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Abstract. The structure of the K-degrees provides a way to classify sets

of natural numbers or infinite binary sequences with respect to the level of
randomness of their initial segments. In the K-degrees of infinite binary se-

quences, X is below Y if the prefix-free Kolmogorov complexity of the first n

bits of X is less than the complexity of the first n bits of Y , for each n. Iden-
tifying infinite binary sequences with subsets of N, we study the K-degrees of

arithmetical sets and explore the interactions between arithmetical definability

and prefix free Kolmogorov complexity.
We show that in the K-degrees, for each n > 1 there exists a Σ0

n nonzero

degree which does not bound any ∆0
n nonzero degree. An application of this

result is that in the K-degrees there exists a Σ0
2 degree which forms a minimal

pair with all Σ0
1 degrees. This extends work of Csima/Montalbán [CM06] and

Merkle/Stephan [MS07]. Our main result is that, given any ∆0
2 family C of se-

quences, there is a ∆0
2 sequence of non-trivial initial segment complexity which

is not larger than the initial segment complexity of any non-trivial member of

C. This general theorem has the following surprising consequence. There is
a 0′-computable sequence of nontrivial initial segment complexity which is

not larger than the initial segment complexity of any nontrivial computably

enumerable set.
Our analysis and results demonstrate that, examining the extend to which

arithmetical definability interacts with the K reducibility (and in general any

‘weak reducibility’) is a fruitful way of studying the induced structure.

1. Introduction

The desire to compare the randomness ‘degree’ of two infinite binary sequences
has led to the introduction of randomness reducibilities. An infinite sequence is
called random if the prefix-free complexity K of its initial segments is very high,
namely equal to the very length of the segment (modulo a constant). Therefore
a straightforward way to compare two sequences with respect to randomness is to
compare the prefix-free complexity of their initial segments. Let K(σ) denote the
prefix free complexity of string σ and say that A ≤K B if K(A �n) ≤+ K(B �n) for
all n ∈ N.1 This measure of randomness is called K-reducibility and was introduced
in [DHL04], along with its plain Kolmogorov complexity counterpart. The induced
structure of K-degrees has been a subject of interest in the last 5 years or so, though
in terms of development this area is still in its infancy.
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Miller and Yu studied the K-degrees of random sets in [MY08, MY10]. Csima
and Montalbán constructed a minimal pair of K-degrees in [CM06]. Their method
was highly non-constructive, making the pair merely ∆0

4 (i.e. definable with four
quantifiers), as noticed in [DH09, Section 10.13]. Merkle and Stephan (motivated by
a number of related questions in [MN06]) studied the interaction between the Turing
and the K reducibility in [MS07], along with its plain complexity counterpart, the
C reducibility. Amongst many other results they showed that there is a pair of Σ0

2

sets which form a minimal pair in the K-degrees.
The study of the K reducibility is part of a larger study of the so-called ‘weak

reducibilities’. These are preorders that measure various notions related to random-
ness (of sets), as opposed to computational complexity. Such reducibilities, like K,
do not have an underlying map i.e. an algorithm mapping (reducing) the second
set to the first one. The existence of such maps is a vital feature in the Turing or
stronger reducibilities.

In the Turing degrees, Post’s theorem gives an important link between reducibil-
ity (computability) and definability. For example, if a set is Turing reducible to
a Σ0

1 set then it is ∆0
2. A lot of the methods that underly the theory of Turing

degrees rest on this link with definability. This breaks down when one considers
weak reducibilities. For example, a feature that one finds in most weak reducibili-
ties is that they can have uncountable lower cones. That is, there are uncountable
classes, all of whose elements are reducible to a single set. Consider a related weak
reducibility that was defined in [Nie05], the LK reducibility (see Table 1).2 We say
that A ≤LK B if KB(σ) ≤+ KA(σ) for all strings σ, where KX denotes the prefix
free complexity relative to X. That is, if B compresses more than (or at least as
well as) A. It was shown in [BLS08] that for sufficiently ‘strong’ oracles B, the
≤LK-cone below B is uncountable. Such properties also affect the study of local
structures of the degrees, for example restricted to the Σ0

1 or the ∆0
2 sets. To illus-

trate this, consider a ∆0
2 set B and A ≤T B; then A is ∆0

2. However by [Bar10b]
there are uncountably many A such that A ≤LK B (unless B ≤LK ∅). This means
that there is no hope to derive any definability of A from B when A ≤LK B.3

Table 1. Equivalence relations with respect to various weak re-
ducibilities and their meaning.

≡K Same prefix-free complexity of the corresponding initial segments.
≡C Same plain complexity of the corresponding initial segments.
≡LK Same relativized prefix free complexity.
≡LR Same notion of relativized randomness.

As a result, a number of methods that we use in the study of the Turing degrees
do not have a counterpart in the study of ‘weaker’ degrees. Following up such
differences sometimes lead to elementary differences between classical structures
like the Turing degrees and related structures based on weaker reducibilities. For
a number of such examples we refer to [Bar10a].

2Miller (see [Nie09, Theorem 5.6.5]) showed that ≤LR equals ≤LK .
3However in the special case when B is low for Ω (i.e. the halting probability Ω is random

relative to it) A ≤LK B implies that A is ∆0
2 relative to B. This was shown in [Mil09].
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But why is it useful to look for definability in weaker reducibilities? The presence
of definability in a weak reducibility indicates that methods from the classical theory
of the Turing degrees may be applicable to the study of it. We illustrate this by
an analysis of definability in the K-degrees which, amongst other things, gives new
ways to obtain minimal pairs in this structure. In Section 2 we study the class of
infinitely often (i.o.) K-trivial sequences. These are sequences that have infinitely
many initial segments σ with the property that K(σ) ≤+ K(|σ|). We note that the
class of sets that are ≤K-below such sequences is very well behaved; in particular it
is countable. Therefore such sequences locally generate good definability conditions.
We also show that these sequences are rather common. Every truth-table degree
contains an i.o. K-trivial set; in particular they are uncountably many. Also every
(weakly) 1-generic set is i.o. K-trivial, so they form a co-meager class.

