
ON THE NUMBER OF INFINITE SEQUENCES WITH TRIVIAL
INITIAL SEGMENT COMPLEXITY

GEORGE BARMPALIAS AND TOM STERKENBURG

Abstract. The sequences which have trivial prefix-free initial segment com-

plexity are known as K-trivial sets, and form a cumulative hierarchy of length
ω. We show that the problem of finding the number of K-trivial sets in the vari-

ous levels of the hierarchy is ∆0
3. This answers a question of Downey/Miller/Yu

(see [DH10, Section 10.1.4]) which also appears in [Nie09, Problem 5.2.16].
We also show the same for the hierarchy of the low for K sequences, which

are the ones that (when used as oracles) do not give shorter initial segment

complexity compared to the computable oracles. In both cases the classifica-
tion ∆0

3 is sharp.

1. Introduction

Kolmogorov complexity is a standard tool for measuring the initial segment
complexity of an infinite binary sequence. Identifying subsets of N with their char-
acteristic sequence, we say that the initial segment (Kolmogorov) complexity of
A ⊆ N is trivial if it is bounded by the Kolmogorov complexity of a computable set
(modulo a constant). This concept was introduced by Chaitin (see [Cha76, Sol75]).
For the case of plain Kolmogorov complexity Chaitin [Cha76] showed that any set
with trivial initial segment complexity must be computable. In the case of the
prefix-free complexity K, Solovay [Sol75] showed that there are non-computable
sets with trivial initial segment complexity. In the last decade these so-called K-
trivial sets, the sets A with ∀n K(A �n) ≤ K(n) + c for some c ∈ N, have been
the subject of intense research in algorithmic randomness. They are known to form
a very interesting Σ0

3 class K which is an ideal in the Turing degrees, see [Nie09,
Chapter 5].

The members of K are stratified in a cumulative hierarchy where level e consists
of the sets A such that ∀n K(A �n) ≤ K(n) + e. In this case we say that A is
K-trivial with index e, or even that e is a K-triviality index of A. Chaitin [Cha76]
also showed that for each e there are finitely many K-trivial sets with index e.
A question of Downey/Miller/Yu (see [DH10, Section 10.1.4] and [Nie09, Problem
5.2.16]) asked about the complexity of the following problem.

(1.1) Given e ∈ N, find the number of K-trivial sets with index e.

Let Ke denote the class of K-trivial sets with index e. The following question refers
to the complexity of the function e→ |Ke|.

Question 1.1 (Section 10.1.4 in [DH10] and Problem 5.2.16 in [Nie09]). What is
the arithmetical complexity of (1.1)? In particular, is it ∆0

3?

Key words and phrases. Kolmogorov complexity, K-trivial sets, arithmetical complexity, trees.

1

2 GEORGE BARMPALIAS AND TOM STERKENBURG

In this paper we give a positive answer to the above question, thus showing that
the function e → |Ke| lies exactly at level ∆0

3 of the arithmetical hierarchy. In
particular, although the function e→ |Ke| depends on the choice of the underlying
universal machine, its arithmetical complexity does not. Moreover, the solution
of this problem gives a general methodology for answering the same question for
related Σ0

3 classes, like the low for K sets. A set A is low for K if it does not
compress strings more efficiently than a computable oracle. More precisely, if the
prefix-free complexity KA relative to A is not smaller than their unrelativized
prefix-free complexity K, modulo a constant. In symbols, if K(τ) ≤ KA(τ) + c for
some constant c and all strings τ . This Σ0

3 class can also be seen as the union of a
cumulative hierarchy whose eth level consists of the sets A with K(τ) ≤ KA(τ) + e
for all strings σ. As in the case of K we say that A is low for K with index e if it
lies in the eth level of this hierarchy.

Nies [Nie05] showed that the class of low for K sets coincides with K. However
this coincidence is not effective, in the sense that there is no algorithm which outputs
a level in the low for K hierarchy where a set lives, given a level of it in the K-
triviality hierarchy. Hence determining the complexity of the functions giving the
cardinality of the levels of the two hierarchies constitutes two separate problems.

1.1. Overview. We start by discussing the problem of finding the number of in-
finite paths through a given tree.1 An analysis of this general problem is given in
Section 2 and provides the framework for answering Question 1.1. This is because
the class Ke is canonically given as the infinite paths through a certain tree (see
e.g. [Nie09, Section 5.2]). In Section 2.1, given a sequence C = (Te) of trees we
relate the complexity of the function GC : e → |[Te]| (where [T] denotes the class
of infinite paths through T) to the complexity of C. The main observation here is
that in general, the degree of GC is the double jump of the degree of C (see below
for more precise formulations of this statement). Based on this, in Section 2.2 we
characterize the jump classes high2 and low2 in terms of trees. The latter charac-
terization will be used in the solution of Question 1.1 in Section 3. In Section 2.3
we study formal versions of the following question.

(1.2) Given a tree T is there a ‘simpler’ tree Q with the same infinite
paths?

Here ‘simple’ is formalized via some standard complexity measures like definability
hierarchies, degrees of unsolvability and Kolmogorov complexity. For example, we
show that if T is ∆0

2 then there is an infinitely often K-trivial tree Q with the same
paths as T . To answer Question 1.1 in Section 3 we will obtain a K-trivial tree Q
with the same paths as T , under the stronger assumption that all paths of T are
K-trivial. In particular, we show that the trees associated with the K-trivial sets
can be effectively replaced with much simpler trees with the same infinite paths.
We also observe that using ∅′′ and a K-triviality index of a set, we can obtain
a lowness index of it. We conclude that Question 1.1 admits a positive answer.
Finally, in Section 4 we use our methodology to answer the analogue of Question
1.1 for the related class of the low for K sets.

1.2. Basic concepts. Throughout this paper the notion of a parametrized family
of sets and its arithmetical complexity plays a central role.

1Throughout this paper we are only interested in trees that have finitely many infinite paths.

ON THE NUMBER OF K-TRIVIAL SETS 3

Definition 1.1. A class C ⊆ 2ω is a ∆0
1 family of sets if it can be written in

the form {Ce | e ∈ N} where Ce = {n | ψ(e, n)} and ψ is a ∆0
1 property (i.e. a

property that can be expressed in arithmetic with equivalent Σ0
1 and Π0

1 formulas).
Similar definitions apply for each level of the arithmetical hierarchy.2 The degree
of a parameterized family (Ce)e∈ω of subsets of N is the degree of ⊕e∈ωCe.

We often write C ≡T X to denote that the family C (with an underlying param-
eterization) has the same degree as X. Notice that a ∆0

1 family is nothing more
than a uniformly computable (i.e. computable from a single algorithm, on different
indices) sequence of sets. Similarly, a Σ0

1 family is nothing more than a uniformly
c.e. sequence of sets. According to Definition 1.1, each arithmetical family has an
underlying parameterization. We often identify the various arithmetical families
with the sequences of sets that correspond to their parametrizations.

We recall the definition of a tree in the Cantor space.

Definition 1.2. A tree is a downward closed (with respect to the prefix relation)
set of binary strings. The set of infinite paths through a tree T is denoted by [T].
Level n of a tree consists of the strings of length n that belong to the tree. The
width of a tree is the supremum of the cardinality of its levels. A tree is said to have
bounded width if its width is finite. A split on a tree T is a pair of incomparable
strings in T . An antichain in T is a set of pairwise incomparable strings in T .

The following is a basic fact about the notions of Definition 1.2.

(1.3)

A tree in the Cantor space has finitely many splits iff there is
a constant bound on the size of its antichains, iff it does not
contain an infinite antichain.

In the following we will be considering trees of different complexities. For ex-
ample, a Σ0

1 (or computably enumerable) tree is one that is Σ0
1, as a set of strings.

Notice that these are exactly the partial computable trees. Each parametrized fam-
ily of trees C = {Te} is naturally associated with the function GC(e) = |[Te]| which
gives the number of infinite paths through a tree in the family, given its index. We
will study how various complexities of classes C of trees relate to the complexity of
the corresponding GC function.

