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Abstract

Model constructions for intuitionistic and constructive set theories, such
as CZF or IZF, are commonly built upon Kripke- or Heyting-semantics
for intuitionistic logic. We discuss how much of the logical structure of
the underlying Kripke frame or Heyting algebra can be recovered from
within the set-theoretical model construction.

We will use Heyting structures (introduced by Fourman and Scott
in the 1970s) to develop a framework that allows us to compare the
propositional logics of classes of models with the propositional logics of
the classes of their underlying Heyting algebras (resp., Kripke frames):
A class of models will be called faithful if any valuation on an underlying
Heyting algebra can be imitated by a collection of sentences in a model of
that class. We will call it loyal if it has the same logic as the underlying
class of Heyting algebras and connect these two notions to the de Jongh
property.

The main part of the thesis deals with an analysis of different model
constructions by Iemhoff, Lubarsky, and the well-known Heyting-valued
and Boolean-valued models for set theory. It turns out that the class of
Iemhoff models is loyal and faithful to a very high degree. The class of
full Lubarsky models is not faithful to its underlying Kripke frames, and
the class of Lubarsky models based on a finite Kripke frame is not loyal
as its propositional logic contains the principle of weak excluded middle
despite the fact that this principle is not valid in the class of finite Kripke
frames. A representation theorem allows us to transfer this result to the
class of Heyting-valued models based on a finite Heyting algebra. We will
conclude with an analysis of the propositional logics of Boolean-valued
and Heyting-valued models for set theory.
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Chapter 1

Introduction

Models of set theory are a crucial tool for establishing independence results.
Their impressive success in exhibiting different set-theoretic possibilities has
recently led to the development of the multiverse view, a philosophical position
of higher-order platonism stating the existence of many different set-theoretic
worlds (cf., [14]). In particular, this led to a growing branch of multiverse-
inspired mathematics that analyses the connections of different models of set
theory, and the multiverses they generate. An example of research in this area
is the work about the modal logic of forcing (cf., [15]), or set-theoretic geology
(cf., [13]), which is a study of the structure of ground models.

The majority of the work that has been done so far in this area of research fo-
cuses on classical set theory, i.e., Zermelo-Fraenkel set theory, usually with the
axiom of choice. The analysis of the modal logic of symmetric extensions (cf.,
[6, Section 7.4]) is an example of work that takes place in Zermelo-Fraenkel set
theory without choice. A great variety of model constructions for constructive
and intuitionistic set theories have so far not been analysed in this framework:

Heyting-valued models—a generalisation of the forcing technique that was
introduced by Paul Cohen in the 1960s to prove the independence of the contin-
uum hypothesis from Zermelo-Fraenkel set theory—provide a powerful tool for
establishing independence results in intuitionistic set theory (cf., [2]). Other
model structures for providing independence results in constructive or intu-
itionistic set theory have been introduced by Robert Lubarsky and Rosalie
Iemhoff (cf., [27] and [21]). The latter model structures are built upon Kripke
frames for intuitionistic logic, whereas the former ones are based on Heyting
and Boolean algebras.

This thesis aims at providing a starting point for a multiverse-inspired
analysis of models of set theory that incorporates also these non-classical ap-
proaches. After introducing the very general notion of Heyting structure (due
to [10]), which covers all of the before-mentioned model constructions, we will
focus on the following question:

How much does the propositional logic of our different model con-
structions for constructive, intuitionistic or classical set theory re-
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1. Introduction

flect the logic of their underlying Heyting algebras or Kripke frames?

A first step towards an analysis of this question is to introduce the no-
tions of loyalty and—even stronger—faithfulness of classes of models to their
underlying Kripke frames or Heyting algebras: A class of models that has the
same propositional logic as the underlying class of Heyting algebras or Kripke
frames will be called loyal to that class of Kripke frames (see Definition 2.39).
Even stronger, if it is possible for a class of models to imitate a valuation into
a Kripke frame or Heyting algebra for propositional logic by a collection of
set-theoretical sentences, we will call this class faithful (see Definition 2.40).
We will also see applications of these notions to the de Jongh property.

We start off our investigation with the models introduced by Iemhoff. These
models satisfy the set theory CZF∗, a weak version of constructive set theory
CZF with only weak versions of the collection axioms (see section 3.1 for a
discussion of this). The class of Iemhoff models satisfies both of our criteria.

Main Theorem 1 (Theorem 3.19, Corollary 3.20). The class of Iemhoff mod-
els is faithful, and therefore loyal.

Together with our general considerations about the connections of loyal
classes of models and the de Jongh property (cf., Proposition 2.56), this implies
the following result for CZF∗.

Main Theorem 2 (Corollary 3.21). The theory CZF∗ has the de Jongh prop-
erty with respect to every logic characterised by a class of Kripke frames.

Due to the following result, we cannot strengthen this result to obtain the
de Jongh property for full CZF.

Main Theorem 3 (Corollary 3.9). Iemhoff models that involve forcing non-
trivially do not satisfy the axiom of exponentiation.

In contrast to this, faithfulness fails for Lubarsky models in a very strong
way. Furthermore, we can derive a result about the loyalty of the Lubarsky
models based on a finite Kripke frame.

Main Theorem 4 (Corollary 4.14). The class of full Lubarsky models is not
faithful.

Main Theorem 5 (Corollary 4.16). The propositional logic of the class of
finite Lubarsky models contains KC. Therefore, the class of finite Lubarsky
models cannot be loyal.

The question of the general loyalty of the class of all Lubarsky models is
open. It is open as well for Heyting-valued models. However, we can again
determine it for a certain subclass. To do so, we first prove the following
transfer theorem.
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Main Theorem 6 (Theorem 5.8, Corollary 5.10). For every Heyting-valued
model based on a Heyting algebra consisting of the upsets of a Kripke frame,
there is a full Lubarsky model that proves exactly the same sentences. Indeed,
the propositional logics of the two models agree.

Then, the following result concerning loyalty follows from the analogous
result for full Lubarsky models.

Main Theorem 7 (Corollary 5.15). The class of Heyting-valued models that
are based on a finite Heyting algebra is not loyal. Indeed, the propositional logic
of this class contains KC.

Concerning faithfulness, we have the following result.

Main Theorem 8 (Corollary 5.13). The class of Heyting-valued models is not
faithful. In particular, it is not faithful to any Heyting algebra with a non-trivial
automorphism.

The case of classical models of set theory is covered by the Boolean-valued
models. This class of models is not faithful, but its loyalty follows trivially
from the maximality of classical propositional logic.

Main Theorem 9 (Corollary 5.16, Theorem 5.17). The class of Boolean-
valued models is loyal, but not faithful.
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Chapter 2

Semantics for Intuitionistic Logic

This thesis deals with models for intuitionistic and constructive set theories
that are inspired by and built upon well-known semantics for intuitionistic
logic, namely, Kripke frames and Heyting-valued semantics. In this chapter,
we will first briefly introduce these well-known semantics for both intuitionistic
propositional logic and intuitionistic predicate logic, before providing a general
framework for analysing the propositional logic of (classes of) model structures.

2.1 Intuitionistic Logic

Intuitionistic logic was introduced by Arend Heyting (see, e.g., [19]) to formalise
the principles of reasoning behind Brouwer’s intuitionism. Compared proof-
theoretically to classical logic, we remove the law of excluded middle, p ∨ ¬p,
and the (equivalent) law of double negation elimination, ¬¬p→ p.

We denote intuitionistic propositional logic by IPC, intuitionistic predicate
logic by IQC, classical propositional logic by CPC and classical predicate logic
by CQC. For convenience, we will identify propositional logics with the set of
formulas that they derive. An intermediate logic is a propositional logic J closed
under modus ponens and uniform substitution such that IPC ⊆ J ⊆ CPC.
Jankov’s logic KC is an example of such a logic and obtained by adding the
principle of weak excluded middle, ¬p ∨ ¬¬p, to intuitionistic logic IPC. For
more details on logics, we refer the reader to a short exposition in Appendix A.

A theory T is a set of sentences formulated in a first-order language L (i.e.,
a collection of logical and non-logical symbols, cf. Appendix A). We usually
assume that a theory T is closed under a logic such as IQC or CQC. In this
situation, we might say that T is based on that logic. Given a propositional
logic J, we will refer to the closure of a theory T under the inference rules and
axioms of J as T(J).

The set theories that we are concerned with in this thesis are all based on
predicate logics with equality and formulated in the language L∈ of set theory
that has only one binary relation symbol ∈ for set-membership additionally to
the logical vocabulary. We will consider classical Zermelo-Fraenkel set theory
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2. Semantics for Intuitionistic Logic

with choice ZFC (ZF without choice), intuitionistic set theory IZF and con-
structive set theory CZF. See Appendix B for the axiomatisations that we will
use.

The meta-theory of this thesis is ZFC, additionally assuming the existence
of a transitive set model of ZFC. This is mostly a matter of convenience as
most of the results of this thesis could be rephrased and proved for a context
assuming ZFC alone.

De Jongh’s theorem and the de Jongh property

Given a theory based on intuitionistic logic, we may consider its propositional
logic, that is, the set of propositional formulas that are derivable after substi-
tuting the propositional letters by arbitrary sentences in the language of the
theory.

Definition 2.1. Let L be a language, φ be a propositional formula and let
σ : Prop → Lsent an assignment of propositional variables to L-sentences. By
φσ we denote the L-sentence obtained from φ by replacing each propositional
variable p with the sentence σ(p).

Definition 2.2. Let T be a theory in intuitionistic predicate logic, formulated
in a language L. A propositional formula φ will be called T-valid if and only
if T ⊢ φσ for all σ : Prop → Lsent. The propositional logic LProp(T) is the set of
all T-valid formulas.

We will later see that the propositional logic of certain model constructions
for set theory connects to a proof-theoretic notion: the de Jongh property,
which is a generalisation of the following classical result that concerns Heyting
arithmetic HA.

Theorem 2.3 (de Jongh, [9]). Let φ be a formula of propositional logic. Then
HA ⊢ φσ for all σ : Prop → Lsent

HA if and only if IPC ⊢ φ.

Definition 2.4. The de Jongh property for a theory T is the statement that
LProp(T) = IPC. The de Jongh property for a theory T with respect to an
intermediate logic J is the statement LProp(T(J)) = J.

De Jongh’s theorem is equivalent to the assertion that Heyting arithmetic
has the de Jongh property.

2.2 Kripke Semantics

The goal of this section is to briefly introduce Kripke frames for propositional
and predicate logic. We will mainly follow the lecture notes [5] of Bezhanishvili
and de Jongh.

Definition 2.5. A Kripke frame for IPC (K,≤) consists of a set K equipped
with a preorder ≤. A Kripke model for IPC (K,≤, V ) is a Kripke frame with
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2.2. Kripke Semantics

a valuation V : Prop → P(K) that is persistent, i.e., if w ∈ V (p) and w ≤ v,
then v ∈ V (p).

We will usually identify a Kripke frame (K,≤) with its underlying set K.
As we did in the previous sentence already, we will refer to a Kripke frame
for IPC simply as a Kripke frame if it is clear from the context which kind of
Kripke frame it is that we are talking about (and similar for Kripke models).
We will adopt this policy for the other kinds of Kripke models that we will
introduce in this thesis as well. The interpretation of propositional formulas of
the language LProp is defined as follows.

Definition 2.6. Let (K,≤, V ) be a Kripke model for IPC. We define, by
induction on propositional formulas, the forcing relation at every node v of the
Kripke frame in the following way:

K,V, v ⊩ p if and only if v ∈ V (p),

K, V, v ⊩ φ ∧ ψ if and only if K,V, v ⊩ φ and K,V, v ⊩ ψ,

K, V, v ⊩ φ ∨ ψ if and only if K,V, v ⊩ φ or K,V, v ⊩ ψ,

K, V, v ⊩ φ→ ψ if and only if for all w ≥ v,

K, V,w ⊩ φ implies K,V,w ⊩ ψ, and,
K,V, v ⊩ ⊥ never holds.

We will write v ⊩ φ instead of K,V, v ⊩ φ, if the Kripke frame or the valuation
are clear from the context. Sometimes we will write K,V ⊩ φ if K,V, v ⊩ φ

holds for all v ∈ K. A formula φ is valid in K if K,V, v ⊩ φ holds for all
valuations V on K and v ∈ K, and φ is valid if it is valid in every Kripke frame
K.

This semantics allows us to define the logic of a Kripke frame and of a class
of Kripke frames.

Definition 2.7. If (K,≤) is a Kripke frame for IPC, we define the proposi-
tional logic LProp(K) to be the set of all propositional formulas that are valid
in K. For a class K of Kripke frames, we define the propositional logic LProp(K)

to be the set of all propositional formulas that are valid in all Kripke frames
(K,≤) in K.

The persistency of the propositional variables transfers to all formulas,
which is proved by induction on the complexity of the formulas.

Proposition 2.8. Let (K,≤, V ) be a Kripke model for IPC, v ∈ K and φ be
a propositional formula such that K, v ⊩ φ holds. Then K,w ⊩ φ holds for all
w ≥ v.

By extending the Kripke models introduced above, we can obtain models
for intuitionistic predicate logic (see also [20]). We will work with a slightly
generalised notion that uses transition functions instead of inclusions as this
will be useful later on.
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2. Semantics for Intuitionistic Logic

Definition 2.9. Let L be a language. An L-Kripke model (K,≤, D, I, f) for
IQC is a Kripke frame (K,≤) for IPC with a collection of domains (Dv)v∈K ,
a collection of interpretation function (Iv)v∈K , and a collection of transition
functions (fvw)v≤w∈K , such that the following hold:

(i) Iv(R) is an n-ary relation on Dv for all n-ary relation symbols R of L,
Iv(F ) is an n-ary function on Dw for any n-ary function symbol F of L,
and we have that Iv(a) = a for all a ∈ Dv,1

(ii) the interpretation function is extended to all terms t in the usual way,
i.e., by inductively defining Iv(F (t1, . . . , tn)) = Iv(F )(Iv(t1), . . . , Iv(tn)),

(iii) equality is interpreted as a congruence relation on each domain,

(iv) the transition functions fvw : Dv → Dw are injective L-homomorphisms,
and,

(v) the system of transition function coheres, i.e, fvv = idv for all v ∈ K and
fvw ◦ fuv = fuw for all u ≤ v ≤ w ∈ K.

Indeed, the following persistency requirements are satisfied by all terms t̄ and
predicates P (as the fvw are embeddings):

(i) if v ≤ w, then Iv(P )(Iv(t̄)) implies Iw(P )(Iw(t̄)), and,

(ii) if v ≤ w, then Iw(t̄) = fvw(Iv(t̄)).

We can now extend the forcing relation to Kripke models for IQC.

Definition 2.10. Let (K,≤, D, I, f) be an L-Kripke model for IQC. We
define, by induction on L-formulas, the forcing relation at every node of a
Kripke frame in the following way, where φ and ψ are formulas with all free
variables shown, and t̄ = t0, . . . , tn−1 are assumed to be terms at the node v
considered on the left side.

K,D, I, f, v ⊩ R(t0, . . . , tn) if and only if (Iv(t0), . . . , Iv(tn)) ∈ Iv(R),

K,D, I, f, v ⊩ ∃xφ(x, t̄) if and only if there is some a ∈ Dv

with K,D, I, f, v ⊩ φ(a, t̄),

K,D, I, f, v ⊩ ∀xφ(x, t̄) if and only if for all w ≥ v and a ∈ Dw

we have K,D, I, f, w ⊩ φ(a, fvw(Iv(t̄))),

K,D, I, f, v ⊩ φ(t̄) → ψ(t̄) if and only if for all w ≥ v,

K,D, I, f, w ⊩ φ(fvw(Iv(t̄)))

implies K,D, I, f, w ⊩ ψ(fvw(Iv(t̄))).

The cases for ∧, ∨ and ⊥ are analogous to the ones in the above definition
of the forcing relation for Kripke models for IPC. We will write v ⊩ φ (or

1We tacitly extend the language by a constant symbol a for every v ∈ K and a ∈ Dv ,
not distinguishing between the constant symbol and the actual element of the domain in any
way.
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2.3. Heyting-Valued Semantics

K, v ⊩ φ) instead of K,D, I, f, v ⊩ φ if the Kripke model is clear from the
context. An L-formula φ is valid in K if v ⊩ φ holds for all v ∈ K, and φ is
valid if it is valid in every Kripke frame K.

Intuitionistic logic is sound and complete with respect to these semantics.
We note that the result for IPC even holds with respect to finite frames.

