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Abstract

Recently, connections between abstract argumentation and decision mak-
ing have gained increasing attention. In particular, value-based argumenta-
tion attempts to capture the specificity of deliberation concerning a choice
of actions. This approach assumes that in such debates arguments appeal
to certain values. Each agent ranks the values and evaluates arguments in
accordance with her own preferences over values that they appeal to. The
model assumes that an agent disregards attacks on strong arguments by
weaker attackers. This move creates agent-specific argumentation frame-
works. Another recent line of research in abstract argumentation involves
situations in which agents aggregate agents’ views on acceptability of argu-
ments, or on the structure of argumentation.

In the thesis I study strategic behavior in argumentation based on values.
The thesis consists of two major parts. The first one considers the single
agent scenario. Here, I investigate the possibility for an agent to enforce
that an argument supporting her desired decision is accepted when her pref-
erence ordering over values does not allow this acceptance. Then, methods
of finding the closest preference ordering to the agent’s original hierarchy of
values sufficient to achieve this goal are considered.

In the second part I investigate the problem of manipulating the outcome
discussion based on values in the multi-agent setting. Here, manipulation is
understood as communicating an insincere preference ordering over values
to ensure that a desired decision is made. A challenge tackled in this part
is concerned with providing a procedure for aggregating opinions about the
relative strength of arguments based on values that they appeal to. Two
approaches to this problem are considered. In the first of them agents’ pref-
erences over values are aggregated directly with employment of preference
aggregation functions. The other approach involves aggregation of argumen-
tation frameworks corresponding to agents’ views on the relative strength
of arguments.
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Chapter 1

Introduction

Abstract argumentation theory, pioneered by Dung (1995), deals with se-
lecting sets of arguments that one can rationally accept, given that there
might be counterarguments undermining some of them. For example, let
us consider a person telling her friend that she wants to go for a bike trip
because she thinks that it is going to be sunny all day long. However, her
friend claims that it is a bad idea, because a reliable forecast said that it
is going to rain in the afternoon. Now, the decision-maker has a choice.
Either she chooses to believe that the forecast is accurate and to drop her
initial belief, or she decides to ignore the friend’s advice and to go biking
anyway. She cannot, however, accept both points of view. Then, she would
need to accept that it is going to rain and that it is not going to rain at the
same time. This simple argumentation would have a structure shown in the
Figure 1.1.

a b

Figure 1.1: Structure of the example argumentation.

Naturally, in more complex cases it is not always clear which sets of
arguments a decision-maker can sensibly select. Then, a formalization of ra-
tionality constraints, offered by the abstract argumentation theory is highly
beneficial.

As we have seen in the example, argumentation theory can give us a
tool for a decision-making support. This links argumentation to research
done as well in artificial intelligence, as in philosophy, in which conditions
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for rational decision-making have been intensely studied.
The questions classically asked with respect to this problem are con-

nected with finding choices maximizing an agent’s profit, or by making ac-
tions to fulfill own goals. However, another important aspect of decision-
making is the possibility of explanation for a taken decision. Imagine that
the previously described bike rider was planning to go for a trip together
with her child. Then, if she decides to cancel the trip, it is not enough to
determine that it is beneficial for her to do it. It is equally important to
give the child an explanation why the trip has been cancelled.

Such an explanation can be provided in terms of argumentation theory
(e.g Amgoud & Prade, 2009; Kakas & Moraitis, 2003). As Amgoud and
Prade (2009) suggest, arguments can be associated with decisions which they
either support, or undermine. For example, the argument that it is a good
idea to take a trip because the weather is good supports the decision to go
biking, while the argument that it is going to rain undermines it. Further,
as we mentioned before, abstract argumentation theory provides natural
criteria for acceptance of arguments. Then, if we identify which arguments
are in favor of some decision, and which in favor of their rejection, we can
find a justification of a decision based on accepted arguments.

In addition to the previously made points, we can notice that not all
arguments are equally convincing to particular participants. It might be
that some pieces of information included in the discussion are not reliable,
or that some arguments were provided by a highly respected source. Fur-
ther, arguments might appeal to particular values, which are of diversified
importance to a selector of arguments. It is then plausible to assume that an
attack on a strong argument from an argument of little importance should
not be taken into account.

Suppose that in the previously described example the friend advising
against going for a trip in fact refers to an information taken from a com-
pletely unreliable website. Meanwhile, the decision-maker bases her initial
belief on a serious forecast. Then, it is not rational for the decision-maker
to treat the available arguments as equal.

However, this point is not in line with the classical approach to abstract
argumentation following Dung (1995). There, all arguments are atomic and
their strength is uniform. Their acceptance relies purely on the structure of
attacks between them. While this assumption allows for the high simplicity
of the model, it is far from capturing argumentation between human agents
plausibly.

Several approaches towards capturing the differences in the strength of
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arguments have been introduced. Some of them involve assigning numer-
ical values to arguments, constituting their strength (e.g. Dunne, Hunter,
McBurney, Parsons, & Wooldridge, 2011). However, the plausibility of as-
signing arguments precise numbers which indicate their strength is diffi-
cult to justify when modeling argumentation between human agents is con-
cernced. Overcoming this issue is one of the benefits of the qualitative
approach to determination of the strength of arguments.

One of such approaches, value-based argumentation, was provided by
Bench-Capon (2003). In this framework it is assumed that arguments ap-
peal to specific values which are of a distinctive importance to a particular
decision-maker. Then, an attack can be blocked from her perspective if
she ranks the value of the attacked argument higher than the value of its
attacker. This approach is suited to the problem of argumentation-based
decision-making, in which factors different than credibility of information
are important while assessing the acceptability of an argument. Also, it pro-
vides a clear justification for the determined strength of arguments. This is
important when an argumentation serves as a support for decision-making;
justification of the strength of arguments contributes to the justification
of a decision. It is worth noting that this constitutes a strong advantage
of this approach over assigning preferences over arguments directly, as it
is the case in the preference-based argumentation (e.g Amgoud & Cayrol,
1998). Bench-Capon’s approach makes sure that agents only consider some
arguments as stronger than another, if they have a good reason to do so.
Value-based argumentation will constitute the basic framework used in the
thesis and will be described at length separately.

Furthermore, it is worth noting that argumentation is an inherently
multi-agent phenomenon. It often occurs when agents exchange informa-
tion, aiming at reaching a collective view with respect to some issue. In
the previously discussed example, it was up to one agent to decide whether
a trip should take place or not. However, the important information came
from another agent, who could have been interested in successfully persuad-
ing her interlocutor not to take a trip. Further, described agents could have
been planning to decide upon going together. Then, their collective decision
would not only be dependent on the information that they exchange, but
also on the collective view regarding the strength of arguments that they
reach.

In the recent literature regarding abstract argumentation a growing in-
terest in application of multi-agent systems techniques in modeling debates
can be observed (e.g. Maudet, Parsons, & Rahwan, 2006; Bodanza, Tohmé,



7

& Auday, 2017). However, it is uncertain how to conceptualize the multi-
agent character of argumentation. While multiple approaches towards solv-
ing this problem have been provided, I will focus on methods of aggregation
associated with the social choice theory.

Within this approach two main types of aggregation can be distinguished.
In the first of them, finding the collective view between agents’ views on the
outcome of deliberation is considered. In the second, a disagreement between
perceived structure of arguments is taken into account. Then, aggregation
of individual argumentation frameworks is studied.

With respect to aggregating outcomes of deliberation, application of
judgment aggregation has been widely investigated (e.g. Caminada & Pigozzi,
2011; Awad, Booth, Tohmé, & Rahwan, 2015; Awad, Bonnefon, Caminada,
Malone, & Rahwan, 2017; Awad, Caminada, Pigozzi, Podlaszewski, & Rah-
wan, 2017). Here, following the labeling based argumentation semantics
(see, e.g. Caminada, 2008), agents are allowed to judge arguments as either
accepted, rejected, or undecided. Then, judgments of this kind are aggre-
gated to obtain a collective labeling. Another line of research is associated
with merging the sets of arguments accepted by particular agents (Delobelle
et al., 2016).

The second mentioned approach assumes that the differences in the out-
comes of discussion from perspectives of particular agents are determined by
differences in their perceived structure of argumentation. Multiple reasons
for disagreements of this kind can be conceived of. They can be caused by
the differences in interpretation of arguments themselves, which can be a
major problem while reconstructing argumentation structure from natural
language. Further, application of merging distinctive argumentation frame-
works can be helpful while modeling argumentation in which agents do not
have full access to existing arguments. Then, merging argumentation graphs
can provide all participants of a debate with arguments that only some have
access to. Another cause of differences in perceived structure of argumen-
tation can be associated with differences of views on arguments’ relative
strength. Then, merging argumentation graphs can be associate with merg-
ing views on their strength.

As we have seen, the applications of techniques originating in multi-agent
systems to argumentation theory help to capture the phenomenon of arguing
plausibly. However, lifting the argumentation theory to the multi-agent level
opens the possibility for agents to misrepresent the information available for
them, in order to improve the outcome of discussion for themselves.

In the literature regarding multi-agent systems the possibility of agents’
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strategic behavior has been widely studied (e.g. Gärdenfors, 1976; Brandt,
Conitzer, Endriss, Lang, & Procaccia, 2016). Strategic behavior, or ma-
nipulation, is understood in this context as providing false information by
an agent in order to receive a better outcome for herself. When collective
decision-making is considered, attempts of manipulating the outcome of a
decision procedure are not desirable. Collective decision systems aim at pro-
viding an outcome fair for all parties, under assumption that the information
that they give as an input for the mechanism is accurate. Misrepresentation
of a part of an input can distort the procedure and in the end induce an
unfair result. This is the reason why engineering systems in which manipu-
lation is never beneficial for any agent is of a high interest. I will also refer
to such systems as strategy-proof.

Further, in case of systems or procedures which are not strategy-proof,
but which enjoy other desired properties and are well suited to their appli-
cations, studying the computational complexity of manipulation is of great
importance (e.g Caminada, Pigozzi, & Podlaszewski, 2011). The motivation
for such a study is that a procedure in which computational complexity of
manipulation is high enough to exclude the possibility of finding a beneficial
way of misrepresenting own information in an efficient way can be treated
as strategy-proof for practical purposes.

The problem of manipulation is highly relevant to the setting of multi-
agent argumentation (e.g. Caminada et al., 2011). It is especially important
when argumentation based decision systems are considered. Intuitively, the
goal of collective solving argumentation problems is to select the best ar-
guments taking into account all relevant information that agents have at
disposal and to fairly combine views on the strength of arguments. Agents
can have preferences over accepted arguments, for instance if acceptance of
some distinguished arguments is determining the choice of some decision.
Then, they might decide not to submit arguments that they know about, as
considered by Rahwan and Larson (2008). Also, they can misrepresent their
views on the strength of arguments to ameliorate the outcome of discussion
for themselves. This is the reason why it is important to study the possibil-
ity of manipulation or the computational complexity of strategic behavior
in such mechanisms.

1.1 Research Questions

The research of this thesis is situated along the lines of previously described
points. We are interested in the behavior of agents who aim to ensure
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that a certain decision is made by enforcing some view on the strength
of available arguments. We will follow a particular model capturing the
argument strength, namely the value-based approach.

Our investigations will be performed at two levels. Firstly, we will con-
sider situations in which a single agent is responsible for making a decision.
We will assume that she has an incentive to push a decision forward. Then,
she is looking for a settlement of strength of arguments which would provide
a justification for her desired decision.

The second direction covered in this thesis involves a situation in which
a group of agents aims at selecting a decision collectively. However, they
disagree upon the strength of particular available arguments. We will study
how an agent, willing to push some desired decision forward, can manipu-
late the process of reaching a collective view with respect to the strength
of arguments. The basic question in this approach is how to account for
reaching such a collective view. We will study methods for reaching an
agreement with respect to this problem using methods originating in social
choice theory. Having established such methods, we will study the manipu-
lation problem within them.

1.2 Structure of the thesis

In Chapter 2, I will provide basic definitions and results used in the remain-
der of the thesis. I will start with presenting the framework of abstract
argumentation, with a special focus on value-based argumentation. I will
define it and describe its philosophical motivation. Further, in Chapter 3, I
establish results for the single agent case. Chapter 4 lifts the results obtained
earlier to the multi-agent case. I consider two methods of aggregating views
on strength of arguments within the value-based argumentation setting and
study connections between them. Then, I investigate strategic behavior in
considered settings. Finally, in Chapter 5, I provide conclusions and direc-
tions for further research.



Chapter 2

Preliminaries

In this part of the thesis I will present basic concepts and definitions used
in the further chapters. I will begin with describing abstract argumentation
theory, as defined by Dung (1995). Further, I will discuss the value-based
argumentation, following Bench-Capon (2003). Finally, I will define several
notions which will be used in subsequent parts of the thesis, such as distances
between orderings.

2.1 Abstract argumentation

The setting employed in the current work is based on the model of argumen-
tation provided by Dung (1995). In his view, argumentation is conceived as
a set of arguments and a binary relation expressing which arguments attack
which. Formally, this setting is defined as follows:

Definition 1. An argumentation framework (AF ) is a pair AF = 〈A,→〉,
where:

• A is the set of arguments

• →⊆ A2 is the attack relation

So, an argumentaion framework is a directed graph, where nodes are the
arguments, and the edges are the attacks. Figure 2.1 displays an example
of an argumentation framework, where A = {A,B,C,D,E, F,G} and →=
{〈B,A〉, 〈D,A〉, 〈E,D〉, 〈C,B〉, 〈F,C〉, 〈F,E〉, 〈F,G〉, 〈G,F 〉}.

10
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A

B

D

C

E

FG

Figure 2.1: Example of an argumentation framework.

It is worth noting that the presented model does not capture the notion
of support that arguments might provide for each other directly. However,
such a notion is needed to provide plausible criteria of acceptance of sets
arguments. In the discussed approach a support for an argument is under-
stood as undermining credibility of its counterarguments. Consequently, it
is the intuition that an argument a all attackers of which are attacked by
some argument b, is supported by b. So, support for an argument is iden-
tified with its defense. Further, a set of arguments S is said to defend an
argument a if for any attacker of a there is some member of S which attacks
it.

Definition 2 (Defense). Given an argumentation framework AF = 〈A,→〉,
a set of arguments S ⊆ A and some argument a ∈ A, S defends a iff for
any b ∈ A such that b→ a there is an a′ ∈ S such that a′ → b. We say that
S defends a set of arguments S′ ⊆ A iff S defends all a ∈ S′. A function
F : 2A → 2A assigns every S ⊆ A the set of all arguments that S defends.
Also, S is said to be self-defended if S defends S.

The notion of defense is then used to determine when a set of argu-
ments can be rationally selected as an outcome of a discussion. Classically,
the following criteria (i.e, semantics) for selecting sets of arguments (called
extensions) have been considered (Dung, 1995):

Definition 3 (Argumentation Semantics).

Let AF = 〈A,→〉 be an argumentation framework, and S ⊆ A. S is :

• Conflict-free: iff there are no a, b ∈ S such that a → b. We refer to
the set of all conflict-free extensions of AF as CFRAF .



