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Abstract
We present a new notion of game equivalence that captures basic pow-

ers of interacting players. We provide a representation theorem, a com-
plete logic, and a new game algebra for basic powers. In doing so, we es-
tablish connections with imperfect information games and epistemic logic.
We also identify some new open problems concerning logic and games.

1 Introduction

Games are a basic model for interactive agency, but how much structure do
we need? Game theory offers strategic form games and extensive games, rep-
resenting different levels of detail. Logicians have studied further levels, such
as powers of players over the outcomes of a game. Each of these levels comes
with a notion of invariance between structures that matches a logical language
– and as in many fields, the search for new invariances is ongoing. In this paper
we offer a new notion bridging between game theory and logic: basic power
equivalence, that uses powers encoding a sort of qualitative equilibria where all
players matter. We determine its properties in a new representation theorem,
find a complete associated modal neighborhood logic of a novel kind, and ex-
plore a new game algebra for basic powers that eventually forces us to change
from functional to relational strategies. Moreover, we establish interesting con-
nections with imperfect information games and epistemic logic.

This paper fits with a body of earlier work. Our approach is partly inspired
by the computational literature on process equivalences, ranging from coarser
trace equivalence to more fine-grained notions of bisimulation [5]. Even more
central to us is the notion of power equivalence, implicit in the game algebra
of Parikh [18], which also links with the set-theoretic forms for games in [7].
A precursor inside game theory is the celebrated transformation analysis of
equivalent games with imperfect information by Thompson [22], refined in [9].
Game theory also has comparative discussions of the information available in
extensive forms and in strategic normal forms [16], a style of invariance analysis
that remains to be connected to our logic-based approach.

Another highly relevant strand for what follows is the work on social rights
and games starting from [11], developed technically by Peleg and co-authors in
a sequence of papers and books, cf. [20], [21], and connected to modal coalition
logics by Pauly in [19], with further contributions such as [13]. More specific
references to this tradition will be found at various places in this paper.
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Even so, our analysis has clear limitations in what it takes on board. More
delicate intuitions of game equivalence emerge once we consider players’ prefer-
ences, or their types, or when we focus on correlations between available equi-
libria in the games being compared. These richer settings are beyond the scope
of this paper, but they pose a natural challenge to logic-based approaches.

2 Equivalence of games, old and new answers

The question when two games are considered equivalent is fundamental to any
game theory. And as in many areas of mathematics, there is no unique answer:
different natural candidates exist. Here is an example from van Benthem [1].

Example 2.1. Are the following two games the same?

q r

p A
L R

E
L R

p q p r

E
L R

E
L R

A
L R

Figure 1: Equivalent games?

There are two players A, E, whose turns are indicated at nodes in the extensive
game trees, and the proposition letters p, q, r mark the outcomes at the end of
the game. Here are two different natural ways of answering the stated question.

Note In what follows, we assume familiarity with basic notions from game
theory such as extensive game tree, strategy, outcome, games in strategic form,
perfect information, and imperfect information. For cases where more precision
matters in the text, we have collected a few formal definitions in Appendix A.

2.1 Bisimulation

The two games depicted in Figure 1 are clearly not equivalent when we zoom
in on turns and player’s available choices. For instance, in G1 there is a choice
point where E can decide whether the game ends in q or in r, but no such choice
point occurs in G2. At this level, a good notion of game equivalence is modal
bisimulation, [6]. The two games G1, G2 are not bisimilar.

This difference also shows concretely in a language that matches the semantic
equivalence relation of bisimulation. The propositional modal logic that matches
bisimulation can define many properties of our games in detail. So, at this fine-
grained level of structure, standard modal logic is a good language for games.
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2.2 Power equivalence

Next, we abstract away from specific moves and choices, and focus on players’
powers for controlling outcomes. Then the two games may be considered the
same. In G1, A has a strategy “left” which forces the game to end with outcome
p, something we can write as the power {p}. A also has a strategy “right” which
forces the set of outcomes {q, r}. A can do no better than this: the eventual
choice between q and r is up to player E. As for the other player, E’s strategy
“left” forces {p, q} (since A can always go left at the start), and E’s strategy
“right” forces {p, r}. Now, if we compute powers of the players, we will find the
same powers in G2. This is obvious for player E, but since player A has four
strategies now, we need a bit of work. The power {p} comes from A’s strategy
“left, left”, the power {q, r} from “right, right”. The remaining strategies “left
right” and “right left” give powers {p, r} and {q, p}, but these can be considered
derived, being weakenings of the power {p} that A already has. Here we use
monotonicity: powers of a player are closed under taking supersets.

This argument is an informal first pass. Formal definitions of the above kind
of games and the powers of players in these can be found in Appendix A.

The power level, too, comes with a perspicuous language for describing game
structure, viz. a modal logic over neighborhood models whose relations N isX
record that player i has a power X in the relevant game. Naturally, this modal
language describes less detail of the extensive game tree. But the power per-
spective also has another logic connection. The above two game trees mirror
a syntax for logical formulas where A controls conjunctions and E disjunctions.
And then the equivalence of the above games qua powers reflects the distribu-
tive law of propositional logic. Indeed, most game semantics for logics operate
at the level of powers, often associated with ‘winning strategies’.

Much further logical theory for both approaches is developed in [2]. However,
as will be shown now, there is yet a third analysis of the question whether
the above two games are equivalent, intermediate between the preceding two.
Crucially, it pays attention to what both players can achieve interactively.

2.3 Basic powers

Monotonicity is appealing from the perspective of one individual player, but it
ignores what others can achieve. Here is how this shows in Example 2.1:

In the game G2, the power {p, q} of player A corresponds to something that
can be realized in the following sense: A can decide to narrow down the possible
outcomes to {p, q}, but leave the choice of which of these outcomes to player
E. But this is not a power A has in game G1: to allow for the outcome p, he
needs to go “left”, but this precludes the possibility that E ever gets to choose q.
Thus, from a more interactive point of view, the two games are not equivalent.
This informal explanation will soon be sharpened up, see Example 2.3.

Powers that allow one payer a restriction and the other player a realisation of
each remaining option are the subject of this paper. They refine standard powers

3



that focus on what single players can achieve by themselves to move closer to
the game-theoretic notion of an equilibrium, and to social scenarios generally,
taking into account how each agent contributes to the overall outcome of a game.
Moreover, technically, they are a suggestive pilot for finding interesting game
equivalences in between bisimulation and standard power equivalence. 1

Here is a more precise description. A basic power of player P in an extensive
game is a set of outcomes X associated with some strategy σ for P as follows:
X is the set of all outcomes at endpoints that can be reached when P plays
according to σ, while the choices of the other players are free. When the game
is infinite, the outcomes meant here are induced by complete histories. To state
this more formally, in what follows, G(A,O) denotes the set of games for players
A with outcomes in O. For two-player games, the players are named E and A,
where E = A and A = E. Let G be any game in G(A,O), with a ∈ A.

Definition 2.2. A non-empty set P ⊆ O is a basic power for a in G if there is
a strategy σ for a in G such that P = {o(m) | m ∈ Match(σ)}. The set of all
basic powers for a player defined in this way is denoted by Ba(G).

Here, Match(σ) is the set of all complete histories m of G where a plays
according to σ at each of her turns, and o is the map provided by G that assigns
outcomes to histories. See Appendix A for details.

The same definition works in extensive games with imperfect information,
[17], where nodes are partitioned in equivalence classes (‘information sets’) for
players, and the strategies for a player i satisfy the additional constraint that
they assign the same move throughout each information set for i. We will use
this generalized setting in much of our analysis later on.

Example 2.3. Example 2.1 revisited with basic powers.

The basic powers of player A in game G1 are {p}, {q, r}, while those of E are
{p, q}, {p, r}. In game G2, the basic powers of E are the same as in game G1,
but those of A are {p}, {p, q}, {p, r}, {q, r}.

In terms of basic powers then, the two games in Figure 1 are not the same.

Given our general motivation for the interest of basic powers, the preceding
discussion suggests a new notion of game equivalence:

Definition 2.4. Two games are said to be basic power equivalent if each player
has the same basic powers in both.

In this paper, we study this stricter game equivalence with logical techniques.
We modify the theory of power equivalence to obtain new representation theo-
rems, complete game logics in newly designed languages, and algebras of game
constructions for basic powers. In the process, we find new themes as well,

1An alternative perspective on the difference between the two games in our example would
bring in imperfect information of players about what the other player has done. We have
chosen to pursue the interactive perspective for now, focusing on interactive powers, but a
discussion of players’ information and knowledge will be found in Sections 8.2 and 9.2.
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in particular, a pervasive role for imperfect information and the need for an
extended notion of relational rather than functional strategies.

As we noted, basic powers have a game-theoretic slant, moving from the
egocentric winning strategies found in much of the logical and computational
literature, cf. [2], to ‘qualitative equilibria’ that depend on what all players do.
We will point out further connections with game theory as we go.

3 Logical perspectives on game equivalence

Before starting the study of basic powers, we recall some notions and results on
standard powers in extensive games viewed as non-empty subsets of a total set
of outcomes O, [2]. First, here are three properties of powers of players A, E:

− Non-emptiness: Each player has at least one power.

− Consistency : If X is a power of player A, and Y a power of player E,
then X ∩ Y 6= ∅.

− Monotonicity : If X is a power of a player, then so is any superset Y ⊇ X.

− Determinacy : If X is not a power of a player, then O − X is a power
of the other player.

