
CHAITIN’S HALTING PROBABILITY AND THE
COMPRESSION OF STRINGS USING ORACLES

GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

Abstract. If a computer is given access to an oracle—the characteristic func-

tion of a set whose membership relation may or may not be algorithmically
calculable—this may dramatically affect its ability to compress information

and to determine structure in strings which might otherwise appear random.

This leads to the basic question, “given an oracle A, how many oracles can
compress information at most as well as A?”

This question can be formalized using Kolmogorov complexity. We say that

B ≤LK A if there exists a constant c such that KA(σ) < KB(σ) + c for all
strings σ, where KX denotes the prefix-free Kolmogorov complexity relative

to oracle X. The formal counterpart to the previous question now is, “what

is the cardinality of the set of ≤LK -predecessors of A?”
We completely determine the number of oracles that compress at most as

well as any given oracle A, by answering a question of Miller [Mil10, Sec-
tion 5] which also appears in Nies [Nie09, Problem 8.1.13]; the class of ≤LK -

predecessors of a set A is countable if and only if Chaitin’s halting probability

Ω is Martin-Löf random relative to A.

1. Introduction

Kolmogorov complexity is a fundamental notion which has found applications
in topics as diverse as combinatorics, language recognition, information distance,
thermodynamics and chaos theory. The basic idea behind this approach to quanti-
fying the degree of randomness of a finite binary string, is that a string is simple or
non-random if it has a short description relative to its length. Kolmogorov [Kol65]
formalized this idea using the theory of computation. In this context, Turing ma-
chines play the role of our idealized computing devices, and we assume that there
are Turing machines capable of simulating any calculational process which proceeds
in a precisely defined and algorithmic manner. Programs can be identified with bi-
nary strings. A string τ is said to be a description of a string σ with respect to
a Turing machine M if this machine halts when given program τ and outputs σ.
Then the complexity of σ with respect to M is the length of its shortest description
with respect to M .

When we come to consider randomness for infinite strings it becomes important
to consider machines whose domain satisfies a certain condition which is true of
the words in any reasonable language. The machine M is called prefix-free if it
has prefix-free domain (which means that no program for which the machine halts
and gives output is an initial segment of another). It can be shown that there

Key words and phrases. Kolmogorov complexity, halting probability, low for K, initial segment

prefix-free complexity, degrees, randomness.
This work was supported by an LMS collaborative small grant, number 4915. The second

author was also supported by a Royal Society University Research Fellowship.

1

2 GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

exist universal prefix-free machines U , i.e. machines which give optimal complexity
for all strings, modulo a constant. This means that for each prefix-free machine
M there exists a constant c such that KU (σ) < KM (σ) + c for all finite strings σ.
Hence the choice of the underlying optimal machine does not change the complexity
distribution significantly and the theory of prefix-free complexity can be developed
without loss of generality, based on a fixed underlying optimal prefix-free machine
U .

In order to define randomness for infinite sequences, we consider the complexity
of all finite initial segments. A finite string σ is said to be c-incompressible if
K(σ) ≥ |σ| − c, where K = KU . Chaitin and Levin defined an infinite binary
sequence X to be random if there exists some constant c such that all of its initial
segments are c-incompressible.1 This definition of randomness for infinite sequences
is then independent of the choice of underlying universal machine, and coincides
with other definitions of randomness given in terms of computable betting strategies
and also the definition given by Martin-Löf in [ML66] (a result of Schnorr, see
Chaitin [Cha75]). Strings which are random in this sense are called Martin-Löf
random. The coincidence of the randomness notions resulting from these different
approaches may be seen as evidence of a robust and natural theory.

If we allow the underlying optimal prefix-free machine access to an oracle A, the
resulting complexity KA will often be reduced. Thus the use of external information
often allows for better compression of strings and can be used in order to determine
structure in sequences that would otherwise appear random. The following basic
question then arises:

Informal question. Given an oracle A, how many oracles can compress strings
at most as well as A?

Formally, an oracle X compresses strings at most as well as A if there exists
some constant c such that KA(σ) ≤ KX(σ) + c for all strings σ. This relation was
introduced by Nies [Nie05] and is denoted X ≤LK A. The formal counterpart to
the informal question above now becomes:

(1.1) Given an oracle A, what is the cardinality of {X |X ≤LK A}?
It’s also a natural question as to whether the ability of an oracle to compress

random strings is essentially the same as its ability to compress strings in general.
In the same paper that he introduced the ≤LK relation, Nies also discussed a
simple variation; X ≤LR A if all sets which are Martin-Löf random relative to A
are also Martin-Löf random relative to X. In [KHMS10] it was shown that ≤LR is
identical to ≤LK , and so our solution to Question 1.1 also gives the solution to the
corresponding question for the ≤LR relation.

A short history of the literature surrounding Question 1.1 can be found in
[Bar10]. The special case when A = ∅ was Question 4.4 in [ASK00] (stated in terms
of ≤LR). The main motivation for asking this question at the time was the then re-
cent discovery that there are non-computable oracles X such that K(σ) ≤+ KX(σ)
for all strings σ (where ≤+ denotes ≤ modulo a constant). Such sets X (identifying
sets, their characteristic functions and infinite binary strings) are of no use in the
task of compressing information and are known as low for K (see [Nie09, Section

1It is at this point that it becomes important that we restrict to the case of prefix-free
machines—if we did not then it can be shown that according to this definition there would be no

random sequences.

