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1 Introduction

In our [7] two types of neighborhood models were introduced. In the NB-neighborhood
frames the neighborhoods are pairs (X,Y ) of sets of worlds, in N-neighborhoods
the neighborhoods are sets of worlds of the form X ∪Y . The NB-neighborhoods
were best suited to study the basic logic WF, the N-neighborhoods were more
suitable for obtaining modal companions with respect to the Gödel type transla-
tion discovered for subintuitionistic logics with Kripke models by G. Corsi in [2].
The exact relationship between the two types of models remained unclear in that
article. In particular it was not sure whether the two types of models define the
same set of valid formulas.

In [4] we gave a partial solution of this problem without complete proofs, the
main emphasis of that article was on conservativity results for sets of implications
with regard to intuitionistic logic IPC. But we did introduce a rule N in it which,
added to WF, gives the system WFN that axiomatizes the validities of N-models.
In the present article we give complete proofs of this result, and make a finer
analysis of the relationship between the two types of models. It turns out that
N-neighborhood frames can be seen as a special type of NB-neighborhood frames.

Furthermore, we characterize the properties of many axiom schemata extend-
ing WF in both types of models and prove their completeness. In particular a
new rule N2 is introduced related to N which axiomatizes a stronger logic WFN2

over WF. The modal companion of WFN2 is the basic monotonic modal logic M.
Finding such a logic was of course very desirable, but had escaped us so far.
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In Section 2 we introduce the logic WF and its NB-neighborhood semantics.
In Section 3 we introduce the logic WFN and its N-neighborhood semantics. In
Section 4 we discuss some formulas that highlight the difference between the
two types of semantics, and in Section 5 some logics are discussed that extend
WF. In section 6 we extend Corsi’s Gödel type translations of logics above F into
modal logic to the logics above WF and provide modal companions to some of
them. We also introduced a new logic WFN2 with monotonic modal logic M as
its modal companion. It is based on a rule N2 which strengthens the rule N.

2 NB-Neighborhood Semantics

We first recall the most general NB-neighborhood frames introduced in [7] and
further studied in [4]. Here we choose general frames as the basic notion, re-
stricting the valuations to a subset of the powerset of the set of worlds. We feel
that in the case of neighborhood semantics this is the natural choice. Moreover,
in the definition we do not assume that the frames have an omniscient element;
we show that those can be added without changing validity. We do not give all
the proofs in this section. The missing ones can be found in [7], and, anyhow,
very similar ones can be found in the next section on N-neighborhoods.

Definition 1. F = 〈W,NB,X〉 is an NB-Neighborhood Frame if W is a
non-empty set and X is a non-empty collection of subsets of W such that ∅ and
W belong to X , and X is closed under ∪, ∩ and → defined by

U → V := {w ∈ W | (U, V ) ∈ NB(w)} ,

and NB is a function from W into P((X )2) such that

∀w ∈ W, ∀X,Y ∈ X , (X ⊆ Y ⇒ (X,Y ) ∈ NB(w)).

In an NB-Neighborhood Model M = 〈W,NB,X , V 〉, V : At → X is a valua-
tion function on the set of propositional variables At.

In an NB-neighborhood frame, if there exists an element g ∈ W such that

NB(g) =
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
,

then g is called omniscient and we call such frames rooted NB-neighborhood
frames.

Definition 2. (Truth) Let M = 〈W,NB,X , V 〉 be an NB-neighborhood model
and w∈W . Truth of a propositional formula in a world w is defined inductively
as follows.

1. M, w  p ⇔ w ∈ V (p);
2. M, w  A ∧B ⇔ M, w  A and M, w  B;
3. M, w  A ∨B ⇔ M, w  A or M, w  B;
4. M, w  A → B ⇔

(
AM, BM

)
∈ NB(w);
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5. M, w 1⊥,

where AM := {w ∈ W | M, w  A}. Sets X ⊆ W such that X = AM are called
definable; A is valid in M, M  A, if for all w ∈ W, M, w  A. We write  A
if M  A for all M. Also we define Γ  A iff for all M, w ∈ M, if M, w  Γ
then M, w  A.

Proposition 1. If M = 〈W,NB,X , V 〉 is an NB-neighborhood model then M
can be extended by adding an omniscient world to obtain a rooted NB-neighborhood
model M′ such that for all formulas A and for all w ∈ W ,

M, w  A iff M′, w  A.

Proof. We add a world g to W and make a new model M′ = 〈W ′, NB′,X ′, V ′〉,
with W ′ = W ∪ {g}, X ′ = {X,X ∪ g |X ∈ X}, for all propositional letters p,
(p)M

′
= (p)M, and for all w ∈ W and g:

NB′(g) =
{
(X,Y ) ∈ X ′2 | X ⊆ Y

}
,

NB′(w) = NB(w) ∪ {(X,Y ∪ {g}) | (X,Y ) ∈ NB(w)}

∪ {(X ∪ {g}, Y ) | (X,Y ) ∈ NB(w)}

∪ {(X ∪ {g}, Y ∪ {g}) | (X,Y ) ∈ NB(w)} .

The proof is by induction on A. The case where A is a proposition letter follows
by definition. Conjunction and disjunction are easy. Now assumeM, w  B → C,
then (BM, CM) ∈ NB(w). By induction hypothesis we have BM = BM′ ∩ W
and CM = CM′ ∩W . So by definition of NB′:

(BM′
, CM′

) ∈ NB′(w).

That is M′, w  B → C.
Next assume M′, w  B → C. Then (BM′

, CM′
) ∈ NB′(w). So by induction

hypothesis and definition of NB′, (BM, CM) ∈ NB(w). That is M, w  B →
C.

Corollary 1. Validity in NB-neighborhood frames and rooted NB-neighborhood
frames is the same.

Theorem 1. Let M be a rooted NB-neighborhood model, then:

1. M  A → B iff AM ⊆ BM.
2. A → B iff for all models M, AM ⊆ BM.

Proof. The easy proof can be found in [7].

Definition 3. WF is the logic given by the following axioms and rules,

1. A → A ∨B 2. B → A ∨B 3. A → A
4. A ∧B → A 5. A ∧B → B 6. A A→B

B
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7. A→B A→C
A→B∧C 8. A→C B→C

A∨B→C 9. A→B B→C
A→C

10. A
B→A 11. A↔B C↔D

(A→C)↔(B→D) 12. A B
A∧B

13. A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C) 14. ⊥→ A

In this paper we are not concerned with negation. The results are independent
of the inclusion of Axiom 14. In this section ` will mean `WF.

Definition 4. We define Γ ` A if there is a derivation of A from Γ and the-
orems of WF using the rules A B

A∧B and A A→B
B where in the latter case the

restriction is that A → B has to be provable in WF.

Theorem 2. (Weak Deduction Theorem) A ` B iff ` A → B.

