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Abstract

We present a method for using standard techniques from satisfiability checking to auto-
matically verify and discover theorems in an area of economic theory known as ranking
sets of objects. The key question in this area, which has important applications in social
choice theory and decision making under uncertainty, is how to extend an agent’s prefer-
ences over a number of objects to a preference relation over nonempty sets of such objects.
Certain combinations of seemingly natural principles for this kind of preference extension
can result in logical inconsistencies, which has led to a number of important impossibility
theorems. We first prove a general result that shows that for a wide range of such prin-
ciples, characterised by their syntactic form when expressed in a many-sorted first-order
logic, any impossibility exhibited at a fixed (small) domain size will necessarily extend to
the general case. We then show how to formulate candidates for impossibility theorems at
a fixed domain size in propositional logic, which in turn enables us to automatically search
for (general) impossibility theorems using a SAT solver. When applied to a space of 20
principles for preference extension familiar from the literature, this method yields a total
of 84 impossibility theorems, including both known and nontrivial new results.

1. Introduction

The area of economic theory known as ranking sets of objects (Barberà, Bossert, & Pat-
tanaik, 2004; Kannai & Peleg, 1984) addresses the question of how to extend a preference re-
lation defined over certain individual objects to a preference relation defined over nonempty
sets of those objects. This question has important applications. For instance, if an agent
is uncertain about the effects of two alternative actions, she may want to rank the relative
desirability of the two sets of possible outcomes corresponding to the two actions. In the
absence of a probability distribution over possible outcomes, the principles and methods
developed in the literature on ranking sets of objects can guide this kind of decision mak-
ing under (“complete”) uncertainty (e.g., see Gravel, Marchant, & Sen, 2008; Ben Larbi,
Konieczny, & Marquis, 2010). A second example for applications is voting theory. When
we want to analyse the incentives of a voter to manipulate an election, i.e., to obtain a
better election outcome for herself by misrepresenting her true preferences on the ballot
sheet, we need to be able to reason about her preferences in case that election will produce
a tie and return a set of winners (e.g., see Gärdenfors, 1976; Duggan & Schwartz, 2000;
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Taylor, 2002). In both scenarios, decision making under uncertainty and the manipulation
of elections with sets of tied winners, agents are assumed to have preferences over simple
“objects” (states of the world, election outcomes) which they then need to extend to sets
of such objects to be able to use these extended preferences to guide their decisions.

One line of research has applied the axiomatic method, as practised in particular in social
choice theory (Gaertner, 2009), to the problem of ranking sets of objects and formulated
certain principles for extending preferences to set preferences as axioms. For instance, the
dominance axiom states that you should prefer set A ∪ {x} to set A whenever you prefer
the individual object x to any element in A (and A to A ∪ {x} in case x is worse than any
element in A); and the independence axiom states that if you prefer set A to set B, then
that preference should not get inverted when we add a new object x to both sets. Against
all intuition, Kannai and Peleg (1984) have shown that, for any domain with at least six
objects, it is impossible to rank sets of objects in a manner that satisfies both dominance
and independence. This is the original and seminal result in the field, and since 1984 a
small number of additional impossibility theorems have been established.

In this paper we develop a method to automatically search for impossibility theorems
like the Kannai-Peleg Theorem, to enable us to both verify the correctness of known results
and to discover new ones. There are a number of reasons why this is useful. First, the
ability to discover new theorems is clearly useful whenever those theorems are (potentially)
interesting. But also the verification of known results has its merits: verification can increase
our confidence in the correctness of a result (the manual proof of which may be tedious and
prone to errors); verification forces us to fully formalise the problem domain, which will
often result in a deeper understanding of its subtleties; and verification of theorems in new
fields (here the social and economic sciences) can help advance the discipline of automated
reasoning itself by providing new test cases and challenges.

This is not the first time that techniques from logic and automated reasoning have been
applied to modelling and verifying results from economic theory. Here we briefly review a
number of recent contributions applying such tools to social choice theory, which is closely
related to the problem domain we focus on in this paper. A lot of this work has concentrated
on Arrow’s Theorem, which establishes the impossibility of aggregating preferences of a
group of agents in a manner that satisfies certain seemingly natural principles (Arrow, 1963;
Gaertner, 2009). Ågotnes, van der Hoek, and Wooldridge (2010), for instance, introduce
a modal logic for modelling preferences and their aggregation, while Grandi and Endriss
(2009) show that Arrow’s Theorem is equivalent to the statement that a certain set of
sentences in classical first-order logic does not possess a finite model.

Besides formally modelling the problem domain and the theorem, there have also been
a number of attempts to automatically re-prove Arrow’s Theorem. One approach has been
to encode the individual steps of known proofs into higher-order logic and to then verify
the correctness of these proofs with a proof checker. Examples for this line of work are
the contributions of Wiedijk (2007), who has formalised a proof of Arrow’s Theorem in the
Mizar proof checker, and that of Nipkow (2009), who did the same using the Isabelle
system. A particularly interesting approach is due to Tang and Lin (2009). These authors
first prove two lemmas that reduce the general claim of Arrow’s Theorem to a statement
pertaining to the special case of just two agents and three alternatives. They then show
that this statement can be equivalently modelled as a (large) set of clauses in propositional
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logic. The inconsistency of this set of clauses can be verified using a SAT solver, which
in turn (together with the lemmas) proves the full theorem. Tang and Lin have been able
to extend their method to the verification of a number of other results in social choice
theory and they have also shown that their method can serve as a useful tool to support the
(semi-automatic) testing of hypotheses during the search for new results (Tang & Lin, 2009;
Tang, 2010).1 All of these contributions neatly fit under the broad heading of computational
social choice, the discipline concerned with the study of the computational aspects of social
choice, the application of computational techniques to problems in social choice theory, and
the integration of methods from social choice theory into AI and other areas of computer
science (Chevaleyre, Endriss, Lang, & Maudet, 2007).

Our starting point for developing a method for automatically proving impossibility the-
orems in the area of ranking sets of objects has been the work of Tang and Lin (2009). We
have adapted and extended their approach as follows. Rather than proving a new lemma
reducing a general impossibility to an impossibility in a small domain for each and every
theorem that we want to verify, our first contribution is a broadly applicable result, the
Preservation Theorem, which entails that for any combinations of axioms satisfying certain
syntactic conditions, any impossibility that can be established for a domain of (small) fixed
size n will unravel into a full impossibility theorem for all domains of size ≥ n. To be able
to formulate this result, we introduce a many-sorted first-order logic for expressing axioms
relating preferences over individual objects to preferences over sets of objects. We were
able to express most axioms from the literature in this language, which facilitates a fully
automated search for impossibility theorems within the space of these axioms.

We then show how impossibility theorems regarding the extension of preferences can be
modelled in propositional logic, provided the size of the domain is fixed. Given the Preser-
vation Theorem, any inconsistency found with the help of a SAT solver now immediately
corresponds to a general impossibility theorem. We have implemented this kind of auto-
mated theorem search as a scheduling algorithm that exhaustively searches the space of all
potential impossibility theorems for a given set of axioms and a given critical domain size n.
Together with a number of heuristics for pruning the search space, this approach represents
a practical method for verifying existing and discovering new impossibility theorems.

Finally, we have applied our method to a search space defined by 20 of the most im-
portant preference extension axioms from the literature, and we have exhaustively searched
this space (of around one million possible combinations) for domains of up to eight objects.
This search has resulted in 84 (minimal) impossibility theorems. Each theorem states, for a
particular n ≤ 8 and a particular set of axioms ∆, that there exists no preference ordering
over nonempty sets of objects that satisfies all the axioms in ∆ when there are n or more
objects in the domain. These 84 theorems are minimal in the sense that no strict subset of
∆ would still result in an impossibility (at the given domain size n) and in the sense that
all the axioms in ∆ can be satisfied for any domain with fewer than n objects.

The 84 impossibility theorems found include known results (such as the Kannai-Peleg
Theorem), simple consequences of known results, as well as new and nontrivial theorems
that constitute relevant contributions to the literature on ranking sets of objects. One of
these is the impossibility of combining independence and a weakened form of dominance

1. See the work of Lin (2007) for an outline of their general methodology as well as several examples for
applications in domains other than social choice theory.
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with two axioms known as simple uncertainty aversion and simple top monotonicity (see
Appendix A). This is particularly interesting, because (in the context of a characterisation
of a particular type of set preference orders) this very same set of axioms had previously
been claimed to be consistent (Bossert, Pattanaik, & Xu, 2000). This has later been found
to be a mistake, which has been corrected by Arlegi (2003), but even his work does not es-
tablish the actual impossibility theorem. This certainly demonstrates the nontrivial nature
of the problem. Other interesting theorems discovered by our method include variants of
the Kannai-Peleg Theorem involving weakened versions of the independence axiom, impos-
sibility theorems that do not rely on the dominance axiom (which is an integral component
of most other results in the field), and impossibility theorems for which the critical domain
size n is different from those featuring in any of the known results in the literature.

The remainder of the paper is organised as follows. Section 2 introduces the formal
framework of ranking sets of objects and recalls the seminal result in the field, the Kannai-
Peleg Theorem. In Section 3 we prove our Preservation Theorem, which allows us to reduce
general impossibilities to small instances. Section 4 then shows how to model those small
instance as sets of clauses in propositional logic. Building on these insights, Section 5
finally presents our method to automatically search for impossibility theorems, as well as
the 84 impossibility theorems we have been able to obtain using this method. Section 6
concludes with a brief summary and a discussion of possible directions for future work.
Appendix A provides a list of the 20 axioms used in our automated theorem search. The
reader can find additional detail, regarding both the method and the impossibility theorems
discovered, in the Master’s thesis of the first author (Geist, 2010).

2. Ranking Sets of Objects

Ranking sets of objects deals with the question of how an agent should rank sets of objects,
given her preferences over individual objects. Answers to this question will depend on the
concrete interpretation assigned to sets (Barberà et al., 2004):

• Complete uncertainty. Under this interpretation, sets are considered as containing
mutually exclusive alternatives from which the final outcome is selected at a later
stage, but the agent does not have any influence on the selection procedure.

• Opportunity sets. Here, again, sets contain mutually exclusive alternatives, but this
time the agent can pick a final outcome from the set herself.

• Sets as final outcomes. In this setting, sets contain compatible objects that are as-
sumed to materialise simultaneously (i.e., the agent will receive all of them together).

