). Out of 57 neurons, 14 had

a positive relation and 17 had a negative relation between numerosity and response,

showing graded modulation. Moreover, for all neurons the initial positive modulation was

followed by numerosity related activity, analogously to temporal integration, suggesting

that LIP neurons might integrate the number of objects within their RF.

Investigation of summation coding in human homologous of LIP has been presented

by Santens et al. [149]. The ROI analysis showed numerosity sensitivity in bilateral

posterior superior parietal areas (functionally correspondent to monkey LIP) therefore

suggesting the possibility that a summation coding like the one found by Roitman, Bran-

non, and Platt [145] might be housed in those regions. The small range of numerosities

tested (1 to 5) gives few details on the limit of such system. Tentatively, from the fact

that it has been suggested (Gottlieb [58]) that LIP provides a topographical salience

map representation of the stimulus, it might be hypothesized that the summation coding

neurons act on the basis of this map.
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5.2 Summary

We have reviewed suggesting evidence pointing at possible neural substrates of the units

which the computational models predict. The process that converts the visual input into a

number selective neural code remains elusive, and therefore, we left the term ‘numerosity’

undefined. Neurons that are sensitive or “selective” for numerosity have been found in

various areas of the monkey’s brain, with particular prominence of the LPFC, IPS, VIP

and LIP. fMRI adaptation studies found homologous areas in the human brain. The

computational models predicted a hierarchy of units: object mapping, summation units,

and numerosity selective units. Object mapping might be tentatively associated with

saliency mapping that might be extracted in the LIP, the same area where summation

units have been reported. Numerosity neurons that respond abstractly have been found

in the fundus of the IPS. Considered together, these findings suggest that the posterior

areas process a general sense of magnitude with both selective units and aspecific units

intermingled. Whether numerosity from natural images might be extracted in the same

way remains an open issue. Whilst the tuning curves provide an encoding procedure, the

decoding part of the representation has only been hypothesized assuming the behavioral

comparison. That is, the studies have mainly focused on stimulus evoked representations

(encoding) and has not yet been addressed the issue of whether the same representations

are recruited when internally generating and manipulating numerical magnitudes.
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NUMEROSITY AS TOPOLOGICAL INVARIANT

We chose to investigate connectedness because of

a belief that this predicate is nonlocal in some

very deep sense; therefore it should present a

serious challenge to any basically local, parallel

type of computation.

Marvin Minsky and Seymour Papert, Perceptrons

Recall the definition given in the introduction:

“numerosity refers to the empirical property of cardinality of sets of objects or events”.

At first, the meaning appears to be clear. However, this definition, as it stands, doesn’t

make sense unless one takes somehow a platonic stance on what sets are. For sure, that’s

not the sense the definition wants to convey. It’s difficult to see how it can be useful to

capture a “general property of a perceptual process”. From one side, the abstract notion

of a set and the arbitrariness of the construction of numbers are too weak to speak about

the numerosity of objects. From the other side, the cardinality of a set requires a stronger

prerequisite, i.e. the distinction between a set and its elements, that cannot be assumed

given an image.

We are thus left with a worrisome question: what are the perceptual primitives of

visual perception? We can identify two main positions.
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1. The computational approach1 holds that perceptual processing is from local to

global. In Marr [101], for example, primitives are simple components like zero

crossings, edges, boundaries and curves.

2. The early holistic registration approach2 can be summarized with the slogan “the

whole is more than the simple sum of its parts”, that is holistic registration is prior

to local analysis.

Depending on the stance, therefore, what might be the visual cues from which the

number of objects in a scene is inferred may differ significantly.

The difficulty lies in the fact that, whilst the approach taken in the field is closer

to the first view, what is meant by object is more in line with the holistic registration

approach. Given the informality of the definition, this is not a surprise: independently

from the order of application of global properties in the processing of visual inputs,

the end point might be assumed to be the same. In accordance with the Gestalt’s view

(and common sense), an object can be identified as a connected region of the space. The

Gestalt’s view, moreover, maintains that connectedness is one of the most significant

criteria by which the visual system decides whether an element belongs or not to a single

coherent region. This should imply that the visual system is well adapted for its detection

and, therefore, that “objecthood” (when identified as connectedness) might be a feature

sent to the number system.

According to the feature integration theory, however, connectedness seems not to

be pre attentive available3, that is computing connectedness from low level features

requires an intrinsic serial, attentional, component. That topological properties and, in

particular, connectedness have high computational complexity was a foundational part of

Minsky and Papert’s [106] influential book. Therefore, it is natural for the computational

approach to expect that discrimination based on topological properties would occur at

a higher level of perception. At the end of the last chapter, we have suggested that a

saliency map might be encoded in the lateral intraparietal sulcus, and that numerical

information might be extracted from it. A saliency map, however, needs to be normalized

for size and it’s blind to topological transformations that we have seen in chapter 3 affect

numerosity estimation, such as connecting or enclosing dots. A direct descendant of
1This approach is exemplified in Marr [101] and by feature integration theory (FIT) in Treisman and

Gelade [169] and Treisman and Souther [170].
2This approach is exemplified by the Gestalt’s view (Rock and Palmer [142] and Palmer and Rock

[116]) and recently resumed in the perceptual topological view (Chen [23]).
3Cf. experiment 11 (“Topological properties: connectedness and containment”) in Treisman and Souther

[170].
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FIT with attention to Gestalt’s properties is the Incremental Grouping Theory (IGT)

proposed in Roelfsema [143] and Roelfsema and Houtkamp [144], where pre attentive

base grouping is separated by attentive incremental grouping achieved via a neuronal

labeling strategy. Ultimately, whether parallel algorithms for solving the connectedness

problem may be found remains an open theoretical question. Moreover, it’s an empirical

issue whether reaction times in numerosity estimation are independent from the number

of objects in the stimulus, when the objects are not simply dots within the receptive field.

If this turns out to be the case, then, to compute the number of connected components

in a discrete space, we can borrow the analysis from the field of digital topology, the

research area dealing with the computation of topological invariants in image processing.

The class of algorithms we are interested are dubbed ‘connected component labeling’

algorithms (CCL). The strategy adopted by CCL algorithms can be summarized in three

steps:

1. first labeling, that assigns a provisional label to each pixel,

2. label equivalences solving, that is finding all equivalent labels and building an

equivalence table,

3. final labeling, i.e. to replace temporary labels by the final label (usually, the smallest

one in the equivalence table).

Thus, the number of connected components results as a by-product from the number of

assigned labels4.

If numerosities estimation time is independent from the number of objects in the

stimulus, then either this is an indication towards the “holistic view’ or, within FIT or IGT

(and assuming no bottom up parallel algorithm for connectedness), this might suggest to

associate the numerosity extracted from the size invariance saliency map (location map)

with the Euler’s characteristic, i.e. the number of simply connected components (without

holes)5.

For these reasons, we maintain that a topological definition is in accordance with

both theories and it’s closer to the intuitions of the researchers.
4 Most CCL algorithms show a direct runtime dependence on the number of objects. In He, Chao,

and Suzuki [63], for instance, the execution time for calculating the number of connected components
is proportional to the number of provisional labels assigned to connected components, whose order is
O(N ×M).

5Although neurobiologically plausible, this proposal is at odds with explaining the size interference
effect reported in section 3.7. In particular, the results in Ross [147] suggest that grouping by size precedes
the operation of a number sensitive mechanism.
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The definition provided at the beginning of the chapter therefore can be reformulated

as follows:

“visual numerosity refers to the empirical property of the number of connected

components in an image (when seen as a topological space).”

6.1 Discussion

Whether this suggestion can be extended to the tactile and auditive capacities is an

empirical question6, but connectedness, and similarity, should be properties broad enough

to be at play.

Seeing numerosity as a topological invariant instead of as a synonym for cardinality

is not to be considered simply as a a more coherent mathematical formulation.

Defining numerosity as a topological invariant has an immediate empirical advantage.

In chapter 3 we left the reader with a promise: a new definition of numerosity and the

interference effects might help in resolving the debate concerning the nature of the

ANS representation. Understanding numerosity become an investigation of the specific

invariants the perceptual processes are sensible to. In chapter 4 we noticed that the two

final layers of Dehaene and Verguts’ architectures were general enough to code a general

magnitude. For example a network that compares the length of two shapes might be

endowed with the same systems: monotonic coding encodes directly the length of the

shape, and ‘numerosity’ detectors are triggered by a preferred amount of activation on

the preceding layer of thermometer organized units (cf. Tudusciuc and Nieder [172]).

Whether and how objects are extracted and preprocessed is therefore the most important

part concerning the debate. If deviations with respect to the numerosity invariant (here

assumed provisionally to be connectedness) are predicted by a mechanism as the one

assumed in Dehaene and Changeux [35], then speaking of a ‘true sense of number’

wouldn’t be too stretched out. If, on the contrary, the extraction phase proceeds by means

of a different mechanism, for example from texture base mechanisms, and the deviations

from invariance are predicted by such a system, then speaking about a sense of number

might be nothing more than a vivid metaphor.