Theorem 2.11. A propositional formula φ is derivable in IPC if and only if
it is valid in all Kripke models for IPC. Similarly, a formula φ of predicate
logic is derivable in IQC if and only if it is valid in all Kripke models for IQC.

A detailed proof of this theorem can be found in [33, Theorem 6.6].

2.3 Heyting-Valued Semantics

We will first introduce Heyting algebras as a tool for semantical analysis of
propositional intuitionistic logic. Then, we continue by introducing a very
general notion of Heyting-valued model that will be of central importance in
this thesis.

Heyting Algebras

For the basic notions in this section and the connections between Heyting
algebras and Kripke frames, we will follow [4, chapter 2].

Definition 2.12. We call a partially ordered set (A,≤) a lattice if every two
elements a, b ∈ A have a supremum, denoted by a ∨ b, and an infimum, a ∧ b.
We say that (A,≤) is a bounded lattice if it has a greatest element 0A and a
least element 1A. A lattice (A,≤) is complete if the supremum

∨
X and the

infimum
∧
X exist for every X ⊆ A. A lattice is called distributive, if it is

bounded and satisfies the distributivity laws a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ A.

Definition 2.13. A bounded distributive lattice (A,≤) is called a Heyting
algebra if for every a, b ∈ A, there exists an element a→ b ∈ A such that

a ∧ c ≤ b if and only if c ≤ a→ b

holds for all c ∈ A. We then define the pseudo-complement ¬a = a → 0 for
every a ∈ A. A Heyting algebra is complete if it is so as a lattice.

Heyting algebras can also be defined purely equationally.

Theorem 2.14. A structure (A,∧,∨,→, 0, 1) is a Heyting algebra, where A is
non-empty, ∧,∨ and → are binary operations on A, and 0, 1 ∈ A, if and only
if for every a, b, c ∈ A the following hold:

(i) a ∨ a = a, a ∧ a = a,
(ii) a ∨ b = b ∨ a, a ∧ b = b ∧ a,
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2. Semantics for Intuitionistic Logic

(iii) a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c,
(iv) a ∨ 0 = a, a ∧ 1 = a,
(v) a ∨ (b ∧ a) = a, a ∧ (b ∨ a) = a,

(vi) a→ a = 1,
(vii) a ∧ (a→ b) = a ∧ b,

(viii) b ∧ (a→ b) = b,
(ix) a→ (b ∧ c) = (a→ b) ∧ (a→ c).

Boolean algebras are a special case of Heyting algebras.

Definition 2.15. A Heyting algebra A satisfying a → b = ¬a ∨ b for every
a ∈ A is called a Boolean algebra. An element a is an atom of the Boolean
algebra A if it is minimal among the non-zero elements of A. We call a Boolean
algebra atomic if for every b ∈ A, there is a set C ⊆ A of atoms of A such that
b =

∨
C.

Proposition 2.16. The following are equivalent for every Heyting algebra
(A,∧,∨,→, 0, 1):

(i) A is a Boolean algebra,

(ii) a ∨ ¬a = 1 holds for every a ∈ A,

(iii) ¬¬a = a holds for every a ∈ A.

Let us close this section by stating the definition of a homomorphism of
Heyting algebras.

Definition 2.17. Let (A,∧A,∨A,→A, 0A, 1A) and (B,∧B ,∨B ,→B, 0B , 1B) be
Heyting algebras. A map h : A→ B will be called a homomorphism of Heyting
algebras if the following conditions are satisfied for all a0, a1 ∈ A:

(i) h(a0 ∧A a1) = h(a0) ∧B h(a1),

(ii) h(a0 ∨A a1) = h(a0) ∨B h(a1),

(iii) h(a0 →A a1) = h(a0) →B h(a1),

(iv) h(0A) = 0B, and h(1A) = 1B .

A bijective homomorphism of Heyting algebras will be called isomorphism, and
an isomorphism of a Heyting algebra onto itself is an automorphism.

Heyting Algebras for Propositional Logic

Definition 2.18. Let (A,∧,∨,→, 0, 1) be a Heyting algebra. We call a map
v : Prop → A a valuation into A, and recursively extend it to an interpretation
of all propositional formulas by:

(i) JpKAv = v(p),
(ii) Jφ ∧ ψKAv = JφKAv ∧ JψKAv ,
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2.3. Heyting-Valued Semantics

(iii) Jφ ∨ ψKAv = JφKAv ∨ JψKAv ,
(iv) Jφ→ ψKAv = JφKAv → JψKAv , and,
(v) J⊥KAv = 0.

We then call a propositional formula φ true in A under v if JφKAv = 1. We call
φ valid in A if it is true under every valuation into A.

We define the logic LProp(A) of a Heyting algebra A to be the set of formulas
φ that are valid in A. If H is a class of Heyting algebras, then the logic LProp(H)

of H is the set of all formulas valid in every A ∈ H. The following completeness
results hold.

Theorem 2.19. A formula φ of propositional logic is valid in every Heyting
algebra if and only if IPC ⊢ φ.

Theorem 2.20. A formula φ of propositional logic is valid in every Boolean
algebra if and only if CPC ⊢ φ.

Let us now briefly introduce a correspondence between Kripke frames for
intuitionistic logic and Heyting algebras. Given a Kripke frame (K,≤), consider
the set Up(K) of all upsets of K: An upset of K is a subset U ⊆ K such that
for all x, y ∈ K it holds that if x ∈ U and x ≤ y, then y ∈ U .

Theorem 2.21 ([4, Section 2.2.3]). Let K be a Kripke frame for IPC. Then
the structure (Up(K),∩,∪,→, ∅,K), where

U0 → U1 = {v ∈ K | ∀w ≥ v (w ∈ U0 → w ∈ U1)},

is a complete Heyting algebra. In particular, LProp(Up(K)) = LProp(K).

This correspondence is a bijection for finite Kripke frames and finite Heyting
algebras.

Theorem 2.22 ([4, Theorem 2.2.21]). For every finite Heyting algebra A,
there exists a finite Kripke frame (K,≤) with ≤ a partial order such that A is
isomorphic to Up(K).

To see that this correspondence does not generalise to the infinite case, we
need to introduce some definitions.

Definition 2.23. Let A be a Heyting algebra and a ∈ A. We say that a
is completely join prime if a ≤

∨
S for some S ⊆ A implies that a ≤ s for

some s ∈ S. We will say that A is completely join prime generated if for each
b ∈ A \ {0A}, there is a completely join prime a ∈ A with a ≤ b.

We can now state the following characterisation of Heyting algebras of the
form Up(K).

Theorem 2.24 ([3, Theorem 4.4]). A Heyting algebra A is isomorphic to the
Heyting algebra Up(K) for some Kripke frame K if and only if A is complete
and completely join prime generated.
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2. Semantics for Intuitionistic Logic

Proposition 2.25. There is a Heyting algebra A that is not isomorphic to the
Heyting algebra Up(K) for any Kripke frame K.

Proof. Consider the Heyting algebra A = {x ⊆ ω |x = 0∨|ω \x| < ω}, ordered
by inclusion. Let a be any non-zero element of A, and take a = {ai | i < ω}
to be a bijective enumeration of a. Define b = a \ {a0} and c = a \ {a1}.
Clearly, b, c ∈ A, and a = b ∨ c, but it does not hold that a ≤ b or a ≤ c.
This shows that A does not have any (completely) join prime elements and
therefore, by Theorem 2.24, A cannot be isomorphic to a Heyting algebra of
the form Up(K).

Heyting Structures

In this section we will present the notion of H-structure, for a given Heyting
algebra H, as defined by Fourman and Scott in [10] (see also [31], and the
discussion in the appendix of [2]). We will restrict our attention to the one-
sorted case.

Definition 2.26. Let H be a complete Heyting algebra. An H-set A is a set
equipped with an H-valued equality e : A × A → H that is symmetric and
transitive, i.e., for all a, b, c ∈ A it holds that e(a, b) = e(b, a) and e(a, b) ∧
e(b, c) ≤ e(a, c).

We further define the extent E : A → H by setting E(a) = e(a, a) and let
the equivalence ẽ : A×A→ H be the map with ẽ(a, b) = E(a)∨E(b) → e(a, b).

Given the notion of H-set, we can now define what it means to be a Heyting-
valued operation or a relation.

Definition 2.27. An n-ary H-function F on an H-set A is defined to be a
map F : An → A which respects equivalence in the sense that:∧

i<n

ẽ(ai, bi) ≤ ẽ(F (a0, . . . , an−1), F (b0, . . . , bn−1)),

for all a0, . . . , an−1, b0, . . . , bn−1 ∈ A. Similarly, an n-ary H-relation R on A is
defined to be a map R : An → H which respects equivalence in the sense that:∧

i<n

ẽ(ai, bi) ∧R(a0, . . . , an−1) ≤ R(b0, . . . , bn−1),

for all a0, . . . , an−1, b0, . . . , bn−1 ∈ A.

If the Heyting algebra H is clear from the context, we will usually drop the
H in front of function and relation. Given an H-set A and a language L, we
let L(A) denote the language that is obtained from L by adding a constant
symbol for each element of A. As usual, we will abuse notation in the sense
that we will not distinguish between an element of A and its constant symbol.
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2.4. Kripke Models as Heyting Structures

Definition 2.28. An H-structure (A,Fi, Ri) for a language L consists of an
H-set A together with H-relations and H-functions for every relation symbol
and function symbol in L, respectively.

The interpretation J·KA of terms and sentences in the language L(A) is
defined as follows:

JaKA = a (for every a ∈ A)JF (t0, . . . , tn−1)KA = F (Jt0KA, . . . , Jtn−1KA)
(for terms t0, . . . , tn−1 and n-ary functions F )

Jt0 = t1KA = e(Jt0KA, Jt1KA) (for terms t0 and t1)JR(t0, . . . , tn−1)KA = R(Jt0KA, . . . , Jtn−1KA)
(for terms t0, . . . , tn−1 and n-ary relations R)

J⊥KA = ⊥Jφ ∧ ψKA = JφKA ∧ JψKAJφ ∨ ψKA = JφKA ∨ JψKAJφ→ ψKA = JφKA → JψKAJ∀x φ(x)KA =
∧
a∈A

E(a) → Jφ(a)KA
J∃x φ(x)KA =

∨
a∈A

E(a) ∧ Jφ(a)KA
We will say that a formula φ(x0, . . . , xn−1) is valid in A if and only if for all
a0, . . . , an−1 ∈ A we have that Jφ(a0, . . . , an−1)KA = 1. If the structure is
clear from the context, we will sometimes drop the superscript A and write JφK
instead of JφKA. We will write A ⊨ φ whenever JφKA = 1.

We will more broadly refer to H-structures as Heyting structures when the
specific Heyting algebra does not matter. Sometimes we say that H is the
underlying algebra of A if A is an H-structure.

Moreover, one could add relation symbols E and ≡ to the language L to
interpret them as the extent and equivalence, respectively. It follows then
directly from these definitions that JEtK = Jt = tK and Jt0 ≡ t1K = J(t0 =

t0 ∧ t1 = t1) → t0 = t1K.
An important observation is the following soundness result for Heyting

structures.

Theorem 2.29 (Fourman and Scott, [10, Theorem 5.14]). Intuitionistic logic
is valid in any Heyting structure.

2.4 Kripke Models as Heyting Structures

We will show in this section that Kripke models for IQC with equality may be
interpreted as H-structures for a certain Heyting algebra H.

13



2. Semantics for Intuitionistic Logic

For the sake of this section, fix a language L, and an L-Kripke model
(K,≤, D, I, f) for IQC with a collection of domains (Dv)v∈K , a collection
of interpretation function (Iv)v∈K , and a collection of transition functions
(fvw)v≤w∈K . We assume that our language L contains an equality symbol =
that is interpreted as a congruence relation on every domain (of course, obey-
ing persistency as any relation in a Kripke model). The set-theoretic models
based on Kripke frames that we will consider later on will all interpret = as
actual equality on the domains.

We will transform this Kripke model into an H-structure, where H is the
Heyting algebra Up(K) consisting of the upsets of K. Note that Heyting
algebras of this form are always complete. Let us first construct the underlying
H-set. Given x ∈ Dv, for v ∈ K, let dvx : K →

∪
v∈K Dv be the minimal partial

function that satisfies the following properties:

(i) dvx(v) = x,

(ii) if w ∈ K such that w ≥ v, then dvx(w) = fvw(x).

Furthermore, it holds that dwdv
x(w) ⊆ dvx for all w ∈ dom(dvx). Now let A =∪

v∈K{dvx |x ∈ Dv} and define the equality e : A×A→ H as follows:

e(a, b) = {v ∈ K | a(v) and b(v) are defined and v ⊩ a(v) = b(v)}.

We require the above functions only to be forward closed, i.e., such a function
always starts in one node of the Kripke frames and continues in the direction
of the relation, but need not be closed under predecessors.

Proposition 2.30. The set A with the equality e constitutes an H-set.

Proof. First of all, let us observe that e is well-defined: Persistency in the
Kripke model and the definition of the elements of A show that e(a, b) is an
upset of the Kripke frame for any a, b ∈ A. Further, symmetry e(a, b) = e(b, a)

for all a, b ∈ A follows from symmetry of equality in the Kripke model. The
same holds for transitivity.

We can now determine the extent E and equivalence ẽ of the H-set A.

Proposition 2.31. Given a ∈ A, it holds that E(a) = dom(a). Further, for
any a, b ∈ A, it holds that

ẽ(a, b) = {w ∈ K | ∀v ≥ w ((v /∈ dom(a) ∧ v /∈ dom(b))

∨ (v ∈ dom(a) ∧ v ∈ dom(b) ∧ v ⊩ a(v) = b(v)))}.

Proof. For the first part of the claim, observe that:

E(a) = e(a, a)

= {v ∈ K | a(v) and a(v) are defined and v ⊩ a(v) = a(v)}
= {v ∈ K | a(v) is defined}
= dom(a).
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2.4. Kripke Models as Heyting Structures

The claim about the equivalence ẽ follows similarly, where we are using the
definitions of the connectives in Heyting algebras of upsets:

ẽ(a, b) = (E(a) ∨ E(b)) → e(a, b)

= (dom(a) ∪ dom(b)) → {v ∈ K | a(v), b(v) are defined
and v ⊩ a(v) = b(v)}

= {w ∈ K | ∀v ≥ w(v ∈ dom(a) ∪ dom(b)

→ (v ∈ dom(a) ∪ dom(b) and v ⊩ a(v) = b(v)))}
= {w ∈ K | ∀v ≥ w(v /∈ dom(a) ∪ dom(b)

∨ (v ∈ dom(a) ∩ dom(b) and v ⊩ a(v) = b(v)))}.

This finishes the proof of the proposition.

The next step is to complete the interpretation of all symbols of our lan-
guage L, i.e., function symbols and relation symbols. Every constant c is just
interpreted as xc : K →

∪
v∈K Dv with xc(v) = Iv(c). Given any n-ary func-

tion symbol F , define F̄ : An → A by F̄ (a0, . . . , an−1) = b where b is defined
as follows:

v ∈ dom(b) if and only if v ∈ dom(ai) for all i < n,

and b(v) = Iv(F )(a0(v), . . . , an−1(v)).

Proposition 2.32. The map F̄ is an n-ary function on the H-set A.

Proof. It is clear that F̄ is well-defined by the way we defined the elements of
A. Further, we need to verify that∧

i<n

ẽ(ai, bi) ≤ ẽ(F̄ (a0, . . . , an−1), F̄ (b0, . . . , bn−1)),

holds for all ai, bi ∈ A. To do so, we need to prove the inclusion from the left
hand side to the right hand side. So assume that w ∈

∧
i<n ẽ(ai, bi). Then we

know, by Proposition 2.31, that for all i < n and v ≥ w we have v /∈ dom(ai)

and v /∈ dom(bi), or v ∈ dom(ai), v ∈ dom(bi) and v ⊩ a(v) = b(v).
If there is i < n such that for all v ≥ w it holds that v /∈ dom(ai) and

v /∈ dom(bi), then by definition of F̄ we will have that both F̄ (a0, . . . , an−1)(v)

and F̄ (b0, . . . , bn−1)(v) are undefined. Therefore, we can conclude that w ∈
ẽ(F̄ (a0, . . . , an−1), F̄ (b0, . . . , bn−1)).

Otherwise, it will be the case that for all v ≥ w we have that v ∈ dom(ai),
v ∈ dom(bi) and v ⊩ ai(v) = bi(v) for all i < n. Hence, it follows that
v ⊩ F (a0(v), . . . , an−1(v)) = F (b0(v), . . . , bn−1(v)), i.e, v ⊩ F̄ (ā)(v) = F̄ (b̄)(v).
Using Proposition 2.31, this concludes our proof.

