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Abstract. We answer a question of Jockusch by showing that the measure
of the Turing degrees which satisfy the cupping property is 0. In fact, every

2-random degree has a strong minimal cover, and so fails to satisfy the cupping

property.

1. Introduction

Upon finding that an order theoretic property is satisfied by some Turing degrees
and not others, there are various approaches that can then be taken in order to
further understand the class of degrees for which the property holds. One may
attempt to determine the relationship with other order theoretic properties, or to
describe interactions with certain computational properties of sets. Another natural
approach is to establish the size of the class of degrees which satisfy the property.
This can be done via Baire category or Lebesgue measure.1 For example, Sacks
[Sac63] showed that the set of minimal degrees is of measure 0 and by Jockusch
[Joc80] it is also meager. Both of these results say that ‘most’ degrees are not
minimal.

Such an approach can developed further by using the levels of ‘typicalness’ that
are provided by the theory of genericity and the theory of algorithmic randomness.
In the latter we fix a countable family of null sets which we may call effectively
null and, identifying sets of natural numbers with their characteristic functions,
we say that a set A ⊆ N is random if it does not belong to any effectively null
set. By choosing larger and larger families we can define hierarchies of sets whose
levels correspond to higher and higher degrees of randomness or typicalness. The
key point here is this: if P is a degree theoretic property then there is some degree
of randomness which either suffices to ensure satisfaction of P , or else suffices to
ensure satisfaction of its negation. Similar considerations provide hierarchies of
typicalness in terms of Baire category. Given these tools, we can ask the following
natural question.

What properties does the typical Turing degree satisfy and how
typical does it have to be in order to satisfy these properties?

In this paper we establish the answer to this question with respect to the measure
theoretic paradigm, for the case of the cupping property.

Definition 1.1. A degree a satisfies the cupping property if, for all b > a, there
exists c < b such that a ∨ c = b.

2010MSC: 03D28. The second author was supported by a Royal Society University Research

Fellowship.
1By the measure of a set of degrees we mean the measure of the class of sets belonging to them.
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Intuitively, the cupping property witnesses a strength of a degree. One of the
oldest open questions in the Turing degrees has to do with the related notion of a
strong minimal cover. We say b is a strong minimal cover for a if the Turing
degrees strictly below b are precisely the Turing degrees below and including a.

Spector [Spe56]: Which degrees have a strong minimal cover?

Notice that if b is a strong minimal cover for a then this degree witnesses the fact
that a does not satisfy the cupping property.2 There are a number of ways to make
Spector’s question more concrete. For example, Yates asked whether every minimal
degree has a strong minimal cover.3 Jockusch [Joc80] gave a quantitative answer to
Spector’s question. He showed that every 2-generic set has the cupping property.
In particular, the set of degrees with a strong minimal cover is meager (it has no
2-generic members). Moreover this is sharp since by Kumabe [Kum00] there is a
1-generic degree with a strong minimal cover.

In a number of talks in the past decade Jockusch asked for a quantitative answer
to Spector’s question in terms of measure. In other words, he asked what is the
measure of the degrees which satisfy the cupping property. In this paper we answer
Jockusch’s question.

Theorem 1.1. Every 2-random degree has a strong minimal cover. Hence the
degrees which satisfy the cupping property are of measure 0.

Moreover this result is sharp, in the sense that it does not hold if 2-randomness
is replaced with 1-randomness or even weak 2-randomness.4 This follows from the
following facts; there is an array non-computable weakly 2-random set [BDN11] and
all degrees which are array non-computable satisfy the cupping property [DJS96].

In Section 2 we describe the notation and terminology we shall use in the proof
of Theorem 1.1, as well as some background on constructions of strong minimal
covers. Section 3 is devoted to the proof of Theorem 1.1. For an introduction to
computability theory and the study of the Turing degrees, we refer the reader to
[Coo04] and [Soa87]. For an introduction to algorithmic randomness we refer the
reader to [Nie09] or [DH10].

2. Terminology and background

2.1. Cantor space. We let 2ω denote the set of infinite binary sequences and
denote the standard Lebesgue measure on 2ω by µ. Let 2<ω denote the set of
(finite) binary strings. A set Λ ⊆ 2<ω is said to be downward closed if, whenever
τ ∈ Λ, all initial segments of τ are in this set. Given any Λ ⊆ 2<ω we denote by [Λ]
the set of infinite paths through Λ, i.e. those sets A such that there are an infinite
number of initial segments of A in Λ. If U ⊆ 2<ω we write [[U ]] to denote the set of
infinite strings which extend some element of U . We let χ be an effective bijection
from ω to the finite subsets of 2<ω and we write λ in order to denote the string of
length 0.

2Although these two properties are mutually exclusive, it is not known if they are
complimentary.

3The answer to this question is not known. See [Lew09] for a survey.
4This notion is an intermediate step between 1-randomness and 2-randomness.
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2.2. Machines and trees. We let WA
e denote the eth set of finite binary strings

which is computably enumerable (c.e.) relative to A, according to the underlying
universal enumeration of all c.e. sets. We say P is a Π0,A

1 class if there exists a
downward closed A-computable Λ ⊆ 2<ω such that P = [Λ], and we write Π0

1 in
order to denote Π0,∅

1 .
Generally we shall use the variable T to range over subsets of 2<ω which may

not be downward closed. Given any T ⊆ 2<ω and τ, τ ′ ∈ T we say that τ ′ is a
successor of τ in T if τ ⊂ τ ′ and there does not exist τ ′′ ∈ T with τ ⊂ τ ′′ ⊂ τ ′.
Non-empty T is said to be 2-branching if each τ ∈ T has precisely two successors in
T . The strings of level n in T are those strings in T which have precisely n proper
initial segments in T . We say that A computes T via Ψ if for every n the strings of
level n in T are precisely the set χ(Ψ(A;n)). Since we shall be interested in those
Turing functionals which compute 2-branching T , we let {Ψe}e∈ω be an effective
listing of all those Turing functionals Ψ which satisfy the following conditions:

(1) for all σ ∈ 2<ω, Ψ(σ; 0) = m such that χ(m) = {λ};
(2) for n > 0, Ψ(σ;n) is defined only if this computation converges in < |σ|

steps, and Ψ(σ;n′) ↓ for all n′ < n;
(3) for n > 0, if Ψ(σ;n) ↓ then χ(Ψ(σ;n)) is a set of 2n pairwise incompatible

strings such that precisely two of these strings extend each member of
χ(Ψ(σ;n− 1)).