In Section 3 we study how arithmetical complexity interacts with the structure
of K-degrees. Given a degree structure, the Σ0

1 degrees are the ones which contain
a Σ0

1 set. The same applies to other classes of the arithmetical hierarchy. We show
that, in the K-degrees, for each n > 1 there exists a nonzero Σ0

n degree which
does not bound any nonzero ∆0

n degree. The particular case n = 2, combined
with the basic properties of the i.o. K-trivial sets from Section 2, gives a Σ0

2 degree
which forms a minimal pair with every non-zero Σ0

1 degree. This extends the work
of Csima/Montalbán [CM06] and Merkle/Stephan [MS07] on minimal pairs in the
K-degrees. However their methods are entirely different than ours.

In fact it is possible in the K-degrees to construct a ∆0
2 non-zero degree which

does not bound any Σ0
1 non-zero degrees. This result requires more effort and is

rather surprising as Σ0
1 sets have relatively low initial segment complexity. It also

shows a contrast between the local structures of the K and the LK degrees, since
in [Bar10a] it was shown that in the LK degrees every non-zero ∆0

2 degree bounds
a non-zero Σ0

1 degree. Our method shows that, more generally, given any uniformly
0′-computable family of sets there exists a 0′-computable set of non-zero K-degree
such that no set in the family is ≤K-reducible to it, unless it is reducible to ∅. The
proof of this main result is presented in Section 4.

The first construction of a minimal pair in the K-degrees was given in [CM06]
through a brute-force argument. The proof relied on the construction of a non-
decreasing unbounded function f such that for each set X

∀n [K(X �n) ≤+ K(n) + f(n)] ⇐⇒ X ≤K ∅. (1.1)

We refer to functions that satisfy (1.1) as gap functions for K-triviality and study
them in Section 5. For example, we show that there is no ∆0

2 unbounded non-
decreasing gap function forK-triviality. This shows that the method used in [CM06]
cannot be used in order to produce minimal pairs in the K-degrees of arithmetical
complexity less than Σ0

2. Gap functions for K-triviality are interesting in their own
right and are also related to the so-called Solovay functions that were studied in
[BD09, HKM09]. In Section 5 we study their arithmetical complexity and discuss
the role they play in the K-degrees.

2. Infinitely often K-trivial sets

Recall that a set A is low for K if the compression of strings is not improved when
A is used as an oracle. In other words, if KA =+ K.4 Hirschfeldt and Nies showed

4We say that f =+ g for two functions f, g if f ≤+ g and g ≤+ f .
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in [Nie05] that lowness of K is equivalent to K-triviality. In [Mil09] Miller defined a
weak version of lowness for K by requiring that KA(n) =+ K(n) for infinitely many
n (instead of all n). This variation turned out to be a fruitful characterization of
lowness for Ω.5 In particular, within ∆0

2 it coincides with lowness for K. Consider
the following analogous weakening of the notion of K-triviality.

Definition 2.1. A set A is called K-trivial on a set M ⊆ N with constant c if
K(A �n) ≤ K(n) + c for all n ∈M . If it is K-trivial on an infinite set then we call
it infinitely often K-trivial with constant c.

A simple argument in [Nie09, Exercise 5.2.9] shows thatK-triviality on an infinite
computable set coincides with K-triviality. In the following we show that the class
of infinitely often K-trivial sets is rather large, and quite different to the class of
weakly low for K sets. Recall that given an enumeration of a set in stages, there are
infinitely many n, s such that n is enumerated at stage s and no i < n is enumerated
at any stage r ≥ s. Given a c.e. set A (and a computable enumeration of it with no
repetitions), let us call the set of all such n (which are part of a pair n, s as above)
set of minimal enumerations of A. The following proposition was shown for plain
complexity in [HKM09] using the same argument. Moreover it has been known to
a number of researchers, although we are not aware of any explicit reference in the
literature.

Proposition 2.2. Every c.e. set is infinitely often K-trivial (on the set of its
minimal enumerations).

Proof. Fix a computable enumeration (As) of A without repetitions and a univer-
sal prefix free machine U . Machine M does the following for each n ∈ N. It waits
for a stage s were n is enumerated in A and assigns to As �n all U -descriptions
of 0n. Since each number is enumerated in A at most once, M is prefix free. If
n is a minimal enumeration of A it is clear that KM (A �n) ≤ K(0n). Hence
K(A �n) ≤ K(n) + c for some constant c and all n in the set of minimal enumera-
tions of A. �

The following results show that the sets that are ≤K-below an infinitely often
K-trivial set Y are ∆0

2 definable in Y .

Proposition 2.3. Suppose that Y is infinitely often K-trivial. Then each set in
the lower cone {X | X ≤K Y } is computable in Y ⊕ ∅′.

Proof. Suppose that Y is infinitely often K-trivial via constant c0 and X ≤K Y
via c1. Let c = c0 + c1 and Fc(n) := {σ | |σ| = n ∧ K(σ) ≤ K(n) + c}. By the
coding theorem we have that there is some constant b such that |Fc(n)| < 2c+b for
all n ∈ N. Let Fc denote the downward closure of the set of strings ∪n∈NFc(n).
Since the prefix free complexity function K is computable from ∅′, the infinite set
M on which Y is K-trivial (via constant c0) is computable from Y ⊕∅′. Hence the
downward closure of the set of strings ∪n∈MFc(n) is computable from Y ⊕ ∅′. Let
us denote this subtree of the tree Fc by Lc. The cardinality of the levels of Lc have
the same constant bound 2c+b. By the choice of c, the set X is an infinite path
through Lc. Since Lc is a Y ⊕ ∅′-computable tree with a constant bound on the
cardinality of its levels, its infinite paths are computable in Y ⊕ ∅′. �

5Recall that a set is low for Ω if the latter is Martin-Löf random relative to it.
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Proposition 2.4. If Y is K-trivial on an infinite set M , then it is computable
from ∅′ ⊕M .

Proof. The tree Lc from the proof of Proposition 2.3 is also computable in ∅′⊕M .
Since there is a constant bound on the cardinality of its levels, its paths (including
Y ) are computable in ∅′ ⊕M . �

By Proposition 2.3, every set that is ≤K-below an infinitely often K-trivial ∆0
2

set Y is ∆0
2. However we do not know if the class of sets that are ≤K-below

Y is (uniformly) ∆0
2. To be more precise, we recall the following definition from

computability theory. Let (Φe) be an effective list of all Turing functionals.