Suppose an agent prefers object x over object y. Then under the first interpretation
it is reasonable to assume that she will rank {x} (receiving x with certainty) over {x, y}
(receiving either x or y). Under the second interpretation she might be indifferent between
{x} and {x, y}, as she can simply pick x from the latter set. Under the third interpretation,
finally, she might prefer {x, y}, as this will give her y on top of x. In this paper, we will focus
on the idea of complete uncertainty, which is the most studied of the three. An important
application of this interpretation is voting theory: when we want to analyse whether a voter
has an incentive to manipulate an election we often have to reason about her preferences
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between alternative outcomes, each producing a set of tied winning candidates (Gärdenfors,
1976; Duggan & Schwartz, 2000; Taylor, 2002).

Next, we introduce the notation and mathematical framework usually employed to treat
problems in the field of ranking sets of objects (e.g., see Barberà et al., 2004), and we then
present the aforementioned Kannai-Peleg Theorem in some detail (Kannai & Peleg, 1984).

2.1 Formal Framework

Let X be a (usually finite) set of alternatives (or objects), on which a (preference) order ≥̇
is defined. The order ≥̇ is assumed to be linear, i.e., it is a reflexive, complete, transitive
and antisymmetric binary relation. We denote the strict component of ≥̇ by >̇, i.e., x >̇ y
if x ≥̇ y and y �̇ x. The interpretation of ≥̇ will be such that x ≥̇ y if and only if x is
considered at least as good as y by the decision maker.

Similarly, we have a binary relation � on the set of nonempty subsets of X (denoted by
X := 2X\{∅}). This relation will for now be assumed to be a weak order (reflexive, complete,
transitive); later on, however, our proof method will allow to explore weaker assumptions
regarding �, too. Like above, we use � for the strict component of �. Additionally, we
also define an indifference relation ∼ by setting A ∼ B if and only if A � B and B � A.

For any A ∈ X we write max(A) for the maximal element in A with respect to ≥̇ and
min(A) for the minimal element in A with respect to ≥̇.

2.2 The Kannai-Peleg Theorem

Kannai and Peleg (1984) were probably the first to treat the specific problem of extending
preferences from elements to subsets as a problem in its own right and in an axiomatic
fashion. In previous work, other authors had regarded this problem as more of a side issue
of other problems, particularly in the analysis of the manipulation of elections (e.g., see
Fishburn, 1972; Gärdenfors, 1976), or had merely axiomatised specific methods of extension
without considering the general problem (e.g., see Packard, 1979).

The Kannai-Peleg Theorem makes use of two axioms, both of which are very plausible
under the interpretation of complete uncertainty. First, there is the Gärdenfors principle
(Gärdenfors, 1976, 1979), also known as dominance. This principle consists of two parts
and it requires that

(1) adding an element, that is strictly better (>̇) than all the elements in a given set, to
that given set produces a strictly better set with respect to the order �,

(2) adding an element, that is strictly worse (<̇) than all the elements in a given set, to
that given set produces a strictly worse set with respect to the order �.

Formally, the Gärdenfors principle (GF) can be written as the following two axioms:

(GF1) ((∀a ∈ A)x >̇ a) ⇒ A ∪ {x} � A for all x ∈ X and A ∈ X ,
(GF2) ((∀a ∈ A)x <̇ a) ⇒ A ∪ {x} ≺ A for all x ∈ X and A ∈ X .

Second, we have a monotonicity principle called independence, which states that, if a
set is strictly better than another one, then adding the same alternative (which was not
contained in either of the sets before) to both sets simultaneously does not reverse this strict
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order. An equivalent way of stating this (in the light of the completeness of the order) is to
require that at least a non-strict preference remains of the original strict preference (such
that � becomes �). The formal statement reads as follows:

(IND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B).

Before we get to the main theorem, we present a lemma, also due to Kannai and Peleg
(1984). It says that only very specific rankings can satisfy the conditions (GF) and (IND).

Lemma 1. If � satisfies the Gärdenfors principle (GF) and independence (IND), then A ∼
{max(A),min(A)} for all A ∈ X .

Proof. Let A be a nonempty subset of X. If |A| ≤ 2 then the lemma holds trivially
by reflexivity of � since then A = {max(A),min(A)}. So suppose |A| ≥ 3 and define
A− := A\max(A). Note that, because |A| ≥ 3, the set A− is nonempty and thus {min(A)} =
{min(A−)}. By a repeated application of (GF1) we get {min(A)} = {min(A−)} ≺ A−. We
can then add max(A) to both sides, showing that {min(A),max(A)} � A by (IND). In a
completely analogous way we get {min(A),max(A)} � A+ ∪{min(A)} = A from (GF2) and
(IND), where A+ := A \min(A).

That is, Lemma 1 shows that the ranking of subsets is completely determined by their
worst and best elements. We are now ready to state and prove the theorem.

Theorem 1 (Kannai and Peleg, 1984). Let X be a linearly ordered set with |X| ≥ 6. Then
there exists no weak order � on X satisfying the Gärdenfors principle (GF) and indepen-
dence (IND).

Proof. Let xi, i ∈ {1, 2, . . . , 6} denote six distinct elements of X such that they are ordered
by >̇ with respect to their index, i.e., x1 >̇ x2 >̇ x3 >̇ x4 >̇ x5 >̇ x6. By way of contra-
diction, suppose there exists a weak order � on X satisfying the Gärdenfors principle (GF)
and independence (IND). We first claim that then

{x2, x5} � {x3}. (1)

In order to prove this claim, suppose that the contrary is the case, which by completeness
of � is {x3} � {x2, x5}. We can then, by (IND), include x6, which yields {x3, x6} �
{x2, x5, x6}. Note now that together with Lemma 1 (and transitivity) this implies

{x3, x4, x5, x6} � {x2, x3, x4, x5, x6},

contradicting (GF1). Thus, claim (1) must be true and it follows from {x3} � {x3, x4} �
{x4} (which is a consequence of the Gärdenfors principle) together with transitivity that
{x2, x5} � {x4}. Using (IND) again, we can add (the so far unused) x1 and get {x1, x2, x5} �
{x1, x4}. As before, we again fill in the intermediate elements to both sets and obtain,
by Lemma 1 and transitivity, that {x1, x2, x3, x4, x5} � {x1, x2, x3, x4}, which this time
contradicts (GF2).
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Put differently, the Kannai-Peleg Theorem says that the Gärdenfors principle (GF) and
independence (IND) are inconsistent for a domain of six or more elements. Thus, there is
no way of extending a linear order on a set of at least six objects to a weak order on the
collection of all nonempty sets of these objects. This is why the Kannai-Peleg Theorem is
also referred to as an impossibility theorem.

Many more axioms are discussed in the literature and we are aware of two more im-
possibility theorems regarding choice under complete uncertainty (Barberà et al., 2004). A
selection of 20 of the most important axioms can be found in Appendix A.

3. Reduction of Impossibilities to Small Instances

While the Kannai-Peleg Theorem applies to any set X with at least six elements, the
proof we have given (which closely follows the original proof of Kannai and Peleg) works
by exhibiting the case with exactly six elements. The fact that the impossibility theorem
applies to larger domains as well is very clear in this particular case. Our goal in this
section is to prove that this approach can be elevated to a general proof technique: to
prove a general impossibility theorem it is sufficient to establish impossibilities for a small
instance. Specifically, we will prove what we call the Preservation Theorem, which says that
certain axioms are preserved in specific substructures. A corollary to this theorem then is
a universal reduction step, which says that the non-existence of a satisfying relation on a
small domain shows that no larger satisfying relation can exist either.2

We will work in the framework of mathematical logic in order to have access to the syn-
tactic as well as semantic features of axioms. In Section 3.1, we first describe a many-sorted
language for our specific problem of ranking sets of objects, before we apply techniques from
model theory to prove the Preservation Theorem, in Section 3.2, which has the universal
reduction step as a corollary. This universal step is then powerful enough to cater for all
the axioms from the literature that we were able to formalise in our language, including all
of those listed in Appendix A.

3.1 Many-Sorted Logic for Set Preferences

A natural and well-understood language for our problem domain is many-sorted (first-order)
logic, which has, compared to first-order logic, more and different quantifiers (allowing for
quantification over different domains containing the elements of a respective sort), but is
still reducible to first-order logic. Apart from the quantifiers, many-sorted logic is practi-
cally equivalent to first-order logic and thus many results (e.g., soundness, completeness,
compactness, Löwenheim-Skolem properties, etc.) can be transferred from first-order logic
or can be directly proven (Manzano, 1996; Enderton, 1972).

Many-sorted logic is characterised by the use of a set S of different sorts s ∈ S. A
structure (or model) A for many-sorted logic is just like one for first-order logic, but with

2. The universal reduction step plays a similar role as the inductive lemmas of Tang and Lin (2009) play
in their work on a computer-aided proof of Arrow’s Theorem and other theorems in social choice theory.
An important difference is that for the domain of ranking sets of objects we are able to prove a single
such result, which allows us to perform reductions for a wide range of problems, while Tang and Lin had
to prove new (albeit similar) lemmas for every new result tackled.
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separate domains doms(A) for each sort s ∈ S instead of one single domain. We then have
corresponding quantifiers ∀s and ∃s for each sort s, equipped with the intuitive semantics:

• A |= ∀sxϕ(x) if and only if A |= ϕ(a) for all a ∈ doms(A),

• A |= ∃sxϕ(x) if and only if A |= ϕ(a) for some a ∈ doms(A).

Other than that, many-sorted logic is analogous to first-order logic with the slight differ-
ence of having separate variable, function, and relation symbols for the different sorts or
combinations of sorts.