A simple representation result shows that these conditions are characteristic:

Theorem 3.1. The following are equivalent for families X , Y of subsets of O:

1. Consistency, Monotonicity, and Determinacy hold for X , Y,

2. X , Y are the powers of two players in some game of perfect information.

There is also a characterization for the more general case of imperfect infor-
mation games that carry equivalence relations ∼ for both players, giving their
uncertainty about where they are in the game tree. Equivalence classes of these
relations are often called ‘information sets’. It is assumed that ∼-connected
points have the same available moves, and importantly, the only allowed strate-
gies are those that assign the same move throughout information sets for the
player. Apart from this, the definition of powers is the same as before.

Theorem 3.2. The following are equivalent for families X , Y of subsets of O:

1. Consistency and Monotonicity hold for X , Y,

2. X , Y are the powers of two players in some game of imperfect information.

Now we generalize sameness of powers to allow for comparison across differ-
ent games. Indeed, going further, we move from game trees altogether to more
abstract state spaces connected with games, with abstract relations on states
that indicate powers. These are the proper models for our logic to come.
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Definition 3.3. Fix a set Gm of labels for games. A game state model M =
(S,N, V ) has a set of states S, a valuation V for proposition letters, and abstract
neighborhood relations Ng

P ⊆ S × PS for each game g ∈ Gm and each player
P ∈ {A,E}. A game state model is a power model if for all games g and s ∈ S,
the pair of families Ng

A[s], Ng
E [s] satisfies Consistency and Monotonicity.

The relation Ng
PsX says that, with game g started in state s, player P has

a strategy guaranteeing that g will end in some state in X as its outcome. One
can view states in S as positions associated with nodes in a game tree, not
necessarily one-to-one, as in graph or board games. Much information can be
captured at such a level, including invariants that determine players’ powers.

Definition 3.4. Let M = (W,N, V ), M′ = (W ′, N ′, V ′) be game state models.
A binary relation B ⊆W×W ′ is a power bisimulation if the following conditions
hold for all sBs′ and each game g and player P:

Harmony s, s′ satisfy the same atomic proposition letters.

Forth For all X with Ng
PsX, there exists an X ′ such that N ′

g
Ps
′X ′ and also:

Forth-Back For all v′ ∈ X ′ there is some v ∈ X such that vBv′.

Back For all X ′ with N ′
g
Ps
′X ′, there is some X such that Ng

PsX and also:

Back-Forth For all v ∈ X there is some v′ ∈ X ′ such that vBv′.

States in two pointed game models are power bisimilar, written M, w - N, v, if
there is a power bisimulation B between M and N such that wBv.

There is a modal language matching this level of game description. The
formulas of the basic modal logic PL of powers are defined as follows:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈g,E〉ϕ | 〈g,A〉ϕ

Semantics of formulas in game state models are defined by the usual recursion,
where the clause for the modal operators reads: M, s 
 〈g,P〉ϕ iff there is some
X ⊆ S with Ng

PsX and M, v 
 ϕ for all v ∈ X. Informally, this says that
“player P can force the condition ϕ to hold for the outcomes of game g”.

Fact 3.5. Formulas of the language of PL are invariant for power bisimulation.

Con: 〈g,P〉p→ ¬〈g,P〉¬p

ϕ→ ψ
Mon: 〈g,P〉ϕ→ 〈g,P〉ψ

NonEm: 〈g,P〉>

Figure 2: Axioms and rules for the logic PL
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Fact 3.6. Together with a complete system of axioms for classical propositional
logic and the usual rules of modus ponens and uniform substitution, the axioms
and rules in Figure 2 are sound and complete for validity over game state models.
Furthermore, PL is decidable and has the finite model property.

Game state models for perfect information games also satisfy Determinacy,
and they are complete by strengthening the axiom Con to an equivalence:

〈g,P〉p↔ ¬〈g,P〉¬p.

One can extend PL with natural game constructions of choices for the two
players: G1 ∪ G2, G1 ∩ G2, game dual Gd switching roles, and sequential com-
position G1;G2. These validate a game algebra whose basic part for choice and
dual is a ‘De Morgan algebra’, while ; is an associative binary operation that
is monotonic in both arguments, and distributive over its left, but not its right
argument. This algebra can be added in the format of a dynamic logic [18], and
the semantic interpretation of this logic on game state models relies on the fact
that each of the operations is safe for standard neighborhood bisimulations.

Fact 3.7. The dynamic logic of the operations ∪,∩, ; over game state models is
decidable and completely axiomatizable.

In what follows, we want to preserve the methodology behind these results,
and it turns out that we can. But there will be surprises in making things work.

4 Representation theorem for basic powers

Our first topic is an abstract characterization of players’ basic powers in exten-
sive games with imperfect information, generalizing the approach taken in [1].
We restrict attention to the two-player case, leaving aside the greater subtleties
of powers in many-player games, [21]. The analysis to follow mirrors a common
construction in the literature on effectivity functions and coalition logics, [20],
[19], in its use of ‘product spaces’ of highly structured moves. Moreover, the
set-theoretic conditions to be stated below closely resemble those of [13], which
analyzes a more complex setting of coalitional powers.

4.1 Imperfect information games

We start with basic powers in extensive games of imperfect information. These
are defined just as before, but keeping in mind that we only consider uniform
strategies for each player. Consider the following three conditions:

− Non-Emptiness: Each player has at least one basic power.

− Consistency : If X is a basic power for player A, and Y is a basic power
for player E, then X ∩ Y 6= ∅.

− Exhaustiveness: For each basic power X of player P and each x ∈ X,
there is a basic power Y for player P such that x ∈ Y .
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Fact 4.1. Basic powers satisfy Non-Emptiness, Consistency, Exhaustiveness.

A formal proof of this fact can be found in Appendix B.2

Our first main result is a representation theorem for basic powers.

Theorem 4.2. The following are equivalent for families X , Y of subsets of O:

1. Non-Emptiness, Consistency and Exhaustiveness hold for X , Y,

2. X , Y are the sets of basic powers of the two players in some game of
imperfect information whose possible outcomes are the set O.

Proof. One direction is the content of Fact 4.1. For the converse direction from
(1) to (2), we define a game G as follows. G has two steps: first A makes a
move, then E makes a move. Moreover, A does not know which move player E
has played: the game G has imperfect information.

Formally, we define an extensive game G = (T , t, o,Π) as follows, where T
stands for the nodes, t is the turn function, o the map assigning outcomes to
histories, and Π is the partition into information sets. Let M(A) be the set of
all triples (X, i, x), where X ∈ X , x ∈ X and i ∈ {0, 1}. Next, M(E) is the set
of all triples (Y, j, f) where Y ∈ Y, j ∈ {0, 1} and f is a function from M(A) to
O subject to the following constraints for each triple t = (X, i, x) in M(A):

1. f(t) ∈ X ∩ Y .

2. In addition, if i = j and x ∈ X ∩ Y , then f(t) = x.

Now define T as the set of all sequences of length at most 2 consisting of at
most one object in M(A) followed by one from M(E). The turn function t is
obvious from this description. For Π we pick the partition that has all sequences
of length 1 in the same information cell, while consisting of singletons elsewhere.
Finally, the outcome function o sends a history (t, (Y, j, f)) with t = (X, i, x) to
the object f(t) in O as defined above.

Note that in this two-step game, the strategies for the first player A are just
the moves for A. Because of the imperfect information for the second player E,
strategies for E can also be identified with moves, that is, indices corresponding
to triples (Y, j, f), since the same choice must be made at each turn.

By Consistency, for any X ∈ X and Y ∈ Y, the intersection X ∩ Y is non-
empty, which means that the set of choice functions f satisfying conditions 1
and 2 above with respect to any given X,Y, i, j, x is non-empty too. Hence the
Non-Emptiness constraint guarantees that both players have non-empty sets of
moves at their turns, so we have a well-defined game G of imperfect information.

The theorem is proved now if we can establish the following:

Claim 4.3. The basic powers of the players in G are X for A and Y for E.

Proof. First we consider the case of player A.

Subclaim 1. The basic power corresponding to the move (X, i, x) is the set X.

2Incidentally, Non-emptiness and Consistency imply that basic powers are non-empty sets.
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Proof. Note that the set of all outcomes of branches starting with (X, i, x) equals
the set of all f(X, i, x) ∈ O for triples (Y, j, f) from M(E). (a) Inclusion ⊆: By
the definition of the functions f , they choose their value in sets X ∩ Y ⊆ X.

(b) Inclusion ⊇: Consider any point x′ ∈ X. By Exhaustiveness, there is
some Y ∈ Y with x′ ∈ X ∩ Y . Let f be a choice function defined as follows:
pick any i ∈ {0, 1}, given (Z, r, z) ∈ M(E), set f(Z, r, z) = z if r = i and
z ∈ Y ∩ Z, set f(Z, r, z) = x′ if r = |i − 1| and x′ ∈ Y ∩ Z, and set f(Z, r, z)
to some arbitrary element of Y ∩ Z otherwise (which is guaranteed to exist by
Consistency). Then the triple (Y, |i−1|, f) is a legitimate choice for E according
to the above definition, and we have o((X, i, x), (Y, |i− 1|, f)) = x′.

Thus, the basic powers of A in G equal the family X . Next, consider player
E, recalling that strategies are just the moves, given the imperfect information.

Subclaim 2. For any move (Y, i, f), its corresponding basic power is Y ∈ Y.