6However, there is no principled objection. See, for example, Plaisier, Van Polanen, and Kappers [126]
about haptic object perception.
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6.2 A formal approach

The standard experimental settings are 2D still images on a screen. The subject is

required to assess the numerosity of the objects, that is the number of connected compo-

nents.

Both the screen images and the retinal sampling are discrete. For the moment we are

assuming they are approximation of a continuous function7. We represent 2D pictures

on a screen via their binarized luminance function, so that they can be represented as a

two-dimensional vector space R2. Let’s define a configuration C of objects Oi such that

we have a function (objecthood) that assigns to each point (x, y) ∈ I ⊂ R2 the value 1 if

the point is within an object boundary, and 0 otherwise. Let’s moreover assume that the

background is the complement of the union of all object regions (the points where the

objecthood function assigns 0). Moreover, any two objects are “perceptibly separable”,

that is no two objects overlap or come in contact within a given tolerance (greater than

the visual acuity). We therefore have a configuration C defined to be C =⋃
i Oi. We are

interested in the property ‘numerosity’ of a configuration N(C) = |{Oi|Oi ∈ C}|. Given

the image I ⊂ R2, we don’t have access to Oi, but only to the union (all the points

the objecthood function assigns 1 to), therefore the standard set theoretical concept

of cardinality cannot be used directly in this context. Nonetheless, we want N to be

invariant to any affine geometric transformation, position, orientation, size and change

in shape (let T be the class of such transformations, we want N(C)= N(T(C))). That is,

N is sought to be a topological invariant. The number of connected components is such

an invariant, therefore what we are seeking is a precise way to define this notion in a

computably feasible way.

6.2.1 Homological approach

We are therefore interested in the number of connected components in a stimulus. In

particular, we wish to characterize N such that we can compute the number of connected

components in an image. Seeing an image as generated from a topological space, and

therefore computing directly from the topology the number of connected components is

unwieldy, way too abstract to perform computations. Resorting to homotopy we can count

the number of holes in a space (and therefore, the number of connected components, as

the number of holes plus one) by computing the fundamental group (but again, although

this gives us a nice characterization, it doesn’t provide us with a nice computational

7In 6.2.3 we will take into consideration the discrete nature of the visual stimulus.
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tool). For this reason it’s helpful to resort to a commutative, combinatorial, alternative

to homotopy: simplicial homology and give the characterization of N within this theory.

This will require us a whirlwind of simplicial homology, that we will briefly introduce in

the following8. Moreover, with a suitable choice of definitions, the algorithm to compute

the homology groups uses standard linear algebra techniques, making computations

easier9.

6.2.2 Simplicial homology primer

The idea behind homology, not different from the one underlying homotopy, is to distin-

guish topological spaces by counting holes in a space (those are loops not contractible

to a single point) by associating to each topological space a family of groups such that

whenever two spaces are homeomorphic then their associated groups are isomorphic.

Computing the associated groups might be unwieldy in the general case, but it becomes

easier if the associated groups take the form of finitely generated abelian groups. To

increase tractability, and to give a combinatorial structure to a topological space, so

that it becomes easier to manipulate, the topological spaces of interest will be simplicial

complexes10.

We therefore start with simplexes, the building block of simplicial complexes, namely

a n-dimensional generalization of triangles.

Definition 6.1. Given any linearly independent set V = {v0,v1, ...,vn} of n+1 points in

Rn+1, the n-simplex with vertices in V is the convex hull of V (i.e. the set of all points of

the form λ0v0 +λ1v1 + ...+λnvn where
∑n

i=0λi = 1 and λi ≥ 0 for all i).

Low dimensional examples, and the ones we are mainly interested, are easy to

visualize: for n = 0 we obtain the one point space {v0}, for n = 1 we find the line segment

joining v0 and v1, for n = 2 we find the triangle with vertices v0,v1,v2 and for n = 3 we

get the tetrahedron with vertices V .

Simplexes of any dimension can be ‘glued’ together to construct a simplicial complexes,

that is a simplicial complex is a topological space realized as a union of any collection of

simplices S such that any face of a simplex σ is also in S and the intersection of any two

8We will provide only a bare overview, for the main results and proofs of homology theory we refer the
reader to Hatcher [61].

9The linear algebra needed is not a lot and we hint the reader to Strang [161], and Strang [162] where
applications are discussed.

10This latter restriction is of no particular concern to us, given that all closed surfaces are triangulable
spaces.
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simplices is also a simplex. It’s convenient to give a pure combinatorial description of a

simplicial complex without worrying on how to put it into Euclidean space.

Definition 6.2. A (abstract) simplicial complex K consist of a pair (V ,S) such that:

1. V is a set of vertices

2. Σ is a set of finite non-empty subsets of V .

The elements of Σ, called simplices, satisfy the following conditions:

1. if σ is a simplex σ⊂V and τ⊂σ,τ 6= ;, then τ is also a simplex τ ∈Σ

2. for each v,v ∈V , the singleton {v} ∈Σ

We say τ is a face of σ. If σ has m+1 elements it is said to be a m− simplex. The set of

m− simplices of K is denoted by Km. The dimension of K is the largest m, such that

Km is not empty.

The orientation of the edges is given naturally by the implicit ordering of the vertices

of a simplex (e.g. {i, j} has orientation (i, j) if i < j and ( j, i) otherwise).

The process of realizing a topological space into a simplicial complex is called triangu-

lation. That is given a topological space X and a simplicial complex K11, a triangulation

is a pair (K ,h) s.t. h : X → K is a homeomorphism. Therefore the topology of a trian-

gulable space doesn’t change on how we realize the space as a simplicial complex (the

composition of homeomorphism is an homeomorphism). This gives us quite a lot of

freedom in how we triangulate a space, once we disregard complexity concerns12.

Recall that we wish to characterize loops. Resorting to simplicial complexes gives as

a natural way to define boundaries. Intuitively a boundary of a simplicial complex is just

the set of simplexes that surrounds a face. And a boundary itself has no boundary. This

property of being boundariless coincides with our intuitive idea of what it means to be a

loop. We therefore need just to recast this intuition in an algebraic form. As a first step

we represent simplicial complexes as algebraic objects as follows.

Definition 6.3. Let Xk be the set of k− simplices in the simplicial complex X . We

define the chain group Ck(X ) to be the Q−vector space with Xk for a basis. The elements

of the k− th chain group are called k− chains on X .
11Notice that K is a topological space as well.
12Whether the triangulated space might be isomorphic to a ‘functional space’ is an empirical, or at least

computational, question, that need to be carried out by neural informed models.
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For example C0(X ) is the linear span of the set of vertices V , with coefficient in Q, and

C1(X ) is the Q− linear span of the set of edges (that might be geometrically visualized

as a ‘path’) .

Let’s introduce some shortcut notation: given a k-simplex (v0,v1, . . . ,vk), we write

(v0,v1, . . . , v̂i, . . . ,vk) to indicate the removal of the i-th vertex, as an abbreviation for

(v0,v1, . . . ,vi−1,vi+1, . . . ,vk).

Definition 6.4. We define the boundary operator on chain groups the linear map ∂k :

Ck(X ) → Ck−1(X ) on the standard n-simplex with orientation (v0,v1, . . . ,vn) via the

alternating sum

∂k((v0,v1, . . . ,vk))=
k∑

i=0
(−1)i(v0,v1, . . . , v̂i, . . . ,vk),〉

Despite the appearance this definition is quite natural, and by inspection we realize

that ∂σ changes sign whenever two adjacent vertices are interchanged. For example if

we take the simplex S = (v0,v1,v2), ∂(S) = (v0,v1)+ (v1,v2)+ (v2,v0) = (v0,v1)− (v0,v2)+
(v1,v2)=∑2

i=0(−1)i(v0, v̂i, . . . ,v2).

By extending ∂ linearly on chains we get the operator on the entire chain group.

Notice that this characterization agrees with the informal argument, every chain that

is a boundary of an higher dimensional chain is boundariless. For example if we take a

boundary of a 2-simplex we get a cycle of three 1-simplices, which boundary is 0.

We can therefore state the fundamental theorem that drives the definition of homology

for simplicial complexes.

Theorem 6.1. ∂2 = ∂k+1 ◦∂k = 0

Proof. The proof is easy, it just involves some algebraic manipulation, and it’s intuitively

obvious. In fact it is sufficient to realize that the second time we apply the boundary

operator, we are shifting the power of negative of one, by one index, and therefore the

alternating sum cancels out.

Clearly for k < 2 the result is trivial, suppose then k ≥ 2 then

∂k−1∂k(〈0,1, ...,k〉)=
k∑

i=0
(−1)i∂k−1(〈0, ..., î...,k〉)

=
k∑

i=0

i−1∑
j=0

(−1)i+ j(〈0, ... ĵ, ..., î, ...,k〉)+
k∑

i=0

i−1∑
j=i+1

(−1)i+ j−1(〈0, ... î, ..., ĵ, ...,k〉

= 0

�
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Definition 6.5. Let K be a simplicial complex, a k− chain Ck is said to be a k− cycle if

∂kCk = 0, and we call them boundariless. A k− chain C′
k is said to be a k−boundary if

C′
k = ∂k+1Ck for some k+1-chain Ck. We denote the group of k− cycles of K , Zk(K), and

the group of k−boundaries of K , Bk(K) 13

Zk(K) is thus the kernel of the boundary map ∂k : Ck(K) → Ck−1, and therefore a

subgroup (actually a subspace) of Ck(K) (since Kernels are always linear subspace).