In our case, we will have two sorts (S = {ε, σ}): elements (ε) and sets (σ). We further
demand that there is a relation ∈ of type 〈ε, σ〉 as well as two relations ≥̇ and � of type
〈ε, ε〉 and 〈σ, σ〉, respectively. These will then later be interpreted as the usual membership
relation and our linear and weak orders, respectively. But one can have many more relations
and functions in the signature, and we will use the following time and again:

• Relations:

– ⊆, type 〈σ, σ〉 (intuitively: set inclusion)

– disjoint, type 〈σ, σ〉 (intuitively: true iff sets are disjoint)

– evencard, type 〈σ〉 (intuitively: true iff the cardinality of a set is even)

– equalcard, type 〈σ, σ〉 (intuitively: true if sets have the same cardinality)

• Functions:

– ∪, type 〈σ, σ, σ〉 (intuitively: set union)

– {·}, type 〈ε, σ〉 (intuitively: transforms an element into the singleton set)

– replaceInBy, type 〈ε, σ, ε〉 (intuitively: replace an element in a set by another
element; e.g., (A \ {a}) ∪ {b})

We call this language of many-sorted logic (with the two sorts ε and σ and the signature
containing exactly the above relations and functions) MSLSP (Many-Sorted Logic for Set
Preferences). Notation-wise we will sometimes use (the more common) infix notation for
certain relations and functions. We will for instance write A ∪ B, a ∈ A, A ⊆ B and
{x} instead of ∪(A,B), ∈ (a,A), ⊆ (A,B) and {·}(x), respectively. Furthermore, we will
sometimes use negated symbols like x /∈ A for ¬(x ∈ A) as well as the strict relation symbols
A � B and x >̇ y when we mean A � B ∧ ¬(B � A) and x ≥̇ y ∧ ¬(y ≥̇ x), respectively.
Generally, we will use the (standard model-theoretic) notation of Hodges (1997).

MSLSP is expressive enough to formulate many axioms in the literature (including the
20 axioms of Appendix A) and as an example we give the representations of the principle
of independence and the Gärdenfors principle (see Section 2.2):

Example 1. (IND) can be formulated in MSLSP:

∀σA∀σB∀εx [(x /∈ (A ∪B) ∧A � B) → A ∪ {x} � B ∪ {x}]
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Example 2. (GF) can be formulated in MSLSP:

∀σA∀εx [(∀εa(a ∈ A→ x >̇ a)) → A ∪ {x} � A]
∀σA∀εx [(∀εa(a ∈ A→ a >̇ x)) → A � A ∪ {x}]

Some axioms, however, do not have such straightforward representations in MSLSP.
The concept of weak preference dominance, proposed (in a slightly stronger form) by Sen
(1991), is an example of such an axiom:

(WPD) [(|A| = |B| and there exists a bijective function ϕ : A→ B such that

a ≥̇ ϕ(a) for all a ∈ A
)
⇒ A � B

]
for any two sets A,B ∈ X .

Even though there is no obvious way to express this axiom in MSLSP, Puppe (1995)
showed that (WPD) is actually equivalent to an axiom much closer to our formalism, which
he calls preference-basedness and which is easily seen to be expressible in MSLSP.3

(PB)
[
b ≥̇ a⇒ (A \ {a}) ∪ {b} � A

]
for all A ∈ X , a ∈ A, b /∈ A,

It might, however, be the case that some axioms are not expressible in MSLSP at all. We
have, for instance, not been able to translate the axiom of neutrality (Nitzan & Pattanaik,
1984; Pattanaik & Peleg, 1984), which says that the manner in which the ranking is lifted
from objects to sets of objects does not depend on the names of the objects. This axiom
is usually defined in terms of a function ϕ from objects to objects and postulates that
whenever ≥̇ is invariant under ϕ, then so is �.

(NEU)
[[(
x ≥̇ y ⇐⇒ ϕ(x) ≥̇ ϕ(y) and y ≥̇ x ⇐⇒ ϕ(y) ≥̇ ϕ(x)

)
for all x ∈ A, y ∈ B] ⇒

[A � B ⇐⇒ ϕ(A) � ϕ(B) and B � A ⇐⇒ ϕ(B) � ϕ(A)]
for any two sets A,B ∈ X and any injective mapping ϕ : A ∪B → X.

3.2 Preservation Theorem and Universal Reduction Step

The famous  Loś-Tarski Theorem of classical model theory offers a weak version of the result
we are going to prove.4 It does, however, not cover certain axioms and therefore we have
to find a stronger result than what classical model theory can offer. The idea is to be able
to preserve a larger class of axioms by making use of our problem-specific features: like,
for instance, the element-set framework. Thus, we define the concepts of a structure for set
preferences as well as subset-consistent substructures:

Definition 1. An MSLSP-structure B is a structure for set preferences if it fulfils the
following criteria:

3. ∀σA∀εa∀εb
ˆ`

a ∈ A ∧ b /∈ A ∧ b ≥̇ a
´
→ replaceInBy(a, A, b) � A

˜
4. The exact statement of the theorem (for first-order logic) can, for example, be found in Hodges’ book

(1997) as Corollary 2.4.2 and the proof idea is relatively simple: by contradiction it suffices to show that
∃1-formulas are preserved by embeddings (Hodges, 1997, Thm 2.4.1). The proof of the latter proceeds
by induction on the complexity of the formula and the critical case of the existential quantifier does not
cause any trouble as witnesses are not “lost” when moving to a larger structure.
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1. domσ(B) ⊆ 2domε(B), i.e., the domain of sort σ contains only sets of elements from
the domain of sort ε.

2. The relation symbol ∈ of type 〈ε, σ〉 is interpreted in its natural way.

If a substructure A of a structure for set preferences B is a structure for set preferences,
too, then it is called a subset-consistent substructure.

Note that in a substructure A of a structure for set preferences B we have

∈A=∈B |dom(A),

i.e., the symbol ∈ must be interpreted as the restriction of its interpretation in B. Hence,
it is sufficient to fulfill the first condition for being a subset-consistent substructure of B.

These two semantic conditions suffice for extending the  Loś-Tarski Theorem to a larger
class of axioms. But what are the axioms that we can now treat? Let us look at the
following (purely syntactic) definition first and then explain our reasons for choosing this
particular class.

Definition 2. The class of existentially set-guarded (ESG) formulas is the smallest class of
MSLSP-formulas recursively defined as follows:

• all quantifier-free formulas are ESG,

• if ψ(x̄) and ψ′(x̄) are ESG, then ϕ(x̄) := (ψ ∧ ψ′)(x̄) as well as ϕ′(x̄) := (ψ ∨ ψ′)(x̄)
are ESG,

• if ψ(y, x̄) is ESG, then ϕ(x̄) := ∀syψ(y, x̄) is ESG for any sort s ∈ {ε, σ},

• if ψ(y, x̄) is ESG, then ϕ(x̄) := ∃εy(y ∈ t(x̄)∧ψ(y, x̄)), where t is a term of sort σ and
y does not occur in x̄, is ESG.

The atomic formulas y ∈ t(x̄) of the last condition are called the set-guards of the respective
quantifiers.

The class of ESG formulas consists of all MSLSP-formulas that only contain set-guarded
existential quantifiers ∃ε of sort ε, and no existential quantifiers ∃σ of sort σ at all.

Note that when we write ϕ(x̄), we do not necessarily mean that ϕ contains all the
variables in the sequence x̄ = (x0, x1, x2, . . . ), but just that all (free) variables of ϕ are
among those in x̄. We will also use the notation ϕ[ā], with ā being a sequence of elements,
which will mean that the elements a0, a1, a2, . . . are assigned to the variables x0, x1, x2, . . . .

Intuitively, we will do the following: in axioms we allow existential quantifiers (but only
for elements, i.e., of sort ε) as long as they are “guarded” by sub-formulas saying that the
respective witness belongs to some set. The sets can also be unions of sets or formed in a
different way by the term t. The important part is that when moving from a structure to a
substructure this set-guard now guarantees that the witness of the existential quantifier is
not lost. This is because the witness has to be within a set (as required by the set-guard)
that will be situated in the substructure.

Before we explain this further and give the formal proof of this claim, let us look at
examples of ESG and non-ESG sentences:
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Example 3. The axiom (GF1) (and similarly (GF2)) is an ESG sentence:

x ≯̇ a (quantifier-free)

∃εa(a ∈ A ∧ x ≯̇ a) (adding ∃ε)

∃εa(a ∈ A ∧ x ≯̇ a) ∨A ∪ {x} � A (∨ with quantifier-free)

∀σA∀εx[∃εa(a ∈ A ∧ x ≯̇ a) ∨A ∪ {x} � A] (adding ∀s).

Considering the last line of the above example, one can understand why removing el-
ements from X does not affect this axiom. For universal quantifiers a restriction of the
domain is no problem anyway. But also the existential witness is not lost: if we suppose it
had been removed for some set A, then so would have been the set A itself, as the σ-domain
can only contain sets of elements from the ε-domain (by Definition 1). But with A removed
there is no need for a witness anymore.

That one cannot just allow arbitrary existential quantifiers without set-guards can be
seen when considering the following example, which shows a very simple sentence (with
unguarded existential quantifiers) that is not preserved in substructures.

Example 4. The MSLSP-sentence (axiom)

∃εx∃εy∃εz [x 6= y ∧ x 6= z ∧ y 6= z] ,

which says that there are at least three distinct elements in the ε-domain of a structure
for set preferences, is clearly not preserved in substructures: it holds in all structures for
set preferences B with at least three elements in domε(B), but fails to hold in any of its
substructures A with less than three elements in domε(A).

After these examples the reader should have developed some understanding of why ESG
sentences are preserved in substructures and why we cannot allow much more. The formal
proof of our Preservation Theorem will explain the first part further.

Note that, apart from the case of the existential quantifier, the proof is essentially
identical to one direction of the proof of the  Loś-Tarski Theorem for many-sorted logic,
which can be carried out on model-theoretic grounds alone. It is just the last part of this
proof (the induction step for the existential quantifier) that requires the syntactic restriction
(to ESG sentences) as well as the semantic restriction (to subset-consistent substructures),
the latter of which we can allow because of our particular problem domain.

Theorem 2 (Preservation Theorem). ESG sentences are preserved in subset-consistent
substructures, i.e., if A is a subset-consistent substructure of a structure for set preferences
B then B |= ϕ implies A |= ϕ for any ESG sentence ϕ.

Proof. We prove a stronger statement for ESG formulas (instead of sentences) by induction
on the complexity of the formula:

If A is a subset-consistent substructure of a structure for set preferences B then
B |= ϕ[ā] implies A |= ϕ[ā] for any ESG formula ϕ(x̄) and any tuple ā of
elements from dom(A) (matching the types of x̄).

153



Geist & Endriss

So let B be a structure for set preferences with a subset-consistent substructure A, let ϕ(x̄)
be an ESG formula and, furthermore, let ā be a tuple of elements from dom(A) (matching
the types of x̄).

