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Abstract

This brief note compares a few ways of deriving pre-orders over sets of
objects from strict partial orders over properties of those objects— so-called
priority graphs that have recently been used by logicians as a rich explicit
model of preference merge, belief revision, norm change, and other aspects
of agency. Our note establishes equivalence results between three popular
formats for priority graphs, and defines a normal form for them.

1 Introduction

Pre-orders over a given finite set S of objects can be derived from strict partial
orders over properties of these objects, forming a richer medium for showing
how these orderings arise. Properties in such priority graphs are expressed
by simple propositional formulae and partial orders over these: cf. [1, 4]
for concrete examples concerning social preference merge, and reason-based
preference of single agents. In [6], the authors apply the format to deontic
reasoning, contrary-to-duity norms, and norm change.

The present note investigates three typical formats of priority graphs and
proves their equivalence with respect to two different ‘recipes’ for deriving
pre-orders, where equivalence is understood as the definition of the same class
of underlying order structures for objects. This type of equivalence reasoning
allows us to suggest two normal-form formats for priority graphs. What we
will see, in particular, is how inclusion orders of predicates can mimick the
effects of abstract prority orders.

1.1 Priority graphs

Definition 1 (P-graphs). Let L(P) be a propositional language built on the set of
atoms P. A P-graph is a tuple G = (®, <) such that:

~ ® c L(P) with || < w;
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» < isa strict order on ®.!
The set of all P-graphs for L(P) is denoted SOp (“Strict Orders”).?

Given a P-graph G, we denote with Tg ¢ = {{y € @ | ¢ < Y or ¢ = ¢} the
upset of ¢ in G. We also denote with 75, ¢ = {¢ € © | ¢ < )} the strict upset of
@ in G. When clear from the context, we will drop the index and write simply

T@and 1* ¢.

1.2 Derivation functions

Derivation functions for P-graphs are functions of type:
6isOPXVP—>POS (1)

where Vp is the set of valuation functions Vp : P — 25, and POg the set
of pre-orders over S. That is, given a strict order on propositional formulae
from L(P) and a valuation for P over S, 0 outputs a preorder on the set S.
We will work in particular with two functions of the type given in Formula 1:
the lexicographic derivation (borrowed from [1]), and the subsumption-based
derivation (borrowed from [4]).

be strict orders. will simplify the presentation of our result considerably

Definition 2 (Lexicographic derivation function). Let G = {®, <) be a P-graph,
S a non-empty set of states and V : P —> 25 a valuation function. The preference
relation 51;"@ S? is defined as follows:

sﬁlgexs' = VYped:[sefe]=5 <l
ordg [ <@ ands ¢ [¢'] and s’ € [¢ 1] ()

The procedure works as a form of lexicographic ordering. The relation
s ﬁgx s” holds if s satisfies all formulae in the sequence that also s’ satisfies or, if
that is not the case, if s” satisfies a formula which s does not satisfy and which
is ranked higher in the P-graph. In a P-graph where all properties happen
to be disjoint the effect of this latter clause is clear. will be ranked accord-
ing to the ranking of the proposition whose truth-So we can recognize in the
lexicographic derivation two components: a set-inclusion component that de-
termines the equivalence classes of the derived pre-order by essentially looking
at the relative logical strength of the properties each element satisfies; and a
“compensation” component which ranks element that would be left unrelated
by the set-inclusion component by resorting to the strict order information
present in the P-graph.

Definition 3 (Subsumption-based derivation). Let G = (®, <) be a P-graph, S a
non-empty set of states and V : P — 25 a valuation function. The preference relation
<5°C 8% is defined as follows:

sﬁsg“bs’ = VYped:selp] =75 <[¢l. ©)]

IThat is, an irreflexive and transitive binary relation.
2We will often drop the index referring to the current language.
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Intuitively, according to Definition 3, a state s is ranked above a state s” if and
only if any of the properties in the graph satisfied by s’ it is also satisfied by s.
In other words, s enjoys at least all the properties of s’. So, subsumption-based
derivation consists of the sole set-inclusion component of the lexicographic
derivation.

in such a way that no inclusion relation holds among them, then the valu-
ation interprets the properties in the graph as an ascending chain of below), as
if a state satisfies a property in the sequence, then it also satisfies all

Remark 1. It should be noted that in “flat” P-graphs, i.e., P-graphs G = (@, 0) where
the strict order is empty, the two derivation methods are equivalent, as the second part
of the lexicographic method (see Formula 2) cannot be called in. More precisely, for any
P-graph G with empty orders, and any valuation V it is the case that:

lex(G, V) = sub(G, V).

