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Abstract

When two parties communicate they often require a certain level of security.
In particular one might desire that a message cannot be altered in transit. This is
called non-malleability and has been studied extensively in the non-quantum setting,
but was only recently introduced in the field of quantum computing. This thesis
provides two ways of defining non-malleability in the quantum setting. One of these
definitions is based on previous quantum notions, and the other is an extension of
a well-researched classical notion. These definitions capture different forms of non-
malleability, and we provide an argument why either can be considered correct.
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CHAPTER 1

Introduction

Quantum computers are closer to becoming a reality than ever before and many re-
searchers have become interested in exploring their capabilities. Many amazing applica-
tions of quantum computers exist, but they also pose a new threat when used by those
with less than honest intents. A well-known example of such an application is Shor’s fac-
toring algorithm [Sho99], which can be used against modern-day cryptographic protocols
such as RSA. To ensure safe communications in the future, it is important to look for or
construct notions of security that remain secure in the face of this new threat.

In this thesis, we focus on the notion of non-malleability, which captures the idea that
an encrypted message cannot be altered by a third party. This form of security does not
inherently prevent a third party from learning the message that was encrypted and in
the world of classical (non-quantum) computers, these notions are considered separate.
When considering quantum computers we will see that an inherent connection between
these two notions exists, but it is still valuable to consider both. We will approach the
problem of defining this notion from two different directions.

First, we will modify the quantum notion of non-malleability given in [AM17], weaken-
ing it to only require security on the plaintext level, meaning that any structural change
to the encryption of a message cannot alter the message itself. The basic idea of the
resulting notion is that an attacker performs some attack, and we analyze the effect of
this attack averaged over all keys, which represents the attacker’s ignorance of the key.
The security of the scheme ensures that the impact of this attack on the message is either
negligible or completely destructive. The shortcomings of this approach include that it
only simulates the case where an attacker receives a single encrypted message, whereas
an attack might be able to intercept multiple messages in a real-world application. The
advantage, however, is that it makes no assumptions about the computational power of
an adversary.

Second, we will approach the problem from the classical public-key setting, where we
will provide a quantum translation of one of the notions presented in [BS99]. This classical
notion, and by extension its quantum variant, differ significantly from the definitions
that have already been analyzed in the quantum setting. The major disadvantage of
this approach is that the resulting security notion is difficult to relate to previous work.
However, the advantage this approach offers is that the resulting notion can be well
compared to the corresponding classical notion, which has been analyzed in great detail.
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1.1 Social and Scientific Relevance

Non-malleability has been researched extensively in the non-quantum setting, for example
in [BS99], however it has been introduced in the field of quantum computing only recently,
in [AM17] and [ABW09]. The research done in the quantum setting focuses on symmetric-
key encryption, where both the sender and receiver must share the same key. In this
thesis, we will attempt to provide some insight into the public-key case, where only the
receiver holds a secret key and the sender holds a different key, which is publicly known.
Furthermore, we provide a weaker version of the non-malleability defined in [AM17], which
intuitively provides a similar level of security but might be easier to satisfy.

The relevance of non-malleability was recently demonstrated with the attack on the
PGP protocol, used to securely authenticate e-mail [Pod+18]. The attack demonstrates a
flaw in the PGP protocol which allows a possible attacker to insert text of her own choosing
into an encrypted message, which in turn exploits the behavior of the program used to
receive the e-mail. This kind of attack, where an attacker is not directly able to learn
the message yet still able to modify it, is exactly what non-malleable encryption secures
against. Besides e-mail, there are many more settings where one would like a message to
not change during transmission, for example when communicating with a bank.

1.2 Overview of this Thesis

As discussed in the previous section this thesis provides two possible ways of looking at
quantum non-malleability. In Chapter 2 we will give a brief overview of quantum com-
puting. Afterward, we will introduce the notions of non-malleability discussed in previous
work in Chapter 3. Chapter 4 will introduce the notion of plaintext non-malleability, an
extension of non-malleability as described in [AM17]. The approach of starting from the
classical point of view is presented in Chapter 5. Lastly, we will briefly summarize our
results in Chapter 6.
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CHAPTER 2

Quantum Computation

In this chapter, we define the basic notions of quantum computation and introduce the
mathematical tools used throughout this thesis. We first introduce some notation in
Section 2.1, then cover pure and mixed states in Section 2.2. Afterward, we look at
possible operations on quantum states in Section 2.3. Lastly, we discuss a number of
norms and distances in Section 2.4, which will be used to analyze states and operations.

While we strive to provide a solid understanding of quantum computing, this chapter
should not be seen as a complete overview. For a more thorough understanding of the
basics of quantum computing, one can look at, for example, [Wat18]. We will assume that
the reader is familiar with the linear algebra used in this chapter.

2.1 Notation

In this section, we introduce a part of the notation used. More notation will be introduced
throughout this thesis when additional concepts are defined and an overview of all notation
used can be found in Appendix A.

For any complex matrix M , we denote its conjugate transpose as M† and its trace as
Tr [M ]. Throughout this thesis we will only consider finite-dimensional Hilbert spaces. For
Hilbert spaces HA,HB we write |A| := dim(HA) for the dimension of a Hilbert space, IA
for the identity matrix of dimension |A| and 0A→B or 0A for the zero matrix of dimension
|A| × |B| or |A| × |A| respectively. We will denote the set of square matrices that act on
HA as B(HA). We may omit the superscripts if the spaces are clear from context. For

any vector v we denote its Euclidean norm as ‖v‖ :=
√
v†v.

We call a function ε(n) negligible if for every polynomial p there exists n0 ∈ N such
that for all n ≥ n0 it holds that ε(n) < 1

p(n) . We write ε ≤ negl(n) to state that the

function ε(n) is negligible. Furthermore we use log(x) to denote the base 2 logarithm of
x.

2.2 Quantum States

In quantum computing one uses quantum bits, or qubits, to perform computations. One
qubit can be 0, 1, or in a superposition of these two values.
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2.2.1 Qubits

To mathematically describe these superpositions, a qubit is a vector of two values. The
classical bits 0 and 1 are represented as

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

Any superposition of these two vectors is represented as |φ〉 = α|0〉 + β|1〉 =

(
α
β

)
,

with α, β ∈ C and |α|2 + |β|2 = 1. To combine qubits the tensor product is used as follows:

|φ1〉 ⊗ |φ2〉 =

α1

...
αn

⊗
β1

...
βm

 =



α1β1

...
α1βm
α2β1

...
αnβm


.

We will often denote |φ1〉 ⊗ |φ2〉 as |φ1〉|φ2〉 or even |φ1φ2〉. The vector resulting from
combining multiple qubits has norm 1 and a combination of n qubits is represented by a
vector of dimension 2n. In general one can perform quantum computation with norm-1
vectors of any dimension, however throughout this thesis, we will consider only the case
where the dimensions are powers of 2, or in other words, where vectors represent some
number of qubits.

If a vector |φ〉 is part of a Hilbert space HA we may denote it |φ〉A for clarity, although
this superscript is often omitted when the Hilbert space is clear from context. The set
{|x〉A | x ∈ {0, 1}n} forms a basis ofHA with |A| = 2n, which is called the computational
basis.

The notation used above, where a vector is denoted as |φ〉, is known as bra-ket
notation, where |φ〉 is pronounced as “ket phi”. The conjugate transpose of this vector is
denoted as 〈φ| := |φ〉† and is pronounced as “bra phi”. A bra and a ket together form a
bracket, 〈φ|ψ〉, which is the inner product between |φ〉 and |ψ〉.

2.2.2 Pure and mixed states

Quantum states are described by density matrices, which are positive semi-definite
Hermitian matrices with trace 1. We will write D(H) to denote the set of all density
matrices on a Hilbert space H. A ‘ket’ and a ‘bra’ together form a pure state |φ〉〈φ|.
A pure state φ is any density matrix such that φ = |φ〉〈φ| for some |φ〉. Because of this
property we often denote a pure state |ψ〉〈ψ| as simply ψ. Equivalently any rank-1 density
matrix is a pure state. We will sometimes also refer to a norm-1 vector |φ〉 as a (pure)
state.

When a density matrix is not a pure state, it is called a mixed state. These mixed
states can be seen as the equivalent of a random variable over pure states, and are often
denoted ρ or σ. As before these states may be accompanied by a superscript ρA to denote
that ρ is a matrix in D(HA). The uniform distribution over all states is known as the
maximally mixed state, and is defined as τA = I

|A| .
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Theorem 2.1 (Spectral Decomposition, Corollary 1.4 in [Wat18]). Any mixed state ρ ∈
D(HA) can be written as

ρ =
∑
i

p(i)φi,

for some probability distribution p and some set of pure states {φi}.

Not all states can be written as a tensor product of qubits. An example of such a state
is

|φ+〉AA
′

=
1√
|A|

∑
x∈{0,1}log(|A|)

|xx〉,

for any HAA′ = HA ⊗ HA′ with HA = HA′ . When a pure state on a composite space
cannot be written as a tensor product of two states it is called entangled, and the state
φ+AA′ = |φ+〉〈φ+|AA′ is known as the maximally entangled state. A mixed state is
entangled when at least one of the pure states in its spectral decomposition is entangled.

2.2.3 Registers

In order to store quantum states and refer to them in the description of an algorithm, we
use the notion of registers. A register A can store a density matrix on a Hilbert space
HA. One can think of registers as the quantum version of a variable. Given two registers
A and B we will denote the combined register as AB, which stores a density matrix on
HAB = HA ⊗HB and can be seen as a variable that contains both the contents of A and
B. For this thesis, it is enough to think about registers as variables as is done above,
however, a more formal definition is given in [Wat18].

2.3 Operations on States

The previous section introduced the quantum analogs of variables and values for these
variables, but of course, these are of little use without ways to manipulate them. In this
section, we discuss how one can manipulate and observe quantum states.

2.3.1 Gates

On the most basic level, one can manipulate quantum data by the use of gates. When
thinking of a pure state as a vector, manipulations of this state are represented by matrices.
Since states are represented by norm-1 vectors, this norm should not be changed by the
gates and thus the gates are represented by unitary matrices. Unitary matrices satisfy
UU† = U†U = I and are norm and inner-product preserving. If |ψ〉A is some state and
U1, U2 ∈ B(HA) are unitary matrices then U1U2 is also unitary and U1|ψ〉 is a valid pure
state. To apply a unitary U to a density matrix one performs the map

ρ 7→ UρU†.

An example of a gate is the PauliX gate, which performs the classical ‘NOT’ operation:

X =

(
0 1
1 0

)
.
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This gate satisfies X|0〉 = |1〉 and X|1〉 = |0〉.
We will assume that, when a unitary UA is applied to a state on a space HAB rather

than HA, it acts as identity on the B space. This means we write UAρABU†A to mean
(UA ⊗ IB)ρAB(U†A ⊗ IB).

2.3.2 Measurements

After applying some gates to a state, one might want to know the result. In classical
computation, the outcome of a computation is straightforward to observe, but in quantum
computation, this is not the case. In general, it is not possible to observe the value
of a quantum state, but it is possible to deduce some information about a given state
with the help of a measurement. The simplest type of measurement is a projective
measurement, which is described by a set of non-zero projection matrices {Π1, . . . ,Πn}.
The outcome of measuring ρ with such a measurement is i with probability Tr [Πiρ] for all
i. After measuring outcome i the state ρ collapses to ΠiρΠi

Tr[Πiρ]
, which means that, if ρ was

in register A and this register is measured yielding outcome i, the register now contains
ΠiρΠi

Tr[Πiρ]
.

On a register of n qubits, the computational basis measurement is the measure-
ment {Πx = |x〉〈x| | x ∈ {0, 1}n}. This measurement has the effect of reducing any state
to a classical pure state and has no effect on classical pure states. Whenever a quantum
state is given to a classical algorithm, which cannot accept quantum states, it is assumed
that instead the state is measured in the computational basis and the outcome is given to
the classical algorithm.

Sometimes a projective measurement is not fine-grained enough for the goal at hand,
and a different measurement is needed. This type of measurement is called a positive-
operator valued measure (POVM) measurement, and is described by a set {Mi |
i ∈ N}, such that all Mi are positive semi-definite and

∑
iMi = I. One can think

of these measurements as appending extra qubits to the system and then performing a
projective measurement. Similar to the projective measurements, the probability of an
outcome Mi on a state ρ is Tr [Miρ], although the post-measurement state depends on the
implementation of the POVM, which is often not specified. If no specific implementation
is given for the POVM, then it is assumed the quantum state is destroyed in the process
of measuring and the register that it was in cannot be used in further computation.