Quantifier-free Formulas: If ϕ(x̄) is quantifier-free, a routine but tedious proof leads to
the desired results. One has to carry out a few nested inductions on the complexity of terms
and formulas, and examples of such proofs can be found in any textbook on Model Theory
(e.g., see Hodges, 1997, Theorem 1.3.1). First, one shows by one induction that terms are
interpreted in the substructure A as they are interpreted in its superstructure B, i.e.,

tA[ā] = tB[ā] (2)

for all terms t(x̄). This practically immediately follows from the definition of a substructure.
Then one proceeds by another induction proving that atomic formulas hold in A if and

only if they hold in B, i.e.,
A |= ψ[ā] ⇐⇒ B |= ψ[ā] (3)

for all atomic formulas ψ(x̄). As a typical example, suppose that ϕ(x̄) is of the form
R(s(x̄), t(x̄)), where R is a relation symbol and s(x̄) as well as t(x̄) are terms (matching
the type of R). Assume A |= R(s[ā], t[ā]), i.e., it holds that RA(sA[ā], tA[ā]). By (2) this
is equivalent to RA(sB[ā], tB[ā]). Since furthermore RA = RB|dom(A), we even have an
equivalence with RB(sB[ā], tB[ā]), which is just another way of saying B |= R(s[ā], t[ā]).

Finally, one proves the claim for any quantifier-free formula by carrying out induction
steps for conjunction ∧, disjunction ∨ and negation ¬. Note that the step for ¬ is why we
required both directions in (3).

Conjunction and Disjunction: We only show the part for conjunction here; the one for
disjunction is completely analogous. If ϕ(x̄) is of the form ψ(x̄) ∧ ψ′(x̄) and furthermore
B |= ϕ[ā], then both ψ[ā] and ψ′[ā] must be true in B. By the induction hypothesis, this
carries over to A and we get A |= ψ[ā] ∧ ψ′[ā].

Universal Quantification: If ϕ(x̄) is of the form ∀syψ(y, x̄) with sort s ∈ {σ, ε} and
furthermore B |= ϕ[ā], then for all b of sort s in doms(B) we have that B |= ψ(b, ā). Since
doms(A) ⊆ doms(B) we can use the induction hypothesis and obtain A |= ψ(b, ā) for any
b ∈ doms(A). This is the same as saying A |= ∀syψ(y, ā), i.e., A |= ϕ[ā].

Existential Quantification: If ϕ(x̄) is of the form ∃εy[y ∈ t(x̄)∧ ψ(y, x̄)], where t(x̄) is a
term of sort σ and y does not occur in x̄, and furthermore B |= ϕ[ā], then there must exist
an element b in domε(B) such that

B |= (y ∈ t(x̄) ∧ ψ(y, x̄)) [b, ā], i.e., B |= y ∈ t(x̄)[b, ā] and B |= ψ[b, ā].

Hence, if we can show that b is in the ε-domain of A and not just of B, then it follows
by the induction hypothesis that also

A |= ψ[b, ā],

since then (b, ā) is a tuple of elements of A.
As ∈ is interpreted naturally in the structure for set preferences B and, additionally,

y cannot occur in x̄, the statement B |= y ∈ t(x̄)[b, ā] boils down to b ∈ tB[ā], which is
equivalent to

b ∈ tA[ā] (4)
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since tA[ā] = tB[ā], as stated in (2).
The fact that b is an element of domε(A) (and not just of domε(B)) is now implied by

tA[ā] being in domσ(A), together with A being a subset-consistent substructure:

b ∈ tA[ā] ∈ domσ(A)
(∗)
⊆ 2domε(A)

=⇒ b ∈ tA[ā] ∈ 2domε(A)

=⇒ b ∈ tA[ā] ⊆ domε(A),

where (∗) marks the point where the subset-consistency of A is used.
Hence, we can, as indicated before, apply the induction hypothesis to B |= ψ[b, ā] and

obtain A |= ψ[b, ā]. Together with b ∈ tA[ā] it follows that

A |= ∃εy(y ∈ t(x̄) ∧ ψ(y, x̄))[ā].

This way we are done with the proof of the stronger claim (about formulas), which
implies the claim of the theorem (about sentences).

We are now almost ready to apply this theorem to our setting. Note first, however,
that the above theorem does not only hold for axioms that are ESG, but also for axioms
that are equivalent to an ESG sentence in all structures for set preferences (the reason is
that they have the same truth value in any such structure). We refer to these axioms as
ESG-equivalent axioms. In particular this applies to sentences that are logically equivalent
(i.e., equivalent in all structures) to an ESG sentence.

Now, we finally state and prove the corollary applying our general result to the particular
problem domain of ranking sets of objects.

Corollary 1 (Universal Reduction Step). Let Γ be a set of ESG (or ESG-equivalent) axioms
and let n ∈ N be a natural number. If, for any linearly ordered set Y with n elements, there
exists no binary relation on Y = 2Y \{∅} satisfying Γ, then also for any linearly ordered set
X with more than n elements there is no binary relation on X = 2X \ {∅} that satisfies Γ.

Proof. Let Γ be a set of ESG (or ESG-equivalent) axioms and let n ∈ N be a natural
number. Assume that for any linearly ordered set Y with n elements, there exists no binary
relation on Y = 2Y \ {∅} satisfying Γ. By way of contradiction, suppose X is a linearly
ordered set with |X| > n and there is a binary relation on X = 2X \{∅} that satisfies Γ. We
can view X∪X as a structure for set preferences and define a subset-consistent substructure
by restricting X ∪ X to a domain Y ∪ Y with Y ⊆ X, |Y | = n and Y := 2Y \ {∅}. By the
Preservation Theorem all ESG(-equivalent) axioms are preserved in this subset-consistent
substructure Y ∪Y. Hence, Y must be a linearly ordered set (as all order axioms are ESG)
and, furthermore, there is a binary relation on Y satisfying Γ. Contradiction!

Remark. When we say “a given set of ESG axioms”, then this deserves some further expla-
nation. We mean axioms that are ESG in MSLSP. One can consider additional relations
and functions to be added to this signature, but this holds some hidden challenges. For
instance, it is not possible to include a predicate isWholeSet, which is true of the whole
domain only, a function (·)c for the complement, or even just the constant symbol Ẋ re-
ferring to the whole domain, since all three would (in their natural interpretation) prevent
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Y ∪ Y from being a substructure: for example, for any Y ⊂ X, while isWholeSet(Y ) (or
equivalently, Y = Ẋ) is false in X ∪X , it is true in Y ∪Y. Similarly, we run into problems
when including functions like ∩, \ or (·)c, which are (in their natural interpretation) not
functions in the strict sense in a structure like X ∪ X as they can produce the empty set,
which is not in X . Therefore, some attention has to be paid when adding new relation or
function symbols to the language in order to capture more axioms.

On the basis of Corollary 1 we can finally do what we had been hoping for: in order to
prove new impossibility theorems and check existing ones, we only have to look at their base
cases (as long as all axioms involved are expressible in MSLSP and are ESG-equivalent).
As we shall see next, these small instances can be efficiently checked on a computer.

4. Representing Small Instances in Propositional Logic

The small instances, which we can reduce impossibilities to, now need to be checked on
a computer. This requires a clever approach as a direct check is far too expensive. We
therefore modify and extend a technique due to Tang and Lin (2009).

It is remarkable that Tang and Lin (2009) were able to formulate the base case of
Arrow’s Theorem in propositional logic, even though some of the axioms intuitively are
second-order statements. The trick they used was to introduce “situations” as names for
preference profiles, which transforms the second-order axioms into first-order statements,
which can then (because of the finiteness of the base case) be translated into propositional
logic. We are going to use a similar approach since the axioms for ranking sets of objects
are stated in a (somewhat enriched)5 second-order format, too. The setting of ranking sets
of objects will, however, require a different treatment (which we are going to discuss in the
sequel) since we also have to apply functions like union (∪) and singleton set ({·}) to sets
and elements, respectively, whereas no functions needed to be applied to Tang and Lin’s
situations. Instead of coding these operations on sets within the propositional language, we
let the program that generates the final formula handle them.

In this section, we first show how to translate axioms for ranking sets of objects into
propositional logic and then explain how to instantiate instances of these axioms for fixed
domain sizes on a computer.

4.1 Conversion to Propositional Logic

As an example, consider again the Kannai-Peleg Theorem (Theorem 1). In light of the
universal reduction step (Corollary 1), proving this theorem reduces to proving a small base
case of exactly six elements:

Lemma 2 (Base case of the Kannai-Peleg Theorem). Let X be a linearly ordered set with
exactly 6 elements. Then there exists no weak order � on X satisfying the Gärdenfors
principle (GF) and independence (IND).

It might seem tempting to perform a direct check of the involved axioms on all weak
orders over the nonempty subsets of a six-element space. This, however, can be seen to be
practically impossible as there are around 1.525 · 1097 such orderings (Sloane, 2010, integer

5. There is also an order (i.e., a relation) on sets.
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sequence A000670). Therefore, we should stick to the idea of transforming the axioms of
the Kannai-Peleg Theorem into propositional logic such that they can be checked by a SAT
solver, which usually operates on propositional formulas in conjunctive normal form (CNF)
only. We will describe in the following how instances of axioms, like the ones stated in
Appendix A, can be converted to that language.

It will be sufficient for our formalisation to have two kinds of propositions only: w(A,B)
and l(x, y) (corresponding to propositional variables wA,B and lx,y) with intended meanings
A is ranked at least as high as B by the weak order � (or short: A � B), and x is ranked
at least as high as y by the linear order ≥̇ (or short: x ≥̇ y), respectively. For example,
for the base case of the Kannai-Peleg Theorem this leads to a maximum of |X |2 + |X|2 =
(26 − 1)2 + 62 = 4005 different propositional variables.

As indicated earlier, the axioms for linear and weak orders on X and X , respectively, are
entirely unproblematic as they only contain first-order quantifications and, thus, they can
easily be transformed. As an example, we include here the transformation of the transitivity
axiom for orders on sets:

(TRANSσ) (∀A ∈ X )(∀B ∈ X )(∀C ∈ X ) [A � B ∧B � C → A � C]
∼=
∧

A∈X

∧
B∈X

∧
C∈X

[¬wA,B ∨ ¬wB,C ∨ wA,C ] .

Note, that, due to the finiteness of X (and thus X ), the derived formulas are actually
finite objects and can therefore be instantiated by hand (requiring a lot of effort) or using
a computer. Furthermore, only very little or no work is needed to convert them into CNF.

