
Hunting for Tractable Languages for Judgment Aggregation

Ronald de Haan
Institute for Logic, Language and Computation

University of Amsterdam
me@ronalddehaan.eu

Abstract

Judgment aggregation is a general framework for collective
decision making that can be used to model many different set-
tings. Due to its general nature, the worst case complexity of
essentially all relevant problems in this framework is very high.
However, these intractability results are mainly due to the fact
that the language to represent the aggregation domain is overly
expressive. We initiate an investigation of representation lan-
guages for judgment aggregation that strike a balance between
(1) being limited enough to yield computational tractability
results and (2) being expressive enough to model relevant ap-
plications. In particular, we consider the languages of Krom
formulas, (definite) Horn formulas, and Boolean circuits in
decomposable negation normal form (DNNF). We illustrate
the use of the positive complexity results that we obtain for
these languages with a concrete application: voting on how to
spend a budget (i.e., participatory budgeting).

Introduction
Judgment aggregation is a general framework to study
methods for collective opinion forming, that has been in-
vestigated in the area of computational social choice (see,
e.g., Endriss 2016, Grossi and Pigozzi 2014). The framework
is set up in such a general way that it can be used to model
an extremely wide range of scenarios—including, e.g., the
setting of voting (Dietrich and List 2007). On the one hand,
this generality is an advantage: methods studied in judgment
aggregation can be employed in all these scenarios. On the
other hand, however, this generality severely hinders the use
of judgment aggregation methods in applications. Because
there are no restrictions on the type of aggregation settings
that are modeled, relevant computational tasks across the
board are computationally intractable in the worst case. In
other words, no performance guarantees are available that
warrant the efficient use of judgment aggregation methods for
applications—not even for simple settings. For example, com-
puting the outcome of a judgment aggregation scenario is NP-
hard for all aggregation procedures studied in the literature
that satisfy the rudimentary quality condition of consistency
(Endriss and De Haan 2015; De Haan and Slavkovik 2017;
Lang and Slavkovik 2014).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These negative computational complexity results are in
many cases due purely to the expressivity of the language
used to represent aggregation scenarios (full propositional
logic, or CNF formulas)—not to the structure of the sce-
nario being modeled. In other words, the known negative
complexity results draw an overly negative picture

To correct this gloomy and misleading image, a more de-
tailed and more fine-grained perspective is needed on the way
that application settings are modeled in the general frame-
work of judgment aggregation. In this paper, we take a first
look at the complexity of judgment aggregation scenarios
using this more sensitive point of view. That is, we initiate an
investigation of representation languages for judgment aggre-
gation that (1) are modest enough to yield positive complexity
results for relevant computational tasks, yet (2) are general
enough to model interesting and relevant applications.

Concretely, we look at several restricted propositional
languages that strike a balance between expressivity and
tractability in other settings, and we study to what extent
such a balance is attained in the setting of judgment aggre-
gation. In particular, we look at Krom (2CNF), Horn and
definite Horn formulas, and we consider the class of Boolean
circuits in decomposable negation normal form (DNNF). We
study the impact of these restricted languages on the com-
plexity of computing outcomes for a number of judgment
aggregation procedures studied in the literature. We obtain
a wide range of (positive and negative) results. Most of the
results we obtain are summarized in Tables 3, 4 and 5, located
in later sections.

In particular, we obtain several interesting positive com-
plexity results for the case where the domain is represented
using a Boolean circuit in DNNF. Additionally, we illus-
trate how this representation language of Boolean circuits
in DNNF—that combines expressivity and tractability—can
be used to get tractability results for a specific application:
voting on how to spend a budget. This application setting
can be seen as an instantiation of the setting of Participatory
Budgeting (see, e.g., Benade et al. 2017).

Related Work Judgment aggregation has been studied in
the field of computational social choice from (a.o.) a philoso-
phy, economics and computer science perspective (see, e.g.,
Dietrich 2007, Endriss 2016, Grossi and Pigozzi 2014, Lang
et al. 2017, List and Pettit 2002, Rothe 2016). The complexity

of computing outcomes for judgment aggregation procedures
has been studied by, a.o., Endriss, Grandi, and Porello (2012),
Endriss et al. (2016), Endriss and De Haan (2015), De Haan
and Slavkovik (2017) and Lang and Slavkovik (2014). See
Table 2 for complexity results that are relevant for this paper.

Roadmap We begin by explaining the framework of judg-
ment aggregation. We then study to what extent the known
languages of Krom and (definite) Horn formulas lead to suit-
able results for judgment aggregation. We continue with look-
ing at the class of DNNF circuits—studied in the field of
knowledge compilation—and we illustrate how results for
this class of circuits can be used for a concrete application
of judgment aggregation (that of voting on how to allocate a
budget). We conclude with outlining some promising ways
in which the research path that we set out can be followed.

An overview of notions from propositional logic and com-
putational complexity theory that we use can be found in the
appendix. The proofs of some results are omitted from the
main paper and are located in the additional material at the
end—these results are marked with a star (?).

Judgment Aggregation
We begin by introducing the setting of Judgment Aggregation
(Dietrich 2007; Endriss 2016; Grossi and Pigozzi 2014; List
and Pettit 2002). In this paper, we will use a variant of the
framework that has been studied by, e.g., Grandi (2012),
Grandi and Endriss (2013) and Endriss et al. (2016).1

Let I = {x1, . . . , xn} be a finite set of issues, in the form
of propositional variables. Intuitively, these issues are the
topics about which the individuals want to combine their
judgments. A truth assignment α : I → {0, 1} is called
a ballot, and represents an opinion that individuals and the
group can have. We will also denote ballots α by a binary vec-
tor (b1, . . . , bn) ∈ {0, 1}n, where bi = α(xi) for each i ∈
[n]—we use [n] to denote {1, . . . , n} for each n ∈ N. More-
over, we say that (p1, . . . , pn) ∈ {0, 1, ?}n is a partial bal-
lot, and that (p1, . . . , pn) agrees with a ballot (b1, . . . , bn)
if pi = bi whenever pi 6= ?, for all i ∈ [n]. We use an in-
tegrity constraint Γ to restrict the set of feasible opinions (for
both the individuals and the group). The integrity constraint Γ
is a propositional formula (or more generally, a single-output
Boolean circuit), whose variables can include x1, . . . , xn. We
define the set R(I,Γ) of rational ballots to be the ballots
(for I) that are consistent with the integrity constraint Γ. We
say that finite sequences r ∈ R(I,Γ)+ of rational ballots
are profiles. A profile contains a ballot for each individual
participating in the judgment aggregation scenario. Where
convenient we equate a profile r = (r1, . . . , rp) with the
multiset containing r1, . . . , rp.

A judgment aggregation procedure (or rule), for the set I
of issues and the integrity constraint Γ, is a function F that
takes as input a profile r ∈ R(I,Γ)+, and that produces a
non-empty set of ballots. A procedure F is called consistent

1This framework is also known under the name of binary aggre-
gation with integrity constraints, and can be used interchangeably
with other Judgment Aggregation frameworks from the literature
—as shown by Endriss et al. (2016).

if for all I , Γ and r it holds that each r∗ ∈ F (r) is consistent
with Γ. Consistency is a central requirement for judgment
aggregation procedures, and all rules that we consider in this
paper are consistent.

An example of a simple judgment aggregation procedure is
the majority rule (defined for profiles with an odd number of
ballots). We let the majority outcome mr be the partial ballot
such that for each x ∈ I, mr(x) = 1 if a strict majority of
ballots ri ∈ r satisfy ri(x) = 1, mr(x) = 0 if a strict major-
ity of ballots ri ∈ r satisfy ri(x) = 0, and mr(x) = ? oth-
erwise. The majority rule returns the majority outcome mr.
The majority rule is efficient to compute, but is not consistent
(as shown in Example 1).

Example 1. Consider the judgment aggregation scenario.
where I = {x1, x2, x3}, Γ = (¬x1 ∨ ¬x2 ∨ ¬x3), and the
profile r = (r1, r2, r3) is as shown in Table 1. The majority
outcome MAJ(r) is inconsistent with Γ.

r x1 x2 x3

r1 1 1 0
r2 1 0 1
r3 0 1 1

MAJ(r) 1 1 1

Table 1: Example of a judgment aggregation scenario.

Judgment Aggregation Procedures
Next, we introduce the judgment aggregation rules that we
use in this paper. These procedures are all consistent and are
many of the ones that have been studied in the literature (for
an overview see, e.g., Lang et al. 2017).

Several procedures that we consider can be seen as instan-
tiations of a general template: scoring procedures. Let I be
a set of issues and Γ be an integrity constraint. Moreover,
let s : R(I,Γ) × Lit(I) → N be a scoring function that
assigns a value to each literal l ∈ Lit(I) with respect to
a ballot r ∈ R(I,Γ). The scoring judgment aggregation
procedure Fs that corresponds to s is defined as follows:

Fs(r) = arg max
r∈R(I,Γ)

∑
ri∈r

∑
l∈Lit(I)
r(l)=1

s(ri, l).

That is, Fs selects the rational ballots r ∈ R(I,Γ) that
maximize the cumulative score for all literals agreeing with r
with respect to all ballots ri ∈ r.

The median (or Kemeny) procedure MED is based on the
scoring function and is defined by letting sK(r, l) = r(l)
for each r ∈ R(I,Γ) and each l ∈ Lit(I). Alternatively,
the MED procedure can be defined as the rule that selects the
ballots r∗ ∈ R(I,Γ) that minimize the cumulative Hamming
distance to the profile r. The Hamming distance between two
ballots r, r′ is dH(r, r′) = |{x ∈ I : r(x) 6= r′(x) }|.

The reversal scoring procedure REV is based on
the scoring function sR(r, l) such that sR(r, l) =
minr′∈R(I,Γ),r′(l)=0 dH(r, r′) for each r ∈ R(I,Γ) and
each l ∈ Lit(I). That is, the score sR(r, l) of l w.r.t. r is

the minimal number of issues whose truth value needs to be
flipped to get a rational ballot r′ that sets l to false.

The max-card Condorcet (or Slater) procedure MCC is
also based on the Hamming distance. Let r be a pro-
file. The MCC procedure is defined by letting MCC(r) =
arg minr∗∈R(I,Γ) dH(r∗,mr). That is, the MCC procedure
selects the rational ballots that minimize the Hamming dis-
tance to the majority outcome mr.

The Young procedure YOUNG selects those ballots that
can be obtained as a rational majority outcome by delet-
ing a minimal number of ballots from the profile. Let r be
a profile, and let d denote the smallest number such that
deleting d individual ballots from r results in a profile r′

such that mr′ is a complete and rational ballot. We let the
outcome YOUNG(r) of the Young procedure be the set of ra-
tional ballots r∗ such that deleting d individual from r results
in a profile r′ with mr′ = r∗.

The Max-Hamming procedure MAXHAM is also based
on the Hamming distance. Let r be a single ballot, and
let r = (r1, . . . , rp) be a profile. We define the max-
Hamming distance between r and r to be dmax,H(r, r) =
maxri∈r dH(r, ri). The Max-Hamming procedure is defined
by letting MAXHAM(r) = arg minr∗∈R(I,Γ) dmax,H(r∗, r).
That is, the Max-Hamming procedure selects the rational
ballots that minimize the max-Hamming distance to r.