Similarly, if R is a relation (resp. predicate) symbol of our language L, we
define the n-ary relation R̄ : An → H by

R̄(a0, . . . , an−1) = {v ∈ K | v ∈ dom(ai) for all i < n

and v ⊩ R(a0, . . . , an−1)}.
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2. Semantics for Intuitionistic Logic

Proposition 2.33. The map R̄ is an n-ary relation on the H-set A.

Proof. We need to show that R̄ respects equivalence in the sense that∧
i<n

ẽ(ai, bi) ∧R(a0, . . . , an−1) ≤ R(b1, . . . , bn−1).

This follows very similarly to the previous proposition using the characterisa-
tion of ẽ from Proposition 2.31.

We have now made all basic definitions and are ready to prove our main
theorem that allows us to interpret any Kripke model for IQC as a Heyting-
structure.

Theorem 2.34. If φ(x0, . . . , xn−1) is an L-formula with all free variables
shown, and a0, . . . , an−1 ∈ A, then

Jφ(a0, . . . , an−1)K ∩ dom(a0, . . . , an−1)

= {v ∈ K | v ∈ dom(a0, . . . , an−1) ∧ v ⊩ φ(a0(v), . . . , an−1(v))},

where dom(a0, . . . , an−1) =
∩

i<n dom(ai).

Proof. We will prove this theorem by induction on the complexity of formulas.
For the atomic cases, i.e., equality and relations, the statement of the theorem
coincides with the definitions. The case of falsum is trivial. So let us consider
the remaining cases one-by-one. We will usually abbreviate a0, . . . , an−1 by ā.

Let φ(v0, . . . , vn−1) and ψ(v0, . . . , vm−1) and arbitrary elements ai, i < n

and bi, i < m, be given. The case for conjunction follows in a straightforward
way.

Jφ(ā) ∧ ψ(b̄)K ∩ dom(ā, b̄)

= (Jφ(ā)K ∧ Jψ(b̄)K) ∩ dom(ā, b̄)

= {v ∈ K | v ∈ dom(ā, b̄) ∧ v ⊩ φ(a) ∧ v ⊩ ψ(b̄)} (by I.H.)
= {v ∈ K | v ∈ dom(ā, b̄) ∧ v ⊩ φ(a) ∧ ψ(b)}.

Similarly, we can prove the claim for disjunction.

Jφ(ā) ∨ ψ(b̄)K ∩ dom(ā, b̄)

= (Jφ(ā)K ∪ Jψ(b̄)K) ∩ dom(ā, b̄)

= {v ∈ K | v ∈ dom(ā, b̄) ∧ ((v ∈ dom(ā) ∧ v ⊩ φ(a))

∨ (v ∈ dom(b̄) ∧ v ⊩ ψ(b̄)))} (by I.H.)
= {v ∈ K | v ∈ dom(ā, b̄) ∧ v ⊩ φ(a) ∨ ψ(b)}.
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2.4. Kripke Models as Heyting Structures

Let us now focus on the implication, where we use that, by our definitions,
the domains of the elements of A are upwards closed.

Jφ(ā) → ψ(b̄)K ∩ dom(ā, b̄)

= (Jφ(ā)K → Jψ(b̄)K) ∩ dom(ā, b̄)

= {v ∈ K | ∀w ≥ v(w ∈ Jφ(ā)K → w ∈ Jψ(b̄)K)} ∩ dom(ā, b̄)

= {v ∈ K | ∀w ≥ v((w ∈ dom(ā) ∧ w ⊩ φ(ā))

→ (w ∈ dom(b̄) ∧ w ⊩ ψ(b̄)))} ∩ dom(ā, b̄) (I.H.)
= {v ∈ K | ∀w ≥ v(w ∈ dom(ā, b̄) ∧ ((w ∈ dom(ā) ∧ w ⊩ φ(ā))

→ (w ∈ dom(b̄) ∧ w ⊩ ψ(b̄))))}
= {v ∈ K | ∀w ≥ v(w ∈ dom(ā, b̄) ∧ (w ⊩ φ(ā) → w ⊩ ψ(b̄)))}
= {v ∈ K | v ∈ dom(ā, b̄) ∧ ∀w ≥ v(w ⊩ φ(ā) → w ⊩ ψ(b̄))}
= {v ∈ K | v ∈ dom(ā, b̄) ∧ v ⊩ φ(ā) → ψ(b̄)}.

For the quantifier cases, recall that by Proposition 2.31, it holds that E(x) =

dom(x) for all x ∈ A.

J∀xφ(x, ā)K ∩ dom(ā)

=
∧
x∈A

(E(x) → Jφ(x, ā)K) ∩ dom(ā) (by I.H.)

=
∩
x∈A

{v ∈ K | ∀w ≥ v(w ∈ dom(x) → w ⊩ φ(x(w), ā))} ∩ dom(ā)

= {v ∈ K | ∀x ∈ A ∀w ≥ v(w ∈ dom(x) → w ⊩ φ(x(w), ā))} ∩ dom(ā)

= {v ∈ K | ∀w ≥ v ∀x ∈ A(w ∈ dom(x) → w ⊩ φ(x(w), ā))} ∩ dom(ā)

= {v ∈ K | ∀w ≥ v ∀y ∈ Dw w ⊩ φ(dwy (w), ā)} ∩ dom(ā) (1)
= {v ∈ K | ∀w ≥ v ∀y ∈ Dw w ⊩ φ(y, ā)} ∩ dom(ā)

= {v ∈ K | v ⊩ ∀xφ(x, ā)} ∩ dom(ā)

= {v ∈ K | v ∈ dom(ā) ∧ v ⊩ ∀xφ(x, ā)}.

Note that all operations above are well-defined by the fact that we are working
in dom(ā). Equality (1) is justified by recalling that all elements of A are of the
form dvx and those containing w in their domain are supersets of those starting
at w, i.e., dwy ⊆ dvx for any dvx with w ∈ dom(dvx). As Kripke models only care
about what happens at future nodes, it suffices to consider the elements of A
that start at w. The final case is existential quantification, where we will make
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use of the same trick for equality (2).

J∃xφ(x)K ∩ dom(ā)

=
∨
x∈A

(E(x) ∧ Jφ(x, ā)K) ∩ dom(ā)

=
∨
x∈A

{v ∈ K | v ∈ dom(x) ∧ v ⊩ φ(x(v), ā)} ∧ dom(ā)

= {v ∈ K | ∃x ∈ A(v ∈ dom(x) ∧ v ⊩ φ(x(v), ā))} ∧ dom(ā)

= {v ∈ K | ∃y ∈ Dv v ⊩ φ(dvy(v), ā)} ∩ dom(ā) (2)
= {v ∈ K | v ∈ dom(ā) ∧ v ⊩ ∃xφ(x, ā)}.

This finishes the induction and the proof of the theorem.

The following corollary is a direct consequence of the theorem.

Corollary 2.35. If φ is a sentence, then JφKA = {v ∈ K | v ⊩ φ}. Indeed,
A ⊨ φ if and only if K ⊨ φ.

2.5 The Propositional Logic of Heyting Structures

Let us first introduce some notation, before we give several central definitions.
Given a class C of Heyting structures for some language L, let HC be the class of
all underlying Heyting algebras of C. Then, if H ∈ HC , we let CH ⊆ C consist
of all H-structures in C. We should take note of the fact that if H is the
underlying Heyting algebra of a Heyting structure, then H must be complete
by the definition of H-structures.

Definition 2.36. Let C be a class of Heyting structures for a language L. We
will call LProp(C) the propositional logic of C, that is, the set of all propositional
formulas φ such that for all C ∈ C and all substitutions σ : Prop → Lsent we
have that C ⊨ φσ.

Proposition 2.37. The propositional logic LProp(C) is an intermediate logic
for any class of Heyting structures C.

Proof. The proposition follows if we can show that for every Heyting struc-
ture A, LProp(A) = LProp({A}) is an intermediate logic, i.e., it is closed under
modus ponens and uniform substitution such that IPC ⊆ LProp(A) ⊆ CPC.
The first inclusion is a direct consequence of Theorem 2.29. Further observe
that LProp(A) is consistent and that it is closed under uniform substitution by
definition. In this situation, we know by [7, Theorem 4.1] that LProp(A) is an
intermediate logic.

Before defining the notions of loyalty and faithfulness, which are our main
concepts in the analysis of propositional logics of Heyting structures, let us
observe the following connection between the logic of a Heyting algebra and
the propositional logic of a class of structures based on it.
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Proposition 2.38. Let C be a class of Heyting structures for a language L.
Then LProp(H) ⊆ LProp(CH).

Proof. Let φ ∈ LProp(H), then φ is true under all valuations v : Prop → H.
To show that φ ∈ LProp(CH), we need to show that for all A ∈ CH , and all
assignments σ : Prop → Lsent, we have that JφσKA = 1H .

By our assumption we have that JφKHv = 1H , where we define the valuation
v such that v(p) = Jσ(p)KA. By a straightforward induction on the complexity
of propositional formulas we can now show that JψσKA = JψKHv holds for all
propositional formulas ψ. Hence, it follows that JφσKA = JψKHv = 1H and this
concludes the proof of the proposition.

The notion of loyalty is obtained by strengthening this inclusion to an
equality.

Definition 2.39. Let C be a class of Heyting structures for a language L. We
will say that C is loyal to H ∈ HC if LProp(CH) = LProp(H). We call C loyal to
H ⊆ HC if LProp(CH) = LProp(H), and loyal if it is loyal to HC .

Definition 2.40. Let C be a class of Heyting structures for a language L, and
further, let κ > 0 be a (possibly finite) cardinal.

(i) We will say that C is κ-faithful to H ∈ HC if for every collection {hi ∈
H | i < κ} of elements of H, there are some C ∈ C and a collection
{φi ∈ Lsent | i < κ} of L-sentences such that JφiKC = hi for all i < κ. We
call C κ-faithful to H ⊆ HC if it is κ-faithful to all H ∈ H, and κ-faithful
if it is κ-faithful to HC .

(ii) We will say that C is <κ-faithful to H ∈ HC if it is λ-faithful to H for
every cardinal λ with 0 < λ < κ. We call C <κ-faithful to H ⊆ HC if it
is <κ-faithful to all H ∈ H, and <κ-faithful if it is <κ-faithful to HC .

(iii) We will say that C is faithful to H ∈ HC if it is <ω-faithful to H. We
call C faithful to H ⊆ HC if it is <ω-faithful to all H ∈ H, and faithful if
it is <ω-faithful to HC .

The degree of faithfulness of a class of models describes how strongly the
class reflects the structure of the underlying Heyting algebras. The notions of
n-faithfulness for a natural number n might be interesting for analysing mod-
els of fragments of propositional logic that are restricted to a finite number
of propositional variables. This has been done, e.g., in [17] for computational
considerations. The notions of κ-faithfulness for infinite κ might be interesting
to consider for infinitary logics Lκλ in connection with large cardinals (in par-
ticular, compact cardinals, cf. [25, Section 4] for characterisations of compact
cardinals in terms of compactness for infinitary logics).

In this thesis, however, we restrict our attention to models of set theory
based on ordinary propositional logics, i.e., logics with finite formulas and
countably many propositional variables. Hence, we will restrict our attention
to <ω-faithfulness (which we defined as faithfulness for the sake of simplicity).
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2. Semantics for Intuitionistic Logic

This notion seems best suited for an analysis of the logical structures of these
models: The behaviour of finite formulas is determined by the valuation of a
finite number of propositional variables.

Before continuing with the analysis of the notions we just defined, let us
translate these properties for Heyting structures into the world of Kripke mod-
els. In particular, classes of Kripke models can now be seen as classes of
Heyting structures in which all underlying Heyting algebras are consisting of
the upsets of some Kripke frame. We will thus say that a Kripke frame K is
the underlying frame of some H-structure A if H = Up(K). From now on,
we will assume that Kripke models are Heyting structures, whenever this is
convenient. The following propositions will verify that the notions defined for
Heyting structures translate to the Kripke models as expected.

Proposition 2.41. Assume that K is a Kripke model and A is the associ-
ated Up(K)-structure. Then the propositional logic of K and A coincide, i.e.,
LProp(K) = LProp(A).

Proof. It holds that φ ∈ LProp(K) if and only if for all σ we have that K ⊨ φσ.
This is equivalent to A ⊨ φσ for all σ, i.e., φ ∈ LProp(A).

The following propositions are direct consequences of our definitions and
Corollary 2.35.

Proposition 2.42. Let C be a collection of Kripke models and (K,≤) be the
underlying Kripke frame of some of these models. Then C is κ-faithful to
Up(K,≤) if and only if for all valuations V : Prop → P(K) and collections
{pi | i < κ}, of propositional letters, there is a collection of L-sentences {φi | i <
κ} and a Kripke model (K,≤, D, I, f) ∈ C such that {v ∈ K |K, v ⊩ φi} =

V (pi) for all i < κ.

Proof. The crucial observation for this fact is that, by persistency, any valu-
ation V : Prop → P(K) can be seen as a valuation for the Heyting-algebra
Up(K) and vice-versa.

Proposition 2.43. Let C be a collection of Kripke models. Then C is loyal to
Up(K) ∈ HC if and only if LProp(CUp(K)) = LProp(K).

Proof. This follows from the fact that LProp(K) = LProp(Up(K)).

These propositions justify the following definition.

Definition 2.44. We will say that a class of Kripke models C is loyal to a
Kripke frame K if it is loyal to Up(K). Similarly, we say that C is κ-faithful to
K if it is faithful to Up(K), and similarly for <κ-faithful and faithful.

Let us now observe some connections between the different notions that we
have introduced. The first two propositions follow directly from the definitions.

Proposition 2.45. If a class of Heyting structures C is κ-faithful to H ∈ HC
for a cardinal κ > 0, then it is <κ-faithful to H.
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Proposition 2.46. If a class of Heyting structures C is |H|-faithful to H ∈ HC,
then it is κ-faithful to H for every cardinal κ.

Proposition 2.47. Let C be a class of Heyting structures in a language L,
and let κ be the cardinality of the set of L-sentences. For any Heyting algebra
H ∈ HC with |H| > κ, we have that H is not |H|-faithful.

Proof. Suppose that C is |H|-faithful to H. Using the definition faithfulness,
we can find a surjection from the set of L-sentences onto H. Hence, |H| ≤ κ,
a contradiction.

The following propositions show that the different notions of κ-faithfulness
do not collapse.

Proposition 2.48. For every cardinal κ ≥ ω, there is a class C of Heyting
structures for some language L such that C is κ-faithful but not κ+-faithful.

Proof. Let L be the language with κ-many nullary relation symbols {Ri | i <
κ}. Using Theorem 2.34 and Proposition 2.42, it suffices to construct a class
C of Kripke models for L that is κ-faithful but not κ+-faithful. So let C be the
class of Kripke models for L based on the Kripke frame K = (κ+, ∅).

Firstly, to show that C is κ-faithful, we have to show that for every collection
{Uj ⊆ K | j < κ} of upsets of K (i.e., subsets of K because the relation is
empty), there is a model C ∈ C and a collection of sentences {φj | j < κ} such
that {v ∈ K |C, v ⊩ φj} = Uj . So let C be the Kripke model on (κ+, ∅) with
C, i ⊩ Rj if and only if i ∈ Uj . Take φj = Rj for every j < κ, and the desired
condition holds.

Secondly, to show that C is not κ+-faithful, consider the upsets Uj of (κ+, ∅)
defined by Uj = j for j ∈ κ+. If we wanted to prove κ+-faithfulness, we would
have to provide a collection of sentences whose evaluation matches the Uj ’s.
However, |Lsent| ≤ κ<ω = κ < κ+. So it is impossible to provide κ+-many
different sentences. Hence, C is not κ+-faithful.

Proposition 2.49. For every natural number n > 0, there is a class C of
Heyting structures for some language L such that C is n-faithful but not 2n-
faithful.

Proof. We will use a very similar technique as in the previous proposition. Let
L be the language with n nullary relation symbols {Ri | i < n}. Consider the
class C of Kripke models C for L based on the Kripke frame K = (2n + 1, ∅).

The n-faithfulness of C follows as in the previous proposition by choosing
one relation symbol for every subset of the n-many subsets of K. The fact
that C is not 2n-faithful follows from the observation that there are at most
2n different combinations of forcing the Ri’s at each node. Therefore, every
model C ∈ C has at least two isomorphic nodes. So we cannot find a collection
of sentences representing the 2n + 1-many different sets Ui = {j ∈ ω | j ≤ i}
for i ≤ 2n as this collection requires 2n + 1 non-isomorphic nodes.
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2. Semantics for Intuitionistic Logic

We will continue by connecting faithfulness and loyalty.