Other axioms, like (GF) and (IND), appear to be more difficult to transform because
of functions like singleton set {·} : X → X and set union ∪ : X × X → X , which occur
within these axioms. In fact, however, the same simple conversion technique as above can
be applied since we are going to take care of those (and similar) functions automatically in
our computer program for the instantiation of the axioms. How we do this will be briefly
described in Section 4.2 and for now we treat terms like A ∪ B as if they were just the
corresponding objects from the functions range, i.e., images under the respective functions.
For example, this leads to the following conversion of (GF1):

(GF1) (∀A ∈ X )(∀x ∈ X)[((∀a ∈ A)x >̇ a) → A ∪ {x} � A]

∼=
∧

A∈X

∧
x∈X

[(∧
a∈A

lx,a ∧ ¬la,x

)
→
(
wA∪{x},A ∧ ¬wA,A∪{x}

)]

≡
∧

A∈X

∧
x∈X

[((∨
a∈A

¬lx,a ∨ la,x

)
∨ wA∪{x},A

)
∧

((∨
a∈A

¬lx,a ∨ la,x

)
∨ ¬wA,A∪{x}

)]
,

where the last step only serves the purpose of converting into CNF.
The remaining problematic parts of the formula are the propositional variable index

A ∪ {x}, and the disjunction domain criterion a ∈ A. In order to write out the formula
explicitly (which we need to do to be able to feed it to a SAT solver) we have to determine
which set is represented by A∪{x} and also decide whether a ∈ A for any a ∈ X. In different
words, what we need is explicit access to the elements of a set and also we have to be able
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to manipulate them. This would theoretically be possible by hand; practically, however,
the instantiation of the formula is far too large to be written out manually. Therefore, we
need a computer program for the final conversion step, which we are going to describe in
the following section.

As a second example, consider the axiom of independence (IND), which can also be
transformed in the above fashion by first using finiteness to replace the quantifiers, and
then normalising the formula into CNF:

(IND) (∀A,B ∈ X )(∀x ∈ X \ (A ∪B)) [A � B → A ∪ {x} � B ∪ {x}]
∼=

∧
A,B∈X

∧
x∈X

x/∈(A∪B)

[
(wA,B ∧ ¬wB,A) → wA∪{x},B∪{x}

]
≡

∧
A,B∈X

∧
x∈X

x/∈(A∪B)

[
¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x}

]
.

The problematic terms here are x /∈ (A ∪ B), A ∪ {x} and B ∪ {x}. But, as we will see,
they can —just like the critical terms mentioned before— be handled by our program.

The same method of translation easily extends to other axioms, in particular all those
listed in Appendix A (Geist, 2010).

4.2 Instantiation of the Axioms on a Computer

As indicated above, we make use of a computer program in order to write out the formulas
derived above explicitly. We now briefly discuss the ideas of our implementation and, in
particular, the methods employed to cater for previously problematic expressions, such as
A ∪ {x} and a ∈ A. Full details of the implementation are given by Geist (2010).

The most widely used SAT solvers work on input files written according to the DIMACS
CNF format (DIMACS, 1993). In a few words, this format requires the propositional vari-
ables to be represented by natural numbers (starting from 1, since 0 is used as a separator)
with a minus (-) in front for negated literals. Furthermore, the whole file needs to be in
CNF; it has to contain exactly one clause per line.

To achieve a formulation of the axioms in this target format, the main idea is to fix
an enumeration of all propositional variables (of type lx,y and wA,B with x, y ∈ X and
A,B ∈ X ) by first enumerating sets and elements, and subsequently combining pairs of
these using a pairing function. Functions and relations like union and element of can then
be defined to operate on numbers directly, and quantifiers can be translated to conjunctive
or disjunctive iterations over their respective domains. All in all, easily readable code can
be used to instantiate the axioms.

Since the numberings of the items under consideration (here: elements, sets and later
propositional variables) form the core of our implementation, we start the translation pro-
cess by first fixing an (arbitrary) numbering of the n elements x ∈ X, i.e., a bijective
function cn : X → {0, 1, . . . , n− 1}.6 For the Kannai-Peleg Theorem with its six elements,
for instance, the codes will hence range from 0 to 5.

6. In contrast to the propositional variables, there are no numbering constraints for the elements and so
their numbers are allowed to start from 0.
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We can then specify the corresponding numbering of sets in X . This requires special
attention because we want to define it in such a way that treating the problematic terms
(as mentioned above) is as easy as possible. A natural way to do this is by looking at a
set as its characteristic function and converting the corresponding finite string of zeros and
ones to a natural number. This allows us to perform operations on the codes of sets directly
and hence it is straightforward to instantiate the formulas from Appendix A automatically.
All that needs to be done is translating them to our specific source code style. Quantifiers
then correspond to for -loops over all elements or sets, respectively, and restrictions of the
quantification domain as well as operations on elements and sets can be taken care of by
functions operating on the “codes” of sets and elements directly.

5. Automated and Exhaustive Theorem Search

In Section 4 we described how to generate a (long) formula in propositional logic representing
small instances of impossibility theorems for ranking sets of objects. Let us denote such a
formula by ϕ. The formula ϕ describes a model with a linear order on its universe of a
given number of elements and a weak order satisfying a given set of axioms on the set of the
nonempty subsets of its universe. If such a model exists, ϕ has a satisfying assignment (the
explicit description of both orders) and, thus, a (complete) SAT solver will discover this
(assuming that there are no time or memory bounds). If, conversely, such a model does not
exist —which is exactly the statement of the impossibility theorem— then ϕ is unsatisfiable
and, again, a SAT solver will be able to detect this (assuming, again, that there are no time
or memory bounds).

By our universal reduction step (Corollary 1), a full impossibility theorem is therefore
equivalent to a lemma of the form “the formula ϕ is unsatisfiable”.

For example, feeding ϕKP (a description of the base case of the Kannai-Peleg Theorem
as generated by our program) to the SAT solver zChaff (SAT Research Group, Princeton
University, 2007) returns the correct result (‘UNSAT’) in about 5 seconds and thus the
automatic verification of this theorem is complete.

Using this technique for single theorems is likely to produce good results and might be a
helpful tool from a practical perspective, but we can do more: we are now going to present
a method for a fully automated and exhaustive theorem search for impossibility theorems.
Our theorem search will, for a given set of axioms, systematically check which of its subsets
are inconsistent and from which smallest domain size onwards these impossibilities do oc-
cur, thereby automatically identifying all impossibility theorems that the given axioms can
produce.7 In this sense, the search method is exhaustive on the space of given axioms.

To test the fruitfulness of this approach we ran the search on a set of 20 axioms from
the literature (Barberà et al., 2004), which we list and describe in Appendix A. Our search
algorithm returned a total of 84 impossibilities, of which a few were known already (and
are hence now automatically verified), others are immediate consequences of known results,
while others again are surprising and new. The very same search method can also be
run with arbitrary other ESG axioms in the field of ranking sets of objects, including, for
instance, the ones of the interpretation of sets as opportunity sets from which the decision

7. Since for practical reasons we can only check base cases up to a certain domain size |X| = n, there could
theoretically be more impossibilities hidden that only occur from larger domain sizes onwards.
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maker can himself select his favourite outcome, or, similarly, with axioms for the case of
assuming that the agent receives the whole set of alternatives (see Section 2).

In the remainder of this section, we first describe our method for automated theorem
search and then list and discuss the impossibilities that were found.

5.1 Approach

Our search method systematically decides whether combinations of given axioms are com-
patible or incompatible. We will therefore in the following refer to axiom subsets as problems,
and for a particular domain size we will speak of a problem instance.

After the generation of a problem instance by our computer program (as described
in Section 4.2) the instance is then passed to a SAT solver, which returns whether it is a
“possible” or an “impossible” one. We implemented interfaces for the commonly used solvers
PrecoSAT (Biere, 2010) and zChaff (SAT Research Group, Princeton University, 2007).
The latter provides an additional layer of verification by generating a proof trace that can
be checked using external tools, while the former is usually faster in practice, but does not
have this extra feature.

We could now just run this program on all possible problem instances from a given set
of axioms and a maximal domain size individually and collect the results. Note, however,
that on a space of 20 axioms with a maximal domain size of eight elements, we already
have to deal with a total of (220 − 1) · 8 ≈ 8, 400, 000 problem instances. If each of them
just requires a running time of one second,8 the whole job would take roughly 100 days.
Therefore, we designed a scheduler that makes sure all axiom subsets are treated for all
domain sizes in a sensible order. The order in which we check the problem instances has a
big effect on the overall running time because one can make use of a combination of four
different effects:

(1) if a set of axioms is inconsistent at domain size |X| = n, then it will also be inconsistent
for all larger domain sizes |X| > n (Corollary 1),

(2) if a set of axioms is inconsistent at domain size |X| = n, then also all its (axiom)
supersets are inconsistent at this domain size |X| = n,

(3) if a set of axioms is consistent at domain size |X| = n, then it will also be consistent
for all smaller domain sizes |X| < n. (Theorem 2), and

(4) if a set of axioms is consistent at domain size |X| = n, then also all its (axiom) subsets
are consistent at this domain size |X| = n.

Since larger instances require exponentially more time (there are exponentially more
variables in the satisfiability problem due to exponentially more subsets in X ), we start our
search at the smallest domain size and then after completely solving this “level” move on
to the next domain size.9 On a new level, only problems have to be considered that still
have the status “possible” because of condition (1) above.

8. In our tests, especially larger instances required much more time to be solved on average.
9. It is for this reason that condition (3) is not very helpful in practice.
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On each level, as soon as we find an impossibility, we can, by condition (2), mark all
axiom supersets as impossible at the current domain size (if they had not been found to be
impossible at a smaller domain size already). In order to use this mechanism as efficiently
as possible, we must check small axiom sets first. But also the dual approach of starting
from large axiom sets and marking all axiom subsets as “compatible” as soon as we find a
possibility (condition 4), is an option. In experiments, we found that the best performance
is achieved when combining these two approaches and so we decided to run the search in
alternating directions (switching every 15 minutes):10 from large axiom sets to small ones
and the other way around.

From a practical point of view, our implementation comes with the limitations of only
being able to treat at most 21 axioms at the same time (stack overflows occurred for larger
axiom sets) and at most a domain size of eight elements (due to memory limits in the SAT
solvers). But with better memory management and improved versions of the SAT solvers,
these (practical) boundaries should be extendable further.

5.2 Results

Our theorem search (checking problem instances up to a domain size of eight) yields a total
of 84 minimal impossibility theorems on the space of the 20 selected axioms. The results
are minimal in two senses:

• the corresponding axiom set is minimal with respect to set inclusion, i.e., all proper
subsets are compatible at the given domain size; and

• the domain size is minimal, i.e., for all smaller domain sizes the given axiom set is
still compatible.