Definition 2.5. A class C of subsets of N is called a ∆0
2 family (or uniformly ∅′-

computable) if it can be written in the form {Ce | e ∈ N} where Ce = {n | ψ(e, n)}
and ψ is a ∆0

2 property (i.e. a property that can be expressed in arithmetic with
equivalent Σ0

2 and Π0
2 formulas). Equivalently, if there is a computable function f

such that C = {Φ∅
′

f(e) | e ∈ N}, where Φ∅
′

f(e) is total for each e ∈ N.

Recall that a set is ω-c.e. if it has a computable approximation where, for each n ∈ N
the number of changes of the nth digit is bounded by the value of a computable
function on n. It is not hard to see that the ω-c.e. sets form a ∆0

2 family while the ∆0
2

sets do not. A basic fact about the K-trivial c.e. sets is that they form a uniformly
c.e. family of sets (e.g. see [Nie09, Fact 5.2.6]). Perhaps more interestingly, the
K-trivial sets form a ∆0

2 family. This follows from the fact that the ω-c.e. K-trivial
sets form a ∆0

2 family (see [Nie09, Theorem 5.3.28]) and the deeper fact that K-
trivial sets are ω-c.e. (see [Nie09, Corollary 5.5.4]). In particular, the lower cone
in the K-degrees below ∅ is a ∆0

2 family. We do not know if there are non-trivial
lower cones in the K-degrees with the same property. The notions introduced in
Definition 2.5 will play an important role in Sections 3 and 4.

In terms of Lebesgue measure the class of infinitely often K-trivial sets is small
(i.e. it has measure 0). Indeed, no infinitely often K-trivial set is Martin-Löf ran-
dom. However in most other respects it is rather large, as we demonstrate below.
We first need the following fact.

Lemma 2.6. Let V be an infinite c.e. set with the property that for each n ∈ N
there is at most one string of length n in V . Then K(σ) ≤+ K(|σ|) for all σ ∈ V .

Proof. Let U be the universal prefix free machine. Consider a prefix-free machine
which, given σ ∈ V it assigns to σ the U -descriptions of 0|σ|. By the properties of
V such a machine exists, and K(σ) ≤+ K(0σ) ≤+ K(|σ|) for each σ ∈ V . �

Theorem 2.7. There is a computable pruned perfect tree such that every path in
it is infinitely often K-trivial. In particular there are 2ℵ0 infinitely often K-trivial
sets.

Proof. Consider a computable tree T : 2<ω → 2<ω such that |T (σ)| 6= |T (τ)| if
σ 6= τ . Then the range of T is a c.e. set V which satisfies the properties of Lemma
2.6. Hence any path ∪nT (X �n) through the tree is K-trivial on the infinite set of
numbers |T (X �n)|, n ∈ N. �

The following Corollary is implicit in [MS07], although it is obtained using different
methods.

Corollary 2.8. Every truth table degree contains an infinitely often K-trivial set.
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Proof. Let A be any set and let T be the tree of Theorem 2.7. Notice that T can
be viewed as a total Turing functional Φ : 2ω → 2ω via X → ∪nT (X �n). Moreover
we can define a total Turing functional Ψ : 2ω → 2ω which is the inverse of Φ on the
paths of T and some finite set on other paths. Now let ΦA = B, so that ΨB = A.
Then B ≤tt A and A ≤tt B. Moreover B is infinitely often K-trivial since it is on
T . �

Theorem 2.9. Every (weakly) 1-generic set is infinitely often K-trivial. In par-
ticular, the class of infinitely often K-trivial sets is co-meager.

Proof. Every weakly 1-generic set meets every infinite dense set of strings infinitely
often. This is because every co-finite subset of a dense set of strings is dense. Hence
by Lemma 2.6 it suffices to define a dense set V of strings σ such that no two strings
in V have the same length. Indeed, in that case we have K(σ) ≤+ K(|σ|) for each
string σ ∈ V . Hence any sequence that intersects V infinitely often is infinitely
often K-trivial.

The set V is defined recursively as follows, based on a computable enumeration
(σs) of all strings. At stage s + 1 put in V the least string6 which extends σs and
its length is larger than the lengths of all the strings in V [s]. Clearly V has the
desired properties. �

The following theorem can be combined with various basis theorems for Π0
1

classes to give infinitely often K-trivial sets with additional properties.

Theorem 2.10. There is a nonempty Π0
1 class which consists of infinitely often

K-trivial sets but does not contain any K-trivial sets.

Proof. We only give a sketch of the proof since it does not involve new ideas. Let
V be a c.e. dense set of strings σ such that K(σ) ≤+ K(|σ|). This is obtained
as in the proof of Theorem 2.9. Let c be a constant such that K(n) ≤ 2 log n + c
for all n, where log n is the largest number k such that 2k ≤ n. To avoid the
K-trivial sets in the class we use a computable function f such that for all n and
all strings σ of length n, there is an extension τ of σ of length f(n) such that
K(τ �k) > 2 log k + c+ n for some k < |τ |.

At step 1 we put all strings of length f(1) in our tree and promise to remove any
of them σ such that K(σ �k) ≤ 2 log k + c + 1 for all k ≤ |σ| (this is a Π0

1 event).
Notice that by this action we also remove those σ such that K(σ � k) ≤ K(k) + 1
for all k ≤ |σ|. Let `1 = f(1). At step 2, for each of the chosen strings of step
1 we choose an extension τ in V . If ` is the length of the largest such extension,
we let `2 = `. We put on the tree each such extension τ concatenated with `− |τ |
zeros. We also declare any other extension of σ that is incompatible with τ not to
be part of the tree. We continue in the same way for the rest of the steps, where at
step 2n + 1 we put on T the extensions of the strings of step 2n of length f(`2n).
Also, we promise to remove those strings such that K(σ �k) ≤ 2 log k+ c+n for all
k ≤ |σ|.

This procedure defines a Π0
1 tree T such that the set [T ] of its paths is nonempty.

Any real in [T ] intersects V infinitely often by the construction of T (in particular
the even steps). Hence it is infinitely often K-trivial. Moreover it does not contain
K-trivial reals by the odd steps of the construction. �

6We order the set of binary strings first by length and then lexicographically.