Bk(K) is the image of the boundary map ∂k : Ck+1(K)→ Ck. Given 6.1 (every boundary

itself is boundariless) Bk(K) ⊂ Zk(K) and since the image of a linear map is always a

linear subspace of the range, we get that it is a subspace of Ck(K) too.

We might represent these relationships by the following diagram.

. . . C3
3-d

chains

∂4 C2
2-d

chains

∂3 C1
1-d

chains

∂2 C0
0-d

chains

∂1
0

∂0=0

We can therefore form the quotient group and define the homology group.

Definition 6.6. The k-th homology group of a simplicial complex X, denoted Hk(X ), is

the quotient abelian group (vector space)

Zk(X )/Bk(X )= ker(∂k)/im(∂k+1).

Two elements of a homology group which are equivalent (their difference is a boundary)

are called homologous.

The number of k-dimensional holes in X is thus realized as the dimension of Hk(X )

as a vector space.

Intuitively the quotient is doing the heavy lifting. Suppose we have two paths, and

we wish to know if they represent two different holes or just a more or less convoluted

loop of edges. We distinguish them by taking their differences and see if they bound an

higher dimensional chain. If they do, then the two chains are the same, alternatively the

two chains carry intrinsically different topological informations.

We can therefore give the following definition,

Definition 6.7. Given a Space X , and its associated triangulation K , the rank of the

n-th homology group Hn, that is the number of Q summands, is called the n-th Betti

number, denoted bn.
13We will omit the simplicial complex K when it is clear from the context
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Recall the semi-formal definition provided at the beginning of the chapter

“visual numerosity refers to the empirical property of the number of connected

components in an image (when seen as a topological space).”

We can now be more specific, and recast the intuition in homological terms, and in

line with what suggested in Kluth and Zetzsche [80], this might be expressed as

N(K)= b0(K)

where b0 is the zeroth-Betti number: the rank of the first (simplicial) homology group,

and K is the simplicial complex associated to the configuration C.

The formal solution might be considered concluded at this point, what remains is the

consideration of computational aspects.

1. How can we compute the homology groups, and in particular b0 starting from a

visual stimulus?

2. Moreover given an algorithm that compute b0 how can we say whether it is

biologically plausible, that is neural implementable?

3. How the topological perspective proposed might help explaining the interference

effects reviewed in section 3.7 that are still unaccounted in the literature?

Answering these issues will require an excursus in digital topology that will allow us a

natural way to triangulate a space. We will only briefly suggest how the theory might

be linked to a neural implementation, but we will free ourself from any deeper claim.

However, with respect to the second point, we notice how relaxing the connectedness

condition and allowing the assumption that objects are simply connected, that is without

holes, Kluth and Zetzsche [80] following Chen and Rong [22], proposed to use the Gauss-

Bonnet theorem to compute the Euler’s characteristic in a parallel, and biologically

plausible way. In the case of a simply connected object the Euler’s characteristic and b0

coincide, as it is clear from the following theorem

Theorem 6.2. The Euler characteristic of a topological space X , is given by the alternat-
ing sum of the associated Betti numbers: χ(X )= b0 −b1 +b2 −b3 . . .

Instead of taking a discrete image representation they start from the curvature of

the luminance function and apply the Gauss-Bonnet theorem∫
S

KdS = 2πχ(S)
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where k is the Gaussian curvature and χ the Euler’s characteristic. In this way the

numerosity is expressed in term of its Euler’s characteristic. The linearity of the integral

allows the additivity of the invariant, so that the invariant of a configuration of n objects

amounts to just n times the basic invariant. Interestingly, by injecting an additive

normally distributed noise η∼ N(0,σ) at the input and output filters their simulations

accounted for the Weber fraction observed in human and animal psychophysical and

neural experiments. This result is encouraging and might suggest that although we have

been mainly driven by mathematical considerations an empirical support is not out of

reach 14.

The third question will be addressed in subsection 6.2.4. In particular we will propose

a possible interpretation to the “perceptual grouping problem”, that is the fact that when

items are close enough the subject strongly underestimates the numerosity of the visual

stimulus. We will follow up a proposal by Zeeman [184] and see how tolerance spaces

might be used to provide a cognitively plausible solution to this problem.

Before giving the necessary definitions and results, that will allow us to compute the

Betti numbers associated with a given stimulus pattern, we pause to dispel a possible

quibble. In chapter 2 we stressed the importance of disentangling the system perspective

from the observer perspective. Computing the homology of a visual stimulus has an

intrinsic meaning for the observer, but can be only loosely associable to the system

perspective. Resorting to simplicial homology, that is a highly abstract and combinatorial

view of a topological space, might moreover be seen as quite unrelated to the actual

neural computations. To dispel any possible misunderstanding, we don’t claim that

the neural system triangulate a space (given by the retinal input) for computing its

homology. We instead take the simplicial complex to stand for an abstraction of the

functional disposition induced by the neural activity. In particular given an array of

retina receptors, the fibers of the optic nerve reach the visual cortex in an orderly fashion

(preserving topography), so to a large extent the electrochemical activity in the cortex

is isomorphic to the retinal image. The functional order given by the neural activity is

available to the system itself, but the spatial distribution of this activity has meaning

only for the observer. In order to use homology (directly) we need a way to associate the

functional order to the spatial distribution isomorphic to the retinal array. A possible

approach has been given in Toet [167] via a series of biologically inspired algorithms.

14In particular we are here considering the problem of extracting exact numerosity, whilst the perceive
numerosity is just an estimation. The fact that via decision process, as already pointed out in Verguts
and Fias [178], and by adding a plausible Gaussian noise a underlying overlapping representation may
emerge, bodes well for the approach.
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Suppose a set E = {e1, ..., en} of neuronal elements without knowledge of the spatial layout

nor any inherent ordering. Via the coincidence activity matrix Q ⊂ E×E the simulations

showed that a partial order of functional inclusion can be extracted, and, via neural

recruiting, a lattice order (I) from the simultaneous activity of the net might be learned.

Moreover, if a model has enough internal coherence, that is assuming high detector

densities, then the functional order may allow isomorphism with simplicial complex, at

least locally. If a neural net has enough internal coherence, then the algebraic structure

of the complex with which it can be identified will reflect the topological and possibly the

geometrical structure of the underlying detector array. We will not extract the simplicial

complex from the functional order, but we will triangulate the space directly from a

binarized retina input and compute the homology from there. However, the preceding

discussion points at the direction of a possible neural algorithm which operation might be

mapped to operation on a simplicial complex. The underlying theory, therefore, remains

almost unchanged and what variates is the triangulation procedure and the implemented

algorithm.

6.2.2.1 An algorithm for computing Betti numbers

For small spaces, and small dimensions, computing homology can be done by hand,

and it boils down to filling in the details. That is writing down the chain complexes,

computing the kernels and images of the boundary operators and take the quotient. The

choice to enrich the group structure by defining simplicial complexes in a vector space Q

allows us to see chain groups as vector spaces and boundaries as linear maps allowing a

matrix representation. Therefore granting us a combinatorial way to compute homology.

The interested reader may found linear algebra algorithms and some ‘numerosities’

examples by looking at the Jupyter notebook BettiNumbers.ipynb on the on-line support

material15.

In the following we give a classical example that should suffice to clarify the compu-

tation of the homology groups.

We are going to compute the homology of the sphere with an extra handle, that

is homeomorphic to a triangle glued to a tetrahedron (figure 6.1). There is one con-

nected component, that is zero 0-dimensional holes, one 1-dimensional hole, and one

2-dimensional hole.

15Available at https://github.com/bramacchino/numberSense/blob/master/BettiNumbers.ipynb.
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Figure 6.1: Simplicial complex of a sphere with an added handle.

The chains’ groups are given by the linear span of the vector space basis:

C0(X )=< 0,1,2,3,4>
C1(X )=< [0,1], [0,2], [0,3], [0,4], [1,2], [1,3], [2,3], [2,4]>
C2(X )=< [0,1,2], [0,1,3], [0,2,3], [1,2,3]>

Now given (6.4) of ∂k we can give a complete specification of the boundary map via

the simplicial complex incidence matrix as follows.

For ∂1, this would be

∂1 =



[0,1] [0,2] [0,3] [0,4] [1,2] [1,3] [2,3] [2,4]

0 −1 −1 −1 −1 0 0 0 0

1 1 0 0 0 −1 −1 0 0

2 0 1 0 0 1 0 −1 −1

3 0 0 1 0 0 1 1 0

4 0 0 0 1 0 0 0 1
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where the row labels are the basis for C0(X ) and the column labels are the basis for

C1(X ). Similarly, ∂2 is

∂2 =



[0,1,2] [0,1,3] [0,2,3] [1,2,3]

[0,1] 1 1 0 0

[0,2] −1 0 1 0

[0,3] 0 −1 −1 0

[0,4] 0 0 0 0

[1,2] 1 0 0 1

[1,3] 0 1 0 −1

[2,3] 0 0 1 1

[2,4] 0 0 0 0


Now the composition of the two boundaries maps just corresponds to matrix multiplica-

tion, and the reader can verify (by hand, or via a linear algebra software) that indeed

∂1 ·∂2 results in the zero matrix.