2.3.3 Partial trace

Because of entanglement it is not always possible to write a state ρ on HAB as a tensor
product of two states on HA and HB . However, in some settings an agent might only
have access to one of these registers and we would still like to argue about the content of
the register from his point of view. For this reason we have the partial trace. For any
space HX1,...,Xn

= HX1
⊗ · · · ⊗HXn

and for all i, the partial trace over HXi
is defined as

the unique linear operator that satisfies

TrXi

[
ρX1

1 ⊗ · · · ⊗ ρXn
n

]
= Tr

[
ρXi
i

]
ρX1

1 ⊗ · · · ⊗ ρXi−1

i−1 ⊗ ρ
Xi+1

i+1 ⊗ · · · ⊗ ρ
Xn
n .

Note that the partial trace can transform pure states into mixed states, for example

TrA

[
φ+AA′

]
= τA

′
. If a pure state ψAB is such that TrB [ψ] = ρA, then ψ is a pu-

rification of ρ. It follows straightforward from Theorem 2.1 that any mixed state has a
canonical purification.
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Corollary 2.2. For any state ρA, there exists a pure state ψρ that is a purification of ρ.

Proof. Observe that Tr [|i〉〈j|] = δi,j , where

δi,j =

{
1 i = j

0 i 6= j
.

By Theorem 2.1 we have ρ =
∑
i p(i)φi. Let

|ψρ〉AB =
∑
i

√
p(i)|φi〉|i〉,

then

TrB [ψρ] = TrB

∑
i,j

√
p(i)

√
p(j)|φi〉|i〉〈φj |〈j|


= TrB

∑
i,j

√
p(i)

√
p(j)|φi〉〈φj |A ⊗ |i〉〈j|B


=
∑
i,j

√
p(i)

√
p(j)|φi〉〈φj |A ⊗ Tr

[
|i〉〈j|B

]
=
∑
i,j

√
p(i)

√
p(j)|φi〉〈φj |A ⊗ δi,j

= ρ.

2.3.4 Channels

Using the methods described above, one can transform a quantum state in many different
ways. In order to reason about these transformations without knowing their exact nature,
we make use of quantum channels, which can represent any quantum operation that maps
one state to another. A quantum channel is any completely positive trace-preserving
(CPTP) map ΛA→B : B(HA) → B(HB), which means that for any positive semi-definite
matrix MA, Λ(M) is also positive semi-definite and Tr [M ] = Tr [Λ(M)]. Furthermore,
for any Hilbert space HC and any positive semi-definite matrix MAC , (Λ⊗ IC)(M) is also
positive semi-definite. Note that we again use gray superscripts to indicate the space or
register that Λ acts on. we consider a quantum channel ΛA as ΛA⊗ idB when it is applied
to a state on HAB or composed with a channel ΛB .

These quantum channels can take many forms. An important example of a quantum
channel is the constant-ρ channel, which is defined for any density matrix ρA as

〈ρ〉A(X) = Tr [X] ρA.

When describing some quantum channels we will make use of completely positive
trace non-increasing (CPTNI) maps ΛA→B : B(HA) → B(HB), which means that for
any positive semi-definite matrix M , Λ(M) is also positive semi-definite and Tr [M ] ≥
Tr [Λ(M)]. These can be used as the description of a part of a quantum channel and often
we will consider a set of such maps whose sum is CPTP.

9



2.4 Norms on States and Channels

In order to compare quantum states and channels, we introduce some norms in this section
and show how they can be used to measure similarity.

2.4.1 Trace norm and trace distance

An effective tool for measuring distinguishability between two quantum states is the trace
norm. The trace norm, or Schatten 1-norm, is defined as

‖M‖1 = Tr
[√

M†M
]
.

This norm is used to define the trace distance between density matrices, which is

D(ρ, σ) =
1

2
‖ρ− σ‖1 .

A well-known property of this distance measure, proven in [NC02], is that it is directly
related to the maximum probability of distinguishing two density matrices with a POVM:

D(ρ, σ) = max
0≤P≤I

Tr [P (ρ− σ)] ,

where the condition 0 ≤ P ≤ I means that P is both positive semi-definite (≥ 0) and
that I − P is also positive semi-definite (≤ I). This is equivalent to the condition that
{P, I− P} is a valid POVM. If one is given an unknown state ρ, which is either ρ1 or ρ2

each with probability 1
2 and uses the POVM {P, I−P} to determine which of the two was

given, where P is the matrix that obtains the maximum in D(ρ1, ρ2), then the probability
of successfully guessing is

Pr [Outcome correct] =
1

2
Pr [Guess ρ1|ρ = ρ1] +

1

2
Pr [Guess ρ2|ρ = ρ2]

=
1

2
(Tr [Pρ1] + Tr [(I− P )ρ2])

=
1

2
(Tr [P (ρ1 − ρ2)] + Tr [ρ2])

=
1

2
(1 +D(ρ1, ρ2)) .

Intuitively this makes sense because when ρ1 = ρ2 then one can only guess and thus
the probability of guessing correct is 1

2 . However, when ρ1 and ρ2 can be perfectly distin-
guished and are thus far away in trace distance, then one always guesses correctly, thus
this probability is 1.

2.4.2 Induced trace norm

We have seen that the trace norm is an effective tool to quantify distinguishability between
states. Motivated by this fact one might be convinced that it can also be used to effectively
measure distinguishability between quantum channels. We define the induced trace
norm of any operator Γ : B(HA)→ B(HB) as

‖Γ‖1 = max
ρ
‖Γ(ρ)‖1 ,
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where the maximum is taken over all density matrices ρ. For any two quantum chan-
nels ΛA→B1 ,ΛA→B2 , the distance 1

2 ‖Λ1 − Λ2‖1 is related to the maximum probability of
distinguishing between these two channels in the same way as the trace distance could
distinguish between states, however with the assumption that no side information, in the
form of additional registers unaffected by Λ1 or Λ2, is used to distinguish between these
two channels.

In the following example we show that disregarding side information can in some cases
significantly reduce the probability of distinguishing two channels. Consider the case
where the channel ΛA1 or ΛA2 is applied with probability λ or 1− λ respectively, where

n := |A| ≥ 2

λ :=
n+ 1

2n

Λ1(X) :=
1

n+ 1

(
Tr [X] I +XT

)
Λ2(X) :=

1

n− 1

(
Tr [X] I−XT

)
and XT is the transpose of X with respect to the computational basis, that is, |i〉〈j|T =
|j〉〈i| for all i, j. The channels Λ1 and Λ2 are known as Holevo-Werner channels, and in
[Wat18] it is proven that

‖λΛ1 − (1− λ)Λ2‖1 =
1

n
.

Intuitively one might argue that it makes sense that the distance between these channels
is small, because both channels are very similar to the completely depolarizing channel
〈τA〉. However, if one allows side information in the form of an additional register A′ with
|A| = |A′| then it is also shown in [Wat18] that∥∥∥λ(Λ1 ⊗ IA

′
)− (1− λ)(Λ2 ⊗ IA

′
)
∥∥∥

1
= 1,

which shows that it is possible that channels can be distinguished better with the use of
side information.

2.4.3 Diamond norm

In order to allow side information, we make use of the diamond norm, also known as the
completely bounded trace norm. The diamond norm of an operator Γ : B(HA)→ B(HB)
is defined as

‖Γ‖� =
∥∥∥Γ⊗ IA

′
∥∥∥

1
,

where HA′ is some Hilbert space such that |A| = |A′|. This requirement on the size of the
side information register A′ is necessary and sufficient in the sense that for any smaller
register there are channels with a strictly smaller norm than the diamond norm and with
any larger register one cannot achieve a larger norm as is shown in [Wat18].

The diamond norm is widely used as the tool to measure the similarity between chan-
nels. It satisfies a number of useful properties, such as

(Triangle Inequality) ‖Λ1 + Λ2‖� ≤ ‖Λ1‖� + ‖Λ2‖�

11



(Submultiplicativity) ‖Λ1 ◦ Λ2‖� ≤ ‖Λ1‖� ‖Λ2‖�
(Distribution over ⊗) ‖Λ1 ⊗ Λ2‖� = ‖Λ1‖� ‖Λ2‖�.

Furthermore the diamond norm satisfies ‖Λ′‖� ≤ 1 for all CPTNI Λ′, where equality
holds if Λ′ is CPTP. Lastly 1

2 ‖Λ1 − Λ2‖� is a distance measure between channels Λ1 and
Λ2, thus 0 ≤ ‖Λ1 − Λ2‖� ≤ 2.
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CHAPTER 3

Non-Malleability and Authentication

In this chapter, we explain the essence of non-malleability and provide context on non-
malleability from the existing literature. In Section 3.1 we explain what the concept
behind non-malleability is and why it is important. Afterward, we define encryption
schemes for both the classical and the quantum setting in Section 3.2. In Sections 3.3 and
3.4 we discuss a number of different notions of non-malleability in both the classical and
the quantum setting.

3.1 Importance of Non-Malleability

When communicating confidential information one often puts a high priority on the pri-
vacy of the communication channel used. This prioritization means that when a message
is encrypted and then transmitted no intermediate party can read this message or even
partially deduce its contents. This property where an unbounded attacker is given an
encrypted message and can deduce nothing about the contents of this message is known
as information-theoretic security. A well-known example of a scheme that is secure
in this way is the one-time pad scheme, defined as

Encrypt(m, k) = Decrypt(m, k) = k ⊕m.

Here ⊕ is the bitwise xor function, which is defined as a⊕b = (a+b) mod 2 for a, b ∈ {0, 1}
and x1 . . . xn ⊕ y1 . . . yn = (x1 ⊕ y1) . . . (xn ⊕ yn), with x = x1 . . . xn, y = y1 . . . yn and
x, y ∈ {0, 1}n. If a key k ∈ {0, 1}n is chosen uniformly at random, then one cannot deduce
any information about an encrypted message c = m⊕ k, since any other message m′ can
be encrypted to the same c with key k′ = m′ ⊕ c and thus without knowing the key all
possible messages are equally likely to be the encoded message.

However, despite not being able to deduce any information about the content, an
attacker that intercepts the message can still change its contents in a structural way, by
choosing some a and performing c ⊕ a. If some message m is encrypted, attacked and
then decrypted in this way the result is k⊕ k⊕m⊕ a = m⊕ a. Informally an encryption
scheme is non-malleable if no attack can be performed that meaningfully translates one
encrypted message into another.

In many applications, non-malleability can be a desired property. For example, con-
sider the setting where person A is communicating with his bank, and sends the message
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“send $100 to person B”, then it would be bad if a person C can transform this into “send
$500 to person B” or even “send $100 to person C”.

3.2 Encryption Schemes

In order to reason about encryption schemes we first give a formal definition. In this
section we give four variants of this definition, distinguishing between symmetric- and
public-key encryption and between the classical and quantum setting. We assume that
the reader is familiar with basic notions of computational complexity, such as the ones
discussed in [Pap03].

3.2.1 Algorithms

In a classical setting we describe the encryption and decryption procedure in the form of
an algorithm. An algorithm in this setting is a partial function computed by a Turing
Machine. We write y ← A(x1, . . . , xn) to mean that y is the result of running an algorithm
A on inputs x1, . . . , xn. A probabilistic algorithm is an algorithm A that has input
arguments x1, . . . xn and an input argument r representing the randomness. For some
probabilistic algorithm A we write y ← A(x1, . . . , xn) to denote the action of picking
r uniformly random and then performing y ← A(x1, . . . , xn, r). If for a probabilistic
algorithm A and some values x1, . . . , xn there exists an r such that y ← A(x1, . . . , xn, r),
then we say y can be output by A(x1, . . . , xn), which we denote y ← A(x1, . . . , xn). We
call an algorithm deterministic to explicitly state that it is not probabilistic. If we write
y ← α and α is not an algorithm then this simply means that y is assigned the value α.

To describe the efficiency of an algorithm, we consider the amount of steps a Turing
Machine has to take to compute the outcome of this algorithm. We say an algorithm
A(x1, . . . , xn), computed by a Turing Machine T , runs in time t if T terminates on
input x1, . . . , xn in less than or equal to t steps.

For simplicity we write x
$←− S to mean that x is chosen uniformly at random from

some finite set S and x
p←− S if x is chosen from some set S according to the probability

distribution p.

3.2.2 Classical encryption schemes

An encryption scheme describes how to transform a message (plaintext) into an en-
coded message (ciphertext). As stated before we distinguish four variants of encryption
schemes, two of which are discussed in this section. The simplest form of encryption is
symmetric-key encryption, which means that encryption and decryption are done with
the same key. For simplicity we use Enck to mean Enc(k, ·) and Deck to mean Dec(k, ·).

Definition 3.1. A symmetric-key encryption scheme ( SKES) is a triple (KeyGen,Enc,Dec)
such that:

• KeyGen is a probabilistic algorithm that takes as input n ∈ N in unary and outputs
a key k ∈ {0, 1}∗. Here n is known as the security parameter of the scheme.