THE COMPRESSION OF STRINGS USING ORACLES 3

5.1]). Nies [Nie05] answered this question by showing that if A is computable then
the class of (1.1) is contained in ∆0

2 and hence is countable (a set is ∆0
2 iff it is

computable in Turing’s halting problem—for an introduction to the effective hier-
archies we refer the reader to the excellent book of Hinman [Hin78]). On the other
hand, in [BLS08] it was shown this class is uncountable if A is the halting problem.
Miller [Mil10] used a variation of the notion of low for K sets to exhibit a large
class of oracles A for which the class of (1.1) is countable. He called an oracle A
weakly low for K if K(σ) ≤+ KX(σ) for infinitely many strings σ. In this paper he
showed that if A is weakly low for K then the class of (1.1) is countable. He also
gave a characterization of the class of weakly low for K sets in terms of the halting
probability Ω =

∑
U(σ)↓ 2−|σ|. In [Mil10] it was shown that a set B is weakly low for

K if and only if Ω is Martin-Löf random relative to B. The sets B with the latter
property are known as low for Ω. These results prompted the following question.

(1.2) Question in [Mil10]: If A is not low for Ω, is the class of (1.1) uncountable?

In this paper we give an affirmative answer, thus providing a characterization of
the sets with uncountably many ≤LK-predecessors—a set has uncountably many
(and so continuum many) predecessors iff it is not low for Ω.

Theorem 1.1. Let A ⊆ N. Then the following are equivalent.

(a) limn(K(n)−KA(n)) =∞.

(b) There are uncountably many X ⊆ N for which there exists c ∈ N such
that KA(n) ≤ KX(n) + c for all n ∈ N.

Hence a set is weakly low for K iff the set of its ≤LK-predecessors is countable.

Notice that the first clause of Theorem 1.1 (under a standard identification of
strings with numbers) means that A is not weakly low for K (or equivalently, A
is not low for Ω). This theorem unifies a number of older results. For example, in
[Bar10] the first author showed the following.

(1.3) If A is ∆0
2 and not low for K then the class of (1.1) uncountable.

Moreover it has a Π0
1 perfect subclass.

A class is perfect if it does not contain any isolated points according to the Cantor
topology. Since every ∆0

2 weakly low for K set is already low for K, (see [Nie09,
Exercise 8.1.11]) the first part of (1.3) can be seen as a special case of Theorem
1.1. We note, however, that the latter (or its proof) does not imply the second
clause of (1.3). In retrospect, (1.3) from [Bar10] can be seen as an ‘effectivization’
of Theorem 1.1, in the same way that the construction of a maximal set is an
‘effectivization’ of the construction of a cohesive set.

The advantage of the effective nature of (1.3) (the fact that we obtain an ef-
fectively closed uncountable set) is that it lends itself to the application of basis
theorems for Π0

1 classes. For example, the low for Ω basis theorem (from [RS10]
and independently [DHMN05]) says that every non-empty Π0

1 class contains a low
for Ω path. As was demonstrated in [BB10], the proof of (1.3) can be augmented
so as to establish the following.

(1.4) If A is ∆0
2 and not low for K then the class of (1.1) contains a

perfect Π0
1 class without low for K paths.

4 GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

Another result from [BB10] is the following generalization of the low for Ω theorem.

(1.5) Every nonempty Π0
1 class contains a nonempty Π0

1[∅′] subclass
which consists entirely of low for Ω sets.

This implies that that every nonempty Π0
1 class without any low for K members

contains uncountably many low for Ω paths. Indeed, in that case, the Π0
1[∅′] class

that is given by (1.5) cannot have isolated paths since these would be ∆0
2 and so

low for K (given that they are also low for Ω). We can now use these observations
to deduce the following fact about the LK-degrees, the degree structure that is
induced by the pre-order ≤LK . Notice that A ≡LK B (denoting A ≤LK B and
B ≤LK A) informally means that A and B have the same strength with respect to
compressing strings. An LK-degree is ∆0

2 if it contains a ∆0
2 set.

Corollary 1.2. Every ∆0
2 non-zero LK-degree bounds uncountably many LK-

degrees with countably many predecessors.

The proof is a straightforward combination of (1.4), (1.5) and the result from [Mil10]
that if A is low for Ω then the class {X | ∀σ KA(σ) ≤+

LK KX(σ)} is countable.
Given that there have been a number of previous attempts by different people

to answer Question 1.2, it seems appropriate that we outline the ideas behind the
proof of Theorem 1.1, especially the new ingredient that made it possible. We do
this in Section 2, as well as providing some preliminaries and notation for the proof
that is given in Section 3.