Proof. The proof can be found in [7].

Theorem 3. The logic WF is sound with respect to the class of rooted NB-
neighborhood frames.

Proof. The proof uses Theorem 1 and can be found in [7].

Theorem 4. The logic WF is sound with respect to the class of NB-neighborhood
frames.

Proof. Assume Γ ` A. We want to show that Γ  A. Let M be an NB-
neighborhood model such that M, w  Γ . Then by Proposition 1, there exists
rooted NB-neighborhood model M′ such that M′, w  Γ . So, by Theorem 3,
M′, w  A and then by Proposition 1, we can conclude that M, w  A. That is
Γ  A.

Theorem 5. The logic WF is strongly complete with respect to the class of NB-
neighborhood frames.

Proof. The proof can be found in [7].

3 N-Neighborhood Semantics

In this section we recall the N-neighborhoods, also introduced in [7]. In [4] the
relationship with NB-neighborhoods was clarified to a certain extent, but here
with give a much fuller explantion of the connections and differences, and we
give complete proofs.

Definition 5. F= 〈W,N,X〉 is an N-Neighborhood Frame if W is a non-
empty set, X is a non-empty collection of subsets of W such that ∅ and W
belong to X , and X is closed under ∪, ∩ and → defined by

U → V :=
{
w ∈ W | U ∪ V ∈ N(w)

}
,

N is a function from W into P(X ), and for each w ∈ W, W ∈ N(w).
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Valuation V : At → X makes M = 〈W,N,X , V 〉 an N-Neighborhood
Model with the clause:

M, w  A → B ⇔ {v | v  A ⇒ v  B} = AM ∪BM ∈ N(w),

and A is valid in M, M  A, if for all w ∈ W, M, w  A. We write  A if
M  A for all M. Also we define Γ  A iff for all M, w ∈ M, if M, w  Γ then
M, w  A.

In N-neighborhood frames, if there exists element g ∈ W , such that N(g) =
{W}, then g is called omniscient and we call such frames, rooted N-neighborhood
frames.

Proposition 2. If M = 〈W,N,X , V 〉 is an N-neighborhood model then M can
be extended by adding an omniscient world to obtain a rooted N-neighborhood
model M′ such that for all formulas A and for all w ∈ W ,

M, w  A iff M′, w  A.

Proof. The proof can be found in [7].

Corollary 2. Validity in N-neighborhood frames and rooted N-neighborhood frames
is the same.

Theorem 6. Let M is a rooted N-neighborhood model, then:

1. M  A → B iff AM ⊆ BM.
2. A → B iff for all models M, AM ⊆ BM.

Proof. (1) Assume M  A → B. Then, for all w ∈ M, AM ∪ BM ∈ N(w).

Therefore AM ∪ BM = W , since N(g) = {W}. So AM ⊆ BM. For the other

direction, by assumption we have AM∪BM = W , so, for all w ∈ M, AM∪BM ∈
N(w), i.e. M  A → B.

(2) Follows immediately from (1).

In [7] the question whether validity in NB-neighborhoods and N-neighborhoods
is the same was left unsolved. In [4] it was discovered that the difference resides
in the rule N. To the system WF we add this rule to obtain the logic WFN:

A → B ∨ C C → A ∨D A ∧ C ∧D → B A ∧ C ∧B → D

(A → B) ↔ (C → D)
(N)

As usual a rule like N is considered to be valid on a frame F if, on each M
on F on which the premises of the rule are valid, the conclusion is valid as
well. In the picture below the idea behind the rule is exhibited. The conclusion
(A → B) ↔ (C → D) of the rule is valid if A ∪ B = C ∪ D or equivalently if
A ∩ B = C ∩ D or if A\B = C\D. In the picture the latter is the grey part.
The four assumptions of the rule force the picture to be essentially as given (e.g.
A → B ∨ C means A ⊆ B ∪ C) and make sure that indeed A\B = C\D.
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Definition 6. We define Γ `WFN
A if there is a derivation of A from Γ and

theorems of WFN using the rules A B
A∧B and A A→B

B , where in the latter case the
restriction is that A → B has to be provable in WFN.

Theorem 7. (Weak Deduction Theorem) A `WFN
B iff `WFN

A → B.

Proof. ⇒: By induction on the length of the proof.
If B is an axiom. Then ` B, so by rule 10, ` A → B.
If A ` A is covered by ` A → A.
If A ` B and A ` C, then by the induction hypothesis ` A → B and ` A → C,
so by rule 7 we obtain ` A → B ∧ C.
If A ` B and ` B → C, then by the induction hypothesis ` A → B, so by rule
9 we obtain ` A → C.
⇐: This is the use of modus ponens that is allowed.

Theorem 8. The logic WFN is sound with respect to the class of rooted N -
neighborhood frames.

Proof. Recall that, by Theorem 6(1), for all E,F , M  E → F iff EM ⊆ FM.
We only check rule (N). Assume,

1. M  A → B ∨ C, i.e. AM ⊆ BM ∪ CM,
2. M  C → A ∨D, i.e. CM ⊆ AM ∪DM,
3. M  A ∧ C ∧D → B, i.e. AM ∩ CM ∩DM ⊆ BM,
4. M  A ∧ C ∧B → D, i.e. AM ∩ CM ∩BM ⊆ DM.

To get the conclusion (A → B) ↔ (C → D) it is sufficent to prove that AM ∪
BM = CM ∪ DM because then w  A → B iff w  C → D and hence (A →
B)M = (C → D)M. By symmetry, it will suffice to show that AM ∪ BM ⊆
CM ∪ DM. Let w ∈ AM ∪ BM. Then w ∈ AM or (w ∈ AM and w ∈ BM). If

w ∈ AM, we distinguish the cases w ∈ DM and w ∈ DM. In the first case we are
done directly. In the second case, we can conclude from (2) that w ∈ CM and

we are done as well. If w ∈ AM and w ∈ BM, we distinguish the cases w ∈ CM

and w ∈ CM. In the first case we are done directly. In the second case, we can
conclude from (4) that w ∈ DM and we are done as well.
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Theorem 9. The logic WFN is sound with respect to the class of N-neighborhood
frames.

Proof. By Proposition 2 and Theorem 8.

Remark 1. The rule 11 follows from rule N, by:

1. ` A ↔ C Assumption
2. ` B ↔ D Assumption
3. ` C → A ∨D By 1, axiom 1 and rule 9
4. ` A ∧ C ∧B → B By 2 and rule 9
5. ` A ∧ C ∧B → D By 2 and 4
6. ` A → B ∨ C By 1, axiom 2 and rule 9
7. ` A ∧ C ∧D → D
8. ` A ∧ C ∧D → B By 7, 2
9. ` (A → B) ↔ (C → D) From 3,5,6,8 using rule N

Although this is not strictly necessary for completeness because we do not
require our models to be rooted we will prove the disjunction property for WFN.
As in our previous papers this is simple by using Kleene’s |.