Proposition 2.50. If a class of Heyting structures C is faithful to H ∈ HC,
then it is loyal to H.

Proof. We have to show that LProp(CH) = LProp(H). The inclusion from right
to left holds by Proposition 2.38 without making use of the assumption of faith-
fulness. The converse direction follows by a very similar argument where we
use the assumption that C is faithful to H to generate an assignment of propo-
sitional variables to sentences that coincides with the given valuation. Indeed,
given a propositional formula φ ∈ LProp(CH) and a valuation v : Prop → H, we
need to verify that JφKHv = 1H . Using that C is faithful to H, we can obtain an
assignment σ : Prop → Lsent with Jσ(p)KA = v(p) for all propositional letters p
appearing in φ. Then, by a similar induction as in the previous proposition,
we can show that JψσKA = JψKHv holds for all propositional formulas ψ with
propositional letters among the propositional letters of φ. Hence, it follows
that JφKHv = JφσKA = 1H by the assumption that φ ∈ LProp(CH).

We will later see that the converse direction does not hold. For example,
the class of Boolean-valued models of set theory is loyal (as it satisfies classical
logic CPC), but not faithful to any finite Boolean algebra but the two-point
algebra (cf., Corollary 5.16 and Theorem 5.17).

Proposition 2.51. There is a class of Heyting structures that is loyal but not
faithful.

Proposition 2.52. Let H be a class of Heyting algebras. If a class C of Heyting
structures is loyal to H for all H ∈ H, then it is loyal to H.

Proof. Let us assume that C is loyal to all H ∈ H. By definition, this means
that for all H ∈ H we have that LProp(CH) = LProp(H). Hence,

LProp(CH) =
∩

H∈H

LProp(CH) =
∩

H∈H

LProp(H) = LProp(H).

The converse direction does not hold in general. For the proof of the follow-
ing proposition, we need to refer to results that will be proven in later sections
(for an introduction of Iemhoff models see chapter 3).

Proposition 2.53. There is a class of Heyting structures C that is loyal, but
not loyal to every H ∈ HC.

Proof. Let us call an Iemhoff model K(M) simple if it associates the same
model to every node of the Kripke frame. Clearly, for every simple Iemhoff
model K(M) it holds that LProp(K(M)) = CPC. Now, define a class C of
Iemhoff models as the union of all Iemhoff models based on a finite tree and all
simple Iemhoff models based on a finite Kripke frame. By the fact that IPC
is sound and complete with respect to all finitely rooted trees ([33, Theorem
6.12]) and by Theorem 3.19 in combination with Proposition 2.50, we know
that LProp(C) = IPC.
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Now, let (K,≤) be the Kripke frame with domain {0, 1, 1′, 2} such that ≤
is the reflexive closure of the relation with 0 ≤ 1 ≤ 2, 0 ≤ 1′ ≤ 2, 1 ≤ 1′ and
1′ ≤ 1. Clearly, (K,≤) is not a finite tree, and LProp(K) does not contain the
law of excluded middle. However, C is not loyal to K as LProp(CK) = CPC
by our observation it holds that LProp(K(M)) = CPC for all Iemhoff models
based on K.

If one works with Kripke frames that are based on partial orders instead
of preorders, the proof of the previous proposition can be done by considering
a union of partial orders that is not rooted. We can combine the previous
Proposition 2.50 and Proposition 2.52 to obtain the following one.

Proposition 2.54. Any faithful class of Heyting structures is loyal.

Let us now observe how our model-theoretic notions connect to the more
proof-theoretic notion of the de Jongh property.

Proposition 2.55. Let C be a class of Heyting structures and T a theory.
Suppose that J = LProp(C) and that A ⊨ T holds for all A ∈ C. Then T has the
de Jongh property with respect to the intermediate logic J.

Proof. We need to show that LProp(T(J)) = J, and the direction from right to
left is clear. To prove the other direction, assume that J ̸⊢ φ, then φ /∈ LProp(C)
by our assumption. So there is some A ∈ C and σ : Prop → Lsent such that
A ̸⊨ φσ. Hence, T ̸⊢ φσ, i.e., φ /∈ LProp(T(J)).

The following proposition is a direct consequence.

Proposition 2.56. If C is loyal and C ⊨ T, then T has the de Jongh property
with respect to LProp(HC).

We summarise the definitions and results of this section in Figure 2.1.

Remark 2.57. In this thesis, we will exclusively consider models of different
set theories. Of course, it is possible to use this framework to analyse model
constructions for all kinds of theories. For example, [23, Theorem 4.1] shows
that Heyting arithmetic HA has the de Jongh property with respect to all
logics characterised by a class of finite frames. Interpreted in the framework
developed here, the proof of this result shows that the class of Kripke models
for HA that are based on a finite frame is faithful.
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2. Semantics for Intuitionistic Logic

C is faithful

C is faithful to every A ∈ HC

C is loyal to every A ∈ HC

C is loyal

T has the de Jongh property
with respect to LProp(HC)

\
\

Proposition 2.56

Proposition 2.53 Proposition 2.52

Proposition 2.51 Proposition 2.50

Definition 2.40

Figure 2.1: Implications between different notions of loyalty and faithfulness,
where C ⊨ T.
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Chapter 3

Iemhoff’s Models for Subtheories of
Constructive Set Theory CZF

In this chapter, we will present and analyse a construction that was developed
by Iemhoff in [21]. Iemhoff’s basic idea is to take a Kripke frame for intuition-
istic logic and equip each node with a model of (not necessarily classical) set
theory to obtain a new model of a constructive set theory.

In the first section, we will give an overview of Iemhoff’s ideas. Afterwards,
we will present a limitation of this method—namely, under mild conditions,
Iemhoff’s models will never satisfy the axiom of exponentiation. An analysis
of the underlying propositional logic of the class of Iemhoff models will be the
purpose of the third section: We will see that this class is faithful. In conclu-
sion, Iemhoff’s method does not so much provide a method for constructing
independence results in constructive set theory, but rather for showing the
compatibility of constructive set theory with many different underlying logics.

3.1 Kripke Models of Constructive Set Theory

The idea is to obtain models of set theory by putting classical models of set
theory at every node of a Kripke model for intuitionistic predicate logic.

Note that our presentation differs from Iemhoff’s in that we sacrifice some
generality towards a slightly easier presentation and to fit her models better in
the context of this thesis. In particular, we will consider models that assign to
every node a classical model of ZF set theory. We will start by giving a condition
for when an assignment of models to nodes is suitable for our purposes.

Definition 3.1. Let (K,≤) be a Kripke frame. An assignment M of nodes
to transitive models of ZF set theory is called sound for K if for all nodes
i, j ∈ K with i ≤ j we have that M(i) ⊆ M(j), and the inclusion map is a
homomorphism of models of set theory (i.e., it preserves ∈ and =).

This could be readily generalised to homomorphisms of models of set theory
that are not necessarily inclusions.
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3. Iemhoff’s Models for Subtheories of CZF

Definition 3.2. An Iemhoff model K(M) consists of a Kripke frame (K,≤)

and a sound assignment M : K → V of nodes to transitive models of ZF set
theory.

We will usually write Mv for M(v). The forcing relation is defined as usual
for Kripke models of intuitionistic predicate logic (see also section 2.2), with
the ∈-predicate being interpreted as follows:

v ⊩ x ∈ y if and only if M(v) ⊨ x ∈ y.

With these definitions, Iemhoff models are just an instance of a Kripke
model for IQC. So it is clear that persistency holds.

Proposition 3.3. If K(M) is an Iemhoff model with nodes v and w such that
vRw, then for all formulas φ, v ⊩ φ implies w ⊩ φ.

Our next goal is to show that these models satisfy some set theory.

Proposition 3.4. Let K(M) be an Iemhoff model where M is a transitive
sound assignment, φ(x) be a ∆0-formula. Let a0, . . . , an−1 ∈ Mv and v ∈ K.
Then K(M), v ⊩ φ(a0, . . . , an−1) if and only if Mv ⊨ φ(a0, . . . , an−1).

Proof. We will prove a stronger statement by induction on ∆0-formulas, simul-
taneously for all v ∈ K. Namely, we will show that for all w ≥ v it holds that
w ⊩ φ(a0, . . . , an) if and only if Mv ⊨ φ(a0, . . . , an). Note that it is crucial in
for this proof that the quantifier is outside in the sense that:

∀w ≥ v(w ⊩ φ(a0, . . . , an) ⇐⇒ Mv ⊨ φ(a0, . . . , an)).

The cases for ⊥, =, ∈, ∧ and ∨ then follow directly from the definitions using
the induction hypothesis for the non-atomic cases.

For the first direction of the implication case, let us assume that w ≥ v

and that w ⊩ φ(ā) → ψ(b̄), where ā and b̄ stand for a0, . . . , an ∈ Mv and
b0, . . . , bn ∈ Mv, respectively. By the semantics of implication, it is the case
that w ⊩ φ(ā) implies w ⊩ ψ(b̄). Therefore, the induction hypothesis yields
that Mv ⊨ φ(ā) implies Mv ⊨ ψ(b̄). But this is just Mv ⊨ φ(ā) → ψ(b̄) by the
semantics of classical models.

Conversely, assume that Mv ⊨ φ(ā) → ψ(b̄). This means that Mv ⊨ φ(ā)
implies Mv ⊨ ψ(b̄). In this situation, it holds by our induction hypothesis that
for all w ≥ v that w ⊩ φ(ā) implies w ⊩ ψ(b̄). This is v ⊩ φ(ā) → ψ(b̄). By
persistency it holds that for all w ≥ v we have w ⊩ φ(ā) → ψ(b̄).

The next case is the existential quantifier. As we are concerned with ∆0-
formulas, our assumption for the first direction will be w ⊩ ∃x(x ∈ c∧φ(x, ā))
for some w ≥ v with c, ā ∈ Mv. By the definition of the semantics in the
Iemhoff model, it holds that w ⊩ b ∈ c ∧ φ(b, ā) for some b ∈ Mw. Then
b ∈ c and, by transitivity, it holds that b ∈ Mv. We can therefore apply
our induction hypothesis to w ⊩ φ(b, ā) to obtain that Mv ⊨ φ(b, ā). Then
Mv ⊨ b ∈ c ∧ φ(b, ā) and so Mv ⊨ ∃x(x ∈ c ∧ φ(b, ā)).
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3.1. Kripke Models of Constructive Set Theory

For the converse direction assume that Mv ⊨ ∃x(x ∈ c∧φ(x, ā)). Then, by
transitivity, there is some b ∈ c such that Mv ⊨ φ(b, ā). We can now apply the
induction hypothesis to obtain that w ⊩ φ(b, ā) for all w ≥ v. As b ∈ c and M
is a sound and transitive assignment, it holds that w ⊩ ∃x(x ∈ c ∧ φ(x, ā)).

The last case is the bounded universal quantifier. For the first direction,
let us assume that w ⊩ ∀x(x ∈ c→ φ(x, ā)) for some c, ā ∈ Mv. It then holds
for all b ∈ Mw with b ∈ c that w ⊩ φ(x, ā). By transitivity of our models and
soundness of the assignment, it follows that the b ∈ Mw with b ∈ c are exactly
the b ∈ Mv with b ∈ c. So we can apply our induction hypothesis to derive that
Mv ⊨ φ(b, ā) for all b ∈ Mv with b ∈ c. But this is Mv ⊨ ∀x(x ∈ c→ φ(x, ā)).

The converse direction follows similarly: Assume that Mv ⊨ ∀x(x ∈ c →
φ(x, ā)) for some c, ā ∈ Mv. By the semantics and our assumptions, we have
that Mv ⊨ φ(b, ā) for all b ∈ c. In this situation, the induction hypothesis
implies for all w ≥ v that w ⊩ φ(b, ā) for all b ∈ c. As observed above, the
b ∈ Mw with b ∈ c are exactly the b ∈ Mv with b ∈ c. Therefore, we are
allowed to conclude that w ⊩ ∀x(x ∈ c→ φ(x, ā)) for all w ≥ v.

We will now see that Iemhoff models indeed satisfy a certain constructive set
theory. Note that we will have to deal with fewer technicalities than in Iemhoff’s
original paper because our setting is slightly less general (in particular, we are
only dealing with models of ZF). We will refer to the theory CZF−c + Bounded
Strong Collection + Set-bounded Subset Collection as CZF∗.

Theorem 3.5 (Iemhoff, [21, Corollary 4]). Let K(M) be an Iemhoff model.
Then it holds that K(M) ⊩ CZF∗.

Proof. Recall that CZF−c is CZF without the collection axioms. We will have
to verify all axioms at every node of K, so let v ∈ K.

Extensionality Given a, b ∈ Mv, we need to show that:

v ⊩ a = b↔ ∀x(x ∈ a↔ x ∈ b).

Assume that v ⊩ a = b. Then a = b and this directly implies that
for all w ≥ v, we will have that ∀x(x ∈ a ↔ x ∈ b). Conversely, if
v ⊩ ∀x(x ∈ a↔ x ∈ b), then by transitivity we know for all x ∈ Mv that
x ∈ a↔ x ∈ b. This implies a = b by extensionality in our meta-theory.

Empty Set We need to show that v ⊩ ∃x∀y(y /∈ x). Choose the witness for
x to be ∅ (which is a member of Mv by transitivity). Then the axiom is
clearly satisfied.

Pairing Given a, b ∈ Mv, we need to check that:

v ⊩ ∃c∀x(x ∈ c↔ (x = a ∨ x = b)).

By Pairing in Mv, take c = {a, b}. Then the axiom follows directly from
the transitivity of the models.
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3. Iemhoff’s Models for Subtheories of CZF

Union Let a ∈ Mv. We need to verify that:

v ⊩ ∃b∀x(x ∈ b↔ ∃y ∈ a(x ∈ y)).

Let b =
∪
a ∈ Mv by Union in Mv. The direction from left to right

follows directly from this definition. The other direction follows by tran-
sitivity of the successor models Mw of Mv: Every element that Mw

thinks to be a member of b must already have been a member of b in
Mv.

Bounded Separation Again, let a ∈ Mv and let φ(x) be a ∆0-formula. We
need to show that:

∃b∀x(x ∈ b↔ x ∈ a ∧ φ(x)).

Let us use Bounded Separation in Mv to obtain the subset b of a con-
taining exactly of those x ∈ a with φ(x). By transitivity, we have for
all x ∈ a that x ∈ Mv, and by Proposition 3.4, we know that for those
x ∈ Mv it holds that v ⊩ φ(x) if and only if Mv ⊨ φ(x). Hence, our
set b satisfies the axiom (using the transitivity of all successor models of
Mv).

Strong Infinity As in the previous cases we need to find a witness for the
given axiom. Here, we have to show that

v ⊩ ∃a∀x(x ∈ a↔ x = ∅ ∨ ∃y ∈ a(x = y ∪ {y})).

Again, the canonical candidate a = ωMv will satisfy the axiom.

Set Induction We need to show that

v ⊩ ∀x(∀y ∈ x φ(y) → φ(x)) → ∀xφ(x).

So assume that v ⊩ ∀x(∀y ∈ x φ(y) → φ(x)). It is sufficient to show that
v ⊩ ∀x φ(x). To do so, we will use Set Induction on the meta-level. Let
ψ(x) be the formula

∀w ≥ v(x ∈ Mw → w ⊩ φ(x)).

We will show that ∀x(∀y ∈ x ψ(y) → ψ(x)). Let x be given and assume
that x ∈ Mw and ∀y ∈ x ψ(y), i.e., we have for all y ∈ x that ∀w ≥ v(y ∈
Mw → w ⊩ φ(x)). As x ∈ Mw, we know by transitivity that y ∈ Mw

for all y ∈ x. Hence, for all y ∈ x we have that w ⊩ φ(y). We know
from our assumption that w ⊩ ∀y ∈ x φ(y) → φ(x), and can therefore
conclude w ⊩ φ(x). Hence, ∀w ≥ v φ(x), i.e., ψ(x) holds.

We can now conclude that for all x, we have ψ(x). This means that
∀w ≥ v∀x ∈ Mw(w ⊩ φ(x)). By the semantics of the Iemhoff model, we
have v ⊩ ∀xφ(x), and this concludes the proof of Set Induction.
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3.1. Kripke Models of Constructive Set Theory

Bounded Strong Collection Let a ∈ Mv. The axiom we have to verify
reads as follows, where φ is a ∆0-formula,

(∀x ∈ a∃y φ(x, y)) → ∃b(∀x ∈ a∃y ∈ b φ(x, y) ∧ ∀y ∈ b∃x ∈ a φ(x, y)).

