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Abstract

This paper analyzes the computational complexity of the inductive in-
ference game Eleusis. Eleusis is a card game in which one player constructs
a secret rule which has to be discovered by the other players. We determine
the complexity of various decision problems that arise in Eleusis. We show
that on the one hand, many of the problems are solvable in polynomial time
whereas on the other hand, the rules of Eleusis allow for secret rules that
can force players to face intractable and undecidable problems. Our results
show that computational complexity plays a crucial role in the game and
has to be taken into account by the players in their strategic considerations.
As Eleusis can be seen as a simulation of inductive inference using mem-
bership queries, our results also have relevance for interactive approaches
to formal learning theory.

1 Introduction

Board and card games have been widely studied in computer science and
artificial intelligence; key aspects here are the computational complexity of
the games and the strategic abilities of the players. In this paper, we want to
put forward the complexity theoretical analysis of a particular class of games,
called inductive inference games, which are not only interesting from a game
theoretical and computational perspective but also from a philosophical and
learning theoretical point of view as they provide a simulation of scientific
discovery. The general idea of inductive inference games is that players try to
infer a general rule from the feedback they get to their moves. One designated
player has to come up with a rule about which moves of the other players
are accepted and which are rejected. The goal of the other players is then to
discover the rule. They make their moves (which can e.g. be of the form of
playing cards [1, 8, 14] or building configurations with objects [17]) and the first
player gives feedback as to whether a move was accepted or rejected. Then the
players use this information to inductively infer the rule.

In the card game Eleusis, Player 1 – who in the game is referred to as God or
Nature – comes up with a rule about sequences of cards. Then the other players
– called Scientists – take turn in each playing a card in a sequence. After each
move, Player 1 announces whether the card was accepted. Rejected cards are
moved out of the sequence and stay below the position at which they were
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played. This way during the whole game, all players can see which cards have
been accepted or rejected at which positions. The setting of Eleusis allows
for a formal and game theoretical analysis of interactive processes involving
inductive inference.

Eleusis has received attention within the philosophy of science literature,
since it nicely illustrates scientific inquiry [21]: Playing the cards can be seen as
performing experiments, and the feedback given by Player 1 (i.e. the acceptance
or rejection of the cards played) can be thought of as the outcomes of the
experiments. The players form hypotheses about the rule and choose to perform
experiments accordingly, after each move updating their information state with
the outcome of the experiment, and then revising their hypotheses. The game
Eleusis can thus be seen as a nice simulation of scientific inquiry in which
players employ two kinds of strategies: selection strategies, which determine
what experiment to perform (i.e. what cards to play), and reception strategies
for using the results of the experiments (i.e. the acceptance and rejection of the
cards) for constructing and choosing hypotheses about the rule. Eleusis has
also been investigated within the computer science and artificial intelligence
literature since there is a close relationship to pattern recognition as discovering
a rule essentially means to discover a pattern in the sequence of accepted cards.
Several algorithms have been developed taking the role of the scientist in Eleusis
[3, 6, 18]. Some sample secret rules have been classified informally with respect
to the difficulty for the scientist players to discover them [14]. However, to
the best of our knowledge, there has not been done any complexity theoretical
analysis of Eleusis. In this work, we show that computational complexity plays
a crucial role in Eleusis, and give complexity results with a practical relevance
for the actual play of the game. Player 1’s choice of rule not only determines
the difficulty of the tasks of the other players during the game but also has
an impact for herself since as we show there are secret rules that Player 1 can
choose that make it impossible for herself to give feedback to the other players
since she is faced with undecidable problems during the play.

The remainder of this paper is structured as follows: Section 2 describes
the rules of the game Eleusis and its version that we investigate in the current
work.

Section 3 gives our main results about the complexity of Eleusis. This is
done for several classes of secret rules, showing the impact of the allowed
secret rules on the complexity of the game. Section 4 concludes this work and
gives directions for further work.

2 Eleusis: The Game

In this section, we will describe the rules of Eleusis and the version of it con-
sidered in this work. There are several versions of the rules of the card game
Eleusis [1, 8, 14]. In this paper, we will focus on Eleusis Express [14]. We first
briefly give the rules in order to give the reader an idea of the actual game, as
it is played in practice, and then give our version of the game.
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2.1 Eleusis Express

Beginning of the Game. One player (we call her Player 1) has the designated
role of God or Nature. She starts the game by coming up with a secret rule
determining which sequences of cards are accepted. An example of such
a rule is the following: “every black card has to be followed by a card with
an even value”. Player 1 writes down the rule without any other player
seeing it.

