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Abstract

We propose a new perspective on logics of computation by combin-
ing instantial neighborhood logic INL with bisimulation safe operations
adapted from PDL and dynamic game logic. INL is a recently pro-
posed modal logic, based on a richer extension of neighborhood semantics
which permits both universal and existential quantification over individ-
ual neighborhoods. We show that a number of game constructors from
game logic can be adapted to this setting to ensure invariance for instan-
tial neighborhood bisimulations, which give the appropriate bisimulation
concept for INL. We also prove that our extended logic IPDL is a con-
servative extension of dual-free game logic, and its semantics generalizes
the monotone neighborhood semantics of game logic. Finally, we provide
a sound and complete system of axioms for IPDL, and establish its finite
model property and decidability.

1 Introduction

In this paper, we introduce a new modal logic of computation, in the style
of propositional dynamic logic, based on instantial neighborhood logic INL [3].
The logic INL is based on a recent variant of monotone neighborhood semantics
for modal logics, called instantial neighborhood semantics. In the standard
neighborhood semantics, the box operator has the interpretation: �p is true
at a point if there exists a neighborhood in which all the elements satisfy the
proposition p. So the box operator has a built-in fixed existential-universal
quantifier pattern. In instantial neighborhood logic, we allow both universal and
existential quantification over individual neighborhoods, so the basic modality
has the form �(p1, ..., pn; q). This formula is true at a point if there exists
a neighborhood N in which all the elements satisfy the proposition q, and
furthermore each of the propositions p1, ..., pn are satisfied by some elements of
N . INL is more expressive than monotone neighborhood logic, and comes with
a natural associated notion of bisimulation together with a Hennessy-Milner
theorem for finite models. It has a complete system of axioms, has the finite
model property, is decidable and PSpace-complete.
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Formally, our proposal is to consider an extension of the base language INL
by bisimulation safe “program constructors”, as in the standard propositional
dynamic logic of sequential programs (PDL). The usual repertoire here consists
of choice, test, sequential composition and a Kleene star for program itera-
tion. Similar additions have already been studied extensively for the standard
(monotone) neighborhood semantics, where the constructors are interpreted as
methods of constructing complex games (this idea dates back to [13]). In the
neighborhood setting, some additional operations are available, including the
dual construction. This is a very powerful construction, and it is well known
that dynamic game logic is not contained in any fixed level of the µ-calculus
alternation hierarchy [4].

We think of our extended logic, which we call instantial PDL (IPDL for
short), as a dynamic logic for a richer notion of computation than sequen-
tial programs. We consider a computational process as an agent acting in an
uncertain environment that affects the outcome of each action. This is sim-
ilar to the thinking behind the alternating-time temporal logic ATL of Alur
et al. [1]. Dynamic game logic can be interpreted in a similar way, thinking
of processes as “games against the environment”. Instantial neighborhood se-
mantics introduces a more fine-grained perspective to this setting, with a more
expressive language and a finer bisimulation concept than standard neighbor-
hood bisimilarity, namely the instantial neighborhood bisimulations of [3]. The
game theoretic interpretation is made formally precise in Section ??.

We provide sound and complete axioms for our instantial propositional dy-
namic logic IPDL, prove decidability via finite model property, and establish
bisimulation invariance. The latter amounts to bisimulation safety for our pro-
gram constructors. The completeness proof for the language IPDL, including all
the program constructors that we consider, is based on the standard complete-
ness proof for PDL (see [5] for an exposition), but involves some non-trivial new
features. In particular, the axiom system requires two distinct induction rules,
corresponding to a nested least fixpoint induction, and the model construction
makes heavy use of a normal form for INL-formulas established in [3].

Overview of the paper

We first introduce syntax and semantics of instantial neighborhood logic, and
extensions of it leading up to the full language IPDL, in an abstract setting,
provide sound and complete systems of axioms, and prove decidability. We then
motivate the setup by providing a formally precise game theoretic interpretation
of the neighborhood semantics, with concrete interpretations of the program
constructors that are familiar from game logic. Finally, we prove that our logic
is a conservative extension of the dual free fragment of dynamic game logic.
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2 Instantial neighborhood logic

2.1 Syntax and semantics

We start by reviewing the basic language for instantial neighborhood semantics.
The only difference with our first paper on instantial neighborhood logic is that
we are interpreting the language over labelled neighborhood structures, where
the labels play the same role as “atomic programs” in PDL or “atomic games”
in game logic.

The syntax of INL is given by the following grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [a](Ψ;ϕ)

where a ranges over a fixed set A of atomic labels, and Ψ ranges over finite sets
of formulas of INL. We have deviated a bit from the syntax of [3] here in allowing
Ψ to be a finite set rather than a tuple of formulas. We shall sometimes write
[a](ψ1, ..., ψn;ϕ) rather than [a]({ψ1, ..., ψn};ϕ), in particular we write [a](ψ;ϕ)
rather than [a]({ψ};ϕ), and [a]ϕ rather than [a](∅;ϕ).

Formulas in INL will be interpreted over neighborhood structures.

Definition 1. A neighborhood frame is a structure (W,R) where W is a set and
R associates with each a ∈ A a binary relation Ra ⊆W ×PW . A neighborhood
model (W,R, V ) is a neighborhood frame together with a valuation V : Prop→
PW .