12

• Admissible: iff S is conflict-free and self-defended. We refer to the
set of all admissible extensions of AF as ADMAF .

• Complete: iff S is admissible and F (S) = S. We refer to the set of
all complete extensions of AF as CMPAF .

• Grounded: iff S is the minimal complete extension of AF w.r.t. set
inclusion. We refer to the grounded extension of AF as GRNDAF

1.

• Preferred: iff S is a maximal complete extension of AF w.r.t. set
inclusion. We refer to the set of all preferred extensions of AF as
PRFAF .

• Stable: iff S is conflict-free and for any a ∈ A such that it is not the
case that S → a, a ∈ S. We refer to the set of all stable extensions of
AF as STBAF .

If S satisfies the condition of some argumentation semantics σ, we call it a
σ-extension of AF .

Intuitively, the conditions of being conflict-free, self-defended and com-
pletenes can be considered as necessary for acceptability of an extension as
an outcome of a discussion. If some set violates the first of them, then an
agent selecting it accepts that two pieces of information are true even though
they are in conflict with each other. Further, if a set of arguments fails to
satisfy the second condition, then a decision-maker selecting it is forced to
accept that there is a piece of information undermining a statement that
she considers as true and she fails to justify why the attacker should not be
considered. Finally, if the selected set of arguments is not complete, then
an agent fails to accept all arguments whose attackers are undermined by
the selected arguments.

Other mentioned semantics can be treated as approaches towards select-
ing optimal complete extensions. The described semantics can be compared
by the level of credulousness assumed when they are chosen as a criterion
for selection of arguments. Clearly, a skeptical selector should be willing to
choose the minimal complete extension, so she should prioritize the grounded
semantics. This approach can be useful when the goal is to accept only the
most reliable pieces of information.

On the other hand, a credulous selector might want to choose a maximal
complete extension, following the preferred semantics. It is easy to show
that stable semantics are also preferred.

1The grounded extension is always unique.
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Further, it is easy to show that the mentioned semantics are included in
each other. Here by inclusion of semantics σ in semantics σ′ we mean that
each σ-extension is also a σ′-extension. The hierarchy of argumentation
semantics is depicted in Figure 2.2. Arrows correspond to the inclusion
relation.

Conflict-Free

Admissible

Complete

GroundedPreferred

Stable

Figure 2.2: Inclusion of argumentation semantics.

Apart from the appropriateness of particular semantics to desired appli-
cation, an important factor in deciding which of them should be selected as
a rationality criterion is its computational complexity. Naturally, if some
semantics is supposed to be used in practice, it is desired for it to be easily
computable. While many decision problems are studied with respect to ar-
gumentation semantics, some of them will be particularly important in the
remainder of the thesis.

It is worth noting that some of the mentioned semantics do not always
provide the unique outcome of a discussion. Therefore, additional measures
are needed in order to establish the set of selected arguments in case of
semantics outputting multiple extensions. Two main ways of selecting ac-
cepted arguments, skeptical and credulous, are considered in the literature.

The skeptical acceptance condition requires that an argument is a mem-
ber of all the extension under the chosen semantics.

Definition 4 (Skeptical Acceptance). Let AF = 〈A,→〉 be an argumen-
tation framework, a ∈ A be an argument and σ be some argumentation
semantics. We say that a is skeptically accepted with respect to σ iff for any
σ-extension S of AF , a ∈ S.

On the contrary, we might want to accept an argument if it is a member
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of at least one extension.

Definition 5 (Credulous Acceptance). Let AF = 〈A,→〉 be an argumen-
tation framework, a ∈ A be an argument and σ be some argumentation
semantics. We say that a is credulously accepted with respect to σ iff there
is some σ-extension S of AF such that a ∈ S.

The introduction of the skeptical and credulous acceptance conditions
raises a question concerning the computational complexity of acceptance of
arguments. In the thesis we will only consider the credulous acceptance.

Let us rephrase the definition of credulous acceptance as a decision prob-
lem.

CREDULOUS ACCEPTANCE(σ)

Instance: Argumentation framework AF = 〈A,→〉, a ∈ A.
Question: Is a in at least one σ-extension of AF?

The complexity of the credulous acceptance is shown in the Table 2.1 2.
This summary follows (Dunne & Wooldridge, 2009).

Semantics Complexity of Credulous Acceptance

GRND P
PRF NP-complete
STB NP-complete

Table 2.1: Complexity of credulous acceptance problem

It is worth noting that for both skeptical and credulous acceptance we
can find examples of argumentation frameworks and argumentation seman-
tics for which the set of accepted arguments is not an extension of the desired
semantics. Consider for instance the framework displayed in Figure 2.3 and
preferred semantics.

A B

Figure 2.3: Preferred extensions: {A}, {B}
2See section 2.3 for a brief introduction to the computational complexity theory.
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It is easy to check that in this case two preferred extensions exist: {A}
and {B}. Then clearly the set of skeptically accepted arguments amounts
to ∅, while the set of credulously accepted arguments is {A, B}. But neither
the empty set, nor {A,B} is a preferred extension of AF .

This observation raises problems with respect to the application of argu-
mentation semantics to justifiable decision-making. If a semantics possibly
outputs multiple extensions, a decision maker might be forced to either make
a selection of arguments not complying with the chosen rationality criterion,
or make an arbitrary choice among extensions of the chosen semantics. This
is why application of semantics which always provide a single extension are
of interest. The grounded semantics is an example of such semantics.

2.2 Value-based argumentation

In the recent literature regarding modeling specific applications of abstract
argumentation theory, it has been argued that in order to capture the speci-
ficity of argumentation about decisions, it is needed to take into account the
values to which arguments appeal (e.g Bench-Capon, 2003; Bench-Capon,
Doutre, & Dunne, 2007; Modgil, 2009). This approach is referred to as
value-based argumentation.

The motivation for the value-based argumentation approach, as pro-
posed by Bench-Capon is to a large extent following a philosophical analysis
of practical argumentation presented by Perelman (1971). This motivation
is based on the insights from reasoning patterns in law or ethics. However,
it can be plausibly applied in discussions about choice of actions broadly
construed. It is claimed that in a discussion concerning certain practical
decisions arguments are not primarily aimed at assessing the truthfulness
of pieces of information. Instead, the discussion is concerned with the ap-
propriate usage of available information towards reaching a collective view
about some decision. It is also natural to observe that presenting argu-
ments in such a discussion has a clearly specified goal. Namely, arguments
are aimed at convincing a body responsible for making a decision that the
decision should be made, or rejected, in accordance with the rhetorician’s
preferences.

Having made the discussed observation it can be noted that the decision-
making body does not necessarily treat the presented arguments in an equal
way. Some of the arguments might be more persuasive than another for
particular assessors. Also, as Bench-Capon argues, these preferences are
not always justifiable by rational reasoning. Instead, he submits that an
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audience of argumentation assesses the strength of arguments relying on
the importance of values that they appeal to. The term audience, used
commonly in the literature on value-based argumentation, refers to a point
of view on the hierarchy of values. It does not presuppose that there are
multiple agents in an audience.

Following the described points, value-based argumentation assumes that
an audience of a discussion can establish the relative strength of arguments
on the basis of importance of values to which arguments appeal. Conse-
quently, an attack on an argument appealing to a higher value than its
attacker, can be disregarded by a relevant audience. As a result, some par-
ticular decision-makers can be persuaded by a given argumentation to a
different extent than others.

Let us illustrate the presented line of reasoning on an example of a
specific debate regarding making a practical decision.

Example 2.2.1. (Airiau, Bonzon, Endriss, Maudet, & Rossit, 2016) Con-
sider a debate regarding the possible ban of diesel cars, aimed at the reduction
of air pollution in big cities. The following arguments are included in the
discussion:

• A - Diesel cars should be banned.

• B - Artisans, who should be protected, cannot change their cars as it
would be too expensive for them.

• C - We can subsidize electric cars for artisans.

• D - Electric cars, which could be a substitute for diesel, require too
many new charging stations.

• E - We can build some charging stations.

• F - We cannot afford any additional costs.

• G - Health is more important than economy, so we should spend what-
ever is needed for fighting pollution.

Further, it can be noticed that these arguments appeal to certain values.
In particular, arguments A,G appealed to environmental responsibility (ER),
B,C to social fairness (SF), F to economic viability (EV) and D,E - to
infrastructure efficiency (IE).

These arguments can be represented as on the argumentation graph with
a mapping of values depicted on the Figure 2.4. For each argument, the first
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element of its description is its name, and the second is the name of the
value it appeals to.

A, ER

B, SF

D, IE

C, SF

E, IE

F, EVG, ER

Figure 2.4: Argumentation structure for the example.

Let us now consider the structure of this discussion from the perspectives
of two members of a decision-making jury. For the first of them, economic
viability and infrastructure efficiency, which are equally strong for her, are
more important than social fairness or environmental responsibility. She
does not differentiate them. Then, from her point of view attacks in which
the attacker appeals to a less important value than the attacked argument
are disregarded. Taking her preferences into account, the following structure
is obtained, after the elimination of disregarded attacks:
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A, ER

B, SF

D, IE

C, SF

E, IE

F, EVG, ER

Figure 2.5: Argumentation from perspective of the liberal (EV ∼ IE � SF
∼ ER)

Clearly, some of the arguments appealing to economical viability or in-
frastructure efficiency are now in a better position than before. However,
some arguments corresponding to different values cannot be accepted in the
new structure.

Let us now consider another member of the jury, who believes that social
fairness is the most important value. She ranks environmental responsibility
second, and economic viability third. Finally, she considers infrastructure
efficiency as the least important. From her perspective, the structure of
successful attacks is much different.
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A, ER

B, SF

D, IE

C, SF

E, IE

F, EVG, ER

Figure 2.6: Argumentation from perspective of the left-winger (SF � ER �
EV � IE)

We can clearly observe that from her perspective arguments appealing
to environmental responsibility or social fairness are in a much better po-
sition than from the perspective of the previously considered jury member.
It is worth noting, however, that in the present setting some attacks hold
regardless of the chosen preference ordering over values. If a pair of argu-
ments attacking each other shares the same value, it is in conflict from any
audience’s perspective.

Let us now proceed to providing the formal account for the presented in-
tuitions. The basic concept is that of the value-based argumentation frame-
work. It is an extension of the abstract argumentation frameworks, pre-
sented in the Section 2.1. In addition to the set of arguments and a binary
attack relation, a set of values and a function mapping them to arguments
are taken into account.

Definition 6. A value-based argumentation framework (VAF) is a tuple
VAF = 〈A,→, V, val〉, where:

• A is the set of arguments

• →⊆ A2 is the attack relation

• V is the set of values

• val : A→ V is the function assigning values to arguments
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Furthermore, in order to establish the relative strength of arguments, it
is needed to provide a preference ordering over values. This move helps to
determine what is the impact of arguments for a particular audience.

Definition 7. Let VAF = 〈A,→, V, val〉. An audience P is a reflexive and
transitive relation (a preorder) over V . We denote that a value v1 is at least
as preferable as v2 for P as v1 �P v2.

Let us further introduce useful notations expressing types of relations
between particular values.

Notation 1. For a pair of values vi, vj ∈ V and a given audience P , we
say that vi �P vj iff vi �P vj, but it is not the case that vj �P vi. We say
that vi ∼P vj iff vi �P vj and vj �P vi. Also, we say that vi1P vj iff it is
not the case that vi �P vj or that vj �P vi. Finally, given a set of values V
we call the preorder P = {vi � vj |vi = vj} the empty preorder over V .

For the clarity of presentation, when examples of audiences are given,
reflexivity is ommited.

Given these notions we can define what does it mean for an argument
to defeat another from the perspective of a particular audience.

Definition 8. Let VAF = 〈A,→, V, val〉 be a VAF and P be an audience.
We call a pair aVAF = 〈VAF, P 〉 an audience specific VAF (aVAF). Then,
we say that an argument a defeats an argument b for P (we denote it as
a→P b) iff a→ b and it is not the case that val(b) �P val(a).

Intuitively, it is stipulated that an audience might reject an attack on
an argument, if it is stronger from their perspective than the attacking
argument. This difference in strength is induced by the difference in the
values that the arguments appeal to and the ordering over values.

Then, the argumentation framework on which a VAF is based can be
transformed into a new framework, taking into account the values that ar-
guments carry and preferences over them.

Definition 9. Let VAF = 〈A,→, V, val〉 and P be an audience. The defeat
graph of VAF based on P is an argumentation framework VAFP = 〈A,→P 〉.

It is worth noting that in this model attacks between arguments sharing
the same value cannot be blocked. This can be seen as a factor contributing
to the plausibility of value-based argumentation. It is only possible for an
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agent to block an attack, if she has a reason to believe that some argument
is stronger than another.

Additionally, following Bench-Capon (2003) we may consider that any
plausible VAF does not include cycles with all arguments assigned the same
value. This restriction is motivated by an observation that such a cycle
would not be breakable under any preference ordering over values, and fur-
ther allowing for a single outcome of the discussion. We will refer to cycles
of this kind as monochromatic.

Definition 10 (Monochromatic cycle). Let VAF = 〈A,→, V, val〉 be a VAF.
We call a cycle of attacks C = a → · · · → a monochromatic iff for any
b1, b2 ∈ C, val(b1) = val(b2).

Then, for any given audience a decision regarding the fair outcome of
deliberation can be made by applying standard argumentation semantics to
its respective defeat graph.

Clearly, specifying agents’ preferences over values as arbitrary preorders
contributes significantly to the cognitive plausibility of the current setting.
It leaves room for agents’ uncertainty about ordering of values. In this way
we can allow for agents who are not sure about orderings of particular pairs
of values, or treating them as equally important.

However, it is worth noting that ensuring that agents preferences are
associated with linear orderings helps to secure beneficial computational
properties of induced defeat graphs. It has been shown that, under the
assumption that a VAF does not include any monochromatic cycles, then
for any audience associated with a linear order over values, the defeat graph
is acyclic.

Theorem 1. (Bench-Capon, 2003) For any VAF = 〈A,→, V, val〉 with no
monochromatic cycles and an audience P associated with a linear ordering
over V , the defeat graph VAFP = 〈A,→P 〉 is acyclic.

This is an important feature of argumentation frameworks both from
the perspective of computational complexity of computing argumentation
semantics and from the perspective of appropriateness of use of particular
semantics as a rationality constraint for selection of arguments. When an
argumentation framework is acyclic, it only has a single, nonempty preferred
extension.

On the other hand, allowing for specifying agents’ preferences over values
as arbitrary preorders allows for higher flexibility in terms of specifying
relative strength of arguments. As a consequence, an agent allowed to only
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specify her ranking of values as a linear ordering can block attacks in fewer
ways than an agent specifying her preferences as arbitrary preorders.

As an example, consider the VAF displayed in Figure 2.7.

a, v1 b, v2

Figure 2.7: Non-monochromatic cycle

Notice that the argumentation framework displayed in Figure 2.8 is a
defeat graph of the VAF for the empty preorder over V = {v1, v2}. However,
any linear ordering over V would require one of the attacks to be eliminated.

faf fbf

Figure 2.8: Not a defeat graph for linear preferences.