Apart from different levels of the arithmetical hierarchy, we will also use trees
on different (finite) levels of the Ershov hierarchy of n-c.e. sets, see [Ers68]. This
class, also denoted as Σ−1

n , contains the sets that have a computable approximation
according to which the membership status of each number changes at most n times.
For example, the 1-c.e. sets are the c.e. sets. A uniform family of n-c.e. sets is one
that can be presented as {lims ϕ(e, s) | e ∈ N}, where ϕ is a computable function
and |{s | ϕ(e, s) 6= ϕ(e, s + 1)}| ≤ n for each e ∈ N. We will also refer to such a
family as discretely Σ−1

n .
Finally, recall that if a set of strings does not contain any pair of comparable

strings (i.e. one is an extension of the other) then it is called prefix-free. A prefix-
free machine is one whose domain (i.e. the set of strings on which it halts) is a

2We use the word ‘family’ to refer to these countable parametrized subsets of 2ω , as opposed to

the arithmetical classes, like the Σ0
1 or Π0

2 classes, which could well be uncountable. The difference
is that in the case of Definition 1.1 the arithmetical formula underlying the definition of the class

has only first order variables, while in the general case second order variables can be used.

4 GEORGE BARMPALIAS AND TOM STERKENBURG

prefix-free set. The prefix-free complexity K of a string τ under a fixed universal
prefix-free machine U is the length of the shortest string σ such that U(σ) = τ .
In the following we fix U to be the canonical universal prefix-free machine, i.e.
U(0e1σ) = Me(σ) for all strings σ, where Me is the e-th prefix-free machine in
an effective enumeration of all prefix-free machines. Also we let wgt(M) to be the
‘weight’ of a prefix-free machine M , namely the number

∑
{2|σ| | M(σ) ↓)}. For

more background on Kolmogorov complexity we refer to [Nie09].

2. The number of paths through a tree

2.1. Arithmetical complexity of the number of paths through a tree. By
compactness, the oracle ∅′ can determine if a given computable tree has at least
one infinite path. Similarly, ∅′′ can determine if a given c.e. tree has at least one
infinite path. Moreover the following is very easy to show.

Proposition 2.1. There exists a ∆0
1 family of trees (with no infinite antichains)

such that the degree of the problem of whether a tree in the family has an infinite
path is ∅′. Also there exists a Σ0

1 family of trees (with no infinite antichains) such
that the degree of the problem of whether a tree in the family has an infinite path is
∅′′.

The following observations show that ∅′ is not sufficiently strong so as to deter-
mine whether a given computable tree has at least two infinite paths. In fact, if
an oracle A can perform this task, it has to also compute ∅′′. More precisely, this
task is an algorithm which uses A as an oracle and if the input is a program which
defines a computable tree T , the output is |[T]|. Notice that such an algorithm may
be partial on inputs that are (codes of) programs that define a computable tree.

Proposition 2.2. The oracle ∅′′ can compute the number of infinite paths through
a given computable tree with finitely many paths.

Proof. Given a program e that computes a tree T , we can use ∅′′ to find the largest
m ∈ N such that

There exist m strings of the same length ` which are extendible at
all levels ≥ ` of the tree.

This is a Σ0
2 question. If the tree has finitely many paths, this m must be found.

Clearly it is the number of paths through the tree. �

Theorem 2.3. There is a ∆0
1 family C of trees of bounded width (at most 2), such

that GC ≡T ∅′′.

Proof. We define a uniform sequence of computable trees Te as follows. Given
e ∈ N we check the state of Φ∅

′

e (e)[s] (i.e whether it converges or not) at the various
stages s, and determine the Te membership or not of the strings of length s. We
use the standard hat trick to ensure that if Φ∅

′

e (e) ↑ then Φ∅
′

e (e)[s] ↑ for infinitely
many stages s. If Φ∅

′

e (e)[s] ↑ then the only string of length s that is in the tree is
0s. If Φ∅

′

e (e)[s] ↓ and t ≤ s is the least stage such that Φ∅
′

e (e)[i] ↓ for all i ∈ [t, s]
then the string of length s that are in the tree are 0s and 0t ∗ 1 ∗ 0s−t−1. Clearly
e ∈ ∅′′ iff |[Te]| = 2. The fact that GC ≤T ∅′′ follows from Proposition 2.2. �

By relativizing Theorem 2.3 to ∅(j), j ∈ N we get the following.

ON THE NUMBER OF K-TRIVIAL SETS 5

Corollary 2.4. Let n ∈ N. There is a ∆0
n family C of trees of width at most 2,

such that GC ≡T ∅(n+1).

Since Σ0
1 ⊆ ∆0

2, a relativization of Proposition 2.2 gives the following fact about
Σ0

1 families of trees (i.e. partial computable families).

Proposition 2.5. The oracle ∅′′′ can compute the number of infinite paths through
a given Σ0

1 tree with finitely many paths.

If (A[s]) is an enumeration of a set A, we say that a number n that enters A at
stage s is a true enumeration if A[s] �n= A �n. Let 〈σ, τ〉 denote the number that
codes the pair of binary strings σ, τ .

Theorem 2.6. There is a Σ0
1 family C of trees with at most 2 infinite paths such

that GC ≡T ∅′′′.

Proof. Since ∅′′ is c.e. in ∅′, let W be a c.e. operator such that W ∅
′

= ∅′′. By W ∅
′
[s]

we mean the set consisting of the numbers in W with use ∅′[s]. By the standard hat
trick (and the fact that there are infinitely many true enumerations into ∅′) we can
assume that for all t there exists a stage s > t such that W ∅

′
[s] �t= ∅′′ �t. Consider

the computable function f : N × N → N such that f(e, s) is s if ΦW
∅′

e (e)[s] ↑ and
〈σ, τ〉 if ΦW

∅′

e (e)[s] ↓ with use τ ⊆W ∅′ [s] such that the use of the oracle ∅′[s] in the
computations that give membership to the numbers in τ ⊂W ∅′ [s] is σ ⊂ ∅′[s]. By
the hat trick applied to the functionals Φe we have the following for each e ∈ N.

(2.1) e ∈ ∅′′′ ⇐⇒ lim inf
s

f(e, s) exists.

We enumerate the tree Te as follows. By convention, when a string is enumerated
into Te all initial segments of it are also enumerated without explicitly mentioning
it. All strings 0n, n ∈ N are in Te. At stage 0 all numbers are inactive. At stage
s let f(e, s) = n ask if n is inactive. If it is, enumerate into Te the string 0s ∗ 1,
say that n is active. If not, let t < s be the least stage such that n has been active
during the stages in [t, s]. Enumerate into Te the string 0t ∗ 10s−t. Also say that
all m > n are inactive.

Now it is clear that for each e ∈ N the tree Te has either 1 or 2 infinite paths
and by (2.1),

e ∈ ∅′′′ ⇐⇒ |[Te]| = 2.

Hence for the Σ0
1 family C of trees Te, e ∈ N we have ∅′′′ ≤T GC . The fact that

GC ≤T ∅′′′ follows from Proposition 2.5. �

The width of a tree T can be seen as a function wT (n) which gives the number
of nodes at level n of the tree. We say that a function f bounds the width of a
tree T if it dominates wT . It is not hard to extend the argument of Theorem 2.6
in order to show the following. Let f be a computable order. There is a Σ0

1 family
C of trees of width bounded by f and at most 2 infinite paths such that GC ≡T ∅′′′.

We note that some of the trees constructed in the proof of Theorem 2.6 do
not have bounded width. The following observation contrasts Theorem 2.6 and
Proposition 2.5, and shows that this is unavoidable.

Theorem 2.7. The oracle ∅′′ can compute the number of infinite paths through a
given Σ0

1 tree with bounded width.

6 GEORGE BARMPALIAS AND TOM STERKENBURG

Proof. Let e be a program which enumerates a tree T . Using ∅′′ we can find the
largest number n such that there are infinitely many stages s, t ∈ N where there
are n distinct strings on level t of T [s]. Moreover, let k be a number such that
there is no level of T above k which has n + 1 distinct strings. Then there exists
a c.e. sequence {(σj0, . . . , σ

j
n−1)}j of n-tuples of strings on T such that |σju| = |σjv|

for u, v ≤ m and k < |σj0| < |σi0| for j < i. The downward closure of these strings
forms a computable sub-tree of T with bounded width. Moreover every path of T
is a path of the new tree by the maximality of {(σj0, . . . , σ

j
n−1)}j . By Proposition

2.2 using ∅′′ we can find the number of paths through the new tree. This is also
the number of paths through T . �

By Theorem 2.3 the bound ∅′′ provided in Theorem 2.7 is optimal. The proof of
Theorem 2.7 produced an oracle program which used ∅′′ to calculate the number
of paths through the given trees. It is instructive to write a program which works
without an oracle, and such that ∅′′ can extract from it the true number of paths
through the given tree. More precisely, to define a computable function f : N×N→
N such that if e is a description of a Σ0

1 tree T of bounded width then lim infs f(e, s)
exists and equals the number of infinite paths of T . We leave this as an exercise
for the reader.