We define the interpretations of all formulas in a neighborhood model M =
(W,R, V ) as follows:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[[a](ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆W such that:

(u, Z) ∈ Ra and Z ⊆ [[ϕ]], Z ∩ [[ψi]] 6= ∅ for i ∈ {1, ..., k}

We write M, v  ϕ for v ∈ [[ϕ]], and we write  ϕ and say that ϕ is valid
if, for every game model M and v ∈ W , we have M, v  ϕ. We allow the
notation [[−]]M to make explicit reference to the model in the background.

Neighborhood models come with a natural notion of bisimulation, introduced
in a more general setting in [3]. For this definition, the so called Egli-Milner
lifting of a binary relation will play an important role:

Definition 1. The Egli-Milner lifting of a binary relation R ⊆ X ×Y , denoted
R, is a relation from PX to PY defined by: ZRZ ′ iff:

1. For all z ∈ Z there is some z′ ∈ Z ′ such that zRz′.
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2. For all z′ ∈ Z ′ there is some z ∈ Z such that zRz′.

We write R;S for the composition of relations R and S. It is well known
that the Egli-Milner lifting preserves relation composition:

R;S = R;S

Definition 2. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be any neighborhood
models. The relation B ⊆ W × W ′ is said to be an instantial neighborhood
bisimulation if for all uBu′ and all atomic labels a we have:

Atomic For all p, u ∈ V (p) iff u′ ∈ V ′(p).

Forth For all Z such that uRaZ, there is some Z ′ such that u′R′aZ
′ and ZBZ ′.

Back For all Z ′ such that u′R′aZ
′ there is some Z such that uRaZ and ZBZ ′.

We say that pointed models M, w and N, v are bisimilar, written M, w ←→ N, v,
if there is an instantial neighborhood bisimulation B between M and N such
that wBv.

It is easy to check that all formulas of INL are invariant for instantial neigh-
borhood bisimilarity:

Proposition 1. If M, w ←→ N, v then M, w  ϕ iff N, v  ϕ, for each formula
ϕ of INL.

2.2 Axiomatization

We now turn to the task of axiomatizing the valid formulas of INL. Our system of
axioms is a gentle modification of the axiom system for instantial neighborhood
logic presented in [3].

INL axioms

Mon: [a](ψ1, ..., ψn;ϕ)→ [a](ψ1 ∨ α1, ..., ψn ∨ αn;ϕ ∨ β)

Weak: [a](Ψ;ϕ)→ [a](Ψ′;ϕ) for Ψ′ ⊆ Ψ

Un: [a](ψ1, ..., ψn;ϕ)→ [a](ψ1 ∧ ϕ, ..., ψn ∧ ϕ;ϕ)

Lem: [a](Ψ;ϕ)→ [a](Ψ ∪ {γ};ϕ) ∨ [a](Ψ;ϕ ∧ ¬γ)

Bot: ¬[a](⊥;ϕ)
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Rules

MP:
ϕ→ ψ ϕ

ψ

RE:
ϕ↔ ψ θ

θ[ϕ/ψ]

where θ[ϕ/ψ] is the result of substituting some occurrences of the formula
ψ by ϕ in θ.

We denote this system of axioms by Ax1 and write Ax1 ` ϕ to say that the
formula ϕ is provable in this axiom system. We also write ϕ `Ax1 ψ for Ax1 `
ϕ→ ψ, and say that ϕ provably entails ψ.

Theorem 1. The system Ax1 is sound and complete for validity on neighborhood
models.

The proof of this result is essentially the same as in [3], and will not be
repeated here.

Since the proof in [3] constructs a finite model for each consistent formula,
we also get:

Theorem 2. The logic INL is decidable and has the finite model property.

3 Program operations

We now extend the language INL with four basic PDL-style operations: test,
choice, parallel composition and sequential composition. The resulting language
will be called dynamic instantial neighborhood logic, or (DINL). The syntax of
DINL is defined by the following dual grammar.

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [π](Ψ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ◦ π

We define the interpretation [[o]] of each operation o ∈ {∪,∩, ◦} in a neigh-
borhood model M as a binary map from pairs of neighborhood relations to
neighborhood relations, as follows:

− R1[[∪]]R2 = R1 ∪R2

− R1[[∩]]R2 = {(w,Z1 ∪ Z2) | (w,Z1) ∈ R1 & (w,Z2) ∈ R2}

− (w,Z) ∈ R1[[◦]]R2 iff there is some set Y and some family of sets F such
that (w, Y ) ∈ R1, (Y, F ) ∈ R2 and Z =

⋃
F .

5



The interpretation [[?]] of the test operator will be a map [[?]] assigning a neigh-
borhood relation to each subset Z of W , defined by:

[[?]]Z := {(u, {u}) | u ∈ Z}

Note that [[?]] is monotone in the sense that Z ⊆ Z ′ implies [[?]]Z ⊆ [[?]]Z ′. Each
operator o ∈ {∪,∩, ◦} is also monotone, in the sense that R1[[o]]R2 ⊆ R′1[[o]]R′2
whenever R1 ⊆ R′1 and R2 ⊆ R′2. For the sequential composition operator, this
uses the well known fact that the Egli-Milner lifting is monotone, i.e. R ⊆ R′

whenever R ⊆ R′.
We can now define the semantic interpretations of all formulas, and the

neighborhood relations corresponding to all complex labels π, by the following
mutual recursion:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[[π](ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆W such that:

(u, Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] 6= ∅ for i ∈ {1, ..., k}.