2. About the proof of Theorem 1.1

2.1. Preliminaries. Let U be the universal prefix-free oracle machine which un-
derlies the prefix-free complexity KX relative to oracles X. Hence KX = KX

U for
all sets X. This machine is optimal in the sense that given any other prefix-free
oracle machine M there is a constant c such that KX(σ) ≤ KX

M (σ) + c for all
strings σ and oracles X. We let ⊆, ⊂ denote the prefix or the subset relation
(with equality or not) depending on the context. The oracle machine U can be
seen as a computably enumerable (c.e.) set of triples 〈τ, ρ, σ〉 which indicate that
U with τ written on the oracle tape, and with input program ρ, halts and produces
σ. We also write Uτ (ρ) = σ in order to denote that this relation holds. If X
is a set we let UX = {〈ρ, σ〉 | ∃τ ⊂ X, 〈τ, ρ, σ〉 ∈ U} and for a string η we let
Uη = {〈ρ, σ〉 | ∃τ ⊆ η, 〈τ, ρ, σ〉 ∈ U}. The fact that UX is prefix-free for all X can
be expressed by the following condition;

(2.1) If 〈τi, ρi, σi〉 ∈ U for i = 0, 1 and τ0 ⊆ τ1 then ρ0|ρ1

where ρ0|ρ1 denotes the incomparability of the two strings with respect to the prefix
relation. Without loss of generality we can fix a computable enumeration of U such
that any triple 〈τ, ρ, σ〉 appearing in U at stage s has |τ | = s. In this way for each
string η the set Uη is finite and the map η → Uη is computable.

The weight of a prefix-free set S of strings, denoted wgt(S), is defined to be
the sum

∑
σ∈S 2−|σ|. The weight of a prefix-free machine MX is defined to be

the weight of its domain and is denoted wgt(MX). Without loss of generality we
assume that wgt(UX) < 2−4 and that all strings in the domain of UX begin with
1, for all sets X.

Prefix-free machines are most often built in terms of request sets. A request set
L is a set of tuples 〈ρ, `〉 where ρ is a string and ` is a positive integer. A ‘request’

THE COMPRESSION OF STRINGS USING ORACLES 5

〈ρ, `〉 represents the intention of describing ρ with a string of length `. We say that
L is a bounded request set if

∑
{2−|`| | ∃ρ, 〈ρ, `〉 ∈ L} < 1. This sum is the weight

of the request set L and is denoted by wgt(L). The Kraft-Chaitin theorem (see e.g.
[DH10, Section 2.6]) says that for every bounded request set L which is c.e., there
exists a prefix-free machine M such that for each 〈ρ, `〉 ∈ L there exists a string τ
of length ` such that M(τ) = ρ. The same holds when L is c.e. relative to an oracle
X, giving a machine MX . In Section 3 we freely use this method of construction
without explicit reference to the Kraft-Chaitin theorem.

A real number 0 ≤ r < 1 is called c.e. if it is the limit of a non-decreasing com-
putable sequence of rational numbers. For each set X we define ΩX := wgt(UX).
Notice that this definition is compatible with the definition of the halting probabil-
ity Ω that was discussed above since Ω = Ω∅. Similarly we let Ωη := wgt(Uη) for
any string η. The map X → ΩX is called the Ω operator and plays a crucial role in
Section 3. By the conventions we adopted earlier concerning U and its computable
enumeration, we have that the map η → wgt(Uη) is computable. Our assumptions
about UX also mean that ΩX < 2−4 for all oracles X.

Finally, a tree T is a partial map σ → Tσ from strings to strings which preserves
compatibility and incompatibility relations between strings, and which has down-
ward closed domain. For any σ, the image Tσ is called a node of the tree. The level
of a node Tσ is |σ|. An infinite binary sequence is a path through a tree if infinitely
many of its initial segments are nodes of the tree. The set of infinite paths through
a tree T is denoted by [T]. A tree which is a total function may also be called
perfect.

2.2. Informal ideas behind the proof. In [Mil10] it was shown that a set is
weakly low for K if and only if it is low for Ω, and that weakly low for K sets
have only countably many ≤LK-predecessors. Therefore it suffices to show that
if a set A is not low for Ω then it has uncountably many ≤LK-predecessors. The
first construction of an uncountable lower ≤LK-cone was presented in [BLS08] (in
terms of ≤LR). The proof of (1.3) in [Bar10] used new ideas in order to implement
such a construction below any ∆0

2 set which is not low for K. This proof relied
entirely, however, on computable approximations. The argument that pointed to
the possibility of implementing (a version of) the construction from [BLS08] below
an arbitrary set which is not low for Ω, was the proof in [Mil10] that the class of
low for Ω sets coincides with the class of weakly low for K sets. In this argument
Miller showed how to use short descriptions of Ω in order to improve the overall
compression of programs by any given constant. This is why Question (1.2) was
asked, sometimes in the form of a conjecture.

Given an oracle A which is not low for Ω, the basic plan is to use an A-computable
construction to build a prefix-free machine MA and an approximation to a perfect
tree T such that KA

M (σ) ≤ KX(σ) for all strings σ and all X ∈ [T]. Since any
perfect tree has continuum many paths, this certainly suffices to give the result.
The basic obstacle is also clear—the machine MA has to simulate all machines
UX for X ∈ [T], but we must keep the weight of the domain of MA bounded.
In order to achieve this, we wish to ensure that where MA has to simulate the
descriptions given by a large number of strings in T (corresponding to a high level
in T), the weight of these descriptions is relatively small. Why should we be able
to achieve such a goal? For each m and each string ρ there exists σ ⊃ ρ such that
wgt(Uτ)−wgt(Uσ) < 2−m for all τ ⊇ σ (see [BLS08, Section 4]). If we were armed

6 GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

with an oracle for ∅′ then we could simply find the string σ when required and the
construction of T would be relatively simple. Now we do not have an oracle for ∅′
but we still wish to use the fact that A is not low for Ω in order to try and identify
strings ρ such that:

(2.2) max{wgt(Uτ)− wgt(Uρ) | ρ ⊆ τ} is appropriately small for all τ ⊇ ρ.