The ranked agenda (or Tideman) procedure RA is based
on the notion of majority strength.2 Let r be a profile and
let l ∈ Lit(I). The majority strength ms(r, l) of l for r is
the number of ballots r ∈ r such that r(l) = 1. Let <tb
be a fixed linear order on Lit(I) (the tie-breaking order).
Based on <tb and the majority strength, we define the linear
order <r on Lit(I). Let l1, l2 ∈ Lit(I). Then l1 <r l2 if
either (i) ms(r, l1) > ms(r, l2) or (ii) ms(r, l1) = ms(r, l2)
and l1 <tb l2. Then RA(r) = {r∗} where the ballot r∗ is
defined inductively as follows. Let l1, l2, . . . , l2n be such that
for each i ∈ [2n − 1] it holds that li <r li+1. Let s0 be
the empty truth assignment. For each i ∈ [2n − 1], check
whether both si(li) 6= 0 and s′i is consistent with Γ, where s′i
is obtained from si by setting li to true (and keeping the
assignments to variables not occurring in li unchanged). If
both are the case, then let si+1 = s′i. Otherwise, let si+1 = si.
Then r∗ = s2n. Intuitively, the procedure iterates over the
assignments l1, l2, . . . in the order specified by <r. Each
literal li is set to true whenever this does not lead to an
inconsistency with previously assigned literals.

Outcome Determination
When given a judgment aggregation scenario (i.e., an agenda,
an integrity constraint, and a profile of individual opinions),
an important computational task is to compute a possible
collective opinion, for a fixed judgment aggregation proce-
dure. This task is often referred to as outcome determination.
Moreover, often it makes sense to seek possible collective

2Here, we consider a variant of the ranked agenda procedure
that works with a fixed tie-breaking order. Other variants, where
all possible tie-breaking orders are considered in parallel, have also
been studied in the literature (see, e.g., Lang et al. 2017).

opinions that satisfy certain properties (e.g., whether or not a
given issue is accepted in the collective opinion).

Essentially, this is a search problem: the task is to find
one of (possibly) multiple solutions. However, to make the
theoretical complexity analysis easier, we will consider the
following decision variant of this problem.

OUTCOME(F)
Instance: A set I of issues with an integrity constraint Γ
a profile r ∈ R(I,Γ)+ and a partial ballot s (for I).
Question: Is there a ballot r∗ ∈ F (r) such that s agrees
with r∗?

An outcome r∗ witnessing a yes-answer can be obtained
by solving this decision problem a linear number of times. In
addition to the basic task of finding one outcome (that agrees
with a given partial ballot s), one could consider other com-
putational tasks, e.g., representing the set F (r) of outcomes
in a succinct way that admits certain queries/operations to be
performed efficiently. For example, it might be desirable to
enumerate all (possibly exponentially many) outcomes with
polynomial delay. It could also be desirable to check whether
all outcomes agree with a given partial ballot s (skeptical
reasoning). For the sake of simplicity, in this paper we will
stick to the decision problem described above. All tractability
results that we obtain for the decision problem can straight-
forwardly be extended to tractability results for the above
computational tasks.

For the judgment aggregation procedures F that we con-
sidered above, OUTCOME(F) is Θp

2-hard. For an overview,
see Table 2.

F complexity of OUTCOME(F)

MED Θp
2-c (Lang and Slavkovik 2014)

REV Θp
2-c (De Haan and Slavkovik 2017)

MCC Θp
2-c (Lang and Slavkovik 2014)

YOUNG Θp
2-c (Endriss and De Haan 2015)

MAXHAM Θp
2-c (De Haan and Slavkovik 2017)

RA ∆p
2-c (Endriss and De Haan 2015)

Table 2: The computational complexity of outcome determi-
nation for various procedures F .

Krom and (Definite) Horn Formulas
In this section, we consider the fragments of Krom (2CNF),
Horn and definite Horn formulas—for a formal definition
of these fragments, see the appendix. These fragments can
be used to express settings where only basic dependencies
between issues play a role—see Example 2 for an indication.

Example 2. Krom (2CNF) formulas can be used to express
dependencies of the form “if we decide to use software tool 1
(s1) or software tool 2 (s2), then we need to purchase the
entire package (p):” (s1 ∨ s2)→ p ≡ (¬s1 ∨ p)∧ (¬s2 ∨ p).

Definite Horn formulas can be used to express depen-
dencies of the form “if we hire both researcher 1 (r1) and
researcher 2 (r2), then we need to rent another office o:”
(r1 ∧ r2)→ o ≡ (¬r1 ∨ ¬r2 ∨ o).

For some judgment aggregation rules these fragments
make computing outcomes tractable, and for other judgment
aggregation rules they do not. We begin with considering the
rules MED and MCC. Computing outcomes for these rules is
tractable when restricted to Krom formulas, but not when
restricted to (definite) Horn formulas.
Proposition? 1. OUTCOME(MED) is Θp

2-hard even when
restricted to the case where Γ ∈ DEFHORN.
Proposition? 2. OUTCOME(MCC) is Θp

2-hard even when
restricted to the case where Γ ∈ DEFHORN.

The following result refers to the notion of majority con-
sistency (see, e.g., Lang and Slavkovik 2014). A profile r is
majority consistent (with respect to an integrity constraint Γ)
if the majority outcome mr is consistent with Γ. A judg-
ment aggregation procedure is majority consistent if for each
integrity constraint Γ and each profile r that is majority con-
sistent (w.r.t. Γ), the procedure outputs all and only those
complete ballots that agree with the (partial) ballot mr.
Theorem 3. For all judgment aggregation procedures F that
are majority consistent, e.g., F ∈ {MED,MCC}, OUTCOME-
(F) is polynomial-time solvable when Γ ∈ KROM.

Proof. The general idea behind this proof is to use the prop-
erty that when Γ ∈ KROM, the majority outcome mr is
always Γ-consistent. Let (I,Γ, r, s) be an instance of OUT-
COME(F) with Γ ∈ KROM. Let r = (r1, . . . , rp). We con-
sider the majority outcome r∗ = mr.

We show that the partial ballot r∗ is consistent with Γ.
Suppose, to derive a contradiction, that r∗ is inconsistent
with Γ. Then there must be some clause (l1 ∨ l2) of size 2
such that Γ |= (l1 ∨ l2) and r∗ sets both l1 and l2 to false. By
definition of r∗, then a strict majority of the ballots in r set l1
to false, and a strict majority of the ballots in r set l2 to false.
By the pigeonhole principle then there must be some ballot ri
in r that sets both l1 and l2 to false. However, since Γ |= (l1∨
l2), we get that ri does not satisfy Γ, which is a contradiction
with our assumption that all ballots in the profile satisfy Γ.
Thus, we can conclude that r∗ is consistent with Γ.

Since F is majority consistent, we know that F (r) con-
tains all ballots that are consistent with both r∗ and Γ.
Since Γ ∈ KROM, deciding if F (r) contains a ballot that
is consistent with s can be done in polynomial time.

We continue with the MAXHAM procedure for which com-
puting outcomes is not tractable when restricted to Krom
formulas nor when restricted to definite Horn formulas.
Proposition? 4. OUTCOME(MAXHAM) is Θp

2-hard even
when restricted to the case where Γ = >.

OUTCOME(MAXHAM) restricted to the case where Γ =
> coincides with a problem known as CLOSEST STRING
for binary alphabets (see, e.g., Li, Ma, and Wang 2002).
To the best of our knowledge, this is the first time that the
exact complexity of (this variant of) this problem has been
identified. OUTCOME(MAXHAM) is also very similar to the
problem of computing outcomes for the minimax rule in
approval voting (Brams, Kilgour, and Sanver 2004).
Corollary 5. OUTCOME(MAXHAM) is Θp

2-hard even when
restricted to the case where Γ ∈ DEFHORN ∩ KROM.

Finally, we consider the procedure RA, for which comput-
ing outcomes is tractable for both Krom and Horn formulas.

Theorem 6. Let C be a class of propositional formulas (or
Boolean circuits) with the following two properties:

• C is closed under instantiation, i.e., for any Γ ∈ C and
any partial truth assignment α : Var(Γ)→ {0, 1} it holds
that Γ[α] ∈ C; and

• satisfiability of formulas in C is polynomial-time solvable.

Then OUTCOME(RA) is polynomial-time solvable when re-
stricted to the case where Γ ∈ C.

Proof (sketch). Let C be a class of propositional formulas
that satisfies the conditions stated above, and let Γ ∈ C.
We can then compute OUTCOME(RA) = {r∗} by directly
using the iterative definition of r∗ given in the description
of the ranked agenda procedure. This definition iteratively
constructs partial ballots s0, . . . , s2n. Ballot s0 is the empty
ballot, and for each i > 0, ballot si is constructed from si−1

by using only the operations of instantiating the integrity
constraint and checking satisfiability of the resulting for-
mula. Due to the properties of C, these operations are all
polynomial-time solvable. Thus, constructing r∗ = s2n can
be done in polynomial time.

Corollary 7. For each C ∈ {KROM,HORN}, OUTCOME-
(RA) is polynomial-time solvable when restricted to the case
where Γ ∈ C.

An overview of the complexity results that we established
in this section can be found in Table 3.

F complexity of OUTCOME(F)
restricted to HORN / DEFHORN

MED Θp
2-c (Proposition 1)

MCC Θp
2-c (Proposition 2)

MAXHAM Θp
2-c (Corollary 5)

RA in P (Corollary 7)

F complexity of OUTCOME(F)
restricted to KROM

MED in P (Theorem 3)
MCC in P (Theorem 3)

MAXHAM Θp
2-c (Corollary 5)

RA in P (Corollary 7)

Table 3: The computational complexity of outcome deter-
mination for several procedures F restricted to the case
where Γ ∈ KROM, the case where Γ ∈ HORN, and the
case where Γ ∈ DEFHORN.

The results that we obtained for Horn formulas can all
be straightforwardly extended to the fragment of renamable
Horn formulas—e.g., the fragment of renamable Horn formu-
las satisfies the requirements of Theorem 6. A propositional
formula ϕ is renamable Horn if there is a set R ⊆ Var(ϕ) of
variables such that ϕ becomes Horn when all literals over R
are complemented.

Boolean Circuits in DNNF
Next, we consider the case where the integrity constraints
are restricted to Boolean circuits in Decomposable Negation
Normal Form (DNNF). This is a class of Boolean circuits
studied in the area of knowledge compilation. We illustrate
how this class of circuits is useful for judgment aggregation.

Knowledge Compilation
Knowledge compilation (see, e.g., Darwiche and Marquis
2002, Darwiche 2014, Marquis 2015) refers to a collection
of approaches for solving reasoning problems in the area
of artificial intelligence and knowledge representation and
reasoning that are computationally intractable in the worst-
case asymptotic sense. These reasoning problems typically
involve knowledge in the form of a Boolean function—often
represented as a propositional formula. The general idea be-
hind these approaches is to split the reasoning process into
two phases: (1) compiling the knowledge into a different for-
mat that allows the reasoning problem to be solved efficiently,
and (2) solving the reasoning problem using the compiled
knowledge. Since the entire reasoning problem is computa-
tionally intractable, at least one of these two phases must be
intractable. Indeed, typically the first phase does not enjoy
performance guarantees on the running time—upper bounds
on the size of the compiled knowledge are often desired in-
stead. One of the advantages of this methodology is that one
can reuse the compiled knowledge for many instances, which
could lead to a smaller overall running time.

A prototypical example of a problem studied in the setting
of knowledge compilation is that of clause entailment (see,
e.g., Darwiche and Marquis 2002, Cadoli et al. 2002). In this
problem, one is given a knowledge base, say in the form of a
propositional formula ϕ in CNF, together with a clause δ. The
question is to decide whether ϕ |= δ. This problem is co-NP-
complete in general. The knowledge compilation approach
to solve this problem would be to firstly compile the CNF
formula ϕ into an equivalent expression in a different format.
For example, one could consider the formalism of Boolean
circuits in Decomposable Negation Normal Form (DNNF)
(or DNNF circuits, for short).