Proof. (a) Inclusion ⊆: By definition, for all histories (X, i, x), (Y, j, f), the
outcome function o assigns the value f(X, i, x) ∈ X ∩ Y ⊆ Y . (b) Inclusion ⊇:
We show that all objects y ∈ Y will in fact be chosen somewhere by the given
function f . Consider any y ∈ Y . By Exhaustiveness, there is an X ∈ X with
y ∈ X ∩ Y . For that X, (X, j, y) is a possible move in M(A). By the second
constraint on moves for E, we have o((X, j, y), (Y, j, f)) = f(X, j, y) = y.

Claim 4.3 now follows from the two Subclaims.

This concludes the proof of the representation theorem for basic powers.

4.2 Two game-theoretic angles

Our approach relates to game theory in various ways. Here are two connections.

Strategic forms Our representation theorem also characterizes games in strate-
gic form. To see the connection, we note an analogy between basic powers in
game trees and in the rows and columns of two-player matrix games.

Example 4.4. Strategic form games and basic powers.

Revisiting Example 2.1, the strategic forms of the two games are as follows,
with rows encoding strategies for A and columns strategies of E:

p p
q r

p p
q p
p r
q r

Now one can read off the basic powers of the two players directly from the rows
and columns, and it is clear that the two games are not basic power equivalent.
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Given a two-player game in strategic form, let the yield of a row or column
be the unordered set of outcomes appearing in it.

Theorem 4.5. The conditions Non-Emptiness, Consistency and Exhaustive-
ness are necessary and sufficient for representation of yields of rows and columns
in a strategic form two-player game.

Proof. This follows directly from the proof of Theorem 4.2. The basic powers
of players in our two-step extensive game are identical with the yields of rows
and columns in the corresponding strategic normal form game.

Even so, basic power equivalence for games is not the same as having the
same strategic form (up to permutation and duplication of rows and columns).

Example 4.6. Strategic form equivalence versus basic power equivalence.

Both players have the same basic powers in the following games:

0 1 0
1 0 0
0 0 0

1 1 0
0 0 0

However, there is clearly no way to transform one game into the other simply
by duplicating and switching the order of rows and columns. Moreover, viewed
as models for a cylindric modal logic S52 with the usual “horizontal” and “ver-
tical” accessibility relations, [10], and 1, 0 regarded as truth values of some fixed
propositional variable, the two games are not related by any modal bisimulation.

Perfect information games An important special case are games with per-
fect information, where all information sets are singletons. In this case, addi-
tional properties hold, such as this Determinacy condition for standard powers:

Determinacy ′ For each set X ⊆ O, either one player has a basic power
contained in X, or the other player has a basic power contained in O −X.

We have no generalization of our result for powers with perfect information.

Conjecture 4.7. Consistency, Exhaustiveness, and Determinacy′ are necessary
and sufficient for representing given powers in a game of perfect information.

This result may be harder than the earlier one. For families of sets satisfy-
ing Consistency, Monotonicity and Determinacy, one can find a two-step game
of perfect information inducing exactly these sets as the standard monotonic
powers for the players. But with basic powers, more rounds may be essential.

Example 4.8. Basic powers in perfect information games.

Consider the following extensive game:

10



r s

q A

p E

A

Figure 3: A three-step game

Basic powers for A are {p}, {q, r}, {q, s}, and for E: {p, q}, {p, r, s}. It is easy to
see that no two-step perfect information game produces just these basic powers.

5 Modal logic for basic powers

5.1 Instantial neighborhood logic for basic powers

To find a logical perspective on basic powers, note that basic power equivalence
can be generalized to game state models as before. Again, the invariance issue
then shifts to: When are two game state models the same at the level of basic
powers? The answer is in the following definition.

Definition 5.1. Let M = (W,N, V ), M′ = (W ′, N ′, V ′) be game state models.
The relation B ⊆W×W ′ is a basic power bisimulation if the following conditions
hold for all sBs′ and each game g and player P:

Harmony s, s′ satisfy the same atomic proposition letters.

Forth For all X with Ng
PsX, there is some X ′ such that N ′

g
Ps
′X ′ and also:

Forth-Forth For all v ∈ X, there is a v′ ∈ X ′ such that vBv′.

Forth-Back For all v′ ∈ X ′, there is a v ∈ X such that vBv′.

Back For all X ′ with N ′
g
Ps
′X ′, there is some X such that Ng

PsX and also:

Back-Forth For all v ∈ X, there is a v′ ∈ X ′ such that vBv′.

Back-Back For all v′ ∈ X ′, there is a v ∈ X such that vBv′.

We say that two states in two given pointed game state models are basic power
bisimilar, written M, w - N, v, if there is a basic power bisimulation B between
M and N such that wBv.

Next, the transition to logic follows a familiar pattern. Semantic equiva-
lence relations between models induce formal languages for describing invariant
properties. What remains to be done here is to identify a natural formalism for
game description that matches basic power bisimulation.
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The language that serves this purpose is a richer version of the standard
modal languages for neighborhood models that have been used in the literature
on players and coalitions in games and related social scenarios. It was introduced
under the name instantial neighborhood logic in [4]. We denote it here by BPL,
for “basic power logic”. Its formulas are defined by the following grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈g,P〉(Ψ, ϕ)

where Ψ is a finite set of BPL-formulas, called the instantial formulas. In par-
ticular, the modalities 〈g,P〉 are indexed here for a game g and a player P.

As a notational convention, if Ψ = {ψ1, ..., ψn}, we will often write the
modality as 〈g,P〉(ψ1, ..., ψn, ϕ) rather than 〈g,P〉(Ψ, ϕ). However, ψ1, ..., ψn
should then still be understood as a set rather than a tuple of formulas.

That this is in fact the right modal language for basic powers was observed,
although in different terminology, in [4], where the following results were proved:

Fact 5.2. All formulas of BPL are invariant for basic power bisimulations.

Fact 5.3 (Hennessy-Milner property). Two finite, pointed game state models
are basic power bisimilar if, and only if, they satisfy the same formulas in BPL.

6 Axiomatization

In this section we axiomatize the valid formulas of BPL, thus pinning down the
modal logic of basic powers. Our system is a gentle modification of instantial
neighborhood logic, and the key step of the completeness proof is to verify that
the conditions characterizing basic powers can be captured by suitable axioms.

As axioms and rules for BPL, we take all propositional tautologies, modus
ponens, uniform substitution plus the following principles:

Weak: 〈g,P〉(Φ; p)→ 〈g,P〉(Φ′; p) (Φ′ ⊆ Φ)

Un: 〈g,P〉(q1, ..., qn; p)→ 〈g,P〉(q1 ∧ p, ..., qn ∧ p; p)

Lem: 〈g,P〉(Φ; p)→ 〈g,P〉(Φ ∪ {q}; p) ∨ 〈g,P〉(Φ;¬q ∧ p)

Bot: ¬〈g,P〉(⊥; p)

p→ p′ qi → qi
′ (1 ≤ i ≤ n)

Mon: 〈g,P〉(q1, ..., qn; p)→ 〈g,P〉(q′1, ..., q′n; p′)

Figure 4: Axioms and rules for instantial neighborhood logic
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Non-Em: 〈g,P〉> Cons: 〈g,P〉p→ ¬〈g,P〉¬p

Inst: 〈g,P〉(p;>)↔ 〈g,P〉(p;>)

Figure 5: The additional axioms for BPL

Theorem 6.1. The displayed axioms and rules for BPL are sound and complete.

Proof. Soundness is an straightforward check, since the non-trivial axioms of
BPL reflect the conditions in our representation result for basic powers.

The completeness proof is a normal form argument using finite state descrip-
tions in the style of [4], but the adaptation to basic powers is not trivial, as we
must deal with the new frame constraints of Non-emptiness, Consistency and
Exhaustiveness. The model construction to follow satisfies these constraints.

More in detail, the completeness proof proceeds in the following steps.

Definition 6.2. The modal depth of a formula is defined inductively by:

d(p) = 0, d(¬ϕ) = d(ϕ), d(ϕ ∧ ψ) = max(d(ϕ), d(ψ)),

d(〈g,P〉(Γ;ϕ)) = max(d[Γ ∪ {ϕ}]) + 1.

Definition 6.3. Given a finite set of propositional variables Q, a BPL formula
ϕ is a Q-formula if all propositional variables appearing in ϕ belong to Q.

Given k ∈ ω and a finite set Q of propositional variables, a (Q, k)-description
is a consistent Q-formula ϕ of modal depth ≤ k, such that for any Q-formula θ
of depth ≤ k, we have ϕ ` θ or ϕ ` ¬θ.

By a standard argument, there are at most finitely many Q-formulas of depth
≤ k up to logical equivalence, given that Q is finite.

A key lemma for the completeness proof is the following result, of a type
well-known in the literature on modal normal forms – cf. [4] for details:

Lemma 6.4. Let 〈g,P〉(Γ;ϕ) be a formula with max(d[Γ ∪ {ϕ}]) ≤ k and Q
a finite set of propositional variables containing all variables appearing in this
formula. Then 〈g,P〉(Γ;ϕ) is provably equivalent to a disjunction of the form:∨

i∈I
〈g,P〉(Θi;

∨
Θi)

with I finite, and for each i ∈ I, Θi a finite set of (Q, k)-descriptions such that:

- every member of Θi provably entails ϕ, and

- every member of Γ is provably entailed by some member of Θi.

13



Fix a finite set of propositional variables Q. Given a Q-formula ϕ, ϕ̂ is its
equivalence class under provable equivalence. For a finite set of formulas Γ, set

Γ̂ = {ϕ̂ | ϕ ∈ Γ}

We now construct a canonical neighborhood model using our normal forms.