- Rπ1oπ2
= Rπ1

[[o]]Rπ2
for o ∈ {∪,∩, ◦}.

- Rϕ? = [[?]][[ϕ]]

To motivate the semantic interpretations of the dynamic operators, we show
how they in a precise sense generalize familiar operations from game logic.

Definition 3. Let M = (W,R, V ) be a neighborhood model. Then M is said
to be monotone if for all atomic labels a ∈ A, w ∈ W and Z,Z ′ ⊆ W : if
(u, Z) ∈ Ra and Z ⊆ Z ′ then (u, Z ′) ∈ Ra also.

The definitions of the dynamic operations are tailored towards obtaining the
following result:

Proposition 2. All formulas of DINL are invariant for instantial neighborhood
bisimulations.

3.1 Axiomatization

Our axiom system for DINL will take the sound and complete axioms for INL as
its foundation, and extend it with reduction axioms for the test, choice, parallel
composition and sequential composition operators. The axioms and rules are
listed below; note that the INL axioms and the axioms for frame constraints are
now stated for arbitrary complex labels π rather than just atoms a.
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INL axioms:

(Mon), (Weak), (Un), (Lem) and (Bot)

Reduction axioms:

Test: [γ?](Ψ;ϕ)↔ γ ∧
∧

Ψ ∧ ϕ

Ch: [π1 ∪ π2](Ψ;ϕ)↔ [π1](Ψ;ϕ) ∨ [π2](Ψ;ϕ)

Pa: [π1 ∩ π2](Ψ;ϕ)↔
∨
{[π1](Θ1;ϕ) ∧ [π2](Θ2;ϕ) | Ψ = Θ1 ∪Θ2}

Cmp: [π1 ◦ π2](ψ1, ..., ψn;ϕ)↔ [π1]([π2](ψ1;ϕ), ..., [π2](ψn;ϕ); [π2]ϕ)

Rules:

(MP) and (RE)

We denote this system of axioms by Ax2 and write Ax2 ` ϕ to say that the
formula ϕ is provable in this axiom system. We also write ϕ `Ax2 ψ for Ax2 `
ϕ→ ψ. We shall sometimes drop the reference to Ax2 to keep notation cleaner.

Proposition 3 (Soundness). If Ax2 ` ϕ, then ϕ is valid on all neighborhood
models.

By applying soundness of the reduction axioms, we can use a standard ar-
gument to obtain for every consistent formula ϕ of DINL a provably (and hence
semantically) equivalent formula ϕt in INL, which is then satisfiable by Theorem
1. For example, the formula [γ?](ψ1, ..., ψn;ϕ)t is defined to be γt∧ψt1∧...∧tn∧ϕ.

We get:

Theorem 3 (Completeness). A formula ϕ of DINL is valid on all neighborhood
models iff Ax2 ` ϕ.

Furthermore, the finite model property and decidability clearly carry over
from INL:

Theorem 4. The logic DINL is decidable and has the finite model property.

4 Game interpretation

4.1 Games and neighborhoods

In this section we provide an interpretation of our neighborhood semantics in
terms of games. We shall think of programs as divided into two components:
computations that merely change the internal state of the system, and input-
output stages at the end of each computation in which the system communicates
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with the external world. In concrete applications this could consist of receiv-
ing a signal along some channel of communication, producing a “side effect”
of the computation in the form of an observable output, checking the value of
some random variable etc. Furthermore we shall assume that the system has
only finitely many internal states, but that there are prima facie infinitely many
possible results of communicating with the outside world at an “input-output”
stage. This assumption seems to be fairly mild, since many models of compu-
tation (Turing machines, finite automata, Mealy/Moore machines etc.) do in
fact assume that the system itself has only finitely possible internal states but
can in principle receive or produce an infinite number of possible inputs and/or
outputs. In a game theoretic context one interpretation in particular comes
to mind, namely to think of the program terms as denoting game forms that
describe the underlying structure of a game in terms of possible moves for each
player at each position of the game, and taking the possible “outputs” of a game
to be elements of R representing the possible payoffs for some given player. For
a finite game tree, this application will of course satisfy our assumption. 1

We begin with revisiting some standard and basic definitions of game theory,
mainly to fix notation:

Definition 2. Let Σ be any set. A (wellfounded) Σ-tree T non-empty and
prefix closed subset of Σ∗, the collection of finite words over the alphabet Σ,
such that every subset of T that is linearly ordered by the prefix relation is
finite. The empty word ε is called the root of the tree. Given a word ~m ∈ T ,
if m′ ∈ Σ is such that ~m ·m′ ∈ T then ~m ·m′ is called a child of ~m and ~m is
called the parent of ~m ·m′. A node in T is called a leaf if it has no children.
A branch of a tree T is a maximal subset of T that is linearly ordered by the
prefix relation.