Counting the total number of incompatible axiom sets (i.e., including all supersets), we find
312,432 inconsistent axiom sets out of about one million possible combinations.

The whole experiment required a running time of roughly one day for handling all of the
nearly 8.5 million instances.11 In order to externally verify as many of the impossibilities
as possible, we used the solver zChaff, which can create a computer-verifiable proof trace,
for all instances up to domain size 7, and switched to the faster solver PrecoSAT, which
does not have this feature, for instances with (exponentially larger) domain size 8.12

In Table 1 we list all minimal impossibilities that our search method was able to find (and
hence all that there are) for domain sizes up to 8. Recall again that, by Corollary 1, these all
directly correspond to full impossibility results (from the given domain size upwards). The
results are presented in ascending order by minimal domain size, and in ascending order by
the number of axioms involved as a second criterion, so as to have stronger and easier to
grasp impossibilities higher up in table. The axioms and their abbreviated names are listed
in Appendix A.

10. Switching every 15 minutes turned out to result in good performance, but we have not attempted to
systematically optimise this parameter.

11. The experiment was performed on an Intel Xeon 2,26 GHz octo-core machine using only one core and
5GB of the available 24GB memory. The machine is part of the Dutch national compute cluster Lisa.

12. The five impossibilities occurring only from domain size 8 onwards have therefore not been verified
externally. Using zChaff for these instances (and subsequently verifying them) would have also been
possible, but slower by about a factor of 10.
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1 3 X · · · · X · · · X · · · · · · · · · ·
2 3 X · · · · · · · · · X X · · · · · · · ·
3 3 X · · · · · X X · X · · · · · · · · · ·
4 3 X · X · · · · X · X · · · · · · · · · X
5 3 X · · · X · · X · X · · · · · · · · · X
6 3 X · · · · · · X · X X · · · · · · · · X
7 3 X · · · · · · X · X · · · X · · · · · X
8 4 X · · · · · · X · X · · X · · · · · · X
9 4 X · · X · · X X X · X · · · · · · · · ·
10 4 X · · X · X X · X · X · · · · · · · · ·
11 4 X · · X X · X · · X X · · · · · · · · ·
12 4 X · · X · · X X X · · X · · · · · · · ·
13 4 X · · X · X · X X · · X · · · · · · · ·
14 4 X · · X X · · X · X · X · · · · · · · ·
15 4 X · · X · · X · X · X · X · · · · · · ·
16 4 X · · X · X · · X · X · X · · · · · · ·
17 4 X · · X · · X · · X X · X · · · · · · ·
18 4 X · · X · · · X X · · X · X · · · · · ·
19 4 X · · X · X · · X · · X · X · · · · · ·
20 4 X · · X · · · X · X · X · X · · · · · ·
21 4 X · · X X · · · · X X · · · · · · · · X
22 4 X · · X · · · X X · · X · · · · · · · X
23 4 X · · X · · · X · X · X · · · · · · · X
24 4 X · · X · · · · X · X · X · · · · · · X
25 4 X · · X · · · · · X X · X · · · · · · X
26 4 X · · X · · · · · · X · X · · X · · · X
27 4 X · · X · · · · · · X · X · · · X · · X
28 4 X · · X · · X X · · X · · · X X · · · ·
29 4 X · · X · X X · · · X · · · X X · · · ·
30 4 X · · X · · X X · · · X · · X X · · · ·
31 4 X · · X · X · X · · · X · · X X · · · ·
32 4 X · · X · · X · · · X · X · X X · · · ·
33 4 X · · X · X · · · · X · X · X X · · · ·
34 4 X · · X · · · X · · · X · X X X · · · ·
35 4 X · · X · X · · · · · X · X X X · · · ·
36 4 X · · X · · · X · · · X · X · X X · · ·
37 4 X · · X · X · · · · · X · X · X X · · ·
38 4 X · · X · · X · · · X · X · X · X · · ·
39 4 X · · X · X · · · · X · X · X · X · · ·
40 4 X · · X · · X X · · X · · · · X · · · X
41 4 X · · X · X X · · · X · · · · X · · · X
42 4 X · · X · · · X · · · X · · X X · · · X

Continued. . .

Table 1: Results of our automated and exhaustive theorem search
on a space of 20 axioms (including orders).
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43 4 X · · X · · · X · · · X · · · X X · · X
44 5 X · · X · · X · X · X · · · · · · · · ·
45 5 X · · X · · X · · X X · · · · · · · · ·
46 5 X · · X · · · X X · · X · · · · · · · ·
47 5 X · · X · · · X · X · X · · · · · · · ·
48 5 X · · X · · X · · · X · · · X X · · · ·
49 5 X · · X · · · X · · · X · · X X · · · ·
50 5 X · · X · · · X · · · X · · · X X · · ·
51 5 X · · X · · X · · · X · · · X · X · · ·
52 5 X · X X · · · · · X X · · · · · · · · X
53 5 X · · X · · · · · X X · · X · · · · · X
54 5 X · · X · · X · · · X · · · · X · · · X
55 5 X · · X · · X · · · X · · · · · X · · X
56 6 X · · X · · · · · X X · · · · · · · · X
57 6 X · X X · · X X X · · · · · · · · · · ·
58 6 X · X X · X · X X · · · X · · · · · · ·
59 6 X · X X · X X · X · · · · X · · · · · ·
60 6 X · X X · X · · X · · · X X · · · · · ·
61 6 X · X X · · X X · · · · · · X X · · · ·
62 6 X · · X · · X X · · X · · · · X · X · ·
63 6 X · · X · X X · · · X · · · · X · X · ·
64 6 X · · X · · X · · · X · X · · X · X · ·
65 6 X · · X · · X X · · · X · · X · · X · ·
66 6 X · · X · X · X · · · X · · X · · X · ·
67 6 X · · X · · · X · · · X · X X · · X · ·
68 6 X · X X · · · X X · · · X · · · · · · X
69 6 X · · X · · · X · · · X · · X · · X · X
70 6 X · X X · X · X · · · · X · X X · · · ·
71 6 X · X X · X X · · · · · · X X X · · · ·
72 6 X · X X · X · · · · · · X X X X · · · ·
73 6 X · X X · · · X · · · · X · X X · · · X
74 6 X · X X · · X X · · · · · · · X X · · X
75 6 X · X X · · · X · · · · X · · X X · · X
76 6 X · X X · X X · · · · · · X · X X · · X
77 6 X · X X · X · · · · · · X X · X X · · X
78 7 X · · X · · X · · · X · · · · X · X · ·
79 7 X · · X · · · X · · · X · · X · · X · ·
80 8 X · X X · · X X · · · · · · · X X X · ·
81 8 X · X X · · X X · · · · · · X · X X · ·
82 8 X · X X · X X · · · · · · X · X X X · ·
83 8 X · X X · X · X · · · · X · X · X X · ·
84 8 X · X X · · · X · · · · X · X · X X · X

Table 1: Results of our automated and exhaustive theorem search
on a space of 20 axioms (including orders).
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Observing these results, we first note that impossibilities can occur from all of the
tested domain sizes larger than 2 onwards. This is novel in its own right since until now
only impossibilities with |X| ≥ k, k ∈ {3, 4, 6} had been known.

The results themselves differ much in their level of appeal and interestingness. We
can find impossibilities of at least five (potentially overlapping) categories, namely known
results, variations of known results, direct consequences of other results, straightforward
results, and, most importantly, new results.

Some previously known results we can easily recognise among the ones in our list: the
Kannai-Peleg Theorem corresponds to our Impossibility No. 57; an impossibility theorem
by Barberà and Pattanaik (1984) can be found as Impossibility No. 1. Other than that
we are only aware of one more known impossibility under the interpretation of complete
uncertainty, which we could unfortunately not encode in our framework since it uses the
axiom of neutrality (see Section 3.1). It is a variant of the Kannai-Peleg Theorem presented
by Barberà et al. (2004), in which the number of elements has been lowered to four by
adding the aforementioned axiom.

Variations of known results are also easy to spot by just keeping some axioms fixed and
browsing for results involving these. Impossibilities No. 80 and No. 10, for instance, are
variations of the Kannai-Peleg Theorem, where in the former a weakening of the axioms
makes the impossibility occur only at a larger domain size. The latter is a variation in the
other direction: the additional axiom (SUAv) causes an impossibility at a domain size of 4
elements already. And many more such variations of known theorems can be found (e.g.,
No. 33, 37, 40, etc.).

As we used a set of axioms in which certain axioms imply others, we had to expect
results that are just direct consequences of others. In particular, every result involving
some (weak) form of independence will also occur with the standard or strict independence
only, and similarly for simple dominance, which is a weaker form of the Gärdenfors principle.
Examples of such results are the Impossibilities No. 3 (implied by No. 1) and Impossibility
No. 9 (implied by No. 28).

Straightforward results we could only find one: Impossibility No. 2 says that a binary
relation cannot fulfill both (SUAv) and (SUAp), which reflect the contradictory principles of
uncertainty aversion and uncertainty appeal. This is immediate (especially when examining
the exact statement of the axioms).

What we are left with are the new, i.e., previously unknown, results. There are quite
a few of them, but they differ in how interesting they are. For instance, it is not very
reasonable to only postulate (GF1) but not (GF2), which makes the new Impossibility No. 11
not so fascinating after all. But we can also find results like Impossibilities No. 52 or No. 56,
where the combination of axioms appears to be reasonable and yet leads to an impossibility.

We will return to some of these results below. But let us now for a moment shift our
perspective from problems, i.e., combinations of axioms, to the special role of individual
axioms with respect to all results. On the one hand, the axiom (LINε) of a linear order ≥̇ on
X occurs in all impossibilities. This means that there is no impossibility without this axiom
(on the given axiom space and up to domain size 8). This could have been anticipated:
if we use the empty relation on X for ≥̇, then most axioms do not say anything about �
anymore and hence cannot be incompatible. Also note that the only impossibility without
any form of independence is the (straightforward) Impossibility No. 2. On the other hand,
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the axioms (evenExt) and (REFLσ) do not occur in any impossibility. Therefore, we can
conclude that these must be particularly well-compatible with the other axioms. Or put
differently, that adding them to a given set of axioms does not cause an impossibility. The
axiom (intIND) of intermediate independence is contained in all discovered impossibilities
at domain sizes 7 and 8 (and does not cause any impossibilities at sizes 5 and below). That
this axiom is involved in somewhat larger instances makes a great deal of sense intuitively:
for each application of the axiom we have to add two elements (one above, one below the
set we apply it to), and so it was to be expected that larger domain sizes are necessary for
a contradiction.