DNNF circuits are a particular class of Boolean circuits
in Negation Normal Form (NNF). A Boolean circuit C in
NNF is a direct acyclic graph with a single root (a node with
no ingoing edges) where each leaf is labelled with >, ⊥, x
or ¬x for a propositional variable x, and where each internal
node is labelled with ∧ or ∨. (An arc in the graph from N1

to N2 indicates that N2 is a child node of N1.) The set of
propositional variables occurring in C is denoted by Var(C).
For any truth assignment α : Var(C) → {0, 1}, we define
the truth value C[α] assigned to C by α in the usual way,
i.e., each node is assigned a truth value based on its label and
the truth value assigned to its children, and the truth value
assigned to C is the truth value assigned to the root of the
circuit. DNNF circuits are Boolean circuits in NNF that sat-
isfy the additional property of decomposability. A circuit C
is decomposable if for each conjunction in the circuit, the
conjuncts do not share variables. That is, for each node d
in C that is labelled with ∧ and for any two children d1, d2 of

this node, it holds that Var(C1)∩Var(C2) = ∅, where C1, C2

are the subcircuits of C that have d1, d2 as root, respectively.
An example of a DNNF circuit is given in Figure 1.

x1 ¬x1 x2 ¬x2

∧ ∧
∨

Figure 1: An example of a DNNF circuit.

The problem of clause entailment can be solved in poly-
nomial time when the propositional knowledge is given as
a DNNF circuit (Darwiche and Marquis 2002). Moreover,
every CNF formula can be translated to an equivalent DNNF
circuit—without guarantees on the size of the circuit. Thus,
one could solve the problem of clause entailment by first
compiling the CNF formula ϕ into an equivalent DNNF cir-
cuit C (without guarantees on the running time or size of the
result) and then solving C |= δ in time polynomial in |C|.

Next, we will show how representation languages such
as DNNF circuits can be used in the setting of Judgment
Aggregation, and we will argue how Judgment Aggregation
can benefit from the approach of first compiling knowledge
(without performance guarantees) before using the compiled
knowledge to solve the initial problem.

Algebraic Model Counting
We will use the technique of algebraic model counting (Kim-
mig, Van den Broeck, and De Raedt 2017) to execute several
judgment aggregation procedures efficiently using the struc-
ture of DNNF circuits. Algebraic model counting is a gen-
eralization of the problem of counting models of a Boolean
function that uses the addition and multiplication operators
of a commutative semiring.

Definition 1 (Commutative semiring). A semiring is a struc-
ture (A,⊕,⊗, e⊕, e⊗), where:

• addition ⊕ is an associative and commutative binary oper-
ation over the set A;

• multiplication ⊗ is an associative binary operation over
the set A;

• ⊗ distributes over ⊕;
• e⊕ ∈ A is the neutral element of ⊕, i.e., for all a ∈
A, a⊕ e⊕ = a;

• e⊗ ∈ A is the neutral element of ⊗, i.e., for all a ∈
A, a⊗ e⊗ = a; and

• e⊕ is an annihilator for ⊗, i.e., for all a ∈ A, e⊕ ⊗ a =
a⊗ e⊕ = e⊕.

When ⊗ is commutative, we say that the semiring is commu-
tative. When ⊕ is idempotent, we say that the semiring is
idempotent.

Definition 2 (Algebraic model counting). Given:

• a Boolean function f over a set I of propositional vari-
ables;

• a commutative semiring (A,⊕,⊗, e⊕, e⊗), and

• a labelling function λ : Lit(I)→ A mapping literals over
the variables in I to values in the set A,

the task of algebraic model counting (AMC) is to compute:

A(f) =
⊕

α:I→{0,1}
f(α)=1

⊗
l∈Lit(I)
λ(l)=1

λ(l).

We can solve the task of algebraic model counting effi-
ciently for DNNF circuits when the semiring satisfies an
additional condition.

Definition 3 (Neutral (⊕, α)). Let (A,⊕,⊗, e⊕, e⊗) be a
semiring, and let λ : Lit(I) → A be a labelling function
for some set I of propositional variables. A pair (⊕, λ) is
neutral if for all x ∈ I it holds that λ(x)⊕ λ(¬x) = e⊗.

Theorem 8 (Kimmig, Van den Broeck, and De Raedt 2017,
Thm 5). When f is represented as a DNNF circuit, and
the semiring (A,⊕,⊗, e⊕, e⊗) and the labelling function λ
have the properties that (i) ⊕ is idempotent, and (ii) (⊕, λ)
is neutral, then the algebraic model counting problem is
polynomial-time solvable—when given f and λ as input, and
when the operations of addition (⊕) and multiplication (⊗)
over A can be performed in polynomial time.

We will use the result of Theorem 8 to show that outcome
determination for several judgment aggregation procedures
is tractable for the case where Γ is a DNNF circuit. To do
so, we will consider the following commutative, idempotent
semiring (also known as the max-plus algebra). We let A =
Z ∪ {−∞,∞}, we let ⊕ = max, ⊗ = +, e⊕ = −∞,
and e⊗ = 1. Whenever we have a labelling function α such
that (⊕, λ) is neutral—i.e., such that max(λ(x), λ(¬x)) = 0
for each x ∈ I—we satisfy the conditions of Theorem 8.

Theorem 9. OUTCOME(MED) and OUTCOME(MCC) are
polynomial-time computable when Γ is a DNNF circuit.

Proof. We prove the statement for OUTCOME(MED). The
case for OUTCOME(MCC) is analogous. Let (I,Γ, r, s) be
an instance of OUTCOME(MED). We solve the problem
by reducing it to the problem of algebraic model count-
ing. For (A,⊕,⊗, e⊕, e⊗), we use the max-plus algebra
described above. We construct the labelling function λ as
follows. For each x ∈ I, we count the number nx,1 of
ballots r ∈ r such that r(x) = 1 and we count the
number nx,0 of ballots r ∈ r such that r(x) = 0. That
is, we let nx,0 and nx,1 be the majority strength of ¬x
and x, respectively, in the profile r. We pick a constant cx
such that max{n′x,0, n′x,1} = 0 where n′x,0 = nx,0 + cx
and n′x,1 = nx,1 +cx. We then let λ(x) = n′x,1 and λ(¬x) =
n′x,0. This ensures that (⊕, λ) satisfies the condition of neu-
trality (i.e., that λ(x)⊕ λ(¬x) = e⊗ for each x ∈ I).

This choice of (A,⊕,⊗, e⊕, e⊗) and λ has the property
that the ballots r∗ ∈ MED(r) are exactly those complete
ballots r∗ that satisfy Γ and for which holds that A(Γ) =⊗

l∈Lit(I),r∗(l)=1 λ(l). That is, the set MED(r) consists of
those rational ballots that achieve the solution of the algebraic
model counting problem A(Γ). We can solve the instance of
decision problem OUTCOME(MED) by solving the algebraic
model counting problem twice: once for Γ and once for Γ[s].

The instance is a yes-instance if and only if A(Γ) = A(Γ[s]).
By Theorem 8, this can be done in polynomial time.

To make this algorithm work for the case of OUTCOME-
(MCC), one only needs to adapt the values of nx,0 and nx,1.
Instead of setting nx,0 and nx,1 to the majority strength of ¬x
and x, respectively, we let nx,0 = 0 if a strict majority of
ballots r ∈ r have that r(x) = 1, and we let nx,0 = 1
otherwise. Similarly, we let nx,1 = 0 if a strict majority
of ballots r ∈ r have that r(x) = 0, and we let nx,0 = 1
otherwise.

Representing the integrity constraint as a DNNF circuit
makes it possible to perform more tasks efficiently than just
the decision problem OUTCOME(F). For example, the algo-
rithms for algebraic model counting can be used to produce
a DNNF circuit that represents the set F (r) of outcomes,
allowing further operations to be carried out efficiently.

Theorem 10. OUTCOME(REV) is polynomial-time com-
putable when Γ is a DNNF circuit.

Proof (sketch). The polynomial-time algorithm for OUT-
COME(REV) is analogous to the algorithm described for
OUTCOME(MED) described in the proof of Theorem 9. The
only modification that needs to be made to make this algo-
rithm work for OUTCOME(REV) is to adapt the numbers nx,0
and nx,1, for each x ∈ I. Instead of identifying these num-
bers with the majority strength of ¬x and x, respectively, we
identify them with the total reversal score of x and ¬x, over
the profile r. That is, we let nx,0 =

∑
r∈r sR(r,¬x) and we

let nx,1 =
∑

r∈r sR(r, x). For general propositional formu-
las Γ, the reversal scoring function sR is NP-hard to compute.
However, since Γ is given as a DNNF circuit, we can com-
pute the scoring function sR, and thereby nx,0 and nx,1, in
polynomial time—by using another reduction to the problem
of algebraic model counting. We omit the details of this latter
reduction.

Intuitively, the results of Theorems 9 and 10 are a conse-
quence of the fact that DNNF circuits allow polynomial-time
weighted maximal model computation, and that the judg-
ment aggregation procedures MED, MCC and REV are based
on weighted maximal model computation. These results can
therefore also straightforwardly be extended to other judg-
ment aggregation procedures that are based on weighted
maximal model computation.

Other Results
We can extend some previously established results (Proposi-
tion 4 and Theorem 6) to the case of DNNF circuits.

Corollary 11. OUTCOME(RA) is polynomial-time com-
putable when restricted to the case where Γ is a DNNF
circuit.

Corollary 12. OUTCOME(MAXHAM) is Θp
2-complete when

restricted to the case where Γ is a DNNF circuit.

A similar result for YOUNG follows from a result that we
will establish in the next section (Proposition 18).

Corollary 13. OUTCOME(YOUNG) is Θp
2-complete when

restricted to the case where Γ is a DNNF circuit.

An overview of the results established so far in this section
can be found in Table 4.

F complexity of OUTCOME(F)

MED in P (Theorem 9)
REV in P (Theorem 10)
MCC in P (Theorem 9)

YOUNG Θp
2-c (Corollary 13)

MAXHAM Θp
2-c (Corollary 12)

RA in P (Corollary 11)

Table 4: The computational complexity of outcome determi-
nation for various procedures F restricted to the case where Γ
is a DNNF circuit.

A Compilation Approach
The results of Theorems 9 and 10 and Corollary 11 pave
the way for another approach towards finding cases where
judgment aggregation procedures can be performed effi-
ciently. The idea behind this approach is to compile the
integrity constraint into a DNNF circuit—regardless of
whether this compilation process enjoys a polynomial-time
worst-case performance guarantee. There are several off-
the-shelf tools available that compile CNF formulas into
DNNF circuits using optimized methods based on SAT
solving algorithms (Darwiche 2004; Muise et al. 2012;
Oztok and Darwiche 2014b). Since the class of DNNF cir-
cuits is expressively complete—i.e., every Boolean function
can be expressed using a DNNF circuit—it is possible to
compile any integrity constraint Γ into a DNNF circuit CΓ.

The downside is that the circuitCΓ could be of exponential
size, or it could take exponential time to compute it. However,
once the circuit CΓ is computed and stored in memory, one
can use several judgment aggregation procedures efficiently:
MED, MCC, REV and RA.

Thus, this approach restricts the computational bottleneck
to the compilation phase, before any judgments are solicited
from the individuals in the judgment aggregation scenario.
Once the compilation phase has been completed, there are
polynomial-time guarantees on the aggregation phase (poly-
nomial in the size of the compiled DNNF circuit CΓ).

CNF Formulas of Bounded Treewidth
The tractability results for DNNF circuits can be leveraged
to get parameterized tractability results for the case where
the integrity constraint is a CNF formula with a ‘treelike’
structure.