From Proposition 3.4 we know that ∆0-formulas are decided locally, i.e.,
we know that v ⊩ φ(x, y) if and only if Mv ⊨ φ(x, y) for all x, y ∈ Mv.
Now, as a ∈ Mv, let b ∈ Mv be the set obtained from Bounded Strong
Collection in Mv. As all formulas in the right hand side are bounded
with objects in Mv, it is decided within Mv. By persistency, the axiom
is proven.

Set-bounded Subset Collection Let a ∈ Mv. We have to verify that

∃c∀z(∀x ∈ a∃y ∈ b φ(x, y, z) →
∃d ∈ c(∀x ∈ a∃y ∈ d φ(x, y, z) ∧ ∀y ∈ d∃x ∈ a φ(x, y, z))),

where φ is a ∆0-formula such that z is set-bounded in φ, i.e., it is possible
to derive z ∈ t for some term t that appears in φ in intuitionistic logic
from φ(x, y, z). As the only terms in the language of set theory are
variables, it must be derivable that z ∈ u for some u. As φ is ∆0 and
the only free variables are x, y and z, the transitivity of Mw implies that
whenever w ⊩ z ∈ u, we have that w ⊩ z ∈ x, w ⊩ z ∈ y or w ⊩ z ∈ z.
By the semantics ∈ and transitivity of Mv, it follows that z ∈ Mv.
Note that ∀x ∈ a∃y ∈ b φ(x, y, z) is a ∆0-formula, i.e., we have by
Proposition 3.4 that

v ⊩ ∀x ∈ a∃y ∈ b φ(x, y, z)

if and only if Mv ⊨ ∀x ∈ a∃y ∈ b φ(x, y, z).

Let c ∈ Mv be the element of which Set-bounded Subset Collection of φ,
a and b holds in Mv. It suffices now to show that for every w ≥ v and
z ∈ Mw, w ⊩ ∀x ∈ a∃y ∈ b φ(x, y, z) implies

w ⊩ ∃d ∈ c(∀x ∈ a∃y ∈ d φ(x, y, z) ∧ ∀y ∈ d∃x ∈ a φ(x, y, z)).

From the assumption w ⊩ ∀x ∈ a∃y ∈ b φ(x, y, z) we can derive that
either w ⊩ ¬∃x ∈ a, or z ∈ Mv, since z is set-bounded, and v ⊩ ∀x ∈
a∃y ∈ b φ(x, y, z).
In the first case, we also must have v ⊩ ¬∃x ∈ a, and so will get in Mv

that ¬∃x ∈ d for all d as in the axiom. This implies v ⊩ ¬∃x ∈ d and, by
persistency, w ⊩ ¬∃x ∈ d. But then the axiom clearly holds in w.
In the second case we know that Mv ⊨ ∀x ∈ a∃y ∈ b φ(x, y, z) and can
thus use our assumptions on b and persistency to derive the axiom in w.
This is what we needed to show to verify the axiom in v.

Let us end this section with the following observation.
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3. Iemhoff’s Models for Subtheories of CZF

Proposition 3.6. If K(M) is an Iemhoff model such that every Mv is a model
of the axiom of choice, then the axiom of choice holds in K(M).

Proof. Recall that the axiom of choice is the following statement:

∀a((∀x ∈ a∀y ∈ a (x ̸= y → x ∩ y = ∅)) → ∃b∀x ∈ a∃!z ∈ b z ∈ x). (AC)

Let v ∈ K and a ∈ Mv such that v ⊩ ∀x ∈ a∀y ∈ a (x ̸= y → x ∩ y = ∅).
This is a ∆0-formula, so we can apply Proposition 3.4 to derive that Mv ⊨
∀x ∈ a∀y ∈ a (x ̸= y → x ∩ y = ∅). As Mv ⊨ AC, there is some b ∈ Mv such
that Mv ⊨ ∀x ∈ a∃!z ∈ b z ∈ x. Again, this is a ∆0-formulas, so it holds that
v ⊩ ∀x ∈ a∃!z ∈ b z ∈ x. As b ∈ Mv, we have v ⊩ ∃b∀x ∈ a∃!z ∈ b z ∈ x. But
this shows that v ⊩ AC.

3.2 A Failure of Exponentiation

In this section, we will investigate the limits of Iemhoff models from the set-
theoretical point of view. We will exhibit a failure of the axiom of exponenti-
ation:

∀x ∀y ∃z ∀f(f ∈ z ↔ f : x→ y) (Exponentiation, Exp)

Note that f : x → y is an abbreviation for the ∆0-formula φ(f, x, y) stating
that f is a function from x to y. Recall that this axiom is an intuitionistic
consequence of the axiom of subset collection (cf., Proposition B.1). Therefore,
a failure of exponentiation implies a failure of subset collection.

Proposition 3.7. Let K(M) be an Iemhoff model such that there are v, w ∈ K

with v < w. If a, b ∈ Mv and g : a→ b is a function contained in Mw but not
in Mv, then K(M) ̸⊩ Exp.

Proof. Informally, the argument boils down to the fact that the semantics allow
us to require the existence of the set of functions from a to b within Mv. But
there, of course, it cannot capture g.

Assume, for contradiction, that K(M) ⊩ Exp. Further, assume that a, b ∈
Mv and g : a→ b is a function contained in Mw but not in Mv. Then,

K(M), v ⊩ ∀x ∀y ∃z ∀f(f ∈ z ↔ f : x→ y),

and by the definition of our semantics, we can deduce

K(M), v ⊩ ∃z ∀f(f ∈ z ↔ f : a→ b),

but this just means that there is some c ∈ Mv such that

K(M), v ⊩ ∀f(f ∈ c ↔ f : a→ b).

By the semantics of universal quantification, this means that

K(M), w ⊩ g ∈ c ↔ g : a→ b.
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3.2. A Failure of Exponentiation

As g ∈ c ↔ g : a→ b is just an abbreviation for (g ∈ c → (g : a→ b)) ∧ ((g :

a→ b) → g ∈ c), we may deduce that

K(M), w ⊩ (g : a→ b) → g ∈ c,

which yields, as g is indeed a function from a→ b, that

K(M), w ⊩ g ∈ c.

As c is assumed to be a member of Mv, we have g ∈ c ∈ Mv. Therefore, by
transitivity, g ∈ Mv. This is a contradiction to our assumption that g is not
contained in Mv.

To see the full impact of this observation on Iemhoff models, we need to
remind ourselves of the following side-effect of set-theoretical forcing.

Proposition 3.8. If M is a model of classical ZFC set theory, P ∈ M a
non-trivial forcing notion and G a P-generic filter over M , then the generic
extension M [G] contains a function that is not contained in the ground model.

Proof. As G /∈ M , it follows that χG : P → 2, the characteristic function of G
in P, is not contained in M .

Let us now say that an Iemhoff model involves forcing non-trivially if there
are nodes v < w ∈ K such that Mw is a non-trivial generic extension of Mv

(i.e., Mw = Mv[G] for some generic G /∈ Mv).

Corollary 3.9. If the Iemhoff model K(M) involves forcing non-trivially, then
it is not a model of CZF.

Of course, the concepts of “not forcing an axiom” and “forcing the negation
of an axiom” do not coincide. The above results show that the former is true
for many Iemhoff models, now we will provide an example of the latter for the
exponentiation axiom.

Proposition 3.10. There is an Iemhoff model K(M) that forces the negation
of the exponentiation axiom, i.e., K(M) ⊩ ¬Exp.

Proof. Consider the Kripke frame K = (ω,<) where < is the standard ordering
of the natural numbers. Construct the assignment M as follows: Choose M0

to be any countable and transitive model of ZFC. If Mi is constructed, let
Mi+1 = Mi[Gi] where Gi is generic for Cohen forcing over Mi. Clearly, M is
a sound and transitive assignment of models of set theory.

We want to show that for every i ∈ ω we have that i ⊩ ¬Exp, i.e., for all
j ≥ i we need to show that j ⊩ Exp implies j ⊩ ⊥. This, however, works just as
in the proof of Proposition 3.7. Note that the witnesses are the characteristic
functions χGi as provided by Proposition 3.8.
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3.3 The Propositional Logic of Iemhoff Models

Our next goal is to show that Iemhoff models are faithful, and therefore loyal.
This terminology is justified as we can interpret Iemhoff models as Heyting
structures via Theorem 2.34.

The basic idea of proving faithfulness of Iemhoff models is the following:
Given a valuation for some Kripke frame, we need to construct a sound assign-
ment and a collection of sentences such that we can imitate the valuation of
the standard Kripke model within an Iemhoff model. The rest of this section
will provide the technical results needed to do so.

Technical preliminaries

We define the usual relativisation φ 7→ φL of a formula of set theory to the
constructible universe L. Note, however, that in our setting the evaluation
of universal quantifiers and implications is not locally. We should, therefore,
recall some important facts about the constructible universe to make sure that
everything works as expected.

Proposition 3.11. There is a Σ1-formula φ(x) such that in any model M ⊨
ZFC, we have M ⊨ φ(x) ↔ x ∈ L.

Proof. By [22, Lemma 13.14], the assignment α 7→ Lα is ∆1, so we can find a
Σ1-formula ∃zψ, where ψ is ∆0, such that y = Lα ↔ ∃zψ(y, α) holds. Note
that the statement ‘α is an ordinal’ is ∆0. Hence, the following is a Σ1-formula:

φ(x) = ∃α(“α is an ordinal” ∧ ∃y(x ∈ y ∧ ∃zψ(y, α))).

This finishes the proof of the proposition.

From now on, let x ∈ L be an abbreviation for φ(x), where φ is as in
Proposition 3.11.

Proposition 3.12. Let K be a Kripke frame and M a sound assignment of
nodes to transitive models of ZFC. Then K(M), v ⊩ x ∈ L if and only if
Mv ⊨ x ∈ L.

Proof. This follows directly from the fact that existential quantifiers are eval-
uated locally and ∆0-formulas are decided locally by Proposition 3.4.

The crucial detail of the following technical lemma is the fact that the
constructible universe is absolute between inner models of set theory. We will
need a strengthened notion of a sound assignment.

Definition 3.13. LetK be a Kripke frame. We call an assignment M : K → V

meticulous if it is an assignment of nodes to transitive models of ZFC such that
for all v, w ∈ K we have that LMv = LMw and, moreover, v ≤ w implies that
Mv is an inner model of Mw (i.e., Mv is a transitive class in Mw that contains
all the ordinals and satisfies the axioms of ZFC).
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Lemma 3.14. Let K be a Kripke frame and M a meticulous assignment. Let
L be the constructible universe from the point of view of all models in M. Then
the following are equivalent for any formula φ(x) in the language of set theory,
and all parameters a0, . . . , an−1 ∈ L:

(i) K(M) ⊩ (φ(a0, . . . , an−1))
L,

(ii) for all v ∈ K we have Mv ⊨ (φ(a0, . . . , an−1))
L,

(iii) there is a v ∈ K such that Mv ⊨ (φ(a0, . . . , an−1))
L, and,

(iv) L ⊨ φ(a0, . . . , an−1).

Proof. Note that the a0, . . . , an−1 can be accessed from every node as they are
assumed to be members of the constructible universe. The equivalence of (ii),
(iii) and (iv) follows directly from the fact L is absolute between inner models
of ZFC. For the equivalence of (i) and (ii) observe that a relativised formula
φL behaves like a ∆0-formula because all nodes in M agree on L. It is then
possible to prove the equivalence as in the proof of Proposition 3.4.

The family of sentences that we are going to use to imitate the behaviour
of propositional variables in a valuation of a Kripke frame has been presented
by Friedman, Fuchino and Sakai [11]. Consider the following statements:

There is an injection from ℵL
n+2 to P(ℵL

n).

There are different ways to formalise these statements that are classically equiv-
alent. In our situation, we choose to define the sentence b(n) like this:

∃x∃y∃g((x = ℵn+2)
L ∧ (y = ℵn)

L

∧ g “is an injective function”
∧ dom(g) = x

∧ ∀α ∈ x∀z ∈ g(α) z ∈ y)

The main reason for this choice of representation is that the existential
quantifiers are evaluated locally, which will be handy in the proof of the fol-
lowing crucial observation.

Proposition 3.15. Let K be a Kripke frame and M a meticulous assignment.
Then K(M), v ⊩ b(n) if and only if Mv ⊨ b(n).

Proof. This follows from Lemma 3.14, Proposition 3.4 and the fact that the
existential quantifier is evaluated locally, i.e., the injection g of the above state-
ment must (or may not) be found within Mv.

Assume that K(M), v ⊩ b(n), i.e., there are x, y, g ∈ Mv such that:

K(M), v ⊩ (x = ℵn+2)
L ∧ (y = ℵn)

L ∧ g “is an injective function”
∧ dom(g) = x

∧ ∀α ∈ x∀z ∈ g(α) z ∈ y.
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3. Iemhoff’s Models for Subtheories of CZF

To show that this conjunction is evaluated locally, it suffices to argue that
every conjunct is. For the first two conjuncts of the form φL this holds by
Lemma 3.14. Moreover, note that the final three conjuncts are ∆0-formulas.
So we can apply Proposition 3.4 and the desired result follows.

The construction of the assignment

We will now construct a collection of models of set theory that will later be
used to construct a meticulous assignment. The forcings that we are going to
use have been constructed in [11].

So let us begin by setting up the forcing construction. We start from some
countable transitive constructible universe L (that is, a countable transitive
model of set theory satisfying the axiom V = L). Let Qn be the forcing
Fn(ℵL

n+2, 2,ℵL
n), defined within L. Given A ⊆ ω, let us define the forcings:

PA
n =

{
Qn, if n ∈ A,

1, otherwise.

Then let PA =
∏

n<ω PA
n be the full support product of the forcing notions PA

n .
Recall that the ordering < on PA is defined by (ai)i∈ω < (bi)i∈ω if and only if
ai <i bi for all i ∈ ω. Now, let G be Pω-generic over L, and let Gn = πn[G]

be the n-th projection of G. Let H be the trivial generic filter on the trivial
forcing 1. Now, for A ⊆ ω and n ∈ ω define the collection of filters

GA
n =

{
Gn, if n ∈ A,

H, otherwise.

and let GA =
∏

n<ω G
A
n .

Proposition 3.16. The filter GA is PA-generic over L.

Proof. We know that every GA
n is a generic filter on PA

n (cf. [22, Proposition
15.10]). So let us check that GA is a generic filter. The fact that GA is
non-empty, upwards-closed and downwards-directed follows directly from the
definition of the ordering on PA and the fact that GA has these properties
component-wise.

So let D ⊆ PA be dense. It follows that the projection Di = πi[D] is dense
for each i < ω. By assumption, we can pick pi ∈ Di ∩GA

i for each i < ω, and
then, by definition, (pi)i<ω ∈ D ∩GA.

Proposition 3.17. If A ⊆ B ⊆ ω and A ∈ L[GB ], then L[GA] ⊆ L[GB].
Indeed, L[GA] is an inner model of L[GB ].

Proof. Work in L[GB ]. We can define the collection of sets (Xi)i<ω as follows,
where H is the generic for 1,

Xi =

{
πi[G

B ], if i ∈ A,

H, otherwise.
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3.3. The Propositional Logic of Iemhoff Models

This allows us to define X =
∏

i<ωXi.
Work in V . With transitivity, it is clear that X = GA, and so it follows

that GA ∈ L[GB ]. By the minimality of forcing extensions (cf. [22, Lemma
14.31]), it follows that L[GA] ⊆ L[GB] is an inner model.

The additional assumption A ∈ L[GB ] is necessary as otherwise (as we au-
tomatically add a real), we could have incomparable universes: Take a real c
coding that L is countable. If we take a splitting c0, c1 of c, then c0, c1 ⊆ ω but
not both L[Gci ] ⊆ L[Gω] can hold because otherwise c ∈ L[Gω]. For a discus-
sion of forcing extensions that cannot be amalgamated, see [13, Observation
35].

The following proposition, for whose proof we refer to the literature, shows
that our construction works.

Proposition 3.18 (Friedman, Fuchino and Sakai, [11, Proposition 5.1]). It
holds that L[GA] ⊨ b(n) for all n ∈ A and L[GA] ⊨ ¬b(n) for all n ∈ ω \A.