A set of strings T is called a perfect tree if every σ ∈ T has at least two incom-
patible extensions in T , and T is called pointed if all paths through T compute T .
We say σ ∈ T is a leaf if it does not have any proper extensions in T .

2.3. Randomness. We say that a set P ⊆ 2ω is effectively null if there exists a
uniformly c.e. sequence of sets of finite binary strings {Ui}i∈ω such that µ(Ui) <
2−i (where µ(Ui) means µ([[Ui]])) and P ⊆

⋂
i[[Ui]]. Identifying sets with their

characteristic functions, we say that a set A is Martin-Löf random [ML66] if it does
not belong to any effectively null set. We say that A is Martin-Löf random relative
to B if it satisfies this condition when we replace c.e. by c.e. relative to B, and
we say that A is n-random if it is random relative to 0(n−1) (and that a degree is
n-random if it contains an n-random set). Now if a set of reals is of measure 0,
then certainly it is effectively null relative to some oracle.

Martin-Löf randomness is in many respects the standard notion of algorithmic
randomness. Other randomness notions may be obtained by varying the level of
computability in the above definition. For example, a set is weakly 2-random if it
is not a member of any Π0

2 null class.

2.4. Strong minimal covers. Most constructions of strong minimal covers can be
seen as extensions of Spector’s minimal degree construction. A simple relativization
of this method to any degree a produces a minimal cover for a, i.e. a degree b such
that the interval of degrees (a,b) is empty. Not every degree has a strong minimal
cover. Hence one needs some assumption on a degree a in order to build a strong
minimal cover for it. In [Lew07a] it was noticed that the following property is
sufficient for this purpose.

Definition 2.1. We call A a tree basis if, whenever it computes a perfect tree T ,
it computes a perfect pointed subtree T ′ ⊆ T .
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In other words, it was observed that if A is a tree basis then its degree has a strong
minimal cover. In [Lew07b] these ideas were combined with a measure theoretic
construction in order to show that there is a Martin-Löf random degree with a
strong minimal cover. Moreover this degree can be chosen to be hyperimmune-free
(i.e. every function computed by it is dominated by a computable function). The
argument of Section 3 uses these ideas along with new insights in order to show
that every 2-random degree has a strong minimal cover. We note that by Martin
[Mar0s] every 2-random degree is hyperimmune. We do not know if there is a ∆0

2

random set with a strong minimal cover.

3. The proof of Theorem 1.1

In light of the discussion in Section 2.4, to prove Theorem 1.1 it suffices to
establish the following lemma:

Lemma 3.1 (Main Lemma). There exists f ≤T ∅′ such that, for any j, n ∈ ω,
f(j, n) = e which satisfies:

• µ(W ∅
′

e ) < 2−n;
• if A /∈ [[W ∅

′

e ]] and A computes a 2-branching tree T via Ψj, then it computes
a perfect pointed subtree T ′ ⊆ T .

In order to see that Lemma 3.1 suffices to prove Theorem 1.1, define:

Uk =
⋃
j

W ∅
′

f(j,j+k+1).

Then {Uk}k∈ω is a sequence of sets of finite binary strings which is uniformly c.e.
in ∅′ and µ(Uk) < 2−k. If A is not a tree basis then it belongs to

⋂
k[[Uk]]. No

2-random can belong to this set since it is effectively null relative to ∅′.
The proof of Lemma 3.1 requires the use of a certain combinatorial lemma. In

Section 3.1 we give two simplified versions of it and demonstrate some underlying
types of arguments that are needed for the more advanced versions that follow. In
Section 3.2 we use these facts in an idealized situation where we prove a version
of Lemma 3.1 under additional assumptions. This example contains most ideas
of [Lew07b], which will be used in the final argument for the proof of Lemma 3.1.
Section 3.3 discusses how we can work without the additional assumptions of Section
3.2, and in Sections 3.4, 3.5 we obtain the stronger version of the combinatorial
lemma that we need in the actual construction along with its measure-theoretic
expression. Section 3.6 deals with the construction of the function f of Lemma 3.1.
Finally in Section 3.7 we give the verification of the construction which concludes
the proof.

3.1. Two combinatorial lemmas. By way of introduction, we prove simplified
versions of the combinatorial facts that we need.

Lemma 3.2. Let X and Y be non-empty finite sets such that to each element of
X is associated m elements in Y and a ‘colour’ either 0 or 1. Then we may colour
each element of Y either 0 or 1 in such a way that the proportion of those elements
a of X for which there exists at least one associated element of Y which is the same
colour as a, is at least m/(m+ 1).
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Proof. We describe a method for colouring the elements of Y which we shall refer
to as the ‘standard method’.

Stage 0. Define X0 = X and Y0 = Y .

Stage s+ 1. For each element b of Ys, each a ∈ Xs and each i ∈ {0, 1} we say that
giving b colour i aids a if a is associated with b and is coloured i. We say that
giving b colour i hinders a if a is associated with b and is coloured 1 − i. Choose
any b ∈ Ys, choose i so that it aids at least as many elements of Xs as it hinders,
and give b colour i. Define Ys+1 = Y − {b} and define Xs+1 to be the elements a
of X for which is not yet the case that there exists at least one associated element
of Y which is the same colour as a.