To compute the kernel of a linear map it suffices to solve the corresponding homo-

geneous system of linear equations. This usually implies reducing in echelon form by

Gaussian elimination. Since reducing implies a change of basis, if we column reduce ∂1

we have to take care of a corresponding change of basis when working with ∂2, otherwise

∂1 ·∂2 might not be the zero map16.

T =



0 1 0 0 1 1 0 0

0 0 1 0 −1 0 1 1

0 0 0 1 0 −1 −1 0

−1 −1 −1 −1 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


16We can use the fact that elementary row operations are equivalent to multiplying with an elementary

matrix on the left. Let D be a m×n boundary matrix. By the row reducing echelon form of the augmented
transpose, in Matlab via z = rref([A’ eye(n)])’, we obtain the reduced matrix R = z(1:m,:), and T =
z(m+1:end,:) gives us the transformation matrix.
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Left multiplying with the boundary matrix ∂1 gives us

∂1T =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 −1 −1 −1 0 0 0 0


The corresponding basis change for ∂2, the inverse of T, is given by

T−1 =



−1 −1 −1 −1 −0 −0 −0 −0

1 0 0 0 −1 −1 0 0

0 1 0 0 1 0 −1 −1

0 0 1 0 0 1 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


and therefore the reduced form of ∂2 with the compatible change of basis is

T−1∂2 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 1

0 1 0 −1

0 0 1 1

0 0 0 0


Therefore by inspecting the matrix pivots we get

〈5,6,7,8〉
〈5,6,7〉 = 〈8〉 =Q

Analogously we can compute the number of zero, and two dimensional holes, that is

the homology group H0, which rank corresponds to the number of connected components,

and the homology group H2.
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6.2.3 Homology groups of a digital set

Visual processing is essentially discrete, the triangulation, therefore, cannot be assumed

to be given by a homeomorphism from the simplicial complex to a continuous space. We

need a mathematical theory that as topology is good for describing global properties, but

of discrete or digital spaces.

Digital topology (Rosenfeld [146], Herman [67]) addresses the fundamental properties

of binary object connectivity in two dimensional (and three dimensional) digital images.

More broadly it allows to use the toolbox from standard topology (and homology) in

the discrete realm of digital images. This in turn provides algorithms for computing

interesting topological properties (like connectedness, the number of connected compo-

nents, holes, thinning) in discrete sets. In particular, the theory of homology groups in

n-dimensional digital images has been investigated in Arslan, Karaca, and Oztel [10]

and Boxer, Karaca, and Oztel [16] from which we mainly borrow the following treatment.

Definition 6.8. Let n be any positive integer. An n− xel q in an Euclidean n-space,

Rn , is a closed unit n-dimensional (hyper)cube q ⊂ Rn whose 2nvertices have natural

coordinates (more precisely, an n-xel in Rn is a cartesian product like [i1, i1+1]× [i2, i2+
1]× ...× [in, in+1]). We call pixel a 2-xel in R2 . We define an n-dimensional binary image

or nD-image, to be a finite set of n− xels in Rn

For simplifying the exposition we can define an image I as a subset of Zn, a lattice

of points, with an ad jency relation. That is we represent a nD-image I as a finite n-

dimensional array of 1’s and 0’s in which each 1 represents an n-xel in D and each 0

represents an n-xel that is not in D. Usually a variety of adjacency relations are used in

the study of digital images. Being interested on the 2−D settings the following definition

suffices:

There are various approaches to mimic standard topology in digital spaces, the most

widely used in practice is via adjacency graphs.

Definition 6.9. 1. Two points p, q ∈Z are called 2-adjacent if |p− q| = 1

2. Two points p, q ∈Z2 are called 8-adjacent if they are distinct and differ by at most

1 in each coordinate

3. Two points p, q ∈Z2 are called 4-adjacent if they are 8 adjacent and differ in exactly

one coordinate
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A well known results in digital topology is the necessity of defining two compatible

adjacency relation for the ‘foreground’ and ‘background’ to avoid topological paradoxes

(Rosenfeld [146]).

A digital picture is therefore commonly represented as a quadruple Zn,k, k̄, X , where

n ∈N, X ⊂Zn is the set of finite points, k represents an adjacency relation on X , and k̄
represents an adjacency relation on Zn \ X .

Keeping in mind this distinction, and for the purposes of this thesis is sufficient to

define an image stating only the adjacency relation on the foreground.

Definition 6.10. A 2 dimensional digital space, or a 2D digital image is a tuple (X ,k),

where X ⊂Z2, and k is an adjacency relation on X .

We give the analogous definition of simplex and simplicial complex seen in the general

case pinned down to a digital space as following:

Definition 6.11. Let S 6= ; ⊂ (X ,k). We call each σ ∈ S a simplex of the digital image

(X ,k) if the following holds:

1. If σ,σ′ ∈ S and σ 6=σ′, then σ,σ′ are k−adjacent

2. If σ ∈ S and ; 6= τ⊂σ then τ ∈ S

An n-simplex is thus a simplex S such that |S| = m+1. We call a nonempty proper subset

of S a face of S

Definition 6.12. Let (X ,k) be a finite collection of digital m−simplices, 0 ≤ m ≤ d, for

some d ∈N, if the following statements hold then (X ,k) is called a finite digital simplicial

complex:

1. If P ∈ X then every face of P, P ′ is in X

2. If P,Q ∈ X then P ∩Q is either empty or a common face of P and Q

The dimension of a digital simplicial complex X is the biggest integer m such that X has

an m−simplex.

The definitions of chain groups and chain complex carry over in the usual way (and

has been proven in Arslan, Karaca, and Oztel [10]). Computing the homology of a digital

space corresponds to compute the homology of the associated simplicial complex as in

the general case.
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6.2.4 Tolerance homology

Visual processing is essentially discrete, for this reason, and for computational simplicity,

we resorted to digital topology. However, it remains to be answered the question of

what attributes that belongs to a physically disconnected stimulus (such as a dot array)

determine the perceptual connectivity17. Moreover, resorting to digital topology was

based on the assumption that the lattice grid was given by retinal array. However more

than the topographic adjacency, we wish to represent the functional and metabolic

distance given by the neural activity. The difference is subtle, but important, whilst

in the first case we see the grid lattice as an approximation of the retinal disposition,

a move quite standard in the field of computer vision, in the latter we take the grid

lattice to be an abstraction of the functional disposition induced by the neural activity.

Both the discretization problem and the perceptual connectivity problem can be solved

generalizing the notion of adjacency to that of tolerance. Indeed once the first problem is

solved, it will become clear that the latter is just a natural extension.

The solution to the discretization problem is a way to construct a grid lattice that

faithfully represents the external stimulus, by choosing an appropriate mesh resolution,

that might be different from the retinal disposition. Intuitively any two points in the

lattice represent two points in the stimulus that are perceptible different, and any finer

resolution will be equivalent to a larger one, a move related to the psychophysical concept

of just noticeable difference (JND) we already encountered in chapter 3. Formally the

concept of JND has been investigated by Zeeman [184], defining tolerance spaces18.

The idea, however, can be traced back to Poincaré19 in introducing the representative

space (espace representatif ). In Poincaré [128] chapter 2 on Mathematical Magnitude

and experience, Poincaré refers directly to Fechner’s experiments.

It has been observed, for example, that a weight A of 10 grams and a weight

B of 11 grams produce identical sensations, that the weight B is just as

indistinguishable from a weight C of 12 grams, but that the weight A is

easily distinguished from the weight C. Thus the raw results of experience

may be expressed by the following relations:

A = B,B = C, A < C,

17With this, we ignore the possibility that all external stimuli might be discrete, and refer to discon-
nected stimuli as those that are ‘evidently’ not continuous.

18Although the presentation is sketchy. Sossinsky [156] provides a more detailed overview.
19Poincaré [128], Poincaré [127]
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which may be regarded as the formula of the physical continuum20

In the space representative, therefore, sensations are collected in ‘sets of similar sen-

sations’ (ensemble de sensationes indiscernables) or in Zeeman terminology, tolerance

classes, consciously indistinguishable.

Definition 6.13 (Tolerance Space/physical continuum). A tolerance space (X ,ξ) is a set

equipped with a tolerance relation ξ. We write briefly Xξ for denoting a tolerance space.

Definition 6.14 (Tolerance relation). A tolerance relation ξ on a set X is a relation

ξ⊆ X × X that is reflexive and symmetric.

We write briefly xξy to replace the canonical (x, y) ∈ ξ and read aξb as a is indistinguish-

able from b.

The power of a tolerance relation stems from its simplicity. Indeed a tolerance relation

is a natural generalization of an equivalence relation, by dropping the transitivity

requirement. A simple move that allows to express the idea of ‘resemblance’ succinctly

and precisely.

A few examples of tolerance spaces might help appreciating the definition.