KOLMOGOROV COMPLEXITY AND ARITHMETICAL DEFINABILITY 7

If we combine Theorem 2.10 with the computably dominated basis theorem (e.g.
see [Nie09, Theorem 1.8.42]) we get that there are non-computable i.o. K-trivial
computably dominated sets. This contrasts the fact that every computably domi-
nated K-trivial set is computable. We close this section with two more subclasses
of the infinitely often K-trivial sets. Recall that f is a DNC (or diagonally non-
computable) function if f(e) 6= ϕe(e) for all e such that ϕe(e) ↓ (where (ϕe) is an
effective enumeration of all partially computable functions).

Theorem 2.11. If a set A does not compute a DNC function then it is i.o. K-
trivial.

Proof. Suppose that every function that is computed by A fails to be diagonally
non-computable. Consider the function f which, given n it outputs 〈A �n〉 (i.e. a
code of the first n bits of the characteristic function of A). Since f ≤T A, it is
not DNC. Therefore ϕe(e) ↓= 〈A �e〉 for infinitely many e ∈ N. Consider the c.e.
set V of strings which is defined as follows. For each e ∈ N wait until ϕe(e) ↓ and
if the output is (a code of) a string of length e, enumerate it into V . Clearly for
each e ∈ N, the set V contains at most one string of length e. Hence by Lemma
2.6, K(σ) ≤+ K(|σ|) for all σ ∈ V . Also V contains infinitely many segments of A.
Therefore A is i.o. K-trivial. �

Recall that by [DK87] (also see [DH09, Theorem 1.23.18]), if a set that is com-
puted by a 1-generic then it does not compute a DNC function. Therefore Theorem
2.11 implies the following.

Corollary 2.12. Every set that is computed by a 1-generic is i.o. K-trivial.

Theorem 2.11 shows that there non-trivial lower cones in the Turing degrees that
consist entirely of i.o. K-trivial sets. However i.o. K-trivial sets are not closed
downward under Turing reducibility. Indeed, the halting set is i.o. K-trivial but it
computes random sets.

3. Arithmetical complexity in the K-degrees

In this section we explore the definability restrictions in ≤K-lower cones. A
consequence of this analysis is that there is a Σ0

2 set which forms a minimal pair
with any (non-trivial) c.e. set in the K-degrees. We start with the following, which
has an analog in the Turing degrees. Moreover, the proofs in the two cases are
similar.

Theorem 3.1. There exists a Σ0
2 set A >K ∅ such that X 6≤K A for all ∆0

2 sets
X >K ∅.

Proof. We will enumerate A in a ∅′-computable construction, so that A is Σ0
1(∅′),

hence Σ0
2. To ensure that A 6≤K ∅ we need to meet the following requirements:

Re : ∃n [K(A �n) > K(n) + e].

To ensure that A does not K-bound any non-trivial ∆0
2 sets we meet the following:7

Ne : [Φ∅
′

e is total and Φ∅
′

e 6≤K ∅]⇒ ∃n [K(Φ∅
′

e �n) 6≤ K(A �n) + e].

7Notice that if K(Φ∅
′

k �n) ≤ K(A �n) + t for all n and some k, t ∈ N, then there is some e > t

such that Φe = Φt. Hence K(Φ∅
′

e �n) ≤ K(A �n) + e for all n. So requirements Ne are sufficient.
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Suppose that we only wish to satisfy a single Ne (and all Ri). We can compute a
constant c such that K(1n) ≤ K(n) + c for all n ∈ N. Fix a Martin-Löf random
sequence Y ≤T ∅′. We can proceed by defining A �s [s] = Y �s while constantly
searching for some n such that Φ∅

′

e �n↓ and K(Φ∅
′

e �n) > K(n) + c + e. If we find
such a number n at stage s, we enumerate all numbers ≤ n into A thus meeting
Ne. In this case, for the positions > n of A we copy the corresponding digits of Y
If the search does not halt during the stages s, Ne is satisfied trivially. In any case
all Ri are met as A will be equal to Y apart from finitely many positions.

We combine these strategies for Ne, e ∈ N in order to construct A which satisfies
all of these requirements. Each strategy Ne imposes a restraint re[s] on A at stage
s. Let ce[s] be a constant such that K(Ze[s] �n) ≤ K(n)+ ce[s] for all n ∈ N, where
Ze[s] = (A �re−1)[s] ∗ 1ω. Here ‘∗’ denotes concatenation and r−1[s] := 0 for all s.
Notice that ce[s] is computable from (A �re)[s]. Set re[0] = 0 for all e. If re[s + 1]
is not defined explicitly in the construction we have re[s+ 1] = re[s]. We say that
Ne requires attention at stage s + 1 if there exists n ≤ s such that Φ∅

′

e �n↓ and
K(Φ∅

′

e �n) > K(n) + ce[s] + e.

Construction. At stage s+ 1 let ms = max{s,maxA[s]}, where maxA[s] denotes
the largest element in the finite set A[s]. Also, find the least e < s such that Ne
requires attention and is not currently declared satisfied. Enumerate all numbers n
with re−1[s] < n ≤ ms into A. Define

A[s+ 1] = (A �re−1)[s] ∗ 1ms−re−1[s] ∗ Y �k

where k is the least number such that K(A[s+ 1] �ms+k) > K(ms + k) + e. Finally
set re[s + 1] = ms + k, declare Ne satisfied and all Ni, i > e not satisfied. If no
Ne, e < s requires attention let A[s+ 1] = A[s] ∗ Y (s), where Y (s) is the sth digit
of Y .

Verification. If only finitely many Ne require attention during the construction,
A = σ ∗ Y for some finite string σ and ri, ci, i ∈ N reach a limit. Hence all Re are
satisfied. Moreover, if some Ne was not satisfied, it would require attention at some
stage of the construction. Hence almost all (therefore, by the padding lemma, all)
Ne are satisfied.

If infinitely many Ne require attention during the construction, infinitely many
of them receive attention. If at some stage s requirement Ne receives attention and
no Ni, i < e receives attention after s, requirement Re is satisfied (and remains so
for the rest of the stages). Indeed, in that case (A �re)[s] will not change after stage
s. Hence infinitely many Re are met, which implies that all Re are met.