Parameterized Complexity Theory & Treewidth In or-
der to explain the results that follow, we briefly introduce
some relevant concepts from the theory of parameterized
complexity. For more details, we refer to textbooks on the
topic (see, e.g., Cygan et al. 2015, Downey and Fellows
2013). The central notion in parameterized complexity is that
of fixed-parameter tractability—a notion of computational
tractability that is more lenient than the traditional notion

of polynomial-time solvability. In parameterized complexity
running times are measured in terms of the input size n as
well as a problem parameter k. Intuitively, the parameter is
used to capture structure that is present in the input and that
can be exploited algorithmically. The smaller the value of the
problem parameter k, the more structure the input exhibits.
Formally, we consider parameterized problems that capture
the computational task at hand as well as the choice of pa-
rameter. A parameterized problem Q is a subset of Σ∗ × N
for some fixed alphabet Σ. An instance (x, k) of Q contains
the problem input x ∈ Σ∗ and the parameter value k ∈ N.
A parameterized problem is fixed-parameter tractable there
is a deterministic algorithm that for each instance (x, k) de-
cides whether (x, k) ∈ Q and that runs in time f(k)|x|c,
where f is a computable function of k, and c is a fixed con-
stant. Algorithms running within such time bounds are called
fpt-algorithms. The idea behind these definitions is that fixed-
parameter tractable running times are scalable whenever the
value of k is small.

A commonly used parameter is that of the treewidth of a
graph. Intuitively, the treewidth measures the extent to which
a graph is like a tree—trees and forests have treewidth 1,
cycles have treewidth 2, and so forth. The notion of treewidth
is defined as follows. A tree decomposition of a graph G =
(V,E) is a pair (T , (Bt)t∈T) where T = (T, F) is a tree and
(Bt)t∈T is a family of subsets of V such that:

• for every v ∈ V , the set B−1(v) = { t ∈ T : v ∈ Bt } is
nonempty and connected in T ; and

• for every edge {v, w} ∈ E, there is a t ∈ T such that
v, w ∈ Bt.

The width of the decomposition (T , (Bt)t∈T) is the number
max{ |Bt| : t ∈ T }− 1. The treewidth of G is the minimum
of the widths of all tree decompositions of G. Let G be a
graph and k a nonnegative integer. There is an fpt-algorithm
that computes a tree decomposition of G of width k if it
exists, and fails otherwise (Bodlaender 1996).

Encoding Results We can then use results from the lit-
erature to establish tractability results for computing out-
comes of various judgment aggregation procedures for in-
tegrity constraints whose variable interactions have a tree-
like structure. Let Γ = c1 ∧ · · · ∧ cm be a CNF formula.
The incidence graph of Γ is the graph (V,E), where V =
Var(Γ) ∪ {c1, . . . , cu} and E = { {cj , x} : 1 ≤ j ≤ m,x ∈
Var(Γ), x occurs in the clause cj }. The incidence treewidth
of Γ is defined as the treewidth of the incidence graph of Γ.

We can leverage the results of Theorems 9 and 10 and
Corollary 11 to get fixed-parameter tractability results for
computing outcomes of MED, MCC, REV and RA for integrity
constraints with small incidence treewidth.

Proposition 14 (Oztok and Darwiche 2014a, Bova et al.
2015). Let Γ be a CNF formula of incidence treewidth k.
Constructing a DNNF circuit Γ′ that is equivalent to Γ can
be done in fixed-parameter tractable time.

Corollary 15. The problems OUTCOME(MED), OUTCOME-
(MCC), OUTCOME(REV) and OUTCOME(RA) are fixed-

parameter tractable when parameterized by the incidence
treewidth of Γ.

Case Study: Budget Constraints
In this section, we illustrate how the results of the previous
section can contribute to providing a computational complex-
ity analysis for an application setting. The setting that we
consider as an example is that of budget constraints. This set-
ting is closely related to that of Participatory Budgeting (see,
e.g., Benade et al. 2017), where citizens propose projects and
vote on which projects get funded by public money. In the
setting that we consider, each issue x ∈ I represents whether
or not some measure is implemented. Each such measure has
an implementation cost cx associated with it. Moreover, there
is a total budget B that cannot be exceeded—that is, each
ballot (individual or collective) can set a set of variables x
to true such that the cumulative cost of these variables is at
most B (and set the remaining variables to false). The in-
tegrity constraint Γ encodes that the total budget B cannot
be exceeded by the total cost of the variables that are set to
true. (For the sake of simplicity, we assume that all costs and
the total budget are all positive integers.)

The concepts and tools from judgment aggregation are use-
ful and relevant in this setting. This is witnessed, for instance,
by the fact that simply taking a majority vote will not always
lead to a suitable collective outcome. Consider the example
where there are three measures that are each associated with
cost 1, and where there is a budget of 2. Moreover, suppose
that there are three individuals. The first individual votes to
implement measures 1 and 2; the second votes for measures 1
and 3, and the third for 2 and 3. Each of the individuals’
opinions is consistent with the budget. However, taking a
majority measure-by-measure vote results in implementing
all three issues, which exceeds the budget. (In other words,
the individual opinions r1, r2, r3 are all rational, whereas
the collective majority opinion mr is not.) This example is
illustrated in Figure 2—in this figure, we encode the budget
constraint using a DNNF circuit Γ.

r x1 x2 x3

r1 1 1 0
r2 1 0 1
r3 0 1 1

MAJ(r) 1 1 1

(a) The profile r

x1 ¬x1x2 ¬x2¬x3

∧
∨
∧
∨Γ =

(b) The integrity constraint Γ

Figure 2: Example of an aggregation scenario with a budget
constraint (for B = 2 and cx = 1 for all x ∈ I), where the
budget constraint is represented as a DNNF circuit Γ.

Encoding into a Polynomial-Size DNNF Circuit
To use the framework of judgment aggregation to model
settings with budget constraints, we need to encode budget
constraints using integrity constraints Γ. One can do this in
several ways. We consider an encoding using DNNF circuits

(as in Figure 2b). Let I be a set of issues, let {cx}x∈I be
a vector of implementation costs, and let B ∈ N be a total
budget. We say that an integrity constraint Γ encodes the
budget constraint for {cx}x∈I and B if for each complete
ballot r : I → {0, 1} it holds that r satisfies Γ if and only
if
∑

x∈I,r(x)=1 cx ≤ B.
We can encode budget constraints efficiently using DNNF

circuits by expressing them as binary decision diagrams. A
binary decision diagram (BDD) is a particular type of NNF
circuit. Let Γ be an NNF circuit. We say that a nodeN of Γ is
a decision node if (i) it is a leaf or (ii) it is a disjunction node
expressing (x∧α)∨(¬x∧β), where x ∈ Var(Γ) and α and β
are decision nodes. A binary decision diagram is an NNF
circuit whose root is a decision node. A free binary decision
diagram (FBDD) is a BDD that satisfies decomposability
(see, e.g., Darwiche and Marquis 2002, Gergov and Meinel
1994).

Theorem 16. For each I, {cx}x∈I and B, we can con-
struct a DNNF circuit Γ encoding the budget constraint
for {cx}x∈I and B in time polynomial in B + |I|.

Proof. We construct an FBDD Γ encoding the budget
constraint for {cx}x∈I and B as follows. Without loss
of generality, suppose that cx > 0 for each x ∈ I.
Let I = {x1, . . . , xn}. We introduce a decision node Ni,j

for each i ∈ {0, . . . , n} and j ∈ {0, . . . , B}. Take arbi-
trary i ∈ {0, . . . , n} and j ∈ {0, . . . , B}. If i = n, we
let Ni,j = >. If i < n, we distinguish two cases: either
(i) j′ ≤ B or (ii) j′ > B, where j′ = j + cxi .. In case (i),
we let Ni,j = (xi ∧Ni+1,j′) ∨ (¬xi ∧Ni+1,j). In case (ii),
we let Ni,j = (xi ∧ ⊥) ∨ (¬xi ∧ Ni+1,j). We let the root
of the FBDD be the node N0,0—and we remove all nodes
that are not descendants of N0,0. Intuitively, the subcircuit
rooted at Ni,j represents all truth assignments to the vari-
ables xi+1, . . . , xn that fit within a budget of B − j. For
each node Ni,j it holds that the variables in the leaves reach-
able from Ni,j are among xi+1, . . . , xn. Therefore, we con-
structed an FBDD. Moreover, each complete ballot r satisfies
the circuit Γ if and only if

∑
x∈I,r(x)=1 cx ≤ B. Thus, Γ is

a DNNF circuit constructed in time polynomial in B + |I|
encoding the budget constraint for {cx}x∈I and B.

An example of a DNNF circuit resulting from the en-
coding described in the proof of Theorem 16—after some
simplifications—can be found in Figure 2b.

Complexity Results
Using the encoding result of Theorem 16, we can establish
polynomial-time solvability results for computing outcomes
for several judgment aggregation procedures in the setting of
budget constraints.

Corollary 17. OUTCOME(MED), OUTCOME(MCC), OUT-
COME(REV), and OUTCOME(RA) are polynomial-time com-
putable when restricted to the case where Γ expresses a
budget constraint.

Proof. The result follows from Theorems 9, 10 and 16, and
Corollary 11.

For the YOUNG and MAXHAM procedures, we obtain in-
tractability results for the case of budget constraints—for
both procedures computing outcomes is Θp

2-hard.

Proposition? 18. OUTCOME(YOUNG) is Θp
2-hard when re-

stricted to the case where Γ expresses a budget constraint.

Corollary 19. OUTCOME(MAXHAM) is Θp
2-hard when re-

stricted to the case where Γ expresses a budget constraint.

Proof. The result follows directly from Proposition 4.

An overview of the complexity results that we established
in this section can be found in Table 5.

F complexity of OUTCOME(F)

MED in P (Corollary 17)
REV in P (Corollary 17)
MCC in P (Corollary 17)

YOUNG Θp
2-c (Proposition 18)

MAXHAM Θp
2-c (Corollary 19)

RA in P (Corollary 17)

Table 5: The computational complexity of outcome determi-
nation for various procedures F restricted to the case where Γ
is a budget constraint.

Directions for Future Research
In this paper, we provided a set of initial results for restricted
languages for judgment aggregation, but these results are
only the tip of the iceberg that is to be explored. We outline
some directions for interesting future work on this topic.

One first direction is to establish the complexity of OUT-
COME(F) for cases that are left open in this paper—for exam-
ple, for YOUNG and REV for the case of Krom and (definite)
Horn formulas. Another direction is to pinpoint the complex-
ity of OUTCOME(F) for the languages that we considered
for other judgment aggregation rules studied in the literature
(see, e.g., Lang et al. 2017).

Yet another direction is to extend tractability results ob-
tained in this paper—e.g., for Krom and Horn formulas—to
formulas that are ‘close’ to Krom or Horn formulas. One
could use the notion of backdoors for this (see, e.g., Gaspers
and Szeider 2012).

Finally, further restricted languages of propositional for-
mulas or Boolean circuits need to be studied, to get a more
complete picture of where the boundaries of the expressivity-
tractability balance lie in the setting of judgment aggregation.
A good source for additional languages is the field of knowl-
edge compilation (see, e.g., Darwiche and Marquis 2002,
Darwiche 2014, Marquis 2015), where many restricted lan-
guages have been studied with respect to their expressivity
and support for performing various operations tractably.

Conclusion
In this paper, we initiated the hunt for representation lan-
guages for the setting of judgment aggregation that strike a
balance between (1) allowing relevant computational tasks

to be performed efficiently and (2) being expressive enough
to model interesting and relevant application settings. Con-
cretely, we considered Krom and (definite) Horn formulas,
and we studied the class of Boolean circuits in DNNF. We
studied the impact of these languages on the complexity of
computing outcomes for a number of judgment aggregation
procedures studied in the literature. Additionally, we illus-
trated the use of these languages for a specific application
setting: voting on how to spend a budget.

Appendix: Preliminaries
We give an overview of some notions from propositional
logic and computational complexity that we use in the paper.