Secret Rule. The only constraints on the secret rule are that it can only take into
account the sequence of cards previously accepted and the card currently
played. So, whether a particular card is accepted can only depend on the
cards previously accepted and the card itself. External factors, such as
who played the card whether the player uses his left or right hand to play
the card, have to be irrelevant.

Playing Procedure. Then each of the other players receives a number of cards
(usually 12). Player 1 takes a card from the deck, called the starter card.
This card will be the first card of what is called the mainline. Then the
other players take turns in each playing one of their cards by appending
it on the right to the mainline. After each move, Player 1 announces
whether this card is accepted according to the secret rule. If it is rejected,
it is moved from the mainline to the sideline, directly below the position at
which it was played in the mainline, and the player who played the card
has to draw an additional card from the deck. In case the card played is
accepted, it stays in the mainline and the player does not need to draw
a card. If a player thinks that none of the cards on his hand would be
accepted, he can declare “no play”. In this case, his hand of cards has to
be shown to everyone, and Player 1 has to check whether indeed none of
the cards would have been accepted. If this is the case, Player 1 gives him
a new hand of cards, which should be one card less than the hand he had
before. If Player 1 finds a card that could have been played, he plays it
and the player has to draw a card from the deck.

Guessing the Rule. If a player has made a correct play, i.e. he played a card
that was accepted or he correctly declared no play, he can make a guess
about the rule and say it out loud. If the guess is correct, the game ends.

End of the Game. The game ends if a player has discovered the rule or gotten
rid of all his cards.

Scoring. The player with the highest score wins, where the score is calculated
as follows. Each player gets twelve points minus the number of cards
on his hand. Having no cards gives a bonus of three points and having
guessed the rule correctly gives a bonus of six points. Player 1 cannot
score in the game. The idea is to play several times so that each player
once takes the role of Player 1, and then add up the points of the different
plays.

Eleusis Express as given above turns out to be rather difficult to formally
analyze from a game theoretical perspective. Features that contribute to these
difficulties are the chance factor arising from the hand of cards a player receives
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in the beginning, and the scoring rule. In practice, the communication between
the players also has a great influence on their strategic reasoning. As a first
step towards an analysis of Eleusis Express, we will start by investigating a
simplified version of the game.

2.2 Eleusis Express Simplified

In this work, we consider a game between two players Payer 1, and Player
2. With respect to Eleusis Express as explained above, we make the following
changes, which simplify the formal analysis. We eliminate the chance factor by
supposing that Player 2 has an infinite supply of cards at hand, so that at any
point of the game, he has any of the different cards available for playing. Com-
ing back to viewing Eleusis as a simulation of scientific inquiry, this means that
there are unlimited resources for conducting experiments, i.e. any experiment
can be conducted. In case a card is rejected, it is put in the sideline but Player 2
does not need to draw a new card from the deck. Thus, all players have perfect
information about the moves that have taken place after the secret rule was
constructed. We let the game end as soon as Player 2 has guessed the rule.

The main reason for the adaptations of the original game are that we want
to make the discovery of the secret rule the aim of Player 2. Note that in the
original game, even though discovering the rule gives a considerable bonus, it
can still be that a player who has discovered the rule is not the winner because
he might have a lot more cards than some other player. Thus, in the original
game, in the strategic considerations of Player 2, conflicts might arise between
choosing to play cards as to get rid of them as soon as possible, and playing
cards as to maximize the information about the secret rule.

With respect to its winning conditions, the version of Eleusis we consider is
closely related to the game Zendo [17], a game in which the goal is to inductively
infer a secret rule about the configuration of pyramid shaped pieces. After
we have adapted the rules of Eleusis, now leaving Player 2 with the only
objective of finding out the secret rule, the reader familiar with the game game
Mastermind might also see some similarities between our version of Eleusis and
Mastermind.

Mastermind is a deductive inference game which has received a lot of atten-
tion within computer science [15, 16, 23] and also psychology [4, 24]. In this
game, one player constructs a code consisting of four pegs that can each have
one of six different colors. The other player starts by guessing the code and
gets feedback from the first player saying how many colors were at the correct
position, and how many were at wrong positions. The game continues until
Player 2 has inferred the code. Whereas the roles of the players seem similar
in Mastermind and Eleusis, there are some substantial differences. For Mas-
termind, there are strategies that allow a player to infer the secret code with
certainty within a small number of rounds (e.g. five) [16]. In Eleusis, in general
this is not possible as there are rules that cannot be identified with certainty at
a finite stage of the game. Speaking in terms of formal learning theory, there
are thus rules which are not finitely identifiable [19]. Another difference is the
impact of the chosen code or rule on the difficulty of the subsequent play. In
Mastermind, the difficulty for Player 2 to infer the code and for Player 1 to
check the guesses of Player 2 are similar for all the codes that Player 1 could
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choose. As we illustrate in Section 3, in Eleusis on the other hand, the choice of
secret rule has a great influence on the difficulty of the game for both players.