• Enc is a probabilistic algorithm that takes as inputs x, k ∈ {0, 1}∗, where x is the
message to encode and k the key, and outputs y ∈ {0, 1}∗.
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• Dec is a deterministic algorithm that takes as inputs y, k ∈ {0, 1}∗, where y is the
encrypted message to decode and k the key, and outputs either x ∈ {0, 1}∗ or a
symbol ⊥ if y is not a valid ciphertext.

• The scheme is correct, which means it satisfies Deck(Enck(x)) = x for all x ∈
{0, 1}∗ , n ∈ N and k ← KeyGen(1n) such that Enck(x) is defined.

• The scheme is efficient, which means that for all n ∈ N, KeyGen(1n),Enck(x)
and Deck(y) run in time p(n) for some polynomial p and all x, y ∈ {0, 1}∗ and
k ← KeyGen(1n).

Note that the efficiency requirement also limits the maximum size of x and y for which
Enc and Dec are defined to p(n), since any Turing Machine that runs in time p(n) can read
at most p(n) input bits. We mostly use fixed-length encryption schemes, which means
that Enc is only defined for x, k of a length that only scales with the security parameter.
This means that when the security parameter is fixed we can assume that all x and k are
of the same length.

Symmetric-key encryption is widely used because it is often simple to construct a
scheme that is both efficient and secure, however, it has the shortcoming that both the
sender and receiver need to have access to the same key beforehand. If the sender and
receiver do not already share such a key then this setup can be a problem, for which
public-key encryption is a possible solution. The idea of public-key encryption is that a
key consists of two parts, the public and the private part. The public part is publicly
announced and known to all parties, including possible attackers, but the private part is
only known to the receiver of a message. In such a setting one can use the public key to
encode a message, send this message to the receiver, and the receiver can use his private
key to decode the message.

Definition 3.2 ([BS99]). A public-key encryption scheme ( PKES) is a triple (KeyGen,Enc,Dec)
such that:

• KeyGen is a probabilistic algorithm that takes as input n ∈ N in unary and outputs
a pair (sk, pk) ∈ ({0, 1}∗)2. Here n is known as the security parameter of the
scheme.

• Enc is a probabilistic algorithm that takes as inputs x, pk ∈ {0, 1}∗, where x is the
message to encode and pk the public key, and outputs y ∈ {0, 1}∗.

• Dec is a deterministic algorithm that takes as inputs y, sk ∈ {0, 1}∗, where y is the
encrypted message to decode and sk the secret key, and outputs either x ∈ {0, 1}∗
or a symbol ⊥ if y is not a valid ciphertext.

• The scheme is correct, which means it satisfies Decsk(Encpk(x)) = x for all x ∈
{0, 1}∗, n ∈ N and (pk, sk)← KeyGen(1n) such that Encpk(x) is defined.

• The scheme is efficient, which means that for all n ∈ N, KeyGen(1n),Encpk(x)
and Decsk(y) run in time p(n) for some polynomial p and all x, y ∈ {0, 1}∗ and
(pk, sk)← KeyGen(1n).

In the private-key case, an attacker does not know the key and it is possible to create
a scheme, for example one-time pad, where an attacker also has no hope of obtaining this
key from an encrypted message without additional information. In the public-key case,
however, it is not possible to construct such a scheme. Since the attacker has access to
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the public key and thus the encryption procedure, he can simply encrypt his own message
and then attempt to decrypt it with all possible secret keys until he succeeds, in which
case he probably obtained the secret key corresponding to the public key. For this reason,
the KeyGen algorithm is equipped with a security parameter, which is often used as a
parameter for the minimal amount of time an attacker needs to perform a meaningful
attack.

3.2.3 Quantum algorithms

Similar to the classical case, we also describe quantum encryption schemes by means
of quantum algorithms. Instead of using a Turing Machine, a quantum algorithm is
computed by a family of quantum circuits, since each quantum circuit has a fixed input
space. A quantum algorithm A is a family of quantum channels {Λn | n ∈ N}, where
each Λn in this family has a n-qubit input space and is implemented by some quantum
circuit Qn. This implementation means that running Qn on some state ρ produces Λn(ρ).
Each quantum circuit is built from unitary gates and measurements, and which circuit is
executed is implicitly decided by the size of the state given to A.

We write σ ← A(ρ) to denote that σ is the result of applying Λn to some state
ρ ∈ D(HB) with |B| = 2n. To deal more efficiently with registers we write R ← A(S)
to denote that Λn is applied to the contents of register S with |S| = 2n and the result is
stored in register R. We call an algorithm a classical algorithm to explicitly state it is
not a quantum algorithm, but an algorithm as defined in Section 3.2.1.

Often a quantum algorithm is run on a register from an infinite family of registers,
because the size of the contents of these registers scales with some parameter, such as the
security parameter. In this case, we refer to a family of registers {Mi}i∈N as the register
M , where it is understood that the register with the correct size for contents is chosen
implicitly. If a quantum algorithm A takes a classical argument x then this argument is
simply converted to the classical state |x〉〈x| before the corresponding circuit is applied.

Quantum algorithms also have an execution time, similar to classical algorithms. For
any ρ ∈ HB , with |B| = 2n, a quantum algorithm A(ρ), computed by the family of
quantum circuits {Qn | n ∈ N}, runs in time t if the size, or number of gates and
measurements, of Qn is less than t. Because there is no inherent relation between each
of the Qn it is in some cases possible to store information in the definition of Qn, which
effectively circumvents a significant part of the computation and thus significantly reduces
the time needed for the calculation. To prevent this we only allow quantum algorithms
to be computed by uniform circuit families, which means that there exists a classical
algorithm PA and a polynomial p such that for all n, PA(n) outputs a description of Qn
and PA(n) runs in time p(n).

3.2.4 Quantum encryption schemes

When dealing with quantum computation, one might want to send a quantum state over
a public channel in a secure way. In this setting one can choose from a number of different
options when defining encryption schemes, for example in [BB14] a definition is considered
where the key and ciphertext are quantum and the plaintext is classical and in [OTU00]
a notion is defined where these three are all classical. In this thesis, we discuss schemes
where the key is classical, but the plaintext and ciphertext are quantum states, which
means one can send a quantum state using only a classical key. Using classical keys is
useful because the setup for such a scheme, for example the key distribution, can be done
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classically.
Throughout this thesis, we use M as a register for the plaintext state and C as a

register for the ciphertext.

Definition 3.3 (Definition 1 in [AM17]). A symmetric-key quantum encryption
scheme ( SKQES) is a triple (KeyGen,Enc,Dec) such that:

• KeyGen is a classical probabilistic algorithm that given a security parameter n ∈ N
outputs a key k ∈ {0, 1}∗.

• Enc is a quantum algorithm which takes as input a classical key k and a quantum
state in register M and outputs a quantum state in register C.

• Dec is a quantum algorithm which takes as input a classical key k and a quantum
state in register C and outputs a quantum state in register M or |⊥〉〈⊥|⊥.

• The scheme is correct, which means
∥∥∥Deck ◦ Enck − idM→M⊕⊥

∥∥∥
�
≤ negl(n) for all

k ← KeyGen(1n).

• The scheme is efficient, which means that for all n ∈ N, KeyGen(1n), Enck(M)
and Deck(C) run in time p(n) for some polynomial p and all k ← KeyGen(1n).
Furthermore |M | ≤ |C| ≤ 2q(n) for some polynomial q.

We only consider schemes that are fixed-length, meaning that |M | and |C| are a
function of the security parameter n. Note that KeyGen runs in time polynomial in n
and can thus only output keys of a size polynomial in n.

We adopt the convention that every honest party applies the measurement {|⊥〉〈⊥|, I−
|⊥〉〈⊥|} after running Dec, and denote with Deck(C) 6= ⊥ the event that this measurement
did not measure |⊥〉〈⊥| and thus produced a valid plaintext. Because of this convention we
often state that the output space of Dec is D(HM ) although it is technically D(HM⊕H⊥),
where H⊥ = C|⊥〉.

For public-key quantum encryption, we can make similar adaptations to the definition
as are made in the classical case.

Definition 3.4. A public-key quantum encryption scheme ( PKQES) is a triple
(KeyGen,Enc,Dec) such that:

• KeyGen is a classical probabilistic algorithm that given a security parameter n ∈
N outputs a pair of keys (pk, sk) ∈ ({0, 1}∗)2.

• Enc is a quantum algorithm which takes as input a classical public key pk and a
quantum state in register M and outputs a quantum state in register C.

• Dec is a quantum algorithm which takes as input a classical secret key sk and a
quantum state in register C and outputs a quantum state in register M or |⊥〉〈⊥|⊥.

• The scheme is correct, which means
∥∥∥Decsk ◦ Encpk − idM→M⊕⊥

∥∥∥
�
≤ negl(n) for

all (pk, sk)← KeyGen(1n).

• The scheme is efficient, which means that for all n ∈ N, KeyGen(1n), Encpk(M)
and Decsk(C) run in time p(n) for some polynomial p and all (pk, sk)← KeyGen(1n).
Furthermore |M | ≤ |C| ≤ 2q(n) for some polynomial q.

Here we again have that we only consider fixed-length schemes, that all keys are of
polynomial size and that we follow the same convention of measuring Decsk(C) 6= ⊥.
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3.2.5 Attacks and effective maps

An encryption scheme as defined above is not inherently secure in any way. To show that
a scheme is secure, or not secure, one looks at possible attacks that can be performed on
the ciphertext. We consider attacks in the setting where the objective of an attack is to
modify or learn about one given ciphertext. These attacks are represented by algorithms
that act between encryption and decryption. A classical attack on a classical encryption
scheme Π is a probabilistic algorithm A, which takes a ciphertext of Π and possibly some
side information as input and outputs a string, which is possibly a different ciphertext.
Note that attacks are always defined with a target encryption scheme, and we call an
attack efficient if it runs in time p(n), where p is some polynomial and n is the security
parameter of the target encryption scheme.

In the quantum setting the concept of an attack is similar. A quantum attack on a
quantum encryption scheme Π is a quantum algorithm A, which has input registers BC
and output registers B̂C. Here B and B̂ contain the attacker’s side information before
and after the attack respectively. An attack A on Π is efficient if A runs in time p(n),
where p is some polynomial and n is the security parameter of Π.

In an information-theoretic setting, where the efficiency of an attack is disregarded,

we may also think of an attack A as a quantum channel ΛBC→B̂CA , which is Λ|BC| from
the family of channels defining A.

For all versions of encryption schemes, it is the case that the effect that an attack has
on the plaintext depends not only on the plaintext that is chosen but also on the key.
When the objective of an attack is to change the plaintext, it is not useful to look what
the maximum impact is of an attack, because one can always guess the key and perform
some attack on the plaintext under the assumption that the guessed key is correct. Of
course, the probability of guessing the correct key is negligible, but if guessed correctly
the plaintext can be changed in any way, thus if one only considers the maximal effect of
an attack no scheme is secure. For this reason, we look at the average effect, or effective
map, of an attack, where the average is taken over all keys. For some (classical or
quantum) symmetric-key encryption scheme Π = (KeyGen,Enc,Dec) and some attack A
on this scheme, the effective map of A is defined as

Ã = E
k←KeyGen(1n)

[Deck ◦A ◦ Enck].

For public-key encryption schemes, the definition is identical, but the expected value is
taken over all (pk, sk) ← KeyGen(1n). Note that the effective map is different for each
value of the security parameter n, and describes the average effect an attack has on a
given plaintext combined with possible side information. It will prove useful to also define

EncK = E
k←KeyGen(1n)

[Enck]

DecK = E
k←KeyGen(1n)

[Deck],

which are encryption and decryption operations averaged over all keys.

3.2.6 Characterization of quantum encryption schemes

Quantum encryption schemes as defined above can be difficult to analyze because very
little information about the structure of the encryption and decryption algorithms is
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specified in the definition. In [AM17], a possible solution to this problem is presented in
the form of a characterization of the encryption and decryption algorithms.

Theorem 3.1 (Lemma B.9 in [AM17]). Let Π = (KeyGen,Enc,Dec) be a SKQES, then
Enc and Dec have the following form:

Enck(XM ) = Vk(XM ⊗ σTk )V †k

Deck(Y C) = TrT

[
PTσk

(V †k Y
CVk)PTσk

]
+ D̂k

[
P̄Tσk

(V †k Y
CVk)P̄Tσk

]
.

Here σk is a state on register T , Vk is a unitary and D̂k is a quantum channel. Furthermore
Pσk

is the projector onto the support of σk, that is, if σk =
∑
i αi|φi〉〈φi|, then Pσk

=∑
i |φi〉〈φi| and P̄σk

= I− Pσk
.