The construction of the Iemhoff model

Theorem 3.19. The Iemhoff models are faithful.

Proof. Let K be a Kripke frame. By Proposition 2.42, we need to show that
for any valuation V : Prop → P(K) on K, and every finite collection pi, i < n

of propositional letters, there is a collection of set-theoretical sentences φi and
an Iemhoff model K(M) such that {v ∈ K |K(M), v ⊩ φi} = V (pi) for all
i < n.

Now, let V̄ be the valuation with V̄ (pi) = V (pi) for each pi, i < n, and
V̄ (p) = ∅ otherwise. Observe that V̄ −1(v) is finite for every v ∈ K and we can
define Av = {i < ω | v ∈ V̄ (pi)} for any v ∈ K. It holds that Av ∈ L as it is a
finite subset of ω. Note that v ≤ w ∈ K implies that Av ⊆ Aw by monotonicity
of the original valuation V . Therefore, we will have by Proposition 3.17 that
L[GAv ] is an inner model of L[GAw ] for all v ≤ w ∈ K. Hence, the assignment
M : K → V with Mv = L[GAv ] is a meticulous assignment. This yields the
Iemhoff model K(M). Choose φi = b(i) for all i < n. It then holds that:

K(M), v ⊩ φi ⇐⇒ K(M), v ⊩ b(i) (by the definition of σ)
⇐⇒ Mv ⊨ b(i) (by Proposition 3.15)
⇐⇒ L[GAv ] ⊨ b(i) (by definition of M)
⇐⇒ i ∈ Av (by Proposition 3.18)
⇐⇒ pi ∈ V̄ −1(v) (by definition of Av)
⇐⇒ K, V̄ , v ⊩ pi.

Therefore, it holds that {v ∈ K |K(M), v ⊩ φi} = V (pi) for all i < n, and this
shows that the Iemhoff models are faithful to K. Since K was chosen arbitrary,
it follows that the Iemhoff models are faithful.

In this situation, Proposition 2.54 implies the following result.
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3. Iemhoff’s Models for Subtheories of CZF

Corollary 3.20. The class of Iemhoff models is loyal to any class of Kripke
frames.

The corollary shows that, for example, the propositional logic of the linear
Iemhoff models is Dummett’s logic LC. The logic of the weak excluded middle
KC is the underlying propositional logic of the finite Iemhoff models with a
largest element (cf. [5] for details on logics that are characterised by a class of
Kripke frames, also see Appendix A). The next corollary can be derived with
Proposition 2.56.

Corollary 3.21. The theory CZF∗ has the de Jongh property with respect to
every logic that is characterised by a class of Kripke frames.

Our limiting result Corollary 3.9 shows that we cannot easily push this
method to derive the de Jongh property for stronger set theories than CZF∗,
such as CZF or even IZF. Results connected to the de Jongh property for IZF
can be found in [12].
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Chapter 4

Lubarsky’s Kripke Models for
Intuitionistic and Constructive

Set Theory

In this chapter, we will analyse another model-construction for intuitionistic
set theory, mainly developed by Robert Lubarsky based on Kripke frames.
These models have first been introduced in [27] to prove the independence of
the power set axiom from the subset collection axiom over constructive set
theory CZF. Later on, similar models have been constructed in [28] and [29]
to discuss the constructive Cauchy and Dedekind reals. The models in [18] are
used to separate omniscience principles, such as different weakenings of the
law of excluded middle, in constructive mathematics.

4.1 Kripke Models for IZF and CZF

There are several different definitions of these Kripke models around; we follow
the quite general one of [18].

Definition 4.1. Let (K,≤) be a Kripke frame. We will call a system (Mv)v∈K

of models and elementary embeddings (fvw)v≤w∈K an elementary system of
models of ZFC for K, if it holds that Mv ⊨ ZFC for every v ∈ K, fvv = idMv

for all v ∈ K and fwu ◦ fvw = fvu for all v ≤ w ≤ u.

Definition 4.2. Let K be a Kripke frame and (Mv)v∈K , (fvw)v≤w∈K be an
elementary system of models of ZFC. Assume that K, in particular K≥v =

{w ∈ K |w ≥ v}, and (Mw)w≥v are definable in each Mv.
At each node v ∈ K, we simultaneously define the domains Dv by induction

on α ∈ OrdMv and transition functions gvw : Dv → Dw as follows. An object
x of Dv

α is a function such that for all w ≥ v,

(i) dom(x) = K≥v,

(ii) x↾K≥w ∈Mw,
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4. Lubarsky’s Kripke Models for IZF and CZF

(iii) x(w) ⊆
∪

β<fvw(α)D
w
β ,

(iv) if h ∈ x(w) and w ≤ u, then gwu(h) ∈ x(u).

Extend gwu by gwu(x) = x↾K≥u for each u ≥ w. Finally, letDv =
∪

α∈OrdMv D
v
α.

Now, we can define the forcing relation in the Kripke model as follows:

(i) v ⊩ x ∈ y if and only if Mv ⊨ x ∈ y(v),

(ii) v ⊩ x = y if and only if Mv ⊨ x = y,

and the other definitions being standard as in Kripke semantics for intuitionistic
predicate logic. This constitutes the full Lubarsky model KL(M).

Theorem 4.3 (Hendtlass-Lubarsky, [18, Theorem 3.1]). The full Lubarsky
model KL(M) satisfies IZF.

Proof. We will verify the axioms of IZF one-by-one. As we have to verify the
axioms at all nodes of K, let v ∈ K.

Extensionality We need to show that v ⊩ ∀a∀b(∀x(x ∈ a↔ x ∈ b) ↔ a = b).
To do so, it suffices to show that for all a, b ∈ Dv we have that v ⊩
∀x(x ∈ a ↔ x ∈ b) ↔ a = b. Assuming that v ⊩ a = b, we know that
a = b holds and therefore the right hand side follows directly. Conversely,
if v ⊩ ∀x(x ∈ a ↔ x ∈ b) this means that for all w ≥ v we have that
x ∈ a(w) if and only if x ∈ b(w), i.e., a = a↾K≥v = b↾K≥v = b (using
Extensionality on the meta-level) and so v ⊩ a = b.

Emptyset To verify that v ⊩ ∃a ∀x ∈ a ⊥ it suffices to construct a witness.
So let a ∈ Dv be the function with a(w) = ∅ for all w ≥ v. Then
v ⊩ ∀x(x ∈ a→ ⊥) which is what we needed to show.

Pairing It suffices to show that for all a, b ∈ Dv, there is a y ∈ Dv such that
v ⊩ ∀x(x ∈ y ↔ (x = a ∨ x = b)). Let y ∈ Dv be the function with
y(w) = {gvw(a), gvw(b)} for all w ≥ v. Now, let x ∈ Dw for some w ≥ v.
From these definitions it follows that x ∈ gvw(y)(w) = y(w) if and only
if x = gvw(a) or x = gvw(b), and this is exactly what we had to prove.

Union Given a ∈ Dv, we will show that v ⊩ ∃y∀x(x ∈ y ↔ ∃u(u ∈ a∧x ∈ u)).
Again, this is done by providing a witness y. So let y ∈ Dv be such that
y(w) =

∪
u∈a(w) u(w). Now let w ≥ v and x ∈ Dw. Then if x ∈ y(w), it

follows that x ∈ u(w) for some u ∈ a(w), i.e., w ⊩ ∃u(u ∈ gvw(a)∧x ∈ u).
Conversely, if there is some u ∈ Dw such that w ⊩ u ∈ gvw(a) and w ⊩
x ∈ u, then u ∈ a(w) and x ∈ u(w), so x ∈ y(w). Hence, w ⊩ x ∈ gvw(y).
This shows that Union holds.

Power set Given a ∈ Dv, we need to construct its power set b ∈ Dv and verify
that v ⊩ ∀x(x ∈ b↔ x ⊆ a). Let us first observe that by the definition of
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the semantics in the Lubarsky model, the assertion w ⊩ x ⊆ a for some
w ≥ v is equivalent to the following statement:

at every node u ≥ w we have that x(u) ⊆ a(u). (Suba
w(x))

Note that we can extend any object x ∈ Dw, w ≥ v, to an object x̂ ∈
Dv by stipulating that x̂(u) = x(u) if u ≥ v, and x̂(u) = ∅ otherwise.
Now, we can define the power set b of a to be the function with b(v) =

{x̂ |Suba
w(x)} and b(w) = gvw[b(v)] for w ≥ v. This function is well-

defined by the fact that our Kripke frame K is a set, and therefore, the
collection b(v) is a set as well.
Using the above equivalence, it is now straightforward to see that b sat-
isfies the definition of the power set: If w ≥ v and w ⊩ x ∈ b, then
w ⊩ x ⊆ a by definition of b. Conversely, if w ⊩ x ⊆ a, then we have
Suba

w(x) and therefore, x = gvw(x̂) ∈ b(w), i.e., w ⊩ x ∈ b.

Infinity We need to verify that v ⊩ ∃a(∃x x ∈ a ∧ ∀x ∈ a∃y ∈ a x ∈ y). To
do so, we will construct simultaneously at every node v ∈ K objects nv
for every n ∈ ω and finally ωv. Start with 0v = ∅v, where ∅v is as in the
above proof of the empty set axiom. Assume that mv has already been
constructed for all w ≥ v and m < n. Let nv(w) = {mw |m < n} for w ≥
v, and let nw = nv↾K≥w for all w ≥ v. Finally, set ωv(w) = {nw |n < ω}
for w ≥ v.
Now, clearly v ⊩ ∃x x ∈ ωv. Further, observe that for all n ∈ ω we have
that v ⊩ nv ∈ (n+ 1)v holds by definition. Therefore,

v ⊩ ∀x ∈ ωv∃y ∈ ωv x ∈ y

holds and this concludes the proof of Infinity.

Set Induction Let us assume, towards a contradiction, that Set Induction
does not hold. That is, there is a node v ∈ K such that:

v ⊩ (∀x(∀y ∈ x φ(y) → φ(x))), but v ̸⊩ ∀xφ(x)

for some formula φ(x). So there is w ≥ v and a ∈ Dw such that v ̸⊩ φ(a).
Then, by the hypothesis, we have that w ̸⊩ ∀y ∈ a φ(y). So there is u ≥ w

with b ∈ Dw such that w ⊩ b ∈ a, but w ̸⊩ φ(b).
Now, the statement that Set Induction fails at v is, in fact, a statement
internal to Mv as we have (by our requirements on definability) that:

Mv ⊨ “There is a Lubarsky model with bottom element ⊥
such that there is a counterexample to set-induction in M⊥”

As Mv ⊨ ZFC, we can take a rank-minimal counterexample a to this.
Then, by our observation above, there is w ≥ v and b ∈ a(w) such that
b is a counterexample to set induction as well, but within Mw. In Mv,
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the rank of b is lower than the rank of a. By elementarity, it holds that
the rank of fvw(b) is lower than the rank of fvw(a). However, elemen-
tarity also implies that the rank of fvw(a) is minimal of the ranks of
counterexamples. A contradiction. Hence, Set Induction holds.

Separation The verification of Separation, reduces again to the construction
of a witness. So let a ∈ Dv and φ(x) be given. We define b ∈ Dv to
be the function with b(w) = {x ∈ a(w) |w ⊩ φ(x)}. To verify is that
∀x(x ∈ b ↔ (x ∈ a ∧ φ(x))) holds, but this follows directly from the
definition of b. Note that this definition is only possibly because we are
using again the fact that we can internalise the Lubarsky model at every
node.

Collection Given a formula φ(x, y) and an element a ∈ Dv such that v ⊩
∀x ∈ a∃y φ(x, y), we need to find an object b ∈ Dv with v ⊩ ∀x ∈ a∃y ∈
b φ(x, y). As Collection is a theorem of ZFC, which holds in Mv, we can
apply it to a to obtain a set bw ⊆ Dw from the formula ψw(x, y), defined
as “y ∈ Dw∧w ⊩ φ(gvw(x), y).” Note that this set is non-empty whenever
a(w) is non-empty by our hypothesis. We can then define b ∈ Dv to be
the function with b(w) = bw for all w ≥ v. This will indeed be an element
of Dv (using monotonicity). It follows now directly from this definition
that v ⊩ ∀x ∈ a∃y ∈ b φ(x, y).

This finishes the verification of all the axioms of IZF and concludes the proof
of the theorem.

Not only the Collection scheme but also the Reflection scheme holds in the
above model (see [18]). Let us now give an example of such a model before
moving on to the construction of a class of models of CZF.

Example 4.4. LetM be a model of ZFC, and takeK = {v, w} to be the Kripke
frame ordered by the reflexive closure ≤ of {(v, w)}. Take Mv =Mw =M and
the identity for the embedding. By the previous theorem, the full Lubarsky
model KL(M) is a model of IZF, and there are three subsets of 1 = {∅} at
the bottom node v: The element 0 ∈ Dv with 0(v) = 0(w) = ∅, the element
1 ∈ D0 with 1(v) = 1(w) = {∅}, and the element 1

2 ∈ D0 with 1
2 (v) = ∅ and

1
2 (w) = {∅}. It then holds that v ⊩ 0 ⊆ 1∧ 1 ⊆ 1∧ 1

2 ⊆ 1. However, v ̸⊩ 0 = 1
2

and v ̸⊩ 1
2 = 1.

In the remainder of this section, we will exhibit a theory of Kripke models
for CZF. Building on the models for IZF defined above, we want to give an
alternative proof for a result presented in [27]. Our proof will avoid the class
constructions done by Lubarsky.1

1Lubarsky already mentioned in [27, p. 3] that such a construction would be possible,
“Alternatively, [the partial order] could be taken to be ω and the Kripke sets to be eventually
hereditarily constant. In fact, this latter approach could be read off from the former by taking
a cofinal ω-sequence through [the ordinals] (from outside of V , naturally) and cutting the
full model down to those nodes.” Our construction will not strictly follow this suggestion,
but rather bound the size of the elements at each domain.
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Definition 4.5. Let K be a Kripke frame with a root 0 and let (Mv)v∈K ,
(fvw)v≤w∈K be an elementary system of models of ZFC such that κ ∈M0 with
M0 ⊨ “κ is an inaccessible cardinal.” Assume that K, in particular K≥v =

{w ∈ K |w ≥ v}, and (Mw)w≥v are definable in Mv.
At each node v ∈ K we simultaneously define the domains Dv by induction

on α ∈ OrdMv and transition functions gvw : Dv → Dw as follows. An object
x of Dv

α is obtained as in the definition of the full Lubarsky model with the
additional requirement that Mw ⊨ |x(w)| < f0w(κ) for all w ≥ v. The forcing
relation is defined as in the full Lubarsky model. This constitutes the bounded
Lubarsky model KL

κ (M).

Note that this is, by definition, a submodel of the full Lubarsky model (cf.
Definition 4.2). To show that this class of models indeed satisfies CZF follows
exactly along the lines of Theorem 4.3 observing that the size-restriction does
not impact the axioms of CZF. In fact, every axiom except for Powerset goes
through as in the proof of that theorem.

Theorem 4.6. The bounded Lubarsky model satisfies CZF.

There is a bounded Lubarsky model in which the negation of the power set
axiom holds true.

Theorem 4.7. Let M be a transitive model of ZFC set theory and κ ∈ M

such that M ⊨ “κ is an inaccessible cardinal.” Let K be the Kripke frame
(κ,<), and consider the system where Mv =M for all v ∈ K. Then KL

κ (M) ⊨
CZF + ¬Powerset.

Proof. The previous theorem shows that KL
κ (M) is a model of CZF. Given

v ∈ κ, let us consider the element hv ∈ D0 defined by

hv(w) =

{
∅, if w < v,

{∅}, if w ≥ v.

It is clear that 0 ⊩ hv ⊆ {∅} for all v ∈ K (where {∅} = h0). Now, assume
towards a contradiction that x is the power set of {∅}, then 0 ⊩ hv ∈ x for all
v. By definition of our semantics this implies that x ⊇ {hv | v ∈ K}, but as
hv ̸= hw for v ̸= w, it holds that the cardinality of x is at least the cardinality
of κ. A contradiction to KL

κ (M) being a bounded model.

Corollary 4.8 (Lubarsky, [27, Theorem 2.0.3]). The power set axiom is inde-
pendent of CZF.

4.2 The Propositional Logic of Lubarsky Models for IZF

Our next objective is an analysis of the propositional logic of the class of full
Lubarsky models. To do so, we interpret Lubarsky models as Heyting struc-
tures along the lines of Theorem 2.34.
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Technical Preliminaries

We would like to first exhibit a technical result that will greatly simplify our
analysis of the underlying logic of Lubarsky models.