How can we make use of the fact that A is not low for Ω? If A can compress
initial segments of Ω, then in fact it can do the same for the initial segments of
any c.e. real. Indeed, by [Sol75] (see [DH10, Sections 8.1, 8.2]) if B is a c.e. real
then K(B �n) ≤+ K(Ω �n) for all numbers n. So if we approximate X (which is a
potential path through T) in such a way that ΩX is a c.e. real, then A will be able
to compress initial segments of ΩX . We shall see in a moment how this is useful
to us in constructing T . Here it is important to note that the apparent obstacle
to such an approach is that we cannot allow the approximation to X to make any
use of the oracle A. If it were to make use of this oracle then we would have no
guarantee that ΩX will be a c.e. real, and we would need A to be able to provide
short descriptions of ΩA rather than Ω, which clearly is not possible. Thus the
key new idea in the argument of Section 3 is to incorporate into the A-computable
construction auxiliary procedures which proceed in a computable fashion and do
not make any use of the oracle A.

In order to help us define the paths through T we wish to computably approxi-
mate sets X with the property that:

(2.3) For all m there exists n such that wgt(Uτ) − wgt(UX�n) < 2−m

for all τ ⊃ X �n.

First of all let us consider a simplified way of approximating sets X of this kind.
Then we shall have to modify this method slightly in order to ensure that our
approximation satisfies some further conditions.

Definition 2.1. Given a finite or infinite sequence X, the Ω-sequence of X is the
sequence (ni), where ni is the least number such that ΩX − ΩX�ni < 2−i.

So suppose that we wish to approximate X extending τ . At stages s ≤ |τ | let
Xs = τ �s. At stage s+ 1 > |τ | let (ni[s]) be the Ω-sequence of Xs. Check to see if
there is some i < s and a string τ ′ ⊇ Xs �ni[s] of length ≤ s + 1 extending τ such
that Ωτ

′ −ΩXs�ni[s] ≥ 2−i. If so, then pick the least such i, and for this choice the
least such τ ′. Define Xs+1 to be the concatenation of τ ′ with s + 1 − |τ ′| zeros.
Otherwise let Xs+1 = Xs ∗ 0.

Since we shall subsequently modify the details of this approximation, we will not
yet verify the details precisely. It should be clear, however, that the approximation
to X given by this construction converges, that ΩX is a c.e. real, and that if we let
(ni) be the Ω-sequence of X then for all B ⊇ Xs �ni[s], ΩB − ΩXs�ni[s] < 2−i. So
now suppose that at some point in the process of approximating T , we have defined
Tσ′ for all σ′ ⊂ σ. Imagine that we wish to define Tσ to be some initial segment
of a set X which is approximated according to a construction like the one above.
We have to decide how long this initial segment should be, i.e. where we should
aim to start putting further branching in T . Since A is not low for Ω, for any b we
can find ρ and t such that UA(ρ) = ΩX �t and |ρ| ≤ t − b. So, as we computably
approximate X, we also use the oracle for A to try and search for a string ρ of this

THE COMPRESSION OF STRINGS USING ORACLES 7

kind. When we find ρ which compresses the initial segment of ΩXs of length t, we
can temporarily define Tσ to be Xs �nt[s]. If UA(ρ) is not an initial segment of ΩX

then we will eventually realize this, we can change our mind about Tσ and then
there is no harm done—ρ simply corresponded to an incorrect guess as regards ΩX .
If on the other hand UA(ρ) is an initial segment of ΩX , then Xs �nt[s] is an initial
segment of X and for all B ⊇ Xs �nt[s], ΩB − ΩXs�nt[s] < 2−t. Roughly speaking
then, since |ρ| ≤ t − b there is sufficient room above ρ to simulate the machines
corresponding to b-many paths extending Xs �nt[s]. So it is reasonable to but a
branching into T here.

While this provides the basic idea, what we have said so far is not quite correct.
In the situation above, when UA(ρ) is an initial segment of ΩX , it will be the
case that Xs �nt[s] is an initial segment of X and that for all B ⊇ Xs �nt[s],
ΩB − ΩXs�nt[s] < 2−t, while the measure of all strings extending ρ is at least 2b−t.
The slight complication is that just as we had to approximate Tσ, all the values
Tσ′ for σ′ ⊃ σ will also have to be approximated. As we approximate T we do not
know which nodes we shall subsequently have to change our mind about, and thus
in practice we have to simulate the machines corresponding to all strings which
appear to be in T at any stage, and not just those corresponding to the nodes in
the final version of T . We therefore need to approximate X in such a way that we
successfully coordinate our need to satisfy (2.3), while at the same time limiting
the cost incurred by our changing approximation to X and the corresponding Tσ.
We now formally describe the computable subroutine which defines the appropriate
approximation.

2.3. The computable subroutine of the construction. Given inputs σ ∈ 2<ω

and e ∈ ω, the following lemma provides an algorithm which produces a computable
approximation (Xs) which converges to an infinite extension X of σ such that the
‘low for K’ cost

(2.4)
∑
s{cK(n, s+ 1) | n is the least such that Xs(n) ↓6= Xs+1(n) ↓}

where cK(n, s+ 1) = ΩXs�s − ΩXs�n

that is associated with (Xs), is at most 2−e. According to the standard ‘cost func-
tion method’ of constructing low for K sets (e.g. see [Nie09, Proposition 5.3.34]) the
set X is low for K. In Lemma 2.2 we establish some additional details concerning
(Xs), which play a crucial role in the proof of Theorem 1.1.