Since each σk can be seen as a probability distribution over pure states, this result can
be refined further, as is done in [AGM18].

Corollary 3.2 (Corollary 1 in [AGM18]). Let Π = (KeyGen,Enc,Dec) be a SKQES,
then for every k there exists a probability distribution pk : {0, 1}t → [0, 1] and a family of
quantum states |ψk,r〉T such that Enck is equivalent to the following algorithm:

1. sample r
pk←− {0, 1}t;

2. apply the map Enck;r = Vk(XM ⊗ ψTk,r)V
†
k .

Here Vk and T are defined as in Theorem 3.1, and t = log(|T |) is the number of qubits in
T .

These results are proven using an information-theoretic approach, and thus disregard
the efficiency of the encryption scheme when implemented in this form. Whether this
characterization can always be implemented efficiently is still an open question. In case
such an efficient implementation is required for a result, we will explicitly state this using
Condition 1.

Condition 1 (Condition 1 in [AGM18]). Let Π be a SKQES with security parameter n,
and let pk, |ψk,r〉, and Vk be as defined in Corollary 3.2. We say that Π satisfies Condition
1 if, for all but a negligible fraction of k and r, there exist a polynomial p and quantum
algorithms that run in time p(n) for (i.) sampling from pk, (ii.) preparing ψk,r, and (iii.)
implementing Vk.

3.3 Classical Non-Malleability

In the classical setting the notion of non-malleability has been studied in great detail,
for example in [KPT11] and [BS99]. In this thesis, we mostly consider comparison-based
non-malleability as defined in [BS99], although we also briefly touch on simulation-based
non-malleability.

Comparison-based non-malleability can be viewed as a promise that an adversary,
given some ciphertext, cannot construct any meaningful relation between the original
plaintext and the decryption of the ciphertext after the attack. To test for this form of
non-malleability, an adversary is challenged to distinguish between two settings.

For comparison-based non-malleability, we consider adversaries that are split into two
stages, where each stage is a probabilistic algorithm. The first stage takes as input the
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public key and produces a message distribution, which is (a description of) a probabilistic
algorithm that produces a plaintext. The second stage takes as input one ciphertext of a
plaintext produced by this algorithm, and produces a vector of ciphertexts and a relation
R. The goal of the adversary is to construct R in such a way that R holds between the
original plaintext and the (element-wise) decryption of the produced ciphertext vector, but
not between another plaintext sampled from the message distribution and the decryption
of this same vector. If an adversary can achieve this with non-negligible probability, then
intuitively the adversary was able to structurally change an encrypted message, which
would indicate that the scheme is malleable.

For any PKES Π = (KeyGen,Enc,Dec) with security parameter n and any pair of
algorithms, or adversary, A = (A1,A2) we define the following experiments, which
produce random variables:

Experiment 3.1.
The CNM-Real(Π,A, n) experiment:

1: (pk, sk)← KeyGen(1n)
2: (M, s)← A1(pk)
3: x←M
4: y ← Encpk(x)
5: (R,y)← A2(s, y)
6: x← Decsk(y)
7: return 1 iff (y 6∈ y) ∧R(x,x)

Experiment 3.2.
The CNM-Ideal(Π,A, n) experiment:

1: (pk, sk)← KeyGen(1n)
2: (M, s)← A1(pk)
3: x, x̃←M
4: ỹ ← Encpk(x̃)
5: (R, ỹ)← A2(s, ỹ)
6: x̃← Decsk(ỹ)
7: return 1 iff (ỹ 6∈ ỹ) ∧R(x, x̃)

Using these experiments we can define comparison-based non-malleability.

Definition 3.5 (Definition 2 in [BS99] (CNM-CPA)). A PKES Π is comparison-based
non-malleable for chosen-plaintext attacks ( CNM-CPA or CNM) if for any
adversary A = (A1,A2) it holds that

Pr [CNM-Real(Π,A, n) = 1]− Pr [CNM-Ideal(Π,A, n) = 1] ≤ negl(n),

if A is such that there exists a polynomial p such that for all n:

• A1 and A2 run in time p(n)

• A1 outputs a valid message space M which can be sampled in time p(n)

• A2 outputs a relation R computable in time p(n)

• A2 outputs a vector y such that ⊥ 6∈ Decsk(y)

Another notion of non-malleability is discussed in [BS99], called simulation-based non-
malleability (SNM). SNM differs from CNM in two key ways, but in the classical case is
an equivalent notion to CNM. In the experiments of CNM an adversary is challenged to
build a meaningful relation given a ciphertext, but in SNM the relation is fixed and the
adversary is simply challenged to find a ciphertext such that its decryption is related to
the original plaintext. A scheme is called secure in the sense of SNM if, for any fixed
relation, no adversary can construct such a ciphertext more than negligibly better than
a simulator could, which is given no input. A third notion is discussed in [BS99] which
is also equivalent in the sense of security but is based on indistinguishability instead of
non-malleability. Our goal is to compare a possible quantum version of these security
notions to other quantum notions of non-malleability. For this reason, we have chosen to
study CNM in more detail, since the relation in the definition of SNM depends on not only
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plaintext vectors, but also the message distribution, which may be difficult to implement
in the quantum setting.

3.4 Quantum Non-Malleability and Authentication

In the quantum setting, the approach taken by previous research is quite different from
the notions described in the previous section. Here, the focus is put on symmetric-key
non-malleability and authentication, which we discuss in this section.

3.4.1 Evolution of non-malleability

In this setting, a notion of non-malleability was first introduced in [ABW09], which defines
non-malleability as a condition on the effective map of an arbitrary attack. The main
idea of this definition is that a ciphertext cannot be meaningfully transformed into the
ciphertext of another message, which means that the effective map of any attack is either
identity, in case no transformation is applied, or a 〈ρ〉 map, when the ciphertext is fully
destroyed and replaced by another. Note that this way of defining non-malleability can
also be satisfied by a scheme that is such that an attacker can transform a ciphertext
into another ciphertext of the same message. In other words, the non-malleability is only
enforced on the plaintext level, which means it is a form of plaintext non-malleability.
The classical notions discussed in the previous section do not allow for attacks that map
an encrypted message to a different encryption of the same message. This restriction
means non-malleability is enforced on the ciphertext level and thus these classical notions
define forms of ciphertext non-malleability.

This effective-map-based way of describing non-malleability was continued in [AM17],
where a flaw in the previous definition was demonstrated and a new definition was given.
Their definition is given in terms of the mutual information between the plaintext and the
side-information collected by the attacker, however, one of the results in their paper is a
characterization theorem which we consider as the definition instead. Note that we here
consider attacks on the scheme as quantum channels since the efficiency is disregarded.

Definition 3.6 (Theorem 4.4 in [AM17]). A SKQES Π = (KeyGen,Enc,Dec) is ε-non-

malleable (ε-NM) if, for any attack ΛCB→CB̂A , its effective map Λ̃MB→MB̂
A is such that∥∥∥∥Λ̃A −

(
idM ⊗ΛB→B̂1 +

1

|C|2 − 1

(
|C|2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂2

)∥∥∥∥
�
≤ ε,

where

Λ1 = TrCC′
[
φ+CC′ΛA(φ+CC′ ⊗ (·))

]
and

Λ2 = TrCC′
[
(ICC

′
− φ+CC′)ΛA(φ+CC′ ⊗ (·))

]
.

At first glance, this definition looks very similar to the one described in [ABW09],
since it is also based on the fact that the effective map is a combination of identity and
a constant map. Note however that the requirements imposed on Λ1 and Λ2 ensure that
no attack exists which maps a ciphertext into another encryption of the same plaintext,
which means this is a notion of ciphertext non-malleability. In the next chapter, we build
upon this definition and use it to define a plaintext non-malleability notion.
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3.4.2 Authentication

In the symmetric-key setting, another notion can be realized, called authentication. In this
setting, it is not only impossible to meaningfully transform ciphertexts, but any attempt
to do so can also be detected by the receiving party. In [DNS12] a definition is given for
this notion, which we adapt slightly to use the diamond norm instead of the trace norm.

Definition 3.7 (Definition 2.2 in [DNS12]). A SKQES Π is ε-DNS authenticating

(ε-DNS) if, for any attack ΛCB→CB̂A , its effective map Λ̃MB→MB̂
A is such that∥∥∥Λ̃A −

(
idM ⊗ΛB→B̂acc + 〈|⊥〉〈⊥|〉 ⊗ ΛB→B̂rej

)∥∥∥
�
≤ ε,

for some CPTNI maps Λacc,Λrej such that Λacc + Λrej is CPTP.

It is shown in [AM17] that a NM scheme can be modified to a scheme that is DNS
authenticating by appending a tag to the encoded plaintext.
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CHAPTER 4

Plaintext Non-Malleability

In this chapter we will build upon the work discussed in Section 3.4 and define non-
malleability based on the possible effective maps. In the previous chapter, we touched
upon the concepts of ciphertext and plaintext non-malleability, which we will discuss in
more detail in Section 4.1. After this we will present a possible definition of plaintext non-
malleability in Section 4.2, and show that it differs from NM. In Section 4.3 we will show
that plaintext non-malleability is strong enough to build a DNS authenticating scheme.
Lastly, we will briefly look at the public key setting in Section 4.4 and motivate a possible
definition for plaintext non-malleability in this setting.

4.1 Difference between Ciphertext and Plaintext Non-Malleability

In the previous chapter, we explained that the difference between plaintext and ciphertext
non-malleability is that a ciphertext non-malleable scheme does not allow an attacker to
transform one ciphertext into another, while a plaintext non-malleable scheme does allow
this transformation but only if both the transformed and the original ciphertext decrypt
to the same plaintext.

If we look at what this additional freedom for attackers means for the honest parties
of an encryption scheme, we observe that this distinction makes little difference. When
using a plaintext non-malleable scheme a possible attacker can still only implement, on the
plaintext level, the same attacks as it could if the scheme was ciphertext non-malleable,
namely a combination of the identity map and the map that results from depolarizing the
ciphertext.

If one instead looks at what information a possible attacker might obtain regarding the
plaintext, then one again observes a similarity. This similarity is because of the connection
between non-malleability and indistinguishability in the quantum setting. Consider the
following example, where Π is a SKQES such that an attacker is capable of gaining some
information about the plaintext without knowing the key. For demonstrative purposes
we assume that some attacker can perfectly distinguish, without knowing k, between
ρ0 = Enck(|0〉〈0|) and ρ1 = Enck(|1〉〈1|), thus the attack has the projector onto the
support of ρ0, P , which is such that Tr [Pρ0] = 1 and Tr [Pρ1] = 0. We observe that
P is Hermitian and P 2 = P , thus (2P − I)(2P − I)† = (2P − I)2 = I, which means
2P − I is a unitary matrix. Furthermore we have, by correctness of Π, that Deck ◦
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P (·)P ◦ Enck encrypts a state, projects it onto the part that is an encryption of |0〉〈0|
and then decrypts that part to |0〉〈0|, thus acts as |0〉〈0|(·)|0〉〈0|. By linearity it follows
that Deck ◦ (2P − I)(·)(2P − I) ◦ Enck = (2|0〉〈0| − I)(·)(2|0〉〈0| − I) = Z(·)Z, where
Z is the Pauli Z-gate, which satisfies Z|0〉 = |0〉 and Z|1〉 = −|1〉. Since the attacker
could apply this attack without knowledge of k, the effective map of this attack is also
Z(·)Z, which maps |+〉 = 1√

2
(|0〉+ |1〉) to |−〉 = 1√

2
(|0〉 − |1〉) and |−〉 to |+〉. Since this

map is self-inverse and not the identity map, it cannot be written as a combination of
id and 〈DecK(τ)〉, thus the scheme is malleable. This example shows that plaintext and
ciphertext non-malleable schemes both disallow the attacker to gain information about
the plaintext from the ciphertext, meaning that both notions imply information-theoretic
security. In [AM17] it is proven that NM implies information-theoretic security, but for
the definition given in the next section this is still an open question.

The difference between plaintext and ciphertext non-malleability lies in what part of
the effect of an attack acts as identity. In the ciphertext non-malleability setting, this is
fully determined by how much the attack behaves like identity on the ciphertext, but for
plaintext non-malleability, this is a larger part of the effective map, because an attacker
is allowed to map a ciphertext to another ciphertext of the same plaintext.

4.2 An Effective-Map-based Definition

To properly define plaintext non-malleability, we take a look at the NM definition. Observe
that the constraints placed on Λ1 and Λ2 in Definition 3.6 enforce the effect described at
the end of the previous section. For any state ρB , the trace of the output of Λ1(ρB) is
determined by what part of the C register of φ+CC′ is not altered by the attack, or in
other words, how much the attack acts as identity. Since this restriction is enforced on
the ciphertext level, the first step in defining plaintext non-malleability is to remove the
constraints placed on Λ1 and Λ2. After this removal we observe some extra freedom in
the choice of the ideal effective map.