3 Complexities in Eleusis

In this section, we will give a complexity analysis of different decision problems
and tasks involved in Eleusis. One motivation behind this is to investigate the
complexity involved in scientific inquiry, trying to determine what features of
rules contribute to the difficulty of their inductive discovery. We are interested
in the complexity that agents face in interactive processes involving inductive
inference. Thus, we examine the complexity of the game Eleusis from an agent-
oriented perspective focussing on different tasks the players face during the
game rather than taking an external perspective examining the complexity of
determining which player has a winning strategy. There are several levels of
complexity in the game of Eleusis. On the one hand, there is the complexity
or difficulty of playing the game itself, as there is the challenge for Player 1
to choose a rule of an adequate level of complexity. Note that there is a close
relationship between the complexity/difficulty of playing the game and the
complexity of the secret rule.

One way to determine the complexity of the secret rules would of course be
empirically, by determining how difficult it is for human subjects to discover
them. This would lead to an interesting study identifying the features of rules
about (finite) sequences that make their discovery easy or difficult. For the
moment, we leave such an analysis to future work, and in this paper we focus
on a more theoretical analysis of the complexity of the secret rules in Eleusis.

Another perspective from which we can investigate the complexity in Eleu-
sis is to capture the complexity of the secret rules using methods from descrip-
tive complexity by specifying the formal languages in which the rules can be
expressed. This way, the complexity of a rule is captured by the expressive
power required to express it in a formal language.

Example 1 (Rules of different descriptive complexity). As examples, consider the
following two rules

1. “At even positions accept a card iff it is red, and at odd positions accept
a card iff it is black.”

2. “First accept two black cards, then three red, then five black, . . . then p2k
red, then p2k+1 black cards, etc.” Where pn is the n-th prime number.

Then, it is easy to see that Rule 1 can be expressed by a regular expression
whereas Rule 2 cannot.

The complexity of the secret rules can also be analyzed by investigating the
computational complexity of different decision problems arising from the secret
rules. We will now present some of these decision problems informally and
explain their motivation, before we will investigate them in more detail and
more formally. Consider the following decision problems related to Eleusis.

1. Given a class of rules, a configuration of the game (i.e. a finite sequence
of cards (accepted/rejected)), is there a rule in the class such that the play
so far has been consistent with the rule (i.e. a rule that could have been
the secret rule)?
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2. Given a rule and a configuration of the game, is the play consistent with
the rule?

3. Given a rule, a finite sequence of previously accepted cards, and a card c,
is c accepted by rule?

Problem 1 is the Eleusis analogue of the problem that has been investigated
for Mastermind and has been shown to be NP-complete [23]. However, an
important difference of the problem for Eleusis is that we restrict the class of
secret rules. The reason for this is the following. Suppose we are given a
sequence of cards that have been accepted/rejected in the game so far. Now,
if we ask whether there is some rule that could be the secret rule that Player
1 constructed, we only need to check if no card has been both rejected and
accepted at the same position. If there is no such card, then the answer to
the question is yes because there are rules that are consistent with the play so
far (e.g. the rule that explicitly says for each position to accept the card that
actually has been accepted and to reject the cards that have been rejected).

Problem 2 is a problem that Player 2 encounters when analyzing the current
situation in the game and deliberating whether a certain rule might be the secret
rule. Problem 3 is relevant in the game because it describes the very task that
Player 1 has to solve in each round. This problem is of course very relevant in
practice and should be kept in mind by Player 1 when constructing the rule.

A closer investigation of these decision problems requires that we first
formalize some aspects of Eleusis. Let start by fixing some notation.

Notation 1.

• We let Card to be a finite set, representing the set of cards; alternatively we could
also represent cards as a pair (value, suit).

• Card∗ is the set of finite sequences of elements of Card.

• For s ∈ Card∗, |s| denotes the length of the sequence s, defined in the standard
way.

• For X being a set |X| denotes the cardinality of X.

• si denotes the ith element of the sequence of cards s, and s<i denotes the initial
subsequence of s of length i, i.e. if s = s0s1 . . . si . . . sn, then s<i = s0s1 . . . si−1

• For s, t ∈ Card∗, st is the sequence of cards resulting from the concatenation of s
and t.

• By Ci, we denote the set of cards that have been rejected at position i.