Propositional Logic
Propositional formulas are constructed from propositional
variables using the Boolean operators ∧,∨,→, and ¬. A
literal is a propositional variable x (a positive literal) or a
negated variable ¬x (a negative literal). A clause is a finite
set of literals, not containing a complementary pair x,¬x, and
is interpreted as the disjunction of these literals. A formula
in conjunctive normal form (CNF) is a finite set of clauses,
interpreted as the conjunction of these clauses. For each r ≥
1, an r-clause is a clause that contains at most r literals, and
rCNF denotes the class of all CNF formulas consisting only
of r-clauses. 2CNF is also denoted by KROM, and 2CNF
formulas are also known as Krom formulas. A Horn clause is
a clause that contains at most one positive literal. A definite
Horn clause is a clause that contains exactly one positive
literal. We let HORN denote the class of all CNF formulas
that contain only Horn clauses (Horn formulas), and we let
DEFHORN denote the class of all CNF formulas that contain
only definite Horn clauses (definite Horn formulas).

For a propositional formula ϕ, Var(ϕ) denotes the set of
all variables occurring in ϕ. Moreover, for a set X of vari-
ables, Lit(X) denotes the set of all literals over variables
in X , i.e., Lit(X) = {x,¬x : x ∈ X }. We use the stan-
dard notion of (truth) assignments α : Var(ϕ)→ {0, 1} for
Boolean formulas and truth of a formula under such an as-
signment. For any formula ϕ and any truth assignment α, we
let ϕ[α] denote the formula obtained from ϕ by instantiating
variables s in the domain of α with α(x) and simplifying the
formula accordingly. By a slight abuse of notation, if α is
defined on all Var(ϕ), we let ϕ[α] denote the truth value of ϕ
under α.

Computational Complexity Theory
We assume the reader to be familiar with the complexity
classes P and NP, and with basic notions such as polynomial-
time reductions. For more details, we refer to textbooks on
computational complexity theory (see, e.g., Arora and Barak
2009).

In this paper, we also refer to the complexity classes Θp
2

and ∆p
2 that consist of all decision problems that can be

solved by a polynomial-time algorithm that queries an NP
oracle O(log n) or nO(1) times, respectively. Formally, algo-
rithms with access to an oracle are defined as follows. Let O
be a decision problem. A Turing machine M with access to

an O oracle is a Turing machine with a dedicated oracle tape
and dedicated states qquery, qyes and qno. Whenever M is in
the state qquery, it does not proceed according to the transition
relation, but instead it transitions into the state qyes if the
oracle tape contains a string x that is a yes-instance for the
problem O, i.e., if x ∈ O, and it transitions into the state qno
if x 6∈ O. Intuitively, the oracle solves arbitrary instances
ofO in a single time step. The class Θp

2 (resp. ∆p
2) consists of

all decision problemsQ for which there exists a deterministic
Turing machine that decides for each instance x of size n
whether x ∈ Q in time polynomial in n by querying some
oracle O ∈ NP at most O(log n) (resp. nO(1)) times.

Let C be a class of propositional formulas. The following
problem is complete for the class Θp

2 under polynomial-time
reductions when C is the class of all propositional formulas
(Chen and Toda 1995; Krentel 1988; Wagner 1990).

MAX-MODEL(C)
Instance: A satisfiable propositional formula ϕ ∈ C, and
a variable z ∈ Var(ϕ).
Question: Is there a model of ϕ that sets a maximal num-
ber of variables in Var(ϕ) to true (among all models of ϕ)
and that sets z to true?
For any class C of propositional formulas, we let MAX-

MODEL(C) denote the problem MAX-MODEL restricted to
formulas ϕ ∈ C.

Acknowledgments. This work was supported by the Aus-
trian Science Fund (FWF), project J4047.

References
Arora, S., and Barak, B. 2009. Computational Complexity –
A Modern Approach. Cambridge University Press.
Benade, G.; Nath, S.; Procaccia, A. D.; and Shah, N. 2017.
Preference elicitation for participatory budgeting. In Proc. of
the 31st AAAI Conf. on Artificial Intelligence (AAAI 2017),
376–382. AAAI Press.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Bova, S.; Capelli, F.; Mengel, S.; and Slivovsky, F. 2015. On
compiling CNFs into structured deterministic DNNFs. In
Proc. of the 18th Intern. Conf. on Theory and Applications of
Satisfiability Testing (SAT 2015), 199–214.
Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2004. A
minimax procedure for negotiating multilateral treaties. In
Proc. of the 2004 Annual Meeting of the American Political
Science Association.
Cadoli, M.; Donini, F. M.; Liberatore, P.; and Schaerf, M.
2002. Preprocessing of intractable problems. Inf. Comput.
176(2):89–120.
Chen, Z.-Z., and Toda, S. 1995. The complexity of selecting
maximal solutions. Inf. Comput. 119:231–239.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.
Darwiche, A., and Marquis, P. 2002. A knowledge compila-
tion map. J. Artif. Intell. Res. 17:229–264.

Darwiche, A. 2004. New advances in compiling CNF into
decomposable negation normal form. In de Mántaras, R. L.,
and Saitta, L., eds., Proc. of the 16th European Conf. on
Artificial Intelligence, (ECAI 2004), 328–332. IOS Press.
Darwiche, A. 2014. Tractable knowledge representation
formalisms. In Bordeaux, L.; Hamadi, Y.; and Kohli, P.,
eds., Tractability: Practical Approaches to Hard Problems.
Cambridge University Press. 141–172.
Dietrich, F., and List, C. 2007. Arrow’s theorem in judgment
aggregation. Social Choice and Welfare 29(1):19–33.
Dietrich, F. 2007. A generalised model of judgment aggrega-
tion. Social Choice and Welfare 28(4):529–565.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals of
Parameterized Complexity. Springer Verlag.
Endriss, U., and de Haan, R. 2015. Complexity of the winner
determination problem in judgment aggregation: Kemeny,
Slater, Tideman, Young. In Proc. of the 14th Intern. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2015).
Endriss, U.; Grandi, U.; de Haan, R.; and Lang, J. 2016.
Succinctness of languages for judgment aggregation. In
Proc. of the 15th Intern. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2016). AAAI Press.
Endriss, U.; Grandi, U.; and Porello, D. 2012. Complexity
of judgment aggregation. J. Artif. Intell. Res. 45:481–514.
Endriss, U. 2016. Judgment aggregation. In Brandt, F.;
Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A., eds.,
Handbook of Computational Social Choice. Cambridge Uni-
versity Press, Cambridge.
Gaspers, S., and Szeider, S. 2012. Backdoors to satisfaction.
In Bodlaender, H. L.; Downey, R.; Fomin, F. V.; and Marx, D.,
eds., The Multivariate Algorithmic Revolution and Beyond,
287–317. Springer Verlag.
Gergov, J., and Meinel, C. 1994. Efficient analysis and
manipulation of OBDDs can be extended to FBDDs. IEEE
Transactions on Computers 43(10):1197–1209.
Grandi, U., and Endriss, U. 2013. Lifting integrity constraints
in binary aggregation. Artificial Intelligence 199:45–66.
Grandi, U. 2012. Binary Aggregation with Integrity Con-
straints. Ph.D. Dissertation, University of Amsterdam.
Grossi, D., and Pigozzi, G. 2014. Judgment Aggregation: A
Primer. Morgan & Claypool Publishers.
de Haan, R., and Slavkovik, M. 2017. Complexity results
for aggregating judgments using scoring or distance-based
procedures. In Proc. of the 16th International Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2017).
Kimmig, A.; Van den Broeck, G.; and De Raedt, L. 2017.
Algebraic model counting. J. of Applied Logic 22:46–62.
Krentel, M. W. 1988. The complexity of optimization prob-
lems. J. of Computer and System Sciences 36(3):490–509.
Lang, J., and Slavkovik, M. 2014. How hard is it to compute
majority-preserving judgment aggregation rules? In Proc. of
the 21st European Conf. on Artificial Intelligence (ECAI
2014). IOS Press.

Lang, J.; Pigozzi, G.; Slavkovik, M.; van der Torre, L.; and
Vesic, S. 2017. A partial taxonomy of judgment aggrega-
tion rules and their properties. Social Choice and Welfare
48(2):327–356.
Li, M.; Ma, B.; and Wang, L. 2002. On the closest string and
substring problems. J. of the ACM 49(2):157–171.
List, C., and Pettit, P. 2002. Aggregating sets of judgments:
An impossibility result. Economics and Philosophy 18(1):89–
110.
Marquis, P. 2015. Compile! In Bonet, B., and Koenig, S.,
eds., Proc. of the 29th AAAI Conf. on Artificial Intelligence
(AAAI 2015), 4112–4118. AAAI Press.
Muise, C. J.; McIlraith, S. A.; Beck, J. C.; and Hsu, E. I.
2012. Dsharp: Fast d-DNNF compilation with sharpSAT. In

Kosseim, L., and Inkpen, D., eds., Proc. of the 25th Canadian
Conf. on Artificial Intelligence (Canadian AI 2012), 356–361.
Springer Verlag.
Oztok, U., and Darwiche, A. 2014a. CV-width: A new com-
plexity parameter for CNFs. In Proc. of the 21st European
Conf. on Artificial Intelligence (ECAI 2014), 675–680. IOS
Press.
Oztok, U., and Darwiche, A. 2014b. On compiling CNF
into decision-DNNF. In Proc. of the 20th Intern. Conf. on
Principles and Practice of Constraint Programming (CP
2014), 42–57. Springer Verlag.
Rothe, J. 2016. Economics and Computation. Springer.
Wagner, K. W. 1990. Bounded query classes. SIAM J.
Comput. 19(5):833–846.

Additional Material: Lemmas and Proofs
As additional material, we provide proofs for all statements
in the main paper marked with a star (?), as well as additional
lemmas used for these proofs.
Lemma 20. MAX-MODEL(3CNF) is Θp

2-complete.

Proof. We sketch a reduction from MAX-MODEL for arbi-
trary propositional formulas. Let (ϕ, z) be an instance of
MAX-MODEL. By using the standard Tseitin transformation,
we can transform ϕ into a 3CNF formula ϕ′ with Var(ϕ′) =
Var(ϕ) ∪ Z for some set Z of new variables, such that
for each truth assignment α : Var(ϕ) → {0, 1} it holds
that ϕ[α] is true if and only if there exists a truth assign-
ment β : Z → {0, 1} such that ϕ′[α ∪ β] is true.

We then transform ϕ′ into a 3CNF formula ϕ′′

with Var(ϕ′′) = Var(ϕ′)∪Z ′, for the set Z ′ = { z′ : z ∈ Z }
of fresh variables, such that the maximal models of ϕ′′ corre-
spond exactly to the maximal models of ϕ. We define ϕ′′ as
follows:

ϕ′′ = ϕ′ ∧
∧
z∈Z

((¬z ∨ ¬z′) ∧ (z ∨ z′)).

Each model of ϕ′′ then must set the same number of variables
in Z ∪ Z ′ to true—namely |Z| of them.

Lemma 21. MAX-MODEL(HORN ∩ KROM) is Θp
2-com-

plete.

Proof. We give a reduction from MAX-MODEL(3CNF).
Let (ϕ, z) be an instance of MAX-MODEL(3CNF),
where Var(ϕ) = X = {x1, . . . , xn} and where ϕ consists of
the clauses c1, . . . , cm. Without loss of generality, we may
assume that each clause cj is of size exactly 3. Also, with-
out loss of generality, we may assume that ϕ is satisfied by
the “all zeroes” assignment, that is, by the assignment α0

such that α0(xi) = 0 for all i ∈ [n]. Moreover, we may
assume without loss of generality that m ≥ n. We construct
an instance (ϕ′, z′) of MAX-MODEL(HORN ∩ KROM) as
follows.