Lemma 2.2. For each string σ and each e > 0 there exists an infinite binary
extension X of σ and a sequence of numbers (nt) such that ΩX is a c.e. real,
ΩX − ΩX�nt < 2−t and Ωρ − ΩX�nt < 2e−t for all ρ ⊃ X �nt with ρ ⊃ σ and
t ∈ N. In fact, there is a computable function h : 2<ω × N × N → 2<ω such that
|h(σ, e)[s]| = s for all s ∈ N, and such that if (ni[s]) denotes the Ω-sequence of Xs

then:

• the strings h(σ, e)[s] := Xs tend to a set X as s→∞;
• (ΩXs) is a non-decreasing sequence tending to ΩX ;
• For each i ∈ N the sequence (ni[s])s∈N is non-decreasing and tends to a

number ni as s→∞ such that ΩX − ΩX�ni < 2−i.
• Ωρ − ΩX�nt < 2e−t for all ρ ⊃ X �nt with ρ ⊃ σ.

Also, the low for K cost of (Xs) as this is defined in (2.4) is < 2−e.

8 GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

Proof. Given a string σ and a number e we show how to define the computable
function h(σ, e)[s] := Xs for all s ∈ N. The basic idea is as follows. At stage s+ 1
we make sure that if k is the least number such that Xs(k) ↓6= Xs+1(k) ↓ (should
there exist any such) and if t is the greatest number such that nt[s] ≤ k, then
ΩXs+1 −ΩXs�k ≥ 2e−t. Hence, we only allow the this change to our approximation
ofX at stage s+1 if this change adds at least 2e−t−2−t to the current approximation
to ΩX . Thus, every time we pay cost cK(k, s+1) = ε, the monotone approximation
to ΩX increases by at least (2e− 1) · ε. Since ΩX < 1/24 and e > 0, this guarantees
that the overall cost corresponding to (Xs) is less than 2−e.

The precise instructions are as follows. At stages s ≤ |σ| let Xs = σ �s. At
stage s + 1 > |σ| let ni[s] be the Ω-sequence of Xs. Check to see whether there
exists some i < s and a string τ ⊇ Xs �ni[s] of length ≤ s+ 1 with σ ⊂ τ such that
Ωτ −ΩXs�ni[s] ≥ 2e−i. If so, pick the least such i, and for this choice the least such
τ . Define Xs+1 to be the concatenation of τ with s+ 1− |τ | zeros. If not, then let
Xs+1 = Xs ∗ 0.

Clearly the function h(σ, e)[s] is computable. Whenever nt[s] 6= nt[s + 1] or
Xs �nt[s] 6= Xs+1 �nt[s+1], we have that ΩXs+1�nt[s+1]−ΩXs�nt[s] ≥ 2−t. Since ΩY < 1
for all Y , it follows that for each t the sequence (nt[s]) converges monotonically to
a final value nt and the sequence (Xs �nt[s]) reaches a limit. From the fact that
ΩY is irrational for all Y , it follows that limt nt =∞. Hence, the strings Xs, s ∈ N
converge to an infinite sequence X, such that ΩX − ΩX�nt < 2−t for each t ∈ N.

The sequence ΩXs is non-decreasing and computable (since ρ → Ωρ is com-
putable). On the other hand, for each t ∈ N and for all stages s after which
Xs �nt[s] stabilizes, we have ΩX < ΩXs�nt[s] + 2−t. Hence ΩX is the limit of the
non-decreasing computable sequence (ΩXs) and is a c.e. real.

Now let s be such that nt[r] = nt and Xr �nt[r]= X �nt for all r ≥ s. Then
Ωρ − ΩX�nt < 2e−t for all ρ ⊃ X �nt with ρ ⊃ σ, since otherwise nt[r + 1] 6= nt[r]
for the first stage r + 1 > s at which we find ρ violating this condition.

The fact that the low for K cost of (Xs) is < 2−e follows from the argument
given above. �

With the function h now defined according to the lemma, there is just one more
consideration to be had before we can specify the entire construction precisely.
When we defined Tσ in the discussion above, there was a string ρ associated with
Tσ, which compressed an initial segment of ΩTσ , and the measure of the set of strings
extending ρ was seen to give a certain amount of room for simulating machines with
oracle input extending Tσ. There is nothing to stop there being multiple strings
σ, however, for which which ρ is the string associated with Tσ in this way. This is
easily dealt with using some simple accounting. Corresponding to each σ we shall
have values aσ and bσ, and ρ is chosen so as to compress by a margin which depends
upon these values in such a way that these sums work out as they should.

3. Proof of Theorem 1.1

3.1. The machine M . In Section 3.3 the machine MA is defined in terms of a
uniformly A-c.e. family of bounded request sets Lρ, indexed by strings in the domain
of UA (and the extra 1-bit string 0, see below). This family gives a uniformly A-
computable sequence of machines MA

ρ such that for each request 〈τ, `〉 in Lρ there
exists a string η of length ` such that MA

ρ (η) = τ . The main machine MA is defined

THE COMPRESSION OF STRINGS USING ORACLES 9

as follows.

(3.1) MA(ρ ∗ η) = MA
ρ (η).

Since each machine MA
ρ is prefix-free (and all strings in the domain of UA are

incomparable with the 1-bit string 0, according to the conventions of Section 2.1)
it follows from (3.1) that MA is prefix-free.