2 Classes of P-graphs

The section deals with two specific classes of P-graphs whose elements exhibit
logical structure and which we call: inclusive and, respectively, exclusive P-
graphs.

Definition 4 (Inclusive P-graphs). An inclusive P-graph G = (@, <) for language
L(P) is a P-graph G such that, for every ¢ € O:

P o \/ T
The set of all inclusive P-graphs for language L(P) is denoted SO;,(P).

In other words, each property in an inclusive graph is equivalent to the
big disjunction of all elements in the upset of that property. So, an inclusive
P-graph is a strict order over disjunctions built in such a way that if a property
occurs as a disjunct at some point in the graph, it occurs in all lower points.
Two examples of such graphs are depicted in Figure 1.

Remark 2. Itis useful to see how Definition 4 simplifies in the case of G = (@1, ..., Pn)
being a strict linear order, i.e., a chain:

Qi © \/T(Pi
o \/(Pj

1gj<i
with 1 <i < n. In this case, each element is equivalent to the disjunction of itself with
the union of all the preceding elements.

Definition 5 (Exclusive P-graphs). An exclusive P-graph G = (®, <) for language
L(P) is a P-graph G such that, for every ¢ € ©:

p o pA=\/10
The set of all inclusive P-graphs for language L(P) is denoted SO.(P).

In other words, an exclusive graph is such that all its elements are equivalent
to the complementation of themselves with the disjunction of all the elements
in their strict upset. Examples of such graphs are given in Figure 2.
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pl pl\ /p2
p1Vp2 p1Vps p1Vp2Vps
p1Vp2Vps p1Vp2VpsVps

Figure 1: Hasse diagrams of inclusive P-graphs

3 Normal forms for P-graphs

Let us first stress an aspect of Definition 2.

Remark 3. It is interesting to see how the strict part <1gex and the indifference part
~1gex of ﬁlgex can be independently defined. We start with the very natural definition of

Nlex:

G
s~1gexs' — VYped:[selp] = s €[ell
As to the strict part:

s<1gexs’ — dpecd:[s¢[e] ands €[]
and Vo' :[s € [¢'] ands’ ¢ [¢'] = ¢’ < ¢ll.

It is then easy to see that the following is the case:

s ﬁlgex s & s ~gx s ors <1§ex s

In other words, the lexicographic derivation builds a pre-order consisting
of equivalence classes—of relation ~g‘x—strictly ordered according to ﬁlgex.
Now, these equivalence classes consist of elements that satisfy precisely the
same properties. It becomes then evident that such classes could themselves be
used as properties in a P-graph, with the same order. Such new P-graph will

obviously be equivalent. The next section makes this intuition precise.

/ pl \ pl \ / pz
p2 A —p ps A =p1 ps A =p1 A —p2
Pa A=pr A —p2 A —p3 P4 A—p1 A—pa A %)

Figure 2: Hasse diagrams of exclusive P-graphs
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Figure 3: Hasse diagrams of a P-graph (left) and its exclusive normal form
(right)

3.1 Exclusive normal form
We introduce the first type of normal form.

Definition 6 (Exclusive normal form for P-graphs). Let G = (®, <) be a P-graph.
The exclusive normal form of G is a P-graph Gey = (@ex, <ex) such that:

» @, =2%. Each element W € ®,_, has to be read as a finite conjunction:

/\‘I’/\/\ﬂ(CD—‘I’)

that is, the conjunction of all properties in \V and all the negations of the properties
not in \V.

» The relation <, is defined as follows:

V<,V & dpecd:[pecWVWandp¢V¥
and Vo' ¢ ¢ VW and p e ¥ = ¢’ < ¢]].