Lemma 4.1. Let Π = (KeyGen,Enc,Dec) be an arbitrary SKQES and ΛCB→CB̂A an

arbitrary attack on Π with effective map Λ̃MB→MB̂
A . If there exist CPTNI Λ1,Λ2, such

that Λ1 + Λ2 is CPTPand it holds that∥∥∥∥Λ̃A −
(

idM ⊗ΛB→B̂1 +
1

|C|2 − 1

(
|C|2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂2

)∥∥∥∥
�
≤ ε,

then for any α such that |M |2 ≤ α ≤ |C|2 there exist CPTNI Λ3,Λ4 such that Λ3 + Λ4 is
CPTP and∥∥∥∥Λ̃A −

(
idM ⊗ΛB→B̂3 +

1

α− 1

(
α〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂4

)∥∥∥∥
�
≤ ε.

Proof. Assume that for some CPTNI Λ1,Λ2 such that Λ1 + Λ2 is CPTP it holds that∥∥∥∥Λ̃A −
(

idM ⊗ΛB→B̂1 +
1

|C|2 − 1

(
|C|2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂2

)∥∥∥∥
�
≤ ε.
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Define

Λ3 = Λ1 +

(
1− (α− 1)|C|2

α(|C|2 − 1)

)
Λ2 and

Λ4 =
(α− 1)|C|2

α(|C|2 − 1)
Λ2.

Note that 0 < (α−1)|C|2
α(|C|2−1) ≤ 1 as long as 1 < α ≤ |C|2 and thus Λ3 and Λ4 are CPTNI.

Furthermore Λ3 + Λ4 = Λ1 + Λ2, thus Λ3 + Λ4 is CPTP. Observe that

idM ⊗ ΛB→B̂3 +
1

α− 1

(
α〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂4

= idM ⊗
(

Λ1 +

(
1− (α− 1)|C|2

α(|C|2 − 1)

)
Λ2

)
+

1

α− 1
(α〈DecK(τC)〉 − id)M ⊗

(
(α− 1)|C|2

α(|C|2 − 1)
Λ2

)
= idM ⊗Λ1 +

|C|2 − α
α(|C|2 − 1)

idM ⊗Λ2 +
|C|2

α(|C|2 − 1)
(α〈DecK(τC)〉 − id)M ⊗ Λ2

= idM ⊗Λ1 +
|C|2 − α
α(|C|2 − 1)

idM ⊗Λ2 +
|C|2

|C|2 − 1
〈DecK(τ)〉 ⊗ Λ2 −

|C|2

α(|C|2 − 1)
idM ⊗Λ2

= idM ⊗Λ1 +
|C|2

|C|2 − 1
〈DecK(τ)〉 ⊗ Λ2 −

1

|C|2 − 1
idM ⊗Λ2

= idM ⊗Λ1 +
1

|C|2 − 1
(|C|2〈DecK(τC)〉 − id)M ⊗ Λ2.

From this it follows that∥∥∥∥Λ̃A −
(

idM ⊗ΛB→B̂3 +
1

α− 1

(
α〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂4

)∥∥∥∥
�
≤ ε.

We choose α = |M |2 in the lemma above to obtain a definition of plaintext non-
malleability that has similar properties to NM.

Definition 4.1. A SKQES Π = (KeyGen,Enc,Dec) is ε-plaintext non-malleable (ε-

PNM) if, for any attack ΛCB→CB̂A , its effective map Λ̃MB→MB̂
A is such that∥∥∥∥Λ̃A −

(
idM ⊗ΛB→B̂1 +

1

|M |2 − 1

(
|M |2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂2

)∥∥∥∥
�
≤ ε,

where Λ1 and Λ2 are CPTNI and Λ1 + Λ2 is CPTP.

While this definition does not explicitly restrict the choice of Λ1 and Λ2, a restriction
similar to the one in Definition 3.6 can be made while still obtaining a definition equivalent
to PNM.

Theorem 4.1. Let Π = (KeyGen,Enc,Dec) be an arbitrary ε-PNM SKQES for some ε,

then for any attack ΛCB→CB̂A , its effective map Λ̃MB→MB̂
A is such that∥∥∥∥Λ̃A −

(
idM ⊗ΛB→B̂1 +

1

|M |2 − 1

(
|M |2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂2

)∥∥∥∥
�
≤ 3ε,
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where

Λ1 = TrMM ′

[
φ+MM ′Λ̃A(φ+MM ′ ⊗ (·))

]
and

Λ2 = TrMM ′

[
(IMM ′ − φ+MM ′)Λ̃A(φ+MM ′ ⊗ (·))

]
.

In the case of ε = 0, the proof of this statement follows directly from substituting Λ̃A
in the definition of Λ1 and Λ2. The proof of the general case can be found in Appendix B.
It follows directly from Lemma 4.1 (with α = |M |2) that any NM PKQES is also PNM.
Intuitively one could say this makes sense, since if one cannot meaningfully transform any
ciphertext then one can also not meaningfully transform any plaintext. This implication
does not hold in the other direction. In Theorem 4.2 we show that 0-PNM does not
imply 1-NM, which one can think of as PNM does not imply NM. Note that ε-NM is
meaningfully defined for ε ≤ 2 since the diamond norm of the difference between two
quantum channels lies between 0 and 21. Nevertheless not being 1-NM already indicates
that a scheme does not capture the notion of non-malleability anymore. For example, if
one has a scheme where an attacker can implement any transformation for negligibly less
than half the keys, but no meaningful transformation for the other keys, then this scheme
is 1-NM.

We prove Theorem 4.2 by taking a 0-NM scheme and appending a |0〉 to the ciphertext,
which is traced out during decryption. The result is that an attacker can freely modify
this appended qubit, which allows for meaningful transformations on the ciphertext level,
for example the NOT transformation, which maps this appended qubit to a |1〉. On
the plaintext level, however, no meaningful transformation is possible since the original
scheme was 0-NM. Note that a similar construction would also work if we modify a 0-PNM
scheme in the same way.

Theorem 4.2. There exists a PKQES Π = (KeyGen,Enc,Dec) that is 0-PNM but not
1-NM.

Proof. Let Π′ = (KeyGen′,Enc′,Dec′) be an arbitrary PKQES that is 0-NM2. Then
define Π = (KeyGen,Enc,Dec) as

KeyGen = KeyGen′

Enck = Enc′k ⊗ |0〉〈0|R

Deck = Dec′k ◦ TrR,

where R is an auxiliary 1-qubit register. Let Λ be an arbitrary attack on Π with effective
map Λ̃, then define Λ′ = TrR

[
Λ((·)⊗ |0〉〈0|R)

]
, which is an attack on Π′ with effective

map Λ̃′. Observe that

Λ̃′ = E
k←KeyGen(1n)

[Deck ◦ Λ′ ◦ Enck]

= E
k←KeyGen(1n)

[Deck ◦ TrR ◦Λ ◦ ((·)⊗ |0〉〈0|R) ◦ Enck]

= E
k←KeyGen(1n)

[Dec′k ◦ Λ ◦ Enc′k]

= Λ̃.

1One might be inclined to scale this to [0, 1], as is done in some literature, but we choose not to for
consistency with [AM17].

2See [AM17] for such a scheme
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Because Π′ is 0-NM, we have that

Λ̃′ = idM ⊗ΛB→B̂3 +
1

|C|2 − 1

(
|C|2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂4 .

It follows from Lemma 4.1 that Π is 0-PNM.
Now consider the attack ΛX = id⊗(X(·)X)R ⊗ Tr[·]B , where X is the Pauli X gate,

with X|0〉 = |1〉 and X|1〉 = |0〉. Let f(x1 . . . xn) = x1 . . . xn−1(1− xn), i.e. the result of
flipping the last bit of some bitstring. Observe that

ΛX(φ+CC′ ⊗ (·)B) = (id⊗(X(·)X)R ⊗ Tr[·]B)

 ∑
i,j∈{0,1}log |C|

|ii〉〈jj|CC
′
⊗ (·)B


= Tr [·]B

∑
i,j∈{0,1}log |C|

|f(i)i〉〈f(j)j|.

Since this superposition contains no components of the form |xx〉〈xx|CC′ and φ+CC′ only

contains components of this form, we have that φ+CC′ΛX(φ+CC′ ⊗ (·)B) = 0BCC
′→CC′ .

Also note that the effective map of ΛX is Λ̃X = idM ⊗Tr[·]B , since the attack only acts on
R andB and thus does not modify the message inM . Let Λ1 and Λ2 be as in Definition 3.6,

then Tr [Λ1(ρ)] = 0 for all ρ. It follows that Λ2 = TrCC′
[
(I− φ+CC′)ΛX(φ+CC′ ⊗ (·)B)

]
=

Tr[·]B . Furthermore we have∥∥∥∥Λ̃X −
(

idM ⊗Λ1 +
1

|C|2 − 1

(
|C|2〈DecK(τC)〉 − id

)M ⊗ Λ2

)∥∥∥∥
�

=

∥∥∥∥(idM ⊗Tr[·]B
)
−
(

1

|C|2 − 1

(
|C|2〈DecK(τC)〉 − id

)M ⊗ Tr[·]B
)∥∥∥∥
�

=

∥∥∥∥idM − 1

|C|2 − 1

(
|C|2〈DecK(τ)〉 − id

)M∥∥∥∥
�

≥
∥∥∥∥φ+MM ′ − 1

|C|2 − 1
(|C|2DecK(τ)⊗ τM

′
− φ+MM ′)

∥∥∥∥
1

=2 max
0≤P≤I

Tr

[
P (φ+MM ′ − 1

|C|2 − 1
(|C|2DecK(τ)⊗ τM

′
− φ+MM ′))

]
≥2 Tr

[
φ+MM ′(φ+MM ′ − 1

|C|2 − 1
(|C|2DecK(τ)⊗ τM

′
− φ+MM ′))

]
=2− 2(|C|2 − |M |2)

|M |2(|C|2 − 1)
> 1,

where we use that Tr
[
φ+MM ′(DecK(τ)⊗ τM ′)

]
= 1
|M |2 , as is proven in the proof of

Theorem B.1, and |M | ≥ 2, which is true since we assume that we are encrypting at least
one qubit.

4.3 DNS Authentication from PNM

Now that we have observed that PNM and NM do not syntactically capture the same
notion, we use DNS authentication to show that PNM still captures the essence of plaintext
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non-malleability. The idea of DNS authentication is that, after a possible attack, one can
determine from a received plaintext whether or not an attack was performed. For this
reason, DNS authentication is also called plaintext authentication. We use the fact that
a PNM scheme protects a plaintext from modification to protect a tag register, which
we then use to detect whether an attack was attempted. With this in mind, we first
determine what state makes a good tag.

Lemma 4.2. For any SKQES (KeyGen,Enc,Dec) and any m ∈ N such that M = M ′R
for some registers M ′ and R with log |R| = m there exists an x ∈ {0, 1}m such that
Tr[〈x|RDecK(τC)|x〉R] ≤ 1

|R| .

Proof. Observe that

E
x∈{0,1}m

[Tr
[
〈x|DecK(τC)|x〉

]
] =

∑
x∈{0,1}m

1

2m
Tr
[
〈x|DecK(τC)|x〉

]

=
1

2m
Tr

 ∑
x∈{0,1}m

|x〉〈x|

DecK(τC)


=

1

2m
Tr
[
DecK(τC)

]
=

1

2m
=

1

|R|
.

Since the expected value of Tr
[
〈x|DecK(τC)|x〉

]
is 1
|R| , there must be at least one x

such that Tr
[
〈x|DecK(τC)|x〉

]
≤ 1
|R| .

Lemma 4.2 allows us to find tags that have little overlap with DecK(τC), which means
one can distinguish well between the case were the tag was left unharmed, and thus still
is equal to |x〉〈x|, and the case where the ciphertext was depolarized and thus also the
tag. We use this property to build a scheme that is DNS authenticating.