Theorem 2.8. There is a Σ−1
2 family C of trees of bounded width (at most 2), such

that GC ≡T ∅′′′.

Proof. This is a modification of the proof of Theorem 2.6. The additional feature
that the trees have bounded width is obtained by removing some strings that have
already been enumerated in the tree Te. However such a removal has to be done at
most once for each string in order for our trees to be d.c.e. (i.e. in Σ−1

2).
All strings 0n, n ∈ N are in Te (and are never removed). At stage 0 all numbers

are inactive. At stage s let f(e, s) = n ask if n is inactive. If it is, enumerate into
Te the string 0s ∗ 1, say that n is active. If not, let t < s be the least stage such
that n has been active during the stages in [t, s]. Clearly, at stage t the number n
became active. Remove from Te all strings 0i ∗ 1 (and their extensions) for i > t.
Also, enumerate into Te the string 0t ∗ 10s−t and say that all m > n are inactive.

It is not hard to see that each string is removed from Te at most once. Therefore
the family of the trees Te is Σ−1

2 . Moreover, due to these removals at each stage
there are at most two strings at each level of Te. Hence Te has bounded width (at
most 2). Now it is clear that for each e ∈ N the tree Te has either 1 or 2 infinite
paths and by (2.1),

e ∈ ∅′′′ ⇐⇒ |[Te]| = 2.

Hence for the Σ−1
2 family C of trees Te, e ∈ N we have ∅′′′ ≤T GC . The fact that

GC ≤T ∅′′′ follows from the relativization of Proposition 2.2 to ∅′ and the fact that
each Σ−1

2 family of sets is also a ∆0
2 family. �

Theorem 2.9. The oracle ∅′ can compute the number of infinite paths through a
given computable tree with no infinite antichains.

Proof. Let T be the given computable tree. By (1.3) we can use ∅′ in order to find
some k ∈ N such that there is no split in T at any level ≥ k. Then the number of
extendible strings of length k is the number of infinite paths through T . �

ON THE NUMBER OF K-TRIVIAL SETS 7

By Proposition 2.1 the bound ∅′ in Theorem 2.9 is optimal. Similarly, the oracle ∅′′
can compute the number of infinite paths through a given c.e. tree with no infinite
antichains. Again, this bound is optimal, by Proposition 2.1. The case for Σ−1

2

trees with no infinite antichains is similar to the case for Σ0
1 trees with the same

properties, giving ∅′′ as the optimal bound. The results in this section, along with
their straightforward relativizations to all levels of arithmetical complexity and all
levels of the Ershov hierarchy are displayed in Table 1.

Table 1. The degree of the problem of computing the number of
infinite paths of a given tree of certain complexity and with various
properties.

∆0
1 Σ0

1 Σ−1
2 ∆0

2 ∆0
n Σ0

n Σ−1
n+1

No infinite antichains ∅′ ∅′′ ∅′′ ∅′′ ∅(n) ∅(n+1) ∅(2)

Bounded width ∅′′ ∅′′ ∅′′′ ∅′′′ ∅(n+1) ∅(n+1) ∅(3)

Finitely many infinite paths ∅′′ ∅′′′ ∅′′′ ∅′′′ ∅(n+1) ∅(n+2) ∅(3)

2.2. Paths through trees and the jump hierarchy. By relativizing Proposition
2.2 we have that given A ∈ 2ω and any uniformly A-computable family C of trees
(i.e. a ∆0

1(A) family of trees) with finitely many infinite paths, GC ≤T A′′. More-
over, by relativizing Theorem 2.3 we have that there is a uniformly A-computable
family C of trees with finitely many infinite paths such that A′′ ≤T GC . Hence we
have the following immediate corollary.

Corollary 2.10 (High2 and low2 in terms of trees). A degree a ≤ 0′ is high2 iff
there is an a-computable family C of trees (with finitely many paths) such that the
degree of GC is 0′′′. Moreover it is low2 iff for any a-computable family C of trees
(with finitely many paths) the degree of GC is 0′′.

Notice that the same argument shows the following.

(2.2)

Given a tree T with finitely many paths and a low2-ness index of
it (i.e. some an index of a reduction of T ′′ to ∅′′) we can effectively
produce an index of a ∅′′-computation of the number of infinite
paths of T .

This fact will be used in Section 3.2 for answering Question 1.1. An analogous
result holds for c.e. degrees.

Theorem 2.11 (Computably enumerable high2 and low2 in terms of trees). A c.e.
degree a is high2 iff there is an a-computable Σ0

1 family C of trees (with finitely
many paths) such that the degree of GC is 0′′′. Moreover a is low2 iff for any a-
computable Σ0

1 family C of trees (with finitely many paths) GC is computable from
0′′.

Proof. The ‘if’ direction of the statement about high2 and the ‘only if’ statement
about low2 follow from Corollary 2.10. For the other two statements it suffices to
show the following:

(2.3) If A is c.e. and f ≤T A′′ there exists an A-computable Σ0
1 family

C of trees (with finitely many paths) such that f ≤T GC .

8 GEORGE BARMPALIAS AND TOM STERKENBURG

Indeed, for the ‘only if’ direction of the statement about high2 we have that if
A is high2 then ∅′′′ is computable by a ∆0

3(A) function f . But such a function
f can be written as a computable image of the limit infimum of the values of an
A-computable function ΨA of two variables (e.g. see [SS90, p. 207]). In particular,
∅′′′(n) = (lim infs ΨA(n, s))0 for all n ∈ N, where x→ (x)0 denotes the first inverse
of the standard pairing function (giving the first coordinate of the pair). Therefore
(2.3) shows how to obtain the required family C of trees for the ‘only if’ direction of
the statement about high2 in Theorem 2.11. On the other hand, the ‘if’ direction
for the statement about low2 follows directly from (2.3) by letting f = A′′.

By the representation of ∆0
3(A) functions mentioned above, to prove (2.3) it

suffices to show the following.

(2.4)

Given an A-computable function ΨA of two variables such that
lim infs ΨA(n, s) exists for all n ∈ N, there exists a uniformly
A-computable family C of trees Tn, n ∈ N such that |[Tn]| =
lim infs ΨA(n, s) + 1 for each n ∈ N.

Fix such a function ΨA (given as a Turing functional Ψ with oracle A) and n ∈ N.

Construction of of Tn. We say that 0i ∗ 1 ∗ 0j ∗ 1 is active at stage s if i, j < s and

• ΨA(n, i)[s] > j
• if i < z < s then either ΨA(n, z)[s] ↑ or ΨA(n, z)[s] > j
• ΨA(n, i− 1)[s] ≤ j.

At stage s and for each i, j < s such that 0i ∗ 1 ∗ 0j ∗ 1 is active enumerate into Tn
the string 0i ∗ 1 ∗ 0j ∗ 1 ∗ 0s and all of its prefixes. Moreover put 0s into Tn.

Verification. First we verify that |[Tn]| = lim infs ΨA(n, s)+1. Let lim infs ΨA(n, s) =
m. If j < m and i is the least number such that ΨA(n, k) > j for all k ≥ i then
(by the hat trick and the use of true stages) the string 0i ∗ 1 ∗ 0j ∗ 1 will be active
infinitely often. Therefore |[Tn]| ≥ m + 1. If 0k ∗ 1 ∗ 0t ∗ 1 is any other string,
according to the definition of active (and since ΨA is total) it will only be active
finitely often. Hence |[Tn]| = m+ 1.