Finally we show by induction on e that each Ne is satisfied and re, ce reach a
limit. Suppose that this holds for e < k and let s0 be a stage after which the values
of re, ce remain constant for all e < k. If Nk does not require attention after stage
s0, it is satisfied and re, ce remain constant after s0. Otherwise Nk will receive
attention at some stage s1 > s0 and will be satisfied according to the action taken
in the construction (the definition of (A �rk

)[s1]) and the fact that A �rk
will be

preserved from then on. Notice that Nk will not receive attention after stage s1,
thus rk, ck reach a limit at that stage. This concludes the induction step and the
proof. �
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The following result improves the complexity of the minimal pair of K-degrees
that was constructed in [MS07].

Corollary 3.2. There is a Σ0
2 set whose greatest lower bound with every Σ0

1 set is
0 in the K-degrees.

Proof. Let A be the Σ0
2 set of Theorem 3.1 and B any c.e. set. By Propositions

2.2, 2.3 every set X ≤K B is ∆0
2. Therefore, if X ≤K A by the choice of A the set

X has to be K-trivial. �

Notice that the argument we gave in the proof of Theorem 3.1 relativizes to ∅(n)

for all n > 0, giving analogs on each level of arithmetical complexity. Hence the
following.

Theorem 3.3. Let n > 1. There exists a Σ0
n set A >K ∅ such that X 6≤K A for

all ∆0
n sets X >K ∅.

As above, this gives the following application to the study of minimal pairs in the
K-degrees.

Corollary 3.4. Let n > 1. There exists a Σ0
n set A >K ∅ whose greatest lower

bound in the K-degrees with any ∆0
n infinitely often K-trivial set is 0.

Proof. By Propositions 2.2, 2.3 the lower cone below an i.o. K-trivial ∆0
n set

consists entirely of ∆0
n sets. Hence the Σ0

n set of Theorem 3.3 has the desired
properties. �

Theorem 3.3 can be seen as a strong separation of the Σ0
n classes from their

predecessors ∆0
n in the K-degrees. An immediate question is whether we can also

separate ∆0
n from Σ0

n−1 in the same way. In Section 4 we show the following.

Theorem 3.5. Given any ∆0
2 family of sets there exists a ∆0

2 set whose K-degree
is non-zero and does not bound any non-zero K-degree of a set in the family.

Since the class of Σ0
1 sets is a ∆0

2 family, we get the following.

Corollary 3.6. In the K-degrees, there is a ∆0
2 non-zero degree that does not bound

any Σ0
1 nonzero degree.

The above result is rather surprising as Σ0
1 sets have relatively low initial segment

complexity.

4. Proof of Theorem 3.5

Suppose that (Xe) is a uniformly ∅′-computable family of sets. To simplify the
requirements, assume without loss of generality that each set in the family has
infinitely many indices in this list. Let Xe[s] be a computable system of approx-
imations to the sets in the family. Then K(Xe �n)[s] is a computable system of
approximations to their initial segment complexities. For each e we will make sure
that the following requirements are satisfied:

Re : ∃n
[
K(Xe �n) 6≤ K(A �n) + e

]
∨ ∀k

[
K(Xe �k) ≤+ K(k)

]
.

To test the K-triviality of Xe the construction will enumerate a c.e. set of strings
V and use Lemma 2.6. We will make sure that for each n there is at most one
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string in V of length n. Hence by Lemma 2.6, the satisfaction of Re follows from
the satisfaction of the following modified requirement.

Ne :


There exists a c.e. set V as in Lemma 2.6 such that either for
some n we have K(Xe �n) 6≤ K(A �n) + e, or for all σ ∈ V we
have K(Xe �|σ|) ≤ K(σ) + e.

In the next section we give an atomic construction which, given e it uniformly
produces A ≤T ∅′ which is not K-trivial and, if Xe 6≤K ∅ then Xe 6≤K A. Al-
though this is not used explicitly in the main construction of Section 4.2, it helps
understanding the ideas involved.

4.1. Strategy for one Ne. To increase the complexity of A we use a ∆0
2 random

set Y with computable approximation Y [s]. Define V = {Ys �s | s ∈ N}.
Let σs be the shortest string σ ∈ V [s] such that K(X �|σ|)[s] > K(σ)[s] + e. If

this does not exist, let σs = Ys �s. The witness of the strategy at stage s is defined
to be the string σs ∗ (Ys �s). Below we show that the witnesses of the strategy in
the various stages s converge to a unique inifinite binary sequence. We define A to
be this very sequence.

The set A converges. One of the following must occur.
(a) The string σs reaches a (finite) limit τ .
(b) The length of σs tends to infinity.

Indeed, if (a) does not hold we have that K(X �|σ|) ≤ K(σ) + e for all σ ∈ V . In
this case each σ ∈ V can only be chosen as σs finitely often. Therefore (b) must
occur.

In the first case there exists some stage s0 such that the witness of the strategy
is τ ∗ (Ys �s) for all s > s0. In this case A converges to τ ∗ Y . In the second case
the witnesses converge to Y . Therefore A is well defined in any case.

The set A satisfies Ne and is not K-trivial. Clearly A is defined uniformly from
the index e, a ∆0

2 index of X and ∅′. As explained above, in any case Y is a tail of A.
Therefore A is not K-trivial. Finally, in case (a) we have K(X �|τ |) > K(A �|τ |)+e,
since τ ⊂ A. In case (b) we have that K(X �|σ|) ≤ K(σ) + e for all σ ∈ V . By
Lemma 2.6 we have that K(σ) ≤+ K(|σ|) for all σ ∈ V . Hence X is K-trivial.
Therefore in any case the sets A,X satisfy Ne.

4.2. Satisfying all Ne. We will use a priority tree (the full binary tree) in order
to construct A which meets all requirements. To make sure that A is not K-trivial
we need to meet the following requirements.