In order to see that this procedure does what it is supposed to, we consider two
counters x and y. Initially x = y = 0. Whenever we give a colour i to an element b
of Y at stage s+ 1 we increase x by the number of elements of Xs which this aids,
and we increase y by the number of elements that it hinders. Let x and y take their
final values. The number of elements a of X for which there exists at least one
associated element of Y which is the same colour as a is precisely the final value
x. For each element a of X for which there is not an associated member of Y of
the same colour, we must increase the value y by m, in order to rule out correctly
colouring each of the m elements of Y with which a is associated. Thus the number
of elements a of X for which there does not exist at least one associated element of
Y which is the same colour as a is at most y/m. Since x ≥ y the result follows. �

We do not really need the following lemma for our final proof, but we shall use
it in the next section in order to introduce techniques that we shall need later.

Lemma 3.3. Let X and Y be non-empty finite sets. Suppose that for each y < 2m1

and for each a ∈ X, fy(a) is a subset of Y of size 2m2 . Upon assigning a ‘colour’,
either 0 or 1, to each element of X ∪Y , consider the proportion of a ∈ X for which
the following condition holds; for every y < 2m1 there exist at least 2d elements of
fy(a) which are the same colour as a. For fixed values of m1, d and k ∈ ω, if m2 is
chosen sufficiently large then, for any colouring of X, we can colour the elements
of Y so that this proportion is at least 1− 2−k.

Proof. Suppose we are given X and Y as in the statement of the lemma and that
a colour 0 or 1 has been assigned to each element of X. We describe a method
for colouring Y . We can assume that m2 > m1 + 2d. First we form a set X ′ by
replacing each element a of X with 2m1+d distinct elements ay,z for y < 2m1 and
z < 2d. Each of these 2m1+d elements which replace a are given the same colour as
a. The element ay,z we associate with 2m2−d elements of fy(a) in such a way that
for z 6= z′ the set of elements associated with ay,z is disjoint with the set of elements
associated with ay,z′ . Then we colour Y according to the standard method for X ′

and Y .
Let us say that the colouring is good for ay,z ∈ X ′ if there exists at least one

associated member of Y with the same colour as ay,z. The total number of elements
in X ′ is 2m1+d |X|. Since each element of X ′ is associated with 2m2−d elements
of Y , it follows from the proof of Lemma 3.2 that the total number of elements of
X ′ for which the colouring is not good is at most 2m1+d |X|

2m2−d+1
. Let us say that the

colouring is good for a ∈ X if it is good for every one of the elements of X ′ which
replaced it. Note that if the colouring is good for a ∈ X then for every y < 2m1
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there exist at least 2d elements of fy(a) which are the same colour as a. The total
number of a ∈ X for which the colouring is not good can be at most the total
number of c ∈ X ′ such that the colouring is not good for c. Thus the proportion
of a ∈ X for which the colouring is not good is at most 2m1+d

2m2−d+1
. The proportion

of a ∈ X for which the colouring is good is therefore at least 1 − 2m1+d

2m2−d+1
which

clearly tends to 1 as m2 goes to infinity. �

3.2. A simplified example. We now consider a simplified situation and show the
kind of use that can be made of Lemma 3.3.

In this simplified situation, we suppose we are given a Π0
1 class P = [Λ], where Λ

is a downward closed and computable set of finite binary strings. We also suppose
that for all A ∈ P , Ψj(A) is total, and we assume further that Ψj satisfies a
certain convenient condition; for all A,B and for all m, if χ(Ψj(A;m)) ↓ and
χ(Ψj(B;m)) ↓ then all strings in these two sets are of the same length. We let h
be some computable function such that for all σ ∈ Λ of length h(m), Ψj(σ;m) ↓.

Now suppose that, for whatever reason, we are given n ∈ ω and we wish to form
a new Π0

1 class P ′ ⊆ P by removing at most 2−n measure from P , so that this new
class satisfies:
Q: if A ∈ P ′ computes 2-branching T via Ψj then A computes some 2-

branching T ′ ⊆ T such that every B ∈ [T ′] computes A.
In order to ensure that every A ∈ P ′ satisfies requirement Q we shall construct

Φ and Ξ such that if A ∈ P ′ computes T via Ψj then A computes 2-branching
T ′ ⊆ T via Ξ and for every B ∈ [T ′] we have Φ(B) = A. We let κ be a computable
function such that Σx>02−κ(x) < 2−n. We shall describe a computable process such
that at each step in the process various clopen sets of strings are removed from P .
At step x ≥ 1 we shall remove measure at most 2−κ(x) from P , so that ultimately
we can define P ′ to be the set of strings in P which are not removed at any step
of the process. The point of this process is to define Ξ and Φ, and the strings we
remove from P are those strings on which we are not able to define these values
in an appropriate way. At each step x in the process we shall look to define the
strings of level x in T ′ which is computed via Ξ, and for each string τ of level x in
T ′ we shall look to define Φ(τ ;x− 1).