Due to this observation, particular properties shown in the thesis will be
shown for particular types of orderings over values. While the main distinc-
tion will be made between arbitrary preorders and linear orderings, results
concerning the case when preference orderings over values are connected
preorders 3 will be provided.

2.3 Computational complexity

In the current work it is of major interest to study the computational com-
plexity of agents’ behavior. I will provide definitions of classes of complexity
of problems which will be used further.

The computational complexity of a problem is a restriction of the amount
of resources required to execute the best algorithm solving it, expressed as
a function of the size of an input. These resources are understood as time
and space needed to execute it. In this thesis results will be restricted to
time. We define a problem as a set of inputs satisfying a certain property.
Then, for a given input, we want to determine if it is a member of this set,
or not.

3Connected preorders are preorders such that for any pair of items Vi, vj , vi � vj or
vj � vi.
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In order to define some important classes of complexity we need a notion
of an oracle. An oracle for some problem PROBLEM provides a solution to
PROBLEM in one unit of time.

Let us now list out the definitions of classes which will be used in the
thesis.

• P: A decision problem PROBLEM is in the class P if it is computable
by some algorithm with runtime bounded by a polynomial f(n), where
n is the size of the input for PROBLEM.

• NP:A decision problem PROBLEM is in the class NP if for a given
input a we can guess the output for a and there is a polynomially
computable algorithm checking if the guess was correct.

• Θ2
p: A decision problem PROBLEM is in the class Θ2

p if it is com-
putable in polynomial time with an access to the oracle for some prob-
lem in the class NP, where the number of times in which the oracle
is accessed is bounded by some logarithmic function f(n), where n is
the size of an input for PROBLEM.

In order to determine if some problems are harder than others, we use
a notion of reduction of problems. We say that a problem PROBLEM1 is
reducible to a problem PROBLEM2 if there is a polynomially computable
function f such that for any input a of PROBLEM1, f(a) is an input of
PROBLEM2 and a is in PROBLEM1 if and only if f(a) is in PROBLEM2.

Further, we say that a problem PROBLEM is C-hard with respect to
some complexity class C, if any member of C is reducible to PROBLEM.
Then, we say that PROBLEM is complete with respect to C if it is C-hard
and it is in C.

2.4 Distance between preference orderings

In the current setting preference orderings play a crucial role. They are
the basis for determining the relative strength of arguments based on the
values they appeal to, and they will be fundamental in establishing collective
argumentation structures.

When we consider a number of agents with distinctive preferences over
values, we might want to ask to what extent their positions are different from
each other. This can be achieved by providing a distance metric between
preference orderings. Deza and Deza (2009) provide an extensive overview
of the literature on distances.
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Establishing a distance between two preference orderings aims at provid-
ing a measure of how two views on importance of particular items of some
set are different from each other. The main line of research on distances be-
tween orderings focuses on linear orderings, in the desired setting preference
orderings are preorders. Thus, distance metrics need to be adapted to this
application. In the reminder of the thesis we will not focus on particular
metrics, but rather study classes of distances satisfying particular compu-
tational properties. In this section I will provide an example of applicable
distances over preorders.

One of such metrics is the Hamming distance. Given two arbitrary
preorders, it indicates the number of disagreements between them.

Definition 11 (Hamming distance). Let P1, P2 be preorders over a set
V . The Hamming distance between P1 and P2 (denoted as HD(P1, P2)) is
the number of disagreements between those pre-orders. It is the number of
elements a, b ∈ V such that a �P1 b and a 6�P2 b, or a �P1 b and a 6�P2 b

Let us illustrate the concept of distances between preorders on the ex-
ample.

Example 2.4.1. (Continuation of Example 2.2.1.) Recall that we were
considering two positions in the debate regarding the possible ban of Diesel
cars: one of them was put forward by a left-winger, and another by a liberal.
Let us also consider a neutral approach, in which all values used in the debate
are not comparable. We know that those positions are different from each
other. We would like to know, however, to what extent do they differ. Let
us recall agents’ preferences over values.

1. {SF � ER,ER � EV,EV � IE}

2. {EV � IE, IE � EV,EV � SF,EV � ER, IE � SF, IE � ER,SF �
ER,ER � SF}

3. ∅

Let us now compare Hamming distances between these orderings. HD(1, 2) =
7, HD(1, 3) = 3, HD(2, 3) = 8.



Chapter 3

Single agent setting

The goal of this chapter is to investigate the scenario in which a single
agent is about to make a decision which needs to be justified. The type of
justification which I will study is understood as a support of some ordering
over values to which relevant arguments appeal. In this chapter it will be
assumed that a decision-maker can have an incentive to make a decision
which is not in line with her sincere preferences over values. Then, she
might be willing to submit an insincere preference ordering as a justification
of her choice of decision. This is not a desirable behavior and we would like
the designed decision system to be immune to this kind of manipulation.

For the sake of simplicity of the setting, in this chapter I will focus
on agents who wish to push the decision forward, not those who wish the
decision not to be made.

I will begin by providing a motivation and formal account for this kind of
justification of decisions. I will do it in Section 3.1. Further, in Section 3.2, I
will study the complexity possibility of finding any preference ordering justi-
fying agents’ decision. Then, in Section 3.3, I will investigate the hardness of
finding such an ordering which is minimally different than the agents’ sincere
hierarchy. In Section 3.4 describe some relevant connections of this problem
with properties of particular value-based argumentation frameworks.

3.1 Decisive arguments

It is often the case that arguing agents aim at reaching a decision. We can
say that there are some points in the discussion which clearly determine
what should be decided, such as “We should go to war”. However, some
of them are not sufficient for resolving the issue at stake. For instance, an
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argument “A lot of soldiers would die during war” can be used as a support
for the pacifist view. Nevertheless, accepting it does not determine that the
country would not go to war. It is worth noting that this point is different
from only assuming that arguments are in favor of a decision or in favor
of not taking it. If an argument stating that a decision should be taken is
pushed forward, the decision should be accepted. This is independent of the
balance of arguments which are in principle for or against the decision.

The described intuition can be captured by mapping information about
a decisive support for certain decisions to a subset of considered arguments.

Definition 12. Let AF = 〈A,→〉 be an argumentation framework. We
call DP = 〈AF,D〉 a decision problem, where D ⊆ A is a set of decisive
arguments.

A particular class of argumentation problems involves deliberation about
performing a single action. In such an argumentation one argument is deci-
sive for this action. We can associate it with a statement that the decision
should be made. We refer to such argumentations as to binary argumenta-
tion problems. In the thesis I will focus on this type of decision problems.
Unless specified otherwise, by decision problem I will refer to binary decision
problems.

Definition 13 (Binary decision problem). Let DF = 〈AF,D〉 be a decision
problem. DF is a binary argumentation problem iff |D| = 1.

For convenience I will sometimes call a pair 〈VAF, D〉, were VAF is some
value-based argumentation framework and D is an an argument a decision
problem as well.

To illustrate this intuition, let us continue the example employed in the
previous chapter.

Example 3.1.1. (Airiau et al., 2016) Recall that in the Example 2.2.1 we
were taking into account a debate regarding a possible ban of diesel cars,
aimed at reduction of air pollution in big cities. Let us now assume ad-
ditionally that the jury is not deciding upon any other actions during the
meeting. The only possible outcomes of the decision process are that diesel
cars are banned, or they are not.

Then, despite the complexity of the structure of the argumentation, the
result of the discussion is binary - either the city bans Diesel cars, or it does
not. So, we consider only one decisive argument - A. If this argument is
accepted, we should ban Diesel cars, and otherwise we should not.



27

A, ER

B, SF

D, IE

C, SF

E, IE

F, EVG, ER

Figure 3.1: Argumentation structure with A marked as a decisive argument.

Notice now that as the arguments presented in the example clearly relate
to particular values, preferences over them determine the relative strengths
of arguments. Therefore, we can easily imagine that an agent who has an
interest in pushing a decision forward would like to impose a ranking over
values ensuring that the decision is made. To capture this behavior, let us
introduce the notion of preservability of an argument.

Here, given a VAF and an argument we are looking for a preference
ordering under which the argument is credulously accepted with respect to
chosen semantics, as introduced in the Definition 5. This notion has been
introduced as subjective acceptance of an argument by Bench-Capon (2003).

Definition 14 (Preservability). Let VAF = 〈A,→, V, val〉 be a VAF, a ∈ A,
and σ be an argumentation semantics. We say that a is σ-preservable iff
there is an audience P such that a belongs to some σ-extension of the defeat
graph AF = 〈A,→P 〉.

To illustrate this term, consider again the debate described in the pre-
vious example.

Example 3.1.2. (Continuation of Example 3.1.1)
Let us imagine that the decision is left to a single agent - a mayor.

However, she also happens to be an owner of a factory of electric cars, so
she would be highly interested in passing the ban. But she still needs to justify
her decision. In the city it is customary to consider belonging the grounded
extension as a fair justification of acceptance of an argument.

In reality, the mayor does not care about the environment at all. In
fact, she does not have any preference over values, she only cares about
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the decision being made, because this would give her a lot of money. So,
in her ordering over values all values are equal. Thus, with respect to her
preferences the induced defeat graph is of the form depicted on the Figure
3.2.

A

B

D

C

E

FG

Figure 3.2: Defeat graph for mayor’s sincere preference ordering (ER 1 IE
1 EV 1 SF).

It is easy to check that in this case the grounded extension is the empty
set, so A is clearly not a member of it. So, the mayor cannot justify her
decision with this ranking over values. However, it would be sufficient for her
to pretend that the environment is more important for her than economical
issues to transform the argumentation to the form in which her decision is
justified. She decides to submit an insincere ordering over values is of the
form:

ER � EV � SF � IE

Which induces the defeat graph presented in the Figure 3.3.
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A

B

D

C

E

FG

Figure 3.3: Defeat graph for mayor’s insincere preference ordering.

In this graph, the grounded extension is {G,C,E,A}. So now, clearly
choosing A is justified. Thus, A is preservable.

3.2 Single agent complexity results

Let us proceed to the determination of the computational complexity of
finding preference orderings over values preserving decisive arguments. The
preservability problem was studied in the literature under strong assump-
tions. Namely, it was assumed that agents specify their preferences over
values as linear orderings and that there are no monochromatic cycles in
VAF s (e.g. Dunne & Bench-Capon, 2004). We are interested in generalizing
the results with respect to this problem to account for agents who are only
willing to specify their preferences as arbitrary preorders. We will further
study the complexity of finding a preference ordering preserving the decisive
argument which is minimally different from the agent’s sincere ordering.

For simplicity of this endeavor let us rephrase the definition of preserv-
ability as a decision problem.

PRESERVABILITY(σ)

Instance: VAF = 〈A,→, V, val〉, a ∈ A.
Question: Is there an audience P such that a is credulously accepted
in the defeat graph of VAF based on P with respect to semantics σ?

The problem has been shown to be NP-complete under the assumption
that audiences are associated with linear orderings over values and that
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there are no monochromatic cycles in the considered VAF s (Dunne & Bench-
Capon, 2004). It has also been shown that this theorem also holds when
the structure of the considered VAF s is restricted to binary trees (Dunne,
2007).

It is worth noting that if we assume, following previous work on preserv-
ability, that preferences over values are strict and that there are no monochro-
matic cycles, any obtained defeat graph is acyclic. Such defeat graphs en-
joy beneficial properties, for instance they are guaranteed to have a single,
nonempty preferred extension (Bench-Capon, 2002). This is not the case,
however, if we allow agents to have preferences over values expressed as
arbitrary preorders. Therefore, we will study the complexity of the preserv-
ability problem separately for the grounded, the preferred and the stable
semantics.

Let us first consider the preservability problem for the grounded seman-
tics.

Proposition 1. The preservability problem is NP-complete for the grounded
semantics.

Proof. Membership: Take a VAF = 〈A,→, V, val〉 and a ∈ A. Then guess
a preorder P over V . We will check if for the defeat graph AF of aVAF=
〈VAF, P 〉, a ∈ GRNDAF. Checking if the guess was correct is polynomial, as
the credulous problem is polynomial for the grounded semantics, as indicated
in Table 2.1.

Hardness: We will follow the construction used by Dunne and Bench-
Capon (2004) to prove NP-hardness for Theorem 2 and show, that it also
holds for the currently considered case. We will reduce the 3-SAT problem
to preservability with grounded semantics. Consider any 3-SAT formula
over a set of variables Z = {z1, . . . , zn}: ϕ =

∧m
i=1(x

1
i ∨ x2i ∨ x3i ). Then, let

us construct a VAF= 〈A,→, V, val〉 with a ∈ A such that a is preservable
iff ϕ is satisfiable.

Let us take the set of arguments A = {ϕ,C1, . . . , Cm}∪
⋃n

i=1{pi, qi, ri, si}.
Now consider attacks: for any clause x1i ∨x2i ∨x3i , if xgi = zk, pk → Ci. Also,
if xgi = ¬zk, let qk → Ci. Further, for any i ≤ n, let pi → qi, qi → ri, ri → si
and si → pi. Finally, for any Ci, let Ci → ϕ. Now consider the assignment
of values: assign the value con to any argument in {ϕ,C1, . . . , Cn}. Also,
assign a value proi to any argument pi, ri and coni to qi, si.

Suppose now that there is some model M for which ϕ is satisfied. Then,
for any variable zk assigned >, set prok � conk. Symmetrically, if zk is
assigned ⊥, set conk � prok. Now notice that in the defeat graph induced
by this preference ordering, each argument Ci is attacked either by pi or qi
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which is itself not attacked. So, ϕ is in the grounded extension. So, it is
preservable.

Further, suppose that ϕ is in the grounded extension under some assign-
ment of values. This means that for any Ci there is some argument pk or
qk attacking it, which is itself not attacked. Thi is the case because for any
i, val(Ci) = val(ϕ), so attacks of the form Ci → cannot be blocked. But
this means that for any clause Ci in ϕ and some zk in Ci we have assigned
prok � conk if zk is positive in Ci, or conk � prok if zk is negative in Ci.
But this gives us a valuation under which ϕ is satisfied.

So, the 3-SAT problem is reduced to the preservability problem with
respect to the grounded semantics.

Therefore, we can solve the preservability problem with respect to the
grounded semantics while considering arbitrary preorders still in NP time.

Let us study the preservability problem with respect to stable semantics.

Proposition 2. The preservability problem is NP-complete with respect to
the the stable semantics.

Proof. Membership: Take a VAF = 〈A,→, V, val〉, a ∈ A. Guess a pre-
order P over V . Since credulous acceptance is in NP for the stable semantics,
we can verify if a is accepted in the defeat graph based on P under these
conditions in polynomial time. So, the considered problem is in NP.

Hardness: Take the credulous acceptance problem with respect to sta-
ble semantics, which we know is NP-complete, as indicated in Table 2.1.
Then, consider an instance of this problem: an argumentation framework
AF = 〈A,→〉 and an argument a ∈ A. Then, we can assign each argu-
ment the same value v. In this way we construct a VAF = 〈A,→, {v}, val〉,
where for any x ∈ A, val(x) = v. Now, take the only one ordering P over
this set of values. Clearly, if a is in some stable extension of the defeat
graph of aVAF = 〈VAF, P 〉, it is credulously accepted with respect to stable
semantics in AF. Otherwise, it is not.