Let us first observe that, given a Kripke frame K, we can define a Kripke
frame K/∼ as the quotient of K under the equivalence relation ∼, defined by

v ∼ w if and only if v ≤ w and w ≤ w.

The Kripke frame K/∼ is then partially ordered.
Now, let KL(M) be a Lubarsky model based on any Kripke frame K and

an elementary system (Mv)v∈K , (fvw)v≤w∈K . We will construct a Lubarsky
model based on K/∼.

Note that if v ∼ w holds, then there are elementary embeddings f :Mv →
Mw and g : Mw → Mv such that f ◦ g = idMw and g ◦ f = idMv , i.e., Mv and
Mw are isomorphic. We will therefore assume without loss of generality that
Mv = Mw for all v ∼ w. Then the elementary system M̃ with M̃[v] = Mv is
well-defined. We can therefore consider the Lubarsky model (K/∼)L(M̃) with
domains D[v].

Now, we are going to observe what happens to the elements of our domains
when taking the quotient. As the domains of the elements are upwards-closed
it follows that if v ∼ w and v ∈ dom(a) for some a ∈ Du, then w ∈ dom(a).
Hence, v ∈ dom(a) if and only if w ∈ dom(a).

Proposition 4.9. If v, w ∈ dom(a) for some a ∈ Du and v ∼ w, then a(v) =

a(w).

Proof. We assumed without loss of generality that Mv = Mw, and therefore,
the transition functions are the identity. By property (iv) in Definition 4.2, it
then follows from v ∼ w that a(v) ⊆ a(w) and that a(w) ⊆ a(v).

Recursively on α ∈ OrdMu for a ∈ Du
α, we can define the map fu : Du →

D[u] by (fu(a))([v]) = fu[a(v)]. It is well-defined by the previous proposition.
We will write ã for fu(a) whenever u is clear from the context. Note that fu
is a bijection as the converse map f−1

u : D[u] → Du is given by f−1
u (b)(v) =

f−1
u [b([v])]. Moreover, the maps fu commute with the transition functions in

the sense that fu ◦ fwu = f[w][u] ◦ fw.

Theorem 4.10. Let φ(x0, . . . , xn−1) be a formula in the language of set theory.
It is the case that

KL(M), v ⊩ φ(a0, . . . , an−1) if and only if
(K/∼)L(M̃), [v] ⊩ φ(ã0, . . . , ãn−1).

Proof. We prove the theorem by induction on the complexity of the formula
φ, simultaneously for all v ∈ K.
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The case for ⊥ follows trivially. The cases for equality and the ∈-relation
follow easily from the definitions made above:

v ⊩ a ∈ b ⇐⇒ a ∈ b(v)

⇐⇒ ã ∈ b̃([v]) (by definition of fv)
⇐⇒ [v] ⊩ ã ∈ b̃

v ⊩ a = b ⇐⇒ a = b

⇐⇒ ã = b̃ (fv bijective)
⇐⇒ [v] ⊩ ã = b̃.

The statement follows for ∧ and ∨ in the same way, so let us only consider
one of the two cases:

v ⊩φ(a0, . . . , an−1) ∧ ψ(b0, . . . , bm−1)

⇐⇒ v ⊩ φ(a0, . . . , an−1) and v ⊩ ψ(b0, . . . , bm−1)

⇐⇒ [v] ⊩ φ(ã0, . . . , ãn−1) and [v] ⊩ ψ(b̃0, . . . , b̃m−1) (by I.H.)
⇐⇒ [v] ⊩ φ(ã0, . . . , ãn−1) ∧ ψ(b̃0, . . . , b̃m−1).

For the case of the implication, we will use the commutativity of the tran-
sition functions and the bijections fv : Dv → D[v].

v ⊩φ(a0, . . . , an−1) → ψ(b0, . . . , bm−1)

⇐⇒ ∀w ≥ v(w ⊩ φ(fvw(a0), . . . , fvw(an−1))

implies w ⊩ ψ(fvw(b0), . . . , fvw(bm−1)))

⇐⇒ ∀w ≥ v([w] ⊩ φ(fw(fvw(a0)), . . . , fw(fvw(an−1)))

implies [w] ⊩ ψ(fw(fvw(b0)), . . . , fw(fvw(bm−1))))

⇐⇒ ∀w ≥ v([w] ⊩ φ(f[v][w](fv(a0)), . . . , f[v][w](fv(an−1)))

implies [w] ⊩ ψ(f[v][w](fv(b0)), . . . , f[v][w](fv(bm−1))))

⇐⇒ ∀[w] ≥ [v]([w] ⊩ φ(f[v][w](fv(a0)), . . . , f[v][w](fv(an−1)))

implies [w] ⊩ ψ(f[v][w](fv(b0)), . . . , f[v][w](fv(bm−1))))

⇐⇒ [v] ⊩ φ(ã0, . . . , ãn−1) → ψ(b̃0, . . . , b̃m−1).

The final two cases are the existential and the universal quantifier. Let us
begin with the existential quantifier:

v ⊩ ∃x φ(x, a0, . . . , an−1)

⇐⇒ there exists x ∈ Dv such that v ⊩ φ(x, a0, . . . , an−1)

⇐⇒ there exists x ∈ Dv such that [v] ⊩ φ(x̃, ã0, . . . , ãn−1)

⇐⇒ there exists x ∈ D[v] such that [v] ⊩ φ(x, ã0, . . . , ãn−1) (1)
⇐⇒ [v] ⊩ ∃x φ(x, ã0, . . . , ãn−1).
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Note that we are relying on the fact that fv is a bijection when we change
the domain of quantification in equivalence (1). The same argument will be
applied in the final case, the universal quantifier for equivalence (2):

v ⊩∀x φ(x, a0, . . . , an−1)

⇐⇒ for all w ≥ v and for all x ∈ Dw w ⊩ φ(x, a0, . . . , an−1)

⇐⇒ for all w ≥ v and for all x ∈ Dw [w] ⊩ φ(x̃, ã0, . . . , ãn−1)

⇐⇒ for all [w] ≥ [v] and for all x ∈ D[w] [w] ⊩ φ(x, ã0, . . . , ãn−1) (2)
⇐⇒ [v] ⊩ ∀xφ(x, ã0, . . . , ãn−1).

This finishes the proof of the theorem.

The discussion in this section and the theorem above allow us to directly
deduce the following corollary.

Corollary 4.11. For every full Lubarsky model there exists a full Lubarsky
model whose Kripke frame is a partial order such that the propositional logics
of the two models coincide.

Proof. Let KL(M) be a full Lubarsky model, and let (K/∼)L(M) be the cor-
responding model whose Kripke frame is a partial order. Suppose that φ is
an L∈-sentence with KL(M) ⊩ φ. By Theorem 4.10, this is equivalent to
(K/∼)L(M) ⊩ φ. Hence, LProp(KL(M)) = LProp((K/∼)L(M)).

Analysis of the Propositional Logic

We shall now show that faithfulness fails in a very strong way for full Lubarsky
models. Let us say that two nodes v, w of a Kripke frame (K,<) are in the
same component if for the transitive reflexive closure R of < it holds that vRw.

Theorem 4.12. The class of full Lubarsky models is not faithful to any Kripke
frame K with two distinct end-points in the same component.

We will prove Theorem 4.12 with help of the following lemma.

Lemma 4.13. Let KL(M) be a full Lubarsky model, and let v0, v1 ∈ K be end-
nodes (i.e., nodes without a proper successor) in the same component. Then
for any sentence φ in the language of set theory it holds that KL(M), v0 ⊩ φ if
and only if KL(M), v1 ⊩ φ.

Proof. Let us first observe that vi ⊩ φ is equivalent to Mvi ⊨ φ: As vi does
not have any proper successor, the partial order K≥vi consists of only one
point. By Definition 4.2, the domain Dvi will be an isomorphic copy of M
inside M . Using this and the fact that the definitions of forcing in a one-point
Kripke frame collapse to the case of classical models, it can be shown by a short
induction on formulas that vi ⊩ ψ if and only if Mvi ⊨ ψ. Then, as Mv0 and
Mv1 are elementary equivalent (v0 and v1 are in the same component), it holds
that Mv0 ⊨ φ if and only if Mv1 ⊨ φ for any sentence φ, and the proposition
follows.
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We are now prepared to prove the theorem.

Proof of Theorem 4.12. Let K be a Kripke frame with two distinct end-nodes
v0 and v1 in the same component of K. By Proposition 2.42 it suffices to show
that there is a valuation V : Prop → P(K) and a propositional letter p that we
cannot imitate by a sentence φ in the language of set theory. So let V be any
valuation with V (p) = {v0}, and KL(M) be any full Lubarsky model based
on K. Now, by Lemma 4.13, for any sentence φ with v0 ⊩ φ it holds that
{v ∈ K |KL(M), v ⊩ φ} ⊇ {v0, v1}. Hence, for all sentences φ we have that
{v ∈ K |KL(M), v ⊩ φ} ̸= V (p). This shows that the Lubarsky models are
not faithful to K.

The following is a direct consequence of the Theorem 4.12.

Corollary 4.14. The class of full Lubarsky models is not faithful.

Regarding the loyalty of Lubarsky models, let us make the following obser-
vation.

Theorem 4.15. Let CL be the class of full Lubarsky models. Let K be a Kripke
frame in which every node has a successor that is an end-node. Then it holds
that KC ⊆ LProp(CL

K).

Proof. We will show that weak excluded middle holds in LProp(CL
K). Let φ be

a sentence in the language of set theory. By Lemma 4.13, we know that there
are two cases. Without loss of generality, we can assume that all nodes in K

are in the same component (i.e., K has one component).
In the first case, it holds that v ⊩ φ in all end-nodes v. Then, by our

assumption, for all w ∈ K and u ≥ w, there exists some end-node v ≥ u with
v ⊩ φ. Hence, w ⊩ ¬¬φ.

In the second case, it holds that v ̸⊩ φ in all end-nodes v. Therefore,
v ⊩ ¬φ in all end-nodes v. An analogous argument to the first case show that
w ⊩ ¬¬¬φ for all w ∈ K, but this means w ⊩ ¬φ for all w ∈ K, by the fact
that ¬¬¬φ→ ¬φ is a theorem of IQC.

Putting the two cases together, it holds that w ⊩ ¬φ ∨ ¬¬φ for all w ∈ K

and sentences φ in the language of set theory. Hence, ¬p ∨ ¬¬p ∈ LProp(CL
K),

i.e., KC = IPC + ¬p ∨ ¬¬p ⊆ LProp(CL
K).

Let us say that a full Lubarsky model is finite if its underlying Kripke frame
is finite.

Corollary 4.16. The class of finite full Lubarsky models is not loyal.

Proof. Let KL(M) be a finite full Lubarsky model. Then consider the model
(K/∼)L(M̃) that is based on a partial order Kripke frame. By Corollary 4.11,
the propositional logic of both models coincide. Since every finite partial order
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has the property that every node has a successor that is an end-node, the
previous Theorem 4.15 implies for the class CL

fin of finite Lubarsky models that

LProp(HCL
fin
) = IPC ⊊ KC ⊆

∩
C∈CL

fin

LProp(C) = LProp(CL
fin).

However, the logic of the class of finite Kripke frames is IPC.
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Chapter 5

Heyting-Valued Models for IZF

This chapter deals with Heyting-valued models for IZF. A special case of these
models are the Boolean-valued models that are a means to the fruitful theory of
forcing in set theory. After a short introduction to the necessary technical de-
tails of the theory of Heyting-valued models, we will analyse their propositional
logic and derive corollaries for the Boolean-valued models, as well.

5.1 Heyting-Valued Models

Our exposition follows [2], to which we also refer for a complete exposition of
Boolean- and Heyting-valued models of set theory. Here, we will only provide
the necessary details for our analysis for the propositional logic without giving
a proper introduction into the set-theoretic power of this theory.

Definition 5.1. Let H be a complete Heyting algebra and M ⊨ ZFC. We
define M (H)

α within M recursively on α ∈ OrdM as follows:

M (H)
α = {x ∈M | “x is a function” ∧ ran(x) ⊆ H ∧ ∃ξ < α(dom(x) ⊆M

(H)
ξ )}

Then, let M (H) =
∪

α∈OrdM M
(H)
α .

To allow us to make statements about M (H), we need to augment our first-
order language of set theory L∈ to L(H),M

∈ additionally containing a constant
symbol for every element of M (H) (note that by a standard coding argument,
M (H) can be construed as a definable class within M). This augmented lan-
guage is also called the forcing language. With this definition at hand, we may
define the forcing relation in M (H).

Definition 5.2. We inductively define a map from the L(H),M
∈ -sentences to

values in the complete Heyting algebra. First, by simultaneous induction on
M

(H)
α , α ∈ OrdM , we define = and ∈ as follows:

(i) Ju ∈ vKH =
∨

y∈dom(v)

(v(y) ∧ Ju = yKH),
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(ii)

Ju = vKH =
∧

x∈dom(u)

(u(x) → Jx ∈ vKH) ∧
∧

y∈dom(v)

(v(x) → Jy ∈ uKH).

The definitions of the other cases are standard:

(iii) J⊥K = ⊥,

(iv) Jφ ∧ ψK = JφK ∧ JψK,
(v) Jφ ∨ ψK = JφK ∨ JψK,
(vi) Jφ→ ψK = JφK → JψK,
(vii) J∃xφ(x)K = ∨

u∈M(H)Jφ(u)K,
(viii) J∀xφ(x)K = ∧

u∈M(H)Jφ(u)K.
As usual, ¬φ abbreviates φ→ ⊥ and φ↔ ψ denotes (φ→ ψ) ∧ (ψ → φ).

Note that the above definition is a definition of truth in M (H) and can
therefore only be fully formalised externally, as we did here. The definitions
of the quantifiers are well-defined as H is assumed to be a complete Heyting
algebra. For the remainder of this section, let M be a model of set theory, H
be a Heyting algebra and M (H) be the Heyting-valued model. The following is
an analogue of [2, Theorem 1.17] for Heyting algebras, see also [2, chapter 8].

Theorem 5.3 ([2, Theorem 1.17 and p. 165]). All axioms of first-order in-
tuitionistic logic are true in M (H), and all its rules of interference are valid.
Further, the following hold:

(i) Ju = uK = 1,

(ii) u(x) ≤ Jx ∈ uK for all x ∈ dom(u),

(iii) Ju = vK = Jv = uK,
(iv) Ju = vK ∧ Jv = wK ≤ Ju = wK,
(v) Ju = vK ∧ Jv ∈ wK ≤ Ju ∈ wK,

(vi) Jv = wK ∧ Ju ∈ vK ≤ Ju ∈ wK, and,

(vii) Ju = vK ∧ Jφ(u)K ≤ Jφ(v)K.
It is now clear that Heyting-valued models are an instance of Heyting struc-

tures, where the underlying H-set is M (H) with equality and set membership
defined as above. The definitions for the existential and universal quantifier in
the definition of forcing for M (H) are exactly what is required in the definition
of an H-structure, using that E(a) = Ja = aK = 1 for all a ∈M (H). Moreover,
ẽ(a, b) = Ja = bK by (i); and so (v) shows that ∈ respects equivalence.

We only mention the following results without proof.
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Theorem 5.4 ([2, p. 166]). The law of excluded middle holds in M (H) if and
only if H is a Boolean algebra.

Theorem 5.5 ([2, Theorem 1.33 and p. 165]). If H is a complete Heyting
algebra and M a model of ZFC, then all the axioms of IZF are true in M (H).

Theorem 5.6 ([2, Theorem 1.33]). If B is a complete Boolean algebra and M
a model of ZFC, then all the axioms of ZFC are true in M (B).

5.2 Heyting-Valued Models as Full Lubarsky Models

In this section, we will express a certain class of Heyting-valued models as full
Lubarsky models. This will be possible for those Heyting-valued models whose
underlying Heyting algebra is one that consists of the upsets of a Kripke frame.
The full Lubarsky model will then be based on that Kripke frame.

Let H be a complete Heyting algebra such that H = Up(K) for some
Kripke frame (K,≤), M be a model of ZFC and M (H) the resulting Heyting-
valued model. Further, let KL(M) be the full Lubarsky model where the
elementary directed system is the one with Mv = M for all v ∈ K, and all
transition functions are the identity on M . Note that the transition functions
fvw : Dv → Dw are the restriction maps x 7→ x↾K≥w.