Next, we want to formalize the secret rules. Considering Eleusis in practice,
human players mostly define rules in terms of certain properties or attributes
that the cards have, such as color, suit and value but also properties of having
a face (of some gender) and certain numerical properties of the value, such as
being even/odd, greater/smaller than some number or being prime. Analyzing
the reasoning involved in humans playing Eleusis requires a cognitively ad-
equate representation of the rules in terms of the attributes and properties of
the cards. Technically speaking however, all of the rules can of course also be
expressed in terms of the cards itself. This is what we will do in this paper.
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An Eleusis rule says which sequences of cards are accepted and which are
not. The way in which the rules are used in the game is that in each round
Player 1 has to check whether it is accepted to extend the current sequence with
a certain card. Thus, we represent rules as functions that tell us for every pair
of sequence of cards and a single card whether appending the sequence with
the card is allowed.

Definition 3.1. Eleusis rules ρ are functions ρ : Card∗ × Card→ {0, 1}.

Note that with this definition, whether a card is accepted is fully determined
by the sequence of cards that have been accepted so far; the previously rejected
cards are irrelevant here. In practice, it can probably be observed that most
rules chosen by human players have the property that accepted sequences are
closed under taking prefixes, i.e. for any s ∈ Card∗, if ρ(s, c) = 1, then also for
every 0 ≤ i < |s|, ρ(s<i, si) = 1. However, in the rules of Eleusis Express, this is
not required, and therefore neither will we do here.

3.1 Easy Problems in Eleusis

In the following we will focus on several restricted classes of rules.

Definition 3.2 (Periodic Rules). We call a secret Eleusis rule ρ periodic if it satisfies
the following condition: There is some p ∈ N such that for all s, s′ ∈ Card∗, c ∈ Card,
if |s| = |s′| = n and for all 0 ≤ l < |s|, if l mod p = n mod p, then sl = s′l , then
ρ(s, c) = ρ(s′, c). We call the smallest such p the number of phases of ρ. A periodic
rule ρ with p phases can then be written as a sequence of rules (ρ0, . . . ρp−1), where
ρ(s, c) = ρi(s, c) if |s| mod p = i.

Periodic rules are thus rules that can be split into different phases, each
following some rule which is independent of the other phases. Let us give
some examples of periodic rules.

Example 2 (Periodic Rules).

1. 1 Phase: “At every position, accept all the red cards and the black ones
with a male face. The other black cards are only accepted if they are
preceded by two red cards.”

2. 2 Phases: “On even positions only accept cards that have a face or whose
value is greater than or equal to the one of the card at the previous even
position. At odd positions, accept any card.”

3. 3 Phases: “Two cards of even value, then one with an odd value, then two
even ones again, etc.”

Comparing these rules, we see that in Rule 3 we only need to look at the
current position in order to determine whether a card is accepted. In Rule 1, on
the other hand, if a black card without a male face is played, then Player 1 has
to look at the two previously accepted cards in order to determine if the card
is accepted. In Rule 2 on even positions we also have to look at the card that is
placed at the previous even position, in order to check if a card is accepted.

This leads us to the concept of lookback, which is the length of the sequence
of previously accepted cards that are relevant when deciding whether a card
should be accepted.
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Definition 3.3 (Lookback). Let ρ be an Elesis rule ρ. Now if

min{l ∈N | for all c ∈ Card, s, s′, s′′ ∈ Card∗ with |s′′| ≤ l, ρ(ss′′, c) = ρ(s′s′′, c)}

is defined, we call it the lookback of ρ. If the minimum does not exist, we say that the
lookback of ρ is∞.

Example 3. The following are example rules with lookback.

• Lookback 0: “Accept all black cards and all red cards that have a face; reject
all the others.”

• Lookback 1: “If the previous card had a female face, accept only aces.”

• Lookback 2: “Whenever two cards whose values are prime have been
played in a row, the next card has to be red.”

Definition 3.4 (Perodic Rules with Lookback). We define Pp
l to be the class of

periodic rules ρ of p phases, such that the maximum lookback of ρ0, . . . , ρp−1 is l.

Intuitively speaking, the simplest secret rules of Eleusis are those that ac-
cept a card only on the basis of the card itself, and neither take into account
previously played cards nor the position at which a card is played. These are
the rules in the class P1

0.

Fact 1. For every ρ ∈ P1
0, the following condition is satisfied: For all s, s′ ∈ Card∗,

and c ∈ Card, ρ(s, c) = ρ(s′, c). Every rule ρ ∈ P1
0 can thus be expressed as function

ρ′ : Card→ {0, 1}.