1. Let X be a metric space and ε > 0. Let’s define ξ as {(x, x′) ∈ X |d(x, x′) < ε}. The

space (X ,ξ) so obtained is a tolerance space.

2. Let V be the set of vertices of a simplicial complex, and ξ the relation ‘the vertices

x and y are in the some simplex’. The space (V ,ξ) so obtained is a tolerance space.

3. The adjacency relation might be seen as a tolerance relation, reflexivity might be

trivially imposed, defining ‘adjacent or equal to’, that is by taking the reflexive

closure of the relation. Therefore a set X equipped with an adjacency relation is a

tolerance space.

We might say that a tolerance relation acts like a ‘glue’ on the tolerance space, in a

way similar as a topology acts as a ‘glue’ on a topological space 21. In order to pin down

this intuitive concept, we need some more definitions that will allow us to give a solution

to the first problem.
20 But here is an intolerable discord with the principle of contradiction, and the need of stopping this

has compelled us to invent the mathematical continuum. We will use again, in a different context, chapter 8,
this idea.

21It turns out that many of the things we can do with topological spaces, might be done with tolerance
spaces. The reader interested on the similarities and differences between these two disciplines might refer
to Poston [129].
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Definition 6.15. Let (X ,ξ), (Y ,ξ), be tolerance spaces. A (ξ-continuous) map of tolerance

spaces is any map f : X →Y preserving tolerance, that is such that

∀x, x′ ∈ X xξx′ ⇒ f (x)ξ f (x′)

We denote the composition of tolerance maps and the identity map in the usual way,

respectively given two tolerance maps f , g we write f ◦ g and idX .

Definition 6.16. If f is a map of a set X into a tolerance space (Y ,η), the induced

tolerance denoted f ?ξ, arises in X according to the rule

x( f ?η)x′ ⇔ f (x)η f (x′)

In particular for an inclusion map ι : B ,→Y the induced tolerance (or briefly subtolerance)

ι?η on B is simply denoted Bη.

Definition 6.17. If A ⊂ Xξ the the (1-fold) widening of A (also referred to as neighborhood
or ξ-closure) is the set ξA = {x ∈ X : ∃a ∈ A xξa}. We define recursively the k-fold

widening of A : kξA = ξ(k−1)ξA

Definition 6.18. The doubled tolerance of Xξ, denoted X2ξ is given by the rule

x(2ξ)x′ ⇔∃y ∈ X xξy, yξx′

In general the n-fold tolerance relation of Xξ, denoted Xkξ is given by the rule

x(kξ)x′ ⇔∃y1, ..., yk−1 ∈ X xξy1, . . . , yk−1ξx′

Definition 6.19. A skeleton of the tolerance Xξ is a subtolerance ι : Aξ ,→ Xξ for which

there exists a map r : Xξ→ A2ξ s.t. r ◦ i = idA and ∀x ∈ X xξr(x).

We can now define precisely how the discretization problem might be solved. Let’s as-

sume for the sake of simplicity that the external input is a two dimensional configuration

given by the luminance function, that is X ⊂R2. Let moreover equip X with a tolerance

relation, defined by the euclidean distance, as for example 1. above, representing the

JND. Notice that, If A is a skeleton of Xξ then ξA = X , that is it approximates X . In

particular, we would like A to be the ‘discretization’ of X .

As an example, suppose X ⊂ R2 is the unit disk in the plane, and A is the set of

vertices of a square lattice of mesh h contained in X . Then for ε>p
2 h, the set A is a

skeleton of the tolerance Xξ. (where the metric tolerance is defined as in example 1, and

d is the euclidean distance).
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Figure 6.2: Topological global perception

The idea of a tolerance is however more powerful than just a mathematical expres-

sion of the concept of just noticeable difference and might be employed to perceptual

organization in general, allowing us to solve the second problem. At the end of Buneman

and Zeeman [18] the authors provide a suggestive image and hypothesis. (Figure 6.2:

tolerance disk, and tolerance disk with a hole). While we clearly see the disk as discon-

nected, we can also perceive it as a whole. We can interpret this as if the visual system

ignores details gaps within a certain tolerance. That is we might see the JND as the

minimum tolerance ξ the functional architecture given by the skeleton A imposes, but

also assume that larger tolerances might be computed by the neural system. Different

tolerances might result in a ‘Gestalt-like’ perceptual instability, not too different from the

perception of a Necker’s cube for example. Any tolerance greater than the smaller will

cover the stimulus with larger classes, and therefore with less connected components.

The ‘perceptual grouping problem’, i.e. the fact that, given a visual stimulus with close

enough items, the subject strongly underestimates its numerosity, might be addressed

assuming the process that extracts the numerosity is sensible to this mechanism. For

example if only the smallest and the largest tolerances are computed or affect numerosity

discrimination, we might expect, for a visual array of n items, to perceive its numerosity

as approximately n+1
2 .

We leave the determination of how exactly the mechanism operates to a future time.

We will end this chapter looking into a way to capture the global property of a tolerance

space. The best way is again to resort to homology. Favorably tolerance spaces behave

nicely and given a tolerance space (X ,ξ) we can construct a simplicial complex and define
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the homology group as the homology group of this complex. The resulting homology

behaves in a standard way (as proven in Sossinsky [156] and Poston [129, chapter 2]).

In particular, given a tolerance space (X ,ξ), it’s usually associated the construction of

a (Vietoris) simplicial complex consisting of all simplexes, where a simplex is a finite

oriented subset of X all of whose points are within tolerance. In the case of the ‘point

cloud’ given in Figure 6.2 we take the vertex points of the simplexes to be the points on

the ‘point cloud’.

Definition 6.20. Let X be a subset of a metric space and ξ the tolerance relation in

example 1. We construct a simplicial complex in the following way inductively:

1. For each point x ∈ X , {x} is a 0-simplex.

2. For each x1, x2 ∈ X , {x1, x2} is a 1-simplex if x1ξx2

3. For x1, ..., xn, {x1, ..., xn} is a (n−1)-simplex if all the points are within tolerance of

each other.

According to this model distinghuishability is characterized by missing edges, faces,

etc.. in the higher dimensional simplexes that make up the complex.

The problem of this definition is that we need extensive calculations to construct the

simplicial complex 22. This implies that computing the homology groups may become

unwieldy even for a configuration with few dots. The assumption of discreteness of the

perceptual input therefore may seem to suffer for a severe computational disadvantage.

However, with this construction we throw away the functional lattice structure

defined by the tolerance skeleton. Being a tolerance relation a generalization of the

adjacency relation used in digital topology allows us to apply the discussion of the

preceding section in this special case. We can define a digital tolerance space as follows.

Definition 6.21. Let’s denote the identity relation with τ0, we define τn+1 = τ ◦ τn

recursively for any integer n.

We call the pair (X ,τ) a digital tolerance space.

We can therefore extend the definition of path-connectedness to account for the

perceptual connectivity.

Definition 6.22. A digital tolerance space (X ,τ) is connected if given x, y ∈ X there

exists a n ∈N s.t. x, y ∈ τn.
22It requires O (2|X |) time complexity to determine such a simplex if we directly implement a simple

algorithm as suggested by the definition (namely brute force, by checking all possible simplexes).
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To recast in digital topological terms x, y are nk-adjacent, that is there exists a

k-adjacency path of length at most n connecting them.

We might associate nk-adjacency with an increased activation signal, or alternatively

with a decreased threshold. The increased activation might be driven by top-down

attentional processes, an hypothesis supported by some empirical evidence (Huang,

Zhou, and Chen [71]) and in line with the holistic approach.
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6.3 Summary

The term ‘numerosity’ is generally adopted as a mathematical uncommitted synonym of

cardinality. In the discussion on natural numbers’ representation (chapter 2) we argued

that an informal definition might be safely used once its limitations are considered.

The lack of a formal definition for ‘numerosity’ shows the other side of the medal:

apply an informal characterization of a problem beyond the limits allowed prompts

empty discussions. If numerosity is just cardinality, the definition assumes what it

needs to be shown. What cognitively is referred to as an item, is the end stage of a

delicate and complex process that can be disrupted by small modifications. Instead

of defining the term numerosity directly for a broad class of phenomena, narrowing

down the scope to a particular modality seems to us a promising strategy. Focusing on

visual stimuli we suggest, in accordance with Kluth and Zetzsche [80], to define visual

numerosity as the number of connected components in a configuration, the associated

zeroth-Betti number. Computing the number of connected components in parallel by

local operations is a feat in digital topology, and in computer vision. At the present time

the proposed algorithms show a running time dependence on the number of items in the

stimulus. We briefly introduced the reader to simplicial homology and give an example

of how these algorithms might operate. In chapter 5 we have seen some indications

towards a limit of the numerical representation. Therefore, for such small inputs the

time complexity might be less of a concern. Although the discussion, and the title of

this thesis, suggests a topological framework, visual perception is essential discrete. We,

therefore, need a way to mimic topology in a discrete realm. Zeeman’s [184] influential

paper introduced tolerance spaces, set equipped with a tolerance relation, to solve this

issue. Usually, simplicial complexes for tolerance spaces are constructed from point

clouds, such that all points within tolerance are linked. If no topographic structure is

known than this approach is sensible. However, the topographic order of the retinal

neurons are preserved in the functional order in the higher visual area (cf. Toet [167]).