It remains to show that the sequence (Tn)n∈N is (uniformly) computable in A.
Given a string σ, we first check if σ ⊂ 0ω (in which case σ ∈ Tn). If not, 0i ∗ 1 ⊆ σ
for some i ∈ N. Using A compute ΨA(n, i − 1), ΨA(n, i) and find the first stage
si where they converge (with correct A use). If none of the strings 0i ∗ 1 ∗ 0j ∗ 1
with ΨA(n, i− 1) ≤ j < ΨA(n, i) are prefixes of σ, then σ is in Tn iff it is in Tn[si].
Otherwise, suppose that 0i ∗ 1 ∗ 0j ∗ 1 ⊆ σ. If σ is not of the form 0i ∗ 1 ∗ 0j ∗ 1 ∗ 0k

for some k ∈ N, then it is not in Tn. If σ = 0i ∗1∗0j ∗1∗0k (for some k ∈ N) search
for a stage s > k such that either ΨA(n, t) < j for some t > i (and the computation
converges with correct A use) or 0i ∗ 1 ∗ 0j ∗ 1 is active at s. Such a stage exists, by
the definition of active strings, the fact that ΨA(n, i − 1) ≤ j < ΨA(n, i) and the
totality of ΨA. If 0i ∗ 1 ∗ 0j ∗ 1 is active at s, clearly σ is in Tn. Otherwise σ is in
Tn iff it has been enumerated by stage s. This concludes the proof of the reduction
Tn ≤T A (uniformly in n) and the proof of (2.4). �

We note that via standard coding procedures one can replace ‘a-computable family’
in the statements of Corollary 2.10 and Theorem 2.11 with ‘family of degree a’.

ON THE NUMBER OF K-TRIVIAL SETS 9

2.3. Representing closed sets by trees of certain arithmetical complexity.
In this section we discuss the general question (1.2) from the introduction. In other
words, we are interested in replacing a given tree T with a simpler tree Q such that
[T] = [Q], i.e. the two trees have the same infinite paths. The complexity of Q will
ultimately depend on that of T . In the following we make this relation precise by
considering various measures of complexity. We note that the main idea behind the
solution of of Question 1.1 is exactly this: to replace certain trees that generate the
K-trivial sets with simpler ones (see Section 3). The following fact is the simplest
statement of this kind.

Theorem 2.12 (Folklore). Let n > 0. If T is a Π0
n tree, there is a ∆0

n tree Q such
that [T] = [Q].

The case n = 1 of Theorem 2.12 is a well known fact that allows the representa-
tion of Π0

1 classes with computable trees. Namely, the fact that for each Π0
1 tree

there is a computable tree with the same infinite paths. The other cases follow by
straightforward relativization, given that Π0

n is Π0
1(∅(n−1)) and ∆0

n is ∆0
1(∅(n−1)).

Theorem 2.12 fails for Σ0
n trees.

Theorem 2.13. Let n > 0. There is a Σ0
n tree T which only has computable paths

and [T] 6= [Q] for all Π0
n trees Q.

Proof. By Theorem 2.12 it suffices to prove this for Q restricted to ∆0
n trees.

We prove the case n = 1. The other cases follow by relativization, since ∆0
n is

∆0
1(∅(n−1)) and Σ0

n is Σ0
1(∅(n−1)).

Consider an effective list (Φe) of all partial computable functions from strings
to {0, 1}. We define a c.e. tree T with only computable infinite paths, such that
for each e ∈ N either Φe is partial or the set of strings that it computes is not a
tree, or the set of paths through the tree it computes is different to the set of paths
through T . First, we put all 0n, n ∈ N in T . For each e ∈ N we do the following.
Wait until a stage s such that for some ` < s, ` > e+ 1 and all extensions τ of 0e1
of length ` we have Φe(τ)[s] = 0. In that case put all 0e10n, n ∈ N in T .

Now suppose that Φe is total and computes a downward closed set of strings Qe.
If there is an infinite path through Qe extending 0e1, clearly there is no such path
through T . Otherwise 0e10ω ∈ [T]. In any case, [T] 6= [Q]. �

The following is another basic example of reducing the arithmetical complexity
of a tree while leaving the class of infinite paths invariant.

Theorem 2.14. Let n > 1. If T is a ∆0
n tree, there exists a Σ0

n−1 tree Q such that
[T] = [Q].

Proof. We give a proof for the special case n = 2. The other cases follow by
straightforward relativization of this argument, since ∆0

n is ∆0
2(∅(n−2)) and Σ0

n−1

is Σ0
1(∅(n−2)).

Let T be a ∆0
2 tree (as a downward closed set of strings) and let T [s] be a

computable approximation to it. Since T is a tree, we may assume that for each
s ∈ N, if σ ∈ T [s] then all τ ⊂ σ are in T [s]. We define a Σ0

1 tree Q as follows. For
each string σ,

σ ∈ Q ⇐⇒ ∃s ≥ |σ|, σ ∈ T [s].
Clearly T ⊆ Q, so [T] ⊆ [Q]. For the converse, suppose that X 6∈ [T]. Then there
exists some ρ ⊂ X such that ρ 6∈ T . Let s0 be a stage such that ρ 6∈ T [s] for all

10 GEORGE BARMPALIAS AND TOM STERKENBURG

s ≥ s0. Then level s0 of Q does not contain any extension of ρ, since this can only
happen when ρ ∈ T [s] for some s ≥ s0. Hence X is not in [Q]. �

The following result shows that we do not have much control over the Turing
degree of the Σ0

n−1 tree of Theorem 2.14.

Lemma 2.15. Let a be any degree. There exists a tree T of degree a which contains
only computable paths and such that for every tree Q, if [T] = [Q] then Q computes
a.

Proof. Let f be a 0-1 function of degree a. For each e ∈ N, if f(e) = 0 put all
02e10n, n ∈ N in T . If f(e) = 1 put all 02e+110n, n ∈ N in T . Clearly T ≡T f .
Suppose that Q is a tree with [T] = [Q]. To compute f(e) from Q search for a
level ` of Q such that either there are no extensions of 02e1 at level ` or there are
no extensions of 02e+11 at level `. By the assumptions, one of the two cases must
occur. In the first case f(e) = 1 and in the second case f(e) = 0. �

Lemma 2.15 exhibits a notion of ‘highness’ of trees T , in the sense that every tree
with the same paths must be at least as complicated as T . Corollary 2.16 shows
that a tree may possess ‘highness’ property of this type while being computationally
low in other respects.

Corollary 2.16. There exists a ∆0
2 tree T of superlow degree (with only computable

paths) such that all Σ0
1 trees Q with [T] = [Q] have degree 0′.

Proof. This follows from Lemma 2.15 if we consider a superlow PA degree a and
apply Arslanov’s completeness criterion. �

Corollary 2.16 also holds for trees of bounded width.

Proposition 2.17. There exists a ∆0
2 tree T of superlow degree of width 1, such

that all Σ0
1 trees Q with [T] = [Q] have degree 0′.

Proof. Let T consist of a single superlow set X of PA degree. If Q is a tree with
unique infinite path X, then X ≤T Q. By Arslanov’s completeness criterion, if Q
is also c.e. then ∅′ ≤T Q. �

Recall that if a tree T has finitely many infinite paths X, then each such X is
isolated and computable from T . Therefore

(2.5)
If T is a tree with finitely many paths Xi, i < n then there exists
a tree Q such that [T] = [Q] and Q ≡T ⊕i<nXi.

The following is a version of Theorem 2.14 for n = 2, where the given tree is
computable in some c.e. set C. In that case the constructed tree Q can be chosen
to be computable in C.

Proposition 2.18. If T is a tree, C is a c.e. set and T ≤T C then there exists a
c.e. tree Q such that [T] = [Q] and Q ≤T C.

Proof. The construction of Q is identical to the construction in the proof of
Theroem 2.14. Since C is c.e. and T ≤T C, the oracle C can compute for each
string σ a stage sσ such that T (σ)[s] remains contant for all s ≥ sσ. Therefore, for
each string σ the oracle C can compute a stage tσ such that either σ ∈ Q[tσ] or
σ 6∈ Q. Hence Q ≤T C. �

ON THE NUMBER OF K-TRIVIAL SETS 11

Theorem 2.19 shows that, despite Corollary 2.16, we do have some control over
the weak truth table degrees of the Σ0

1 tree representation of the class of paths
through a ∆0

2 tree. For a number of characterizations of the sets which wtt-bound
a diagonally non-computable function (in terms of Kolmogorov complexity) we refer
to [KHMS06, KHMS11].

Theorem 2.19. Given any ∆0
2 tree T there is a Σ0

1 tree Q such that [T] = [Q] and
there is no diagonally non-computable function f ≤wtt Q. In particular, Q is weak
truth table incomplete.