Definition 3. Let O be any non-empty set. A n-player game with outcomes
in O is a structure G = (Π,Σ, T , t, o) where:

− Π is a set of n players,

− Σ is a set of moves,

− T is a wellfounded Σ-tree,

− t is a map sending each non-leaf node in T to a player in Π,

− o is a map sending each leaf node in T to an outcome in O.

A strategy for a player p in Π is a map σ : t−1[T ]→ Σ such that ~m · σ(~m) ∈ T
for each ~m ∈ T with t(~m) = p. A match M in a game G is a branch of T , and
a match M is said to be guided by a strategy σ for p ∈ Π if for all ~m ∈ M
with t(~m) = p, ~m · σ(~m) ∈ M also. Since branches of T are in one-to-one

1Note also that the assumption that a system has only finitely many states is generally
consistent with our neighborhood semantics, since all the logics that we consider here will
be shown to have the finite model property, so we could equally well use finite neighborhood
models for a sound and complete semantics.
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correspondence with leaves, we can also identify a match with the corresponding
leaf. The outcome set of a strategy σ, denoted o[σ], is the set of all elements of
O of the form o(l) where l corresponds to some σ-guided match.

Definition 4. Let Γ be an infinite set and W a finite set. A two-player game
G over W with communication over the channel Γ is a tuple (Σ, T , t, o), where
Σ is a finite set and

({A,B, [I/O]},Σ ∪ Γ, T , t, o′)

is a three-player game with players {A,B, [I/O]}, such that:

− if t(~m) = [I/O] then the children of ~m are precisely the nodes of the form
~m · s for s ∈ Γ,

− if some child of ~m is a leaf in T , then all children of ~m are leaves, t(~m) =
[I/O], and o(~m · s) = o(~m · s′) for all s, s′ ∈ Γ,

− if t(~m) 6= [I/O] then m′ ∈ Σ for every child ~m ·m′ of ~m,

− the root ε is not a leaf of T .

The players of a two-player game G with communication over a channel are
A and B. We think of the extra player [I/O] as a process that deterministically
produces the new internal state of the system at the end of a computation, and
also non-deterministically chooses a signal along the channel Γ. We say that
the game G is atomic if the only nodes of the form ~m · s for s ∈ Γ are leaves,
and composite otherwise - the intution being that nodes belonging to [I/O] are
stages of a composite game at which one if its component games ends and the
system communicates with the external world. We denote the set of all games
over W with communication over the channel Γ by G(W,Γ).

Definition 5. A dynamic game over W with communication over the channel
Γ is a map:

g : W → G(W,Γ)

The basic power relation Pow(g) ⊆W ×PW induced by g is defined by setting
(w,Z) ∈ Pow(g) iff there is a strategy σ for Player A in g(w) with o[σ] = Z.

Definition 6. A relation R ⊆W ×PW will be called a standard neighborhood
relation if for all w ∈W :

1. R[w] 6= ∅,

2. ∅ /∈ R[w].

Proposition 4. Let Γ be an infinite set and W any finite set. A neighborhood
relation R ⊆W ×PW is standard iff there is a dynamic game g : W → G(W,Γ)
such that R = Pow(g), iff there is an atomic dynamic game g such that R =
Pow(g).
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Proof. It is clear that Pow(g) is a standard neighborhood relation for any dy-
namic game g : W → G(W,Γ), atomic or composite. Conversely, suppose that
R ⊆ W × PW is a standard neighborhood relation on W . We sketch the con-
struction of a dynamic game g: construct the game g(w) to be played in three
rounds:

Round 1 Player A chooses a set Z such that wRZ,

Round 2 Player B chooses an element of the set Z,

Round 3 Player [I/O] chooses a signal in Γ.

The outcome of a match is the element chosen by Player B in the second round.
It is clear that this is an atomic game with communication along the channel Γ
and that Pow(g) = R.

Remark 1. Note that we have not assumed that all neighborhood relations
are standard, since we want to represent the test operator by a neighborhood
relation. We can think of this particular case as a non-standard game, which
violates the usual condition that each player has at least one available strategy.

4.2 Game operations

Next, we consider three operations on dynamic games:

Choice

Given dynamic games g1, g2 : W → G(W,Γ), we define the game g1 ∪ g2 that
offers Player A a choice between the two games g1, g2. Formally, given that
g1(w) = (Σ1, T1, t1, o1) and g2(w) = (Σ2, T2, t2, o2), we define (g1 ∪ g2)(w) =
(Σ′, T ′, t′, o′) by setting:

− Σ′ = Σ1 ∪ Σ2 ∪ {L,R}

− T ′ = {ε} ∪ {L · ~m | ~m ∈ T1} ∪ {R · ~m | ~m ∈ T2}

− t′(ε) = A,

− t′(L · ~m) = t1(~m) for ~m ∈ T1 and t′(R · ~m) = t2(~m) for ~m ∈ T2,

− if X · ~m is a leaf then o′(X · ~m) = o1(~m) if X = L, o′(X · ~m) = o2(~m) if
X = R.