For this reason digital topology might offer an upper bound on the complexity, once we

consider the anatomical disposition of retinal receptors. Applying digital topology directly

to the retinal grid is still expensive. For this reason, defining a tolerance skeleton over

the functional activity allows us a more parsimonious way to triangulate a space. This

layer of abstraction incorporates not only bottom up, but also top down activity, which

modulation we hypothesized might be seen as the lattice mesh, allowing to solve the

perceptual connectivity problem.
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7
COMPUTATIONAL MODELS OF VISUAL NUMEROSITY

The take home message of chapter 6 was that assessing whether a model genuinely

computes numerosity requires checking the computed invariants. If the deviation

from the invariance predicted matches the behavioral findings, and the model

is equipped with numerosity detectors, then a strong case for a visual sense of number

might be put forward. If, on the other scenario, the deviations from the invariance are

predicted by a model that explains away numerosity coding, then it turns out to be

hard to claim that the model is computing numerosity. This way of proceeding would be

ideal. In the present chapter, we will therefore analyze two recent models that roughly

compute the same invariant. The first model, Stoianov and Zorzi [160], supporting a

visual sense of number, the second, Dakin et al. [26], explaining it away. On the other

side Dehaene and Changeux’s [35] model we analyzed in chapter 4 seems to be at odd

with the invariance check.

7.1 Deahene & Changeaux, (1993)

We have already seen the architecture proposed by Dehaene and Changeux [35] in

chapter 4. There we noted how a linear coding can be modeled in a plausible architecture.

Here we are interested in the invariance principle the architecture can model.
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7.1.1 Invariance principle

Importantly, The invariance is not achieved by the distributed computation of local

features, instead an explicit normalization stage is assumed. Each object is seen as a

blob represented by a dedicated detector. A certain size invariance can be attained in

the one dimensional case, but it’s quite hard to see how a blob matching system should

attain a standardize form for various element shapes and spatial distribution in the

two dimensional case. The interference effects (section 3.7) are thus quite hard to be

accounted for.

7.2 Stoianov & Zorzi, (2012)

Stoianov and Zorzi [160] trained a Deep Belief Network (DBN) to reconstruct the input,

given by binary images comprising of rectangular objects of different sizes. They were able

to show that visual numerosity emerges as a statistical property of those images, without

any preprocessing normalization mechanism, nor any information about numerosity

during the training phase. There has been quite a lot of research in comparing (Sparse)

Restricted Boltzmann machines1 to the neural coding in vision (Lee, Ekanadham, and

Ng [88], Bhand et al. [14]). Stoianov and Zorzi’s [160] Deep Belief network, therefore,

inherits the same neural plausibility. Moreover, for stressing the biologically plausibility,

the greedy pre-training scheme lacked a back propagation fine tuning typical in the

standard deep networks used in machine learning. However, from a developmental point

of view, the pre training scheme appears quite unfeasible, where all numbers are given in

a bunch. A more cognitively plausible solution would require a learning process in which

random numerosity samples are given at a time. Such a solution doesn’t seem technically

out of reach and could, in principle, be used to explain the progressive sharpening of

the Weber fraction observed in developmental numerical psychology. Interestingly the

numerosity detectors where found only in the higher layer and the activation pattern

reflected the monotonic coding. As we have seen in chapter 4, this alone is able to explain

distance and size effects, and it might be used as the input representation to generate

a number line coding (as we have seen in Verguts and Fias [179] model). To sound a

note of caution, we remind the reader that deep learning models have high capacity

and adapt to data statistics, it is therefore interesting to see whether the model trained

with natural images is affected in its ability to learn to represent numerosity. At the

1Restricted Boltzman Machines (RBM) are the building block of DBNs.
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Figure 7.1: Inputs example and architecture used

present stage we will ignore this issue and instead look at the invariance principle the

numerosity units are sensitive to.

7.2.1 The Model

The input is given by 52100, 30×30 pixels binary images containing from 1 to 32 randomly

placed non overlapping rectangular shapes (Figure 7.1 bottom. On the on-line support

material of this thesis are available Matlab and Python scripts to generate the Dataset

as described in Stoianov and Zorzi [160] supplementary information2). The architecture

used by the authors is a parallel implementation of Geoffrey Hinton’s original code and

it is freely available in their website3. Our implementation will soon be added to the

GitHub page associated to this thesis4.

The network architecture (Figure 7.1) comprises one visible layer, in which the

2Available at https://github.com/bramacchino/numberSense/tree/master/inputs/sz2012.
3http://ccnl.psy.unipd.it/research/deeplearning.
4At the time of writing I’m still unable to replicate their results fully. The invariance property is

therefore, only hypothesized on the basis of the network description. As soon as I’ll be able to test the
invariance property the code will be added.
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vectorized input is clamped, and two hierarchical organized hidden layers. In particular,

the architecture might be seen as an auto-encoder consisting of two stacked RBMs. Each

RBM is formed by a visible and a hidden layer of binary units. The units in the hidden

layer fire with a probability that is the logistic function of the weighted input. The input

layer of the first RBM comprises 900 binary units fully connected to the hidden layer

of 80 binary units, that represents the visible layer of the second RBM with an hidden

layer of 400 units. The output layer represents a dimensionality reduced version of the

input layer.

The network is trained to maximize the product of probabilities assigned to the

training set (i.e. to generate the sensory data), equivalently to minimize the average

negative log-likelihood. This in turn is achieved by minimizing the weights (and biases).

The minimization is achieved via (stochastic) gradient descent. The derivative gives us

two terms, called the positive and the negative gradient. The first depends on obser-

vation whilst the latter depends only on the model. Learning is therefore achieved via

Contrastive Divergence (CD) (Hinton, Osindero, and Teh [69]). Given an input vector v+i ,

first the feature detectors h+
j are activated (positive phase). Starting from stochastically

selected binary states of the feature detectors (using their state h+
j as a probability to

turn them on), CD then infers an input vector vi used in turn to reactivate the features

detectors h−
j (“negative” phase). The weights wi j are updated with a small learning

fraction η of the difference between input-output correlations measured in the positive

and the negative phases:

δwi j = η(v+i h+
j −v−i h−

j )

7.2.2 Invariance principle

In Stoianov and Zorzi [160] supplementary informations the authors provide a mathemat-

ical description of the learned model that help us in assessing the invariance principle.

Most of the first hidden layer (HL1) units are center-surround detectors that uniformly

cover the image space. The first layer consists of linear operations (2D Gaussian filters,

sigma = 2, and spatial integration) followed by a non linear operation (a standard logistic

function, f )

Oi j = f (
∑

W ′
i j I +1)

The numerosity detectors found in the second hidden layer (HL2) are spatially

selective as well (2D Gaussian filters, sigma=10). They receive positive input from HL1

units, and inhibition from HL1 units that were found to encode cumulative area (c). That
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is numerosity detectors are represented by the subtraction of the cumulative area from

the low-pass-filtered features.

Nkl =
∑

WklO− c

c = log(1+
∑

I
cmax

)

If we assume the first term to be related to the contour, then the invariance is

achieved via a trade-off between objects’ contour and area. For simple shapes (e.g. the

rectangles of different sizes used to train the network) the deviation from invariance

is minimal. However, for shapes with multiple edges, the deviation from the proposed

invariance might be consistent. Whether this matches human behavior has not yet

been experimentally addressed. A striking difference emerges with respect to Dehaene

and Changeux’s [35] model. Whilst in the model of Dehaene and Changeux [35] an

intermediate layer of object locations was assumed, in this architecture the invariance is

computed, from local features, without any explicit normalization stage.

We conclude the invariance analysis comparing it to our discussion in chapter 6. We

hypothesized that the tolerance skeleton, from which the computation of the number of

connected components is carried over, covers both top-down and bottom-up connections.

The model of Stoianov and Zorzi [160] is based entirely on bottom-up features to compute

the numerosity of a stimulus, whilst top down connections were used only during the

learning stage. If it turns out that the systematic dependence on object’s shape doesn’t

mirror human behavior, the model might still be accurate for what concerns the forward

computations.

7.3 Dakin & Morgan, (2011-2014)

In this model numerosity perception is achieved as a by-product of texture processing.

It’s assumed that density (spacing of objects) and numerosity share the same underlying

mechanism: filter-based texture computations (pooled high and low spatial-frequency

filter). That is relative numerosity become a type of texture discrimination. Peculiarly

the model doesn’t need any contribution from a location code, that has we have seen in

chapter 6 is hypothesized by the computational approach to visual perception5. Recall

from section 4.2 that the models of Dehaene and Changeux [35] and Verguts and Fias

[179] assume the input to be given by a location map, that we briefly suggest in chapter 5

5The authors argue that if a location code were available, the behavioral findings concerning the fact
that a change in patch size disrupt our density and numerosity perception, would be pretty outlandish.