Definition 6.5. The canonical model M = (W,N, V ) is defined as follows:

− W = {(ϕ̂, k) | ϕ is a (Q, k)-description and k < ω}

− For any player P, let NP be the union of the sets

{((ϕ̂, k + 1), Γ̂× {k}) ∈W × P(W ) | ϕ ` 〈g,P〉(Γ;
∨

Γ)}

and
{((ϕ̂, 0),W ) | (ϕ̂, 0) ∈W}

− Finally, for any propositional variable p, set V (p) = {ϕ̂ | ϕ ` p} if p ∈ Q,
V (p) = ∅ otherwise.

Note that this is well defined, i.e., whether (ϕ̂, Γ̂) ∈ NP is independent of the
choice of witnesses ϕ,Γ for the equivalence classes.

Lemma 6.6 (Truth lemma). Let M be constructed as above, and let ψ be any
basic formula of modal depth ≤ k whose propositional variables all belong to Q,
and which is such that all game terms appearing in ψ belong to τ . Then for
every (Q, τ, k)-description ϕ, we have:

M, (ϕ̂, k) 
 ψ iff ϕ ` ψ

Proof. By induction on k. In the case of k = 0, ψ is a formula of classical propo-
sitional logic and the result follows easily using the definition of the valuation
V since we have included all propositional tautologies as axioms.

Assuming that the induction hypothesis holds for k, consider a formula ψ of
modal depth ≤ k + 1 and let (θ̂, k + 1) ∈W . We wish to show that:

M, (θ̂, k + 1) 
 ψ iff θ ` ψ

We reason by a sub-induction on the complexity of subformulas of ψ, where we
consider both subformulas of the form 〈g,P〉(Ψ;ϕ) and propositional variables
not in the scope of any modal operator as the atomic cases. Since the induction
steps for boolean connectives are trivial, and we have already dealt with the
case of purely propositional formulas, we focus on the atomic case of a modal
formula 〈g,P〉(Ψ;ϕ). Since ψ was of modal depth ≤ k + 1, every formula in
Ψ ∪ {ϕ} must be of modal depth ≤ k, so by the main induction hypothesis we
get that M, (ρ̂, k) 
 γ iff ρ ` γ, for all γ ∈ Ψ∪ {ϕ} and all (ρ, k) ∈W such that
ρ is a (Q, τ, k)-description.

Suppose that M, (θ̂, k + 1) 
 〈g,P〉(Ψ;ϕ). Then there is a neighborhood of

(θ, k+ 1) w.r.t. the neighborhood relation NP of the form Γ̂× {k}, such that Γ
is a set of (Q, τ, k)-descriptions and:

14



− M, (ρ̂, k) 
 ϕ for all ρ ∈ Γ,

− for all δ ∈ Ψ there is some ρ ∈ Γ such that M, (ρ̂, k) 
 δ.

Hence by the induction hypothesis we get:

− ρ ` ϕ for all ρ ∈ Γ,

− for all δ ∈ Ψ there is some ρ ∈ Γ such that ρ ` δ.

It follows that
∨

Γ ` ϕ. By definition of the neighborhood relation NP we have
θ ` 〈g,P〉(Γ;

∨
Γ). But due to the rule (Mon) and the axiom (Weak) we get

〈g,P〉(Γ;
∨

Γ) ` 〈g,P〉(Ψ;ϕ), hence θ ` 〈g,P〉(Ψ;ϕ) as required.
Conversely, suppose θ ` 〈g,P〉(Ψ;ϕ). Since θ is a (Q, τ, k + 1)-description,

we must have θ ` 〈g,P〉(Γ;
∨

Γ) for some disjunct 〈g,P〉(Γ;
∨

Γ) of the normal

form of 〈g,P〉(Ψ;ϕ) given by Lemma 6.4. Hence ((θ̂, k+ 1), Γ̂× {k}) ∈ NP. We
recall that by Lemma 6.4 the set Γ is a set of (Q, τ, k)-descriptions such that:

− ρ ` ϕ for all ρ ∈ Γ,

− for all δ ∈ Ψ there is some ρ ∈ Γ such that ρ ` δ.

By the induction hypothesis we get:

− M, (ρ̂, k) 
 ϕ for all ρ ∈ Γ,

− for all δ ∈ Ψ there is some ρ ∈ Γ such that M, (ρ̂, k) 
 δ.

Hence M, (θ̂, k + 1) 
 〈g,P〉(Ψ;ϕ) as required.

The addition we need for present purposes is the following lemma:

Lemma 6.7. The structure M constructed above is a power model, that is, it
satisfies the Non-emptiness, Consistency and Exhaustiveness constraints.

Proof. First, note that all the conditions hold for the image of each relation on
an element of W of the form (ϕ̂, 0). So we can focus on the images of relations
of the form NP on states of the form (ϕ̂, k + 1) for some k.

The Non-emptiness condition is straightforward from the axiom (Non-Em)
of BPL. Next, for Instantiatedness, suppose that

((ϕ̂, k + 1), Θ̂× {k}) ∈ NA

By definition, we get ϕ ` 〈g,E〉(Θ;
∨

Θ). Pick an element (θ̂, k) ∈ Θ × {k}.
By (Weak) and (Mon) we get 〈g,E〉(Θ;

∨
Θ) ` 〈g,E〉(θ;>), so ϕ ` 〈g,E〉(θ;>).

By the axiom (Inst) we get ϕ ` 〈g,A〉(θ;>) as well. Since ϕ is a (Q, k + 1)-
description, it follows from Lemma 6.4 that there is a set Ψ of (Q, k)-descriptions
with ϕ ` 〈g,A〉(Ψ;

∨
Ψ) and such that there exists some ψ ∈ Ψ with ψ ` θ. But

since ψ, θ are both (Q, k)-descriptions, this means that θ̂ = ψ̂, so (θ̂, k) = (ψ̂, k).

But then we get ((ϕ̂, k + 1), Ψ̂ × {k}) ∈ NE and (θ̂, k) ∈ Ψ̂ × {k} as required.
The converse direction is proved in the same manner.
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For Consistency, let ((ϕ̂, k+1), Θ̂×{k}) ∈ NA and ((ϕ̂, k+1), Θ̂′×{k}) ∈ NE.

Clearly, since Θ and Θ′ are both sets of (Q, k)-descriptions, that Θ̂× {k} does

not intersect Θ̂′ × {k}, and so
∨

Θ′ → ¬
∨

Θ. But we have ϕ ` 〈g,E〉(Θ;
∨

Θ),
hence ϕ ` 〈g,E〉

∨
Θ by the axiom schema (Weak). Furthermore we have:

ϕ ` 〈g,A〉(Θ′;
∨

Θ′) ` 〈g,A〉
∨

Θ′ ` 〈g,A〉¬
∨

Θ

But then ϕ ` 〈g,E〉
∨

Θ ∧ 〈g,A〉¬
∨

Θ, and it follows from the axiom schema
(Cons) that the formula ϕ cannot be consistent, which contradicts our assump-
tion that ϕ was a (Q, k + 1)-description.

Combining Lemmas 6.7 and 6.6 with the easy observation that any consistent
basic formula of depth≤ k, variables inQ and atomic games among τ is provably
entailed by some (Q, k)-description3, we obtain Theorem 6.1.

As a corollary to this proof, we get a further property of our new game logic:

Theorem 6.8. BPL is decidable and has the effective finite model property.

6.1 Special cases and variations

Logics of specific games Our move to abstract game state models has one
consequence that should be noted. In the original example motivating this
paper, powers were sets of endpoints of some concrete game. In that special case,
iterating power modalities is almost trivial, as powers of players at endpoints s
are just the singleton sets {s}. But because of this, the logic of game trees will
validate further principles that were not in our BPL logic of games.

Fact 6.9. The formula [i]([i]ϕ↔ ϕ) is valid on extensive games.

This trivializes iterated play of the current game, while in a general game
logic, we can play a game to its end in some state s in the state space, and then
restart the game from there. We leave axiomatizating concrete games as an
open problem, but we conjecture that adding the preceding principle suffices.

Intermediate powers Strategies in game trees are not just directed toward
endpoints: players can also make sure that play has to pass through relevant
intermediate positions. Accordingly, we can define powers that allow both in-
termediate nodes and endpoints as outcomes. (Cf. the intermediate forcing in
Grossi and Turrini [14].) The earlier modal neighborhood language can still de-
scribe such powers, but now it gets closer to a standard modal action language
over game trees, as powers can also be singletons of states reached after one
move. We leave the logic of this game equivalence as one more open problem.

3This follows in a standard way from Lindenbaum’s lemma applied to at most finitely many
formulas of depth ≤ k, variables in Q, and game terms among τ , up to provable equivalence.
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7 Algebra of game constructions

Our modal neighborhood language describes the structure of games from an
“internal” perspective, where formulas are evaluated at a given point in the
associated state space of a game. But we can also describe game structure
“externally” by means of an algebra of game constructions.

This approach, too, has connections with logic. We start by considering some
natural operations on games, and then develop this perspective with games of
imperfect information. This may be surprising, as these games have no com-
positional tree-like structure in general (epistemic uncertainty links can cross
between subtrees), but we shall see that we can still come a long way.

7.1 Propositional operations

We will use some basic concepts of universal algebra, see for example [8]. For
simplicity, we restrict attention to finite games, so that G({A,E}, O) is now the
set of finite games with outcomes in O. Thus the outcome map of a game G can
be viewed a map o from the leaves in G into O.