Proof. We combine the argument of Theorem 2.14 with diagonalization. Let
(Ψe;ψe) be a list of all partial weak truth table reductions (where ψe is a par-
tial computable function giving a strict upper bound on the use of the oracle in
procedure Ψe). We may assume that ψe are increasing and if n < m, ψe(m)[s] ↓
then ψe(n)[s] ↓. By convention, if ψe(n)[s] ↓ then e, n, ψe(n) < s. If ΨX

e (n) ↓
for some oracle X then ψe(n)[s] ↓ and the use of X in the computation ΨX

e (n) is
bounded by ψe(n)[s]. Also, we may choose the machines Ψe to take sets of strings
as oracles. In this case, the use of the oracle in a computation is the length of the
longest string which was involved in a query during the computation.

Let T [s] be a computable approximation to T such that for each s ∈ N, if
σ ∈ T [s] then all τ ⊂ σ are in T [s]. In order to deal with diagonally non-computable
functions, we need a partial control over the diagonal function ϕe(e) (where (ϕe) is a
universal enumeration of all partial computable functions). We construct a partial
computable function g and by the recursion theorem we may use a computable
function p such that g(n) ' ϕp(n)(p(n)) for each n ∈ N.

We construct a c.e. tree Q and denote by Q �n the set of strings in Q of length
less than n. The following requirements must be met.

Re : ΨQ
e is not diagonally non-computable.

Satisfying one requirement. The standard enumeration of Q consists of enumerating
σ into Q whenever there is a stage s > |σ| such that σ ∈ T [s]. While running the
standard enumeration of Q, we also wait until ψe(p(0)) ↓. If and when this happens,
we enumerate into Q all strings of length ψe(p(0)). If at a later stage ΨQ

e (p(0)) ↓,
we define g(0) = ΨQ

e (p(0)).
Since the extra enumeration into Q happens only once (and the standard enu-

meration of Q continues throughout the construction) the argument given in the
proof of Theorem 2.14 shows that Q is a tree and [T] = [Q]. Also, if ΨQ

e is total,
clearly g(0) = ϕp(0)(p(0)) = ΨQ

e (p(0)). Hence ΨQ
e is not diagonally non-computable

and Re is satisfied.

Satisfying all requirements. The global construction is a finite injury argument.
Strategy Re is allowed to define g on N[e] = {〈e, n〉 | n ∈ N}. It also has current
witness ne[s] at stage s, on which it is about to define g. We may define ne[s] in
advance, as the least n ∈ N[e] such that either ΨQ

e (p(n))[s] ↓= g(n)[s] or g(n)[s] ↑.
As usual, the suffix ‘[s]’ indicates the value of a parameter at the end of stage s.
We say that Re requires attention at stage s if

• ψe(p(i))[s] ↓ and ΨQ
e (p(i))[s] ↓ for all i ≤ ne[s]

• g(i)[s− 1] ↓⇒ g(i) 6= ΨQ
e (p(i))[s], for all i ≤ ne[s].

Notice that if Re requires attention at stage s then g(ne[s]) is undefined at the
beginning of stage s.

12 GEORGE BARMPALIAS AND TOM STERKENBURG

ψ0(p(n0))

ψe(p(ne))

`e

`e−1

`0

...

0

Figure 1. The tree Q with the parameters at the various levels.

To ensure that [Q] = [T] we use movable markers `e which correspond to levels
of Q where its enumeration is ‘controlled’. Let `−1[s] = 0 for each s ∈ N and let
`e[s] be the least number which is greater than all `i[s], i < e and greater than all
ψe(p(i))[s], i ≤ ne[s] that are defined.

Figure 1 illustrates the relation of these parameters. The shaded cones above
level `e−1 indicate that changes strictly below level `e (in particular, levels ≤
ψe(p(ne))) are always accompanied by changes at levels ≤ `e−1. This crucial prin-
ciple is met in Step (a) of the construction, where it is also explained in italics. As
a result, a diagonalization for Re when the shaded cone below `e−1 has settled is a
successful one. We order the strings first by length and then lexicographically.

Construction at stage s+ 1.

(a) Enumeration of Q: If some string of length `k[s] < s for some k is in T [s],
enumerate it and all of its extensions of length < `k+1[s] into Q.

Under the enumeration of Q, if ΨQ
e (p(ne[s]))[s] = g(ne[s])

the only reason why this computation may change is that
Q �`e−1[s]+1 changes. Inductively, marker `e−1 will reach a limit
and after finitely many definitions of g in N[e] we will have
ΨQ
e (p(ne)) = g(ne) permanently, for a final witness ne.

(b) Action of strategies: Find the least e ≤ s such that Re requires attention
and define g(ne[s]) = ΨQ

e (p(ne[s]))[s].

Verification. First we show by induction that Re is satisfied and `e, ne reach a limit,
for all e ∈ N. Suppose that this holds for all i < e and let s0 be the least stage
such that `e−1 and Q �`e−1+1 remain constant for all s ≥ s0. If at stages ≥ s0
strategy Re does not require attention, requirement Re is satisfied. Otherwise it
will define g(ne[s]) = ΨQ

e (p(ne))[s] at some stage s ≥ s0. This equality is going to
be preserved in later stages, since Q �ψe(p(ne[s])) does not change unless Q �`e−1+1

changes. Therefore Re is satisfied. Moreover ne can only move to smaller values
after s0. Since Ψe has computable use this can only happen finitely often. So ne
reaches a limit. This also means that `e will reach a limit, which concludes the
induction step.

ON THE NUMBER OF K-TRIVIAL SETS 13

Second, we show that [T] = [Q]. Since the markers `e, e ∈ N are in increasing
order and they all reach a limit, Step (a) of the construction implies that [T] ⊆ [Q].

For the converse suppose that X 6∈ [T]. Then there exists some σ ⊂ X and a
stage s1 such that T (σ)[s] = 0 for all s ≥ s1. We may also choose s1 large enough
so that all levels ≤ |σ| in Q have settled. By the enumeration we chose for T , this
means that at stages s ≥ s1 all extensions of σ are outside T [s]. We claim that
no extension of σ appears at level s1 of Q. Indeed, suppose that τ of length s1 is
enumerated in Q at some stage s2 + 1. Let ρ ⊆ τ be the minimal string that was
enumerated in Q at the same stage. Then ρ ∈ T [s2] so σ 6⊆ ρ by the choice of s1.
But |σ| < |ρ| by the choice of s1. Therefore σ 6⊆ τ . Since no extension of σ appears
at level s1 of Q we have X 6∈ [Q]. �

According to [KHMS06, KHMS11] we say that a set A is complex if there is an
unbounded non-decreasing computable function f such that K(A �n) ≥ f(n) for all
n ∈ N. In the same paper it was shown that a set is complex iff it wtt-computes a
diagonally non-computable function. In [BV, Section 2] the class of infinitely often
(i.o.) K-trivial sets was studied. These are the sets A such that for some e ∈ N
there are infinitely many n such that K(A �n) ≤ K(n) + e. It was shown that
if a set is not complex, it is i.o. K-trivial. Identifying sets of binary strings with
subsets of N (according to the standard ordering of strings, first by length and then
lexicographically) we have the following.

Corollary 2.20. Given any ∆0
2 tree T there is an infinitely often K-trivial c.e.

tree Q which has the same infinite paths as T .

In Section 3 we will show how we can obtain a c.e. K-trivial tree Q, under a stronger
assumption about T .

We say that a function g is diagonally non-computable relative to A if g(e) 6'
ΦAe (e) for all e ∈ N (where (Φe) is a universal enumeration of all Turing functionals).
The class of these functions is also denoted by DNC[A]. We note that the proof
of Theorem 2.19 relativizes to all levels of the arithmetical hierarchy, giving the
following: If n > 1 and T is a ∆0

n, there is a Σ0
n−1 tree Q such that [T] = [Q] and

there is no function f ∈ DNC[∅(n−2)] such that f ≤wtt Q.
Finally the following variation of Theorem 2.19 holds.

Theorem 2.21. Given any ∆0
2 tree T and a c.e. non-computable set A there is a

Σ0
1 tree Q such that [T] = [Q] and A 6≤wtt Q.

We omit the proof since it is very similar to the proof of Theorem 2.19.

3. The number of K-trivial sets

In this section we apply the general analysis and the ideas from Section 2 in
order to give a positive answer to Question 1.1 about the K-trivial sets that was
discussed in the introduction. Throughout the section the trees Te are fixed as
follows.

Definition 3.1 (K-triviality trees). Let Te be the set of strings σ with the property
K(σ �i) ≤ K(i) + e for all i < |σ|.