Definition 7. [5] We define |A by induction on A, as follows

|p iff ` p,
|A ∧B iff |A and |B,
|A ∨B iff |A or |B,
|A → B iff ` A → B and (if |A then |B).

Theorem 10. |A ⇔ `WFN
A.

Proof. The proof is by induction on A and a trivial modification of the standard
one for IPC. We only check the direction from right to left for the rule N. Let
|A → B ∨ C, |C → A ∨D, |A ∧ C ∧D → B and |A ∧ C ∧ B → D, we want to
show |(A → B) ↔ (C → D). By induction hypothsis and rule N we conclude
`WFN

(A → B) ↔ (C → D). Now let |A → B, we will show that |C → D. By
induction hypothesis, rule N and MP, it is clear that `WFN

C → D. So, assume
|C. Then by |C → A∨D and the definition of |, |A or |D. In the |D case we are
done directly. In the |A case, by |A → B, we have |B and so by |A∧C ∧B → D,
we have |D. The other direction is as usual.

Theorem 11. If `WFN
A ∨B then `WFN

A or `WFN
B.

Proof. Assume `WFN
A∨B, by Theorem 10, |A∨B. So |A or |B. Again Theorem

10 shows that `WFN
A or `WFN

B.

Definition 8. A set of sentences ∆ is a prime theory if and only if

1. A,B ∈ ∆ ⇒ A ∧B ∈ ∆,
2. ` A → B and A ∈ ∆ ⇒ B ∈ ∆,
3. ` A ⇒ A ∈ ∆,
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4. A ∨B ∈ ∆ ⇒ A ∈ ∆ or B ∈ ∆.

Lemma 1. ∆ is a theory ⇐⇒ ∆ `WFN
A if and only if A ∈ ∆.

Proof. The proof is similar to the WF case and can be found in [7].

Theorem 12. If Σ 0WFN
D then there is a prime theory ∆ such that ∆ ⊇ Σ

and D /∈ ∆.

Proof. The proof is similar to the WF case and can be found in [7].

Definition 9. Let WWFN
be the set of all consistent prime theories of WFN.

Given a formula A, we define [[A]] = {∆ | ∆ ∈ WWFN
, A ∈ ∆} . The N-Canonical

model MWFN
= 〈W,N,X , V 〉 is defined by:

1. W = WWFN
,

2. For each Γ ∈ W , N(Γ ) = {[[A]] ∪ [[B]] |A → B ∈ Γ},
3. X is the set of all [[A]],
4. If p ∈ At, then V (p) = [[p]] = {Γ |Γ ∈ W and p ∈ Γ} .

Lemma 2. Let C and D are formulas. Then

[[C]] ⊆ [[D]] iff `WFN
C → D.

Proof. Let 0WFN
C → D. Then by the Weak Deduction Theorem C 0 D. Let

Σ = {C}, then by Theorem 12, there exists a prime theory Γ such that, C ∈ Γ
and D /∈ Γ . That is [[C]] * [[D]].

Now let Γ ∈ WWFN
, C ∈ Γ and `WFN

C → D. Then by definition of theory
D ∈ Γ .

Lemma 3. Let [[A]] = [[C]], [[B]] = [[D]] and [[A]]∪[[B]] ∈ N(Γ ), then C → D ∈ Γ .

Proof. By Lemma 2, we have `WFN
A ↔ C and `WFN

B ↔ D. Then by Remark 1
we will have `WFN

(A → B) ↔ (C → D). By definition of neighborhood function
in N-canonical model, A → B ∈ Γ . Hence by the definition of prime theory we
conclude that, C → D ∈ Γ .

Lemma 4. Let [[A]] ∪ [[B]] = [[C]] ∪ [[D]], then WFN ` (A → B) ↔ (C → D).

Proof. Assume [[A]] ∪ [[B]] = [[C]] ∪ [[D]]. By rule N it is suffices to show

1. WFN ` A → B ∨ C,
2. WFN ` A ∧ C ∧D → B,
3. WFN ` C → A ∨D,
4. WFN ` A ∧ C ∧B → D.

We will show 1 and 2; 3 and 4 are analogous.
1. From [[A]] ∪ [[B]] = [[C]] ∪ [[D]] we get [[A]] ∩ [[B]] = [[C]] ∩ [[D]]. We have

[[A]] ⊆ [[B]]∪ [[A]], so also, [[A]] ⊆ [[B]]∪ ([[A]]∩ [[B]]), This means that [[A]] ⊆ [[B]]∪
([[C]]∩[[D]]), so [[A]] ⊆ [[B]]∪[[C]]. By Lemma 2, this implies thatWFN ` A → B∨C.

2. Again using [[A]] ∩ [[B]] = [[C]] ∩ [[D]], we get [[A]] ∩ [[C]] ∩ [[D]] ∩ [[B]] =
[[A]] ∩ [[B]] ∩ [[C]] ∩ [[D]] = [[C]] ∩ [[D]] ∩ [[C]] ∩ [[D]] = ∅. So, [[A]] ∩ [[C]] ∩ [[D]] ⊆ [[B]],
and, reasoning as above, WFN ` A ∧ C ∧D → B.
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Lemma 5. (Truth Lemma) In the N-canonical model MWFN
,

E ∈ Γ iff Γ  E.

Proof. By induction on E. The atomic case holds by definition of N-canonical
model.

(E := A∧B) Let Γ ∈ WWFN
and Γ  A∧B then Γ  A and Γ  B. By the

induction hypothesis A ∈ Γ and B ∈ Γ . Γ is a theory so A ∧B ∈ Γ .
Now let A ∧ B ∈ Γ . We have ` A ∧ B → A and ` A ∧ B → B, hence by

definition of theory we conclude that A ∈ Γ and B ∈ Γ . By induction hypothesis
Γ  A and Γ  B so Γ  A ∧B.

(E := A ∨ B) Let Γ ∈ WWFN
and Γ  A ∨ B then Γ  A or Γ  B. By the

induction hypothesis A ∈ Γ or B ∈ Γ . We have ` A → A∨B and ` B → A∨B
so by definition of theory we conclude that A ∨B ∈ Γ .

Now let A∨B ∈ Γ . Γ is a prime so A ∈ Γ or B ∈ Γ . By induction hypothesis
we conclude that Γ  A or Γ  B. That is Γ  A ∨B.

(E := A → B) Let Γ ∈ WWFN
, then

Γ  A → B ⇐⇒ AMWFN ∪BMWFN ∈ N(Γ )
(by induction hypothesis) ⇐⇒ [[A]] ∪ [[B]] ∈ N(Γ )

(by definition, Lemma 3 and 4) ⇐⇒ A → B ∈ Γ .