Theorem 4.3. For any 0 ≤ ε ≤ 2 and any ε-PNM SKQES Π = (KeyGen,Enc,Dec),

there exists some x such that the scheme Π′ = (KeyGen′,Enc′,Dec′) is
(

3
|R| + ε

)
-DNS

authenticating, where

KeyGen′ = KeyGen

Enc′k = Enck((·)M
′
⊗ |x〉〈x|R)

Dec′k = 〈x|RDeck(·)|x〉R + Tr
[
(IR − |x〉〈x|R)Deck(·)

]
|⊥〉〈⊥|

Proof. By Lemma 4.2, there exists an x ∈ {0, 1}log |R| such that Tr
[
〈x|DecK(τC)|x〉

]
≤

1
|R| . Fix this x and define Π′ as above. Define Encappend(X) = X⊗|x〉〈x| and Deccheck(Y ) =

〈x|Y |x〉 + Tr [(I− |x〉〈x|)Y ] |⊥〉〈⊥| and observe that Enc′ = Enc ◦ Encappend and Dec′ =
Deccheck ◦Dec. Let ΛA be an arbitrary attack map on Π′, then its effective map is

Λ̃′A = E
k←KeyGen(1n)

[Dec′k ◦ ΛA ◦ Enc′k].

Since Encappend and Deccheck do not change with k and are linear, we have

Λ̃′A = Deccheck ◦ Λ̃A ◦ Encappend,
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where Λ̃A = E
k←KeyGen(1n)

[(Deck ◦ΛA ◦Enck)]. Since Π is ε-PNM, there exist Λ1,Λ2 such

that ∥∥∥∥Λ̃A − id⊗Λ1 +
1

|M |2 − 1
(|M |2〈DecK(τC)〉 − id)M ⊗ Λ2

∥∥∥∥
�
≤ ε.

Since Encappend and Deccheck are both CPTP, by submultiplicativity we have that∥∥∥∥Deccheck ◦
(

Λ̃A − id⊗Λ1 +
1

|M |2 − 1
(|M |2〈DecK(τC)〉 − id)M ⊗ Λ2

)
◦ Encappend

∥∥∥∥
�
≤ ε,

which is equivalent to∥∥∥∥Λ̃′A −Deccheck ◦
(

id⊗Λ1 +
1

|M |2 − 1
(|M |2〈DecK(τC)〉 − id)M ⊗ Λ2

)
◦ Encappend

∥∥∥∥
�
≤ ε.

Observe that

Deccheck ◦ id ◦Encappend = 〈x|((·)⊗|x〉〈x|)|x〉+Tr[(I−|x〉〈x|)((·)⊗|x〉〈x|)]|⊥〉〈⊥| = id .

Define Λacc = Λ1, Λrej = Λ2 and

Λ̃ideal = Deccheck ◦
(

id⊗Λ1 +
1

|M |2 − 1
(|M |2〈DecK(τC)〉 − id)M ⊗ Λ2

)
◦Encappend,

then we have∥∥∥Λ̃ideal − id⊗Λacc − 〈|⊥〉〈⊥|〉 ⊗ Λrej

∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2(Deccheck ◦ 〈DecK(τC)〉 ◦ Encappend)− id)⊗ Λ2 − 〈|⊥〉〈⊥|〉 ⊗ Λ2

∥∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2(Deccheck ◦ Tr

[
(·)M

′
]

DecK(τC))− id)⊗ Λ2 − 〈|⊥〉〈⊥|〉 ⊗ Λ2

∥∥∥∥
�
.

Here the second equality uses the fact that Encappend is trace preserving and 〈DecK(τ)〉 is
a constant channel, which only uses the trace of the input. Since every term now ends in
⊗Λ2, we can remove this term and multiply with ‖Λ2‖�, which is less than 1 since Λ2 is

CPTNI. We continue by expanding Deccheck, where we note that 〈x|Tr
[
(·)M ′

]
DecK(τC)|x〉 =

〈〈x|DecK(τC)|x〉〉.∥∥∥∥ 1

|M |2 − 1
(|M |2(Deccheck ◦ Tr

[
(·)M

′
]

DecK(τC))− id)⊗ Λ2 − 〈|⊥〉〈⊥|〉 ⊗ Λ2

∥∥∥∥
�

≤
∥∥∥∥ 1

|M |2 − 1
(|M |2(Deccheck ◦ Tr

[
(·)M

′
]

DecK(τC))− id)− 〈|⊥〉〈⊥|〉
∥∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2

(
〈〈x|DecK(τC)|x〉〉+ Tr[(I− |x〉〈x|)DecK(τC)]〈|⊥〉〈⊥|〉

)
− id)− 〈|⊥〉〈⊥|〉

∥∥∥∥
�
.

We can rewrite this expression by first collecting all multipliers of 〈|⊥〉〈⊥|〉, then distribut-
ing the |M |2 term and lastly rewriting Tr[(I−|x〉〈x|)DecK(τC)] as 1−Tr[〈x|DecK(τC)|x〉]
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and simplifying the resulting term.∥∥∥∥ 1

|M |2 − 1
(|M |2

(
〈〈x|DecK(τC)|x〉〉+ Tr[(I− |x〉〈x|)DecK(τC)]〈|⊥〉〈⊥|〉

)
− id)− 〈|⊥〉〈⊥|〉

∥∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2

(
〈〈x|DecK(τC)|x〉〉+

(
Tr[(I− |x〉〈x|)DecK(τC)]− |M |

2 − 1

|M |2

)
〈|⊥〉〈⊥|〉

)
− id)

∥∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2〈〈x|DecK(τC)|x〉〉+

(
|M |2 Tr[(I− |x〉〈x|)DecK(τC)]− (|M |2 − 1)

)
〈|⊥〉〈⊥|〉 − id)

∥∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2〈〈x|DecK(τC)|x〉〉+

(
|M |2(1− Tr[〈x|DecK(τC)|x〉])− (|M |2 − 1)

)
〈|⊥〉〈⊥|〉 − id)

∥∥∥∥
�

=

∥∥∥∥ 1

|M |2 − 1
(|M |2〈〈x|DecK(τC)|x〉〉+

(
1− |M |2 Tr[〈x|DecK(τC)|x〉])

)
〈|⊥〉〈⊥|〉 − id)

∥∥∥∥
�

≤ 1

|M |2 − 1

(
|M |2

∥∥〈〈x|DecK(τC)|x〉〉
∥∥
� +

∥∥(1− |M |2 Tr[〈x|DecK(τC)|x〉])〈|⊥〉〈⊥|〉
∥∥
� + ‖id‖�

)
≤ 1

|M |2 − 1

(
|M |2

|R|
+

(
|M |2

|R|
− 1

)
+ 1

)
≤ 3

|R|
.

Here the first inequality is an application of the triangle inequality. The second in-
equality uses the fact that ‖id‖� = ‖〈|⊥〉〈⊥|〉‖� = 1 and that |R|〈〈x|DecK(τC)|x〉〉 is
CPTNI because Tr

[
〈x|DecK(τC)|x〉

]
≤ 1
|R| and thus

∥∥〈〈x|DecK(τC)|x〉〉
∥∥
� ≤

1
|R| .

Since
∥∥∥Λ̃′A − Λ̃ideal

∥∥∥
�
≤ ε and

∥∥∥Λ̃ideal − id⊗Λacc − 〈|⊥〉〈⊥|〉 ⊗ Λrej

∥∥∥
�
≤ 3
|R| , we have

by the triangle inequality that∥∥∥Λ̃′A − id⊗Λacc − 〈|⊥〉〈⊥|〉 ⊗ Λrej

∥∥∥
�
≤ ε+

3

|R|
,

which means that Π′ is
(

3
|R| + ε

)
-DNS authenticating.

4.4 PNM in the Public-Key Setting

In the public-key setting, no definition has yet been set for plaintext non-malleability.
In this section, we provide a number of details that one has to consider when defining
plaintext non-malleability and give a possible effective-map-based definition.

In the public-key setting, it is usually assumed that an attacker has access to the public
key, and thus access to the encryption map. Thus, no PNM public-key scheme can exist
since on any scheme there is an attack ΛA = 〈Encpk(ρ)〉 with effective map 〈ρ〉, where ρ
is chosen arbitrarily. Furthermore, we have to consider that in the public-key setting an
attacker can always decode the ciphertext with the public key if enough time is given to
the adversary, thus we only consider efficient attacks. Combining these properties we give
the following suggestion for public-key PNM.

Definition 4.2. A PKQES Π = (KeyGen,Enc,Dec) is ε-plaintext non-malleable (ε-
PNM) if, for any attack A that runs in time p(n) for some polynomial p and implements

ΛCB→CB̂A , its effective map Λ̃MB→MB̂
A is such that∥∥∥∥Λ̃A −

(
idM ⊗ΛB→B̂1 +

1

|M |2 − 1

(
|M |2(ΛB→MB̂

2 ◦ TrM )− idM ⊗(TrM ◦ΛB→MB̂
2

))∥∥∥∥
�
≤ ε,

where Λ1 and Λ2 are CPTNI and Λ1 + (TrM ◦Λ2) is CPTP.
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The main difference in this definition is that the attacker is allowed to implement any
map into M , but since Λ2 is not given M as input, it is still not possible to produce a
meaningfully related plaintext.
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CHAPTER 5

Quantum Comparison-based
Non-Malleability

In this chapter, we consider a different approach for defining non-malleability. In Section
3.3 we discussed CNM, a classical definition for non-malleability. In Section 5.1 we will
define QCNM, a notion of non-malleability in the quantum setting, in a way that is similar
to CNM. In Section 5.2 we will argue that QCNM is a possible quantum translation of
CNM. Lastly, we will discuss how QCNM relates to PNM and NM in Section 5.3.

5.1 A CNM-based definition

In this section, we will define QCNM as a quantum analogue of CNM. We first analyze
CNM and decide how to implement each of its components in the quantum setting. We
consider an adversary A = (A1,A2) to be a pair of quantum algorithms, where A1 is
responsible for producing the quantum alternative to the message distribution M and A2

will produce the relation R and the vector of candidate ciphertexts y.

5.1.1 The message distribution M

The message distribution M in the CNM definition allows an adversary to select messages
that she thinks might produce ciphertexts that can be modified in a structural way.
This choice is given because the total plaintext space is exponentially large, thus if one
picks a message completely at random and only a few of them can be modified into
related ciphertexts, then the winning probability is negligible despite the scheme being
insecure. In the quantum representation of this message space we must consider the
following requirements:

1. In order to check the relation in the last step of CNM, we require that two copies
of the same message are produced, one of which will be kept by the challenger and
the other encoded and used by A2.

2. In order to prevent the adversary from cheating, it must not be possible for the
adversary to entangle herself with the produced message.
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We first considered a mixed state as a representation of M , but this way of representing
M makes it impossible to enforce requirement (2). As such we have chosen to represent
M by a unitary UMM ′P such that U |0〉 is a purification of the message distribution, where
the message resides in M and its copy in M ′ and P is used for the purification. The first
part of the quantum adversary, A1, produces this unitary in the form of a circuit, which
we simply denote by (U, S)← A1(pk). In order to ensure that M ′ indeed contains a copy
of M we require that MM ′ resides in the symmetric subspace of M , which means that
if TrP

[
U |0〉〈0|U†

]
= ρ, then we have that ρ = WMM ′ρ, where W is the swap operator,

which performs the operation W |ij〉 = |ji〉. Note that this restriction does not disallow U
to produce a state where M and M ′ are entangled, for example, the state φ+MM ′ is part
of the symmetric subspace. For more information on the symmetric subspace, we refer to
Chapter 7 of [Wat18].

5.1.2 The QCNM experiments

For the QCNM definition we define two experiments, similar to the CNM definition. Note
that here the relation R is modeled as a matrix E, which is assumed to be a POVM
element. The vector y is modeled by a vector of registers C = C1 . . . Cm, where m is
at most polynomial in n, the security parameter of the considered scheme, and each Ci
satisfies MiTi = Ci ∼= C = MT . The vector x is modelled similarly as M = M1 . . .Mm.
Observe that any PKQES can also be seen as a SKQES, with keys of the form k = (pk, sk),
which allows us to use Corollary 3.2. For any PKQES Π = (KeyGen,Enc,Dec) with
security parameter n, let {Vk | k = (pk, sk) ← KeyGen(1n)}, t = log |T |, {ψk,r | k =
(pk, sk) ← KeyGen(1n), r ∈ {0, 1}t} and {pk | k = (pk, sk) ← KeyGen(1n)} be as in
Corollary 3.2, then the QCNM experiments are defined as follows.