Clearly each Te is a tree and by the so-called coding theorem (see e.g. [Nie09,
Theorem 2.2.26]) there is a constant c such that the number of strings at each level
of Te is bounded by 2e+c. In particular the trees Te have bounded width, which

14 GEORGE BARMPALIAS AND TOM STERKENBURG

implies the they also have finite number of paths. Notice that Ke = [Te]. Hence
the range of the function e→ |Ke| is a subset of N.

3.1. Replacing trees with K-trivial trees. Identifying trees in the Cantor space
with the infinite binary code describing its characteristic function, we can talk about
K-triviality of trees. Recall that K-triviality is a degree-theoretic property. Hence
the K-triviality of a tree in the Cantor space does not depend on the way we code
it into a binary sequence.

Proposition 3.2. For each e ∈ N there exists a c.e. K-trivial tree Qe such that
[Te] = [Qe].

Proof. The tree Te has only finitely many infinite paths Xi, i < k and all of them
are K-trivial. Since the K-trivial sets are closed under join, X := ⊕i<kXi is K-
trivial. Also, every K-trivial set is computable from a c.e. K-trivial set. Let C
be a c.e. K-trivial set such that X ≤T C. By (2.5) there is a tree Se ≤T C such
that [Se] = [Te]. By Proposition 2.18 there is a c.e. K-trivial tree Qe such that
[Se] = [Qe]. Hence [Te] = [Qe]. �

As observed above, whether a tree is K-trivial is independent of the way that
it is coded into an infinite binary sequence. However when we talk about K-
triviality of a tree via a specific constant, the way the tree is coded into an infinite
binary sequence does matter. In other words, different codings may give rise to
different K-triviality constants. For this reason we fix the canonical way of coding,
which corresponds to the natural enumeration of binary strings, first by length and
then lexicographically. For a uniform version of Proposition 3.2 we need a direct
construction.

Theorem 3.3. There is a constant c and a uniformly c.e. sequence (Qe) of trees
such that Qe is K-trivial with constant 2e+ c and [Te] = [Qe], for all e ∈ N.

Proof. Let σ → f(σ) be the standard 1-1 (computable) function from 2<ω onto N
that enumerates the binary strings first by length and then lexicographically. This
function also defines a total ordering amongst the strings. Using f , any infinite
binary sequence can be seen as a subset of 2<ω and vice-versa. In the following we
identify trees with their binary codes (via f). Let g(n)[s] be the least number k > n
such that

∑
i≥k 2−K(i)[s] < 2−n. Clearly g is computable, non-decreasing in n and

lims g(n)[s] exists for each n ∈ N. Let Te[s] be a computable approximation to Te
(uniformly in e) such that for each s ∈ N, if σ ∈ Te[s] then all τ ⊂ σ are in Te[s]. To
demonstrate the K-triviality of the constructed sets, we build a prefix-free machine
M = ∪eMe. Let U be the underlying universal machine. We order the strings first
by length and then lexicographically.

Intuition. At each stage we will be enumerating short Me-descriptions of the code
of Qe that ensure that it is K-trivial. Each enumeration into Qe carries a certain
cost, namely the weight of the new descriptions needed for the segments of its
code that change. On the other hand such enumerations are triggered by new
strings appearing in Te with short descriptions. The construction makes sure that
an enumeration into Qe is only done when we can juxtapose the cost of it with
the weight of the new U -descriptions that have been produced in order for certain
strings to appear in Te. This accounting of the Me-cost of changes in Qe against
the U -cost of new strings appearing in Te is highlighted in (3.1) and illustrated in

ON THE NUMBER OF K-TRIVIAL SETS 15

f(σ) g(f(σ))0

0 |σ| |τ |

s

Machine Me

Machine U

Figure 2. The relation between the weights of Me and U as this is

described in (3.1).

Figure 2. The top line in in Figure 2 refers to lengths of the code of Qe and the
bottom line refers to lengths of strings that are described by U . The bold segment
in the top line covers the ‘main’ segments of the code of Qe that will need new
descriptions, should we choose to enumerate σ in Qe. The dotted segment in the
top line covers the segments of the code of Qe for which the weight of possible new
descriptions at stage s is negligible. The bold segment of the bottom line depicts
the segments of an extension τ of σ which have received short descriptions by U .
The construction will only enumerate σ into Qe if there is an extension τ as shown
in the figure. In this case it will also enumerate all initial segments of τ . Notice
that the construction of Qe and Me does not interact with the constructions of
Qi,Mi for i 6= e.

Construction. At stage s+ 1 do the following for each e < s:
(a) Look for the least k < s such that KMe

(Qe �k)[s] > K(k)[s] + 2e and
(if it exists) enumerate an Me-description of Qe �k of length K(k)[s] + e.

(b) Look for the least string σ such that f(σ), g(f(σ))[s] < s, σ 6∈ Qe[s] and
there is an extension τ ∈ Te[s] of σ with |τ | < s such that g(f(σ)) < |τ |.
If such string σ exists, we pick the least one and enumerate τ and all of
its initial segments into Qe. We also make sure that

KMe
(Qe[s+ 1] �n) ≤ K(n)[s] + 2e

for all n < s by enumerating new Me-descriptions for the n < s such that
Qe[s+ 1] �n 6= Qe[s] �n.

(3.1)

All n for which we enumerate new descriptions at step (b) are
> f(σ). Since g(f(σ)) < |τ | we can count the Me-weight∑
i∈[f(σ),g(f(σ))] 2−K(i)[s]−2e against the U -weight of the current

descriptions of τ �i for i ∈ [f(σ), g(f(σ))].

Verification. Clearly the constructed sets Qe are uniformly c.e. trees. We first show
that [Te] = [Qe] for all e ∈ N. Fix e ∈ N. By the construction, a string σ can only
be enumerated into Qe at a stage s > |σ| such that σ ∈ Te[s]. Hence the properties
of the approximations Te[s] imply that [Qe] ⊆ [Te] for each e ∈ N. To show the
converse let X ∈ [Te], n ∈ N. It suffices to show that at some stage σ := X �n is
enumerated in Qe. Let stage s0 > n be large enough such that the membership in
Qe of all smaller strings than σ has been settled, g(f(σ)) has reached a limit and
there is some extension τ ∈ Te[s0] of σ such that |τ | < s0 and g(f(σ)) < |τ |. Since

16 GEORGE BARMPALIAS AND TOM STERKENBURG

there is an infinite extension of σ in Te such a stage s0 will be found. If σ has not
been enumerated in Qe before s0, according to the construction it will be at this
stage. This completes the proof that [Qe] = [Te] for each e ∈ N.

The instructions for Me, e ∈ N that were produced in the construction ensure
that KM (Qe �n) ≤ K(n) + 2e for all n, e ∈ N. Indeed, for each n ∈ N Step (a)
provides the initial description Qe �n and replenishes it in case K(n) changes. If
Qe �n changes at some stage s (due to an enumeration of some strings) Step (b)
makes sure that a new description is produced for the new value of Qe �n. It
remains to show that the weight of the descriptions produced by M is bounded.
Indeed, in that case M is a prefix-free machine and KM (Qe �n) ≤ K(n) + 2e for all
n, e ∈ N. Therefore if c is an index of it we have K(σ) ≤ KM (σ) + c for all strings
σ and so, K(Qe �n) ≤ K(n) + 2e+ c for all n, e ∈ N. In particular Qe is K-trivial
with constant 2e+ c.

The weight of the Me descriptions that are produced in step (a) is bounded by
2−2e times the weight of the domain of the universal machine. Indeed, for each new
U -description of some n ∈ N step (a) enumerates a description of the current Qe �n
which is longer by 2e bits. Since the weight of the domain of U is less than 1, the
following holds.

(3.2) The weight of the Me descriptions issued in step (a) is < 2−2e.