Dual choice

The dual choice operation offers a choice between two games for B rather than
A: given dynamic games g1, g2 : W → G(W,Γ) we define the game g1 ∩ g2 as
follows. If g1(w) = (Σ1, T1, t1, o1) and g2(w) = (Σ2, T2, t2, o2), then we define
(g1 ∩ g2)(w) = (Σ′, T ′, t′, o′) by setting:

− Σ′ = Σ1 ∪ Σ2 ∪ {L,R}
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− T ′ = {ε} ∪ {L · ~m | ~m ∈ T1} ∪ {R · ~m | ~m ∈ T2}

− t′(ε) = B,

− t′(L · ~m) = t1(~m) for ~m ∈ T1 and t′(R · ~m) = t2(~m) for ~m ∈ T2,

− if X · ~m is a leaf then o′(X · ~m) = o1(~m) if X = L, o′(X · ~m) = o2(~m) if
X = R.

Sequential composition

The sequential composition g1 ◦g2 of two games g1, g2 : W → G(W,Γ) is defined
as a game where first a match of g1 is played, and then a match of g2 is played.
If g1(w) = (Σ1, T1, t1, o1) and g2(v) = (Σv2, T v2 , tv2, ov2) for each v ∈ W then we
define (g1 ∪ g2)(w) = (Σ′, T ′, t′, o′) by setting:

− Σ′ = Σ1 ∪ Σ2

− T ′ = T1 ∪ {~m · ~n | ~m a leaf of T1 & ~n ∈ T o1(~m)
2 }

− t′(~m) = t1(~m) for ~m ∈ T1 and t′(~m · ~n) = t
o1(~m)
2 (~n) for ~m a leaf of T1 and

~n ∈ T o1(~m)
2 ,

− o′(~m · ~n) = oo1 ~m2 (~n) if ~m · ~n is a leaf.

Note that all three game operations preserve the conditions we imposed on
games in G(W,Γ), so that they are indeed well defined binary operations on
G(W,Γ). Furthermore, we can now show that our game interpretation of neigh-
borhood structures gives the right result for the program constructors:

Proposition 5. Let g1, g2 : W → G(W,Γ) be dynamic games over W with
communication along the channel Γ, where W is a finite set of states and Γ an
infinite set. Then:

− Pow(g1 ∪ g2) = Pow(g1)[[∪]]Pow(g2)

− Pow(g1 ∩ g2) = Pow(g1)[[∩]]Pow(g2)

− Pow(g1 ◦ g2) = Pow(g1)[[◦]]Pow(g2)

Proof. The easy proofs for choice and dual choice are left to the reader. We
focus on the sequential composition operation:

Pick some w ∈ W , and fix the notation g1(w) = (Σ1, T1, t1, o1) and g2(v) =
(Σv2, T v2 , tv2, ov2) for each v ∈ W . Suppose first that (w,Z) ∈ Pow(g1 ◦ g2). Then
there is some strategy σ for Player A in (g1 ◦ g2)(w) such that o[σ] = Z. We
define a strategy σ1 for Player A in g1(w) by letting σ1 be the restriction of the
map σ to the set of positions in g1(w) belonging to A. Let o1[σ1] ⊆ W be the
outcome set of this strategy in g1(w), so that (w, o1[σ1]) ∈ Pow(g1). For each
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leaf ~m ∈ T1 corresponding to a σ1-guided match, define the strategy σ ~m2 for
Player A in g2(o1(~m)) by setting:

σ ~m2 (~n) = σ(~m · ~n)

for each ~n belonging to Player A in g2(o1(~m)). Then for each leaf ~m in T1

corresponding to a σ1-guided match, we have

(o1(~m), o
o1(~m)
2 [σ ~m2 ]) ∈ Pow(g2)

But it is quite obvious that the union of the family F of all sets o
o1(~m)
2 [σ ~m2 ],

for ~m in T1 corresponding to a σ1-guided match, is equal to g[σ], i.e. to Z.
Since (w, o1[σ1]) ∈ Pow(g1) and (o1[σ1], F ) ∈ Pow(g2), it follows that (w,Z) ∈
Pow(g1)[[◦]]Pow(g2) as required.

Conversely, suppose that (w,Z) ∈ Pow(g1)[[◦]]Pow(g2). Then there is a
set Y ⊆ W and a family of sets F ⊆ PW such that (w, Y ) ∈ Pow(g1),
(Y, F ) ∈ Pow(g2) and

⋃
F = Z. By definition of Pow(g1), there exists a strategy

σ1 for A in g1(w) such that o1[σ1] = Y . Furthermore, by the definition of a
game with communication along the channel Γ, it is clear that for each v ∈ Y
there are at least |Γ| many σ1-guided matches ~m such that o1(~m) = v. So
let f be a surjective map from the set of σ1-guided matches onto F such that
(o1(~m), f(~m)) ∈ Pow(g2) for each σ1-guided match ~m, which clearly exists since:

− the domain of f is of greater cardinality than F , which must be finite,

− (Y, F ) ∈ Pow(g2) and

− o1[σ1] = Y .