First we define Ξ(λ; 0) = χ−1({λ}). At step 1, in order to define Φ on argument
0 and Ξ on argument 1, we choose some large m and then, for the various σ ∈ Λ
of length h(m), we enumerate axioms of the form Φ(τ ; 0) = i ∈ {0, 1} for τ in
χ(Ψj(σ;m)). We wish to ensure that the proportion of the σ ∈ Λ of length h(m)
for which there exist at least two corresponding τ (i.e. τ ∈ χ(Ψj(σ;m))) for which
we enumerate the axiom Φ(τ ; 0) = σ(0), is greater than 1 − 2−κ(1). The hope
is that we can achieve this if we choose m which is sufficiently large. Lemma
3.3 tells us precisely that we can do this. In the statement of the lemma, put
m1 = 0, d = 1, k = κ(1) and m2 = m. Think of X as the set of strings σ ∈ Λ of
length h(m). For each σ ∈ X think of f0(σ) as being χ(Ψj(σ;m)). Think of Y as
the union of all sets of strings χ(Ψj(σ;m)) such that σ is in X. The colour given
to an element of X should be thought of as the value σ(0). Finally, the colour
given to elements of Y corresponds to the axioms we enumerate for Φ. Thus we
can enumerate the axioms for Φ in such a way that the measure of those strings
which extend some σ of length h(m) in Λ, and for which there do not exist at least
two corresponding τ for which we enumerate the axiom Φ(τ ; 0) = σ(0), is less than
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2−κ(1). At this point we remove all strings extending such σ from P and in doing
so we remove measure at most 2−κ(1). Let Π1 be the set of strings in Λ of length
h(m) which remain. For each σ in Π1 we can define Ξ(σ; 1) to be (the code for) a
set of two strings in χ(Ψj(σ;m)), each of which correctly computes σ(0) via Φ. For
all those strings σ of length h(m) that remain in P ′ we have successfully defined
T ′ which σ computes via Ξ up to level 1. For all strings τ of level 1 in T ′, Φ(τ)
correctly computes σ on argument 0.

We then proceed to define Φ on argument 1, Ξ on argument 2 and Π2. We choose
some large m′ and then, for the σ ∈ Λ of length h(m′) which extending a string in
Π1, we enumerate axioms of the form Φ(τ ; 1) = i ∈ {0, 1} for τ in χ(Ψj(σ;m′)).
Now we consider the proportion of the σ ∈ Λ of length h(m′) which extend a
string in Π1 such that, for each string τ in χ(Ξ(σ; 1)), there exist at least two
strings τ ′ ⊃ τ in χ(Ψj(σ;m′)) for which we enumerate the axiom Φ(τ ′; 1) = σ(1).
We wish to ensure that this proportion is greater than 1 − 2−κ(2). Once again,
Lemma 3.3 tells us precisely that we can do this. Put m1 = 1, d = 1, k = κ(2) and
m2 = m′−m. Think of X as the set of strings σ ∈ Λ of length h(m′) which extend
a string in Π1. For each y < 2 and each σ ∈ X think of fy(σ) as the set of strings in
χ(Ψj(σ;m′)) which extend the yth element of χ(Ξ(σ; 1)) (ordered from left to right,
say). Think of Y as the union of all these sets fy(σ) such that σ ∈ X and y < 2.
The colour given to an element σ of X now corresponds to the value σ(1). Once
we have enumerated the axioms for Φ on argument 1, let Π2 be the set of those σ
of length h(m′) such that, for each string τ in χ(Ξ(σ; 1)) there exist at least two
strings τ ′ ⊃ τ in χ(Ψj(σ;m′)) for which we enumerate the axiom Φ(τ ′; 1) = σ(1).
We can then remove all those elements of P which do not extend a string in Π2

and the measure of the elements removed will be at most 2−κ(2). For the strings σ
in Π2 we can define Ξ(σ; 2) to be (the code for) a set of four pairwise incompatible
strings in χ(Ψj(σ;m′)) each of which correctly computes σ(1) via Φ, and such that
precisely two of these strings extend each element of χ(Ξ(σ; 1)). Then we proceed
by induction in the obvious way.

There are two ways in which the situation we are presented with as we look
to prove Theorem 1.1 is more complicated than the simplified situation we just
considered. Firstly, we do not actually get to work within a Π0

1 class P such that
Ψj is total for all elements of P . Instead we have to work with all sets, and we do not
know the measure of the class of sets on which Ψj is total. Secondly, the functional
Ψj may not behave as tidily as we assumed it did in the previous discussion—it
wont necessarily be the case that for all A,B and for all m, if χ(Ψj(A;m)) ↓ and
χ(Ψj(B;m)) ↓, then all strings in these two sets are of the same length.

In fact the second of these apparent problems is very easily dealt with, so we
address this first. The following lemma provides the necessary tool.

Definition 3.1. For fixed values σ ∈ 2<ω and j ∈ ω, we define:

Tj(σ) =
⋃
{χ(Ψj(σ;m)) : Ψj(σ;m) ↓}.

A string τ is compatible with T ⊆ 2<ω if it has an extension in T .

Lemma 3.4. Suppose that P = [Λ], that Λ is downward closed (but not necessarily
computable) and that Ψj(A) is total for all A ∈ P . Let X be a prefix-free set of
strings in Λ and let l0 = max{|σ| : σ ∈ X}. For any m there exists l > l0 and
l′ such that, for every string σ1 in Λ of length l which extends some element σ0 of
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X, and for each leaf τ of Tj(σ0), there are at least 2m extensions of τ of length l′

which are compatible with Tj(σ1).

Proof. The proof is by induction on m. Let X and l0 be as in the statement of the
lemma. If m = 1 then let X ′ = X and let l1 = l0. If m > 1 then, by the induction
hypothesis, we can let X ′ be the set of all strings of some fixed length l1 > l0 in Λ
which extend some element of X, and we can suppose that for every string σ1 in
X ′ which extends some element σ0 of X, and for each leaf τ of Tj(σ0), there are
at least 2m−1 extensions of τ of length l′1 which are compatible with Tj(σ1). Let l′2
be the length of the longest string in any Tj(σ) such that σ ∈ X ′. By compactness
there must exist l2 > l1 such that, for all σ ∈ Λ of length l2, Ψj(σ; l′2 + 1) ↓. So
far the point is just this; for each σ1 ∈ Λ of length l2 extending some element σ0

of X ′, and for each leaf τ of Tj(σ0), there are at least 2 incompatible extensions
of τ in Tj(σ1). The remaining problem is that these strings may split below many
different lengths. So define l′ to be the length of the longest string in any of the
sets Tj(σ) for σ ∈ Λ of length l2. Find l > l2 such that for every σ ∈ Λ of length
l, Ψj(σ; l′) ↓—the point being that all the strings in χ(Ψj(σ; l′)) must be of length
at least l′. Then l and l′ satisfy the conditions in the statement of the lemma, as
required. �

3.3. Dealing with the fact that we do not know the measure. Now we
address the first problem raised above—we do not actually get to work within a Π0

1

class on which Ψj is total. In fact we do not even know the measure of the set on
which it is total. Let us suppose for a moment, however, that we are able to find
a set of strings Π1 much like in the simplified example, but which satisfies some
further properties:

• There is only a small measure of sets A which do not extend a string in Π1

and such that Ψj(A) is total.
• A stronger colouring condition holds. For each element σ of Π1 it is not

simply the case that there exist two strings compatible with Tj(σ) which
are given the same colour as σ. In fact, for some large number t, for every
σ ∈ Π1 and every r < t, there are at least two strings compatible with
Tj(σ) which are given the 2-coordinate colour (i, r), where i is the colour
of σ.

The rough idea is now as follows. As before we wish to define a computable
construction which defines the functionals Φ and Ξ. Given the situation describing
Π1 above, we can now divide the total measure into t pieces. Initially we declare
Π1 to be in state 1. Rather than simply defining Π2 in one go, we shall enumerate
strings into it as the construction progresses. As we look to define Π2, to begin with
we look only for a set of strings of measure 1/t on which Ψj is defined on sufficiently
many arguments that we can do the appropriate colouring without losing too much
measure. Once such a set of strings is found, X0 say, we enumerate these strings
into Π2, we declare Π1 to be in state 2, and for the strings σ ∈ X0, we define
Ξ(σ; 1) by choosing from amongst the strings which were given the second colour
coordinate 0 when we defined Π1.

Then we proceed to look for a further measure 1/t which we can enumerate into
Π2 (so this second set of strings X1 must all be incompatible with the strings in
X0). If we find this second set of strings X1 which we can enumerate into Π2, then
we declare Π1 to be in state 3, and for the strings σ ∈ X1 in this set, we define
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Ξ(σ; 1) by choosing from amongst the strings which were given the second colour
coordinate 1 when we defined Π1. This means that if σ0 ∈ X0 and σ1 ∈ X1 then all
strings in Ξ(σ0; 1) are incompatible with the strings in Ξ(σ1; 1). We then proceed
to search for another set of strings X3, and so on. Meanwhile, of course, we also
begin to enumerate strings into Π3, but at this level we divide the measure into t′

pieces for some t′ > t.
Now let us see roughly why this works. Recall that our task is to define the set

W ∅
′

f(j,n) as in the statement of Lemma 3.1. As we proceed according to the process
described above, there are various reasons that we have to enumerate strings into
this set. Some strings have to be enumerated in because each colouring we perform
only works for a certain large proportion of the strings concerned. These strings
we shall enumerate into a set V1 as the construction progresses (so V1 will actually
be c.e.). When Π1 reaches its final state, there may also be a set of strings A of
measure < 1/t for which Ψj(A) is total, but for which we do not define Ξ(A; 1)
(and of course this will also happen for Πx with x > 1 and t′ > t). These strings
we enumerate into a set V2 (and this set will be c.e. relative to ∅′). The set Π1 was
also chosen so that there exists a small measure of strings A for which Ψj(A) is
total but such that A does not extend a string in Π1. We shall cover this set with
a set of small measure V0. Thus, ultimately we shall define:

W ∅
′

f(j,n) = V0 ∪ V1 ∪ V2

and we shall ensure that each Vi is of appropriately small measure.

3.4. Producing the correct combinatorial lemma. In light of the previous
discussion, we need a modified version of Lemma 3.3.

Lemma 3.5. Suppose that X is non-empty and for each y < 2m1 and for each
a ∈ X, fy(a) is a subset of Y of size 2m2 . If each element of Y is coloured with
a number r < t, consider the proportion of the a ∈ X for which the following
condition holds; for every y < 2m1 and every r < t there exist at least 2d elements
of fy(a) which are given colour r. For fixed values of m1, d, k ∈ ω and t ≥ 1, if m2

is chosen sufficiently large then we may colour Y so that this proportion is at least
1− 2−k.

Proof. The proof is by induction on t. The case t = 1 is trivial, so we begin by
considering the case t = 2. The proof in this case is almost identical to the proof of
Lemma 3.3. We just make the following minor changes. First we form a modified
version of the ‘standard method’ from the proof of Lemma 3.2. At stage s+1 we say
that giving b ∈ Ys colour i aids a ∈ Xs if a is associated with b and there is already
some b′ ∈ Y which is associated with a and which has been given colour 1− i. We
say that giving b ∈ Ys colour i hinders a ∈ Xs if a is associated with b and there is
already some b′ ∈ Y which is associated with a and which has been given colour i.
Note that if giving b colour i hinders a, then giving it colour 1− i aids a, so when
we go to colour b it is still always possible to choose a colour which aids at least as
many a ∈ Xs as it hinders. We define Xs+1 to be the set of a ∈ Xs for which it is
not yet the case that for each r < 2 there is some element of Y associated with a
which has been coloured r. The only remaining change is that then, after forming
the set X ′ just as before, we use the modified version of the standard method for
colouring X ′ and Y , and we regard the colouring as being good for c ∈ X ′ if for
each r < 2 there is some element of Y associated with c which has been coloured r.
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Now the total number of elements c of X ′ such that the colouring is not good for c
is at most 2m1+d |X|

2m2−d and we are able to conclude that the proportion of a ∈ X for

which the colouring is good is at least 1− 2m1+d

2m2−d .
In order to prove the induction step, suppose the result holds for t. Fix m1, d and

k. Let m2 > d be large enough so that if each element of X is associated with 2m2

elements of Y , then we may colour each element of Y with a number < t so that the
proportion of a ∈ X for which the following condition holds is at least 1− 2−(k+1);
for every y < 2m1 and every r < t there exist at least 2d elements of fy(a) which
are given colour r. Then let m3 be sufficiently large so that if each element of X is
associated with 2m3 elements of Y , then we may colour each element of Y with a
number < 2 so that the proportion of a ∈ X for which it is the case that for every
y < 2m1 and every r < 2 there exist at least 2m2 elements of fy(a) which are given
colour r, is at least 1− 2−(k+1).