The bulk of the weight of the descriptions that are produced in step (b) can be
counted against the weight of the U -descriptions, as we indicate in (3.1). Indeed,
by the definition of Te the weight of the new Me-descriptions that are enumerated
at step (b) for segments of Qe up to length g(f(σ)) is 2e times smaller than the
U -weight of the current descriptions of τ �i for i ∈ [f(σ), g(f(σ))]. Let us denote
this additional Me-weight at stage s by we[s]. The descriptions in the U -weight
have not been counted in previous stages because σ (and all of its extensions) are
not in Qe[s]. Also the descriptions in the U -weight will not be counted in later
stages because τ �i∈ Qe[s + 1] for i ∈ [f(σ), g(f(σ))]. Hence each increase we[s]
in the weight of Me at step (b) corresponds to a finite set of U -descriptions of
weight 2e · we[s], in a way that increases in different stages correspond to disjoint
sets of U -descriptions. Hence

∑
s we[s] < 2−e · wgt(U) < 2−e. By the definition

of g and since g(f(σ)) < |τ | the remaining descriptions issued at step (b) of stage
s (that were not counted in we[s]) have weight at most 2−f(σ)−e. Therefore the
total weight we add to Me at step (b) of stage s is ≤ we[s] + 2−f(σ)−e. But each
string is enumerated into Qe at most once. Since f is 1-1, by (3.2) and the previous
discussion we have

wgt(Me) ≤ 2−2e +
∑
s

we[s] +
∑
ρ∈2<ω

2−f(ρ)−e < 2−e+4.

So wgt(M) =
∑
e wgt(Me) < ∞. This shows that M is a prefix-free machine and

concludes the proof. �

Notice that the trees c.e. Qe in Theorem 3.3 cannot have bounded width. Indeed,
for each c.e. tree of bounded width there exists a computable tree with the same
(finitely many) paths. Therefore if Qe was c.e. all of its paths would be computable;
so [Te] 6= [Qe] for sufficiently large e, since there are K-trivial non-computable
paths.

ON THE NUMBER OF K-TRIVIAL SETS 17

The proof of Theorem 3.3 shows something more than the statement. Indeed,
the only facts about the trees Te that was used in this proof is that they are ∆0

2 and
[Te] ⊆ Ke. Hence the same proof shows the following. Recall that a ∆0

2 index of a
set X is a number n such that X = Φ∅

′

n . A Σ0
1 index of X is a number n such that

X is the n th c.e. set, under the standard universal enumeration of all c.e. sets.

Corollary 3.4. There exists a partial computable function p and a constant c such
that for each n, e the following holds. If n is a ∆0

2 index of a tree T and [T] ⊆ Ke
then p(n, e) is defined and equal to a c.e. index of a tree Q such that [T] = [Q] and
(the code of) Q is in Kc+e+n.

Corollary 3.4 can be stated more informally as follows.

(3.3)
Given a ∆0

2 tree T and e ∈ N such that [T] ⊆ Ke we can uniformly
produce a Σ0

1 tree Q and some m ∈ N such that [T] = [Q] and
(the code of) Q is in Km.

In Section 4 we will use (3.3) in order to answer the analogue of Question 1.1 for
the class of low for K sets.

3.2. Answer to Question 1.1. Recall that a set X is K-trivial with constant e if
K(X �n) ≤ K(n) + e for all n ∈ N. In this case e is a K-triviality index X. There
is an effective list of the K-trivial sets (in terms of ∆0

2 indices of them) along with
K-triviality indices of them. This was shown in [DHNS03]. Also, in [Nie05] it was
shown that all K-trivial sets are low. But how easy is to extract the ‘lowness’ of
a K-trivial set? A lowness index of a set X is an index of a reduction of X ′ to ∅′.
By [Nie09, Proposition 5.5.5] there is no effective procedure which takes a K-trivial
(along with an index for its K-triviality) and returns a lowness index of it. In fact,
this can be extended as follows.

Proposition 3.5. There is no ∅′-effective procedure which takes e ∈ N and a ∆0
2

index of a K-trivial set X with constant e and returns a lowness index of X.

We sketch the proof of Proposition 3.5. It is based on the following extension of
[Nie09, Theorem 5.3.22].

(3.4)
Given a low c.e. set X and a computable approximation to a
lowness index of X we can effectively produce a K-trivial set A
such that A 6≤T X.

The proof of (3.4) is an extension of the argument that was used in [Nie09, Theorem
5.3.22], where changes in the computable approximations initialize the strategies
and lower the ‘cost quotas’. Assuming that Proposition 3.5 does not hold, one
could use the effective list of K-trivial sets from [DHNS03] and get an effective list
of all the K-trivial sets along with computable functions that converge to a lowness
index of them. Then using an minor modification of (3.4), one would be able to
construct a K-trivial set which is not computable by any of the sets in the effective
list. This gives the desired contradiction.

It turns out however that ∅′′ has sufficient power to recover a lowness index of a
K-trivial set, given its K-triviality index.

Proposition 3.6. There is a partial 0′′-computable function f such that for each
e ∈ N, if Φ∅

′

e := Xe is total and K-trivial then f(e) is a lowness index of it (i.e.
X ′e = Φ∅

′

f(e)).

18 GEORGE BARMPALIAS AND TOM STERKENBURG

Proof. Given e, b ∈ N such that Φ∅
′

e := Xe is total, the question whether Xe is
low for K with index b (i.e. ∀n, K(n) ≤ KXe(n) + b) is decidable in 0′′. Indeed,
this follows from the fact that K(n) and KXe(n) are computable in 0′. Since every
K-trivial is low for K (see [Nie09, Theorem 5.4.1]) given e ∈ N such that Φ∅

′

e := Xe

is total and K-trivial, we can 0′′-effectively search and find a constant b such that
Xe is low for K with constant b. Let h be a partial 0′′-computable function which
computes this b (given input e as above).

By [Nie09, Proposition 5.1.2] the low for K sets are uniformly generalized low.
Hence, given e, b such that Φ∅

′

e := Xe is total and ∀n K(n) ≤ KXe(n) + b) we
can compute a lowness index of Xe. Let g be a partial computable function that
gives this computation. Then the partial 0′′-computable function g(f(e)) takes any
e ∈ N and if Φ∅

′

e := Xe is total and K-trivial it returns a lowness index for Xe. �

Corollary 3.7. The function GK is ∆0
3.

Proof. Notice that from a lowness index of a set X we can effectively compute a
low2-ness index of it (i.e. a number e such that Φ∅

′′

e = X ′′). Therefore the corollary
follows by a combination of (2.2), Theorem 3.3 and Proposition 3.6. �

Downey/Miller/Yu also showed (see [DH10, Theorem 10.1.12] or [Nie09, Propo-
sition 5.2.13, Exercise 5.2.15]) that the function GK not ∆0

2. Hence Corollary 3.7
gives a sharp classification of the arithmetical complexity of GK. However it seems
harder to code specific information in GK. We close this section with the following
question.

Question 3.1. Does GK compute ∅′′ or ∅′? Does this depend on the choice of the
underlying universal prefix-free machine?

4. The number of low for K sets

Question 1.1 can be asked about related Σ0
3 classes, like the low for K sets.

Recall that a set X is low for K if the prefix-free complexity function is dominated
by its X-relativized version modulo a constant. The latter constant is said to be
a low for K index of X. Although by [Nie05] the low for K sets coincide with
the K-trivial sets, they are parametrized in different ways that are not effectively
equivalent. To wit, as it is explained in [DHNS03] (and subsequently in [Nie05])
one cannot effectively obtain a low for K index of a set, given a K-triviality index
of it. Hence the analogue of Question 1.1 for low for K sets cannot be answered
simply by using Corollary 3.7. In this section we provide a positive answer.

The class of low for K sets can be expressed as an effective union of the Π0
2

classes
Le = {X | ∀τ ∈ 2<ω, K(τ) ≤ KX(τ) + e}

for e ∈ N. A set in Le is said to be low for K with index e. Let us denote the
class of low for K sets by L. We are interested in the arithmetical complexity of
the function GL(e) := |Le|.

The next step is to express each class Le as the set of infinite paths through a
certain ∆0

2 tree. Let

Le = {σ | ∃ρ ⊃ σ, ∀τ ∈ 2<|σ|, K(τ) ≤ Kρ(τ) + e}.
Each set Le is clearly a tree, and since the function (ρ, τ)→ Kρ(τ) is ∆0

2, so is Le.
Moreover, Le = [Le] for each e ∈ N.

ON THE NUMBER OF K-TRIVIAL SETS 19

Theorem 4.1. The function GL is ∆0
3.