In the following we discuss some of the obtained impossibilities and also provide an
example of a manual proof. That we were able to quickly construct manual proofs for all
theorems discussed below underpins the usefulness of our theorem search as a heuristic,
even for a sceptic who may not be willing to accept the output of a SAT solver as a rigorous
proof.13 Knowing the impossible axiom sets and critical domain sizes beforehand simplified
the construction of the manual proofs significantly. Additionally, one can run the search
program again with slightly modified axioms, not only to get an even better understanding
about where the borderline lies between the possible and the impossible, but also to have
some assistance in choosing the right steps when proving the results by hand. And there is
even one more application of our program when searching for a manual proof: one can run
it on instances with single axioms left out and inspect the orders satisfying the remaining
axioms in order to understand which structural properties these imply.

5.2.1 An Unintuitive Impossibility

Let us start with our most striking result. Theorem 3 of an important paper by Bossert
et al. (2000) states that the axioms (SDom), (IND), (SUAv) and (STopMon) characterise the
so-called min-max ordering, which is defined by

A �mnx B ⇐⇒
[
min(A) >̇ min(B) ∨

(
min(A) = min(B) ∧max(A) ≥̇ max(B)

)]
.

The same theorem also covers a dual result for the max-min ordering (characterized by
the axioms (SDom), (IND), (SUAp), (SBotMon)).

The reader can now check that this contradicts the results of our theorem search since
both of these axiom sets are among the impossibility theorems in Table 1 (Impossibilities
No. 16 and 19). Indeed, it turns out that the proofs of Bossert et al. (2000) were flawed
as Arlegi (2003) pointed out three years later. Arlegi, however, only notes that the min-
max and max-min orderings do not satisfy the axiom of independence (IND), i.e., that these
orders cannot be characterized by the axioms (SDom), (IND), (SUAv), (STopMon), and (SDom),
(IND), (SUAp), (SBotMon), respectively. This shows the unintuitiveness of our findings (as
the contrary was believed for some time), which yield more than just a counterexample
to the original publication: we additionally get that the four axioms under consideration
are inconsistent (in the presence of transitivity) and hence no transitive binary relation
whatsoever can satisfy them. We now give a manual proof for this result.

13. We only included one example of a manual proof here. The complete set is given by Geist (2010).
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Theorem 3 (Impossibility No. 16). Let X be a linearly ordered set with |X| ≥ 4. Then there
exists no transitive binary relation � on X satisfying simple dominance (SDom), indepen-
dence (IND), simple uncertainty aversion (SUAv), and simple top monotonicity (STopMon).

Proof. Let xi, i ∈ {1, 2, 3, 4} denote four distinct elements of X such that are ordered by >̇
with respect to their index, i.e., x1 >̇ x2 >̇ x3 >̇ x4. By way of contradiction, suppose there
exists a transitive binary relation � on X satisfying simple dominance (SDom), independence
(IND), simple uncertainty aversion (SUAv), and simple top monotonicity (STopMon).

On the one hand, it follows from simple uncertainty aversion applied to x1 >̇ x2 >̇ x3

that {x2} � {x1, x3}, and adding x4 to both sets yields (by independence):

{x2, x4} � {x1, x3, x4}. (5)

On the other hand, we can use simple dominance (applied to x3 >̇ x4) to show {x3, x4} �
{x4}, from which

{x1, x3, x4} � {x1, x4} (6)

follows by independence. Furthermore, simple top monotonicity applied to x1 >̇ x2 >̇ x4

directly gives {x1, x4} � {x2, x4}, which we are able to combine with (6) by transitivity.
We thus obtain

{x1, x3, x4} � {x2, x4},

which directly contradicts (5).

Note that all four axioms are not only used in the proof above, but they are necessary
for the result and also logically independent from each other as the following automatically
constructed examples of weak orders show (let X = {x1, x2, x3, x4} and x1 >̇ x2 >̇ x3 >̇ x4):

1. The weak order � given by
{x1} � {x2} � {x3} � {x4} � {x1, x2} � {x1, x3} � {x2, x3} � {x1, x4} � {x2, x4} �
{x3, x4} � {x1, x2, x3} � {x1, x2, x4} � {x1, x3, x4} � {x2, x3, x4} � {x1, x2, x3, x4}
satisfies (IND), (SUAv), (STopMon), but not (SDom).

2. The weak order � given by
{x1} � {x1, x2} � {x2} � {x1, x3} � {x2, x3} � {x3} � {x1, x2, x3} � {x1, x4} �
{x2, x4} � {x1, x2, x4} � {x3, x4} � {x4} � {x1, x3, x4} � {x2, x3, x4} � {x1, x2, x3, x4}
satisfies (SDom), (SUAv), (STopMon), but not (IND).

3. The weak order � given by
{x1} � {x1, x2} � {x1, x3} ∼ {x1, x2, x3} � {x2} � {x2, x3} � {x3} � {x1, x4} ∼
{x1, x2, x4} ∼ {x1, x3, x4} ∼ {x1, x2, x3, x4} � {x2, x4} ∼ {x2, x3, x4} � {x3, x4} � {x4}
satisfies (SDom), (IND), (STopMon), but not (SUAv).

4. The weak order � given by
{x1} � {x1, x2} � {x2} � {x1, x3} ∼ {x1, x2, x3} � {x2, x3} � {x3} � {x1, x4} ∼
{x1, x3, x4} ∼ {x2, x4} ∼ {x1, x2, x4} ∼ {x2, x3, x4} ∼ {x1, x2, x3, x4} � {x3, x4} � {x4}
satisfies (SDom), (IND), (SUAv), but not (STopMon).
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It can now also be seen that no subset of these four axioms suffices to characterise the
min-max ordering. Any subset containing (IND) can be rejected immediately since (IND) is
violated by the min-max ordering (as we have noted earlier), and any subset not containing
it cannot suffice for a characterisation either, since example 2 differs from the min-max
ordering �mnx (in which {x2, x3, x4} ≺mnx {x1, x2, x3, x4}).

Finally, we emphasise the fact that neither reflexivity nor completeness of � are used
in the proof of Theorem 3 (as also indicated by Table 1). Thus, the impossibility already
holds for arbitrary transitive binary relations instead of weak orders.

5.2.2 Variations of the Kannai-Peleg Theorem

Impossibility No. 9 offers an interesting variation of the Kannai-Peleg Theorem that trades
an additional axiom (simple uncertainty aversion) for the impossibility occurring at a do-
main size of 4 rather than 6 elements.

Theorem 4 (Impossibility No. 9). Let X be a linearly ordered set with |X| ≥ 4. Then
there exists no transitive binary relation � on X satisfying the Gärdenfors principle (GF),
independence (IND) and simple uncertainty aversion (SUAv).

The same impossibility result also holds with simple uncertainty appeal (SUAp) in place
of simple uncertainty aversion (SUAv); this is Impossibility No. 12.

When we have an even closer look at Table 1, then we can see that there is an even
stronger form of Theorem 4: Impossibility No. 28 corresponds to the the axioms (GF),
(SUAv), (botIND), (topIND) and is impossible from domain size 4 on. In contrast to (IND),
the axioms (botIND) and (topIND) allow the principle of independence in certain situations
only: the element to be added has to be ranked below or above all the elements in both sets,
respectively.14 Therefore, we immediately have the following stronger version of Theorem 4.

Theorem 5 (Impossibility No. 28). Let X be a linearly ordered set with |X| ≥ 4. Then there
exists no transitive binary relation � on X satisfying the Gärdenfors principle (GF), bottom
(botIND) as well as top independence (topIND), and simple uncertainty aversion (SUAv).

An interesting insight can be obtained from comparing Impossibility No. 48 to the
previous result. It shows us that we can drop the second Gärdenfors axiom if we add just
one element to the domain, i.e., we have |X| ≥ 5. The exact result is the following:

Theorem 6 (Impossibility No. 48). Let X be a linearly ordered set with |X| ≥ 5. Then
there exists no transitive binary relation � on X satisfying the first axiom of the Gärdenfors
principle (GF1), bottom (botIND) as well as top independence (topIND), and simple uncer-
tainty aversion (SUAv).

Alternatively, we could have replaced (botIND) by (disIND) (No. 51), or (topIND) by
(intIND), then, however, requiring at least seven elements in the domain (No. 78).

Two further variants of the Kannai-Peleg Theorem can be found in Impossibilities No. 80
and 81, which can be considered strengthenings of the original theorem as they contain
weaker versions of independence only. The strengthening, however, comes at the cost of

14. Actually, already in the original proof of the Kannai-Peleg Theorem (Kannai & Peleg, 1984) only these
weaker forms of (IND) are used (cf. also Impossibility No. 61).
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the impossibility starting from a domain size of eight elements instead of six. The form of
independence that remains is a combination of intermediate, disjoint, and bottom or top
independence, respectively, which (even together) are weaker than standard independence.

5.2.3 Impossibilities without Dominance

All existing impossibilities in the literature we are aware of involve the Gärdenfors principle
(GF) or at least simple dominance (SDom). So let us now consider what kinds of results we
can obtain without any dominance principle.

A striking impossibility without any principle of dominance —i.e., without either (GF)
or (SDom)— is Impossibility No. 52: the axioms of strict independence (strictIND), sim-
ple uncertainty aversion (SUAv), and monotone consistency (MC) are incompatible in the
presence of completeness and transitivity from domain size 5 on.

Theorem 7 (Impossibility No. 52). Let X be a linearly ordered set with |X| ≥ 5. Then there
exists no weak order � on X satisfying strict independence (strictIND), simple uncertainty
aversion (SUAv) and monotone consistency (MC).

One might be tempted to think that this impossibility is mostly due to problems between
(SUAv) and (MC) since they seem to express contrary ideas: whereas (SUAv) favours small sets
over large ones, (MC) tells us that unions of two sets should be preferred to at least one of the
sets. But actually there is even a characterisation result of the min-max ordering by Arlegi
(2003) involving both axioms (SUAv) and (MC), demonstrating that this natural ordering
fulfils these two axioms. Therefore, we can see that it should not at all be considered
unreasonable to have both axioms act together.