Now, given any X and Y such that, for each y < 2m1 and for each a ∈ X, fy(a)
is a subset of Y of size 2m3 , colour each element of Y with a colour < 2 so that if
X ′ is the set of a ∈ X for which it is the case that for every y < 2m1 and every
r < 2 there exist at least 2m2 elements of fy(a) which are given colour r, then
|X ′|/|X| > 1 − 2−(k+1). Then remove the colour from each element of Y which is
coloured 1 and change the colour of each element of Y which is coloured 0 to t. If we
let Y ′ be those elements of Y which now do not have a colour, then for each a ∈ X ′
and each y < 2m1 , there are at least 2m2 elements of fy(a) which are in Y ′, so let
f ′y(a) = fy(a)∩Y ′. According to the choice of m2, we may now colour the elements
of Y ′ so that the proportion of a ∈ X ′ for which it is the case that for every y < 2m1

and every r < t there exist at least 2d elements of f ′y(a) which are given colour r
is at least 1− 2−(k+1). Therefore the total proportion of a ∈ X for which it is the
case that for every y < 2m1 and every r < t+ 1 there exist at least 2d elements of
fy(a) which are given colour r is at least (1 − 2−(k+1))(1 − 2−(k+1)) > 1 − 2−k as
required. �

Finally, the following is the lemma that we actually need.

Lemma 3.6. Let X and Y be non-empty finite sets. Suppose that for each y < 2m1

and for each a ∈ X, fy(a) is a subset of Y of size 2m2 . Let each element of X be
given a colour, either 0 or 1. If each element of Y is given a 2-coordinate colour
then consider the proportion of a ∈ X for which the following condition holds; for
every y < 2m1 and every r < t there exist at least two elements of fy(a) which
are given colour (i, r) where i is the colour of a. For fixed values of m1, k ∈ ω
and t ≥ 1, if m2 is chosen sufficiently large then we may colour Y so that this
proportion is at least 1 − 2−k. In fact, there exists a computable function π, such
that if m2 > π(m1, k, t) then this condition will be satisfied.

Proof. This follows almost directly from Lemma 3.5. Since it is required that there
should be two elements of fy(a) which are given colour (i, r), rather than giving
2-coordinate colours we can consider giving 3-coordinate colours (i′, i, r) for i, i′ < 2
and r < t. For each a ∈ X and each y < 2m1 we then hope that, for every i, i′ < 2
and every r < t there is some element of fy(a) which is given the colour (i′, i, r).
That we can achieve this for a sufficiently high proportion of the a ∈ X, follows
from Lemma 3.5 simply by coding 3-coordinate colours up as standard colours of
a single coordinate.
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�

3.5. Three measure theoretic lemmas. Now that we have the correct combina-
torial lemma in place, we have to be able to translate this into a measure theoretic
statement.

The next lemma may initially sound a little technical, but it is really just a
simple translation of Lemma 3.4 into a statement about measure. The set Z in the
statement of the lemma does not really have much impact on its proof, and the
reader may find it helpful to omit all references to Z on a first reading.

Lemma 3.7. Let X,Z ⊆ 2<ω be finite and prefix free sets of strings such that every
element of Z extends an element of X. Given k ∈ ω, consider the class P of sets A
which extend an element of X and do not extend any element of Z, and for which
Ψj(A) is total. If µ(P ) > 2−k, then for any m, there exists a finite prefix-free set X ′

such that all strings in X ′ extend an element of X and are incompatible with with
all strings in Z, such that µ(X ′) ≥ 2−k, and which satisfies the following condition.
There exists l such that, for all strings σ1 ∈ X ′ which extend a string σ0 ∈ X, and
for each leaf τ of Tj(σ0), there are at least 2m strings extending τ of length l which
are compatible with Tj(σ1).

Proof. Suppose that P is of measure 2−k+ ε for ε > 0. Take an open cover Q of the
class of sets A for which Ψj(A) is partial and such that the measure of all A ∈ Q
such that Ψj(A) is total, is less than ε. Then the complement of Q intersected with
the set of all sets which extend an element of X but do not extend any element of
Z, is a closed set of measure > 2−k. The result then follows directly from Lemma
3.4. �

Now we wish to combine Lemma 3.7 with Lemma 3.6. Let X,Z ⊆ 2<ω be finite
and prefix-free sets of strings such that every element of Z extends an element of X.
Roughly speaking, by an extension set for the pair (X,Z), we mean a set of strings
which extend strings in X and are incompatible with all elements of Z, which is of
‘sufficiently’ large measure and on which we can perform a successful colouring.

Now let us make this precise. Suppose that we are given k0, k1, k2 ∈ ω such that
k1 > k0, and that X ′ is a finite set of strings such that every element of X ′ extends
an element of X and is incompatible with all elements of Z. Suppose further that we
assign the colour either 0 or 1 to each element of X ′. For any l and any assignment
of 2-coordinate colours (i, r) to all strings of length l, we may then consider the
proportion of σ1 ∈ X ′ for which the following holds; if σ1 ⊃ σ0 ∈ X, then for each
leaf τ of Tj(σ0) and for every r ≤ k2 there exist at least two strings extending τ of
length l which are compatible with Tj(σ1) and which are given colour (i, r) where i
is the colour of σ1. If there exists l such that no matter how we assigned the colours
to elements of X ′, the strings of length l can be coloured so that this proportion
is greater than 1 − 2−k1 , and if µ(X ′) ≥ 2−k0 − 2−k1 , then we say that X ′ is an
extension set for the pair (X,Z) and the triple (k0, k1, k2). We also say that l is an
appropriate axiom length for this extension set.