Let us further determine the complexity of the discussed problem with
respect to the preferred semantics.

Proposition 3. The preservability problem is NP-complete with respect to
the preferred semantics.

Proof. Membership: Take a VAF = 〈A,→, V, val〉, a ∈ A. Then, guess
a preorder P over V . We need to check if a is credulously accepted w.r.t
preferred semantics in the defeat graph based on P . Then notice that since
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credulous acceptance is in NP for the preferred semantics, we can verify if
a is accepted in the defeat graph in question.

Hardness: Take the credulous acceptance problem with respect to pre-
ferred semantics. Now consider an instance of this problem: an argumen-
tation framework AF = 〈A,→〉 and an argument a ∈ A. Then, assign all
arguments the same value and check if a is preservable. If it is, then clearly
a is credulously accepted, and otherwise it is not.

3.3 Preservability with minimal changes

In the previous section we have shown complexity results for determining
if some preference ordering preserving a decisive argument can be found.
However, it is often not sufficient to find any explanation for a decision,
we can be concerned with finding the optimal one with respect to some
criterion. Here, we consider being minimally distant from an agent’s sincere
ordering over values as such criterion. As this avenue of research is novel, I
will restrict my investigations to the grounded extension.

In the current context we are considering agents who already have their
initial preference orderings over values. Then, even if they are inclined to
push a certain decision forward, they are hesitant to change their view on
the hierarchy of values too much. This can be because they do not want to
violate their principles. But it can also be the case that a decision-maker
is concerned with her credibility. Then, she wants to avoid situations in
which recipients of a justification for a decision are not willing to believe
in its sincerity because it is substantially different from what they think is
the sincere hierarchy of values that the decision maker has. Following this
intuition we will study the problem of determining the preference ordering
over values ensuring that a decision is made, which is minimally different
from the agents’ sincere hierarchy.

Let us begin with checking the complexity of finding if there is some au-
dience enjoying the desired property within a distance of k from the original
ordering.

k-DISTANCE PRESERVABILITY(σ, d)

Instance: VAF = 〈A,→, V, val〉, a ∈ A, semantics σ, distance k ∈ N,
preorder P over V .
Question: Is there an audience P ′ such that a is credulously σ accepted
in the defeat graph of VAF based on P ′ and d(P, P ′) ≤ k?
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Proposition 4. The k-distance preservability problem is NP-complete for
the Hamming distance and the grounded semantics.

Proof. Take a VAF = 〈A,→, V, val〉, a ∈ A and a distance k. For mem-
bership in NP, consider a procedure in which a preorder P ∗ based on V is
guessed. Then it is polynomial to check if a is accepted under grounded
semantics in the defeat graph of VAF based on P . Also, it is easy to see
that it is polynomial to check if HD(P, P ∗) ≤ k - it is sufficient to check
for all possible pairs of values if they belong to one preorder but not to the
other.

For NP-hardness consider a reduction of the preservability problem which
we have shown to be NP-complete for grounded semantics. Take any VAF =
〈A,→, V, val〉, a ∈ A. Also, take the empty preorder P . Then consider
k = |V |2. Now check if there is a preorder preserving a within a distance
k from P . Note that k is the maximal distance from P , so if a desired
preorder P ∗ exists, HD(P, P ∗) ≤ k. But checking that is NP-hard, so k-
distance preservability problem also is.

This result is easily generalizable to any distance metric over preorders
which is verifiable in polynomial time and for which the maximal distance
between any pair of preorders within some set is polynomialy computable.

Proposition 5. k-distance preservability problem is NP-complete for the
grounded semantics and any distance metric over preorders d for which it
is polynomial to check if d(P1, P2) ≤ k, where P1, P2 are arbitrary preorders
over some set V and k ∈ N, and for fixed V , d(P1, P2) is bounded by some
constant M .

Proof. It is sufficient to consider a construction symmetric to the one used
in the Proposition 4.

Let us then proceed to checking what is the complexity of finding what
is the closest audience preserving an argument.
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MIN-DISTANCE PRESERVABILITY(σ, d)

Instance: VAF = 〈A,→, V, val〉, a ∈ A, preorder P over V , preorder
P ′ over V .
Question: Is P such that a is credulously σ accepted in the defeat
graph of AF based on it and for any P ′, d(P, P ) ≤ d(P, P ′)?

By binary search we can show that for the grounded semantics this
problem is in ΘP

2 (the definition of this class is given in the section 2.3).

Proposition 6. MIN-DISTANCE PRESERVABILITY is in ΘP
2 for the

grounded semantics and distance metrics satisfying conditions of Proposi-
tion 5.

Proof. We will show that the problem is ΘP
2 by constructing a binary search

algorithm. Take a VAF = 〈A,→, V, val〉, a ∈ A, a polynomially computable
distance metric d with the given maximal distance between preorders over
V , namely M . Also, consider some initial preorder over V , namely P . Now,
first check if there is some preorder preserving a within distance M from P .
We know that this step is computable in NP time. If there is one, check if
there is one within distance M

2 . If there is not, check within distance M ∗ 3
4 .

Perform this procedure until we find a preorder within the distance ε from P
preserving a such that for any distance smaller than ε no preorder satisfying
this property exists. As we know that the binary search is logarithmic from
the size of input, we only need to solve the NP-complete problem of finding a
preorder preserving a within some distance d. So, our problem is in Θp

2.

3.4 Graph characterisation results

In this section it is of interest to find restrictions on the structure of VAF s
which ensure that manipulation in the described sense is impossible. An-
other goal is to find structural restrictions of VAF s in which the preservabil-
ity problem is polynomial. Although we know that this problem is difficult
in general case, we might possibly find kinds of VAF s in which it is simpli-
fied. Those should be avoided when they are used for decision-making in
the investigated manner.

We will begin with finding a restriction on the structure of VAF s ensur-
ing that manipulation is not possible. To achieve this goal, let us introduce
a notion of guarded arguments. Intuitively, these are arguments attacked by
a chain of arguments preventing them from being accepted. This chain is re-
quired to be labeled with the same value as the argument in question, which
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ensures that none of the attacks is possibly blocked under some audience.
This is ensured by setting that the chain (including the decisive argument)
is even and that even elements of the chain are only attacked by their direct
predecessors.

Definition 15 (Guarded arguments). Let VAF = 〈A,→, V, val〉 be a VAF,
a ∈ A. We say that a is guarded iff there is an uneven-length sequence of
distinct arguments (in terms of the number of arguments) a, b1, . . . , bn (a
guard) such that n ≥ 2, b1 → a and for any i < n, bi + 1 → bi and for any
i ≤ n, val(bi) = val(a). Also, for any even i ≤ n, bi is attacked only by bi+1

or by no argument.

To illustrate this notion let us consider a slightly modified version of the
debate described before. It is shown in the Figure 3.4. In this VAF the
argument A is guarded. A is attacked by A’ which is attacked by A”. A”
is not attacked by any argument. So, we have an uneven, monochromatic
chain such that for any uneven predecessor of A, it is not attacked by any
argument than its own predecessor.

A, ER

A’, ER

A”, ER

B, SF

D, IE

C, SF

E, IE

F, EVG, ER

Figure 3.4: Argumentation structure with A being a guarded argument.

Guarded arguments are not preservable under any semantics which as-
sume admissibility.
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Proposition 7. For any VAF = 〈A,→, V, val〉, a ∈ A, if a is guarded, it is
not credulously preservable under the admissible semantics.

Proof. Let VAF = 〈A,→, V, val〉 be a VAF, a ∈ A such that a is guarded.
Suppose that there is an audience P such that a is in some admissible set
S of AF = 〈A,→P 〉. We know, that by properties of the defeat relation,
the attack sequence given by the guard of a is preserved. Now notice that
as b1 → a, and b2 is its only attacker, b2 ∈ S. Consequently, for any even i,
bi ∈ S. Now consider the last uneven argument in the guarding chain. We
know that it has an attacker, as the sequence is even, and that the attackers
is not attacked. So, S is not admissible.

Having established this restriction, which ensures that the setting is im-
mune to manipulation, we might attempt to find cases in which it is ma-
nipulable. In fact, we can try to find cases in which it is easy. However,
we know that the preservability problem is NP-hard even if we restrict the
problem to binary trees. Therefore, relevant restrictions are deemed to be
strict.

One of the simple restrictions in which finding a way to manipulate is
easy, is when the attack relation is a chain. Let us introduce this notion
formally.

Definition 16 (Chain of arguments). Let AF = 〈A,→〉 be an argumenta-
tion framework. A chain of arguments is a sequence of arguments 〈a1, . . . , an〉
such that for any i < n, ai → ai+1. We say that a chain of arguments has
a length n if it consists of n arguments.

Proposition 8. Let VAF = 〈A,→, V, val〉 be a VAF and a ∈ A. If → is a
chain, the preservability problem is polynomial for any semantics assuming
admissibility.

Proof. Consider the following procedure, assuming that the input attack
relation is a chain:
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Algorithm 1 CheckPreservable

1: procedure CheckPreservable(VAF = 〈A,→, V, val〉, a ∈ A)
2: Au← empty preorder over V
3: NotBreak← Empty list of pairs of values
4: En← Enumeration of arguments in the chain, a is En0
5: if length(En) is even then return True

6: for Eni ∈ En, where i > 0 do
7: if i is even then
8: append 〈val(Eni−1), val(Eni)〉 to NotBreak .

9: if i is uneven&val(Eni−1) 6= val(Eni)&〈val(Eni−1), val(Eni)〉 /∈
NotBreak then

10: Add val(Eni−1) � val(Eni) to Au
11: Return True
12: Return False

Correctness: Suppose that the procedure returns True. Then, in the
defeat graph based on Au the chain is broken at an even distance from
a. Then it is easy to check that a is in some admissible extension. Now
suppose that the procedure returns False. Then, the length of the chain is
uneven. Let us show by induction on the legth of enumeration that then it is
impossible to find an audience preserving a in some admissible extension. If
n = 1, then the only argument attacking a is En1. Then val(En1) = val(a),
as otherwise the attack would be broken by construction of the procedure.
Suppose that the claim holds for m = n. Now consider an enumeration of
length m = n + 1. Then notice that the procedure would provide the mth

element of chain would be disregarded must be False, as otherwise, we would
not reach the mth step. If m is not even, as its attack is not blocked, it is
either the case that its value is the same as of Enm−1, so it is impossible
to block it for any audience, or the attack is in the NotBreak list. Then, if
we would break it, the chain would be broken at an even level, which would
make a unacceptable. Also, if m is even, then by construction the procedure
returns True.

Complexity: Clearly, the procedure is polynomial from the size of →,
as it only involves checking the chain once.

This result can be easily generalized to frameworks in which a relevant
chain is embedded in a bigger structure.

Proposition 9. Let VAF = 〈A,→, V, val〉 be a VAF and a ∈ A. If there is
a chain of arguments Ch = a← b1,← . . . ,← bn, such that for any element
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of the chain its only attacker is its successor in the chain, the preservability
problem is polynomial.

Proof. Let VAF = 〈A,→, V, val〉 be a VAF and a ∈ A. If there is a chain
of arguments Ch = a ← b1,← . . . ,← bn, such that for any element of the
chain its only attacker is its successor in the chain. Consider VAF′ = 〈A′,→′
, V, val〉, where 〈A′,→′〉 = Ch. Then, it is sufficient to take the procedure
used in the proof of Proposition 8 to prove the claim.

So, VAF s which satisfy the conditions of the last two propositions should
be avoided, if there are reasons to believe that the decision-maker has an
incentive to manipulate.

The next chapter deals with situations in which several agents interact
on a given decision problem.



Chapter 4

Multi-agent setting

4.1 Introduction

In the recent literature on abstract argumentation the problem of estab-
lishing a collective view on particular aspects of deliberation has gained a
growing interest (Bodanza et al., 2017). This problem becomes particu-
larly interesting when argumentation is used as an assistance in collective
decision-making. When a group wishes to reach a collective view with re-
spect to some decision based on an argumentation, it is crucial that they
share a view about its structure. Therefore, it is important to provide fair
methods of reaching a collective view about it.

One of the intuitions behind the claim that argumentations can be viewed
in distinctive ways is that agents might not agree on whether particular
arguments are indeed in conflict with each other. Possible explanations for
such a situation involve a scenario in which particular agents disagree on the
relative strength of arguments. As it was argued earlier, it is plausible to
assume that if an agent believes that some strong argument is attacked by
a weak one, she might decide to disregard this attack. However, decisions
about which arguments are stronger than another are at the discretion of
individual assessors. Therefore, structures of successful attacks between
arguments might vary among the considered group of agents.

This explanation undoubtedly applies to discussions based on values
aimed at deciding upon a specific action. To illustrate this point let us
continue the example of a debate discussed in the previous chapter.

Example 4.1.1. We are faced with a debate concerning choosing a decision.
In this debate arguments are associated with particular values. The VAF
depicting the relevant argumentation is shown in the Figure 3.1.

39
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Recall that in the previous chapter we were considering justifications
made by a single agent. Then, the mayor was responsible for passing the
law and she was only looking for a way to explain her action. Let us now
suppose that the decision is made by a committee of three members, who
need to reach some collective view.

Then, there are many possible ways of determining the relative strength
of arguments based on a ranking over values that they appeal to. Let us con-
sider three committee members involved in the discussion, representing three
different points of view on this subject. Each of them can be associated with
a distinctive preference ordering over values and a distinctive defeat graph
of the initial VAF. They are depicted in the Figure 4.1. One of them, in the
graph (b), belongs to the mayor who tries to convince the others that passing
the law is a good decision. The agent whose point of view is presented in the
graph (c) supports her stance. Graph (a) shows the view of an agent who
is against the bill1. For the simplicity of the setting, unlike in the previous
chapter we assume that agents’ preferences over outcomes of discussion are
induced by their sincere preferences over values. Then, it is natural to study
behavior of both agents who wish the decisive argument to be accepted, and
those who would prefer it to be rejected.

1In the graph (a) the grounded extension is {F,B,D}, in graphs (b) and (c) it is
{G,C,E,A}.
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(a)

A

B

D

C

E

FG

ER�EV sffefefeahh

(b)

A

B

D

C

E

FG

EV�ER� SF�IE

(c)

A

B

D

C

E

FG

EV�ER�IE blablano

Figure 4.1: Defeat graphs of the example VAF for 3 agents with distinctive
preferences over values.

When we are faced with a situation like this, we would like to find a
method of providing a single defeat graph for the entire group of agents.
Such a structure should take into account all perspectives of agents involved
in the decision process. In this way we can provide a collective decision
representing agents’ views on arguments fairly, while making sure that the
result of the decision process can be justified by some hierarchy of values.

Two natural approaches to this problem can be distinguished.

1. In the first of them, we focus on providing a collective preference order-
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ing over values. Having established it, it is straightforward to compute
a collective defeat graph based on it.