Theorem 13. (Completeness of WFN) The logic WFN is sound and strongly
complete with respect to the class of N-neighbourhood frames.

Proof. Soundness already shown in earlier lemmas.
Let Σ 0 A, then by Theorem 12, there is a prime theory ∆ ⊇ Σ such that

A /∈ ∆. So in the N-canonical model MWFN
we will have MWFN

,∆  Σ and
MWFN

,∆ 1 A. That is Σ 1WFN
A.

Definition 10. (Equivalence of NB-neighborhood and N-neighborhood
frames) Let 〈W,NB,X〉 be an NB-neighborhood frame and 〈W,N,X〉 be an N-
neighborhood frame. We say that 〈W,NB,X〉 and 〈W,N,X〉 are equivalent if
for all X,Y ∈ X :

(X,Y ) ∈ NB(w) iff X ∪ Y ∈ N(w).

Definition 11. In NB-neighborhood frames we define the equivalence rela-
tion as follows:

(X,Y ) ≡ (X ′, Y ′) iff X ∪ Y = X ′ ∪ Y ′.

Lemma 6. Let 〈W,N,X〉 be an N-neighborhood frame. Then there is an equiv-
alent NB-neighborhood frame 〈W,NB,X〉 closed under equivalence relation.

Proof. The proof is straightforward by considering, for each w ∈ W ,
NB(w) =

{
(X,Y ) | X ∪ Y ∈ N(w)

}
.

Theorem 14. The logic WFN is sound and strongly complete with respect to the
class of NB-neighbourhood frames that are closed under equivalence relation.
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Proof. By Theorem 13 and Lemma 6.

Lemma 7. Let 〈W,NB,X〉 be an NB-neighborhood frame closed under equiva-
lence relation. Then there is an equivalent N-neighborhood frame 〈W,N,X〉.

Proof. The proof is straightforward by considering, for each w ∈ W ,
N(w) =

{
X ∪ Y | (X,Y ) ∈ NB(w)

}
.

We list some relevant properties of N-neighborhood frames:

Definition 12. 1. F is closed under N-intersection if and only if for all w ∈
W , if X ∪ Y ∈ N(w) and X ∪ Z ∈ N(w) then X ∪ (Y ∩ Z) ∈ N(w).

2. F is closed under N-union if and only if for all w ∈ W , if X ∪ Z ∈ N(w)
and Y ∪ Z ∈ N(w) then X ∪ Y ∪ Z ∈ N(w).

3. F is an N-transitive frame if and only if for all w ∈ W , if X ∪ Y ∈ N(w)
and Y ∪ Z ∈ N(w) then X ∪ Z ∈ N(w).

4. F is closed under N-intersection superset if and only if for all w ∈ W , if
X ∪ (Y ∩Z) ∈ N(w) and Y, Z ∈ X , then X ∪Y ∈ N(w) and X ∪Z ∈ N(w).

5. F is closed under N-union superset if and only if for all w ∈ W , if X ∪ Y ∪
Z ∈ N(w) and X,Y ∈ X , then X ∪ Z ∈ N(w) and Y ∪ Z ∈ N(w).

Lemma 8. (a) The formula (p → q) ∧ (p → r) → (p → q ∧ r) character-
izes the class of rooted N-neighborhood frames F satisfying closure under
N-intersection.

(b) The formula (p → q) ∧ (r → q) → (p ∨ r → q) characterizes the class of
rooted N-neighborhood frames F satisfying closure under N-union.

(c) The formula (p → q) ∧ (q → r) → (p → r) characterizes the class of rooted
N-transitive N-nieghborhood frames F.

(d) The formula (p → q∧r) → (p → q)∧(p → r) characterizes the class of rooted
N-neighborhood frames F satisfying closure under N-intersection superset.

(e) The formula (p ∨ r → q) → (p → q) ∧ (r → q) characterizes the class of
rooted N-neighborhood frames F satisfying closure under N-union superset.

Proof. (a) Let F = 〈W,N,X〉 be closed under N-intersection and M be any
model based on F. We have to prove for all w ∈ W ,

{v | v  (p → q) ∧ (p → r) ⇒ v  p → q ∧ r} ∈ N(w).

For this purpose it is sufficient to show that

K = {v | v  (p → q) ∧ (p → r) ⇒ v  p → q ∧ r} = W.

Let w ∈ W , w  p → q and w  p → r then

pM ∪ qM ∈ N(w)

pM ∪ rM ∈ N(w).

The frame is closed under intersection so, pM∪(q∧r)M ∈ N(w), that is w  p →
q ∧ r. Hence W = K and so for all w ∈ W , K ∈ N(w), since by the definition of
N-neighborhood frames for all w ∈ W , W ∈ N(w).
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For the other direction, we use contraposition. Suppose that the class is not
closed under N-intersection. That is there is a frame F and w ∈ F such that
X ∪ Y ∈ N(w) and X ∪ Z ∈ N(w), but X ∪ (Y ∩ Z) /∈ N(w). To falsify
(p → q)∧ (p → r) → (p → q ∧ r) in the frame F we should find u ∈ W such that
u 1 (p → q) ∧ (p → r) → (p → q ∧ r).

For this purpose consider the valuation such that pM = X, rM = Z and
qM = Y . Then we will have

pM ∪ qM ∈ N(w)

pM ∪ rM ∈ N(w)

pM ∪ (q ∧ r)M /∈ N(w).

So, w  (p → q) ∧ (p → r) and w 1 p → q ∧ r. That is w ∈ (p → q)M,
w ∈ (p → r)M and w /∈ (p → q ∧ r). Therefore

w /∈ (p → q)M ∪ (p → r)M ∪ (p → q ∧ r)M.

So we have
(p → q)M ∪ (p → r)M ∪ (p → q ∧ r)M 6= W.

Hence,
M, g 1 (p → q) ∧ (p → r) → (p → q ∧ r),

and F 1 (p → q) ∧ (p → r) → (p → q ∧ r).
(b) Right to left is similar to (a).

pM ∪ qM ∈ N(w)

rM ∪ qM ∈ N(w)

(p ∨ r)M ∪ qM /∈ N(w)

and we proceed as under (a).
(c) Right to left is similar to (a). For the other direction we use contraposition.

Suppose that the class is not N-transitive. Then there is a frame F and w ∈ F
such that X ∪ Y ∈ N(w) and Y ∪ Z ∈ N(w), but X ∪ Z /∈ N(w). Consider the
valuation such that pM = X, rM = Z and qM = Y . Then we will have

pM ∪ qM ∈ N(w)

qM ∪ rM ∈ N(w)

pM ∪ rM /∈ N(w)

and we proceed as under (a).
(d) Right to left is similar to (a). For the other direction we use contrapo-

sition. Suppose that the class is not closed under N-intersection superset. Then
there is a frame F and w ∈ F such that X ∪ (Y ∩ Z) ∈ N(w) and Y,Z ∈ X ,
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but X ∪ Y /∈ N(w) or X ∪ Z /∈ N(w). Assume X ∪ Y /∈ N(w) and consider the
valuation such that, pM = X, rM = Z and qM = Y . Then we will have

pM ∪ (q ∧ r)M ∈ N(w)

pM ∪ qM /∈ N(w)

(p)M ∪ (r)M = V

and we proceed as under (a).
(e) Right to left is similar to (a). For the other direction we use contraposition.