An example of the exclusive normal form of a graph is given in Figure 3.3
It should be clear by the construction of the exclusive normal forms that these
graphs are indeed exclusive in the sense of Definition 5. Notice also that the
number of elements in the exclusive normal form is bound by the cardinality
of @ being equal to 2/!.

We can now prove a simple normal form theorem guaranteeing that every
P-graph has an equivalent exclusive normal form.

3Tt might be instructive to compare the definition of <., with the definition of the strict part of
the preorders derivable via lex (Remark 3).
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Lemma 1 (Adequacy of exclusive normal forms). Each graph G is 1ex-equivalent
to its exclusive normal form G .

Proof. Let us restate the lemma in a more extensive way:
VG eSO :[VV e V:1ex(G V) = 1ex(Gor, V)]
We prove the claim by showing that, for any valuation V:
(i) |S|51gex = |S|5;§,§' i.e., the two preorders give rise to the same equivalence
classes;

(i) <g*=<g~, i.e., the strict part of the two preorders is the same.

As to (i) it suffices to observe that all equivalence classes ISISEX yielded by

51gex must be the truth-sets—under V—of some conjunctions of length |®| of
formulae of the form A WA A =(D\ V) with W C @. But these are precisely the

disjoint elements of the normal form. As to (ii), it is proven by the following
series of equivalences:
s<1gexs’ — dped:s¢fe] ands € [¢]
and Vo' : (s € [¢'] and s" ¢ [¢] = ¢’ < ¢] 4)
— V‘I’, \I’, € \I]e_x . [lf [[\y]] = |S|~!1;x and |[\y/]] = |S,|~éex
thenJdp e D:[pe W and @ ¢ ¥
and Vo' : [if ¢’ ¢ ¥’ and ¢ € W then ¢ < ¢]]] ®)
= VW e Wk [Hf [W] = sl and [W] = I5Las (6)
then ¥ <,, V']
— JEed,:[s¢[E] ands’ € [E]

and V=’ : [s € [E'] and s’ ¢ [E'] = &’ <. E]] )
= s <g"" s (8)

where, to simplify notation, by W, E we still also denote the finite conjunction
of the elements of W, E and of the negations of the members of its complement.
Equivalence 4 holds by definition. Equivalence 5 reformulates 4 by resorting
to elements of the exclusive graph corresponding to the equivalence classes of
s and s’. By the construction of the exclusive normal form we know that such
elements exist. Equivalence 6 holds by the definition of exclusive normal form.
Equivalence 7 holds because of the fact that exclusive graphs consist of disjoint
elements. Finally, 8 holds by definition. O

Remark 4. It is worth noticing that the exclusive normal form G, of a P-graph G
is order-isomorphic to the quotient Q(P) of the pre-order P = (S, <g") obtained by
lexicographic derivation from G. The following diagram depicts this observation.

P2, o
Vg

lex & ~

G— G

We proceed now to the second type of normal form dealt with in the paper.
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P\ /‘1 P\ /’1
rA—pAg rvpvyg

Figure 4: Hasse diagrams of an exclusive P-graph (left) and its inclusive normal
form (right)

3.2 Inclusive normal form

Definition 7 (Inclusive normal forms). Let G = (D, <) be an exclusive P-graph.
The inclusive normal form of G is a P-graph G, = (®jy, <in) such that:

» O, = 1 G, that is, the set of upsets of G. To simplify notation, each element
W e &y, will be read also as the finite disjunction: \/ V.

» The relation <;, is defined as follows:
V<,V — VY cWw

An example of inclusive normal form is given in Figure 4. Notice that this
form is defined only for graphs in exclusive form.

Like for the case of exclusive normal forms, we obtain a simple theorem
guaranteeing that every exclusive P-graph has an equivalent inclusive normal
form.

Lemma 2 (Adequacy of inclusive normal forms). Each graph G, used as argument
of 1ex, is equivalent to its inclusive normal form G,, used as argument of sub.