2. We can, however, take a different approach. We can consider providing
a collective defeat graph basing just on the defeat graphs submitted by
agents. In this way we can reach a compromise with respect to agents’
views on the relative strength of arguments even without access to
their precise preferences over values.

At the first glance it is difficult to determine which of the two ways of
aggregating value-based argumentation frameworks is more appropriate. A
goal of this work is to study them in detail to compare the benefits of their
usage.

In Sections 4.2 and 4.3, a formal account for these approaches will be
provided. I will present intuitions behind them and showcase several in-
sightful properties of the proposed frameworks. Further, in Section 4.4, I
will describe relations between the approaches. In particular, I will show a
method of defining them in terms of each other. Finally, in Section 4.5, I will
study the possibility of manipulating the outcome of aggregation within the
proposed frameworks. I will focus on two aspects of strategic behavior in
the considered settings. Firstly, it will be determined in which cases manip-
ulation is impossible. Further, we will attempt to find methods of ensuring
that strategic behavior is computationally difficult where it is possible.

4.2 Aggregating argumentation graphs

Let us firstly consider the approach in which the choice of a collective defeat
graph is based on individual defeat graphs submitted by particular agents.
It is worth noting that this approach has a significant advantage over ag-
gregation of preference orderings. Namely, we do not need to have access to
agents’ preference orderings. What is sufficient here is to know what is the
relative strength of arguments from the agents’ perspectives, not the precise
orderings which determined it.

In this thesis I focus on the aggregation of argumentation frameworks
employing graph aggregation methods, originating in the social choice the-
ory. It is worth noting that there exist other approaches to this problem,
attempting to capture the specificity of multi-agent argumentation in dis-
tinctive manners. A comprehensive overview of such methods was provided
by Bodanza et al. (2017).
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4.2.1 The framework

The formalization of the approach in question is based on the model devel-
oped by Chen and Endriss (2017), which follows the results of Endriss and
Grandi (2017). In this model the social choice mechanism is used in order to
aggregate a number of submitted argumentation frameworks. It is further
assumed that all agents agree upon the set of available arguments. What
they are unsure about is the structure of an appropriate attack relation.

Let us demonstrate how such an aggregation rule might behave on an
example.

Example 4.2.1. Let us consider the three agents with distinctive views on
the structure of attacks between a common set of arguments, giving rise to
a profile of defeat graphs AF (see Figure 4.1).

Then, we can consider a majority aggregation rule, in which an attack is
accepted collectively if and only if more than a half of agents accepts it. Let
us compute the result of application of this function to the depicted profile
(see Figure 4.2.)

A

B

D

C

E

FG

Figure 4.2: Application of the majority rule to the profile AF.

Let us now provide a way to aggregate defeat graphs. It is worth noting
that the preferences over values that agents believe in are expressed in the
structure of attacks that they believe are successful. The defeat graphs that
agents submit primarily show the relative strength of arguments induced by
preferences over values that they find appropriate. Therefore, given a VAF
that serves as the basis for developing agents’ individual defeat graphs we
can provide a common argumentation graph expressing a collective view on
the strength of arguments.

Let us first define a defeat aggregation problem. It consists of a VAF
and a profile of defeat graphs corresponding to particular agents’ views on
the relative strength of arguments.

Definition 17 (Defeat Aggregation Problem). Let VAF = 〈A,→, V, val〉 be
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a VAF and N = {1, . . . , n} be a set of agents. We call a profile of defeat
graphs of VAF AF = 〈〈A,→1〉, . . . , 〈A,→n〉〉 a defeat aggregation problem.

Then, we can take a function taking as an input a profile of defeat graphs
of some VAF and providing a single argumentation framework.

Definition 18 (Defeat Aggregation Rule). Let VAF = 〈A,→, V, val〉 be a
VAF. Then, a defeat aggregation rule is a function FVAF : AFn → AF ,
where AFn is the set of all profiles of defeat graphs of VAF of length n and
AF is the set of all argumentation frameworks with the set of arguments
equal to A. Further, for any profile of defeat graphs AF and an attack
a → b, Na→b

AF denotes the largest set of agents such that for any i ∈ Na→b
AF ,

a →i b. By a defeat aggregation rule F we denote a collection of defeat
aggregation rules FVAF, defined for all VAFs.

4.2.2 Preservation of being an audience

In the intended application agents are determining the outcome of their
discussion based on their beliefs about the relative strength of arguments,
induced by a preference ordering over values that they think should hold. In
such an approach it is crucial that they are capable of justifying their posi-
tion by providing an appropriate ordering of values explaining their choices.
Naturally, it is of interest for the collective view defeat graph to be justifiable
as well. While it can be demanded from agents to submit explainable defeat
structures, it is the matter of a proper design of an aggregation mechanism
to ensure that the collective structure is explainable. This problem is highly
related to the work by Airiau et al. (2016), who studied when it is possible
to find a VAF for a set of argumentation frameworks such that all of them
are its defeat graphs.

The problem of preservation of being an audience is highly related to the
general issue of preserving properties of argumentation frameworks in their
aggregation, studied by Chen and Endriss (2017). In abstract argumentation
several structural properties of argumentation frameworks, such as being
acyclic, are important to ensure that an outcome of a discussion is concluded
efficiently and unambiguously. Therefore, it is important to ensure that if all
agents submit a graph satisfying such a property, likewise does the collective
framework.

We will study when can it be the case that the property of being a defeat
graph of a certain VAF is preserved. In other words, we will investigate when
it is the case that the collective framework is a defeat graph of the original
VAF. To achieve this goal, let us state formally when is it the case that a
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a, v1b, v2

c, v3

Figure 4.3: Triangle VAF.

graph is a defeat graph of VAF. We say that it holds when we can find a
preference ordering over values resulting in it.

Definition 19. Let VAF = 〈A,→, V, val〉 be a VAF, and AF = 〈A,→〉.
We say that AF is a defeat graph of VAF iff there exists a preorder P over
V such that AF is the defeat graph of aVAF = 〈VAF, P 〉. We call such a P
a justification of AF .

Let us illustrate the problem of determining if an argumentation graph
is a defeat graph of a given VAF. Consider the VAF shown in the Figure
4.3 and argumentation frameworks in the Figure 4.4.
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(a)

a, v1b, v2

c, v3

(b)

a, v1b, v2

c, v3

Figure 4.4: Potential defeat graphs.

The graph (a) is clearly a defeat graph of VAF. It is sufficient to consider
the empty preorder over values. However, it is impossible to find a preorder
to justify the framework (b). Observe that any preorder over values under
which all three attacks would be eliminated would need to ensure that (1)
v3 � v1, (2) v1 � v2, but also that (3) v2 � v3. So, such an ordering would
violate the transitivity condition and thus would not be a preorder.

Along the lines of this observation, I will show that the property of being
a defeat graph is not preserved by quota rules.

A quota rule is a defeat aggregation rule such that any attack is preserved
if and only if it is supported by a number of voters larger than some fraction
q of the total number of voters.

Definition 20 (Quota rule). Let AF be a defeat aggregation problem. Then,
F is a quota rule if there is q ∈ [0, 1] such that for any attack a → b,
a→ b ∈ F (AF) iff Na→b

AF ≥ bq ∗Nc, where N is the total number of voters.

A natural example of a quota rule is the weak majority rule, in which
q = 1

2 .
We show that no quota rule can preserve being a defeat graph.

Proposition 10. Being an audience is not preservable by any quota rule.
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Proof. Consider a quota defeat aggregation rule F with an arbitrary quota
q ∈ [0, 1]. Then, take some n ∈ N such that 1

n < q. Further, construct
a VAF = 〈A,→, V, val〉 such that A = {a1, . . . , an}, →= {ai → ai+1|i <
n} ∪ {an → a1}. Notice that this attack relation forms a cycle. Also, let
val(ai) = vi for any argument ai (now all arguments are assigned unique
values). Then, consider a set of agents N = {1, . . . , n}, submitting defeat
graphs such that for any i < n, in agent i’s perspective only ai →i ai+1,
while for agent n only an →n a1. It is easy to see that these are defeat
graphs of VAF. For any agent i, the set of attacks {an → am|an 6→i am} is
a chain of length n − 1. Then, we can consider a preference ordering over
values such that for any an → am such that an 6→i am, val(am) �i val(an).
Clearly, this gives us a desired defeat graph.

Notice now, that in the result of application of F to this profile, no
attacks are preserved, as each of them has a support of fewer agents than
q ∗ |N |. But now suppose that we have an ordering P over V under which
such a defeat graph would be obtained. Then, we would need to have than
vn �P Vn−1 �P · · · �P v1 �P vn. But then P is not transitive, so it is not
a preorder.

This is not a good news in the sense that we cannot use a large class
of intuitive aggregation rules, if we wish to make sure that any collective
defeat graph is justifiable in terms of preferences over values.

A class of rules which is capable of overcoming this issue is the class
of distance based rules. Such functions, given a profile of defeat graphs of
some VAF output a defeat graph which minimizes average distance between
input graphs and the output. An example of such a rule is the rule selecting
a defeat graph of VAF, minimizing the average Hamming distance between
the input graphs. Here, the Hamming distance between two argumentation
frameworks AF1, AF2 is the number of attacks a→ b such that a→ b ∈ AF1

and a→ b /∈ AF2, or a→ b ∈ AF2 and a→ b /∈ AF1.
Nevertheless, the inability of a large class of defeat aggregation rules to

preserve being an audience can be considered as an advantage of aggregating
preference orderings directly. This approach, as we will see, gives an assur-
ance that an obtained argumentation graph is a defeat graph of an initial
VAF.
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4.3 Aggregating orderings of values by preference
aggregation

The other method of aggregating views on the relative strength of arguments
is to reach a collective view about the ordering over values that they appeal
to. This approach makes use of preference aggregation functions, pioneered
by Arrow (1951), which constitute one of major parts of the social choice
theory.

In this way we might establish a collective ordering over values and con-
sequently compute a collective defeat graph of the initial VAF. Then, evalu-
ation of acceptance of a decisive argument can be performed. This approach
has been proposed earlier by Pu, Luo, Zhang, and Luo (2013). They sug-
gested the application of preference aggregation techniques to aggregating
views on preferences over values, however in their work connections between
this approach and aggregating defeat graphs was not specified. Also, we gen-
eralize their work by allowing agents to express their preferences as arbitrary
preorders.

In order to provide the described procedure formally, preference aggre-
gation functions will be used. This mechanism, widely studied in social
choice theory, considers a profile of orderings over a set of items. Further,
it provides a single, collective ordering.

Definition 21 (Preference Aggregation Function). Let V = {v1, . . . , vn} be
a set of options, N = {1, . . . ,m} be a set of agents, and P be the set of
all preorders over V . Then, a preference aggregation function is a function
F : Pm → P. We denote the set of agents supporting vi � vj in a profile P

as N
vi�vj
P .

It is worth noting that in this mechanism it is required for the obtained
preference ordering to be a preorder over V . Therefore, we are guaranteed
that a collective argumentation framework based on it is a defeat graph of
the initial VAF. This observation creates a strong restriction on the set of
eligible rules in this context.

There are multiple examples of such rules. Many of them were originally
defined under the restriction that all preference orderings in the input are
linear. To introduce them, let us provide some handy notation.

Notation 2. Let P be a linear order over some set V . We denote by
top(P ) the option v ∈ V such that for any v′ 6= v, v �P v′. Further, we
denote as rankP (v) the position of the option v in the ordering P . Formally,
rankP (v) = |{v′ ∈ V |v′ �P v}|+ 1.
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An example of such a rule is the Borda rule. There, for any element
Pi of a profile of linear preference orderings P of length n over a set of
options V we assign to each option a number of points. A score an option
vj given by an agent i, called BordaScorei(vj) amounts to |V | − rankPi .
Then, an overall score of vj , namely BordaScore(vj) = Σn

i=1BordaScorei(vj).
Finally Borda(P) is a preference ordering in which the rank of each option
is determined by the number of gained points. To obtain a linear ordering
as the output of this function additional tie-breaking rules are needed.

Another interesting rule of this kind is STV. Let P be a profile of linear
preference orderings over a set of options V . It is computed in a number
of steps. In each of them, an option which is ranked as top(Pi) for the
fewest members of P is eliminated. Then, STV(P) is a preference ordering
in which the rank of each option is m − i + 1, where m is the number of
options and i is the number of round in which the option was eliminated.

When aggregation of preorders is considered, we can consider rules mini-
mizing average distance between the collective preorder and preorders in the
input. An example of such a rule would be a rule minimizing the average
Hamming distance.

Then, it is straightforward to apply such a mechanism to aggregation of
value-based argumentation frameworks. Given a VAF, it is sufficient to take
a profile of preference orderings over the set of values and use a preference
aggregation function to obtain a collective ordering over them. Further, we
can compute a collective defeat graph of the VAF, under which the collective
selection of arguments can be performed.

Let us illustrate this mechanism with employment of the running exam-
ple.

Example 4.3.1. Consider again the debate concerning banning Diesel cars
depicted before. Recall that the debate we considered was captured as the
VAF of the Figure 3.1.

Let us consider again three committee members deciding upon the ban in
question. Again, they represent different views on the hierarchy of values.
This time, they are looking for a collective view with respect to the preferences
over relevant values. The first of them believes that

ER � EV � IE � SF

Second thinks that
ER � IE � SF � EV
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Finally, the third submits that

EV � ER � IE � SF

Let us use the Borda rule to compute the collective preference ordering
over values. The score of ER is 8. Then, the score of EV is 5, while the
score of IE is 4. Finally, the score of SF is 1. This gives us a collective
ordering: ER � EV � IE � SF .

Given the obtained preferences over values, we can retrieve a defeat graph
for the group. It is shown in the Figure 4.5.
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D

C

E

FG

Figure 4.5: Application of the Borda rule for the example profile.

Then, the decisive argument A is accepted in the grounded extension of
the collective defeat graph, which amounts to {A,G,C,E}. So, we have a
good reason to ban diesel cars.

This approach, as we can see, gives us a handy way of computing com-
promise preference orderings over values which provide us with collective
defeat graphs. However, it requires agents to submit their actual preference
orderings, which is not the case in the defeat aggregation.

In the next section I will attempt to provide a method of combining
defeat aggregation with preference aggregation which aims at overcoming
the disadvantages of the described approaches.

4.4 Connections between aggregation approaches

It is worth noting that the discussed approaches to aggregating VAF s are
similar to a large extent. The goal of this section is to explore connections
between them.
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Let us first notice that the considered approaches can be simulated by
each other. We can define a defeat aggregation rule in terms of a preference
aggregation rule. Also, under certain conditions, we can find preference
aggregation rule corresponding to defeat aggregation rules.

Let us begin with defining a preference aggregation rule corresponding
to some defeat aggregation rule. Intuitively, given a VAF and a profile of
its defeat graphs, we can consider a profile of preferences over values which
induce the initial defeat graphs.

Let us illustrate this point on the example used earlier. Consider the
previously described VAF. It is depicted in the Figure 3.1.