For each σ1-guided match ~m, since (o1(~m), f(~m)) ∈ Pow(g2) there exists a strat-

egy σ ~m2 for Player A in g2(o1(~m)) such that o
o1(~m)
2 [σ ~m2 ] = f(~m). Now, define a

strategy σ in (g1 ◦ g2)(w) by setting σ(~m) = σ1(~m) for a position ~m belonging
to Player A and which is also a position in g1(w), and set

σ(~m · ~n) = σ ~m2 (~n)

for a position of the form ~m · ~n where ~m is a leaf in g1(w) corresponding to a
σ1-guided match. It is easy to see that o[σ] = Z, so (w,Z) ∈ Pow(g1 ◦ g2) as
required.

5 Program iteration and the language IPDL

We now introduce the final operation that we consider here, a Kleene star for
finite iteration. This operation will be set up to generalize the game iteration
operation from game logic. The corresponding language will be denoted by
IPDL, read “instantial PDL”, and is given by the following dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [π](Ψ;ϕ)

12



π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ◦ π | π∗

For the semantic interpretation of the Kleene star, it will be useful to first define
the relation skip by:

skip := {(w, {w}) | w ∈W}
We now define a relation R[ξ] for each ordinal ξ by induction as follows.

− R[0] = ∅

− R[ξ+1] = skip[[∪]](R[[◦]]R[ξ])

− Rκ =
⋃
ξ<κR

[ξ] if κ is a limit ordinal.

We define [[∗]]R to be equal to R[ξ], where ξ is the smallest ordinal satisfying
R[ξ] = R[ξ+1]. It is easy to see that this is a standard least fixpoint construction,
in particular we have:

Proposition 6. Let W be a finite set and R ⊆W × P(W ). Then:

[[∗]]R =
⋃
n∈ω

R[n]

Semantics of IPDL-formulas in a neighborhood model M = (W,R, V ) are
now defined as follows:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[[π](ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆W such that:

(u, Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] 6= ∅ for i ∈ {1, ..., k}.

- Rπ1oπ2
= Rπ1

[[o]]Rπ2
for o ∈ {∪,∩, ◦}.

- Rϕ? = [[?]][[ϕ]].

- Rπ∗ = [[∗]]Rπ.

Proposition 7. All formulas of IPDL are invariant for instantial neighborhood
bisimulations.

The proof of this is a bisimulation safety argument, and the step for the
Kleene star involves using the bisimulation safety of union and sequential com-
position to prove the appropriate back-and-forth conditions for each approxi-

mant R
[ξ]
π of the least fixpoint Rπ∗ = [[∗]]Rπ. We omit the details.

13



5.1 Axiomatization

Our axiomatization for IPDL is given below.

INL axioms:

(Mon), (Weak), (Un), (Lem) and (Bot).

Reduction axioms from DINL:

(Test), (Ch), (Pa) and (Cmp).

Basic rules:

(MP) and (RE).

Kleene star

Finally we add axioms and rules for iteration. The Kleene star is a least fixpoint
construction, and a standard approach to axiomatizing least fixpoints is to use
one fixpoint axiom and one induction rule (see [10]). The fixpoint axiom Fix is
stated as follows:

[π∗](Ψ;ϕ)↔ (
∧

Ψ ∧ ϕ) ∨ [π ◦ π∗](Ψ;ϕ)

We will actually need two induction rules:

Ind1:
ϕ→ γ [π]γ → γ

[π∗]ϕ→ γ

Ind2:
(ψ ∧ ϕ)→ γ [π](γ; [π∗]ϕ)→ γ

[π∗](ψ;ϕ)→ γ

Remark 2. The reason that we require two distinct induction rules can be seen
as follows: the reduction axioms for IPDL should be interpreted as encoding a
recursive translation of the language IPDL into the modal µ-calculus (interpeted
on instantial neighborhood models). When we pass by formulas involving the
Kleene-star in this translation, the translation will not surprisingly involve least
fixpoint operators, and the induction rules then correspond to the Kozen-Park
induction rules for least fixpoint operators. This step of the translation is trickier
than the step for the Kleene star in a translation of PDL into the µ-calculus
(see [6]), and requires use of nested least fixpoint variables.

Note also that the second induction axiom only involves a single instan-
tial formula ψ. This is because we can “pre-process” an arbitrary formula
[π∗](ψ1, ..., ψn;ϕ) by applying the axiom Fix, and then applying the composi-
tion axiom (Cmp) to the formula [π ◦ π∗](ψ1, ..., ψn;ϕ) to obtain the formula:

[π]([π∗](ψ1;ϕ), ...., [π∗](ψn;ϕ); [π∗]ϕ)

14



Here, each occurrence of the operator [π∗] is followed by at most one instantial
formula.

We denote this axiom system as Ax3 and write ϕ `Ax3 ψ to say that Ax3 ` ϕ→
ψ. We will also sometimes drop the explicit reference to the system Ax3, simply
writing ` ϕ or ϕ ` ψ.

Theorem 5. The axiom system Ax3 is sound and complete for validity over
neighborhood models.

The soundness part of this theorem is a fairly straightforward check. For
the completeness proof, we shall rely heavily on the following lemma, which was
proved (in a slightly different formulation) in [3]: fix a finite and subformula
closed set of formulas Σ. An atom over Σ is a maximal consistent subset of Σ,
and we denote the set of atoms over Σ by At(Σ). Given any atom w ∈ At(Σ),

let ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z} for a set of atoms Z.