Consider a family of extensive games on a fixed set of outcomes O. We define
operations in a standard manner, with binary ∪,∩ corresponding to choice for
A,E respectively, and a unary operation − for game dual (‘role switch’).

Definition 7.1. Let G1 = (T1, t1, o1,Π1) and G2 = (T2, t2, o2,Π2). The choice
games G1 ∪ G2 (G1 ∩ G2) are defined as follows. We first construct a tree T ′ by
adding a new root r with two successors, where the left successor is the root of
a subtree isomorphic with T1 via a fixed isomorphism i1, and the right successor
the root of a subtree isomorphic with T2 via a fixed i2. The turn function t′ is
defined by setting t′(r) = A (t′(r) = E). For a node u in the subtree for the left
successor of the root r we set t′(u) = t1(i1(u)), and for a node u in the subtree
for the right successor of r, we set t′(u) = t2(i2(u)). The outcome map o′ is
defined by setting o′(l) = o1(i1(l)) for a leaf in the subtree corresponding to the
left successor of r, and o′(l) = o2(i2(l)) for a leaf in the subtree corresponding
to the right successor of r. We define a partition Π′ by setting

Π′ = {{r}} ∪ {i−11 [Z] | Z ∈ Π1} ∪ {i−12 [Z] | Z ∈ Π2}.

The game G1 ∪ G2 (G1 ∩ G2) is then defined as (T ′, t′, o′,Π′).

The definition of −G is much simpler, it merely changes the turn assignment
by switching players at each position, otherwise keeping everything the same.

Definition 7.2. Let G = (T , t, o,Π). Then −G is defined to be the structure
(T , t−, o,Π), where t− is defined by t−(u) = t(u) for each u ∈ T .

Remark 7.3. These operations make strong assumptions. In particular, the
imperfect information stays inside the games connected by ∪, ∩, since the initial
choice introduces no uncertainty (in other words, the first round of a choice game
has perfect information). We will return to this issue later on.
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Basic powers in composite games can be straightforwardly computed from
the basic powers of their components, as is shown by the following fact:

Fact 7.4. Basic powers of players in these games obey the following conditions:

1. Basic powers for A in G1 ∪ G2 are all of A’s basic powers in the game G1
plus all of A’s basic powers in G2,

2. Basic powers of E in G1 ∪ G2 are set-theoretic unions of pairs of basic
powers of E in the games G1, G2 separately.

3. Analogously for powers of the two players in the dual choice game G1∩G2.

4. Basic powers of E in −G are basic powers of A in G, and likewise for A.

Proof. By a simple verification.

As a direct corollary we get the following proposition, which opens the door
to a game algebra of basic power equivalence:

Proposition 7.5. Basic power equivalence is a congruence on the algebra:

〈G({A,E}, O),∪,∩,−〉.

This motivates the following definition:

Definition 7.6. The game algebra of basic power equivalence G (with outcomes
O) is defined to be the quotient:

〈G({A,E}, O),∪,∩,−〉/ '

An algebraic equation in the signature 〈∪,∩,−〉〉 is said to be valid on G if it
belongs to the equational theory of the algebra G.

As we did with the logic for basic powers, we now generalize from extensive
game trees to arbitrary game state models M = (S,N, V ), where the neighbor-
hood relations N i,GsX satisfy abstract analogues of the preceding observations,
for all game terms G. In doing so, we take a dynamic view of games as state-
transforming processes in the style of dynamic game logic (cf. [18], [23], [2]).
This leads to an extended algebraic perspective.

Definition 7.7. A dynamic two-player game over a set X (of “states”) is a
map g : X → G({A,E}, X), assigning a game with outcome set X to each state
in X. We denote the set of dynamic two-player games over X by D({A,E}, X).

The operations ∪,∩ and − are naturally lifted to dynamic games in a
component-wise manner, and so is the relation ' of basic power equivalence.
The following observation shows we get an algebra once more:

Proposition 7.8. Basic power equivalence is a congruence on the algebra:

〈D({A,E}, O),∪,∩,−〉.
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Definition 7.9. The dynamic game algebra of basic power equivalence D (with
outcomes O) is defined to be the quotient:

〈D({A,E}, O),∪,∩,−〉/ '

Equational validity for D is again defined in the standard manner.

The following observations about valid equations are easy to verify.

Fact 7.10. The following are valid in the game algebra of basic powers:

x ∪ y = y ∪ x x ∩ y = y ∩ x
x ∪ (y ∪ z) = (x ∪ y) ∪ z x ∩ (y ∩ z) = (x ∩ y) ∩ z
−−x = x

− (x ∪ y) = −x ∩ −y − (x ∩ y) = −x ∪ −y.

These are all valid in propositional logic. But there are also striking failures:

Fact 7.11. The following equations are not valid in the algebra of basic powers:

x ∪ x = x x ∩ x = x

x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z), x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).

That distribution fails was observed already in our introduction. We only
retain a weaker principle which follows from the above valid equations:

x ∪ (y ∩ x) = (x ∪ y) ∩ x

Most striking, perhaps, is the failure of the idempotence laws in our algebra:

Example 7.12. Failure of idempotence.

Consider a game G with outcomes in O = {p, q}, where Player E moves first,
and gets a choice between outcomes p or q, with no moves at all for Player A.
The basic powers of Player E in G are just {p} and {q}. But in the game G ∩G,
starting with a choice between two copies of G for Player A, Player E clearly
also has the basic power {p, q}, so it is not the case that G ∩ G ' G. The two
games are displayed in Figure 6, with G to the left, G ∩ G to the right.

p q

E

p q p q

E E

A

Figure 6: Failure of idempotence.
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This makes our game algebra a weak propositional logic sharing a failure of
distribution with quantum logic, and a failure of idempotence with linear logic.

Open problem 7.13. Axiomatize the complete game algebra of basic powers.

An interesting feature of this game algebra is its use as a tool for studying
game equivalence under basic powers. Valid laws of propositional logic that
interchange conjunctions and disjunctions correspond to transformations that
change order of turns in games. Normal forms yield normal forms for games:
say, a distributive normal form shows that we can let one player start (all
consecutive moves can then be collected into one), then the other, and let the
game end there. However, our weaker game algebra for basic powers does not
support standard propositional normal forms, a topic to which we return below.

7.2 Composition and relational strategies

There are further fundamental operations on games. Clearly, games compose
to form sequential games, and the corresponding operation is as follows.

Definition 7.14. Given dynamic games G1,G2 : X → G({A,E}, X), we can
define the sequential composition G1;G2 by letting G1;G2(u) be constructed by
replacing each leaf l in G1(u) by a copy of the game tree G2(o1(l)), where o1 is
the outcome map associated with G1(u).

Remark 7.15. This is just one definition of sequential game composition, as it
does not allow non-trivial imperfect information links across sequential games.
But for instance, if endpoints of G can have epistemic links, we might want to
let this continue to the games placed at these. On the other hand game theory
often assumes a mysterious act of “revelation” at the end of the game.

However, there is a more immediate problem to deal with, even for this
simple notion. It turns out that basic powers are an inherently “global” property
of games, and fail to be compositional with respect to sequential composition.

Fact 7.16. Basic power equivalence is not generally a congruence with respect
to the operation of sequential composition on the algebra D({A,E}, O).

Proof. Let O = {p, q}. The two perfect information games displayed in Figure
7 can clearly be split up as sequential compositions of pairwise basic power
equivalent games. But the games are not basic power equivalent themselves, as
player E has a basic power {p, q} in the game to the right, but not to the left.

p q

E

A

p q p q

E E

A

Figure 7: Failure of safety
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Why does this happen? An obvious culprit is the functional nature of strate-
gies. If a model gets inflated modulo bisimulation, creating copies of earlier
moves, then new functions can create new basic powers that were not there
before. One solution, then, is to change the functional nature of strategies.

To remedy this situation, we will now widen the notion of a strategy to allow
non-determinism, so that strategies may constrain the moves of a player, but
not determine them uniquely. This move is not altogether new: mixed strategies
in game theory can be interpreted in a relational way – and the use of relations
rather than functions has also been defended for the broader notion of a ‘plan’
in [2] leading to a better model theory of strategies.

Definition 7.17. A relational strategy for player P in a game G = (T , t, o,Π)
is a binary relation σ over T such that:

− σ[u] 6= ∅ whenever u ∈ t−1[P], and

− σ[u] = σ[v] if u, v are in the same partition cell in Π.

The set Match(σ) of non-deterministic matches guided by a strategy σ is defined
in the obvious way. We say that P ⊆ O is a relational basic power of P if there
is a relational strategy σ for P in G such that P = {o(m) | m ∈ Match(σ)}.
The set of relational basic powers of P is denoted by RP(G). We say that G1,G2
are relational basic power equivalent if RP(G1) = RP(G2), for each P ∈ {A,E}.
Finally, we write G1 ≡ G2 when G1,G2 are relational basic power equivalent.

Relational basic power equivalence can be lifted to an equivalence relation
between dynamic games in the same component-wise manner as before.

Our first observation is that the new notion solves our problem.

Fact 7.18. Relational basic power equivalence over D({A,E}, O) is a congruence
≡ with respect to the operations ∪,∩,− plus sequential game composition ;.

This motivates the following definition:

Definition 7.19. The dynamic game algebra R of relational basic power equiv-
alence (with outcome set O) is the quotient

〈D({A,E}, O),∪,∩,−, ; 〉/≡.