Example 4 (Rules in P1
0). 1. “Accept all red cards, reject all black cards.”

2. “Accept all cards with a value ≤ 7, reject all the others.”

3. “Accept all cards of clubs and all the ones of hearts that have an even
value, reject all the others.”

After we have introduced some formal notation and defined some classes of
Eleusis rules, we will now start investigating the complexity of decision prob-
lems related to Eleusis. We start with the Eleusis-Satisfiability problem ESAT,
which can be seen as an analogue to the problem investigated for Mastermind
in [23]. For Mastermind, the problem asks given a configuration of the game,
whether there is any secret code that is consistent with the play so far. For
Eleusis, the problem ESAT is to determine whether, given a configuration of
the game, there is some rule which is consistent with the play so far. If we
do not make any restrictions onto the class of rules under consideration, this
problem becomes easy as it boils down to just checking whether the same card
has been both rejected and accepted at the same position.1

1This is the case because whenever there is no card accepted and rejected at the same position,
any function ρ : Card∗ × Card → {0, 1} that extends the current play (i.e. that accepts the accepted
cards at the correct positions and rejects the rejected ones) is an Eleusis rule consistent with the
game so far.
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Definition 3.5. For R being a class of Eleusis rules, the decision problem ESAT(R) is
defined as follows.
Decision Problem ESAT(R).

INPUT: A sequence of cards s ∈ Card∗, and for each i, 0 ≤ i ≤ |s| a set Ci ⊆ Card
(representing the cards rejected at position i).
QUESTION: Is there a ρ ∈ R such that for all i with 0 ≤ i < |s|, ρ(s<i, si) = 1 and for
all c′ ∈ Ci, ρ(s<i, c′) = 0?

The first class of rules for which we investigate this problem is the class of
very simple rules P1

0. Given a configuration of the game Eleusis, it is quite easy
to check whether it is possible that the secret rule that Player 1 has in mind is
in P1

0 . These rules are so simple because whether a card is accepted does not
depend on the current position of the sequence on the table, and neither on the
cards played so far. If during the play one card has ever once been accepted
and once been rejected, then the secret rule cannot be in P1

0. On the other hand,
if no card has been both accepted and rejected, then it is indeed possible that
the secret rule is in P1

0. Any rule that accepts all the cards that have previously
been accepted and rejects those who have not is a candidate.

Proposition 1. The problem ESAT(P1
0) can be solved in polynomial time.

Proof. Going through the sequence of cards, for each position, we check whether
the card accepted at the current position is rejected at the same position or at
a further position, and then for each card rejected at the current position, we
check if this card is accepted at any future position. As soon as we find a card
where any of this is the case, we can stop and the answer is no. If we reach the
end of the sequence, the answer is yes. Since in this procedure each card in the
input is compared to at most all the other cards, this takes time at most n2 in
the worst case, for n being the size of the input. �

We now look at ESAT for periodic rules without lookback.

Proposition 2. For any p ∈ N, the problem ESAT(Pp
0) can be solved in polynomial

time.

Proof. First of all, if p ≥ |s|, then we only need to check if there is some position
i ≤ |s| such that si ∈ Ci. If this is the case, the answer is no, otherwise the answer
is yes. If p < |s|, then for all i, j such that i ≤ j < |s| and j mod p = i mod p, we
check if si ∈ C j or s j ∈ Ci. If this is the case for any such i, j, then we can stop,
and the answer is yes. If there are no such i, j, then the answer is no. �

We will now move to rules that do take into account previously accepted
cards. Let us first consider ESAT(P1

1). Rules in P1
1 have the property that

whether a card is accepted is completely determined by the card accepted at
the previous position. So, we have to look for an instance where the same card
has been accepted at two positions, and at the immediate respective successors
of these positions the same card has been rejected in one case and accepted in
the other. If we find such an instance, then we know that the secret rule cannot
be in P1

1.

Proposition 3. ESAT(P1
1) can be solved in polynomial time.
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Proof. In order to solve this problem, we can go through the sequence of cards,
and for all 0 ≤ i < |s|, we check if there are i, j, i ≤ j < |s| − 1 such that si = s j and
si+1 ∈ C j+1 or s j+1 ∈ Ci+1. If we find such i, j, then the answer is no. Otherwise,
the answer is yes. �

Solving ESAT(P1
k), and in general ESAT(Pp

k) can be done analogously; instead
of looking for positions where the same card has been accepted, for each phase
we have to look for two sequences of positions where the same k cards have
been accepted, and then check if it is the case that at the next positions one card
has been once accepted and once rejected.

Corollary 1. ESAT(Pp
k) can be solved in polynomial time.