For each clause cj , we introduce fresh variables yuj and yuj,`,
for u ∈ [3] and ` ∈ [n]. Moreover, for each xi, we introduce
fresh variables x1

i , x0
i , z1

i,` for ` ∈ [m + 1] and z0
i,` for ` ∈

[m]. We then let ϕ′ consist of the following clauses. For
each j ∈ [m], we add the clauses:

(¬y1
j ∨ ¬y2

j), (¬y1
j ∨ ¬y3

j), (¬y2
j ∨ ¬y3

j),

ensuring that at most one variable among y1
j , y

2
j , y

3
j can be

true. Moreover, for each j ∈ [m] and each u ∈ [3], we add
the clauses:

(yuj → yuj,1), (yuj,1 → yuj,2), . . . , (yuj,n−1 → yuj,n),

(yuj,n → yuj),

ensuring that the variables yuj and yuj,` get the same truth
value, for each u ∈ [3] and each j ∈ [m].

Then, for each i ∈ [n], we add the clause (¬x1
i ∨ ¬x0

i),
ensuring that at most one variable among x1

i , x
0
i is true. More-

over for each i ∈ [n] we add the clauses:
(x1

i → z1
i,1), (z1

i,1 → z1
i,2), . . . , (z1

i,m → z1
i,m+1),

(z1
i,m+1 → x1

i),

and:

(x0
i → z0

i,1), (z0
i,1 → z0

i,2), . . . , (z0
i,m−1 → z0

i,m),

(z0
i,m → x0

i),

ensuring that the variables xui and zui,` get the same truth
value, for each u ∈ {0, 1} and each i ∈ [n].

Finally, we add the following clauses to ϕ′, for each
clause cj of ϕ. Let cj be a clause of ϕ, and let lj,u be the u-th
literal in cj , for u ∈ [3]. If lj,u = xi for some i ∈ [n], we add
the clause (yuj → x1

i), and if lj,u = ¬xi for some i ∈ [n],
we add the clause (yuj → x0

i).
To finish our construction, we let z′ = x1

i , for the unique i
such that z = xi.

Before we show correctness of this reduction, we establish
several other properties of the formula ϕ′. Any maximal
model of ϕ′ sets at least n(m + 1) + m(n + 1) = 2nm +
n+m variables to true. Since the “all zeroes” assignment α0

satisfies ϕ, we can satisfy ϕ′ by setting all variables x0
i , z

0
i,` to

true, setting all variables x1
i , z

1
i,` to false, and for each j ∈ [m]

setting all variables yuj , y
u
j,` to true for some u ∈ [3], and

setting all variables yu
′

j , y
u′

j,` to false for the other u′ ∈ [3].
This model of ϕ′ sets 2nm+ n+m variables to true.

Moreover, by construction of ϕ′, we know that each model
of ϕ′ sets at most n(m+ 2) +m(n+ 1) = 2nm+ 2n+m
variables to true.

By construction of ϕ′, we know that any model of ϕ′
sets variables xui , z

u
i,` to true for at most one u ∈ {0, 1}

for each i ∈ [n], and that it sets variables yuj , y
u
j,` to true

for at most one u ∈ [3] for each j ∈ [m]. We argue
that any maximal model of ϕ′ must set variables xui , z

u
i,`

to true for exactly one u ∈ {0, 1} for each i ∈ [n], and
must set variables yuj , y

u
j,` to true for exactly one u ∈ [3]

for each j ∈ [m]. Suppose that there is some maximal
model of ϕ′ that sets all variables x1

i , x
0
i , z

1
i,`, z

0
i,` to false,

for some i ∈ [n]. Then we know that this model can set
at most 2nm + 2n − 2 variables to true. Since m ≥ n,
we know that this model cannot be maximal, since there is
a model that sets 2nm + n + m > 2nm + 2n − 2 vari-
ables to true. From this we can conclude that each maximal
model of ϕ′ must set variables xui , z

u
i,` to true for exactly

one u ∈ {0, 1} for each i ∈ [n]. An entirely similar argu-
ment can be used to show that each maximal model of ϕ′
must set variables yuj , y

u
j,` to true for exactly one u ∈ [3] for

each j ∈ [m].
Then, for each maximal model α′ of ϕ′, we can con-

struct a truth assignment α : X → {0, 1} as follows. For
each xi ∈ X , we let α(xi) = 1 if and only if α′ sets x1

i to
true, and we let α(xi) = 0 if and only if α′ sets x0

i to true.
Moreover, this truth assignment α satisfies ϕ. To derive a
contradiction, suppose that α does not satisfy ϕ, that is, that
there is some clause cj of ϕ that α does not satisfy. Then
there must be a clause of the form (yuj → xu

′

i) in ϕ′, for
some u ∈ [3] and some u′ ∈ {0, 1}, that is not satisfied

by α′. This is a contradiction with our assumption that α′
satisfies ϕ′. Therefore, we can conclude that α satisfies ϕ.

Conversely, for any model α of ϕ we can construct a
model α′ of ϕ′ as follows. For each i ∈ [n] and each u ∈
{0, 1}, α′ sets the variables xui , z

u
i,` to true if and only

if α(xi) = u. Moreover, since α satisfies ϕ, we know that
for each j ∈ [m] there is some uj ∈ [3] such that α satisfies
the uj-th literal in clause cj . Then, for each j ∈ [m] and
each u ∈ [3], α′ sets the variables yuj , y

u
j,` to true if and only

if u = uj . It is straightforward to verify that α′ satisfies ϕ′.
We will now argue that there is a maximal model of ϕ that

sets z to true if and only if there is a maximal model of ϕ′
that sets z′ to true.

(⇒) Suppose that there is a maximal model α of ϕ that
sets z to true. We can then construct a model α′ of ϕ′, as
described above. It is easy to verify that α′ sets z′ to true. We
argue that α′ is a maximal model of ϕ′. Suppose, to derive a
contradiction, that α′ is not a maximal model of ϕ′—that is,
there is some model β′ of ϕ′ that sets more variables to true
thanα′. Then, as described above, we can construct a model β
of ϕ from β′. It is straightforward to verify that β sets more
variables in X to true than α. This is a contradiction with our
assumption that α is a maximal model of ϕ. Therefore, we
can conclude that α′ is a maximal model of ϕ′.

(⇐) Conversely, suppose that there is a maximal model α′
of ϕ′ that sets z′ to true. We can then construct a model α
of ϕ′, as described above. It is easy to verify that α sets z to
true. We argue that α is a maximal model of ϕ. Suppose, to
derive a contradiction, that α is not a maximal model of ϕ—
that is, there is some model β of ϕ that sets more variables
to true than α. Then, as described above, we can construct a
model β′ of ϕ′ from β. It is straightforward to verify that β′
sets more variables in Var(ϕ′) to true than α′. This is a con-
tradiction with our assumption that α′ is a maximal model
of ϕ′. Therefore, we can conclude that α is a maximal model
of ϕ.

Lemma 22. OUTCOME(MED) is Θp
2-hard even when re-

stricted to the case where Γ ∈ HORN.

Proof. We give a reduction from MAX-MODEL(HORN).
Let (ϕ, z) be an instance of MAX-MODEL(HORN),
where Var(ϕ) = X = {x1, . . . , xn}. We may assume with-
out loss of generality that the “all zeroes” assignment α0 :
X → {0, 1}, for which α0(xi) = 0 for all i ∈ [n], satisfies ϕ.
We construct an instance (I,Γ, r, s) of OUTCOME(MED),
with Γ ∈ HORN, as follows.

We let I = X∪{ yi,j , y′i,j : i ∈ [n], j ∈ [3] }. We define Γ
as follows: Γ = ϕ∧

∧
i∈[n]((yi,1∧yi,2∧yi,3 → xi)∧(y′i,1∧

y′i,2 ∧ y′i,3 → xi)). We define the profile r = (r1, r2, r3) as
shown in Figure 3. Finally, we let s be the partial ballot that
only sets z to 1.

Clearly, each rational ballot r∗ ∈ R(I,Γ) must satisfy ϕ,
since Γ |= ϕ. Moreover, to satisfy Γ, each rational ballot r∗
must—for each i ∈ [n]—either (i) set xi to 1 or (ii) set at least
one variable among yi,1, yi,2, yi,3 and at least one variable
among y′i,1, y

′
i,2, y

′
i,3 to 0. In case (i), the total Hamming

distance to the profile r increases with 3, and in case (ii),
the total Hamming distance to the profile r increases with

at least 4. Therefore, the rational ballots r∗ with minimal
cumulative Hamming distance to the profile r correspond
exactly to the models of ϕ that set a maximal number of
variables x ∈ X to true. From this it immediately follows
that there exists some r∗ ∈ MED(r) that agrees with s if and
only if there is a maximal model of ϕ that sets z to true.

Proof of Proposition 1 (sketch). We give a reduction from
OUTCOME(MED) restricted to the case where Γ ∈ HORN.
Let (I,Γ, r, s) be an instance of OUTCOME(MED) with Γ ∈
HORN. Let r = (r1, . . . , rp). Also, let c1, . . . , cm
denote the clauses of Γ. Moreover, suppose that the
clauses c1, . . . , cu are non-definite Horn clauses, and that
the clauses cu+1, . . . , cm are definite Horn clauses. We con-
struct an equivalent instance (I ′,Γ′, r′, s) of OUTCOME-
(MED) with Γ′ ∈ DEFHORN, as follows.

Firstly, we let I ′ = I ∪ { yj,` : j ∈ [u], ` ∈ [n+ 1] }. We
obtain the definite Horn formula Γ′ from Γ as follows. Firstly,
we add the clauses cu+1, . . . , cm to Γ′. Then, for each non-
definite Horn clause cj , with j ∈ [u], we add a definite Horn
clause (cj ∨ yj,`) to Γ′ for each ` ∈ [n + 1]. We obtain the
profile r′ = (r′1, . . . , r

′
p) from r as follows. For each i ∈ [p],

we let r′i agree with ri on the issues in I. Moreover, for
each i ∈ [p] and each x′ ∈ I ′\I, we let r′i(x

′) = 0. It is
straightforward to verify that each r′i is rational.

We firstly show that for each r∗ ∈ MED(r′) and for
each j ∈ [u], it holds that r∗ sets all variables yj,` to 0.
We proceed indirectly, and suppose that this is not the case,
i.e., that there is some j ∈ [u] such that r∗ does not set all
variables yj,` to 0. We distinguish two cases: either (i) for
all ` ∈ [n+ 1] it holds that r∗ sets yj,` to 1, or (ii) this is not
the case. In case (i), we know that the cumulative Hamming
distance from r∗ to the profile r′ is at least p(n+1). However,
the ballot r0 such that r0(x) = 0 for all x ∈ I ′ is rational and
has cumulative distance of at most pn to r′. Thus, r∗ does
not have minimal distance to r′, which contradicts our as-
sumption that r∗ ∈ MED(r′). In case (ii), we know that there
exists some `, `′ ∈ [n+ 1] such that r∗ sets yj,` to 1 and yj,`′
to 0. Then, we know that r∗ |= cj , since r∗ |= (cj ∨ yj,`′).
However, then modifying r∗ by setting yj,` to 0 would result
in a rational ballot with strictly smaller cumulative distance
to the profile r′, which is a contradiction with our assump-
tion that r∗ ∈ MED(r′). Thus, we can conclude that for
each r∗ ∈ MED(r′) and for each j ∈ [u], it holds that r∗ sets
all variables yj,` to 0.