But of course, this change in our set-up for defining basic powers needs to
be checked for its compatibility with what went on before. We briefly state a
number of results, whose proofs involve straightforward verifications:

Theorem 7.20. The following conditions capture representability of families
of sets as relational basic powers in a game of imperfect information: Non-
Emptiness, Consistency, Exhaustiveness, and one new property:

Union Closure: If all members of a family F are relational basic powers
of a player, then so is the union

⋃
F .
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Proof. With Union Closure for two families of sets X and Y, the basic powers of
the two-player game constructed in the proof of Theorem 4.2 are closed under
unions, which clearly means the basic powers of each player in that game coincide
with their relational basic powers. Since the basic powers of the two players are
the members of X and Y respectively, by Theorem 4.2, the result follows.

We can also easily adapt our complete axiomatization of the modal logic of
basic powers, so that it fits relational basic powers:

Theorem 7.21. Basic INL game logic is also complete for relational powers,
provided we add the axiom:

〈g,P〉(α;ϕ1) ∧ 〈g,P〉(β;ϕ2)→ 〈g,P〉(α, β;ϕ1 ∨ ϕ2)

That is, the logic obtained by adding this axiom is sound and complete for valid-
ity over neighborhood models satisfying the extra constraint of Union Closure.

Proof. The construction of a game in the proof of Theorem 6.1 stays exactly as
before, but one has to check that the new axiom enforces Union Closure.

The basic game algebra changes in this new setting. We retain all valid
equations from before, since we are dealing with a looser game equivalence
when working with relational, rather than functional strategies. But the algebra
remains weaker than the algebra of standard power equivalence.

Fact 7.22.

1. All validities mentioned above for functional strategies are also valid with
basic powers computed with relational strategies.

2. Propositional distribution is still not valid, but idempotence is.

Next, we turn to valid principles for composition of games, the motivation
for making the change to relational strategies in the first place.

Fact 7.23.

1. Game composition validates associativity, and left-distribution over choice:

(x ∪ y); z = (x; z) ∪ (y; z)

2. Dual distributes over composition:

−(x; y) = −x;−y

3. Game composition does not validate right-distribution over choice.

Proof. The first two items are immediate. Failure of right-distribution follows
by the known fact that right-distribution fails already in the game algebra of
standard power equivalence [12, 24]. Since standard power equivalence is a
coarser equivalence notion than relational basic power equivalence, any equation
that fails in the game algebra of standard power equivalence also fails now.

Open problem 7.24. Axiomatize the complete game algebra of the operations
{∪,∩,−, ; } based on relational powers.
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8 Dynamic game logic and a new game algebra

Various extensions are possible for the algebraic setting we have found so far.
We mention two directions with further attractive tools for analyzing games.

8.1 Dynamic game logic

Putting instantial game logic together with game algebra yields a system in
the style of dynamic game logic, [18], [2]. We now have instantial modalities
describing basic powers of player P in games G that can have complex algebraic
descriptions. This extension facilitates algebraic reasoning while offering more
expressive power for what happens in the course of a game – advantages similar
to those offered by PDL for the algebra of regular expressions:

〈G,P〉(Ψ;ϕ)

This formalism can be interpreted on our neighborhood models, provided these
satisfy the constraint of Union Closure as well as the Non-Emptiness, Consis-
tency and Exhaustiveness constraints. It is easy to lift the earlier definitions for
the operations ∪,∩,− of initial choice and switch to definitions for power rela-
tions, [18], [2]. The further crucial point here is that, with the earlier obstacle
to compositionally overcome, we can define the power relation for a composite
game of the form G1;G2 in the following inductive manner:

(u, Z) ∈ RP
G1;G2 iff Z =

⋃
F , for some family F ⊆ PW and some Y ⊆W

with (u, Y ) ∈ RP
G1 and (Y, F ) ∈ R̃ P

G2 ,

where (Y, F ) ∈ R̃ P
G2 means that the following back-and-forth conditions hold:

for all y ∈ Y there is some S ∈ F with (y, S) ∈ RP
G2 , and vice versa,

for all S ∈ F with (y, S) ∈ RP
G2 there is some y ∈ Y with (y, S) ∈ RP

G2 .

This semantics validates principles that allow for recursive reasoning about
basic game operations in a dynamic logic format:

Reduction axioms

• 〈−π,P〉(Ψ;ϕ)↔ 〈π,P〉(Ψ;ϕ)

• 〈π1 ∪ π2,P〉(Ψ;ϕ)↔ 〈π1,P〉(Ψ;ϕ) ∨ 〈π2,P〉(Ψ;ϕ)

• 〈π1 ∩ π2,P〉(Ψ;ϕ)↔
∨
{〈π1,P〉(Θ1;ϕ) ∧ 〈π2,P〉(Θ2;ϕ) | Ψ = Θ1 ∪Θ2}

• 〈π1;π2,P〉(ψ1, ..., ψn;ϕ)↔ 〈π1,P〉(〈π2,P〉(ψ1;ϕ), ..., 〈π2,P〉(ψn;ϕ); 〈π2,P〉ϕ)

We call the extended logic DPL for “dynamic power logic”. When added to
our base logic BPL, these axioms lead to the following result.

Theorem 8.1. The dynamic logic DPL of the operations {∪,∩,−, ; } with rela-
tional basic powers is completely axiomatizable.
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Proof. The crucial steps for a proof of this result are found in Appendix C.

From another angle, [3] explores the present perspective in more depth, in
the form of a PDL-like dynamic logic over instantial neighborhood models with
a new computational interpretation. This logic includes the game operations
defined here, except for unrestricted dual, but it adds further constructions of
test, and especially, finite iteration, which calls for new axioms and techniques.

8.2 New game constructions and extended game algebra

The move to relational strategies solved a design problem, and led to an interest-
ing game algebra and game logic. Even so, it is not the only possible approach.
In particular, as noticed several times already, we have not deeply analyzed the
role of imperfect information, and what repertoire of algebraic operations would
best fit with that. Here is an example showing how a greater focus on imperfect
information provides an alternative analysis of our earlier problems.

Example 8.2. Restoring distribution through imperfect information.

Consider our initial example of failure of the propositional distribution law with
basic powers in Section 2. We insert one uncertainty link in the game to the
right, as depicted in Figure 8. Now, keeping in mind that strategies in imperfect
information games must choose the same moves at epistemically linked points,
it is easy to see that basic powers are the same in the two games depicted:

q r

p A
L R

E
L R

p q p r

E
L R

E
L R

A
L R

Figure 8: Distribution revisited

This simple observation suggests a natural new choice operation that com-
bines imperfect information games, namely, one that introduces uncertainty:

Let G1 ∪ G2 be the game where A starts by choosing either G1 or G2,
but this choice is not observed by A – and likewise for G1 ∩ G2.

The game algebra with ‘partly invisible choices’ that now results has operations

{−, ∪, ∪, ∩, ∩, ; }.

Interestingly, it now has valid equations in the extended vocabulary that take
the place of the invalid distribution law, such as

x ∩ (y ∪ z) = (x ∩ y)∪ (x ∩ z).
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This new game algebra provides a much tighter fit for our earlier game
transformations. Its extended propositional logic has strong analogies with the
‘Thompson transformations’ for imperfect information games in game theory,
cf. [1]. But we do not have a full-fledged theory to offer at this stage.

Open problem 8.3. Axiomatize the complete algebra of {−, ∪, ∪, ∩, ∩, ; }.

This game algebra can be viewed as a generalized propositional logic. It
has even intriguing stronger principles than the one we noted. Here is one very
strong distributivity principle without a classical propositional counterpart.

Fact 8.4. The following equivalence is valid: (x∩y)∪ (z∩u) = (x∪z)∩ (y∪u).

Elaborating the syntax of this propositional logic takes a good deal of care,
since in stating valid principles, we need to ‘balance’ formulas, and mark subfor-
mulas (viewed as possible moves) in a way that respects the uniformity condi-
tions on strategies in imperfect information games (indistinguishable positions
should have the same moves available, strategies should make the same choice
at indistinguishable positions). We will not pursue this system here, but note
that there are analogies with ‘IF-logic’ of imperfect information, as pointed out
in van Benthem [2, Chapter 21]. The latter source also suggests adding even
one more operation to the algebra, namely parallel composition of games.

As before, we should also add sequential composition to the signature of this
algebra. In that case, another suggestive observation can be made. Imperfect
information can play a similar role to our introduction of relational strategies.

Example 8.5. Safety revisited.

Consider the example of failure of safety given in the proof of Fact 7.16, which
blocked compositionality for basic powers with functional strategies. This time,
however, assume that in the duplicated model, there is an uncertainty link
between the two copies of the midlevel point. Now the only admissible strategies
are those that make the same choice at both midlevel points, and accordingly,
the resulting basic powers are the same in both models.

p q

E

A

p q p q

E E

A

Figure 9: Safety revisited

We have not been able to determine precisely to which extent imperfect
information, made explicit in the manner proposed above, can play the same
role in the design of game algebra and dynamic game logic as our move from
functional to relational strategies. Both approaches have their own motivation,
but we leave a deeper comparison of the two as an open problem.
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Finally, we started this section by saying that imperfect information games
are a typical challenge to compositional algebraic thinking because of the ar-
bitrary crossing of uncertainty lines between subtrees, making the notion of a
subgame problematic. The way we got around this was by having algebraic
operations that only introduce epistemic uncertainty in very controlled ways.
We will discuss a few further aspects of this setting in Section 9.1 below.