Thus, we have seen that for several classes of rules, it can be decided in
polynomial time whether there is a rule in the class that is consistent with the
play so far. In actual play, we can think of Player 2 solving this problem for
various classes of rules, trying to restrict the set of rules that are still possible. In
other words, coming back to Eleusis as a simulation of scientific inquiry, this is
the problem describing the scientist checking whether there is some hypothesis
in a certain class that is consistent with the experimental results so far.

3.2 A Hard Eleusis Problem

After having discussed various tractable decision problems in Eleusis, we will
now show that Eleusis also gives rise to hard problems. We give a secret Eleusis
rules that has the property that checking whether the sequence of cards on the
table is consistent with the rule is NP-complete.

We now show that Eleusis allows secret rules that force Player 1 to solve
NP-complete problems when checking if a sequence is according to the rule.
We use the Partition Problem [9], which is the problem of deciding whether a
multi-set can be partitioned into two subsets that add up to the same sum.
Decision Problem Partition.

INPUT: A multiset of positive integers S.
QUESTION: Is there a way to partition S into two subsets S1 and S2 such that∑

S1 =
∑
S2 ?

The following is the task Player 1 has to solve in each round when giving
feedback to Player 2. In the strategic considerations of Player 1, the complexity
of this task plays of course a crucial role since in practice she should be able to
solve it in reasonable time.
Decision Problem E − Check(ρ).

INPUT: A sequence of cards s ∈ Card∗, and a card c ∈ Card.
QUESTION: Is it the case that ρ(s, c) = 1?

We now show that in the generalized version of Eleusis where we have an
infinite but countable deck of cards, and a function value : Card → N, there
are Eleusis rules that make it NP-hard for Player 1 to check if a sequence is
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according to the rule. One such example is a rule that forces Player 1 to solve
the problem Partition, because she has to check if the values of the cards played
so far can be partitioned into two subsets that give the same sum.

ρpart(s, c) :=


1 if there is a partition of the sequence sc into sequences s′ and

s′′ such that
∑i=|s′ |

i=1 value(s′i ) =
∑i=|s′′ |

i=1 value(s′′i ),
0 otherwise.

Now, the following fact follows immediately.

Proposition 4. E − Check(ρpart) is NP-complete.

Proof. NP membership is straightforward. NP-hardness follows by reduction
from Partition. �

Note that in practice, the procedure of the game allows Player 1 to use
information from previous rounds about which initial segments of the sequence
can be partitioned to determine whether a card is accepted.

Our result shows that when Player 1 is constructing a secret rule, she should
be aware of its complexity to ensure that she won’t be faced with intractable
problems when she has to give feedback to the other players, as it happens with
the rule ρpart.

3.3 An Undecidable Eleusis Problem

We can now show that Eleusis allows for even harder rules: we give an Eleusis
rule such that it is undecidable whether a sequence of cards is consistent with
it. We will first introduce some notation for this.

Notation 2. • We now use standard decks of cards, and let Card = Value × Suit,
for Value = {1, . . . , 13} and Suit = {r,q,s,p}.

• For c ∈ Card, we let Value(c) denote its value and Suit(c) its suit.

• For a sequence of cards s ∈ Card∗, Value(s) denotes the sequence of the values,
i.e. Value(s) = Value(s0) . . .Value(s|s|−1).

• We define a function color : Card→ {b, r}, assigning to each card its color (black
or red), defined as follows.

color(c) =

{
b if Suit(c) ∈ {s,p}
r if Suit(c) ∈ {r,q}

In Definition 3.1, we defined Eleusis rules as functions ρ : Card∗ × Card →
{0, 1}. It is clear that we can give an equivalent definition of Eleusis rules
as functions ρ′ : Card+

→ {0, 1}, where Card+ is the set of nonempty finite
sequences over Card. For technical convenience, we will use this latter definition
in the remainder of this section.

We now define the set of black (red) words in a sequence of cards s. The
set of black (red) words in a sequence of cards is simply the set of maximal
subsequences of black (red) cards in the sequence, i.e. the set of subsequences
of black (red) cards that are separated by red (black) cards. Let us illustrate
this with an example. Given the sequence s = (4,s)(3,p)(9,q)(8,s), its set of red
words is the singleton {(9,q)}, and its set of black words is {(4,s)(3,p), (8,s)}.

11



Definition 3.6. For a sequence s ∈ Card∗, we define the set of black words of s BW(s)
to be the set of all those w ∈ Card∗ with |s| ≥ 1 that satisfy the following conditions.