Experiment 5.1.
The QCNM-Real(Π,A, n) experiment:

1: k = (pk, sk)← KeyGen(1n)
2: (UMM ′P , S)← A1(pk)

3: r
pk←− {0, 1}t

4: construct UTψ such that UTψ |0〉T = |ψk,r〉T

5: construct UMTM ′P
prep = VMT

k (UMM ′P ⊗ UTψ )

6: prepare Uprep|0〉〈0|U†prep in MTM ′P
7: (C, E)← A2(MT,S)
8: for each i such that 1 ≤ i ≤ m:

1: perform U†prep on CiM
′P

2: measure {|0〉〈0|, I− |0〉〈0|} on CiM
′P , if the outcome is 0: output 0

3: perform Uprep on CiM
′P

9: M← Decsk(C)
10: measure {E, I− E} on M ′M, output 1 iff the outcome is E.
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Experiment 5.2.
The QCNM-Ideal(Π,A, n) experiment:

1: k = (pk, sk)← KeyGen(1n)
2: (UMM ′P , S)← A1(pk)

3: r
pk←− {0, 1}t

4: construct UTψ such that UTψ |0〉T = |ψk,r〉T

5: construct UMTM ′P
prep = VMT

k (UMM ′P ⊗ UTψ )

6: prepare Uprep|0〉〈0|U†prep in MTM ′P
7: (C, E)← A2(MT,S)
8: for each i such that 1 ≤ i ≤ m:

1: perform U†prep on CiM
′P

2: measure {|0〉〈0|, I− |0〉〈0|} on CiM
′P , if the outcome is 0: output 0

3: perform Uprep on CiM
′P

9: M← Decsk(C)
10: prepare U |0〉〈0|U† in M̃M̃ ′P̃
11: measure {E, I− E} on M̃ ′M, output 1 iff the outcome is E.

Note that here the preparation of the message state and the encoding is both done
by Uprep, which means the y 6∈ y check in the CNM experiments can be implemented by
undoing Uprep on all Ci and then measuring whether the result is |0〉〈0|, which is only
the case if Ci contained part of Uprep|0〉, which is the original ciphertext given to the
adversary.

Definition 5.1. A PKQES Π is quantum comparison-based non-malleable ( QCNM)
if for any quantum adversary A = (A1,A2) it holds that

Pr [QCNM-Real(Π,A, n) = 1]− Pr [QCNM-Ideal(Π,A, n) = 1] ≤ negl(n),

if A is such that there exists a polynomial p such that for all n:

• A1 and A2 run in time p(n)

• A1 outputs a valid unitary U which can be implemented in time p(n) and ρ =
TrP

[
U |0〉〈0|U†

]
= ρ is such that ρ = WMM ′ρ.

• A2 outputs a POVM element E which can be implemented in time p(n)

• A2 outputs a vector of registers C such that ⊥ 6∈ Decsk(C)

5.2 Relation between QCNM and CNM

In this section, we compare QCNM to CNM, by considering both in a post-quantum
setting. We consider both definitions modified for quantum adversaries and encryption
schemes that have classical input and output but can perform quantum computation.
In the case that a quantum state is sent to such a post-quantum algorithm, it is first
measured in the computational basis. For this reason, we also restrict QCNM by only
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allowing A1 to output a U such that U |0〉, when measured in the computational basis,
always yields |xx〉 according to some probability distribution pX .

Experiment 5.3.
The QCNM-RealPQ(Π,A, n) experiment:

1: k = (pk, sk)← KeyGen(1n)
2: (UMM ′P , S)← A1(pk)

3: r
pk←− {0, 1}t

4: construct UTψ such that UTψ |0〉T = |ψk,r〉T
5: prepare U |0〉 in MM ′P
6: measure MM ′P in the computational basis, store the result of M in x
7: construct UMT

prep = VMT
k (IM ⊗ UTψ )

8: prepare |0〉〈0| in T
9: perform Uprep on MT

10: (C, E)← A2(MT,S)
11: for each i such that 1 ≤ i ≤ m:

1: perform U†prep on Ci
2: measure {M = |x〉〈x|M ⊗|0〉〈0|T , I−M} on Ci, if the outcome is M : output

0
3: perform Uprep on Ci

12: M← Decsk(C)
13: measure {E, I− E} on M ′M, output 1 iff the outcome is E.

Experiment 5.4.
The QCNM-IdealPQ(Π,A, n) experiment:

1: k = (pk, sk)← KeyGen(1n)
2: (UMM ′P , S)← A1(pk)

3: r
pk←− {0, 1}t

4: construct UTψ such that UTψ |0〉T = |ψk,r〉T
5: prepare U |0〉 in MM ′P
6: measure MM ′P in the computational basis, store the result of M in x
7: construct UMT

prep = VMT
k (IM ⊗ UTψ )

8: prepare |0〉〈0| in T
9: perform Uprep on MT

10: (C, E)← A2(MT,S)
11: for each i such that 1 ≤ i ≤ m:

1: perform U†prep on Ci
2: measure {M = |x〉〈x|M ⊗|0〉〈0|T , I−M} on Ci, if the outcome is M : output

0
3: perform Uprep on Ci

12: M← Decsk(C)
13: prepare U |0〉 in M̃M̃ ′P̃
14: measure M̃M̃ ′P̃ in the computational basis
15: measure {E, I− E} on M̃ ′M, output 1 iff the outcome is E.

We consider the above experiments to be the post-quantum version of the QCNM
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experiments. The main modification is the measurement in Step 6, which is essential to
ensure that the register passed to A2 contains a classical state. The rest of the modifica-
tions are required for the algorithm to still work. For example, the modification in Step
11.2 ensures that the outcome of the measurement still represents the y 6∈ y statement,
but now by undoing only the encryption since the measurement in Step 6 is not reversible.

Definition 5.2. A PKQES Π is post-quantum comparison-based non-malleable
(QCNMPQ) if for any quantum adversary A = (A1,A2) it holds that

Pr
[
QCNM-RealPQ(Π,A, n) = 1

]
− Pr

[
QCNM-IdealPQ(Π,A, n) = 1

]
≤ negl(n),

if A and Π are such that there exists a polynomial p such that for all n:

• Enc and Dec take only classical input and produce only classical output

• A1 and A2 run in time p(n)

• A1 and A2 output only classical states

• A1 outputs a valid unitary U which can be implemented in time p(n) and ρ =
TrP

[
U |0〉〈0|U†

]
= ρ is such that ρ yields |xx〉 for some x when measured in the

computational basis.

• A2 outputs a POVM element E which can be implemented in time p(n)

• A2 outputs a vector of registers C such that ⊥ 6∈ Decsk(C)

Here the extra constraint placed on U is required but can be considered equivalent
to the statement that TrP

[
U |0〉〈0|U†

]
should yield a state in the symmetric subspace

when measured in the computational basis. Thus the new requirement is practically the
same but takes into consideration the measurement in Step 6. Similarly, we define a
post-quantum version of CNM.

Definition 5.3. A PKQES Π is comparison-based non-malleable for post-quantum
adversaries (CNMPQ) if for any quantum adversary A = (A1,A2) it holds that

Pr [CNM-Real(Π,A, n) = 1]− Pr [CNM-Ideal(Π,A, n) = 1] ≤ negl(n),

if Π and A are such that there exists a polynomial p such that for all n:

• Enc and Dec take only classical input and produce only classical output

• A1 and A2 run in time p(n)

• A1 outputs a valid quantum algorithm M which runs in time p(n) and produces
classical strings

• A1 and A2 output only classical states

• A2 outputs a quantum algorithm R computable in time p(n)

• A2 outputs a vector y such that ⊥ 6∈ Decsk(y)
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The only difference between CNM and CNMPQ is that the latter assumes the en-
cryption scheme, adversary and any algorithms produced by the adversary may require
a quantum computer to compute. Furthermore, the relation R has become probabilistic,
but since it is used only once there is no difference between using a probabilistic relation
or picking a deterministic relation at random. Observe that CNMPQ is simply a stronger
requirement than CNM since it requires security against a strict superset of adversaries,
and thus trivially implies CNM.

Theorem 5.1. A PKQES Π is QCNMPQ if and only if Π is CNMPQ.

Proof. ⇒ Let Π be an arbitrary QCNMPQ PKQES and let A = (A1,A2) be an arbi-
trary quantum adversary intended to perform the CNMPQ experiments. Assume
that Π is such that Enc and Dec take only classical input and produce only classical
output. Define B = (B1,B2) as follows:
B1(pk):

1: (M, s)← A1(pk)
2: Let pM (x) be the probability that x←M , then construct U such that

U |0〉MM ′P =
1

|R|
∑
r∈R
|M(r)M(r)r〉 =

∑
x←M

√
pM (x)|xxφx〉MM ′P ,

where R is the set of possible input for M and φx is the uniform superposition
over all |r〉 such that x←M(r).

3: output (U, S)

Note that Step 2 here is always possible. Given a classical deterministic algorithm
M(r), one can always define M ′ such that (x, r) ← M ′(r) when x ← M(r) and
since M ′ is reversible, one can implement it as a quantum gate that performs UM :
|0〉|r〉 7→ |M(r)〉|r〉. We can use this UM to construct U , which first prepares a
uniform superposition over all r by applying Hadamard gates to the log |R| qubits
in P , then performs UM twice, first on MP and then on M ′P .

B2(|s〉〈s|S , |y〉〈y|MT ):

1: (R,y)← A2(y, s)
2: construct E =

∑
i,j

R(i, j)|ij〉〈ij|

3: output (E, |y〉〈y|C1...Cm)

Observe that the definition of QCNM-RealPQ(Π,B, n), after some simplification,
yields

1: k = (pk, sk)← KeyGen(1n)
2: (M, s)← A1(pk)
3: Let pM (x) be the probability that x←M , then construct U such that U |0〉MM ′P =∑

x←M

√
pM (x)|xxx〉MM ′P

4: r
pk←− {0, 1}t

5: construct UTψ such that UTψ |0〉T = |ψk,r〉T
6: prepare U |0〉 in MM ′P
7: measure MM ′P in the computational basis, store the result of M in x
8: construct UMT

prep = VMT
k (IM ⊗ UTψ )
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9: prepare |0〉〈0| in T
10: perform Uprep on MT
11: (R,y)← A2(y, s)
12: construct E =

∑
i,j

R(i, j)|ij〉〈ij|

13: prepare |y〉〈y| in C
14: for each i such that 1 ≤ i ≤ m:

1: perform U†prep on Ci
2: measure {M = |x〉〈x|M ⊗ |0〉〈0|T , I −M} on Ci, if the outcome is M :

output 0
3: perform Uprep on Ci

15: M← Decsk(C)
16: measure {E, I− E} on M ′M, output 1 iff the outcome is E.

Here Steps 3,5,6 and 7 together simply execute x ← M . Furthermore, if y ∈ y
then some Ci contains |y〉〈y|, which will guarantee the output to be 0 in Step 14.
Conversely if y 6∈ y, then all Ci contain some state orthogonal to |y〉〈y| and thus Step
4 has 0 probability of outputting 0 in this case, thus Step 14 effectively implements
the y 6∈ y check. Lastly note that E is a projective measurement which projects onto
the space spanned by all |ij〉 such that R(i, j), which means that Step 16 outputs
1 iff R(x,x), where x is stored in M ′ and x in M. Combined with the fact that
Uprep performs Enck;r we conclude that QCNM-RealPQ(Π,B, n) produces the same
random variable as CNM-Real(Π,A, n). By similar reasoning the same is true for
the Ideal case, with the additional observation that preparing U |0〉 in M̃M̃ ′P̃ and
measuring M̃ ′ in the computational basis with result x̃ is equivalent to x̃←M . Since
the random variables produced are identical, so is their difference in probability of
being 1, and thus if follows that Π is CNMPQ.

⇐ Let Π be an arbitrary CNMPQ PKQES and let A = (A1,A2) be an arbitrary
classical adversary on this scheme intended to perform the QCNMPQ experiments.
Define B = (B1,B2) as follows:
B1(pk):

1: (U, |s〉〈s|S)← A1(pk)
2: construct M to be

1: prepare U |0〉 in MaM
′
aP
′

2: measure Ma in the computational basis and output the result

3: output (M, s)

B2(s, y):

1: (E,y)← A2(|s〉〈s|S , |y〉〈y|MT )
2: construct R(i, j) to be:

(1) prepare |ij〉〈ij| in M ′M
(2) measure {E, I− E} on M ′M, output 1 iff the outcome is E

3: output (R, |y〉〈y|)

Observe that the definition of CNM-RealPQ(Π,B, n), after some simplification, yields

1: (pk, sk)← KeyGen(1n)
2: (U, |s〉〈s|S)← A1(pk)
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3: prepare U |0〉 in MaM
′
aP
′

4: measure Ma in the computational basis and let x be the result
5: y ← Encpk(x)
6: (E, |y〉〈y|)← A2(|s〉〈s|S), |y〉〈y|MT

7: x← Decsk(y)
8: return 0 if (y ∈ y)
9: prepare |xx〉〈xx| in M ′M

10: measure {E, I− E} on M ′M, output 1 iff the outcome is E.

Observe that the resulting experiment is identical to QCNM-RealPQ(Π,A, n), with
the exception that Step 5, the encrypting, is not performed by Uprep but simply by
Enc and that Step 8 simply checks y ∈ y instead of loop that we earlier argued to
be equivalent. The Ideal case has the exact same differences, and thus by the same
argument as before it is the case that Π is QCNMPQ.