Suppose that the class is not closed under N-union superset. Then there is a
frame F and w ∈ F such thatX ∪ Y ∪Z ∈ N(w) andX,Y ∈ X , butX∪Z /∈ N(w)
or Y ∪ Z /∈ N(w). Consider the valuation such that pM = X, rM = Y and
qM = Z. Then we will have

pM ∪ rM ∪ qM ∈ N(w)

pM ∪ qM /∈ N(w)

rM ∪ (q)M = V

and we proceed as under (a).

In the remainder of this section we will be interested in the following axiom
schemas.

(C) (A → B) ∧ (A → C) → (A → B ∧ C)
(D) (A → B) ∧ (C → B) → (A ∨ C → B)
(I) (A → B) ∧ (B → C) → (A → C)

(Ĉ) (A → B ∧ C) → (A → B) ∧ (A → C)

(D̂) (A ∨B → C) → (A → C) ∧ (B → C)

Lemma 9. (a) If WFNC ⊆ L, then the N-canonical model of logic L is rooted
and closed under N-intersection.

(b) If WFND ⊆ L, then the N-canonical model of logic L is rooted and closed
under N-union.

(c) If WFNI ⊆ L, then the N-canonical model of logic L is rooted and closed
under N-transitive.

(d) If WFNĈ ⊆ L, then the N-canonical model of logic L is rooted and closed
under N-intersection superset.

(e) If WFND̂ ⊆ L, then the N-canonical model of logic L is rooted and closed
under N-union superset.

Proof. We only prove (a). The other cases are similar.
(a) Suppose that in the N-canonical model of logic L, X ∪ Y ∈ N(Γ ) and

X ∪Z ∈ N(Γ ). By definition of N in the N-canonical model there exist formulas
A,B and C such that [[A]] = X, [[B]] = Y and [[C]] = Z, where A → B ∈ Γ and
A → C ∈ Γ . Hence (A → B)∧ (A → C) ∈ Γ and so using (C), A → B ∧C ∈ Γ .
Hence [[A]] ∪ [[B ∧ C]] = X ∪ (Y ∩ Z) ∈ N(Γ ). So N is closed under intersection.
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4 Differences between N -validity and NB-validity

In this section we will be interested in the following axiom schemas which make
the difference between NB-frames and N-frames more concrete.

(Na) (A → B) ↔ (A ∨B → B)
(Nb) (A → B) ↔ (A → A ∧B)
(Nc) (A ∧B → C) ↔ (A ∧B → A ∧ C)
(Nd) (A → B ∨ C) ↔ (B ∨A → B ∨ C)

Lemma 10. 1. WFN ` Na.
2. WFN ` Nb.
3. WFN ` Nc.
4. WFN ` Nd.

Proof. The proofs are easy. We only prove 1:

1. ` A ∨B ↔ A ∨B
2. ` A ∧ (A ∨B) ∧B → B
3. ` A → B ∨ (A ∨B)
4. ` (A → B) ↔ (A ∨B → B) From 1,2 and 3 using rule N

Lemma 11. 1. WF 0 Na.
2. WF 0 Nb.
3. WF 0 Nc.
4. WF 0 Nd.

Proof. 1. ⇒: Consider the rooted NB-neighborhood frame F = 〈W,NB,X〉 with

W = {w, g}, NB(w) = {({g} , {w})} ∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.

Also consider the valuation pM = {g}, qM = {w}. With this valuation we can
conclude g 1 (p → q) → (p ∨ q → q).

⇐: Consider the rooted NB-neighborhood frame F = 〈W,NB,X〉 with

W = {w, g}, NB(w) = {({g, w} , {w})} ∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.

Also consider the valuation pM = {g}, qM = {w}. With this valuation we can
conclude g 1 (p ∨ q → q) → (p → q).

2. ⇒: Consider the rooted NB-neighborhood frame F = 〈W,NB,X〉 with

W = {w, g}, NB(w) = {({g} , {w})} ∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.

Also consider the valuation pM = {g} and qM = {w}. With this valuation we
can conclude g 1 (p → q) → (p → p ∧ q).

⇐: Consider the rooted NB-neighborhood frame F = 〈W,NB,X〉 with

W = {w, g}, NB(w) = {({g} ,∅)} ∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.
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Also consider the valuation pM = {g} and qM = {w}. With this valuation we
can conclude g 1 (p → p ∧ q) ∧ (p → q).

3. ⇒: Consider the rooted NB-neighborhood frame F = 〈W,NB,X〉 with

W = {w, v, g} , NB(w) = NB(g)

NB(v) = {({g} , {w, v})} ∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.

Also consider the valuation pM = {w, g}, qM = {v, g} and V (c) = {w, v}. With
this valuation we can conclude g 1 (p ∧ q → c) → (p ∧ q → p ∧ c).

⇐: Consider the NB-neighborhood frame F = 〈W, g,NB,X〉 with

W = {w, v, g} , NB(w) = NB(g)

NB(v) = {({g} , {w})} ∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.

Also consider the valuation pM = {w, g}, qM = {v, g} and V (c) = {w, v}. With
this valuation we can conclude g 1 (p ∧ q → p ∧ c) → (p ∧ q → c).

4. The proof of this case is similar to 3.

5 Completeness for some Logics above WF with
NB-neighborhood frames

We list some relevant properties of NB-neighborhood frames:

Definition 13. 1. F is closed under the Na-condition if and only if for all
w ∈ W and X,Y ∈ X ,

(X,Y ) ∈ NB(w) ⇔ (X ∪ Y, Y ) ∈ NB(w).

2. F is closed under the Nb-condition if and only if for all w ∈ W and X,Y ∈ X ,

(X,Y ) ∈ NB(w) ⇔ (X,X ∩ Y ) ∈ NB(w).

3. F is closed under the Nc-condition if and only if for all w ∈ W and X,Y ∈ X ,

(X ∩ Y, Z) ∈ NB(w) ⇔ (X ∩ Y,X ∩ Z) ∈ NB(w).

4. F is closed under the Nd-condition if and only if for all w ∈ W and X,Y ∈ X ,

(X,Y ∪ Z) ∈ NB(w) ⇔ (Y ∪X,Y ∪ Z) ∈ NB(w).

5. F is closed under weak intersection if and only if for all w ∈ W and
X,Y ∈ X , If (X,Y ) ∈ NB(w) then for all Z ∈ X , (X ∩Z, Y ∩Z) ∈ NB(w).