Pe : ∃n [K(A �n) > K(n) + e]

Strategies are identified with nodes on the tree. Each node on the tree is 2-branching
with outcomes 0 < 1. For a node that is associated with Ne, the outcome 0
corresponds to the belief that Xe is K-trivial while outcome 1 corresponds to the
negation of this belief. Along with the (current) outcome, each node will have a
primary and a secondary witness. The primary witness will be as in Section 4.1,
associated with the satisfaction of Ne. The secondary witness will be an extension
of the primary witness that is associated with the satisfaction of Pe. The secondary
witnesses will play the role that Y played in Section 4.1, i.e. they will increase
the initial segment complexity of the constructed set A. In the following whenever
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we refer to ‘witnesses’ of a strategy, we always mean both the primary and the
secondary witness of it. Consider a computable partition of N into sets N[α] indexed
by the strategies α. A node α will enumerate a c.e. set Vα containing strings of
length in N[α]. A strategy of length e on the leftmost infinitely often visited path
(also called the true path) will run successfully and satisfy Ne, Pe.

In the following we define the outcomes and witnesses of the strategies during
the stages of the construction. Fix a ∅′-computable function (in both arguments)
pe(σ) which gives some τ ⊃ σ such that K(τ) > K(|τ |) + e. Also let pe(σ)[s] be a
computable approximation to it.

At stage s a path δs of length s through the tree will be defined inductively,
determining the ‘visited nodes’ at stage s. A β-stage is a stage s where β was visited,
i.e. β ⊆ δs. The root is the first visited node at each stage and the other visited
nodes are determined by the current outcomes and witnesses of their predecessors.
The outcome of a visited node α at stage s is 0 if K(Xe �|σ|)[s] ≤ K(σ)[s] + e for
all strings σ ∈ Vα[s − 1] which extend the current witnesses of each β ⊂ α . In
this case the primary witness of α is equal to the union of the current witnesses
of each β ⊂ α. Otherwise the outcome is 1 and the primary witness of α is the
shortest string σ ∈ Vα[s− 1] which extends the current witnesses of all β ⊂ α and
K(Xe �|σ|)[s] > K(σ)[s] + e. In any case the secondary witness of α is defined to
be pe(σ)[s], where σ is its primary witness. Finally, the parameters of a node α are
only updated at the α-stages.

4.3. Construction. At stage s calculate the path δs of length s, starting from the
root and following the current outcomes of the nodes. Pick the least number n < s
which is in some N[α] for α ∗ 0 ⊂ δs and such that there is no string of length n in
Vα. Enumerate into Vα the least string of length n which is compatible with the
current witnesses of δs. If such n does not exist, go to the next stage.

4.4. Verification. Since the branching of the priority tree is finite, there exists
a leftmost infinitely often visited infinite path δ. Moreover, it follows from the
definition of the outcomes and witnesses that at each stage s the witnesses of the
initial segments of δs are linearly ordered.

Lemma 4.1. Suppose that β ⊂ δ and α is the immediate predecessor of β. The
witnesses of α reach a limit in the β-stages.

Proof. The secondary witnesses are just the images of the primary witnesses under
the ∆0

2 function p. Therefore it suffices to show the lemma for primary witnesses.
We do this by induction on the length of α. Suppose that it holds for all α ⊂ δ of
length < n and σ is the union of the final values of the witnesses of these nodes in
the δ �n-stages. We show that it holds for α = δ �n. Let β = δ �n+1. If α ∗ 0 ⊂ δ
the primary witness of α in the β-stages has limit σ. Otherwise α ∗ 1 ⊂ δ which
means that the primary witness of α will reach a limit τ (over all stages) such that
K(Xe �|τ |) > K(τ) + e for some τ ∈ Vα and e = |α|. �

Given β ⊂ δ, the true witnesses of the immediate predecessor of α are defined to
be the limits of its witnesses in the α-stages. In Lemma 4.3 we will define A to be
the union of these true witnesses. Moreover, the true outcomes of the nodes on δ
are the outcomes that lie on δ.
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Lemma 4.2. Suppose that |α| = e. If α ∗ 1 ⊂ δ then Vα is finite and K(Xe �|σ|) >
K(σ) + e, where σ is the final witness of α. If α ∗ 0 ⊂ δ then Vα contains a string
of each length in N[α] and Xe is K-trivial.

Proof. For the first clause notice that if α ∗ 1 ⊂ δ then the construction will stop
enumerating into Vα after some stage. Therefore Vα is finite. Moreover, after some
stage the primary witness of α will settle on the shortest string σ in Vα which
extends the true witnesses of its predecessors and K(Xe �|σ|) > K(σ) + e.

For the second clause suppose that α ∗ 0 ⊂ δ. By the construction the set
Vα contains a string of each length in N[α]. By Lemma 4.1 the witnesses of the
predecessors of α reach a limit in the α-stages. Let σ be the union of these witnesses.
By construction, almost all strings in Vα will be extensions of σ. Hence, the fact
that α ∗ 0 ⊂ δ implies that for almost all τ ∈ Vα (in particular, all that extend σ)
we have K(Xe �|τ |) ≤ K(τ) + e. By Lemma 2.6 we have K(τ) ≤+ K(|τ |) for all
τ ∈ Vα. Hence K(Xe �k) ≤+ K(k) for almost all k ∈ N[α] and Xe is K-trivial. �

The following lemma is crucial, in that it enables us to define the set A and more
importantly to ensure that it is ∆0

2.

Lemma 4.3. The strings enumerated into the sets Vα during the construction
converge to a unique sequence A, which is the union of the true witnesses of the
nodes on δ. In other words, for all n ∈ N there exists a stage s0 such that all strings
enumerated by the construction after stage s0 are extensions of A �n.

Proof. Let β ⊂ δ be a node with true secondary witness σ which reaches a limit in
the δ �|β|+1 stages at stage s∗. In the following all stages are assumed to be larger
than s∗ and the last stage where a node to the left of β was visited. Since β is an
arbitrary initial segment of δ, the lemma is a consequence of the following.

Claim: There is a stage s0 after which the only strings enumerated
in the sets Vα (where α is a node on the tree) are extensions of σ. (4.1)

Claim 4.1 clearly holds for the nodes α that lie on the left of β. Indeed, in this
case Vα is finite. By Lemma 4.1 it also holds for the nodes α that extend β and its
true outcome. Indeed, in this case the strings enumerated in Vα must extend the
current secondary witness of β, which reaches limit σ in the α stages. Finally it
holds for the nodes α ⊂ β such that α ∗ 1 ⊂ δ since in this case by Lemma 4.2 Vα is
finite. Hence it remains to show Claim 4.1 for the case where α ⊆ β and α ∗ 0 ⊂ δ,
or α is to the right of the true outcome of β. The latter case holds when α extends
some η ∗ 1 where η ⊆ β and η ∗ 0 ⊂ δ.