1. ∀i such that 0 ≤ i < |w| it holds that color(wi) = b and

2. ∃i such that 0 ≤ i < |s| and ∀ j with 0 ≤ j < |w| it holds that si+ j = w j and

(i) if i > 0, then color(si−1) = r and

(ii) if i + |w| < |s|, then color(s(i+ j)+1) = r.

The set of red words of a sequence of cards s, RW(s), is defined analogously by
swapping r and b in the above definition.

For constructing a rule that gives rise to an undecidable problem, we will use
the above definition and view a sequence of cards as a sequence of black and red
words. Our proof of undecidability is by reduction from Post’s Correspondence
Problem [20].
Post’s Correspondence Problem.

INPUT: A finite set of pairs of non-empty strings over a finite alphabet Σ, P =
{(x1, y1), . . . (xn, yn)}.
QUESTION: Is there a sequence (i1, . . . im) for some m ∈ N, with 1 ≤ i j ≤ n such
that for all 1 ≤ j ≤ m

xi1 . . . xim = yi1 . . . yim ?

Note that even if Σ is small (|Σ| = 2), the problem is undecidable [22].

We define an Eleusis rule that has the property that checking whether a
sequence of cards is consistent with the rule is at least as hard as solving
Post’s Correspondence Problem. Before giving the formal definition, let us
explain the intuition. The idea is that all sequences of cards starting and end-
ing with cards of the same color are accepted. If the first and last card are
of different colors (i.e. the sequence has as many red words as black words),
then the sequence is accepted if and only if it has the following property: If
we view it as a sequence of pairs each consisting of a red word and a black
word, then it is possible to rearrange the order of these pairs (possibly using
a pair more than once or not at all) such that the resulting string of red val-
ues is the same as the resulting sequence of black values. Let us illustrate
this with an example showing a positive instance. Consider the sequence
(9,s)(3,r)(9,q)(10,p)(3,p)(3,q)(10,q)(3,s)(3,p)(3,r). Reading it as a sequence
of red and black words, gives

(9,s)︸︷︷︸
wb

1

(3,r)(9,q)︸      ︷︷      ︸
wr

1

(10,p)(3,p)︸       ︷︷       ︸
wb

2

(3,q)(10,q)︸       ︷︷       ︸
wr

2

(3,s)(3,p)︸      ︷︷      ︸
wb

3

(3,r)︸︷︷︸
wr

3

.

Now, (3,2,2,1) is a solution since (Value(wb
3) Value(wb

2) Value(wb
2) Value(wb

1)) =
(3 3 10 3 10 3 9) = (Value(wr

3) Value(wr
2) Value(wr

2) Value(wr
1)). Similarly, (3, 2, 1) is

a solution.
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ρPost(s) :=



1 if |BW(s)| , |RW(s)| or
|BW(s)| = |RW(s)| and s = wr

1wb
1wr

2wb
2 . . .w

r
kwb

k with
wb

l ∈ BW(s) and wr
l ∈ RW(s) then ∃(i1 . . . im) with 1 ≤ i j ≤ k

and (Value(wr
i1

) . . .Value(wr
im

)) = (Value(wb
i1

) . . .Value(wb
im

)) or

|BW(s)| = |RW(s)| and s = wb
1wr

1wb
2wr

2 . . .w
b
kwr

k with
wb

l ∈ BW(s) and wr
l ∈ RW(s) then ∃(i1 . . . im) with 1 ≤ i j ≤ k

and (Value(wr
i1

) . . .Value(wr
im

)) = (Value(wb
i1

) . . .Value(wb
im

));

0 otherwise.

We now show undecidability of E − Check(ρPost), the problem of deciding
whether a for a given sequence s ∈ Card+, ρPost(s) = 1.

Theorem 1. E − Check(ρPost) is undecidable.

Proof. By reduction from Post’s Correspondence Problem with alphabet Σ =
Value = {1, . . . 13}. Given P = {(x1, y1), . . . (xn, yn)} with x j, y j ∈ Value∗,
we transform it into a sequence of cards. We define a (partial) function
g : Value∗ → (Value × Suit)∗ as follows: For each (xi, yi) ∈ P, we define
g(xi) = (xi0,r)(xi1,r) . . . (xi |xi |−1,r) and g(yi) = (yi0,s)(xi1,s) . . . (yi |yi |−1,s). Then,
let f (P) = g(x1)g(y1) . . . g(xn)g(yn). First of all note that f can be computed in
polynomial time since g can be computed in polynomial time. Now, we have
to show that f is indeed a proper reduction.