Also a profile of its defeat graphs. Let us use the defeat graphs depicted
in the Figure 4.2. For the sake of clarity, let us repeat the graphs.

(a)
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Further, take some graph aggregation function and apply it to the profile
of defeat graphs. Let us consider the rule which provides the defeat graph of
the VAF minimizing the average Hamming distance between input defeat
graphs and the collective graph. Clearly, attacks C → B and E → D need
to be in such a defeat graph. Further, attacks G→ F and F → E should be
included, while other should not. The result of the computation is identical
with the one presented in the Figure 4.5.

This structure is indeed a defeat graph of VAF. To see that, consider a
preference ordering (coll) = ER�EV�IE.

Then, we might also consider a procedure which instead of aggregating
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defeat graphs, takes into account preference orderings which could induce
defeat graphs considered before. For instance, in our case we could consider
(a) EV�ER, (b)ER�EV�IE�SF, (c) SF�ER�EV�IE. Also, we can find a
preference ordering which would induce the result of the graph aggregation
function, such as (coll).

4.4.1 Defeat aggregation in terms of preference aggregation

Let us proceed to the formalization of the provided intuition. Firstly, con-
sider a justification of a single defeat graph of some VAF, as defined in
Definition 19.

Then, it is straightforward to define the justification of a profile of defeat
graphs of a known VAF. By this term I mean a sequence of preference
orderings over values such that any i-th member of this sequence justifies
the i-th defeat graph.

Definition 22 (Justification of a profile of defeat graphs). Let VAF = 〈A,→
V, val〉 be a VAF and AF be a profile of its defeat graphs. We say that a
profile of preference orderings P over V justifies AF iff

1. AF and P have the same length

2. For any i ≤ n, where n is the length of AF, the i-th element of P is
a justification of the i-th element of AF with respect to VAF.

It is worth noting that it is often the case that multiple preference or-
derings justifying a defeat graph exist. We will be interested in studying
classes of orderings inducing identical defeat graphs with respect to partic-
ular VAF s.

Let us then introduce a notion of similar preference orderings with re-
spect to a defeat graph of some VAF. Here, we mean that two preference
orderings over values induce the same defeat graph.

Definition 23 (Similar preference orderings). Let VAF = 〈A,→, V, val〉 be
a VAF, AF = 〈A,→D〉 be one of its defeat graph and P, P ′ be preference
orderings over V . We say that P and P ′ are similar with respect to AF iff
both P and P ′ are justifications of AF with respect to VAF.

With the defined notions in hand we can define a simulation of a de-
feat aggregation rule in terms of preference aggregation. Intuitively, for any
profile of defeat graphs and a collective defeat graph given by some aggrega-
tion function, we can extract a profile of preference orderings justifying the
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input of a defeat aggregation rule and a collective preference ordering justi-
fying the aggregated defeat graph. If we consider such an operation for the
entire defeat aggregation function, we can obtain a preference aggregation
function.

Definition 24 (Simulation of a defeat aggregation rule). Let VAF = 〈A,→
, V, val〉 be a VAF and FVAF be a defeat aggregation rule. Then, FPref :
Pm → P is a preference aggregation simulating FVAF iff for any profile of
defeat graphs AF of VAF, a graph FVAF(AF) and a profile of preference
orderings P’, if P’ justifies AF, then FPref(P’) justifies FVAF(P).

It is worth noting that because some defeat graphs can be justified in
multiple ways, simulation of a defeat aggregation rule is not unique. Then,
we consider a class of preference aggregation rules which are simulating
some defeat aggregation rule. On the other hand, justifications of defeat
aggregation rules do not always exist. As we have seen, not all such rules
preserve being an audience. Therefore, their simulation in some cases would
not provide a justification of the output of the rule.

The notion of simulations of defeat aggregation rules is useful for a num-
ber of reasons. The first of them is that it enables us to obtain a clear
condition for preservation of being a defeat graph by an argumentation ag-
gregation rule. Intuitively, a defeat aggregation rule preserving being a
defeat graph should always allow for finding a justification for its defeat
graph.

Proposition 11. A defeat aggregation rule preserves the property of being
an audience iff it can be simulated by some preference aggregation rule.

Proof. (⇒) Consider some defeat aggregation rule F which preserves being
an audience. Also, suppose that it cannot be simulated by any preference
aggregation rule. Then, there is a profile AF of defeat graphs of some VAF
such that F (AF) cannot by justified by any preference ordering. But then
clearly it is not a defeat graph of VAF, so F does not preserve being an
audience.

(⇐) Assume that a defeat aggregation rule F is simulated by some pref-
erence aggregation rule F ∗. Then suppose that it does not preserve being
an audience. Then we know that there is a profile AF of defeat graphs of
some VAF such that FVAF(AF) is not justified by any preference ordering
over values. But then clearly F ∗ does not simulate F .

Another beneficial factor of introducing justifications of profiles of defeat
graphs is that they might allow for providing a justification of an outcome of
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a discussion in terms of preferences over values without assuming knowledge
of agents’ actual hierarchies of values. If we have an access to the agents’
views on the relative strength of arguments, expressed as defeat graphs, we
can retrieve their justifications. Then, we can use a preference aggregation
function to get a collective defeat graph.

It is worth noting, however, that because we can get multiple justifica-
tions of profiles of defeat graphs, it is possible that we would receive different
outcomes of a preference aggregation function depending on a choice of jus-
tification. We can show, however, that for any independent preference ag-
gregation rule, and any profile of defeat graphs the collective graph induced
by aggregation of preference orderings justifying the profile of defeat graphs
does not depend on the choice of orderings justifying them. This is true un-
der assumption that only connected preorders 2 are used as justifications of
the input and the employed preference aggregation function preserves being
a connected preorder.

We will establish the mentioned results with respect to independent pref-
erence aggregation functions. Independence ensures that an attack should
be treated equally in all profiles.

Definition 25 (Independence). F is independent if it holds that for any
pair of profiles of preorders P, P′ and any pair of values v1, v2 ∈ V , if
Nv1�v2

P = Nv1→v2
P’ , then v1 � v2 ∈ F (P) iff v1 � v2 ∈ F (P’).

Proposition 12. Let VAF = 〈A,→, V, val〉 be a VAF and F be any inde-
pendent preference aggregation rule and AF be a profile of its defeat graphs.
Then, for any two profiles P,P’ of connected preorders over V justifying
AF, 〈A,→F (P)〉 = 〈A,→F (P’)〉.

Proof. Consider any VAF = 〈A,→, V, val〉, as well as a profile of its defeat
graphs AF. Also, let F be any independent preference aggregation rule
preserving being a connected preorder. Also, take any pair of profiles P,P’
of connected preorders over V similar with respect to AF. Now suppose that
〈A,→F (P)〉 6= 〈A,→F (P’)〉. Without loss of generality assume that there is
an attack a → b such that a → b ∈ 〈A,→F (P)〉 but a → b /∈ 〈A,→F (P’)〉.
Then, by connectedness we know that val(a) � val(b) ∈ F (P). Otherwise
we would have that val(b) � val(a) ∈ F (P), so the attack would be blocked.

Then, take the set of voters N
val(a)�val(b)
P . Notice that they must correspond

to defeat graphs in which a→ b is included. Others defeat graphs can only
be justified with orderings in which val(b) � val(a) and, by connectedness

2A preorder � over a set V is connected iff for any vi, vj ∈ V , vi � vj or vj � vi.
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requirement, preservation of a → b needs to be justified with an ordering

in which val(a) � val(b). So, N
val(a)�val(b)
P is also the set of supporters of

val(a) � val(b) in P’. So, by independence, val(a) � val(b) ∈ F (P’). So,
a→ b ∈ 〈A,→F (P’)〉. Contradiction.

Corollary 1. For any defeat aggregation rule F justifiable with connected
preorders, VAF = 〈A,→, V, val〉, a profile AF of defeat graphs of VAF, any
independent preference aggregation rule F ′ restricted to connected preorders
and a pair P,P′ of profiles preference orderings similar with respect to AF,
if F ′(P ) justifies F (AF), so does F ′(P ′).

Proof. Take any independent defeat aggregation rule F justifiable with con-
nected preorders, VAF = 〈A,→, V, val〉, a profile AF of defeat graphs of
VAF, any preference aggregation rule F ′ and any pair of profiles of pref-
erence orderings P, P’ similar with respect to AF. Suppose that F ′(P)
justifies F (AF). Then, we know immediately that so does F ′(P’).

This result is very useful with respect to engineering aggregating defeat
graphs. However, it ceases to hold when we consider preference aggregation
based on arbitrary preorders.

Observation 1. Corollary 1 does not hold when justification with arbitrary
preorders is allowed.

Example 4.4.1. Consider the defeat aggregation rule F such that for any
attack a → b, it is selected iff all agents agree upon it. Also, take the
preference aggregation function F ′ such that for any profile of preference
orderings P and any pair of options vi, vj, vi � vj ∈ F ′(P) if and only
if all voters agree that it is the case. It is easy to check that this rule is
independent. Now take the following VAF:

a, v1 b, v2

and consider a profile AF of two defeat graphs of the VAF:
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(d)

a b

(e)

a b

and consider two profiles of preorders over V justifying them: P =
〈{v1 � v2, v2 � v1}, {v2 � v1}〉, and P’ = 〈∅, {v2 � v1}〉. Then, F (P)
amounts to v2 � v1, while F (P′) is the empty preorder over V . Then clearly
〈A,→ F (P)〉 6= 〈A,→F (P′)〉, as the first one of them corresponds to the
defeat graph (e), which justifies, while the latter to the defeat graph (d).

4.4.2 Preference aggregation in terms of defeat aggregation

Let us now proceed to defining the simulation of preference aggregation rules
in terms of defeat aggregation.

First, let us settle a useful notion of a profile of defeat graphs induced
by a profile of preference orderings. This is simply a profile of defeat graphs
of some VAF based on corresponding elements of the sequence of orderings.

Definition 26 (Induced profile of defeat graphs). Let VAF = 〈A,→, V, val〉
be a VAF and P be a profile of preference orderings over V . Then, we say
that the profile of defeat graphs AF = 〈〈A,→P1〉, . . . , 〈A,→Pn〉, where Pi is
the i-th element of P , is the profile induced by P .

Then, let us state when a defeat aggregation rule is a simulation of a
considered preference aggregation rule.

Definition 27 (Simulation of preference aggregation rule). Let F be a pref-
erence aggregation rule. Also, let VAF = 〈A,→, V, val〉 be a VAF. Then,
a defeat aggregation rule F ′ is a simulation of F iff for any profile AF of
defeat graphs of VAF, if AF is induced by a profile of preference orderings
P, then F ′(AF) is induced by F (P).

4.4.3 Preservation of axioms in simulating defeat aggrega-
tion

When we consider an application of a simulation of some argumentation
aggregation we might wonder if it satisfies certain desired properties. In
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particular, we are interested in finding if satisfaction of some axiom by an
initial rule implies that its simulation is guaranteed to satisfy some condition.
Further, as we will see, many axioms stated for the preference aggregation
rules have their correspondents among defeat aggregation axioms. Thus, it is
of special interest to check if satisfaction of these axioms implies satisfaction
of their correspondents by the simulating rules.

Let us state some of such properties for the defeat aggregation. Their def-
initions are a modification of axioms provided by Chen and Endriss (2017).

The unanimity axiom states that if all agents agree that some attack
should be included in the collective graph, then it is.

Definition 28 (Unanimity). F is anonymous if for any defeat aggregation
problem AFD consisting of some VAF = 〈A,→, V, val〉 and a profile of defeat
graphs AF=〈AF1, . . . , AFn〉, if there is some pair of arguments a, b ∈ A such
that for any AFi ∈ AF a→i b, a→ b ∈ F (AF)

The anonymity condition expresses that a choice of attacks does not
depend on the name of voters.

Definition 29 (Anonymity). F is anonymous if for any defeat aggregation
problem AFD consisting of some VAF = 〈A,→, V, val〉 and a profile of defeat
graphs AF=〈AF1, . . . , AFn〉 it holds that for any permutation π, F (AF) =
F (π (AF)).

Independence states that all attacks are treated equally in any profile of
defeat graphs.

Definition 30 (Independence). F is independent if for any defeat aggrega-
tion problem AFD consisting of some VAF = 〈A,→, V, val〉, an attacks a→
b and for any pair of profiles of defeat graphs AF,AF’, if NAF

a→b = NAF’
a→b,

then a→ b ∈ F (AF) iff a→ b ∈ F (AF’)

Monotonicity condition expresses that a selected attack should not be
dropped if a support for it increases.

Definition 31 (Monotonicity). F is monotonic if it holds that for any pair
of defeat aggregation problems AF, AF′ based on the same VAF=〈A,→
, V, val〉, and any pair of arguments a, b ∈ A, if Na→b

AF ⊆ Na→b
AF’ and for any

a′ → b′ such that a′ → b′ 6= a → b, Na′→b′
AF = Na′→b′

AF’ , then if a → b ∈
F (AF), then a→ b ∈ F (AF′).
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Furthermore, let us state some desired properties with respect to prefer-
ence aggregation Notice, that the independence axiom was defined earlier.

We say that a preference aggregation function is unanimous if it never
changes any ordering between options that all agents agree upon.

Definition 32 (Unanimity). A preference aggregation function F is unan-
imous iff in any profile of orderings P all voters submit that vi � vj, then
vi � vj in F (P).

We say that a preference aggregation function is anonymous if it provides
the same output regardless of the ordering of items in its input.

Definition 33 (Anonymity). A preference aggregation function F is anony-
mous iff for any profile of orderings P, any pair of items vi, vj and any
permutation π of P, vi � vj ∈ F (P) iff vi � vj ∈ F (π(P)).

We call a preference aggregation function monotonic if increasing support
for some already chosen ordering over items cannot cause dropping it.

Definition 34 (Monotonicity). A preference aggregation function F is mono-
tonic iff for any two profiles of orderings P, P ′ over some set V and a
pair of options v1, v2 ∈ V , if v1 � v2 ∈ F (P ), then if Nv1�v2

P ⊆v1�v2
P’ and

for pair of values v′1, v
′
2 such that v′1, v

′
2 6= v1, v2, N

v′1�v′2
P = N

v′1�v′2
P’ , then

v1 � v2 ∈ F (P’)

Let us define formally the intuition behind the notion of the implication
of some property. We wish to ensure that a preference aggregation rule
simulating a defeat aggregation rule satisfying a certain property, satisfies
its correspondent.

Definition 35 (Induction of a property). We say that a defeat aggregation
rule property P1 induces a property P2 iff for any defeat aggregation rule F
satisfying P1, all its simulations satisfies P2

Unfortunately, it is usually not the case that defeat aggregation rules
induce the correspondents of described axioms.

Observation 2. It is not true that:

1. Unanimity of defeat aggregation functions induces unanimity of their
simulations.

2. Anonymity of defeat aggregation functions induces anonymity of their
simulations.
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3. Monotonicity of defeat aggregation functions induces monotonicity of
their simulations.