9 Further directions

In this final section, we collect a few further perspectives on our motivating issue
of natural game equivalences that form a background to what we have done in
this paper. Our discussion will be light, and we mainly raise new questions.

9.1 Equivalence levels and translating logics

We have seen various natural levels for studying games, defined by invariance
notions, and we gave matching logics. The resulting total picture raises ques-
tions. How are the various logics that we considered connected? Can we switch
between levels in a systematic manner, perhaps via translations of logics?

We look at these issues for finite game trees with perfect information. Im-
perfect information will be discussed in Section 9.2. Here is a result from [2].

Fact 9.1. The neighborhood modality 〈g,P〉ϕ for standard powers is definable
in the modal (fixpoint) language of actions by the following equivalence, where
standard modalities ♦, � run over all available moves for the players A and E:

〈g,P〉ϕ ↔ νx. (ϕ ∨ (turnP ∧ ♦x) ∨ (turnP ∧�x))

This logical pattern of alternating existential and universal modalities over
moves is characteristic of many game-theoretic arguments. It follows that stan-
dard powers are invariant for standard modal bisimulations of finite game-trees.

However, with basic powers, this changes: these are not invariant for bisim-
ulation. In fact, interpreting the example shown in Figure 7 of Section 7.2 in a
different way, it shows precisely that. The two games are bisimilar as trees, but
do not have the same basic powers. Stated in terms of our language,

Fact 9.2. The BPL-formula 〈g,E〉(p, q ; p ∨ q) is not invariant for standard
bisimulation, and hence it is not definable in the modal base language of games.

One symptom of this is the impossibility of generalizing the earlier recursion
for neighborhood modalities to the INL-modality with instantial information.
More generally, the second-order quantification over strategies as functions goes
beyond the basic modal language.

However, things change with basic powers based on relational strategies.

Fact 9.3. Relational basic powers are invariant for standard bisimulation.
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Proof. It is easy to see that any two bisimilar game trees can be turned into
isomorphic trees by simply creating sufficiently many copies of the moves of each
player. This construction obviously does not change the relational basic powers
of a game (though it does change the basic powers), and the result follows.

Accordingly, we can provide an explicit definition of the instantial neighbor-
hood modality for relational basic powers in the modal µ-calculus. For the sake
of simplicity, we focus on the case with only a single existential witness formula,
and the relevant equivalence is then as follows:

〈g,P〉(ψ;ϕ) ↔ νx. (ψ ∧ ϕ) ∨ (turnP ∧ ♦x) ∨ (turnP ∧�〈g,P〉ϕ ∧ ♦x))

where we use the definition of the formula 〈g,P〉ϕ from Fact 9.1. The equivalence
stated here follows by an easy inspection of the three relevant cases in game trees.
The reduction is slightly more complex to state with more witness formulas ψ –
as would be needed, e.g., to analyse how the earlier non-bisimulation invariant
formula 〈g,E〉(p, q ; p ∨ q) becomes definable in this new setting. 4

Coda: logics for strategic forms

Finally, we mention one more level of looking at games, the strategic forms that
were linked to basic power analysis in Section 4.2. These matrix games look like
simple games of imperfect information, and this is a valid analogy. Indeed, they
have a simple bimodal logic for one-step simultaneous action where one modality
ranges over choices of a player i (i’s ‘freedom’) and the other over choices of the
other player (that is, i’s uncertainty), cf. [2]. How is this new logic related to
our earlier ones? This issue is more delicate. Points in the strategic form are
strategy profiles, higher-order objects from the perspective of extensive game
trees that cannot be identified with nodes or subtreees. Therefore, we do not
expect simple translations between the logics of extensive games and strategic
form games, and we leave a complete analysis for future study.

9.2 Imperfect information and epistemic logic

From a logical point of view, imperfect information games combine two relations:
actions and uncertainty links. This suggests extending our earlier languages to
a richer bimodal logic that can talk about action, or at a coarser level: powers,
via suitable modalities, say in INL, but that also has an epistemic operator
Kϕ for knowledge. This interplay is important because we can then formulate
non-trivial statements about the interplay of knowledge and action, such as

− KA〈g,E〉ϕ: player A knows E has a power for achieving the truth of ϕ,

− 〈g,A〉KEϕ: player A has a power for making player E know that ϕ.

4Our fixed-point formula also suggests the possible interest of a combined logic of standard
monotonic powers and basic powers.
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Example 9.4. Natural axioms formulated in such a bimodal language express
special properties one can assume about players, such as (in simplified form)

KP〈g,P〉ϕ→ 〈g,P〉KPϕ.

This axiom says essentially that actions that can be perfectly observed do not
increase uncertainty, a version of Perfect Recall for players, cf. [2] for details.
The converse implication also has a clear game-theoretic meaning:

〈g,P〉KPϕ→ KP〈g,P〉ϕ.

This expresses essentially that learning cannot take place spontaneously without
a difference in action, a property of players sometimes called No Miracles.

Combined logics of action and knowledge are well-understood in terms of ex-
pressive power and of computational complexity. In particular, [1] ties Perfect
Recall and No Miracles to a style of play where uncertainty links in a game tree
arise by an update mechanism from dynamic-epistemic logic. Both players can
observe each other’s moves wholly or partially, which creates horizontal uncer-
tainty links only, resulting in a synchronous view of the game. This is precisely
the view of games encoded in our earlier game algebra of {−, ∪, ∪, ∩, ∩}.

We will not pursue this epistemic logic, but it relates to many earlier topics.
For instance, strategies in games of imperfect information are like ‘knowledge
programs’, where players’ choices are guided only by what they know. Also,
issues of definability between levels of representing games get more complicated.

But perhaps the major problem left open here concerns our initial topic of
game equivalence. Suppose we are presented with two extensive games anno-
tated with uncertainty links indicating the information available to players at
various stages of the game. When do we consider these games to be the same?
This is not just a matter of comparing actions or powers, it also depends on
what we assume about the type of players inhabiting these games. Perhaps we
need to refine our earlier intuitions then to equivalence of games “as played”.

9.3 Preference and rationality

As a final topic, we mention one more crucial feature of actual games: players’
preferences. Behavior in games, and social behavior generally, involves a bal-
ance between available actions, knowledge and belief with players’ preferences
between outcomes. A standard game-theoretic solution method showing this
mixture of these crucial agent features at work is the following procedure:

Example 9.5. Backward Induction.

To show the preferences in the games depicted, outcomes have been marked
numerically at the three endpoints y, u, v in the order (value for A, value for E).
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u, (0, 3) v, (2, 2)

y, (1, 0) z,E

x,A

Figure 10: Backward induction

Here, a rational player E will go left at his turn, since he prefers the outcome 3
over the 2 to the right. Then player A, knowing (or believing) this, will go left as
well, as she prefers outcome 1 to 0. Thus, the Backward Induction strategy for
A is “left”, and so is that for E – though the latter strategy never gets played.

Backward Induction has long been a benchmark for logical studies of games,
[2], and there is an extensive theory of this and other solution methods. In par-
ticular, the reasoning leading to the above prediction about the game has been
analyzed in fixed-point logics for relational, rather than functional strategies, a
move similar to that in Section 9.2. The Backward Induction reasoning can also
be captured in a bimodal logic of actions with an added preference modality.

We conclude this preliminary discussion by connecting with our theme of
powers. The above computation can also be seen as a process of “pruning
powers”, more precisely, of intermediate powers in the sense of Section 4.2.

Example 9.6. Backward Induction and powers.

At point z in the game tree of Figure 10, E has powers {u} and {v}. But these
powers stand in a preference relation {u} >E {v} in an obvious sense. We can
lift players’ preference relation to any two sets X,Y as follows:

X >P Y

if all points in X are preferred to all points in Y . There are other ways of lifting
relations on points to relations on sets, but this one suffices for our purposes.

The rationality embodied in the Backward Induction algorithm assumes es-
sentially that “players never play a power for which they have a better one”
in this lifted sense. Continuing in this way along the above reasoning steps, a
subtle change takes place. Player A now needs to compare, not {y} and {u, v},
but {y} and {u}, where {u} is the prediction or a belief about best play further
on. But then, since {x} >A {u}, her best power is {x}.

Thus we must extend our earlier analysis of games in terms of players’ basic
powers to include their best or optimal powers. We do not yet know how to do
this in a satisfying manner, so we leave it as an open problem.

We end with an observation connecting to our earlier concerns.
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Example 9.7. Failure of distribution with preference.

Applying our running example of the propositional distribution law to the pre-
ceding game, yields the new extensive game depicted in Figure 11:

(0, 3) (2, 2)

(1, 0) A
L R

E
L R

(1, 0) (0, 3) (1, 0) (2, 2)

E
L R

E
L R

A
L R

Figure 11: Distribution with preference

Now compare the Backward Induction outcomes for these two games. In the
game to the right, it is given by the bold-face links, and clearly, this is not the
same prediction as for the game on the right.

So, distribution fails for games with preference, but for other reasons than
we had before. The game algebra of games under preference seems a good place
for studying the effects of considering players’ preferences explicitly.5

In all, adding preferences poses a further challenge to our style of analysis.
The issue is not a scarcity of formal preference logics, but one of clarity on the
entanglement of action, belief and preference that drives social behavior. And
at the more technical level of game equivalence, an earlier problem becomes
even more acute. When we call two games equivalent, what type of players do
we have in mind, satisfying what sort of entanglement assumptions?