Lemma 3.8. Let X,Z ⊆ 2<ω be finite and prefix free sets of strings such that
every element of Z extends an element of X. Suppose given k0, k1, k2 ∈ ω such that
k1 > k0, and consider the class P of sets A which extend an element of X and do
not extend any element of Z, and for which Ψj(A) is total. If µ(P ) ≥ 2−k0 , then
there exists X ′ which is an extension set for (X,Z) and (k0, k1, k2).
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Proof. This follows directly from Lemma 3.7 and Lemma 3.6. �

We also need a lemma which allows us to define Π1.

Lemma 3.9. There exists g ≤T ∅′, which given input (j, k1, k2), produces a prefix-
free and finite set of strings X and a pair (m, l) such that:

(1) for every string σ ∈ X there exist at least 2k2 many strings of length l which
are compatible with Tj(σ);

(2) if P is the set of of strings A which do not extend any string in X and such
that Ψj(A;m) ↓, then µ(P ) < 2−k1 .

Proof. Given j, k1, k2, it suffices to show that X,m and l as in the statement of
the lemma exist, since then an oracle for ∅′ can certainly verify that they satisfy
the required properties (i.e. the set of valid outputs is c.e. in ∅′). Let Q contain
precisely those sets on which Ψj is partial, and suppose µ(Q) = ε. Let U be an
open covering of Q such that µ(U) < ε+ 2−k1 . Then the measure of the sets in U
for which Ψj is total is less than 2−k1 , so there exists m such that the measure of
the sets A in U for which Ψj(A;m) ↓ is less than 2−k1 . The complement of U is a
closed set, so the result follows from Lemma 3.4. �

3.6. Construction of f,Ξ,Φ on input j, n. Now we are ready to start defining
the function f as in the statement of Lemma 3.1. So suppose we are given inputs
j and n. We let κ be a computable function such that Σx≥02−κ(x)+1 < 2−n.

As stated previously, we shall run a computable construction which will define
Ξ and Φ, and which will enumerate all the sets Πx for x > 1, but first we have to
make one use of the function g provided by Lemma 3.9 in order to help us define
Π1. Given π as in the statement of Lemma 3.6, we let m = π(0, κ(0), 2κ(1) + 1) and
then we let X∗ and (m∗, l∗) be the outputs of g given input (j, κ(0),m).

As promised, the set W ∅
′

f(j,n) will actually be constructed as the union of three
sets, V0, V1, and V2. At this point we define V0 to be the set of all σ which do not
extend any element of X∗ and such that Ψj(σ;m∗) ↓. So we have that µ(V0) <
2−κ(0).

Our next task is to define the functionals Ξ and Φ. At each stage of the con-
struction, Πx will be regarded as having a state d ∈ ω. Initially Πx is empty and is
in state 1, and its state may be increased by 1 a finite number of times. At stage
s, we say that Πx requires attention if it is non-empty and there exists a sufficiency
set X ′ for the pair (Πx,Πx+1) and the triple (κ(x), κ(x) + d, 2κ(x+1)), such that all
strings in X ′ are of length s.

During the construction, it is also helpful to enumerate some auxiliary sets Sx(σ)
and S(σ). The set Sx(σ) is simply a set of strings which may be enumerated into
χ(Ξ(σ′)) for σ′ ⊃ σ and Sx is just the union of all Sx(σ) such that σ ∈ Πx.

3.6.1. The computable construction of Ξ, Φ and V1. At each stage s we proceed as
follows. Stage s = 0. We define Ξ(λ; 0) = χ−1({λ}).
Stage s = 1. Let X∗ and l∗ be as defined above. If X∗ is non-empty then perform
the following instructions.

(1) Give the strings of length l∗ each a colour (i, r) so that the proportion of
those strings σ in X∗ which satisfy the following condition is greater than
1 − 2−κ(0); for every r ≤ 2κ(1) there are at least two strings τ of length
l∗ which are compatible with Tj(σ) and which are given colour (σ(0), r).
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Enumerate all σ ∈ X∗ for which the latter condition is not satisfied into V1

(so we enumerate in a set of strings of measure at most 2−κ(0)).
(2) For all strings σ in X∗−V1, and for each r ≤ 2κ(1), take two strings of length

l∗ which are compatible with Tj(σ) and have been given colour (σ(0), r) and
enumerate these into S1(σ) and S1.

(3) For each string τ which we have just coloured (i, r) enumerate the axiom
Φ(τ ; 0) = i.

(4) Enumerate all strings in X∗ − V1 into Π1.

Stage s > 1. Check to see whether there exists any Πx which requires attention.
If not then proceed to stage s + 1, otherwise let x be the least such, and suppose
that Πx is in state d. We say that Πx receives attention. Let X ′ be a sufficiency set
for the pair (Πx,Πx+1) and the triple (κ(x), κ(x) + d, 2κ(x+1)), such that all strings
in X ′ are of length s. Let l be an appropriate axiom length for this extension set.
Perform the following instructions.

(1) For each σ1 ∈ X ′, suppose that σ1 ⊃ σ0 ∈ Πx. We shall establish in the
verification, that Πx never reaches a state greater than 2κ(x) +1, so for each
string τ in Ξ(σ0;x − 1), there are precisely two strings τ ′ in Sx(σ0) which
have colour (σ0(x− 1), d− 1). Define Ξ(σ1;x) to be the code for this set of
2x many strings τ ′ as we vary τ over the strings in Ξ(σ0;x− 1).