3.2. Parameters of the construction. Let bσ[0] be a computable sequence of
numbers such that

(3.2)
∑
σ 2−bσ [0] < 2−3 and b∅[0] = 4

where σ ranges over all strings and ∅ denotes the empty sequence. The parameter
bσ will be used in the construction to help make sure that there is room for the
descriptions that are allocated to Tσ, and will be updated upon an ‘injury’ of this
node. A second parameter aσ will indicate our belief as regards an upper bound to
supρ(Ωρ − ΩTσ) where ρ runs over all extensions of Tσ.

We order the strings first by length and then lexicographically. Define T∅[s] =
∅ for all stages s, where ∅ denotes the empty string. This means that in the
approximation T [s] to T , the root of the tree will always be the empty string. Let
σ be a nonempty string and let j be its last digit, so that σ = η ∗ j for some string
η. Also let (nt[s])t∈N denote the Ω-sequence of h(Tη[s] ∗ j, aη[s])[s]. Following a
standard convention, the latter expression is simplified to h(Tη ∗ j, aη)[s]. We say
that Tσ requires attention at stage s+1 if |σ| > 0 and one of the following conditions
holds.

(a) Tσ[s] is undefined and there exists a string ρ of length < s such that
UA(ρ) is defined, is a prefix of the binary expansion of Ωτ where τ =
h(Tη ∗ j, aη)[s] �nt[s], t = |UA(ρ)|, nt[s] > |Tη ∗ j| and |UA(ρ)| − |ρ| >
aη[s] + bσ[s].

(b) Tσ[s] is defined but Tσ[s] 6= h(Tη ∗ j, aη)[s+ 1] �nt[s+1], where t = |UA(ρ)|
and ρ is the string associated with Tσ.

So a node requires attention either when it is undefined and is ready to be de-
fined (corresponding to case (a)), or else is defined and should be made undefined
(corresponding to case (b)).

As discussed previously, each Tσ will be associated with a string in the domain of
UA. We trivially let T∅ be permanently associated with the 1-bit string 0. In order
to cover this trivial case (and since the string 0 is incomparable with all strings in
the domain of UA, see Section 2.1) we use the special set L0 for the enumeration
of requests corresponding to definitions of T0 and T1, and we let α∅[0] = 4. Thus
every definition of some Tσ entails an enumeration of requests into Lρ, where ρ is
the string associated with Tη, and η is the immediate predecessor of σ.

3.3. Construction. At stage s+ 1 let σ be the least string such that Tσ requires
attention (or if there exists no such then proceed to the next stage). Let j be
the last digit of σ so that σ = η ∗ j for some string η. If Tσ[s] is defined, let
bτ [s+ 1] = bτ [s] + 1 for all τ ⊃ σ. Also let Tτ [s+ 1], aτ be undefined for all τ ⊇ σ
and disassociate the strings in the domain of UA that were associated with them.
Declare that the nodes Tτ for τ ⊃ σ are injured.

Otherwise let (nt[s])t∈N be the Ω-sequence of h(Tη ∗ j, aη)[s]. Also let ρ be the
least string such that, if t denotes |UA(ρ)| and τ denotes h(Tη ∗ j, aη)[s] �nt[s],

10 GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

• UA(ρ) is a prefix of the binary expansion of Ωτ

• nt[s] > |Tη ∗ j| and |UA(ρ)| − |ρ| > aη[s] + bσ[s].

Put Tσ[s + 1] equal to h(Tη ∗ j, aη)[s] �nt[s], let aσ[s + 1] = |UA(ρ)| − aη[s] and
say that Tσ[s + 1] is associated with ρ. Also if µ is the string that is associated
with Tη[s] then for each 〈ν, ξ, υ〉 ∈ U [s] such that Tη[s] ⊂ ν ⊆ Tσ[s+ 1] enumerate
〈υ, |ξ| − |µ|〉 into Lµ.

3.4. Verification. The following lemmas establish the required properties of the
construction of Section 3.3.

Lemma 3.1. All nodes Tσ[s] and parameters aσ[s], bσ[s] reach limit values as s→
∞. The function T which maps σ to lims Tσ is a perfect tree.

Proof. We argue the first sentence in the statement of the lemma by induction on
the strings σ. The values T∅[s], a∅[s] and b∅[s] are the same for all s ∈ N. This
concludes the base case of the induction.

Suppose that |σ| > 0 and s0 is a stage such that for all s ≥ s0 and all strings
τ less than σ the parameters Tτ [s], bτ [s], aτ [s] always equal their final values Tτ ,
bτ and aτ respectively. In particular, if η is the immediate predecessor of σ (say
σ = η ∗ j), the parameters Tη[s], bη[s], aη[s] take their final values Tη, bη, aη at all
stages s ≥ s0. This immediately means that the same holds for bσ since this value
can only change when Tσ is injured (which happens only when Tη is redefined). By
Lemma 2.2 the sequence h(Tη ∗ j, aη)[s] := Xs converges to an infinite sequence X
such that ΩX is a c.e. real. By the same lemma, each term ni[s] of the Ω-sequence of
Xs reaches a limit ni as s→∞, and since ΩX is irrational limi ni =∞. Since A is
not low for Ω, there exist infinitely many n ∈ N such that KA(ΩX �n) < n−aη−bσ.
Choose the least string υ such that UA(υ) = ΩX �t for some t with nt > |Tη ∗j| and
|υ| < t−aη−bσ. Let s1 > s0 be sufficiently large that nt[r] = nt and Xr �nt= X �nt
for all r ≥ s1 and UA(υ)[s1] = ΩX �t. Let s2 > s1 be a stage such that for any
string κ less than υ and all stages s ≥ s2 one of the following holds:

• UA(κ)[s] is not a prefix of the binary expansion of ΩXs ;
• |κ| 6< |UA(κ)[s]| − aη − bσ;
• If t′ = |UA(κ)[s]| then nt′ ≤ |Tη ∗ j|.