85



CHAPTER 7. COMPUTATIONAL MODELS OF VISUAL NUMEROSITY

might be tentatively associated with the activity of LIP neurons6. On the other side a

saliency map is not required by the global holistic approach (or topological account) to

visual perception, and the adoption of spatial filtering is compatible with the compu-

tation of pseudo-topological properties described in Barth, Ferraro, and Zetzsche [11].

In this respect, the model is similar to the trained architecture of Stoianov and Zorzi

[160]. However, here the filter’s responses are used directly, without an explicit layer of

numerosity detectors.

7.3.1 The model

Density (d = N/A) is estimated using the relative response of low and high spatial

frequencies (SFs). Dakin et al. [26] and Morgan et al. [107] assume that high spatial

frequencies are largely determined by the number of objects, whilst low SFs are largely

determined by the cumulative area of the items in the stimulus.

Spatial frequencies sizes correspond in physiological terms to the size of the receptive

fields. The SFs filters response are therefore estimated by convolving stimuli with

Laplacian of Gaussian, center-surround filters, constructed from the combination of a

Gaussian filter and a second derivative. Laplacian-of-Gaussian filters are tuned to high

(s = 2 pixels) or lower (s = 8 pixels) spatial frequencies.

LoG(x, y)=∆2G(x, y)= 1
πs4 (1− x2 + y2

2s2 )exp(− x2 + y2

2s2 )

The filter response is achieved by pooling the convolution across all image locations

Rs =
∑
x,y

|LoG(x, y)×|I||

By definition the pooled high-frequency output depends on the length of the object

contours in the stimulus. That Rhi ∝ N, therefore is based on the fact that small filters

generate isolated responses to individual elements, if the elements are ‘small enough’.

Analogously Rlo ∝ A follows from the fact that large filters responds to clusters of

elements, with the same characteristics.

The response ratio C is thus seen as a correlate of density and number.

C = 2γs
Rhi

Rlo
6Although as reported in Knops et al. [81], it is still unclear how it might operate beyond the subitizing

range.
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Where 2γs is a multiplicative Gaussian noise term (s = 0.1).

Denser stimuli is selected on the basis of

da,b =
Ca

Cb

The behavioral observations in Dakin et al. [26] and Morgan et al. [107] suggest that

Rhi cannot be directly accessed by the visual system. In particular mismatching the

patch size has an effect on performance, and increasing contrast doesn’t increase number

estimation. The low spatial filters are used as a proxy for area in computing density,

therefore an explicit weighting for degree of size mismatch is applied to recover the high

spatial frequency component, based on the ratio of the low SFs response from the two

stimuli.

Na,b = (2γs
aRlo

bRlo
)2γ

′
s da,b

7.3.2 Invariance principle

If there was no noise in the internal representation, then numerosity is attributed to the

high frequency filters. Adding noise implies that the contribution of the low spatial filters

is not canceled out, and Dakin et al. [26], Morgan et al. [107] consider this contribution as

providing a moderate normalization for size. Rhi, the pooled response of high frequency

low pass filters, is dependent on the items edges. In their report, the author tested

the model with object of approximately equal size. However, for objects with large size

mismatch and different shapes, the aggregate contour overestimates the number of

objects. Ross [147] suggests that grouping by size precedes the operation of mechanisms

that estimates numbers. Here, the estimation of number is only indirect, therefore the

suggestion cannot directly be implemented, but as for Stoianov and Zorzi’s [160] network,

only bottom up processing are modeled in this architecture.

Although the influence on size was wanted by the authors to account for their data,

resorting mainly on the contour length, without any compensation mechanism, seems a

too coarse estimation. If we assume a stronger influence of the low-frequency filters, than

the model invariance is based on a trade-off between contours and area as in Stoianov

and Zorzi’s [160] network.

Importantly, although the invariance computed by the model is roughly the same, nu-

merosity estimation is computed directly, without any intermediate layer of numerosity

detectors.
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7.4 Summary

A cursory reading of the mathematical cognition literature might give the impression

that numerosity is a perceptual feature which representations are neurons, or population

of neurons, in the lowest level of the representations’ hierarchy. We have seen on various

occasions that this hypothesis is not without difficulties. Indeed, this thesis fits within

the current debate on whether it is accurate to speak of a true sense of number (cf.

section 3.1). As a matter of fact, numerosity might be either a cognitive process emerging

from the combination of various capacities, or can be explained away as a by-product of

non numerical perceptual features. Given the definition of numerosity as the number of

connected components in a configuration allows us to analyze the models’ predictions

with respect to this invariance. If the deviation predicted by a model matches the subject

performance, and the model’s architecture comprises numerical representations as those

reviewed in chapter 4, then we find that speaking of a true sense of number is not

only a powerful metaphor. Stoianov and Zorzi’s [160] architecture fits well within this

situation. A Deep Belief Network trained to represent visual stimuli learned to represent

numerosities via a thermometer encoding in the highest layer. No intermediate location

map was needed, but the numerosity of the stimulus was estimated from low pass filters

encoding the approximate contour and the cumulative area. Similar operations are those

used in Dakin et al.’s [26] model. Here numerosity is assumed to be based on the recovered

pooled response of high-frequency filters, with a moderate bias from size handled by

low-frequency filters. If a stronger contribution from the low-frequency filters is assumed,

however, this latter model might be seen as roughly computing the same invariance7.

This implies that a stronger deviation from this invariance, as those proposed originally

in Dakin et al. [26], results in a strong bias on size, whilst approaching the invariance

results in a stronger shape bias, as is the case in the architecture proposed by Stoianov

and Zorzi [160]. More behavioral studies are needed to assess human performances

better, both with respect to the actual invariance the visual sense is sensible to, and to

the deviations from it. However, Anobile, Cicchini, and Burr [8] and Zimmermann and

Fink [185] suggest that both mechanisms might play a role, and that estimation of small

and large numerosities (with a threshold around 32) are dissociated.

7That might be seen as the isoperimetric quotient Q = 2πA/L2, where A is the area, and L is the
contour length.
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Ché perder tempo a chi più sa piu spiace.

Dante Alighieri, La Divina Commedia

Two main questions sit behind this thesis: is it correct to speak about an approx-

imate number sense, and if it turns out to be the case, is it foundational for

learning the concept of natural numbers and higher mathematical concepts?

Indeed the curiosity towards ‘numerical core systems’, in particular, the approximate

number system (ANS), was driven by the recognition of a certain agreement among

the researchers, that the ANS plays a major role in higher mathematical capacities,

although, has we have seen, they are divided about which role it plays. To recall chapter 2,

‘Nativists’ tend to see an ancillary role for the ANS, that is the ANS is representationally

related to our understanding of numbers, but is neither foundational, nor necessary.

‘Foundationalists’ claim the ANS has a prominent role through lifetime. ‘Developmental-

ists’ maintain a paramount role for the ANS in higher mathematical concepts’ acquisition,

but only in order to learn, or in Carey [20]’s hypothesis, bootstrap, the natural numbers.

In particular, with respect to the latter two positions, there is no agreement on how

symbolic representations are learned. An effort, that of verbal counting, that takes

many years to master, and absent in some cultures. Although the proposals differ, the

underlying idea can be traced back to Poincaré: as we apply to the same objects, different

systems, we are driven to reconcile the object’s representations. In Poincaré [128, part

0For who knows most, him loss of time most grieves.
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1: number and magnitude], this reconciliation is assumed to be driven by the principle
of contradiction, and used to ‘derive’ the concept of mathematical continuum from the

one of physical continuum. We already introduced the concept of physical continuum in

chapter 6 when defining tolerance spaces. Briefly, starting from the Fechnerian experi-

ment, we gain the knowledge that A = f B, B = f C and A < C. The equality represented

by the system f , however, is in disagreement with the ‘standard equality’ defined by

another system a1. We are lead to reconcile the two notions, and this drove Poincaré to

hypothesize that the necessity of banishing the disagreement has compelled us to invent
the mathematical continuum2. The notion, that of mathematical continuum, is created

by the mind, but were the empirical observations that provided the opportunity.

Young children struggling with learning natural numbers are like small mathemati-

cians, trying to reconcile two or more different representations into a unique, consistent

one. For example, when trying to learn the number ‘nine’, the child cannot depend only

on the parallel individuation system (PIS) or the ANS, given that none of the two systems

guarantee a meaning for it. The child is then driven to reconcile these representations.

In section 2.3.1 we briefly considered how this can be achieved, without imposing any

restriction on the process. This is just a first step, only to show that there is no principled

impediment to reconcile the two representations. However, the fact that the representa-

tions provided by the two distinct core systems can be reconciled may not be guaranteed

under cognitive plausible rules.

Why children are compelled to reconcile two, possibly unrelated representations?

It’s assumed, although it’s not clear how, that the child is able to move from an implicit

representation of the first three (or four) numbers encoded in the PIS, to an explicit one.

It’s moreover assumed that the ANS encodes approximate numerosities. Whether a true

sense of numerosity, that is a meaningful representation also from the point of view of the

animal, and not only from the observer standpoint, may be encoded within the brain is

therefore a question of paramount importance. If numerosity estimation can be explained

away as a byproduct of texture processing, for example, it is not clear how the child might

extract any meaningful numerical information from it, before possessing the concept

of number. The reconciliation hypothesis requires that the referent different vehicles

represent is the same, and that the vehicles are ‘cognitively compatible’. In the analysis

1These two systems might be roughly equated to system one and system two in the current debate on
the psychology of reasoning.