Assume that for P = {(x1, y1), . . . (xn, yn)}, there is a sequence (i1 . . . im)
, with 1 ≤ i j ≤ n such that xi1 . . . xim = yi1 . . . yim . Now, we have to
show that ρPost( f (P)) = 1. First of all note that by construction |BW( f (P))| =
|RW( f (P))|. Moreover, (Value(wr

i1 ) . . .Value(wr
im )) = (Value(wb

i1 ) . . .Value(wb
im )).

Thus ρPost( f (P)) = 1.
For the other direction, assume that ρPost( f (P)) = 1. By construction of f (P),

it has to be the case that |BW( f (P))| = |RW( f (P))|, and f (P) has to start with
a red card. Thus, f (P) = wr

1wb
1wr

2wb
2 . . .wr

kwb
k with wb

l ∈ BW( f (P)),wr
l ∈

RW( f (P)) and ∃(i1 . . . im) with 1 ≤ i j ≤ k such that (Value(wr
i1 ) . . .Value(wr

im )) =

(Value(wb
i1 ) . . .Value(wb

im )). But then it must also be the case that xi1 . . . xim =
yi1 . . . yim . This concludes the proof. �

We have thus shown that whereas there are various tractable problems in
Eleusis, the game also gives rise to NP-complete problems and problems that
are undecidable even when played with a standard deck of cards.

This section has shown that the inductive inference game Eleusis is inter-
esting from a complexity theoretical point of view as it gives rise to decision
problems of various complexities. On the other hand, we also showed that
there are hard decision problems that are relevant for the actual play of the
game, as they are not about deciding which player has a winning strategy as
the usual complexity results about games, but describe the tasks the players
face during the game. Considering the problem E − Check(ρ), we have seen
that as opposed to Mastermind, in Eleusis the complexity for Player 1 cru-
cially depends on her choice at the beginning of the game, as some choices
can make it impossible for her to make a move, i.e. to give feedback to Player
2. Therefore, we have shown that the first player has a very active role in
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Eleusis, and as opposed to the literature where the difficulty of Eleusis is only
discussed with respect to the difficulty to discover certain rules, our results
show that Player 1’s first move has crucial complexity implications also for
herself. Coming back to Eleusis as a simulation of scientific inquiry, our work
thus fits with approaches putting forward an interactive view on learning, with
the environment or teacher having an active role [12].

4 Conclusion and Further Work

Our work brings together complexity theory, game theory and learning theory,
as we investigate interactive processes involving inductive inferences by using
methods from computational complexity for giving a complexity analysis of
various tasks that players face during the inductive inference game Eleusis.

In this work, we take a formal perspective, investigating a generalized
version of Eleusis Express. We formalize the key aspects of the game and show
that a variety of interesting decision problems arises. We have shown that for
several classes of secret rules it can be decided in polynomial time whether
there is a rule in the class that is consistent with the current state of the game.
Moreover, our results show that Eleusis also gives rise to intractable problems.
We have constructed a rule that requires the players to solve the NP-complete
Partition Problem in order to decide if a card should be accepted. Finally, using
Post’s Correspondence Problem, we showed that – even when played with
standard decks of cards – Eleusis allows for rules that make it undecidable to
check if a sequence of cards is consistent with the rule.

Thus, the current work promotes the computational complexity analysis
of inductive inference games, showing that a variety of interesting problems
arise, ranging from very easy to undecidable. This complexity theoretical
perspective gives us new insights into the strategic abilities of agents engaged
in interactive processes that involve inductive inference and also highlights
the special role complexity plays in inductive inference games, distinguishing
them from deductive inference games such as Mastermind. Our work also
promotes a categorization of secret Eleusis rules not only with respect to their
difficulty of being discovered but also with respect to how difficult it is for
the first player to give feedback to the other players. Our work thus fits with
approaches to formal learning theory that consider the learning process as an
interaction between learner and teacher [12, 13].

The current work gives rise to a wide range of directions for further work.
On the one hand, we suggest an investigation of dynamic Eleusis, a version of
the game in which Player 1 can at each round change his mind with respect
to the secret rule as long as the new rule is consistent with the play up to the
current stage. In this version, Player 1 has a more active role and we can analyze
the impact of her helpfulness on the abilities of the players taking the role of
Scientist, similarly as has been done in [13].

For further work, we also suggest to investigate the relationship between
Eleusis and learning theory frameworks such as learning with membership
queries [2, 10]

In Eleusis, the concepts of knowledge, belief and information change play
a crucial role. In the current work, we took a purely computational perspective
and did not go into the exact processes that describe how the information state
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of Player 2 changes throughout the game. For further work, we propose to
apply dynamic epistemic logic [7] and dynamic doxastic logic to model these
processes in Eleusis [5, 11].
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