Such a stage exists by the minimality of υ and the fact that ΩXs is a computable
non-decreasing sequence of rational numbers which tends to ΩX .

Now if Tσ ever became undefined after stage s2, it would require attention (by
the choice of υ and s2). No Tρ with ρ less than σ would require attention at such a
stage, since these nodes have reached their limit values. Therefore Tσ would receive
attention and would be defined based on υ (i.e. defined with associated string υ) at
some stage s3 > s2. The parameter Tσ[s3] would be given the value Xs3 �nt= X �nt
(for t = |UA(υ)|), aσ would be given the value |UA(υ)|−aη and these values would
never subsequently be redefined. Thus Tσ, aσ and bσ reach limit values, as required.

Let Tσ := lims Tσ[s] for each string σ. Notice that for each η and stage s the
nodes Tη∗0[s], Tη∗1[s] are extensions of Tη and are incomparable with each other
(unless one of them is undefined). Hence their final values will have the same
properties and the function σ → Tσ is a perfect tree. �

Lemma 3.2. Let σ = η ∗j for some η 6= ∅ and suppose that at stage s+1 we newly
define Tσ. Then ΩTσ − ΩTη < 2−aη .

THE COMPRESSION OF STRINGS USING ORACLES 11

Proof. Let η = ζ ∗ z, put Xs := h(Tζ ∗ z, aζ)[s] and let ni[s] be the Ω-sequence
of Xs. At stage s+ 1, let µ be the string associated with Tη, and let t = |UA(µ)|.
Then, at stage s+1, since Tη does not require attention, we must have that Tη[s] =
Xs+1 �nt[s+1]= Xs �nt[s]. Now if we define Tσ = τ and Ωτ − ΩXs�nt[s] ≥ 2−aη then
Ωτ −ΩXs�nt[s] ≥ 2−(|UA(µ)|−aζ) = 2aζ−t. According to the definition of h this would
cause us to define Xs+1 so that τ ⊆ Xs+1 and nt[s+1] 6= nt[s], a contradiction. �

Lemma 3.3. For each string µ the weight of Lµ is < 1. Hence M is a prefix-free
machine.

Proof. Fix a string µ. Enumerations into Lµ occur when a node Tσ with σ =
η ∗ j becomes newly defined and Tη has the string µ currently associated with
it. Hence every enumeration into Lµ during the construction can be allocated to
the unique node Tη whose immediate successor became defined at the stage where
the enumeration occurred. Let Lµ(Tη) be the set of tuples 〈υ, `〉 in Lµ which are
assigned to Tη in this way. Then wgt(Lµ) =

∑
η wgt(Lµ(Tη)). By (3.2) it suffices

to show that

(3.3) wgt(Lµ(Tη)) < 2−bη [0]+3 for all strings η.

In the special case where µ is the 1-bit string 0, this weight is 0 unless η is
the empty string. In the latter case we have bη[0] = 4 by (3.2) so it suffices to
show that wgt(L0(Tη)) < 2−1. The requests that are enumerated into L0(Tη)
come from various definitions of the nodes T0, T1 during the construction. Let
Xs := h(Tη ∗ 0, aη)[s] and let X be the limit of this sequence. Notice that Tη is the
empty sequence and aη[s] = 4 for all stages s, so that Xs = h(0, 4)[s]. Clearly the
weight of the requests that are enumerated into L0(Tη) and which are caused by the
various definitions of T0 is bounded by 2 · (ΩX + c), where c is the ‘low for K cost’
of the approximation (Xs)→ X (the factor 2 here comes from the fact that in the
last line of the construction we enumerate the request 〈υ, |ξ| − |µ|〉 rather than the
request 〈υ, |ξ|〉 into Lµ). By Lemma 2.2 we have c < 2−4 and by the conventions
established in Section 2.1 we have ΩX < 2−4. Hence the weight of the requests
that are enumerated into L0(Tη) as we define T0 is bounded by 2−2. Similarly the
weight that is caused by the various definitions of T1 is bounded by 2−2. Hence
wgt(L0(Tη)) is bounded by 2−1. This concludes the proof of (3.3) in the special
case when µ is the 1-bit string 0.

Now suppose that µ is in the domain of UA and let η be any string. Notice that
if η is the empty string then the weight in (3.3) is 0. So without loss of generality
we may assume that η is nonempty, say η = ζ ∗z for a string ζ and some z ∈ {0, 1}.
Notice that each time Tη is declared injured, the current value of bη increases by 1.
Consider a partition of all stages into maximal intervals where Tη remains uninjured
(in other words, Tζ remains constantly defined). Let L∗µ(Tη) denote the requests
that are allocated to Tη and are enumerated into Lµ during one of these intervals
I. To establish (3.3) it suffices to show that

(3.4) wgt(L∗µ(Tη)) < 2−b
∗
η+2

where b∗η denotes the value of bη during the interval I. Notice that during the stages
in I the node Tη may be redefined many times, but each time it is redefined during
this interval, it will be associated with a different string than at all previous stages
during the interval. Thus we may consider a maximal subinterval J , during which
η is always always associated with µ, and during which the values aη and Tη are

12 GEORGE BARMPALIAS AND ANDREW E.M. LEWIS

fixed (in the following discussion we let aη, aζ and Tη refer to their fixed values
during this interval J).