10 Conclusion

We have defined a new game equivalence in terms of basic powers, and developed
its modal logic and game algebra. In the process, we found analogues of results
for other game equivalences, but also a number of non-trivial new features that
suggest new lines of investigation on logic and games, such as the game algebra
of operations that take on board imperfect information in various ways.

While we consider basic power equivalence well-motivated, there can be yet
further natural game equivalences. As we have noted, the search for mathemat-
ical structure levels in a rich domain is in principle open-ended. In that sense,
this article is a pilot study for more generally useful logical techniques. In ad-
dition, we have also briefly noted, though not explored in depth, a second role
for logic, now more as a guardian of coherence: namely, studying translations
and forms of tracking between different representation levels for games.

5Another source of inspiration for further logical analysis here may be the work on so-called
‘Nash-consistent powers’ in game theory, [21], and in coalition logic, [15].
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Even so, our style of analysis has clear limitations. We considered two-player
games only, and we mainly looked at finite instead of infinite games where the
histories themselves are the output of the game. And we encountered a serious
barrier to power analysis when discussing games with preferences. We do not
see these limitations as definitive, but clearly, much needs to be done before we
can assess the true merits of the logical perspective pursued in this paper.
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A Selected game-theoretical definitions

Definition A.1. Let a tree T over a given set Σ be a non-empty and prefix
closed subset of the set Σ∗ of finite words over the alphabet Σ. In particular
the empty word ε belongs to every tree and is called the root of the tree.

Standard concepts like branches and leaves of trees are defined as usual.
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Definition A.2. An extensive game G for a finite set of players A with outcomes
in the set O is a tuple (T , t, o,Π) where T is a tree over some set Σ, t a map
from non-leaf nodes of T to A, o a map from branches of T to O, and Π a
partition of T subject to the following condition: for any pair w, v within the
same partition cell of Π, we have t(n) = t(n′) and for all i ∈ Σ:

w · i ∈ T iff v · i ∈ T .

If all partition cells of Π are singletons we call G a game of perfect informa-
tion, and we omit Π.

Maximal branches of T will also be called full matches, and prefixes of max-
imal branches are called partial matches.

A strategy for player a ∈ A is a map σ : t−1[a]→ Σ where w ·σ(w) is a child
of w for each w with t(w) = a, and σ(w) = σ(w′) whenever w,w′ are in the
same partition cell in Π. A strategy profile is a tuple (σa)a∈A of one strategy
for each player in A. A strategy profile p determines a unique full match guided
by the strategies of each player, so we can speak of the outcome of the profile p
and denote it by o(p). Generally, we say that a full match m of G is guided by
the strategy σ for a if for every prefix w of m such that t(w) = a, σ(w) is also
a prefix of m. Match(σ) is the set of σ-guided matches.

G(A,O) is the set of games for players A with outcomes in O. For two-player
games we call the players E and A. We set E = A and A = E.

We have not attributed payoffs to matches in a game or preferences over the
outcomes, but rather (and more generally) outcomes from some fixed set. In
this sense we are dealing with game forms rather than proper games.

Definition A.3. Let G = (T , t, o,Π) be a game with outcomes in O. A set
P ⊆ O is a power of player a ∈ A in the game G if there is a strategy σ for a in
G such that o(m) ∈ P for every σ-guided match m. Given a player a ∈ A we
let Pa(G) denote the set of powers of a in G.

Two games G1,G2 ∈ G(A,O) are power equivalent, G1 ∼ G2, if for all a ∈ A:
Pa(G1) = Pa(G2). If Pa(G1) = Pa(G2) for some specific a ∈ A, we write G1 ∼a G2.

B Soundness of principles for basic powers

Proof of Fact 4.1. For Non-Emptiness, pick a player P. By definition of an
extensive game, the set of strategies available to each player is non-empty: in
particular, if t−1[P] = ∅ then the empty function is the unique available strategy
for P. So pick an arbitrary strategy σ for P. Then the set {o(m) | m ∈ Match(σ)}
is a basic power for P.

For Consistency, let P be a basic power for E and Q a basic power for A.
Then there are strategies σ, τ for E,A respectively such that P = {o(m) | m ∈
Match(σ)} and Q = {o(m) | m ∈ Match(τ)}. Hence o(p) ∈ P ∩ Q for the
strategy profile p = (σ, τ).

Finally, for Exhaustiveness, suppose that P is a basic power of Player P and
that x ∈ P . Pick a strategy σ for P such that P = {o(m) | m ∈ Match(σ)}.
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Since x ∈ P , there is a σ-guided match m such that o(m) = x. We define
a strategy τ for Player P as follows: if a position u ∈ t−1[P] belongs to m
then u cannot be an endpoint of he game, since t(u) is defined, and hence,
because m is a full match, there must be some unique child v of u such that
v also belongs to m. Set τ(u) = v. If u ∈ t−1[P] does not belong to m then
define τ(u) arbitrarily. Then m is a τ -guided match, so x = o(m) ∈ Q where
Q = {o(m) | m ∈ Match(τ)}, which is a basic power of P.

C Completeness of dynamic game logic

We denote the axiom system in Section 8.1 by Ax2 and write Ax2 ` ϕ to say
that formula ϕ is provable in this axiom system. We also write ϕ `Ax2 ψ for
Ax2 ` ϕ→ ψ. We sometimes drop the reference to Ax2 to keep notation cleaner.

Proposition C.1 (Soundness). If Ax2 ` ϕ, then ϕ is valid on all neighborhood
models for games with forcing relations as defined earlier.

Proof. We consider only soundness of the reduction axioms. Soundness of the
axiom for dual− is immediate from the forcing definition for game dual reversing
the roles of the players: in fact, the axiom encodes that definition. The same
is true for the initial choice operation [[∪]] whose axiom is immediate from the
game construction. For the dual construction [[∩]], we reason as follows.

Suppose that M, w 
 〈π1 ∩ π2〉(Ψ;ϕ). Then there is some set Z such that
(w,Z) ∈ Rπ1∩π2

, Z ⊆ [[ϕ]] and Z ∩ [[ψ]] 6= ∅ for all ψ ∈ Ψ. Hence Z is of the form
Z1 ∪Z2 where (w,Z1) ∈ Rπ1

and (w,Z2) ∈ Rπ2
. Let Θ1 = {ψ ∈ Ψ | Z1 ∩ [[ψ]] 6=

∅}, and let Θ2 = {ψ ∈ Ψ | Z2 ∩ [[ψ]] 6= ∅}. Then, since Z = Z1 ∪ Z1, we have
Ψ = Θ1 ∪Θ2. Furthermore, we get

M, w 
 〈π1〉(Θ1;ϕ) ∧ 〈π2〉(Θ2;ϕ)

as required. The converse direction is proved in a similar manner.
Next, we consider sequential composition. For one direction of the equiv-

alence, suppose that M, w 
 〈π1;π2〉(ψ1, ..., ψn;ϕ). Then there is some set Z
with (w,Z) ∈ R〈π1;π2〉, Z ⊆ [[ϕ]] and Z ∩ [[ψi]] 6= ∅ for each ψi. By definition
of the composition operator, we find a set Y with (w, Y ) ∈ Rπ1 and a family
of sets F such that (Y, F ) ∈ Rπ2 and Z =

⋃
F . So for each v ∈ Y there

is some Sv ∈ F with (v, Sv) ∈ Rπ2
, and we get Sv ⊆ [[ϕ]] so M, v 
 〈π2〉ϕ.

Also, for each ψi there is some Si ∈ F with Si ∩ [[ψi]] 6= ∅, and there must
be some v ∈ Y with (v, Si) ∈ Rπ2

, hence M, v 
 〈π2〉(ψi;ϕ). It follows that
M, w 
 〈π1〉(〈π2〉(ψ1;ϕ), ..., 〈π2〉(ψn;ϕ); 〈π2〉ϕ) as required.

Conversely, suppose that M, w 
 〈π1〉(〈π2〉(ψ1;ϕ), ..., 〈π2〉(ψn;ϕ); 〈π2〉ϕ).
Then there exists some set Y such that (w, Y ) ∈ Rπ1

, Y ⊆ [[〈π2〉ϕ]] and
Y ∩ [[〈π2〉(ψi;ϕ)]] 6= ∅ for each i ∈ {1, ..., n}. Let:

F := {Z ⊆W | Z ⊆ [[ϕ]] & (v, Z) ∈ Rπ2
for some v ∈ Y }

Since Y ⊆ [[〈π2〉ϕ]], we get (Y, F ) ∈ R̃π2
, so (w,

⋃
F ) ∈ Rπ1;π2

. Furthermore,
since Y ∩ [[〈π2〉(ψi;ϕ)]] 6= ∅ for each i ∈ {1, ..., n}, it follows that

⋃
F ∩ [[ψi]] 6= ∅

for each i ∈ {1, ..., n}. Hence M, w 
 〈π1;π2〉(ψ1, ..., ψn;ϕ) as required.
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Next, by applying the sound reduction axioms, a standard argument shows
that, for every consistent formula ϕ of DPL there is a provably equivalent equiv-
alent formula ϕt in INL, which is then satisfiable by Theorem 6.1.

The preceding argument establishes the following result.

Theorem C.2 (Completeness). A formula ϕ of DPL is valid on all neighborhood
models iff Ax2 ` ϕ.

Also, the finite model property and decidability carry over from INL:

Theorem C.3. The logic DPL has the finite model property and is decidable.

This simple completeness argument no longer works with iteration, cf. [3].
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