2Poincaré [128, pag. 22]. By limiting finite resolutions we reach the mathematical continuum of the
first order (the infinitude of the natural numbers), and then by reflection on the new contradictions
that arise during the construction of the mathematical continuum of the first order, we are prompted to
construct the mathematical continuum of the second order (that of the reals).
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of the mathematical continuum given by Poincaré this was achieved by assuming that

the physical equality, and the equality encoded in the principle of contradiction are

perceived as instances of a general rule of equality that needs to be reconciled. In the

case of numerical information, this means that the child knows that the information

provided by the ANS is compatible with the one provided by the other system. If the

information is not numerical, there is no need for reconciliation, and thus the account

of how a number system emerges is at stake 3. For assessing whether the information

computed by the ANS is indeed numerical, an intuitive definition of numerosity doesn’t

suffice, and we were prompted to seek for a formal definition that captures the intuitions

of the researchers. We defined numerosity as the number of connected components of

a topological space, and noticed how an homological account may help in computing it.

This definition is a mathematical idealization, since it is known, as reviewed in chapter 3,

deviations from invariance are observed. Assessing the claim that the ANS is not only a

metaphorical label for a process, but indeed a numerical perceptual mechanism, is thus a

matter of constructing a model that predicts those deviations. If, for example, deviations

are predicted from a model, like that proposed in Dakin et al. [26], in which numerosity

perception is just a by-product of texture processing, then it would be hard to justify the

claim of a true sense of number, and in turn, of the necessity the child is driven by to

reconcile the different numerical representations. At the present time there is only a

feeble evidence that a true sense of number exists, since deviations from invariance are

reported in only few studies.

This gives us the opportunity to answer the second question posed in the introduction.

There we claimed that philosophy of mathematics, and mathematical cognition are not

communicating, and we were asking why it was so given the common problem they are

facing.

On the psychological side, the lack of a firm answer to the nature of numerosity

estimation, suggests more studies are needed, and that the mechanisms that give rise

to numerical perception are still mainly unknown. It’s just a matter of prudence not

to resort to concepts that belongs to an usually much more abstract field, in order to

avoid intellectual gimmicks, that would be mainly useless. There is also an historical

concern, that philosophy of mathematics, deeply rooted in logic, cannot provide the right

concepts for the cognitive scientist. This under appreciation, however, was mainly due to

a misguided view of the vast varieties of logics, and the assumption that logic was just a

3Indeed, a general magnitude progression might suffice, for example we might hypothesize that the
concept of succession is extracted from the intuition of time. In this case, however, the ANS has lost any
privilege.
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shorter word for classical first order logic 4.

On the philosophical side, the lack of collaboration might be traced back to Frege

antypsychologism5.

In more recent days, however, it’s quite common too see philosophers of mathematics

embracing a naturalistic approach and using psychological arguments. This use of results

from cognitive science is often due to a will to avoid the Field-Benacerraf Dilemma: that

is the problem of explaining abstract entities via ‘naturalised’ epistemology6.

Benacerraf [13] notices that

On a realist (i.e., standard) account of mathematical truth our explanation of

how we know the basic postulates must be suitably connected with how we

interpret the referential apparatus of the theory.

However,

What is missing is precisely [...] an account of the link between our cognitive

faculties and the objects known.

In particular he shows a certain skepticism that such an account might be given.

If, for example, numbers are the kinds of entities they are normally taken to

be, then the connection between the truth conditions for the statements of

number theory and any relevant events connected with the people who are

supposed to have knowledge cannot be made out.

One common way out is to commit to an internalist conception of meaning. That is

instead of trying to glean truths about ethereal mathematical entities, we seek to explain

how the concepts that underwrite our mathematical reasoning are constrained.

This move is usually based on ‘intuitions’, not too dissimilar from what we called in ,

following Darwin, ‘fundamental intuitions’. Epistemic appeal to intuitions is sometimes

seen as no different from perception and other times as worrisome as introspection 7.
4In the psychology of reasoning this line of argument has been debunked in Stenning and Van

Lambalgen [159].
5In the introduction to ‘Grundlagen der Arithmetic’, Frege [49], formulated a severe and very influential

criticism against the use of psychological methods in the philosophy of mathematics.
6See Benacerraf [13] and Hanna [60, chap. 6] for a broad overview of the Dilemma and a Neo Kantian

structuralist proposal, much in line with the present discussion.
7Paradigmatic of the first position is Kripke’s [84] view. Of course, some philosophers think that

something having intuitive content is very inconclusive evidence in favor of it. I think it is very heavy
evidence in favor of anything, myself. I really don’t know, in a way, what more conclusive evidence one can
have about anything, ultimately speaking.
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In general [’s [[]pag. 2]williamson2008philosophy position is maintained, according

to which

Although there are real methodological differences between philosophy and

the other sciences, as actually practiced, they are less deep than is often sup-

posed. In particular, so called intuitions are simply [armchair] judgments (or

dispositions to [armchair] judgment); neither their content nor the cognitive

basis on which they are made need be distinctively philosophical.

Notwithstanding, the move is instantiated with only a superficial reference to cogni-

tive faculties. More often than not, to some ‘folk psychology’8.

The basis for a collaboration between cognitive scientists and philosophers seems

therefore, not out of reach. Intellectual acrobatics is not required from the psychologists,

but well defined mathematical formulations of the core capacities are essential. For

what concern philosophers, a greater attention to the core concepts studied by the

psychologists, instead of a psychological flavored, yet ungrounded, reference to intuitions,

is suggested 9.

8.1 Future works and works in progress

8.1.1 Development

As we repeatedly noticed it’s not easy to assess whether numerosity perception can be

explained away as merely a derived effect of other features. We hope that the proposed

definition of numerosity might help in resolving the issue. This strategy requires as-

sessing the empirical question to which topological invariant numerosity perception is

sensible to, and how the computational models predict the deviation from the invariance.

Moreover, analyzing data require data and too few are publicly available, more impor-

tantly for our concerns, only few behavioral experiments are aimed at assessing the

invariance properties, and the deviation from it. As a sort of ‘structured procrastination’

I’m planning to spend some time on Stimulus.js, briefly presented in ??, and building up
8For example Shapiro [155] via pattern recognition.
9I’ve been too optimistic in this remark. Recently, it has come to my attention, that for some philoso-

phers, the possibility that one’s philosophy might be falsified by empirical ground is unacceptable. A
common joke regarding mathematicians and philosopher, argue that the latter are less expensive then
the former, given that they need only paper and pen and no trash bin. Philosopher deeply absorbed in
metaphysical questions, the remark continues, might be too far removed to be interested in psychological
observations. If this is a general feeling, then it is much better to leave psychology to the psychologist and
philosophers to speak among each other. Trash bins are still useful to the rest of us.

93



CHAPTER 8. CONCLUSIONS AND FURTHER WORKS

some experiments especially targeted at these purposes. As a long term plan, merging

with jsPsych and creating a graphical user interface is foreseen.

For what concerns the computational models, there is also some work that needs to

be done. The models in this thesis are coded in a fast prototyping style, and cannot be

considered production ready. Moreover, they haven’t been coded in a unitary framework.

Whilst there is a plethora of libraries targeted at the machine learning community, there

are practically no tools of comparable size aimed at the computational neuroscience needs.

However, machine learning demands are not exactly those of cognitive modeling. For this

reason, coding the models in TensorLayer seems a viable solution. It is abstract enough

not too require recoding standard algorithms, and flexible enough to resort directly to

TensorFlow when needed. The plan is thus to code the models in the numerical cognitive

literature in TensorLayer and naturally releasing them with an open source license. This

implies that depending on how it will be received it can turn out to be a personal Zen, or

a useful endeavor.

8.1.2 Theory

One of the main reasons that drove this thesis was the curiosity to assess what the

‘approximate number sense’ was, whether it is legitimate to call it in this way (that

is whether the concept is representational10, or it makes sense only from our external

perspective), and how it can be studied. To show how the proposed definition might have

an algorithmic counterpart we resorted to simplicial homology, where the simplicial

complex was assumed to be extracted from a lattice of points standing for the brain

activity. We freed ourselves from stronger claims with respect to the functional lattice, by

adopting tolerance spaces, however this construction remains too abstract for simulation

purposes. It’s interesting, moreover, to borrow a tool from topological data analysis,

persistent homology, to compute the persistent Betti numbers and compare this result

with empirical data.

The curiosity towards the ANS, was moreover driven by the recognition of a certain

agreement, among researchers in mathematical cognition, that the ANS plays a major

role in higher mathematical capacities. We argue that philosophers of mathematics (and

we include logicians in the category) and cognitive scientists should collaborate toward

this, and more broad, endeavors. Toward this direction, together we two other PhD

candidates we are planning to develop a formal theory of the functional architecture and

10In the sense of representation discussed in chapter 2.
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learnability of natural numbers concepts providing as input a formalization of the core

representations.
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