Lemma 1. Let [π](Ψ;ϕ) be any formula such that each formula in Ψ ∪ {ϕ} is
a boolean combination of formulas in Σ. Then [π](Ψ;ϕ) is provably equivalent

to a disjunction of formulas of the form [π](Ẑ;
∨
Ẑ) for Z ⊆ At(Σ) being some

set of atoms with w ` ϕ for each w ∈ Z and for all ψ ∈ Ψ there is some v ∈ Z
with v ` ψ.

We shall also need an adapted concept of Fischer-Ladner closure:

Definition 4. A set Σ of formulas is said to be Fischer-Ladner closed if the
following clauses hold:

− If ϕ ∈ Σ, and the main connective of ϕ is not ¬, then the formula ¬ϕ is
in Σ.

− Any subformula of a formula in Σ is in Σ.

− If [γ?](Ψ;ϕ) is in Σ then so is γ ∧
∧

Ψ ∧ ϕ.

− If [π1 ◦π2](ψ1, ..., ψn;ϕ) ∈ Σ, then [π1]([π2](ψ1;ϕ), ..., [π1](ψn;ϕ); [π2]ϕ) is
in Σ too.

− If [π1 ∪ π2](Ψ;ϕ) ∈ Σ then [π1](Ψ;ϕ) ∨ [π2](Ψ;ϕ) ∈ Σ too.

− If [π1 ∩ π2](Ψ;ϕ) ∈ Σ then the formula:∨
{[π1](Θ1;ϕ) ∧ [π2](Θ2;ϕ) | Ψ = Θ1 ∪Θ2}

is in Σ too.

− If [π∗](Ψ;ϕ) ∈ Σ then (
∧

Ψ ∧ ϕ) ∨ [π ◦ π∗](Ψ;ϕ) is in Σ too.
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Lemma 2. Every formula ϕ is a member of some finite Fischer-Ladner closed
set of formulas.

Proof. Standard, see for example [5].

Fix a finite and Fischer-Ladner closed set of formulas Σ. An atom over Σ is a
maximal consistent subset of Σ, and we denote the set of atoms over Σ by At(Σ).

Given any atom w ∈ At(Σ), let ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z}
for a set of atoms Z.

Lemma 3. Let [π](Ψ;ϕ) be any formula such that each formula in Ψ ∪ {ϕ} is
a boolean combination of formulas in Σ. Then [π](Ψ;ϕ) is provably equivalent

to a disjunction of formulas of the form [π](Ẑ;
∨
Ẑ) for Z ⊆ At(Σ) being some

set of atoms with w ` ϕ for each w ∈ Z and for all ψ ∈ Ψ there is some v ∈ Z
with v ` ψ.

Definition 5. Given any label π, we define the relation SΣ
π ⊆ At(Σ)×P(At(Σ))

by setting (w,Z) ∈ SΣ
π iff ŵ∧[π](Ẑ;

∨
Ẑ) is consistent with respect to the system

Ax3.
The canonical neighborhood model over Σ denoted CΣ is defined as the triple

(WΣ, RΣ, V Σ) where WΣ is the set of atoms over Σ, RΣ
a = SΣ

a for each atomic
label a, and V Σ(p) = {w ∈WΣ | p ∈ w}.

The key lemma in the completeness proof, which is proved using the induc-
tion rules for the Kleene star, is the following:

Lemma 4. For each label π, we have SΣ
π∗ ⊆ [[∗]](SΣ

π ).

Lemma 4 is needed to prove Lemma 5 below, by induction on the complexity
of program terms. Say that a label π is safe if, for every formula γ such that
the term γ? appears in π, we have γ ∈ Σ and furthermore, γ ∈ w iff CΣ, w  γ
for each w ∈ At(Σ).

Lemma 5. For every safe label π, we have SΣ
π ⊆ RΣ

π .

Using Lemma 5 we can prove a truth lemma for the canonical model:

Lemma 6. For every atom w and any ψ ∈ Σ, we have (CΣ, w)  ψ if and only
if ψ ∈ w.

Finally, we can now prove Theorem 5: suppose the formula ϕ is not provable,
so that ¬ϕ is consistent. By Lemma 2, ¬ϕ belongs to some finite Fischer-Ladner
closed set Σ and since ¬ϕ is consistent it belongs to some atom w. Hence ϕ /∈ w
and by Lemma 6 we have CΣ, w 1 ϕ. So ϕ is not valid.

As a corollary to the completeness proof, which produces a finite model for
a consistent formula, we get:

Theorem 6. IPDL has the finite model property and is decidable.
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6 Comparison with game logic

We now show that IPDL can, in a precise sense, be viewed as a language exten-
sion of dual-free game logic. We shall denote this language simply by GL, for
“game logic”, although the full dynamic game logic also includes a dual con-
structor. Formally, formulas of GL and game terms are defined by the following
dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [π]ϕ

π := a ∈ A | ϕ? | π ◦ π | π ∪ π | π ∩ π | π∗

where Prop is a fixed set of propositional variables and A is a set of atomic
games, both assumed to be countably infinite. Note that GL is a syntactic
fragment of IPDL. Here, ∪ is interpreted as “angelic choice” (choice for Player
I), ∩ is interpreted as “demonic choice” (choice for Player II), ◦ is sequential
game composition and ∗ is finite game iteration (controlled by Player I).