Proof. Let us restate the lemma in a more extensive way:
YG € SO : [VV €V :1ex(G, V) = sub(Gin, V)].
We prove the claim by the following series of equivalences:

sy = Jped:(s¢[e] ands € [¢]

-G
and Vo' : (s € [¢']] ands’" ¢ [¢'] = ¢' < ¢) 9)
— VY,V ecd,:[if [V] =1 |S|~éex and [W'] =7 |S/|~!1;x
then ¥’ C W] (10)
— VEe®,:sc[[E] = ¢ €[ZE] 11)
= s 53‘;:’ g’ (12)

where Tg,, |S|~1gex denotes the upset of the equivalence class of s in the exclusive

normal form of G. Equivalence 9 holds by definition. Equivalence 10 holds
under the assumption that G is exclusive, and hence that it has yields pre-orders
with just as many equivalence classes as the elements of its domain. It just says
that for any two elements of the inclusive normal form, if they coincide with
the upsets of the equivalence classes of s and s’ respectively, then the latter
is included in the former. But this is to say—Equivalence 11—that for any
property, if s satisfies it, so does s’. Equivalence 12 holds then by definition. O
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So, any exclusive graph has an equivalent inclusive normal form. What
about general graphs? In that case an inclusive normal form can be obtained
from the exclusive normal form of the graph. To make it clear, the inclusive
normal form of the graph given in Figure 3 (left) is not the graph given in Figure
4 (right), but a graph obtained from Figure 3 (right) which consists of all the
upsets of the latter, ordered by set inclusion.

Remark 5. What discussed in this section is strictly related to a well-known result in
order theory:

Every pre-order is order-isomorphic to the set of upsets of its elements
ordered by set-inclusion [2, Theorem 5.9].

In fact, the disjunctive normal form of an exclusive P-graph is the set of upsets of
the graph, ordered by (strict) set-inclusion. Unlike exclusive normal forms, inclusive
normal forms are therefore order-isomorphic to their original graphs. However, notice
that the inclusive normal form of an exclusive normal form will not be order-isomorphic
any more with respect to the original graph.

3.3 Graph equivalences

We can now pull together Lemmata 1 and 2 into one characterization theorem
showing that the class of P-graphs defines, by lexicographic derivation, the
same class of pre-orders that can be derived via the exclusive normal forms of
those graphs by lexicographic derivation, or by subsumption-based derivation
from the inclusive normal form of the exclusive normal form of the graph.

Theorem 1 (Equivalence of classes of graphs). For any P-graph G and valuation
V it holds that:

lex(G, V) = 1ex(Gex, V) = sub((Gex)in, V). (13)

Proof. It follows from Lemmata 1 and 2. O

4 Conclusions

In the light of Theorem 1, the following two equations summarize the findings
of this note:

lex exolex (14)

lex = exoinosub (15)

Putting the same point a bit differently, the lexicographic derivation is the
function consisting of: the composition of the function extracting the exclusive
normal form with the lexicographic derivation itself (Formula 14); but the
lexicographic derivation is also the composition of the function extracting the
exclusive normal form, the function extracting the inclusive normal form (on
exclusive graphs), and the subsumption-based derivation (Formula 15). This
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is illustrated by the following commutative diagram:

in

gex (gex)in
<
ex S sub
G lex P

To put it yet otherwise, given a graph G, the pre-order obtained from it via
lexicographic derivation is the same pre-order thatis obtained via lexicographic
derivation from the exclusive normal form G., of G, or via subsumption-based
derivation from the inclusive normal form (G.,)i, of Gex.

We thus obtain an effective procedure for transforming priority graphs into
semantically equivalent ones—its normal forms. This analysis clarifies various
points in the recent literature, especially, the use of inclusion-nested graphs of
propositions as in [6] versus other formats, where the latter need additional
priority order, whereas the former does not. The syntactic aspects of our
analysis also fit quite well with the modal graph logic of [3] and the “internal
graph algebra” of [5].

We see various further questions opening up at this point, among which: the
study of aricher set of dynamic graph transformations than has been considered
so far; the study of priority graphs where properties are described in terms of
modal languages, and not just propositional ones.
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