(2) Now consider V which is the set of all strings τ of length l for which it is the
case that there is some string σ1 ∈ X ′ and some τ ′ ∈ Ξ(σ1;x), such that τ
extends τ ′. Give each string in V a colour (i, r) such that the proportion of
the strings σ1 ∈ X ′ for which the following condition is satisfied is greater
than 1− 2−(κ(x)+d); for each string τ ′ ∈ Ξ(σ1;x) and for each r ≤ 2κ(x+1),
there are at least two strings in V compatible with Tj(σ1) which are given
colour (σ1(x), r). Enumerate all σ1 ∈ X ′ for which the latter condition
is not satisfied into V1 (so we enumerate in a set of strings of measure
< 2−(κ(x)+d)).

(3) For all strings σ1 in X ′ − V1, for each string τ ′ ∈ Ξ(σ1;x) and for each r ≤
2κ(x+1), take two strings in V extending τ ′ which are compatible with Tj(σ1)
and have been given colour (σ1(x), r) and enumerate these into Sx+1(σ1)
and Sx+1.

(4) For each string τ which we have just coloured (i, r) enumerate the axiom
Φ(τ ;x) = i.

(5) Enumerate all strings in X ′ − V1 into Πx+1.
(6) Declare that Πx is now in state d+ 1.

3.6.2. Definition of V2. For each x, let Πx take its final value. For all m,x ∈ ω,
let V (m,x) be the set of all strings σ which extend an element of Πx, which are
incompatible with any strings in Πx+1 and such that Ψj(σ;m) ↓. If µ(V (m,x)) <
2−κ(x) then enumerate all strings in V (m,x) into V2. We say that these strings are
enumerated into V2 for the sake of x.

3.7. Verification of f,Ξ,Φ on input j, n. We must prove that the measure of
W ∅

′

f(j,n) is less than 2−n and that the axioms we enumerate for Φ are consistent.
In order to prove that the construction is well defined we must also show that Πx

never reaches a state greater than 2κ(x) + 1. Finally, we must also prove that if
Ψj(A) is total but Ξ(A) is partial, then A ∈ [[W ∅

′

f(j,n)]].
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Lemma 3.10. The measure of W ∅
′

f(j,n) is less than 2−n.

Proof. We have that W ∅
′

f(j,n) = V0 ∪ V1 ∪ V2. Also, µ(V0) < 2−κ(0). Next consider
V2. Fix x and let Πx and Πx+1 take their final values. If there does not exist any
m such that µ(V (m,x)) < 2−κ(x) then we do not enumerate any strings into V2 for
the sake of x. Otherwise there exists a least m for which this condition holds, m0

say. According to the conventions described in Section 2, if m > m0 then for any
σ, Ψj(σ;m) ↓ implies Ψj(σ,m0) ↓. So V (m,x) ⊆ V (m0, x) for all m ≥ m0, and
the measure of the set of strings enumerated into V2 for the sake of x is less than
2−κ(x). Thus µ(V2) < Σx>02−κ(x).

Finally consider V1. At stage 1 we enumerate measure at most 2−κ(0) into V1.
At all subsequent stages, if strings are enumerated into V1 then this is because
some Πx (for x ≥ 1) receives attention and is in state d. When this happens
we enumerate a set of strings into V1 of measure at most 2−(κ(x)+d), so the total
measure enumerated into V1 over all stages when Πx receives attention is at most
2−κ(x). Therefore µ(V1) ≤ Σx≥02−κ(x) and µ(W ∅

′

f(j,n)) < Σx≥02−κ(x)+1 < 2−n as
required. �

Lemma 3.11. The axioms enumerated for Φ are consistent.

Proof. It is clear that the axioms enumerated at a single stage of the construction
are consistent with each other, and the axioms enumerated when Πx receives at-
tention are on argument x, so if two axioms Φ(τ ;x) = i and Φ(τ ′;x′) = 1− i are to
be inconsistent with each other, it must be that x = x′, that the first is enumerated
when Πx receives attention and is in state d, and the second is enumerated when
Πx receives attention and is in state d′ 6= d. Thus there is a least y ≤ x such that
τ and τ ′ have initial segments enumerated into Sy+1 while Πy is in different states,
say d0 and d1 respectively. Then τ and τ ′ extend strings τ0 and τ1 respectively,
which were enumerated into Sy at the same stage and given colours (i, d0 − 1) and
(i′, d1 − 1) for some i, i′, and so are incompatible. �

It is clear that if Ξ(A) is total, then it is a perfect tree T ′ such that every path B
through T ′ is also a path through T which is computed by A via Ψj , with Φ(B) = A.
It just remains to prove our last two lemmas.

Lemma 3.12. Πx never reaches a state greater than 2κ(x) + 1.

Proof. When Πx receives attention and is in state d, we enumerate a set of strings
of measure at least 2−κ(x) − 2−(κ(x)+d) into V1 ∪ Πx+1 and if we enumerate σ and
σ′ into this set at different stages s and s′ when Πx receives attention, then σ and
σ′ are incompatible. So if Πx was to enter a state greater than 2κ(x) + 1, we would
enumerate measure > 1 into this set, a contradiction.

�

Lemma 3.13. If Ψj(A) is total and Ξ(A) is partial then A extends some string in
either V0, V1 or V2.

Proof. Suppose that Ψj(A) is total and Ξ(A) is partial, and that A does not extend
any string in V0 or V1. We must show that it extends a string in V2. So let x be
the greatest such that an initial segment of A is enumerated into Πx. Let d be the
greatest state that Πx is in at any stage of the construction, and let Πx and Πx+1

take their final values. Let V be the set of all B extending a string in Πx, such
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that B is incompatible with any string in the final value Πx+1 and such that Ψ(B)
is total. By Lemma 3.8, µ(V ) < 2−κ(x), since otherwise there would be a stage at
which Πx receives attention and enters state d + 1. Therefore there exists m such
that µ(V (m,x)) < 2−κ(x). All strings in V (m,x) are enumerated into V2, and A
extends some string in this set, as required. �

This concludes the proof of Lemma 3.1, which in turn implies Theorem 1.1.
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