Note that we argued earlier that, for any PKES Π, being CNMPQ trivially implies
being CNM, thus we derive the following corollary.

Corollary 5.2. Any QCNMPQ PKES is CNM.

5.3 Relation between QCNM, PNM, and NM

In this Section, we will briefly touch upon how QCNM relates to PNM and NM. Firstly
we have already seen that CNM, and by extension QCNM, are notions designed to enforce
ciphertext non-malleability. This means that it should not be the case that PNM implies
QCNM in general, which it indeed does not. Consider the scheme used in the proof of
Theorem 4.2, where a |0〉〈0| is appended to the ciphertext of a NM scheme. While the
original NM scheme might already not be QCNM, the appended scheme is definitely not
since one can trivially implement the identity map on M by having A1(pk) output U such
that U |0〉 = |φ+〉MM ′ and having A2 implement the Pauli X on the appended qubit and
output E = φ+MM ′ . The resulting adversary will always output 1 in the Real case but
only with probability 1

|M | in the Ideal case.

The rest of the possible relations are less obvious and remain open questions. If one
considers a restriction of QCNM where y is not a vector but a single ciphertext, then
one can consider steps 3-8 of QCNM as an effective map and it is almost clear then NM
implies this restriction of QCNM for SKQES, although more work remains to be done in
finding out the exact portion of this effective map that is id, as this part might be used
to construct a measurement E. Furthermore, it is our belief that for SKQES QCNM will
imply PNM, although no definitive argument for this has yet been found.
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CHAPTER 6

Conclusion and Discussion

We have presented two new definitions for non-malleability in the quantum setting, one
in the symmetric-key setting and one in the public-key setting. We have shown the
first, PNM, to be a weaker version of the notion defined in [AM17], but argued that
it nevertheless captures a similar level of security. We have shown that PNM is DNS
authenticating and have separated PNM from NM. We also presented a possible definition
for the public-key setting, based on this approach. Furthermore we presented QCNM,
which is intended to capture public-key non-malleability in the quantum setting. We have
shown that this notion, when restricted to a post-quantum setting, is equivalent to CNM.

6.1 Future work

At the end of Chapters 4 and 5 we briefly noted some open questions, which we briefly
summarize here. In the context of PNM, one might wonder whether the presented idea
for a public-key definition is correct, or whether a different one can be defined based on
effective maps. In the context of QCNM, open questions include what the effect is of
restricting QCNM to the symmetric-key case, where A1 is not given any input. Further-
more, it is also important to look at the connections between NM, PNM and QCNM.
Lastly, we note that, in the quantum setting, non-malleability and indistinguishability
are inherently connected, and as such one might wonder whether any of the presented
definitions are equivalent to some form of indistinguishability.
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APPENDIX A

List of Notation

N the set of natural numbers 5
C the set of complex numbers 5
H a finite dimensional Hilbert space 5
|A| the dimension of HA 5
‖ · ‖ the Euclidean norm 5
‖ · ‖1 the (induced) trace norm 10
‖ · ‖� the diamond norm 10
Tr [·] the trace of a matrix 5
TrP [·] the partial trace over HP 7
D(·, ·) the trace distance 10
(·)† the conjugate transpose of a matrix 5
B(·) the set of square matrices that act on a Hilbert space 5
D(·) the set of density matrices that act on a Hilbert space 5
(·)A→B an operator that maps from HA to HB or B(HA) to B(HB) 5
(·)A abbreviation of (·)A→A 5
p(n), q(n) polynomial functions 5
(·) ≤ negl(n) a negligible function 5
I the identity matrix 5
id the identity channel 21
〈ρ〉 the Tr [·] ρ map 7
0 the zero matrix 5
|φ〉〈φ|, |ψ〉〈ψ| pure states 5
φ, ψ abbreviation of |φ〉〈φ|, |ψ〉〈ψ| 5
ρ, σ mixed states 5
τ the maximally mixed state 5
φ+ the maximally entangled state 5
|x〉 a classical state 5
⊗ the tensor product 5
⊕ the bitwise xor of bitstrings or the direct sum of Hilbert spaces 5
U a unitary matrix 7
X,Z the Pauli X and Z gates 7, 23
← (possible) output or assignment 14
$←−, p←− randomly picking uniformly or according to p respectively 14
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SK(Q)ES symmetric-key (quantum) encryption scheme 14
PK(Q)ES public-key (quantum) encryption scheme 14
n security parameter 14
k, pk, sk (symmetric), public or secret/private key respectively 14
Enc,Enck,Encpk encryption algorithm (with key k or pk) 14
Dec,Deck,Decsk decryption algorithm (with key k or sk) 14
KeyGen key generation algorithm 14
EncK ,DecK average encryption/decryption over all keys 14
⊥, |⊥〉〈⊥| a value or state output by an algorithm to indicate failure 14
Π an encryption scheme 14
Qn a quantum circuit 14
M,T,C the registers for plaintext, tag, and ciphertext, MT = C 14

B, B̂ the register containing an attackers side information 14
A,ΛA an attack, as (quantum) algorithm or channel 14

Ã, Λ̃A the effective map of an attack 14
CNM,QCNM (quantum) comparison-based non-malleability 19,32
CNMPQ,QCNMPQ post-quantum (Q)CNM 34
NM,PNM (plaintext) non-malleability 21,24
DNS DNS/plaintext authentication 21
A,B a (Q)CNM adversary 19,32
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APPENDIX B

Proof of PNM characterization theorem

Theorem B.1 (Theorem 4.1). Let Π = (KeyGen,Enc,Dec) be an arbitrary ε-PNM

SKQES for some ε, then for any attack ΛCB→CB̂A , its effective map Λ̃MB→MB̂
A is such

that ∥∥∥∥Λ̃A −
(

idM ⊗ΛB→B̂1 +
1

|M |2 − 1

(
|M |2〈DecK(τC)〉 − id

)M ⊗ ΛB→B̂2

)∥∥∥∥
�
≤ 3ε,

where

Λ1 = TrMM ′

[
φ+MM ′Λ̃A(φ+MM ′ ⊗ (·))

]
and

Λ2 = TrMM ′

[
(IMM ′ − φ+MM ′)Λ̃A(φ+MM ′ ⊗ (·))

]
.

Proof. Let Π = (KeyGen,Enc,Dec) be an arbitrary ε-PNM SKQES for some ε and let

ΛCB→CB̂A be an arbitrary attack with effective map Λ̃MB→MB̂
A . Furthermore, let ΛB→B̂1

and ΛB→B̂2 be such that∥∥∥Λ̃A − Λ̃ideal

∥∥∥
�
≤ ε,

where Λ̃MB→MB̂
ideal = idM ⊗Λ1 + 1

|M |2−1 (|M |2〈DecK(τ)〉 − id)M ⊗ Λ2. Lastly, let Λ3 =

TrMM ′

[
φ+MM ′Λ̃A(φ+MM ′ ⊗ (·))

]
, Λ4 = TrMM ′

[
(IMM ′ − φ+MM ′)Λ̃A(φ+MM ′ ⊗ (·))

]
, and

Λ̃MB→MB̂
trace = idM ⊗Λ3 + 1

|M |2−1 (|M |2〈DecK(τ)〉 − id)M ⊗ Λ4.

Observe that, by the triangle inequality,
∥∥∥Λ̃− Λ̃trace

∥∥∥
�
≤
∥∥∥Λ̃− Λ̃ideal

∥∥∥
�
+
∥∥∥Λ̃ideal − Λ̃trace

∥∥∥
�
.

Furthermore,∥∥∥Λ̃ideal − Λ̃trace

∥∥∥
�

=

∥∥∥∥idM ⊗(Λ1 − Λ3) +
1

|M |2 − 1
(|M |2〈DecK(τ)〉 − id)M ⊗ (Λ2 − Λ4)

∥∥∥∥
�

≤
∥∥∥idM ⊗(Λ1 − Λ3)

∥∥∥
�

+

∥∥∥∥ 1

|M |2 − 1
(|M |2〈DecK(τ)〉 − id)M ⊗ (Λ2 − Λ4)

∥∥∥∥
�

=
∥∥∥idM

∥∥∥
�
‖(Λ1 − Λ3)‖� +

∥∥∥∥ 1

|M |2 − 1
(|M |2〈DecK(τ)〉 − id)M

∥∥∥∥
�
‖(Λ2 − Λ4)‖�

≤ ‖(Λ1 − Λ3)‖� + ‖(Λ2 − Λ4)‖�
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Let Λ5 = TrMM ′

[
φ+MM ′Λ̃ideal(φ

+MM ′ ⊗ (·))
]

and Λ6 = TrMM ′

[
(IMM ′ − φ+MM ′)Λ̃ideal(φ

+MM ′ ⊗ (·))
]
.

Observe that the mapping

ρ 7→ |0〉〈0| ⊗ TrMM ′ [φ
+MM ′ρ] + |1〉〈1| ⊗ TrMM ′ [(IMM ′ − φ+MM ′)ρ]

is CPTP. Since
∥∥∥(Λ̃− Λ̃ideal)(φ

+MM ′ ⊗ (·))
∥∥∥
�
≤
∥∥∥Λ̃− Λ̃ideal

∥∥∥
�
≤ ε and the diamond

norm is non-increasing under CPTP maps1, we have ‖|0〉〈0| ⊗ (Λ3 − Λ5) + |1〉〈1| ⊗ (Λ4 − Λ6)‖� ≤
ε and thus ‖Λ3 − Λ5‖� ≤ ε and ‖Λ4 − Λ6‖� ≤ ε. Using this we observe that∥∥∥Λ̃ideal − Λ̃trace

∥∥∥
�
≤ ‖Λ1 − Λ3‖� + ‖Λ2 − Λ4‖�
≤ ‖Λ1 − Λ5‖� + ‖Λ5 − Λ3‖� + ‖Λ2 − Λ6‖� + ‖Λ6 − Λ4‖�
≤ 2ε+ ‖Λ1 − Λ5‖� + ‖Λ2 − Λ6‖� .

Furthermore we have

Λ5 = TrMM ′ [φ
+MM ′Λ̃ideal(φ

+MM ′ ⊗ (·))]

= TrMM ′

[
φ+MM ′

(
idM ⊗Λ1 +

1

|M |2 − 1
(|M |2〈DecK(τ)〉 − id)M ⊗ Λ2

)
(φ+MM ′ ⊗ (·))

]
= TrMM ′

[
φ+MM ′

(
φ+MM ′ ⊗ Λ1 +

1

|M |2 − 1
(|M |2〈DecK(τ)〉 − id)M (φ+MM ′)⊗ Λ2

)]
= TrMM ′

[
φ+MM ′

(
φ+MM ′ ⊗ Λ1 +

1

|M |2 − 1
(|M |2DecK(τ)⊗ τM

′
− φ+MM ′)⊗ Λ2

)]
= Λ1 + Tr

[
1

|M |2 − 1
(|M |2φ+MM ′(DecK(τ)⊗ τM

′
)− φ+MM ′)

]
Λ2

= Λ1,

where the last equality holds because

Tr
[
φ+MM ′(DecK(τ)⊗ τM

′
)
]

=
1

|M |
Tr

 |M |∑
i,j=0

|ii〉〈jj|(DecK(τ)⊗ τM
′
)


=

1

|M |
Tr

 |M |∑
i,j=0

|i〉〈j|DecK(τ)⊗ |i〉〈j|τM
′
)


=

1

|M |2
Tr

|M |∑
i=0

|i〉〈i|DecK(τ)


=

1

|M |2

1See [Wat18], Proposition 3.48(1)
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Similarly

Λ6 = TrMM ′

[
(IMM ′ − φ+MM ′)Λ̃ideal(φ+MM ′ ⊗ (·))

]
= TrMM ′

[
Λ̃ideal(φ

+MM ′ ⊗ (·))
]
− Λ5

= TrMM ′

[(
φ+MM ′ ⊗ Λ1 +

1

|M |2 − 1
(|M |2DecK(τ)⊗ τM

′
− φ+MM ′)⊗ Λ2

)]
= Λ1 + Λ2 − Λ5

= Λ2.

From this we conclude∥∥∥Λ̃− Λ̃trace

∥∥∥
�
≤
∥∥∥Λ̃− Λ̃ideal

∥∥∥
�

+
∥∥∥Λ̃ideal − Λ̃trace

∥∥∥
�

≤ ε+
∥∥∥Λ̃ideal − Λ̃trace

∥∥∥
�

≤ 3ε+ ‖Λ1 − Λ5‖� + ‖Λ2 − Λ6‖�
= 3ε,

which means that Π is 3ε-PNM.
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