4. Independence of defeat aggregation functions induces independence of
their simulations.

Example 4.4.2. Consider the following VAF:

a, v1 b, v2

c, v3 d, v4

Further, take a profile of its defeat graphs P :

(f)

a b

c d

(g)

a b

c d

Also, take a defeat aggregation rule F which outputs a graph identical to
both elements of the profile

1. Unanimity: Suppose that F is unanimous. Also, take a profile of
preference orderings justifying the considered profile of defeat graphs:
P’ = 〈v4 � v1 � v2 � v3, v4 � v1 � v2 � v3〉. Then, we can consider a
preference aggregation rule F ′ simulating F such that F ′(P’) = v4 �
v3 � v1 � v2. Clearly, F ′(P’) justifies also the output. However, F ′

is obviously not unanimous.

2. Anonimity: Suppose that F is anonymous. Then, take a profile of
preference orderings justifying the considered profile of defeat graphs:
P’ = 〈v4 � v1 � v2 � v3, v4 � v3 � v1 � v2. Then, consider a
preference aggregation rule F ′ simulating F such that F ′(P’) = v4 �
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v1 � v2 � v3 but F ′(P”) = v4 � v3 � v1 � v2, where P” is the
reversed P’. Clearly, both outputs of F ′ justify the output of F , but F ′

is obviously not anonymous.

3. Monotonicity: Suppose that F is monotonic. Then, take two profiles
of preference orderings justifying the considered profile of defeat graphs:
P’ = 〈v1 � v21v4 � v3, v1 � v21v4 � v3〉 and P” = 〈v1 � v2 � v4 �
v3, v1 � v2 � v4 � v3〉 and a preference aggregation rule F ′ simulating
F such that F ′(P’) = v1 � v2 � v4 � v3 while F ′(P”) = v1 �
v21v4 � v3. Clearly, both outputs of F ′ justify the output of F , but F ′

is obviously not monotonic.

4. Independence: Suppose that F is independent. Then, take two pro-
files of preference orderings justifying the considered profile of defeat
graphs: P’ = 〈v1 � v21v4 � v3, v1 � v21v4 � v3〉 and P” =
〈v1 � v2 � v4 � v3, v1 � v2 � v4 � v3〉 and a preference aggre-
gation rule F ′ simulating F such that F ′(P’) = v1 � v21v4 � v3
and F ′(P”) = v1 � v21v41v3. Clearly, both outputs of F ′ justify the
output of F , but F ′ is obviously not independent.

4.4.4 Preservation of axioms in simulating preference aggre-
gation

Having stated results concerning the implication of preference aggregation
axioms by their simulations, it is interesting to investigate the reverse prob-
lem; namely to determine if defeat aggregation axioms imply their corre-
spondents in preference aggregation.

Proposition 13. Let F be a preference aggregation rule restricted to con-
nected preorders. Then it holds that:

1. If F is unanimous, the induced defeat aggregation rule F ′ is unani-
mous.

2. If F is anonymous, the induced defeat aggregation rule F ′ is anony-
mous.

3. If F is monotonic, the induced defeat aggregation rule F ′ is monotonic.

4. For any independent preference aggregation rule F , restricted to con-
nected preorders, the induced defeat aggregation rule F ′ is independent.
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Proof. 1. Take any unanimous preference aggregation rule F . Then, sup-
pose that the induced defeat aggregation rule F ′ is not unanimous.
Then, take a VAF and a profile of preference orderings P∗ inducing a
profile of defeat graphs AF such that there is an attack a → b such
that for any AFi ∈ AF, a → b ∈ AFi, but a → b /∈ F ′(P). Then,
by connectedness of all preference orderings, all voters submit that
val(a) � val(b). But then, by unanimity of F , val(a) � val(b) ∈
F (P∗), and thus a→ b ∈ F ′(P). Contradiction.

2. Take any anonymous preference aggregation rule F . Then, suppose
that the induced defeat aggregation rule F ′ is not anonymous. Then,
take a VAF and a profile of connected preorders P and a sequence
P’ of defeat graphs induced by P such that there is a permutation π
of P’ such that F ′(P’) 6= F ′(π(P’)). But now notice that this would
imply that F (P) 6= F (π(P’)) which cannot be the case by anonymity
of F .

3. Take any monotonic preference aggregation rule F . Then, suppose
that the induced defeat aggregation rule F ′ is not monotonic. Then
take a VAF and two profiles of their defeat graphsAF and AF’ such
that there is some attack a → b such that Na→b

AF ⊆ Na→b
AF’ , but a →

b ∈ F (AF) while a → b /∈ F (AF’). Then take a justification of
these two profiles and of the outcomes of F . By connectedness of
justifications we know that for any agent i submitting a→i b it is the
case that val(a) �i val(b) for any justification. So, as we know that

Na→b
AF ⊆ Na→b

AF’ , we also know that N
val(a)�val(b)
P ⊆ N

val(a)�val(b)
P’ . So,

by monotonicity of F ′, val(a) � val(b) ∈ F ′(P ′), so as F ′ simulates F ,
a→ b ∈ F (AF’). Contradiction.

4. Take any independent preference aggregation rule F . Then, suppose
that the induced defeat aggregation rule F ′ is not independent. So,
take a VAF and two profiles of defeat graphs AF, AF’ of VAF such
that there is some attack a → b such that Na→b

AF = Na→b
AF’ , but a →

b ∈ F ′(AF) while a→ b /∈ F ′(AF’). Notice that by connectedness of

justifications, for any justification P,P’ of AF, AF’, N
val(a)�val(b)
P =

N
val(a)�val(b)
P’ . So, by independence, a � b ∈ F (P) iff a � b ∈ F (P).

So, if a→ b ∈ F ′(AF), then a→ b ∈ F ′(AF’). Contradiction.

These results show the hazards of application of simulation of defeat
aggregation by preference aggregation. While we can make sure that if we
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simulate a preference aggregation rule with defeat aggregation its beneficial
properties are preserved, we cannot be sure about it while simulating defeat
aggregation.

4.5 Strategic Behavior

Following the study of properties of considered aggregation mechanisms, let
us proceed to the study of strategic behavior within them.

Intuitively, the process of manipulation begins with determining if an
agent is in favor of the decisive argument, or not. This is done by comput-
ing defeat graphs of the initial VAF based on her sincere preference order-
ings over values. Then, the aggregation is performed with employment of
the agents’ true preferences. Subsequently, agents might discover that they
would be better off if they submitted an insincere view on either preferences
over values or on the structure of defeat graphs.

In this section I will define the manipulation problem for both preference
aggregation and defeat aggregation. Within these approaches, I will study
under which conditions manipulation can be blocked. This will include both
constraints on the construction of aggregation rules themselves, as properties
of decision problems disabling strategic behavior. Furthermore, complexity
of manipulation will be studied in both frameworks.

4.5.1 Manipulation in the preference aggregation approach

Let us begin with the study of manipulation in the setting based on the
direct aggregation of preference orderings. As the investigation of strategic
behavior in the proposed setting is a novel direction of research, the work
in this section will follow several plausible restrictions.

Firstly, we will limit our investigations to the grounded extension. This
is a significant simplification of the model. In this way we ensure that an
extension of a desired type always exists and that it is unique. Also, we
ensure that it is easily computable.

Secondly, we will assume that agents provide linear orderings over values.
Also, it is assumed that aggregation rules output a linear ordering. While
this choice is not fully plausible, it offers a strong simplification of the setting.
The main reason behind taking this assumption is that it complies with the
main line of research in preference aggregation.

As we will see in this section, unfortunately most intuitive rules are
manipulable in general case. However, it is not difficult to ensure that
the manipulation problem is computationally complex. Further, we can
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also ensure strategy-proofness of our mechanism for VAF s enjoying some
structural properties.

Let us now define what agents’ preferences over outcomes of aggregation
are. Recall that voters in our setting are interested in ensuring that the
collective preference ordering induces a defeat graph in which the defeat
graph is accepted if nd only if it is accepted in the graph induced by agents’
own ordering.

Following this intuition we say that given a decision problem3 and agents’
ordering over values, an agent prefers some ordering to another if it treats
the decisive argument consistently with agent’s intentions, while the other
does not. Notice that these preferences are dichotomous. Given a decision
problem DP = 〈VAF, D〉 and a preference ordering Pi corresponding to same
agent i, we say that i is in favor of D if it is in the grounded extension of
the defeat graph induced by Pi. If it is not, we say that i is against D.

Definition 36 (Preferences Over Outcomes). Let DP = 〈VAF = 〈A,→
, V, val〉, D〉 be a decision problem and i be an agent with a preference or-
dering Pi. If i is in favor of D, then for any pair of preference orderings
P1, P2, P1 >i P2 iff D ∈ GRND{A,→P1} while D /∈ GRND〈A,→P2 〉. Also, if i
is against D, then P1 >i P2 iff D /∈ GRND〈A,→P1 〉 while D ∈ GRND〈A,→P2 〉.

With the definition of agents’ preferences over outcomes of aggregation
in hand, we can define when a preference aggregation function is strategy-
proof with respect to the argumentation setting. As F (P ∗i ,P−Pi) we denote
the result of a preference aggregation function F for the preference ordering
P with an ordering Pi replaced with P ∗i .

Definition 37 (Strategy-proofness with respect to argumentation). A pref-
erence aggregation rule F is strategy-proof with respect to argumentation iff
for any profile of preference orderings P any agent i and any preference
ordering P ∗i , it is not the case that F (P ∗i ,P−Pi) >i F (P).

Let us also rephrase this definition as a computational problem.

MANIPULATION(F )

Instance: DP = 〈VAF, D〉, a profile of preference orderings P, agent i.
Question: Is there a preference ordering P ∗i and such that F (P ∗i ,P−Pi) >i

F (P)?

3As defined in Definition 13.
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In the study of strategic behavior in aggregating preference orderings, a
strong focus has been put on voting mechanisms. In this section I will relate
the problem of manipulation in this setting to our approach.

Strategic Voting

Aggregating preference orderings is strictly connected with engineering vot-
ing rules. There, a group of voters elects an option out of a set of candidates.
Mechanisms of this kind aim at ensuring that the winner of the elections
represents agents’ preferences accurately. Technically, a voting rule is a
function F : Pm → O, where P is the set of all preference orderings over
the set of options O and m is the number of voters. Notice that we have
imposed that a rule always selects a single option. This property is known
as the resoluteness condition.

Voting rules can be envisaged as preference aggregation rules. Then, the
winner of elections is the top option of the collective preference ordering.

If this is the case, preferences of particular voters can be clearly defined.
Each of them wants to make sure that the winner of the election is as good
as possible from the perspective of their ranking.

Definition 38 (Strategic Voting Preferences). Let an agent i submit some
ordering Pi over some set of options V . Then, for any pair of preference
orderings P1, P2 over V , P1 >

V
i P2 iff rankPi(top(P1)) > rankPi(top(P2)).

Then, we can ask if an agent can make herself better off with respect to
strategic voting preferences by submitting an insincere preference ordering.
If for some function F it is never the case, we say that F is strategy-proof
with respect to voting preferences.

Definition 39 (Strategy-proofness in voting). A preference aggregation
rule F is strategy-proof in voting iff for any profile of preference order-
ings P any agent i and any preference ordering P ∗i , it is not the case that
F (P ∗i ,P−Pi) >

V
i F (P).

This definition corresponds to a decision problem, in which we ask if
there is some agent who would benefit from misrepresenting her views.

STRATEGIC VOTING(F )

Instance: Profile of preference orderings P, agent i.
Question: Is there a preference ordering P ∗i such that F (P) >V

i F (P ∗i ,P−Pi)?
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One of the crucial results in the social choice theory related to strategic
behavior is related to a highly disadvantageous property of voting rules -
being a dictatorship. This means that there is some individual whose most
preferred option is always elected.

Definition 40 (Dictatorship with respect to strategic voting). Let F be a
preference aggregation rule. We say that F is a dictatorship with respect to
strategic voting iff there is some agent i such that for any profile of prefer-
ences orderings P, top(P) = top(Pi).

The Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975)
states that any rule which is strategy-proof with respect to voting preferences
is also dictatorial with respect to strategic voting. Its conditions involve
non-imposition, which means that any option is elected by some preference
ordering.

Theorem 2 (Gibbard - Satterthwaite 4). Any resolute, nonimposed, and
strategy-proof voting rule for three or more alternatives must be a dictator-
ship.

Application of voting mechanisms

As we will see it can be shown that any preference aggregation rule which
is manipulable with respect to strategic voting, is also manipulable in the
argumentation setting.

Proposition 14. Any preference aggregation rule F which is manipulable
with respect to voting preferences is also manipulable respect to argumenta-
tion.

Proof. Consider any preference aggregation rule F which is manipulable
with respect to strategic voting. This means that there is a set of voters
N = {1, . . . , n}, a set of options V = {v1, . . . , vm} and a profile of preference
orderings submitted by voters P = 〈P1, . . . , Pn〉 such that for some voter i,
there is some preference ordering P ∗i over V such that ranki(top(F (P))) <
ranki(top(F (P∗))), where P∗ is P with Pi replaced by P ∗i . Take such a
profile. We will construct a decision problem DP = 〈VAF ,C 〉 which is
manipulable by the successful manipulator with respect to strategic voter.

Let us take a set of values V and the set of arguments A = {a1, . . . , am}
(One per element of V ). Further, take the valuation map val such that for
any ai ∈ A, val(i) = vi. For simplicity let us say that Pi = v1 �i v2 �i

4Formulation from (Brandt et al., 2016, p.46)
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· · · �i vm. Now, let a1 be the decisive argument. Then, let vj correspond
to top(F(P)). Construct the attack relation so that aj → a1. Also, for
any vb such that ranki(vb) > ranki(j), let ab → aj . No other attacks are
considered. A simplified example of such a VAF is depicted below.

a1, v1aj , vjaj−1, vj−1

aj−2, vj−2

aj−3, vj−3

Figure 4.6: Illustration of the construction.

Then firstly notice that for the agent i the argument a1 should be ac-
cepted, as it is in the grounded extension of the defeat graph based on i’s
preference ordering. However, it is not included in the grounded extension of
the defeat graph based on F (P), as all attacks on aj are eliminated because
vj is the top value. However, we know that i can submit an ordering P ∗

such that some vb �i vj becomes the top option. Then, clearly one of the
attackers of vj , which is the only attacker of the decisive argument is the
top option, so the attack is preserved. Therefore, vi is accepted in the new
defeat graph. So i manipulated successfully.

This result is followed by an unfortunate conclusion. Namely, it turns
out that for any preference aggregation rule F based on strict preferences,
if F is not dictatorial with respect to strategic voting, it is manipulable in
the current setting.

To justify this claim it is sufficient to take any preference aggregation
rule F based on strict preferences and suppose that it is not dictatorial with
respect to strategic voting. Then, by Gibbard-Satterwaite theorem we know
that it is manipulable with respect to strategic voting. But then it follows
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that it is also manipulable in the argumentation setting.
This means that aggregating VAF s by preference aggregation is at least

as vulnerable to strategic behavior as voting mechanisms. Unfortunately,
this is not the end of its unfortunate properties. In fact, we can find cases in
which rules strategy-proof with respect to strategic voting are manipulable
within the argumentation setting.