It is then straightforward to verify that each r∗ ∈ MED(r′)
satisfies Γ, and that there exists a ballot r∗ ∈ MED(r) such
that s agrees with r∗ if and only if there exists a ballot r∗ ∈
MED(r′) such that s agrees with r∗.

r xi yi,1 yi,2 yi,3 y′i,1 y′i,2 y′i,3

r1 0 1 1 0 1 1 0
r2 0 1 0 1 1 0 1
r3 0 0 1 1 0 1 1

Figure 3: The profile r = (r1, r2, r3) in the proof of
Lemma 22—here i ranges over [n].

Lemma 23. OUTCOME(MCC) is Θp
2-hard even when re-

stricted to the case where Γ ∈ HORN.

Proof. The proof of this statement is analogous to the proof
of Lemma 22—we use the same reduction from MAX-
MODEL(HORN). That is, we construct I, Γ, r and s in ex-
actly the same way. What remains to show is that this reduc-
tion is also correct for the problem OUTCOME(MCC).

Clearly, each rational ballot r∗ ∈ R(I,Γ) must satisfy ϕ,
since Γ |= ϕ. Moreover, to satisfy Γ, each rational ballot r∗
must—for each i ∈ [n]—either (i) set xi to 1 or (ii) set at
least one variable among yi,1, yi,2, yi,3 and at least one vari-
able among y′i,1, y

′
i,2, y

′
i,3 to 0. In case (i), the total Hamming

distance to the majority outcome mr increases with 1, and
in case (ii), the total Hamming distance to the majority out-
come mr increases with at least 2. Therefore, the rational
ballots r∗ with minimal cumulative Hamming distance to the
profile r correspond exactly to the models of ϕ that set a
maximal number of variables x ∈ X to true.

Proof of Proposition 2 (sketch). The proof of this statement
is analogous to the proof of Proposition 1. That is, we take the
reduction from OUTCOME(MED) to OUTCOME(MED) from
the proof of Proposition 1, and we employ it as a reduction
from OUTCOME(MCC) to OUTCOME(MCC). Since this re-
duction results in an instance where Γ ∈ DEFHORN, this
suffices. The argument for correctness of the reduction is
entirely analogous.

Lemma 24. Let ϕ be a 3CNF formula with
clauses c1, . . . , cm (all of size exactly 3) and with n
variables such that ϕ \ {c1} is 1-in-3-satisfiable. We can
then in polynomial time construct a set I of issues together
with a profile r for I (and for Γ = >), and positive
integers u1, u2, u3 (with u3 < u1) that are polynomial in |ϕ|,
and that depend only on n and m, such that:

• if ϕ is 1-in-3-satisfiable, then the minimum max-Hamming
distance from any ballot r∗ to r is u, and moreover, there
exists some ballot r∗ such that the Hamming distance
from r∗ to each individual ballot in r is exactly u1;

• if ϕ is not 1-in-3-satisfiable, then the minimum max-
Hamming distance from any ballot r∗ to r is u1 + u2, and
moreover, for each ballot r∗ that achieves his minimum
max-Hamming distance to r it holds that the Hamming dis-
tance from r∗ to each individual ballot in r is exactly u+w;
and

• the Hamming distance from any ballot r∗ that achieves the
minimum max-Hamming distance to the profile r to the
all-zeroes ballot r0 is exactly u3.

Proof. Take an arbitrary 3CNF formula ϕ with
clauses c1, . . . , cm and Var(ϕ) = {x1, . . . , xn} such
that ϕ \ {c1} is 1-in-3-satisfiable. Without loss of generality,
suppose that n is a power of 2.

We proceed in two steps. In the first step, we will construct
a set of issues and a set of ballots such that the minimum
max-Hamming distance to this set of ballots is lower than
a particular threshold if and only if ϕ is 1-in-3-satisfiable.
Then, in the second step, we will use these issues and ballots
to construct another set of issues and another set of ballots

that satisfy the conditions specified in the statement of the
lemma.

We begin by introducing 2n + 4 is-
sues y1, . . . , yn, y

′
1, . . . , y

′
n, z1, . . . , z4, together with a

set of 2 log n + 3m ballots on these issues. We define
the first 2 log n ballots r1, . . . , rlog n and r′1, . . . , r

′
log n as

follows:

ri(yj) = ri(y
′
j) =

{
1 if the i-th bit of j is 1,
0 otherwise,

and r′i(yj) = r′i(y
′
j) = 1− ri(yj).

It is straightforward to verify that any ballot r∗ that sets
exactly one of yj and y′j to true (for each j ∈ [n]) achieves
the minimum possible max-Hamming distance to these bal-
lots (namely distance n). Moreover, any ballot that has a
higher minimum max-Hamming distance to these ballots has
a Hamming distance strictly higher than n to more than one
of the ballots. Intuitively, setting yj to true in a ballot r∗
corresponds to setting variable xj to true, and setting y′j to
true corresponds to setting variable xj to false.

Next, for each clause ck of ϕ, we add a ballot sk, that
is defined as follows. For all variables xj 6∈ Var(ck), we
let sk(yj) = sk(y′j) = 0. Then, for each literal l ∈ ck,
if l = xj , we let sk(yj) = 1 and sk(y′j) = 0, and if l = ¬xj ,
we let sk(yj) = 0 and sk(y′j) = 1. Moreover, for each ` ∈
[4], sk(z`) = 0.

Then, for each clause ck of ϕ, we add ballots s′k and s′′k ,
that are defined as follows. For all variables xj 6∈ Var(ck),
we let s′k(yj) = s′′k(yj) = s′k(y′j) = s′′k(y′j) = 0. Then,
for each literal l ∈ ck, if l = xj , we let s′k(yj) =
s′′k(yj) = 0 and s′k(y′j) = s′′k(y′j) = 1, and if l = ¬xj ,
we let s′k(yj) = s′′k(yj) = 1 and s′k(y′j) = s′′k(y′j) = 0.
Moreover, for both ` ∈ [2], s′k(z`) = 0 and s′′k(z`) = 1, and
for both ` ∈ [3, 4], s′k(z`) = 1 and s′′k(z`) = 0.

It is now routine to verify the following statements. (1) If ϕ
is 1-in-3-satisfiable, then there is a ballot r∗ that achieves a
minimum max-Hamming distance of n+ 4 to these ballots—
namely by setting the variables z` to 0, and by setting the
variables yj and y′j according to the truth assignment witness-
ing exactly-1-satisfiability. (2a) If ϕ is not 1-in-3-satisfiable,
then the minimum max-Hamming distance of any ballot r∗ to
these ballots is strictly more than n+ 4. (2b) If ϕ is not 1-in-
3-satisfiable, then any ballot r∗ has a cumulative Hamming
distance to these ballots of at least (2 log n+3m)(n+4)+2.
(2c) If ϕ is not 1-in-3-satisfiable, there is a ballot r∗ that
has Hamming distance n + 4 to all ballots except one, to
which it has Hamming distance n + 6. (3) The Hamming
distance from the all-zeroes ballot r0 to any ballot r∗ achiev-
ing the minimum max-Hamming distance or the minimum
cumulative Hamming distance to these ballots is exactly n.

Next, in the second step, we will use the issues and ballots
that we constructed above to construct the set I of issues
and the profile r of ballots as specified in the statement of
the lemma. We do this by making 2 log n + 3m copies of
each of the issues yj , y′j , zi. Then, we construct the profile r
that consists of 2 log n+ 3m ballots, each of which consists
of a different ballot (among yj , y′j , zi) for each set of copies
of the issues. This can be done as follows. Let t1, . . . , tb be

the ballots that we defined above, where b = 2 log n + 3m.
Then let r = {t′1, . . . , t′b}. For each i ∈ [2 log n+ 3m], the
ballot t′i ∈ r agrees with ballot ti+` mod 2 log n+3m on the
`-th copies of yj , y′j , zi, for each ` ∈ [2 log n+ 3m].

It is now straightforward to verify that if ϕ is 1-in-3-
satisfiable, then the minimum max-Hamming distance from
any ballot r∗ to r is u1 = (2 log n + 3m)(n + 4), and that
there exists some ballot r∗ that has Hamming distance u to
each ballot in r. Also, if ϕ is not 1-in-3-satisfiable, then the
minimum max-Hamming distance from any ballot r∗ to r
is u1 + u2, where u2 = 2(2 log n + 3m), and that any bal-
lot r∗ that achieves this minimum has Hamming distance
exactly u1 + u2 to each ballot in r.

Moreover, any ballot r∗ that achieves the minimum max-
Hamming distance to the profile r has Hamming distance
exactly u3 = n(2 log n+3m) to the all-zeroes ballot r0.

Proof of Proposition 4. Membership in Θp
2 (for the general

case) has been shown before (de Haan and Slavkovik 2017).
We show Θp

2-hardness for the case where Γ = > by giving a
reduction from the Θp

2-complete problem of deciding whether
the maximum number of variables set to true in any satisfying
assignment of a (satisfiable) propositional formula ϕ is odd.
Let ϕ be an arbitrary satisfiable propositional formula with n
variables. Suppose without loss of generality that n is even.

For each i ∈ [n], we construct a 3CNF formula ψi that is
1-in-3-satisfiable if and only if there is a truth assignment that
satisfies ϕ and that sets at least i variables among Var(ϕ) to
true (by NP-completeness of 1-in-3SAT, using the standard
reduction). We can do this in such a way that all of the
formulas ψi have the same number of clauses and the same
number of variables, and such that for each ψi, there is some
clause c ∈ ψi such that ψi \ {c} is 1-in-3-satisfiable.

Then, since the formulas ψi satisfy the requirements for
Lemma 24, we can construct sets I1, . . . , In of issues and
profiles r1, . . . , rn such that for each i ∈ [n], the issues Ii
and the profile ri satisfy the conditions mentioned in the
statement of Lemma 24. We can do this in such a way
that the sets I1, . . . , In are disjoint. Moreover, the pro-
files r1, . . . , rn have the same number b of individual ballots.
For each i ∈ [n], let ri consist of the ballots ri1, . . . , r

i
b.

We then use these sets I1, . . . , In and profiles r1, . . . , rn
to construct a single set I of issues and a single profile r.
We let I =

⋃n
i=1 Ii ∪ {z}, where z is a fresh propositional

variable. We let r consist of the ballots r1, . . . , rb, r
′
1, . . . , r

′
b,

that we will define below.
For each j ∈ [b], we define rj as follows. For each odd i ∈

[n] and each x ∈ Ii, we let rj agree with rij , i.e., rj(x) =

rij(x). For each even i ∈ [n] and each x ∈ Ii, we let rj(x) =
0. Finally, we let rj(z) = 0.

For each j ∈ [b], we define r′j as follows. For each even i ∈
[n] and each x ∈ Ii, we let r′j agree with rij , i.e., r′j(x) =

rij(x). For each odd i ∈ [n] and each x ∈ Ii, we let r′j(x) =
0. Finally, we let rj(z) = 1.

Finally, we let s be the partial ballot defined by let-
ting l(z) = 1 and l(x) = ? for all x ∈ I \ {z}. We show that
the maximum number of variables among Var(ϕ) that are set
to true in any satisfying assignment of ϕ is odd if and only if
there is some r∗ ∈ MAXHAM(r) that agrees with s.

(⇒) Suppose the maximum number of variables
among Var(ϕ) that are set to true in any satisfying assignment
of ϕ is odd. Then the number of formulas ψi that are not 1-in-
3-satisfiable is the same as the number of formulas ψi that are
1-in-3-satisfiable. As a result, for any ballot r∗ over I \ {z}
that minimizes the max-Hamming distance to r (restricted
to I \ {z}), the Hamming distance to the ballots r1, . . . , rb
is equal to the Hamming distance to the ballots r′1, . . . , r

′
b.

As a result, any such ballot r∗ over I \ {z} minimizing the
max-Hamming distance to r (restricted to I \ {z}) can be
extended to a ballot minimizing the max-Hamming distance
to r by setting z to 1.