During the interval J , some enumerations allocated to Tη are caused by defi-
nitions of Tη∗0 and others are caused by definitions of Tη∗1. Fix j = 0, 1. Let
Xs := h(Tη ∗ j, aη)[s] and let X be the limit of (Xs). By combining Lemma 3.2
with the fact that the low for K cost corresponding to the approximation (Xs) is
at most 2−aη , we get that the weight that is enumerated into L∗µ(Tη) as we give
the various definitions of Tη∗j during the stages in J is bounded by 2|µ| · 2 · 2−aη
(the factor 2|µ| comes from the fact that in the last line of the construction we
enumerate the request 〈υ, |ξ| − |µ|〉 rather than the request 〈υ, |ξ|〉 into Lµ). Then
µ was chosen so that

|UA(µ)| − |µ| > aζ + b∗η and aη = |UA(µ)| − aζ .
Therefore

aη > |µ|+ b∗η and 2−aη < 2−|µ|2−b
∗
η

so 2|µ| · 2 · 2−aη < 2−b
∗
η+1. Since the same argument holds for Tη∗(1−j), the overall

weight that is enumerated into L∗µ(Tη) during the stages in J is < 2−b
∗
η+2, as

required. �

Let T denote the tree σ → Tσ.

Lemma 3.4. Given any path X on the tree T we have KA
M (σ) ≤ KX(σ) for all

strings σ.

Proof. Suppose that KX(σ) = n and UX(ν) = σ for some string ν of length
n. Then there is τ ⊂ X such that 〈τ, ν, σ〉 ∈ U . Let η be a string such that
Tη ⊂ τ ⊆ Tη∗j for some j = 0, 1. When Tη∗j was permanently defined at a stage s,
the construction enumerated the request 〈σ, |ν| − |µ|〉 to Lµ where µ is the string
that is cofinally associated with η. Hence KA

M (σ) ≤ |µ|+ (|ν| − |µ|) = KX(σ). �

References

[ASK00] Klaus Ambos-Spies and Antońın Kučera. Randomness in computability theory. In

Computability theory and its applications (Boulder, CO, 1999), volume 257 of Con-

temp. Math., pages 1–14. Amer. Math. Soc., Providence, RI, 2000.
[Bar10] George Barmpalias. Relative randomness and cardinality. Notre Dame J. Formal

Logic, 51(2), 2010.

[BB10] Martijn Baartse and George Barmpalias. On the gap between trivial and nontrivial
initial segment prefix-free complexity. Submitted, 2010.

[BLS08] George Barmpalias, Andrew E. M. Lewis, and Mariya Soskova. Randomness, Lowness
and Degrees. J. of Symbolic Logic, 73(2):559–577, 2008.

[Cha75] Gregory J. Chaitin. A theory of program size formally identical to information theory.
J. Assoc. Comput. Mach., 22:329–340, 1975.

[DH10] Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity.
Springer-Verlag, 2010.

[DHMN05] Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller, and André Nies. Relativizing
Chaitin’s halting probability. J. Math. Log., 5(2):167–192, 2005.

[Hin78] Peter G. Hinman. Recursion-theoretic hierarchies. Springer-Verlag, Berlin, 1978. Per-
spectives in Mathematical Logic.

[KHMS10] B. Kjos-Hanssen, J. Miller, and R. Solomon. Lowness notions, measure, and domina-
tion. Submitted, 2010.

[Kol65] A. N. Kolmogorov. Three approaches to the definition of the concept “quantity of
information”. Problemy Peredači Informacii, 1(vyp. 1):3–11, 1965.

THE COMPRESSION OF STRINGS USING ORACLES 13

[Mil10] Joseph S. Miller. The K-degrees, low for K degrees, and weakly low for K sets. Notre

Dame J. Formal Logic, 50(4):381–391, 2010.

[ML66] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–
619, 1966.

[Nie05] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.

[Nie09] André Nies. Computability and Randomness. Oxford University Press, 2009.
[RS10] Jan Reimann and Theodore Slaman. Measures and their random reals. Submitted,

2010.

[Sol75] R. Solovay. Handwritten manuscript related to Chaitin’s work. IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 215 pages, 1975.

George Barmpalias: Institute for Logic, Language and Computation, Universiteit

van Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands.
E-mail address: barmpalias@gmail.com

URL: http://www.barmpalias.net/

Andrew E.M. Lewis: School of Mathematics, University of Leeds, LS2 9JT Leeds,
United Kingdom.

E-mail address: andy@aemlewis.com

URL: http://www.aemlewis.com

http://www.barmpalias.net/
http://www.aemlewis.com

	1. Introduction
	2. About the proof of Theorem 1.1
	2.1. Preliminaries
	2.2. Informal ideas behind the proof
	2.3. The computable subroutine of the construction

	3. Proof of Theorem 1.1
	3.1. The machine M
	3.2. Parameters of the construction
	3.3. Construction
	3.4. Verification

	References