6. F is closed under weak union if and only if for all w ∈ W and X,Y ∈ X ,
If (X,Y ) ∈ NB(w) then for all Z ∈ X , (X,Y ∪ Z) ∈ NB(w).

7. F is closed under the superset equivalence relation if and only if for all
w ∈ W and X,Y,X ′, Y ′ ∈ X , if (X,Y ) ∈ NB(w) and X ∪Y ⊆ X ′ ∪Y ′ then
(X ′, Y ′) ∈ NB(w).
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Lemma 12. 1. (p → q) ↔ (p ∨ q → q) characterizes the class of rooted NB-
neighborhood frames F closed under the Na-condition.

2. (p → q) ↔ (p → p ∧ q) characterizes the class of rooted NB-neighborhood
frames F closed under the Nb-condition.

3. (p∧q → c) ↔ (p∧q → p∧c) characterizes the class of rooted NB-neighborhood
frames F closed under the Nc-condition.

4. (p → q∨c) ↔ (q∨p → q∨c) characterizes the class of rooted NB-neighborhood
frames F closed under the Nd-condition.

5. (p → q) → (r ∧ p → r ∧ q) characterizes the class of rooted NB-neighborhood
frames F satisfying closure under weak intersection.

6. (p → q) → (p → r ∨ q) characterizes the class of rooted NB-neighborhood
frames F satisfying closure under weak union.

Proof. The proofs are easy. We only prove 6:
6. Let F = 〈W,NB,X〉 be closed under weak union and M be any model

based on F. We have to prove for all w ∈ W ,

((p → q)M, (p → r ∨ q)M) ∈ NB(w).

For this purpose it is sufficient to show that, (p → q)M ⊆ (p → r ∨ q)M. Let
w ∈ W , w  p → q then, (pM, qM) ∈ NB(w). The frame is closed under weak
union so, (pM, rM ∪ qM) ∈ NB(w). That is, w  p → r ∨ q. Hence, by definition
of neighborhood frames for all w ∈ W , ((p → q)M, (p → r ∨ q)M) ∈ NB(w).

For the other direction we use contraposition. Suppose that the class is not
closed under weak union. Then there is a frame F and w ∈ F such that (X,Y ) ∈
NB(w) and Z ∈ X , but (X,Y ∪Z) /∈ NB(w). Consider the valuation such that,
pM = X, qM = Y and rM = Z. Then we will have

(pM, qM) ∈ N(w)

(pM, (r ∨ q)M) /∈ N(w).

So (p → q)M ⊆ (p → r ∨ q)M. Then by the definition of neighborhood frames
g 1 (p → q) → (p → r ∨ q). Therefore F 1 (p → q) → (p → r ∨ q).

In the remainder of this section we will be interested in the following axiom
schemas and rule.

(CW) (A → B) → (C ∧A → C ∧B)
(DW) (A → B) → (A → C ∨B)
(N2)

C→A∨D A∧C∧B→D
(A→B)→(C→D)

Lemma 13. (a) If WFNa ⊆ L, then the NB-canonical model of logic L is rooted
and closed under the Na-condition.

(b) If WFNb ⊆ L, then the NB-canonical model of logic L is rooted and closed
under the Nb-condition.

(c) If WFNc ⊆ L, then the NB-canonical model of logic L is rooted and closed
under the Nc-condition.
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(d) If WFNd ⊆ L, then the NB-canonical model of logic L is rooted and closed
under the Nd-condition.

(f) If WFCW ⊆ L, then the NB-canonical model of logic L is rooted and closed
under weak intersection.

(g) If WFDW ⊆ L, then the NB-canonical model of logic L is rooted and closed
under weak union.

Proof. The proofs are easy.

Lemma 14. The rule N characterizes the class of rooted NB-neighborhood frames
F = 〈W,NB,X〉 that are closed under equivalence relation.

Proof. The direction from right to left is immediate from Lemma 7.
For the other direction, we use contraposition. Suppose that the class is not

closed under equivalence relation. Then there is a frame F and w ∈ F such that
(X,Y ) ∈ NB(w) and U, V ∈ X and X ∪ Y = U ∪ V , but (U, V ) /∈ NB(w). Since
p ∨ q ↔ p ∨ q, p ∧ (p ∨ q) ∧ q → q and p → q ∨ (p ∨ q) are provable, it suffices
to falsify (p → q) ↔ (p ∨ q → q) on the frame. Consider the valuation such
that pM = X, qM = Y and assume U = X ∪ Y and V = Y . It is easy to show
that X ∪ Y = U ∪ V . So (pM, qM) ∈ NB(w) and ((p ∨ q)M, qM) /∈ NB(w), and
consequently, (p → q)M * (p∨ q → q)M. So, M, g 1 (p → q) ↔ (p∨ q → q).

Lemma 15. The rule N2 characterizes the class of rooted NB-neighborhood
frames F = 〈W,NB,X〉 that are closed under the superset equivalence relation.

Proof. Let for some M = 〈W,NB,X , V 〉 on a frame F, which is closed under
the superset equivalence relation, M  C → A ∨ D and M  A ∧ C ∧ B →
D. We have to prove that, M  (A → B) → (C → D). For this purpose
we show that (A → B)M ⊆ (C → D)M. Let w ∈ W and w  A → B.
Then (AM, BM) ∈ NB(w). Now to show (CM, DM) ∈ NB(w), it is sufficient

to prove AM ∪ BM ⊆ CM ∪ DM. By assumption and Theorem 2.13(1) of [7],

CM ⊆ AM ∪ DM and AM ∩ CM ∩ BM ⊆ DM. So CM ∪ AM ∪ DM = W and
AM ∪ CM ∪BM ∪DM = W . By these assumption we have:

AM ∪BM = (AM ∪BM) ∩AM ∪ CM ∪BM ∪DM

= ((AM ∪BM) ∩ (AM) ∪ ((AM ∪BM) ∩ (CM)∪
((AM ∪BM) ∩ (BM) ∪ ((AM ∪BM) ∩ (DM)

= (BM ∩AM) ∪ (BM ∩DM) ∪AM

= (BM ∩ (CM ∪DM)) ∪AM

= (BM ∪ (AM) ∩ ((CM ∪DM) ∪AM)

⊆ ((CM ∪DM) ∪AM) = CM ∪DM.