In the latter case, the choice of these η implies that the length of their witnesses
at stages s where δs ⊃ η∗1 tends to infinity. So if we show that almost all strings of
Vη extend σ, we have that at almost all stages s such that δs ⊃ η ∗ 1 the witnesses
of η extend σ. From this it follows that beyond some stage, any string enumerated
to some Vα for α ⊃ η ∗ 1 must extend σ.

Hence it remains to show Claim 4.1 for the particular case where α ⊆ β and
α ∗ 0 ⊂ δ. We prove this by finite induction. Let η0 ⊃ · · · ⊃ ηt be the descending
sequence of all strings η ⊆ β such that η ∗ 0 ⊂ δ. Fix i < t, suppose that the
claim holds for all ηj , j < i and let ρj be the union of the true witnesses of the
predecessors of ηj (for each j < i). Also let si be a stage beyond which we have
K(Xej

�|τ |) ≤ K(τ) + ej (where ej = |ηj |) for each j < i and each string τ in Vηj
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which is an extension of ρj but not an extension of σ. By induction hypothesis
there are finitely many such strings τ , so si exists.

If a string is enumerated in Vηi at a stage s > si then either δs extends the true
outcome of β or δs ⊃ ηj ∗ 1 for some j < i. In the first case the enumerated string
must be an extension of the witness σ of β. In the second case it must extend the
a current witness of some ηj , j < i where δs ⊃ ηj ∗ 1. According to the choice of
sj the current witness of ηj at stage s must extend σ. Hence in either case the
enumerated string is an extension of σ. This concludes the induction, the proof of
Claim 4.1 and the proof of the Lemma. �

Lemma 4.4. The set A is ∆0
2 and satisfies all Ne, Pe for e ∈ N.

Proof. Lemma 4.3 shows how to calculate A by asking Σ0
1 questions. Hence A is

∆0
2. Let e ∈ N and let α be the unique node on δ of length e. Also let σ be the

true primary witness of α.
For Pe it suffices to show that there is some string τ ⊂ A such that pe(τ) ⊂ A.

Clearly σ ⊂ A and pe(σ) is the secondary witness of α. Hence pe(σ) ⊂ A and Pe
is satisfied. For Ne suppose that Xe is not K-trivial. By Lemma 4.2 we have that
α ∗ 1 ⊂ δ and K(Xe �|σ|) > K(σ) + e. By the definition of A we have σ ⊂ A so Ne
is satisfied. �

5. Gap functions for K-triviality

An interesting fact from [CM06] is the existence of a non-decreasing unbounded
function that can replace the constant in the definition of K-triviality. In this
section we isolate this notion and exhibit its role in the structure of the K-degrees.
It is instructive to compare the results of this section with [MY10, Sections 3, 5]
where a different notion of a ‘gap function’ plays a crucial role in analyzing the
downward and upward oscillations of the initial segment prefix free complexity of
random sets.

Definition 5.1. We say that f : N → N is a gap function for K-triviality if for
each set X we have

∀n [K(X �n) ≤+ K(n) + f(n)] ⇐⇒ X is K-trivial. (5.1)

Moreover, f is a gap function for K-triviality of ∆0
2 sets if (5.1) holds for all ∆0

2

sets X. An analogous definition holds for the other arithmetical classes.

If a set X satisfies the left hand side of (5.1), we say that it obeys f . Clearly
the ‘⇐’ of the equivalence in Definition 5.1 holds always. Csima and Montalbán
[CM06] showed the following.

There is a ∆0
4 unbounded and non-decreasing gap function for

K-triviality.
(5.2)

The following result8 from [CM06] shows a connection between gap functions of
K-triviality and minimal pairs in the K-degrees. It also shows why the particular
case of unbounded and non-decreasing gap functions is of special interest.

Let f be any unbounded and non-decreasing gap function for K-
triviality. Then f⊕∅′ computes two sets that form a minimal pair
in the K-degrees.

(5.3)

8Statement (5.3) is not explicitly stated in [CM06], but can be extracted from a simple analysis
of their argument.
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Moreover we have the following converse of (5.3).

If X,Y form a minimal pair in the K-degrees, then

f(n) := min{K(X �n),K(Y �n)} −K(n)

is a gap function for K-triviality.

(5.4)

The following fact is useful in Theorem 5.2.

If f is a ∆0
2 non-decreasing unbounded function, then there is an

unbounded non-decreasing function g which is approximable from
above and such that g(n) ≤ f(n) for all n ∈ N.9

(5.5)

Proof of (5.5). Let f(n)[s] be a computable approximation to f . Without loss
of generality we can assume that for all stages s and all n ≤ m ≤ s we have
f(n)[s] ≤ f(m)[s]. Let g(n)[s] = min{f(n)[t] | n ≤ t ≤ s} for each n ≤ s. Clearly
g(n) = lims g(n)[s] is ∆0

2 and g(n) ≤ f(n) for all n ∈ N. Also, g is non-decreasing.
To show that it is unbounded, let c, n, s0 ∈ N such that f(n)[s] > c for all s ≥ s0.
Clearly g(s0) > c. �

Case (a) in Theorem 5.2 is due to Frank Stephan (see [Nie09, Theorem 5.2.25]).

Theorem 5.2. Suppose that f : N → N is ∆0
2 and limn f(n) = ∞. If f satisfies

one of the following
(a) It can be computably approximated from above.
(b) It is non-decreasing.

then there is a Turing complete c.e. set which obeys f . In particular, f is not a gap
function for K-triviality of c.e. sets.

Proof. If g satisfies (a) and the assumptions of the theorem then the non-decreasing
function h(n) = min{g(i) | i ≥ n} also does and h(n) ≤ g(n) for all n ∈ N. So g
bounds a function satisfying (a), (b) and the assumptions of the theorem. Moreover
by (5.5), any function satisfying (b) and the assumption of the theorem bounds a
function with the same properties which also satisfies (a). Hence to prove the
theorem it suffices to show that given any ∆0

2 unbounded non-decreasing function
which has an approximation from above, there is a Turing complete c.e. set which
obeys it. Let f be such a function with an approximation f(n)[s] from above.
Construct a c.e. set A as follows.