(⇐) Suppose the maximum number of variables
among Var(ϕ) that are set to true in any satisfying assignment
of ϕ is even. Then there are more formulas ψi that are not
1-in-3-satisfiable than formulas ψi that are 1-in-3-satisfiable.
As a result, for any ballot r∗ over I \ {z} that minimizes
the max-Hamming distance to r (restricted to I \ {z}), the
Hamming distance to the ballots r1, . . . , rb is larger than the
Hamming distance to the ballots r′1, . . . , r

′
b. As a result, any

ballot r∗ that minimizes the max-Hamming distance to r
must set z to 0.

MINVERTEXCOVER
Instance: A graph G = (V,E), and a vertex v∗ ∈ V .
Question: Is there a minimum-size vertex cover C ⊆ V
that includes v∗?

Lemma? 25. MINVERTEXCOVER is Θp
2-complete.

Proof. Membership in Θp
2 can be shown routinely. We show

Θp
2-hardness by reducing from the problem of deciding

whether the maximum number of variables satisfied by any
model for a given (satisfiable) propositional formula is odd.
Let ϕ be an arbitrary satisfiable propositional formula, and
let n = |Var(ϕ)|. Since the propositional satisfiability prob-
lem is NP-complete, we can construct propositional formu-
las ψ1, . . . , ψn such that for each i ∈ [n], ψi is satisfiable if
and only if ϕ can be satisfied by setting at least i variables
among Var(ϕ) to true. Then, by NP-completeness of the prob-
lem of deciding whether a graph has a clique of size at leastm,
we can transform these formulas ψi into graphs G1, . . . , Gn

together with positive integers m1, . . . ,mn such that for
each i ∈ [n] it holds that Gi has a clique of size at
least mi. Moreover, we can ensure that no Gi has a clique
of size mi + 1. Let mmax = max{m1, . . . ,mn}. Assume
without loss of generality that mmax is even. Then we
can straightforwardly transform the graphs G1, . . . , Gn and
the integers m1, . . . ,mn into graphs G′1, . . . , G

′
n and inte-

gers m′1, . . . ,m
′
n such that (1) for each i ∈ [n] it holds

that ψi is true if and only if G′i has a clique of size m′i,
(2) for each i ∈ [n], G′i has no clique of size m′i + 1, and
(3) m′1 < m′2 < · · · < m′n. Assume without loss of gener-
ality that G′1, . . . , G

′
n are pairwise disjoint. Then construct

the graph G′′ by putting together G′1, . . . , G
′
n, adding two

additional vertices v∗1 , v
∗
2 , connecting v∗1 to all vertices in G′i

for odd i, and connecting v∗2 to all vertices in G′i for even i.
It is straightforward to verify that every clique of G′′ of max-
imum size does not contain v∗2 if and only if the maximum
number of variables satisfied by any model of ϕ is odd. Then

the instance (G′′′, v∗2) of MINVERTEXCOVER—where G′′′
is the complement of G′′—is a yes-instance of MINVERTEX-
COVER if and only if the maximum number of variables
satisfied by any model of ϕ is odd. This completes our proof
of Θp

2-hardness.

Proof of Proposition 18. We show Θp
2-hardness by reduc-

ing from MINVERTEXCOVER. Let (G, v∗) be an instance
of MINVERTEXCOVER, where G = (V,E) with V =
{v1, . . . , vn} and E = {e1, . . . , em}. Without loss of gener-
ality, assume that 2n+1 is a multiple of 3. Moreover, without
loss of generality, assume that v∗ = v1.

For each i ∈ [n], let di = |{ ej : j ∈ [m], vi ∈ ej }|
denote the degree of vertex vi. For each j ∈ [m], let d′j =
|{ vi : i ∈ [n], vi ∈ ej }| denote the degree of edge ej .
Moreover, for each i ∈ [n], j ∈ [m], let ai,j = 1 if and only
if vi ∈ ej , and ai,j = 0 otherwise. That is, ai,j encodes
whether vi is incident to edge ej . Also, for each i ∈ [n], j ∈
[m], let ti,j = 1 if and only if i ≤ n+1−d′j , and let ti,j = 0
otherwise.

We construct an instance (I,Γ, r, s) of OUTCOME-
(YOUNG) as follows. We let I = {xj : j ∈ [m] } ∪ {y, z} ∪
{wi, w

′
i : i ∈ [e] }. Then, we let Γ be a budgetary constraint

that assigns cost 2 to each variable in {xj : j ∈ [m] }, cost 2
to z, cost 1 to y, cost 2m to each variable in {wi, w

′
i : i ∈

[e] }, and that assigns a total budget of 12m + 1. Then, we
let r be the profile as depicted in Figure 4. It is straight-
forward to verify that each ballot in the profile satisfies the
budgetary constraint Γ. Finally, we let s be the partial ballot
defined by l(y) = 0 and l(v) = ? for all v ∈ I \ {y}.

Clearly, the majority outcome mr does not satisfy the
budgetary constraint Γ, as all variables in I \ {z} en-
joy majority support, and the total cost of these variables
is 14m + 1 > 12m + 1. There are two ways of saving a
total cost of at least 2m by deleting individual ballots: ei-
ther (1) delete a set of ballots such that some wi or w′i is
not supported by a majority anymore, or (2) delete a set of
ballots such that all variables in {xj : j ∈ [m] } ∪ {z} are
not supported by a majority. Option (1) requires deleting
more than 1/3(2n+ 1) individual ballots, as each wi and w′i
enjoys a two-thirds majority support. Without loss of gen-
erality, we may assume that the smallest vertex cover of G
is of size less than 1/6(2n+ 1)—if this is not the case, we
can simply add unconnected vertices to increase n. We show
that option (2) requires less than 1/3(2n + 1) individual
ballots. Let C ⊆ V denote some vertex cover of G. Now
remove from r those individual ballots ri and the |C| indi-
vidual ballots rn+1, . . . , rn+|C|. Without loss of generality,
we may assume that these ballots rn+1, . . . , rn+|C| support
all variables xj—again, if this were not the case, we could
increase n by adding unconnected vertices. It is straightfor-
ward to verify that removing these ballots results in a profile
where the variables in {xj : j ∈ [m] } ∪ {z} do not enjoy
majority support. Moreover, since |C| < 1/6(2n + 1), we
deleted less than 1/3(2n + 1) individual ballots. Thus, we
can restrict our attention to deleting individual ballots that
ensure that the variables in {xj : j ∈ [m] } ∪ {z} do not
enjoy majority support.

Let I ⊆ [2n + 1] be a set of indices (of size smaller

than 1/3(2n + 1)) such that if we delete the individual
ballots ri for all i ∈ I , then the variables in {xj : j ∈
[m] } ∪ {z} do not enjoy majority support. By the way the
Young judgment aggregation procedure is defined, it suf-
fices to look at sets I of even size. Without loss of general-
ity, we can assume that 2n + 1 6∈ I—if this were not the
case, one could replace 2n + 1 by any other index. More-
over, without loss of generality, we can assume that for
each i ∈ I ∩ [n+ 1, 2n] it holds that ri accepts all variables
in {xj : j ∈ [m] }—if this were not the case, we could re-
place such an i by another i′ ∈ [n+1, 2n] for which this is the
case; as mentioned above, since we can arbitrarily increase n
by adding variables, we may assume without loss of general-
ity that enough such indices i′ exist. Now, let I1 = I∩[n] and
let I2 = I ∩ [n+1, 2n]. If |I2| > |I1|, we know that in the re-
sulting profile (after deleting the individual ballots according
to I), the variable z has majority support. This contradicts
our assumption, and thus we can conclude that |I1| ≥ |I2|.
Then, if |I1| > |I2|, we could replace some indices in I1 by
other indices in [n+ 1, 2n] \ I2, and we would end up with
another suitable set I of indices. Therefore, we can restrict
our attention to the case where |I1| = |I2|.

Each such set I corresponds to a vertex cover of G in the
following way. Let CI ⊆ V be defined as CI = { vi : i ∈
I ∩ [n] }. Suppose, to derive a contradiction, that CI is
not a vertex cover, i.e., that there is some ej ∈ E such
that CI ∩ ej = ∅. Then in the profile resulting from deleting
the individual ballots with indices in I , the variable xj enjoys
majority support. This is a contradiction with our assumption
that deleting the ballots corresponding to I results in a profile
where all variables in {xj : j ∈ [m] } ∪ {z} do not enjoy
majority support. Thus, we can conclude that CI is a vertex
cover of G.

We will now show that there is a minimum-size vertex
cover C ⊆ V of G that includes v∗ if and only if there is
some r∗ ∈ YOUNG(r) that agrees with s.

(⇒) Take a minimum-size vertex cover C ⊆ V of G that
includes v∗. We show how to construct a minimum size set
of individual ballots to delete to result in a majority out-
come r∗ that satisfies Γ. Moreover, we show that deleting
this set of ballots results in an outcome r∗ that agrees with s.
Define the set I of indices of ballots to delete as follows.
Let I = { i ∈ [n] : vi ∈ C } ∪ {vn+1, . . . , vn+|C|}. It is
straightforward to verify, since C is a vertex cover of G, that
deleting individual ballots according to I results in a consis-
tent majority outcome that does not include y (and thus that
agrees with s). We show that I is of minimum size (among
all such I that lead to a consistent majority outcome). Sup-
pose, to derive a contradiction, that this is not the case, i.e.,
that there is some suitable I ′ that is smaller than I . Then, as
described above, we can construct a vertex cover CI′ of G
that is smaller than C, which is a contradiction. Therefure, I
is of minimum size.

(⇐) Conversely, suppose that there is some r∗ ∈
YOUNG(r) that agrees with s, i.e., such that r∗(y) = 0.
Then r∗ results as the majority outcome of the profile af-
ter deleting individual ballots according to some (minimum
size) set I ⊆ [2n + 1]. As described above, we can con-
struct a vertex cover CI of G. Since r∗(y) = 0, it is straight-

r r1 r2 r3 · · · rn rn+1 rn+2 · · · r2n r2n+1 mr cost
x1 a1,1 a2,1 a3,1 · · · an,1 t1,1 t2,1 · · · tn,1 0 1 2
x2 a1,2 a2,2 a3,2 · · · an,2 t1,2 t2,2 · · · tn,2 0 1 2
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

xm a1,m a2,m a3,m · · · an,m t1,m t2,m · · · tn,m 0 1 2
y 1 0 0 · · · 0 1 1 · · · 1 0 1 1
z 1 1 1 · · · 1 0 0 · · · 0 0 0 2
w1 1 1 0 1 1 0 · · · 1 1 0 1 2m
w2 1 0 1 1 0 1 · · · 1 0 1 1 2m
w3 0 1 1 0 1 1 · · · 0 1 1 1 2m
w′1 1 1 0 1 1 0 · · · 1 1 0 1 2m
w′2 1 0 1 1 0 1 · · · 1 0 1 1 2m
w′3 0 1 1 0 1 1 · · · 0 1 1 1 2m

Figure 4: Construction of the profile r in the proof of Proposition 18.

forward to verify that v∗ ∈ C. We show that C is a mini-
mum size vertex cover. Suppose, to derive a contradiction,
that there exists a smaller vertex cover C ′ of G. Then de-
fine the set I ′ of indices of ballots to delete as follows.
Let I ′ = { i ∈ [n] : vi ∈ C ′ } ∪ {vn+1, . . . , vn+|C′|}. It
is straightforward to verify, since C ′ is a vertex cover of G,

that deleting individual ballots according to I ′ results in a
consistent majority outcome. Moreover, since C ′ is smaller
thanC, we get that I ′ is smaller than I . This is a contradiction
with our assumption that I is of minimum size. Thus, we can
conclude that C is a minimum size vertex cover of G.