For the other direction, we use contraposition. Suppose that the class is not
closed under the superset equivalence relation. Then there is a frame F and
w ∈ F such that (X,Y ) ∈ NB(w) and U, V ∈ X and X ∪ Y ⊆ U ∪ V , but
(U, V ) /∈ NB(w). Since p∧ q → q∨ (p∧ r) and q∧ (p∧ q)∧ r → p∧ r are provable
it suffices to falsify (q → r) → (p∧q → p∧r) on the frame. Consider the valuation
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such that qM = X, rM = Y , (p ∧ q)M = U and (p ∧ r)M = V . It is easy to

show that (p)M ∪ (q)M ∪ (r)M = (p ∧ q)M ∪ (p ∧ r)M. Hence X ∪ Y ⊆ U ∪ V .
So (qM, rM) ∈ NB(w) and ((p ∧ q)M, (p ∧ r)M) /∈ NB(w), and consequently,
(q → r)M * (p ∧ q → p ∧ r)M. So, M, g 1 (q → r) → (p ∧ q → p ∧ r).

Notation. The rule N can be derived from N2, so in the following we will
write WFN2 , instead of WFNN2.

Lemma 16. Let [[A]] ∪ [[B]] ⊆ [[C]] ∪ [[D]], then WFN2 ` (A → B) → (C → D).

Proof. The proof is similar to Lemma 4.

Lemma 17. If WFN2 ⊆ L, then the NB-canonical model of logic L is rooted and
closed under the superset equivalence relation.

Proof. Suppose that in the NB-canonical model of logic L, (X,Y ) ∈ NB(Γ )
and X ∪ Y ⊆ X ′ ∪ Y ′. By definition of NB in the NB-canonical model there
exist formulas A,B,C and D such that (X,Y ) = ([[A]], [[B]]) and (X ′, Y ′) =
([[C]], [[D]]), where A → B ∈ Γ . Using Lemma 16, ` (A → B) → (C → D).
Hence C → D ∈ Γ and (X ′, Y ′) ∈ NB(Γ ).

Definition 14. The N-neighborhood frame F= 〈W,N,X〉 is closed under N-
superset if and only if for all w ∈ W , if X ∪ Y ∈ N(w) and U, V ∈ X and
X ∪ Y ⊆ U ∪ V , then U ∪ V ∈ N(w).

Lemma 18. Let 〈W,NB,X〉 be an NB-neighborhood frame closed under the su-
perset equivalence relation. Then there is an equvalent N-neighborhood frame
〈W,N,X〉, closed under N-superset.

Proof. The proof is straightforward by considering, for each w ∈ W ,
N(w) =

{
X ∪ Y | (X,Y ) ∈ NB(w)

}
.

Theorem 15. The logic WFN2 is sound and strongly complete with respect to
the class of N-neighbourhood frames that are closed under N-superset.

Proof. By Lemmas 17 and 18.

Lemma 19. 1. WFN2 ` Ĉ.

2. WFN2 ` D̂.
3. WFN2 ` CW.
4. WFN2 ` DW .
5. WFN2 ` (A → A ∧B ∧ C) → (A → A ∧B).
6. WFN2 ` (A → A ∧B) → (C ∧A → C ∧A ∧B)

Proof. The proofs are easy, we only prove 3.
3. By Lemma 17, WFN2 is sound and complete with respect to the class of

NB-neighborhood frames that are closed under the superset equivalence relation.
It will be enough to show that in such frames (A → B)M ⊆ (C ∧A → C ∧B)M.
Assume M be an NB-neighborhood model on these frames, w ∈ M and w 
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A → B, then (AM, BM) ∈ NB(w). On the other hand, (C ∧A)M ∪ (C ∧B)M =

(C)M∪(A)M∪(B)M and so, (A)M∪(B)M ⊆ (C ∧A)M∪(C∧B)M. Then by the
superset equivalence relation condition of these frames ((C ∧A)M, (C ∧B)M) ∈
NB(w), that is w  C ∧A → C ∧B.

Proposition 3. 1. WFĈ ` (A → A ∧B ∧ C) → (A → A ∧B).

2. WFD̂ ` (A ∨B ∨ C → A) → (A ∨B → A).
3. WFCW ` (A → A ∧B) → (C ∧A → C ∧A ∧B).

Proof. The proofs are easy.

The logic WFĈD̂ is complete with respect to the class of NB-neighborhood
frames that are closed under upset and downset [7], i.e. for all w ∈ W ,

(Upset) if (X,Y ) ∈ NB(w) and Y ⊆ Z then (X,Z) ∈ NB(w),
(Downset) if (X,Y ) ∈ NB(w) and Z ⊆ X then (Z, Y ) ∈ NB(w).

Lemma 20. WFĈD̂ 0 (p → q) → (r ∧ p → r ∧ q).

Proof. Consider the rooted NB-neighborhood frame F = 〈W,NB,X〉 with,

W = {w, v, g},
NB(v) = NB(g),
NB(w) = {({w, v} , {v, g}), ({w} , {v, g}), ({w} , {v}), ({w, v} , {v})}

∪
{
(X,Y ) ∈ X 2 | X ⊆ Y

}
.

The frame F is closed under upset and downset. Then consider the valuation
(p)M = {w, v}, (q)M = {v} and (r)M = {w}. With this valuation we can
conclude, g 1 (p → q) → (r∧p → r∧q), since (p → q)M * (r∧p → r∧q)M.

Again, we list some relevant properties for NB-neighborhood frames:

Definition 15.
1. F is quasi-reflexive iff for all w ∈ W, if (X,Y ) ∈ NB(w) and w ∈ X, then
w ∈ Y .
2. F is quasi-persistent iff for all w ∈ W, if w ∈ X and X ∈ X , then for all
Y ∈ X , (Y,X) ∈ NB(w).
3. F is quasi-transitive iff for all w ∈ W , if (X,Y ) ∈ NB(w), then for all
C ∈ X , (C, {v | (X,Y ) ∈ NB(v)}) ∈ NB(w).
4. F is pseudo-transitive iff for all w ∈ W, if (X,Y ) ∈ NB(w), then for all
C ∈ X , ({v | (Y,C) ∈ NB(v)} , {v | (X,C) ∈ NB(v)}) ∈ NB(w).

Lemma 21.

(a) The formula A ∧ (A → B) → B characterizes the class of rooted NB-
neighborhood quasi-reflexive frames.

(b) The formula A → (B → A) characterizes the class of rooted NB-neighborhood
quasi-persistent frames.

(c) The formula (A → B) → (C → (A → B)) characterizes the class of rooted
NB-neighborhood quasi-transitive frames.
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(c) The formula (A → B) → ((B → C) → (A → C)) characterizes the class of
rooted NB-neighborhood pseudo-transitive frames.

Proof. We only prove (b). The other cases are similar.
(b) Let F be quasi-persistent and M = 〈W,NB,X , V 〉 be based on F. We

have to prove for all w ∈ W , (AM, (B → A)M) ∈ NB(w). For this purpose it
is sufficient to show that AM ⊆ (B → A)M. Let w ∈ W and w ∈ AM. The
frame is quasi-persistent, so by definition for all Y ∈ X , (Y,AM) ∈ NB(w)
and then (BM, AM) ∈ NB(w). That is, w  B → A. Hence, for all w ∈ W ,
(AM, (B → A)M) ∈ NB(w).