We have found quite a few variants of this impossibility. According to our results,
completeness could be replaced by simple bottom monotonicity (Impossibility No. 53) or
even be dropped at the price of having one more element in the domain (Impossibility
No. 56). Alternatively, one can weaken strict independence to either bottom or disjoint
independence and shrink the domain by one element, at the price of adding the axiom of
simple top monotonicity (Impossibilities No. 26 and 27, respectively). A seemingly further
variant can be obtained from trading the axiom of extension (EXT) for a smaller domain. It
is, however, a direct consequence of Impossibilities No. 26 and 27, respectively, since (EXT)
and (strictIND) together imply (STopMon).

Since strict independence can be considered a relatively strong axiom, Impossibility
No. 26 (and the corresponding No. 27) is worth emphasising as well, as it does only postulate
a very weak form of independence.

Theorem 8 (Impossibility No. 26). Let X be a linearly ordered set with |X| ≥ 4. Then
there exists no transitive binary relation � on X satisfying bottom independence (botIND),
simple uncertainty aversion (SUAv), simple top monotonicity (STopMon) and monotone con-
sistency (MC).

This result comes as quite a surprise since Arlegi (2003) characterises the min-max
ordering by an axiom set including (SUAv), (STopMon), and (MC) (as well as two further
axioms). It follows that adding just a tiny bit of independence to these three axioms turns
their possibility into a general impossibility.
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6. Conclusion

We have presented a method for automatically verifying and discovering theorems in a
subarea of economic theory concerned with the problem of formulating principles for lifting
preferences over individual objects to preferences over nonempty sets of those objects. The
theorems in question are impossibility theorems that establish that certain combinations of
those principles (called axioms) are inconsistent. Our method has three components:

• A general result, the universal reduction step (a corollary of our Preservation The-
orem), that shows that if a combination of axioms, meeting certain conditions, is
inconsistent for a fixed domain size n, then it is also inconsistent for any domain with
more than n objects. The conditions on axioms for the applicability of this result are
purely syntactic: any axiom that is (equivalent to) an existentially set-guarded (ESG)
sentence in the many-sorted logic for set preferences (MSLSP) qualifies.

• A method for translating axioms into propositional formulas in CNF, and a method
for instantiating those axioms on a computer for a fixed domain size. This allows us
to verify small instances of an impossibility theorem using a SAT solver. Together
with the universal reduction step, this then constitutes a proof of the respective im-
possibility theorem also for all larger domain sizes.

• A scheduling algorithm to search a large space of axiom combinations for different
domain sizes. This, finally, allows us to systematically search for and discover new
impossibility theorems.

We have applied our method to a set of 20 axioms that have been proposed in the
literature as a means of formalising various principles for ranking sets of objects when those
sets are interpreted as representing mutually exclusive alternatives from which an object will
be selected in a manner that cannot be influenced by the decision maker (so-called complete
uncertainty). This did yield a total of 84 (minimal) impossibility theorems, including both
known results and new theorems. We have commented on the most interesting of these in
the previous section. These results clearly demonstrate the power of our method.

This work can be extended in a number of ways. First, our method can be applied to
other sets of axioms (including axioms for order types other than linear and weak orders).
Implementing further axioms can be done quickly, and as long as they are covered by our
universal reduction step, results can be read off after a short computation. Especially
for opportunity sets, for which to our knowledge no impossibility results are known, the
potential for success is very high.

Second, the method itself and its implementation can be refined further. It would
be attractive to integrate a parser that can read our language MSLSP so that axioms
no longer have to be transformed and coded by hand. A further idea is to implement
dependencies between the axioms. This would make sure that only absolutely minimal
results are returned, whereas now some of our results are trivial consequences of others
(since some of our axioms are immediately implied by others).

Third, in case a particular combination of axioms does not lead to an impossibility, it
may be possible to use the output of the SAT solver to infer useful information about the
class of set preference orderings satisfying those axioms. Some preliminary steps in this
direction have already been taken (Geist, 2010).
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Finally, and this is our most tentative suggestion, it would be interesting to explore to
what extent our method can be adapted to different disciplines and problem domains. A
starting point might be our Preservation Theorem, which potentially can still be strength-
ened to a larger class of axioms. One could try to find out where the exact borderline lies
between formulas that are preserved in certain substructures and those that are not. For
arbitrary first-order models this has been done in the famous  Loś-Tarski Theorem, but for
our class of structures for set preferences it is still an open question.
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Appendix A. List of Axioms

In this appendix we provide the complete list of the axioms used in the theorem search
presented in Section 5. These axioms (or variations thereof) and further references can all
be found in the survey by Barberà et al. (2004).

The first axioms given here are the order axioms. For one, there are the axioms describ-
ing the linear order ≥̇ on X, for another, the ones describing a weak order � on X = 2X\{∅}.
The former will just be denoted by (LINε), whereas the latter are split up into their three
components reflexivity (REFLσ), completeness (COMPLσ) and transitivity (TRANSσ), which are
then treated as separate axioms in order to investigate which parts are actually necessary
for impossibilities. The axioms in their intuitive form are:

(LINε) x ≥̇ x for all x ∈ X (reflexivity)

x ≥̇ y ∨ x ≤̇ y for all x 6= y ∈ X (completeness)

x ≥̇ y ∧ y ≥̇ z ⇒ x ≥̇ z for all x, y, z ∈ X (transitivity)

x ≥̇ y ∧ y ≥̇ x⇒ x = y for all x, y ∈ X (antisymmetry)

(REFLσ) A � A for all A ∈ X (reflexivity)
(COMPLσ) A � B ∨A � B for all A 6= B ∈ X (completeness)
(TRANSσ) A � B ∧B � C ⇒ A � C for all A,B,C ∈ X (transitivity)

Next we have the axiom of extension, which is a very natural requirement and thus also
implied by some other axioms (e.g., the Gärdenfors principle):

(EXT) x ≥̇ y ⇐⇒ {x} � {y} for all x, y ∈ X

A further set of axioms we included in our search is the one dealing with the concept of
dominance, i.e., the idea that adding an object x to a set of objects A that are all dominated
by (or dominating) the object x produces a better (or worse) set, respectively. We chose for
the well-known Gärdenfors principle (GF), which was introduced in Section 2.2 already, as
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well as a weaker version by Barberà (1977) called simple dominance (SDom), which restricts
(GF) to small sets:

(GF1) ((∀a ∈ A)x >̇ a) ⇒ A ∪ {x} � A for all x ∈ X and A ∈ X
(GF2) ((∀a ∈ A)x <̇ a) ⇒ A ∪ {x} ≺ A for all x ∈ X and A ∈ X

(SDom) x >̇ y ⇒ ({x} � {x, y} ∧ {x, y} � {y}) for all x, y ∈ X

Independence axioms are also commonly postulated and especially their weaker variants
or versions thereof, like bottom, top, disjoint and intermediate independence, frequently
play a role in characterisation results (e.g., see Pattanaik & Peleg, 1984; Nitzan & Pat-
tanaik, 1984). We decided to include standard independence (as already introduced in
Section 2.2), a stronger version (strictIND), which implies strict preferences, and a few
weaker versions, viz. bottom (botIND), top (topIND), disjoint (disIND) and intermediate
independence (intIND), which only apply to certain combinations of sets and elements.

(IND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B)
(strictIND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B)

(botIND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X
and x ∈ X \ (A ∪B) such that y >̇ x for all y ∈ A ∪B

(topIND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X
and x ∈ X \ (A ∪B) such that x >̇ y for all y ∈ A ∪B

(disIND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X ,
such that A ∩B = ∅, and for all x ∈ X \ (A ∪B)

(intIND) A � B ⇒ A ∪ {x, y} � B ∪ {x, y} for all A,B ∈ X and x, y ∈ X \ (A ∪B)
such that x >̇ z and z >̇ y for all z ∈ A ∪B

Bossert (1997) introduced axioms describing the attitude of the decision maker towards
uncertainty. We formalise weakenings of these axioms that apply to small sets only, since
these are sufficient for characterisation results like those of Arlegi (2003). Uncertainty
aversion postulates that the decision maker will, for any alternative x, (strictly) prefer this
alternative to a set containing both a better and a worse alternative. Uncertainty appeal,
on the other hand, says that the ranking has to be just the other way around: the set with
a better and a worse element is (strictly) preferred to the single element x.

(SUAv) (x >̇ y ∧ y >̇ z) ⇒ {y} � {x, z} for all x, y, z ∈ X
(SUAp) (x >̇ y ∧ y >̇ z) ⇒ {x, z} � {y} for all x, y, z ∈ X

Arlegi (2003) also uses two monotonicity axioms, called simple top and bottom mono-
tonicity. The underlying idea is simple: given two alternatives, it is better to get the better
one of the two together with some third element (instead of the worse one with the same
third element). The two variants of the axiom then only apply to alternatives that are
ranked higher (top) than the third alternative, or ranked lower (bottom), respectively.

(STopMon) x >̇ y ⇒ {x, z} � {y, z} for all x, y, z ∈ X such that x >̇ z and y >̇ z

(SBotMon) y >̇ z ⇒ {x, y} � {x, z} for all x, y, z ∈ X such that x >̇ y and x >̇ z
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A rather odd axiom is the principle of even-numbered extension of equivalence. It says
that, for all sets with an even number of elements, if the decision maker is indifferent about
whether this set is added to each of two distinct singleton sets, then she should also be
indifferent about whether it is added to the union of the two singleton sets. Even though it
lacks intuitive support, this axiom is useful because (together with a few other principles)
it characterises a median-based ordering proposed by Nitzan and Pattanaik (1984).

(evenExt) (A ∪ {x} ∼ {x} ∧A ∪ {y} ∼ {y}) ⇒ A ∪ {x, y} ∼ {x, y}
for all A ∈ X , such that |A| is even, and for all x, y ∈ X \A

The final axiom in our list is monotone consistency (MC), which was put forward by
Arlegi (2003) to characterise (in connection with other axioms) the min-max ordering (see
also Section 5.2). (MC) expresses that if a set of objects A is at least as good as another
set B, then the union of the two is at least as good as the latter. This implies —and for
complete binary relations is equivalent to— the potentially worse set B not being strictly
better than the union of the two. Intuitively, it means that after adding the alternatives of
the (weakly preferred) set A to the set B, the decision maker maintains the alternatives she
had in B plus the ones that were contained in A, which was weakly preferred to B. Thus,
this process should not produce a set that is strictly worse than B.

(MC) A � B ⇒ A ∪B � B for all A,B ∈ X

Although (MC) appears to be similar to the first axiom of the Gärdenfors principle, it is in
fact quite different since it does not dictate the existence of any strict preferences.
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