Observation 3. It is not true that if a rule F is strategy-proof in voting, it
is strategy-proof with respect to argumentation.

Example 4.5.1. Consider the following preference aggregation rule F : For
any profile of preference orderings P distinguish a dictator d. Then, top(F (P)) =
top(Pd). To determine the rest of the collective preference ordering, elimi-
nate the value top(Pd) from the profile of orderings. Apply the Borda rule
to the remainder of the profile. This rule is strategy-proof with respect to
strategic voting, as the top option is known from the start.

Now consider the following decision problem DP:

3, v34, v4

2, v21, v1

Now take a profile P, where agent d is the dictator:

• d : v2 � v1 � v4 � v3

• m : v3 � v4 � v1 � v2

• o : v4 � v3 � v2 � v1

Let us now notice that the score of v1 is 3, v3 receives 5 points, and v4 gets
6 . The score of v2 does not matter as it is dictator’s top option. So, we
get F (P) = v2 � v4 � v3 � v1. It is easy to see that under this ordering
argument 3 is not in the grounded extension, as the attack 4→ 3 is preserved,
while 3 → 4 is not. This leaves agent m dissatisfied, as in the defeat graph
based on her preferences argument 3 is clearly accepted.

Consider, however, the profile:

• d : v2 � v1 � v4 � v3
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• m∗ : v3 � v2 � v1 � v4

• o : v4 � v3 � v2 � v1

After this change the score of v1 is 3, v3 receives 5 points, and v4 gets 6.
Therefore, the collective preference ordering is v2 � v4 � v3 � v1. Under
this ordering 3 is accepted in the collective structure. So, m manipulated
successfully.

This means that the current setting is strictly less immune to strategic
behavior than strategic voting. However, we can show that for a large
class of rules, the manipulation problem is difficult to compute. Thanks to
this observation we can claim that the proposed mechanism can eliminate
manipulation in practical applications. As we will show, if a rule is NP-
hard with respect to the problem of strategic voting, so it is with respect to
our setting. We know that a number of rules is NP-hard with respect to the
strategic voting problem. For example, STV enjoys this property (Bartholdi
& Orlin, 1991).

Proposition 15. For any preference aggregation rule F for which the strate-
gic voting problem is NP-hard, so is the VAF-manipulation problem with
respect to F .

Proof. Take any preference aggregation rule F for which the strategic vot-
ing problem is NP-hard. Let us show the way to reduce this problem to
manipulation in the current setting. Take a profile of preference orderings
P and an agent i with a preference ordering Pi. Let us construct a decision
problem in which i can manipulate if and only if she can manipulate with
respect to strategic voting. The construction is parallel to the one depicted
in the Figure 4.6. As before, take a VAF in which we have an argument
corresponding to any ranked option. Also, map each of the options as val-
ues of corresponding arguments. Further, let i’s favourite option correspond
to the decisive argument - ai. Now, let the argument aj , corresponding
to top(F (P)) attack ai iff ai 6= aj . Also, let any argument ab such that
val(ab) �Pi val(ai) attack aj . Clearly, i is in favor of ai.

We need to show that i can manipulate with respect to argumentation
setting iff she can manipulate with respect to strategic voting. If i can ma-
nipulate with respect to argumentation setting, then there is a preference
ordering P ∗i such that ranki(top(F (P ∗i ,P−Pi))) > ranki(top(F (P))). Other-
wise, ai would not be in the grounded extension of the defeat graph induced
by F (P ∗i ,P−Pi). But then, i can manipulate with respect to strategic voting.
But also, if there is a preference ordering P ∗i such that ranki(top(F (P ∗i ,P−Pi))) >



69

ranki(top(FP)), then D becomes in the grounded extension of the defeat
graph induced by F (P ∗i ,P−Pi). So, i can manipulate with respect to ma-
nipulation.

In addition to this result concerning the computational complexity of
the manipulation problem, we can select a large class of decision problems
for which all rules are strategy-proof. This can be the case if the decisive
argument is accepted, or rejected, from the perspective of any audience.
This point holds for both considered approches.

As we have seen before, we encounter such a case when the decisive
argument is guarded.

Proposition 16. For any preference aggregation rule F , F is strategy-proof
for decision problems in which the decisive argument is guarded.

Proof. Take any decision problem DP = 〈〈A,→, V, val〉, D〉 in which D is
guarded. Then, as we have shown in Proposition 7, D cannot be accepted
in the grounded extension under any preference ordering over values. So,
agents can only submit preference orderings rejecting it, so they cannot
manipulate.

4.5.2 Manipulation in defeat aggregation

Let us now proceed to the study of manipulation in the aggregation of de-
feat graphs. It is worth noting that the nature of strategic behavior in this
setting is largely similar to manipulation in preference aggregation. As be-
fore, agents are concerned with making sure that the decisive argument is
accepted in the collective structure if and only if it is accepted in their own.
What differs in this setting from the previously discussed is that the ma-
nipulation does not take into account the exact preferences over values that
agents have. Instead, it focuses only on the relative strength of arguments
in which agents believe.

In this study we will focus on connections between the manipulability
of defeat aggregation and manipulability of preference aggregation. This
approach requires making strong assumptions.

Firstly, we will study how strategic behavior in the setting of defeat
aggregation relates to the strategic behavior rules in their simulations. This
will force us to restrict the domain of the study to rules which are preserving
being an audience. However, this restriction is justified. We are looking
for rules which always provide us with the outcome explainable by some
preference ordering over values.
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Secondly, a stricter restriction comes into play as we wish to use the sim-
ilar assumptions to those used in results concerning manipulation in pref-
erence aggregation. We would will use defeat aggregation functions which
only take as input defeat graphs justifiable with linear orderings, and al-
ways outputting graphs satisfying this condition. This restriction applies to
rules studied henceforth. Overcoming this restriction would be an interest-
ing avenue for further research. In this section we will only refer to defeat
aggregation rules satisfying the mentioned restrictions.

Let us first define agents’ preferences over the outcomes of the aggrega-
tion of defeat graphs. We say that an agent i is in favor of D if D is in
GRNDAFi , where AFi is i’s sincere defeat graph. If i is not in favor of D,
she is against it.

Definition 41 (Preferences Over Collective Defeat Graphs). Let DP =
〈VAF = 〈A,→, V, val〉, D〉. Also, take an agent i and her sincere defeat
graph AFi of VAF. Then, for any pair AF 1,AF 2 of defeat graphs of some
VAF, if i is in favor of D, AF 1 >def

i AF 2 when D ∈ GRNDAF1 while

D /∈ GRNDAF2. Otherwise, AF 1 >
def
i AF 2 if D /∈ GRNDAF1 while D ∈

GRNDAF2.

With the definition of agents’ preferences over outcomes of the aggrega-
tion process in hand, we can define the manipulation problem with respect
to a given defeat aggregation function in the current context. We say that
an agent i can manipulate a rule F if she can replace her sincere defeat
graph in order to ameliorate the outcome of defeat aggregation for herself.
A defeat aggregation rule is said to be strategy-proof, if it is never the case.

As F (AF ∗i ,AF−AFi) we denote the result of a preference aggregation
function F for the profile AF of defeat graphs of some with a defeat graph
AFi replaced with AF ∗i .

Definition 42. A defeat aggregation rule F is strategy-proof iff for any
profile of defeat graphs AF of some VAF, any agent i and any defeat graph
AF ∗i , it is not the case that F (AF ∗i ,AF−AFi) >

def
i F (AF).

Let us rephrase this definition as a computational problem.

MANIPULATION IN DEFEAT AGGREGATION (F )

Instance: Decision problem DP = 〈VAF = 〈A,→, V, val〉, D〉, a profile
AF of defeat graphs of VAF, agent i.
Question: Is there a defeat graph AF ∗i of VAF such that F (AF∗) >def

i

F (AF)?



71

We will study this approach with employment of the simulation of defeat
aggregation with preference aggregation.

Proposition 17. A defeat aggregation rule F is manipulable iff some pref-
erence aggregation rule simulating it is manipulable.

Proof. (⇒) Take any manipulable defeat aggregation rule F . Now suppose
that some preference aggregation rule simulating it are strategy-proof. Also,
consider a rule F ′ simulating F . Then, take a decision problem DP =
〈VAF, D〉 and a profile of defeat graphs AF of VAF. Also, consider an agent
i who can manipulate F with respect to AF, by submitting some defeat
graph AF ∗i . Without loss of generality assume that i is in favor of D. This
means that D /∈ F (AF), but D ∈ F (AF ∗i ,AF−AFi). Also, consider any
justification P of AF. Notice that as F ′ justifies F , D /∈ GRND〈A,→F ′(P)〉.

Now we can consider a preference ordering P ∗i in justifying AF ∗i . Notice
that as F ′ justifies F , it must be the case that D ∈ F ′(P ∗i ,P−P ∗i ). So, i
could manipulate in F ′.

(⇐) Symmetric.

This result shows us that if we require defeat aggregation rules to satisfy
the taken restrictions, we need to accept that it is vulnerable to strategic
behavior.

Corollary 2. For any strategy-proof defeat aggregation F , all its simulations
are dictatorial with respect to strategic voting.

Proof. Take any strategy-proof defeat aggregation rule F . We know, that
all of its simulations are strategy-proof. But then we know, that they are
also strategy-proof with respect to strategic voting. So, they need to be
dictatorial.

However, we can cope with this problem by choosing functions which
are computationally difficult to manipulate. It is easy to show that defeat
aggregation rules whose simulations are difficult to manipulate are hard to
manipulate themselves.

Proposition 18. For any defeat aggregation function F preserving being an
audience and its simulation F ′, if manipulating F ′ is NP-hard, manipulating
F is also NP-hard.

Proof. Take any defeat aggregation function F which is simulated by the
preference aggregation function F ′ restricted to strict preference orderings,
which is NP-hard to manipulate. Then take an agent i, a VAF and a profile
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of its defeat graphs AF. Now compute their justifications AF. Now an agent
can compute a way to manipulate F ′. But then by Proposition 17 we know
that she can also get the way to manipulate F . So we reduced the prob-
lem of manipulating defeat aggregation rule to manipulating a preference
aggregating function, which is NP-hard.

4.6 Conclusions

In this chapter we have studied two ways of aggregation of agents’ views on
preferences over values. In the first of them we considered the application
of preference aggregation to the determination of a collective view on the
importance of values. In the second, we studied an application of graph
aggregation techniques to aggregating defeat graphs. We have shown a
limitation of this approach, namely, we have shown that no quota rule can
ensure that a collective argumentation framework is a defeat graph of the
initial VAF.

Further, we have studied the ways of simulating preference and defeat
aggregation in terms of each other. In particular, we have shown that sim-
ulating preference aggregation with defeat aggregation preserves a number
of desirable properties. This is not the case, however, when simulation of
defeat aggregation with preference aggregation is considered.

Finally, we have studied the strategic behavior within both considered
settings. For the preference aggregation approach, we showed that strictly
more rules are manipulable with respect to the studied decision-making
setting than with respect to strategic voting. This means, that any rule
strategy-proof with respect to aggregating VAF s is dictatorial with respect
to strategic voting. It is worth noting that this is not necessarily a very
problematic result. A strategy-proof preference aggregation function which
is only dictatorial with respect to one value can still be fair with respect to
a large part of the preference ordering.

We have also studied strategic behavior with respect to defeat aggrega-
tion. We have shown that defeat aggregation rules preserving being justified
with linear orderings over values are manipulable if and only if their simu-
lations are.



Chapter 5

Conclusions and further
research

5.1 Conclusions

The starting point of the thesis was to establish the connections between
value-based argumentation and decision-making. We focused on argumen-
tation frameworks in which a single argument was decisive. Then, we stip-
ulated that the decision is made if the decisive argument is selected as an
outcome of discussion.

Following this assumption, we have studied strategic behavior of agents
involved in the process of reaching a decision. We studied two distinctive
types of behavior. We investigated situations in which a single agent is
responsible for choosing an action. Further, we moved on to the study of
collective decision-making.

In the single agent case we were interested in individuals who are willing
to deviate from their sincere preferences over values in order to make sure
that their desired decision is taken. We studied the computational complex-
ity of such a behaviour, extending results due to Dunne (2007) and Dunne
and Bench-Capon (2004). We generalized their findings to relaxed assump-
tions regarding agents’ preferences over values. We also investigated the
complexity of finding an ordering over values preserving the decisive argu-
ment which is minimally different from agents’ sincere hierarchy. Then, we
provided some restrictions on the structure of VAF s under which strategic
behavior is not possible.

Further, in the multi-agent scenario, we studied applications of social
choice mechanisms to aggregating views on preferences over values. We
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focused on two approaches. In the first we considered aggregating defeat
graphs submitted by particular agents, using graph aggregation methods.
In the second, we used preference aggregation functions to determine a col-
lective preference ordering over values. We studied connections between
these two approaches, including translations between them.

Further, we have studied strategic behavior within the proposed models
for collective decision-making. We used results concerning strategic voting
to establish conditions for manipulability in preference aggregation. Follow-
ing this connection we also obtained results concerning the complexity of
manipulation problem in the preference aggregation approach. Further, we
used the possibility of translating preference aggregation into defeat aggre-
gation to provide results concerning manipulation within this framework.

5.2 Future work

The results provided in the thesis leave a vast room for further research. In
the single agent setting we have focused on agents who wish to push the
decision forward. However, we can imagine that particular agents might
have an incentive to make sure that the decision is not taken. It would
be interesting to extend our results to account for such agents. Another
issue which was not resolved in this section is the complexity of finding
preferences orderings saving decisive arguments minimally different than the
agent’s sincere hierarchy for semantics other than the grounded semantics.

Furthermore, it is worth noting that we have interpreted searching for
preference orderings preserving decisive arguments as a negative behavior.
But the negative approach is not the only way to see it. We can imagine
that a person who wants to justify the action she desires genuinely wishes to
change her beliefs in order to stay consistent with her incentives. Possibly,
she might want to change her beliefs only to a minimal needed extent. Then,
we might be interested to study the ways in which a desired ordering can be
found easily. For instance, it would be interesting to develop heuristic algo-
rithms capable of finding preference orderings preserving arguments quickly
despite the high complexity of the problem in general case.

In the multi-agent setting the study of particular defeat aggregation rules
was left out. It would be interesting to develop specific functions designed to
perform well in the studied context. Further, the study of strategic behavior
can be extended further. It would be interesting to study the problem of
manipulating in the minimal way, similarly to the manner in which it was
studied in the single agent setting. Also, it would be beneficial to investigate
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the complexity of manipulation for semantics other than grounded. Finally,
in the multi-agent setting we have assumed that agents’ incentives are always
consistent with the acceptance or rejection of the decisive argument in the
defeat graph based on agents’ sincere preferences over values. It would be
highly interesting to investigate the possibility of manipulating the studied
mechanisms when agents’ incentives are not dependent on their preferences
over values.

Moreover, in the current work we have focused on a restricted class
of decision problems. It would be of high interest to study the problems
considered in this thesis with respect to argumentations which might lead
to non-binary decisions.
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