Proof. By [Nie09, Proposition 5.2.3] there is a constant d such that if a set is low
for K with constant e then it is K-trivial with constant e+d. Therefore [Le] ⊆ Ke+d
for all e ∈ N. By Corollary 3.4 (also see (3.3)) there is a computable function q and
a uniformly Σ0

1 sequence (Qe) of trees such that [Qe] = [Le] and Qe ∈ Kq(e) for all
e ∈ N. Given e ∈ N and ∅′′ we describe how to compute GL(e). By Proposition 3.6
we can use ∅′′ to obtain a lowness index of Qe. Then by (2.2) we can compute the
number of infinite paths through Qe. By the choice of Qe this is equal to GL(e). �

By [Nie09, Proposition 5.2.3] there is a constant d such that if a set is low
for K with constant e then it is K-trivial with constant e + d. Hence GL(e) ≤
GL(e + d) for all e ∈ N. On the other hand a result of Downey/Miller/Yu (see
[DH10, Section 10.1.4] and [Nie09, Theorem 5.2.12]) says that

∑
eGK(e)/2e < ∞.

Therefore
∑
eGL(e)/2e <∞.

Downey/Miller/Yu also showed (see [DH10, Section 10.1.4] and [Nie09, Propo-
sition 5.2.13, Exercise 5.2.15]) that there is no ∆0

2 function h : N → Q such that
lims h(s) = 0 and GK(e)/2e < h(e) for all e ∈ N. This was used in order to show
that GK is not ∆0

2. We do the same for GL in order to show that the complexity
bound given in Theorem 4.1 is optimal.

Theorem 4.2. There is no ∆0
2 function h : N → Q such that lims h(s) = 0 and

GL(e)/2e < h(e) for all e ∈ N. Therefore GL is not ∆0
2.

Proof. Let h : N→ Q be a ∆0
2 function such that lims h(s) = 0. We will construct

a number t such that GL(t)/2t ≥ h(t). Let U be the underlying universal oracle
prefix-free machine.

Suppose, for the sake of an example, that h was computable. Then we would
proceed as follows. We construct a prefix-free machine M and by the recursion
theorem we may use an index d of it in its definition. We compute the least e such
that h(e+ d) < 2−d, fix pairwise incomparable strings σi, i < 2e of the same length
and define M such that KM (τ) ≤ mini<2e Kσi0

ω

(τ) + e for all strings τ . Clearly

wgt(M) < 2−e
∑
i<2e

wgt(Uσi0
ω

) < 1

so M is a prefix-free machine. Moreover K(τ) ≤ KM (τ)+d for all strings τ . Hence
K(τ) ≤ Kσi0

ω

(τ) + e + d for all strings τ . This shows that all σi0ω, i < 2e are in
Le+d and GL(e+ d) ≥ 2e. So h(e+ d) < GL(e+ d)/2e+d.

If the given function h is merely ∆0
2, we only have a computable approximation

such that h(n)[s]→ h(n) as s→∞. We proceed with a finite injury version of the
previous argument. We construct a prefix-free machine M and by the recursion
theorem we may use an index d of it in its definition. Define g(s) to be the least t
such that h(t+ d)[s] < 2−d. Since limn h(n) = 0 we have that lims g(s) exists.

Construction. Let s0 = 0. We choose pairwise incomparable strings σi, i < 2g(s0)

of the same length and at stages s > s0 with g(t) = g(s0) for each t ≤ s, we define
M such that KM (τ) ≤ mini<2g(s0) Kσi0

ω

(τ) + g(s0) for all strings τ of length < s.
Upon the first stage s1 such that g(s1) 6= g(s1 − 1) we choose j < 2g(s0) such that

wgt(M [s1 − 1]) < wgt(Uσj0
s1 [s1 − 1]) (such j exists, see verification)

20 GEORGE BARMPALIAS AND TOM STERKENBURG

and pick new strings σi[s1], i < 2g(s1) which are pairwise incomparable and are
extensions of σj [s1 − 1]. We continue defining M as before but based on the new
parameters, and for the stages s > s1 such that g(t) = g(s1) for each t ≤ s.
Continue as above for s0, s1,

Verification. By simultaneous induction we show that

wgt(M [s]) ≤ 2−g(s)
∑

i<2g(s)

wgt(Uσi0
ω

[s])(4.1)

∃j < 2g(s−1)
[
wgt(M [s− 1]) ≤ wgt(Uσj0

s

[s− 1])
]

if s = sk, k > 0.(4.2)

for each s ∈ N. Notice that in (4.2) the suffix [s−1] on Uσj0
s

also applies to σj since
the antichains σi, i < 2g(s−1) may change values in the course of the construction.
At stage 0 both (4.1) and (4.2) hold trivially. Let s > 0 and suppose that they hold
at stage s− 1. If s = sk for some k ∈ N, condition (4.2) holds because its negation
contradicts (4.1) at stage s − 1, which holds by the induction hypothesis. On the
other hand, the construction does not enumerate M -descriptions at this stage so
wgt(M [s]) = wgt(M [s− 1]). Also, the new antichain σi, i < 2g(s) is defined so that
all strings extend a string σj [s−1] of the previous antichain with the property (4.2).
Hence wgt(Uσi0

ω

[s]) ≥ wgt(M [s]) for all i < 2g(s) and (4.1) holds.
Now suppose that s is not one of the special stages sk, so (4.2) holds trivially. For

(4.1) we can argue exactly as in the case where h was computable. Any increase
in wgt(M) would be due to a new description σ enumerated in one of Uσi0

ω

[s],
i < 2g(s). But in that case the increase in wgt(M) would be 2−|σ|−g(s). Hence by
induction hypothesis (4.1) holds at stage s. This concludes the induction and the
proof of (4.1), (4.2).

By (4.1) we have wgt(M) < 1, so M is a prefix-free machine with index d. Since
lims g(s) exists there are only finitely many special stages sk. Let σj , j < 2e be
the final antichain that is chosen, at the modulus of convergence s∗ of g. Also
let g(s∗) = e, so that h(e + d) < 2−e. Since (4.2) holds at special stages, the
construction will never get stuck and KM (τ) ≤ mini<2e Kσi0

ω

(τ) + e for all strings
τ . Since K(τ) ≤ KM (τ) + d we have K(τ) ≤ Kσi0

ω

(τ) + e + d for all strings τ .
This shows that all σi0ω, i < 2e are in Le+d and GL(e+ d) ≥ 2e. By the definition
of e and g we have h(e+ d) < 2−d ≤ GL(e+ d)/2e+d. �

References

[BV] George Barmpalias and Charlotte Vlek. Kolmogorov complexity of initial segments of

sequences and arithmetical definability. Preprint, June 2010.
[Cha76] G. Chaitin. Information-theoretical characterizations of recursive infinite strings. The-

oretical Computer Science, 2:45–48, 1976.

[DH10] Rod Downey and Denis Hirshfeldt. Algorithmic Randomness and Complexity.
Springer, 2010.

[DHNS03] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals.

In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore,
2003. Singapore Univ. Press.

[Ers68] Yuri L. Ershov. A certain hierarchy of sets. Algebra i Logika, 7(1):47–74, 1968.

[KHMS06] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity
and the recursion theorem. In STACS, pages 149–161, 2006.

[KHMS11] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity

and the recursion theorem. Trans. Amer. Math. Soc., 363, 2011.
[Nie05] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.

ON THE NUMBER OF K-TRIVIAL SETS 21

[Nie09] André Nies. Computability and Randomness. Oxford University Press, 2009.

[Sol75] R. Solovay. Handwritten manuscript related to Chaitin’s work. IBM Thomas J. Watson

Research Center, Yorktown Heights, NY, 215 pages, 1975.
[SS90] Richard Shore and Theodore Slaman. Working below a low2 recursively enumerable

degree. Arch. Math. Logic, 29:201–211, 1990.

George Barmpalias Institute for Logic, Language and Computation, Universiteit

van Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands.
E-mail address: barmpalias@gmail.com

URL: http://www.barmpalias.net/

Tom Sterkenburg Institute for Logic, Language and Computation, Universiteit van

Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands.

E-mail address: tsterken@science.uva.nl

http://www.barmpalias.net/

	1. Introduction
	1.1. Overview
	1.2. Basic concepts

	2. The number of paths through a tree
	2.1. Arithmetical complexity of the number of paths through a tree
	2.2. Paths through trees and the jump hierarchy
	2.3. Representing closed sets by trees of certain arithmetical complexity

	3. The number of K-trivial sets
	3.1. Replacing trees with K-trivial trees
	3.2. Answer to Question 1.1

	4. The number of low for K sets
	References