For the other direction, suppose that F = 〈W,NB,X〉 is not quasi-persistent.
Then there are X,Y ∈ X and w ∈ X such that (Y,X) /∈ N(w). Consider the
valuation such that, AM = X and BM = Y . Then w  A and w 1 B → A,
because (BM, AM) /∈ NB(w). So, we have AM * (B → A)M. Then g 1 A →
(B → A) and hence F 1 A → (B → A).

In the remainder of this section we will be interested in the following axiom
schemas known as extensions of the basic logic F of Kripke frames [2].

(R) A ∧ (A → B) → B
(PT) A → (B → A)
(T1) (A → B) → (C → (A → B))
(T2) (A → B) → ((B → C) → (A → C))

Lemma 22. (a) If WFR ⊆ L, then the NB-canonical model of logic L is rooted
and quasi-reflexive.

(b) If WFPT ⊆ L, then the NB-canonical model of logic L is rooted and quasi-
persistent.

(c) If WFT1 ⊆ L, then the NB-canonical model of logic L is rooted and quasi-
transitive.

(d) If WFT2 ⊆ L, then the NB-canonical model of logic L is rooted and pseudo-
transitive.

Proof. We only prove (a). The other cases are similar.
(a) Suppose that in the NB-canonical model of logic L, (X,Y ) ∈ NB(Γ ) and

Γ ∈ X. By definition of NB in the NB-canonical model there exist formulas
A,B such that (X,Y ) = ([[A]], [[B]]), where A → B ∈ Γ and A ∈ Γ . Hence
A ∧ (A → B) ∈ Γ and so, using (R), B ∈ Γ . Hence Γ ∈ [[B]] = Y .

6 Modal Companions

In this section we clarify the connection with modal logic, specifically with clas-
sical modal logic and monotone modal logic. We consider the translation � from
L, the language of propositional logic, to L�, the language of modal propositional
logic [2]. It is given by:

1. p� = p;
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2. (A ∧B)� = A� ∧B�;
3. (A ∨B)� = A� ∨B�;
4. (A → B)� = �(A� → B�).

Definition 16. A system of modal logic is classical iff it is closed under RE
( A↔B
�A↔�B ) [1].

E is the smallest classical modal logic. The logic EN extends E by adding
the axiom scheme �>. Completeness holds for EN with respect neighborhood
frames that contain the unit, i.e. for all w ∈ W, W ∈ N(w) [1]. The clause for
�A in the neighborhood models is: w  �A iff AM ∈ N(w).

Definition 17. A system of modal logic is monotone iff it is closed under RM
( A→B
�A→�B ) [3].

EM (M) is the smallest monotonic modal logic. Completeness holds for M
with respect monotonic neighborhood frames, i.e. in F = 〈W,N〉, N is closed
under superset [3].

We can interpret the neighborhood models in two ways. As an N-neighborhood
model with WFN2

and as a modal model with M.
The N-neighborhood model 〈W,N, V 〉 is closed under N-superset if and only

if the N-neighborhood frame 〈W,N〉 is closed under N-superset. The logic WFN2

is sound and strongly complete with respect to the class of N-neighbourhood
frames that are closed under N-superset (Theorem 15).

Lemma 23. Let M = 〈W,N, V 〉 be an N-neighborhood model closed under N-
superset. Then for all w ∈ W,

M, w WFN2
A iff M, w M A�.

Proof. The proof is by induction on A. The atomic case holds by induction and
the conjunction and disjunction cases are easy. We only check the implication
case. So let A = C → D, then

M, w WFN2
C → D ⇐⇒

{
v | v 1WFN2

C
}
∪
{
v | v WFN2

D
}
∈ N(w)

(by induction hypothesis) ⇐⇒
{
v | v 1M C�} ∪

{
v | v M D�} ∈ N(w)

⇐⇒
{
v | v M ¬C�} ∪

{
v | v M D�} ∈ N(w)

⇐⇒
{
v | v M ¬C� ∨D�} ∈ N(w)

⇐⇒ M, w M �(¬C� ∨D�)
⇐⇒ M, w M (C → D)�.

Theorem 16. For all formulas A,

`WFN2
A iff `M A�.

Proof. By Lemma 23.

The classical modal logic EC extends E by adding the axiom scheme (�A ∧
�B) → �(A∧B). Completeness holds for EC with respect to the class of neigh-
borhood frames that are closed under intersection.
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Definition 18. The NB-neighborhood frame F= 〈W,NB,X〉 is closed under NB-
intersection if and only if for all w ∈ W , if (X,Y ) ∈ N(w) and (X,Z) ∈
NB(w) then (X,Y ∩ Z) ∈ NB(w).

Theorem 17. The logic WFC is sound and strongly complete with respect to the
class of NB-neighborhood frames that are closed under NB-intersection.

Proof. The proof can be found in [7].

The next result readily follows.

Theorem 18. The logic WFNC is sound and strongly complete with respect to
the class of NB-neighborhood frames that are closed under NB-intersection and
equivalence relation.

Lemma 24. Let 〈W,NB,X〉 be an NB-neighborhood frame closed under equiv-
alence relation and NB-intersection. Then there is an equivalent N-neighborhood
frame 〈W,N,X〉, closed under N-intersection.

Proof. The proof is straightforward by considering, for each w ∈ W ,
N(w) =

{
X ∪ Y | (X,Y ) ∈ NB(w)

}
.

Theorem 19. The logic WFNC is sound and strongly complete with respect to
the class of N-neighborhood frames that are closed under N-intersection.

Proof. By Theorem 18 and Lemma 24.

Theorem 20. For all formulas A,

`WFNC A iff `ENC A�.

Proof. By Theorem 19 and Lemma 23.

The logic K is the smallest normal, or Kripkean, modal logic. Corsi in [2]
showed that the modal companion of subintuitionistic logic F is the logic K.

Lemma 25. The logic MCN equals the logic K [6].

Completeness holds for K with respect to the class of augmented neighbor-
hood frames, i.e. closed under superset and containes its core provided for all
w ∈ W ,

∩
X∈N(w) X ∈ N(w).

Theorem 21. The logic WFN2C is sound and strongly complete with respect
to the class of N-neighborhood frames that are closed under N-superset and N-
intersection.

Proof. By Theorems 9 and 15.

Theorem 22. For all formulas A,

`WFN2
C A iff `K A�.

Proof. By Theorem 21 and Lemma 23.

Corollary 3. The logic WFN2C equals the logic F.
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7 Conclusion

In the above the similarities and differences between N-frames and NB-frames
were fully clarified. An interesting new logic WFN2 was axiomatized and it was
established that the monotone logic M is a modal companion of this logic. It
will be worthwhile to further study this logic, which takes a central place amid
subintuitionistic logics.
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