At stage s + 1 find the least n < s such that the number k of 0s in A[s] �n is
larger than f(n)[s], and switch the k − f(n)[s] largest 0-positions of A �n [s] into
1s. Moreover, if m is the least number enumerated in ∅′ at this stage, switch the
mth 0-position A into 1.

First, notice that the number of 0s in A �n is ≤ f(n) for all n ∈ N. Therefore
K(A �n) ≤+ K(n) + f(n) since to describe A �n we only need to know n and a
string of length f(n) indicating the digits in A �n that are not 1 at the point of the
construction where the number of 1s in the string A �n is f(n). Second, we show
that N−A is infinite so that the standard coding of ∅′ into A that was performed
above is valid. Given any c ∈ N let mc be such that there are at least c 0s in ∅′ � mc.
Also let nc be such that f(nc) > mc. Clearly the number of 1s in the string A �nc

is at most nc − c. �

The following shows that the conditions in Theorem 5.2 are essential.
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Proposition 5.3. There is a ∆0
2 function f such that limn f(n) = ∞ and f is a

gap function for K-triviality of Σ0
1 sets.

Proof. Let (We) be an effective list of all c.e. sets. We meet the following require-
ments.

Re : If We obeys f then K(We �n) ≤ K(n) + e for almost all n.

We say that Re requires attention at stage s if K(We �s) > K(s) + e. Clearly this
property is decidable in ∅′.

At stage s find the least e ≤ s such that Re requires attention and is not satisfied.
Let f(s) = e and say that Re is satisfied. If there is no such e, let f(s) = s. It is
easy to verify that all Re are met, and from some stage on they are either satisfied
or do not require attention. Moreover, since each Re ‘receives attention’ at most
once, limn f(n) =∞. �

The following contrasts Theorem 5.2.

Theorem 5.4. There is a gap function for K-triviality of ∆0
2 sets which is un-

bounded, non-decreasing and has Σ0
2 degree.

Proof. This is similar to the proof of Theorem 3.1, so we just give a sketch. To
make f of Σ0

2 degree it suffices to define a ∅′-computable approximation to it from
above. We meet the following conditions:

Ne : [Φ∅
′

e is total and Φ∅
′

e 6≤K ∅]⇒ ∃n [K(Φ∅
′

e �n) 6≤ K(n) + f(n) + e].

If we had only one Ne to satisfy, we would define f(n)[s] = n while searching
(recursively in ∅′) for some m > e and a stage t such that

Φ∅
′

e [t] �m↓ and K(Φ∅
′

e �m) > K(m) + 2e.

If and when m, t are found, we let f(i)[t] = e for all i ∈ [e,m] and continue as
before, defining f(n)[s] = n for n ∈ (m, s] and s > t. In this case m is called a
witness for Ne. In the global construction we make sure that Ne can only modify f
on arguments that are larger than the largest witness that any Ni, i < e may have.
This ensures that f is approximated monotonically from above. So if ke[s] is the
least number which is larger than any witness of Ni, i < e at stage s and larger
than e, strategy Ne at stage s looks for m ∈ (ke[s], s] such that

Φ∅
′

e [s] �m↓ and K(Φ∅
′

e �m) > K(m) + 2e. (5.6)

If it finds such, it sets f(i)[s] = e for all i ∈ (ke,m]. Notice that there is no injury
amongst different strategies. Moreover f is unbounded as each Ne acts at most once
and never sets the values of f below e. For the same reason each Ne is ‘receives
attention’ at some stage, or is trivially satisfied. If it lowers the values of f , it is
satisfied by (5.6). �

Problem 5.5. Is there an unbounded non-decreasing gap function for K-triviality
of Σ0

2 or ∆0
3 Turing degree?

Proposition 2.3 shows that if a function f has finite lim inf then there is a bound
for the complexity of all sets that obey it (they are computable from f ⊕ ∅′). In
particular, the class of sets that obey it is countable. By (5.2) the converse does
not hold. However we have the following, which can be seen as a generalization
of the fact from [YDD04, MY10] that the ≤K-lower cone below any random set is
uncountable.
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Theorem 5.6. Suppose that for some f : N→ N we have limn(f(n)−K(n)) =∞.
Then the class of sets that obey f is uncountable. In particular, it contains a perfect
pruned ∆0

2(f ⊕ ∅′) tree.

Proof. We use an oracle argument to construct a tree T as above. For each string
σ there is a constant qσ such that

K(σ0m+n+1) < K(m+ n+ 1 + |σ|) + qσ (5.7)
K(σ0n10m) < K(m+ n+ 1 + |σ|) + qσ +K(n) (5.8)

for all n,m ∈ N. Indeed, qσ codes the command ‘make the first |σ| digits of
the output identical to those of σ’ and the K(n) in the second inequality is from a
program instructing to make digit n+ 1 a 1.

If we look at T as a map from 2<ω to 2<ω (preserving comparability and incom-
parability relations), level k of the tree consists of the strings T (ρ) for ρ of length
k. The strings of level k will have the same length `k.

Suppose inductively that level k of the tree has already been defined, and for
each string σ on that level the sequence σ0ω obeys f . Now find n > `k such that
f(i) > qσ +K(i) for all i ≥ n and each σ on level k of T . For each such σ define its
two successors in level k + 1 to be σ0nj for j = 0, 1. By (5.7), (5.8) we have that
for each string τ of level k + 1, the sequence σ0ω obeys f .

Since limn(f(n) −K(n)) = ∞ all levels of T will be defined. By induction, all
paths of T obey f . Moreover the construction was computable in (f ⊕ ∅′)′. �

A well known open problem in the LK degrees is a characterization of the oracles
which have uncountable lower cones with respect to ≤LK (see [Bar10b, Mil09]). The
same question can be asked about the K-degrees. Notice that by Propositions 2.2,
2.3 the cone below a c.e. set is always countable, while by Theorem 5.6 there are
many sets with uncountable lower cone (including all random sets). Another way
to ask the same question is the following.

Problem 5.7. Characterize the functions f : N → N with the property that the
class of sets that obey them is countable.

Finally we would like to suggest that it may be interesting to study the connec-
tion between the functions we discussed in this section and the so-called Solovay
functions that were studied in [BD09].
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