Semantics of game logic formulas are again given by neighborhood frames,
with the extra constraint that neighborhoods associated with a world are up-
wards closed under subsethood:

Definition 6. A neighborhood frame (W,R) is said to be a monotonic power
frame if the following condition holds for each a ∈ A:

(Monotonicity) For all u ∈W , if (u, Z) ∈ Ra and Z ⊆ Z ′ then (u, Z ′) ∈ Ra.

A monotonic power model is a neighborhood model whose underlying frame
is a monotonic power frame.

In order to provide the semantic interpretations of formulas in a model, we
need to provide semantic interpretations of the game constructors. We shall
use double vertical lines ‖−‖ to refer to semantic interpretations of formulas
in GL and game constructors in monotonic neighborhood models, in order to
distinguish it from the semantics given for IPDL, where we use square brackets
[[−]]. We follow the definitions in [2]. Formally, we define operations on the
lattice NW = P(W × P(W )) of neighborhood relations over W as follows:

- R‖∪‖R′ = R ∪R′

- R‖∩‖R′ = R ∩R′

- (u, Z ′) ∈ R‖◦‖R′ iff there is some Z ⊆W with (u, Z) ∈ R and (v, Z ′) ∈ R′ for
all v ∈ Z.

- ‖?‖(Z) = {(w,Z ′) ∈W × P(W ) | w ∈ Z ∩ Z ′}

Finally, we define ‖∗‖R to be the least fixpoint in the lattice NW of the mono-
tone map F defined by:

FS = skip↑‖∪‖(R‖◦‖S)
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where skip↑ = {(w,Z) ∈W ×P(W ) | w ∈ Z}. We can now set up the semantics
of GL. Fixing a monotonic power model M, we define the interpretation of every
formula ϕ and the neighborhood relations Rπ corresponding to each game term
π in the obvious way, so that in particular we have -Rπ1∪π2

= Rπ1
‖∪‖Rπ2

,
Rπ1∩π2

= Rπ1
‖∩‖Rπ2

etc., and u ∈ ‖[π]ϕ‖ iff (u, ‖ϕ‖) ∈ Ra. For a monotonic
power model M = (W,R, V ) and u ∈ W we shall also write M, u � ϕ for
u ∈ ‖ϕ‖. Since semantic interpretations are always defined relative to a model,
if necessary we shall use the notation ‖−‖M rather than ‖−‖ to make it clear
which model M is being referred to. We write � ϕ if M, u � ϕ for every pointed
monotone power model (M, u). We get the following result, showing in what
sense IPDL indeed generalizes the semantics of GL:

Proposition 8. For any GL-formula ϕ, and any monotonic power model M,
we have ‖ϕ‖M = [[ϕ]]M.

From this proposition, we get the following result:

Theorem 7. IPDL is a conservative extension of GL. That is, for every GL-
formula ϕ, we have

� ϕ iff  ϕ

In other words: the formulas of IPDL that are valid on arbitrary neighbor-
hood frames form a conservative extension of the GL-formulas that are valid
over monotonic power frames.

7 Concluding remarks

We have explored a propositional dynamic logic defined over instantial neigh-
borhood logic. A language extension that is clearly related to the framework
of this paper is the addition to the base language of least and greatest fixpoint
operators, which for standard modal logic results in the modal µ-calculus. It
is well known that PDL can be viewed as a fragment of the modal µ-calculus.
In fact, our logic IPDL can also be translated into the analogous extension of
INL with fixpoints. The translation is not straightforward though, and in fact
the best translation we have found so far even causes an exponential blowup
in formula size. We have omitted this material here due to lack of space. The
fixpoint extension of INL is a very well behaved language: as shown in [3], INL
is a coalgebraic modal logic corresponding to a weak pullback preserving functor
- the double covariant powerset functor - that additionally preserves finite sets.
(This should be contrasted with the monotone neighborhood functor, which is
the appropriate functor for monotone modal logic and is known not to preserve
weak pullbacks - see [12]. The monotone neighborhood functor is not suitable
for INL since INL-formulas are not invariant for the behavioural equivalence
associated with this functor.) This means that the µ-calculus extension of INL
will inherit a number properties that hold in much wider generality: the lan-
guage has the finite model property and is decidable [15], a sound and complete
system of axioms is available [8] and the uniform interpolation property holds
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[11]. Note however that it does not mean that we obtain our completeness result
(and hence decidability and finite model property) for free, since completeness
for fragments of modal µ-calculi does not generally follow easily from complete-
ness of the full languages. Witnessing examples are Reynold’s highly non-trivial
completeness proof for CTL∗ [14] (which is a fragment of the µ-calculus [7]), or
Parikh’s game logic, which still lacks a complete system of axioms.

There is a growing body of work on PDL-like coalgebraic logics, with generic
results on axiomatizability, see for example [9]. This setting is clearly related
to the present work, however our system IPDL is not covered by this frame-
work as it stands: while the covariant powerset functor is a monad, the double
covariant powerset functor is not, which would be a requirement for existing
work on coalgebraic PDL-logics to readily apply2. Perhaps the framework can
be modified to capture IPDL as an instance – we offer this as a challenge and
an interesting direction for future research.
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