We begin by constructing a collection of surjections fv : M (H) → Dv for
every v ∈ K simultaneously. We will do so recursively on α ∈ OrdM , but
externally to M (note that OrdM is an ordinal in V ). Let x ∈ M

(H)
α . By our

recursive assumption, fv(y) is defined for every v ∈ K and y ∈M
(H)
β for some

β < α. Let us define fv(x) as follows:

fv(x) : K
≥v → V,

fv(x)(w) = fw[{y ∈M (H) |w ∈ x(y)}].

By the recursive assumption, every fw(y) is a well-defined element of Dw

and therefore, the definition of fv(x) is well-defined as an element of Dv. We
can now prove the following essential lemma.

Lemma 5.7. For every v ∈ K, the map fv is a surjection.

Proof. We will provide the witnesses by induction on the complexity of x ∈ Dv
α.

So let us assume that for every a ∈ Dw
β , β < α, we already constructed an

element b ∈M (H) such that fv(b) = a. Now define y ∈M (H) as follows:

y :M (H) → H = Up(K), with
dom(y) = {b ∈M (H) | ∃w ≥ v ∃a ∈ x(w) fw(b) = a},
y(b) = {w ∈ K |w ≥ v ∧ ∃a ∈ x(w) such that fw(b) = a}.
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We need to show that fv(y) = x. So let w ≥ v.

fv(y)(w) = fw[{b ∈M (H) |w ∈ y(b)}]

= fw[{b ∈M (H) |w ∈ {w ∈ K |w ≥ v ∧ ∃a ∈ x(w) fw(b) = a}}]

= fw[{b ∈M (H) | ∃a ∈ x(w) fw(b) = a}] (⋆)
⊆ x(w).

For the converse direction of the inequality, we use our induction hypothesis:
fw is a surjection onto

∪
β<αD

w
β . So let a ∈ x(w). Then, in particular,

a ∈
∪

β<αD
w
β . Hence, there must be some b ∈ M (H) such that fw(b) = a.

Clearly, b is a member of the set in (⋆), and so we are allowed to conclude that
fv(y)(w) = x(w).

As the derivation holds for all w ≥ v, we have shown that fv(y) = x. This
finishes the proof of the lemma.

We can now prove the main theorem of this section.

Theorem 5.8. For every formula φ(x0, . . . , xn−1) and all a0, . . . , an−1 ∈M (H)

it is the case that:

Jφ(a0, . . . , an−1)KH = {v ∈ K |KL(M), v ⊩ φ(fv(a0), . . . , fv(an−1))}.

Proof. Before proving the theorem by induction on the complexity of the for-
mulas, let us make some general observations. By the definitions made above,
it holds that:

fv(y) ∈ fv(b)(v) if and only if v ∈ b(y), (M)

for any y ∈ dom(b) and b ∈M (H). Another useful observation is the fact that
our maps fv :M (H) → Dv commute with the transition functions fvw : Dv →
Dw in the sense that:

fvw ◦ fv = fw (C)

holds for all v ≤ w ∈ K. This follows from the fact that the transition functions
are truncations of the form x 7→ x↾K≥w.

We can now begin with the actual proof. The cases for equality and set-
membership follow via a simultaneous induction. Let us begin with the case
for ∈:

Ja ∈ bKH =
∨

y∈dom(b)

(b(y) ∧ Ja = bKH)

= {v ∈ K | ∃y ∈ dom(b)(v ∈ b(y) ∧ Ja = yKH)}
= {v ∈ K | ∃y ∈ dom(b)(fv(y) ∈ fv(b)(v) ∧ v ⊩ fv(a) = fv(y))}

(by (M) and I.H.)
= {v ∈ K | ∃y ∈ dom(b)(fv(y) ∈ fv(b)(v) ∧ fv(a) = fv(y))}

(Definition of = in KL(M))
= {v ∈ K | fv(a) ∈ fv(b)(v)} (using (M))
= {v ∈ K | v ⊩ fv(a) ∈ fv(b)}. (Definition of ∈ in KL(M))
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Similarly, we can prove the case for equality:

Ja = bKH =
∧

x∈dom(a)

(a(x) → Jx ∈ bKH) ∧
∧

y∈dom(b)

(b(y) → Jy ∈ aKH)

= {v ∈ K | ∀x ∈ dom(a)∀w ≥ v(w ∈ a(x) → w ∈ Jx ∈ bKH)

∧ ∀y ∈ dom(b)∀w ≥ v(w ∈ b(y) → w ∈ Jy ∈ aKH)}
= {v ∈ K | ∀x ∈ dom(a)∀w ≥ v

(fw(x) ∈ fw(a)(w) → w ⊩ fw(x) ∈ fw(b))

∧ ∀y ∈ dom(b)∀w ≥ v

(fw(y) ∈ fw(b)(w) → w ⊩ fw(y) ∈ fw(a))}
(by (M) and I.H.)

= {v ∈ K | ∀x ∈ dom(a)∀w ≥ v

(fw(x) ∈ fw(a)(w) → fw(x) ∈ fw(b)(w))

∧ ∀y ∈ dom(b)∀w ≥ v

(fw(y) ∈ fw(b)(w) → fw(y) ∈ fw(a)(w))}
= {v ∈ K | ∀w ≥ v(fw(a)(w) = fw(b)(w))} (by (M))
= {v ∈ K | ∀w ≥ v(fvw(fv(a))(w) = fvw(fv(b))(w))} (by (C))
= {v ∈ K | ∀w ≥ v(fv(a)(w) = fv(b)(w))}

(transition functions are truncations)
= {v ∈ K | fv(a) = fv(b)}
= {v ∈ K | v ⊩ fv(a) = fv(b)}. (Definition of = in KL(M))

This finishes the simultaneous induction for equality and set-membership.
We will now prove the other cases one-by-one. Let us start with ∧ and

∨, and a0, . . . , an−1 ∈ A be given. To improve readability, we will write ā for
a0, . . . , an−1 and fv(ā) for fv(a0), . . . , fv(an−1).

Jφ(ā) ∧ ψ(b̄)K = Jφ(ā)K ∧ Jψ(b̄)K
= {v ∈ K | v ⊩ φ(fv(ā))} ∩ {v ∈ K | v ⊩ ψ(fv(b̄))} (by I.H.)
= {v ∈ K | v ⊩ φ(fv(ā)) and v ⊩ ψ(fv(b̄))}
= {v ∈ K | v ⊩ φ(fv(ā)) ∧ ψ(fv(b̄))}.

And completely analogous, for ∨ it holds that:

Jφ(ā) ∨ ψ(b̄)K = Jφ(ā)K ∨ Jψ(b̄)K
= {v ∈ K | v ⊩ φ(fv(ā))} ∪ {v ∈ K | v ⊩ ψ(fv(b̄))} (by I.H.)
= {v ∈ K | v ⊩ φ(fv(ā)) or v ⊩ ψ(fv(b̄))}
= {v ∈ K | v ⊩ φ(fv(ā)) ∨ ψ(fv(b̄))}.

The implication-case follows similarly, with an essential use of (C) for equa-
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tion (1):

Jφ(ā) → ψ(b̄)KH = Jφ(ā)KH → Jψ(b̄)KH
= {v ∈ K | ∀w ≥ v(w ⊩ φ(fw(ā)) → w ⊩ ψ(fw(b̄)))} (I.H.)
= {v ∈ K | ∀w ≥ v(w ⊩ φ(fvw(fv(ā)))

→ w ⊩ ψ(fvw(fv(b̄))))} (1)
= {v ∈ K | v ⊩ φ(fv(ā)) → ψ(fv(b̄))}.

The only remaining cases are the quantifiers. Here, the surjectivity of the
fv (as proved in Lemma 5.7) will be important.

J∃x φ(x, ā)KH =
∨

x∈M(H)

Jφ(x, ā)KH
= {v ∈ K | ∃x ∈M (H) v ⊩ φ(fv(x), fv(ā))} (by I.H.)
= {v ∈ K | ∃x ∈ Dv v ⊩ φ(x, fv(ā))} (2)
= {v ∈ K | v ⊩ ∃x φ(x, fv(ā))}.

The inclusion from left to right in equality (2) follows by the fact that fv(x) ∈
Dv, the converse inclusion follows because fv is surjective. Our final case is
the one of the universal quantifier:

J∀x φ(x, ā)KH =
∧

x∈M(H)

Jφ(x, ā)KH
= {v ∈ K | ∀x ∈M (H) v ⊩ φ(fv(x), fv(ā))} (by I.H.)
= {v ∈ K | ∀w ≥ v ∀x ∈M (H) w ⊩ φ(fw(x), fw(ā))} (3)
= {v ∈ K | ∀w ≥ v ∀x ∈ Dw w ⊩ φ(x, fvw(fv(ā)))} (4)
= {v ∈ K | v ⊩ ∀x φ(x, fv(ā))}.

Note that the inclusion from left to right of equality (3) follows by (C), persis-
tency of the Kripke model, and the fact that every element x ∈ Dw for w ≥ v

can be extended to an element of Dv by setting x(u) = ∅ for all u ̸≥ w. The
converse inclusion is trivial. Furthermore, equality (4) holds because the im-
age of fv is Dw (by definition and surjectivity). This was the last case of the
induction and therefore, we have finished the proof of the theorem.

The essential corollaries read as follows.

Corollary 5.9. Let M be a model of ZFC, (K,≤) be a Kripke frame and H

the Heyting algebra Up(K). For every sentence φ in the language of set theory,
it is the case that M (H) ⊨ φ if and only if KL(M) ⊨ φ.

Corollary 5.10. Let M be a model of ZFC, (K,≤) be a Kripke frame and H the
Heyting algebra Up(K). The logics of the Heyting-valued model M (H) and the
full Lubarsky model KL(M) coincide, that is, LProp(M (H)) = LProp(KL(M)).

As we have seen in Proposition 2.25, not every Heyting algebra is of the
form Up(K) for some Kripke frame K.
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5.3 The Propositional Logic of Heyting-Valued Models

Recall from definition Definition 2.17 that an isomorphism f : H → H ′ of
Heyting algebras is a bijective map that respects the structure of the algebras.

Given any isomorphism f : H → H ′ of Heyting algebras, we can define an
isomorphism f̂ : M (H) → M (H′) by induction on the ranks of the elements of
M (H) as follows:

(i) Let f̂(∅) = ∅, and,

(ii) given x : M (H) → H, let f̂(x) : M (H′) → H ′ be given by dom(f̂(x)) =

f̂ [dom(f(x))], and f̂(x)(f̂(y)) = f(x(y)).

The following proposition is a generalisation of the Symmetry Lemma for
Boolean-valued models (see [22, Lemma 14.37]). The proof is the same.

Proposition 5.11. If f : H → H ′ is an isomorphism of Heyting algebras,
then f̂ :M (H) →M (H′) is an isomorphism of Heyting-valued models such thatJφ(f̂(a0), . . . , f̂(an−1))KH′

= f(Jφ(a0, . . . , an−1)KH).

We call an automorphism f of a Heyting algebra H non-trivial if f ̸= idH .

Proposition 5.12. Let H be a Heyting algebra. If the class of Heyting-valued
models is 1-faithful to H, then H does not have non-trivial automorphisms.

Proof. Suppose that the Heyting-valued models are 1-faithful to H, and let f
be an automorphism of H. By 1-faithfulness of M (H), we can find a sentence
φh in the language of set theory for every h ∈ H such that JφKH = h holds in
some M (H). Then Proposition 5.11 implies that h = JφKH = f(JφKH) = f(h)

for all h ∈ H. Hence, f is the identity on H.

Let us discuss this result for a bit. There are Heyting algebras without
non-trivial automorphisms. For example, the finite element Heyting algebra
3 = ({a, b, c},≤) ordered by the reflexive and transitive closure of a ≤ b ≤ c

does not permit a non-trivial automorphism: Any automorphism needs to be
bijective and has to respect 03 = a and 13 = b. For an infinite Heyting algebra
without non-trivial automorphisms see [24].

Note that every permutation of the atoms (that is, minimal non-zero ele-
ments) of a complete atomic Boolean algebra gives rise to an automorphism in
the following way. By [8, Theorem 10.24], we know that the complete atomic
Boolean algebras are exactly the Boolean algebras of the form (P(X),⊆) for
some set X and the atoms are exactly the singletons. Given any bijection
f : X → X, the induced map f [·] : P(X) → P(X), Y 7→ f [Y ] is an auto-
morphism of P(X). By the previous proposition, this means that the class of
Heyting-valued models is not faithful to any of these Boolean algebras (except
for the trivial two-element Boolean algebra).

An example of a finite Heyting algebra with a non-trivial automorphism can
be seen in Figure 5.1. A non-trivial automorphism f is obtained by f(a) = b,
f(b) = a and f(x) = x for all other elements x of the Heyting algebra. Again,
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Figure 5.1: A Heyting algebra that admits a non-trivial automorphism.

the above proposition implies that the class of Heyting-valued models is not
faithful to this Heyting algebra.

Finally, applications in set-theoretical forcing explicitly use the existence of
non-trivial automorphisms, e.g., for proving the consistency of ¬AC (see [22,
chapter 14]).

We summarise this discussion in the following corollary.

Corollary 5.13. The class of Heyting-valued models is not faithful to any
Heyting algebra with non-trivial automorphisms.

The question of loyalty of the class of all Heyting-valued models is still
open. However, we can discuss it for a subclass of the Heyting-valued models.

Theorem 5.14. Let (K,≤) be a Kripke frame in which every node has a
successor that is an end-node. Then KC ⊆ LProp(M (Up(K))).

Proof. By Corollary 5.10, we know that LProp(M (Up(K))) = LProp(KL(M)). In
this situation, Theorem 4.15 implies that

KC ⊆ LProp(KL(M)) = LProp(M (Up(K)))

and this proves the theorem.

Corollary 5.15. The class of Heyting-valued models that are based on a finite
Heyting algebra is not loyal. Indeed, the propositional logic of this class contains
at least KC.

Proof. Denote with C the class of Heyting-valued models based on a finite
Heyting algebra. By Theorem 2.22, for every finite Heyting algebra H, there
exists a partially ordered Kripke frame (K,≤) such that H = Up(K). Note
that every successor in such a finite Kripke frame has a successor that is an
end-node. Therefore, we can apply the previous Theorem 5.14 to derive that
KC ⊆ LProp(C). However, LProp(HC) = IPC ⊊ KC.
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The Propositional Logic of Boolean-Valued Models

We want to spend the rest of this chapter analysing the propositional logic of
the Boolean-valued models, a subclass of the class of Heyting-valued models.
Let us first observe that the result of faithfulness for Heyting-valued models
transfers directly to the Boolean-valued case.

Corollary 5.16. The class of Boolean-valued models is not faithful to any
Boolean algebra with non-trivial automorphisms.

As discussed above, this includes many examples of Boolean algebras used
in the context of the forcing technique but also applies to every complete atomic
Boolean algebra.

The law of excluded middle holds in any Boolean-valued model as it does so
in any Boolean-algebra. Therefore, it holds that the propositional logic of the
Boolean-valued models is CPC, and so we can state the following theorem.

Theorem 5.17. The class of Boolean-valued models is loyal.

Proof. Let C be the class of Boolean-valued models. From Proposition 2.37 we
know that LProp(C) is an intermediate logic, i.e., IPC ⊆ LProp(C) ⊆ CPC. By
Theorem 5.4, we know that the law of excluded middle is contained in LProp(C),
but this means that LProp(C) = CPC.
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Chapter 6

Conclusion and Open Questions

In the first chapter of this thesis, we used the theory of Heyting structures
to develop a framework that allows us to define and classify the propositional
logics of classes of Heyting structures.

To summarise, we have seen that Iemhoff models are faithful structures that
provide many classes of models for CZF∗ with different underlying logics. Our
results about the limitations of this method indicate that Iemhoff models are
a tool rather for showing the compatibility of set theory with many different
underlying propositional logics than for independence proofs in constructive
set theory.

Lubarsky’s models, in contrast, exhibit a strong failure of faithfulness. The
class of finite Lubarsky models is not loyal. This seems to be a consequence of
requiring elementary embeddings in the definition. The loyalty of the class of
all Lubarsky models is still open.

Question 6.1. Is the class of all Lubarsky models loyal?

We discovered that the class of Heyting-valued models is not faithful to
any Heyting algebra with a non-trivial automorphism. This result transfers
directly to the (sub-)class of Boolean-valued models. The class of Boolean-
valued models for set theory is loyal.

Question 6.2. Is the class of all Heyting-valued models loyal?

To answer these questions will be future work. Let us conclude by stating
some further open questions and ideas for research in this area.

Question 6.3. In this thesis, we mainly consider the notion of <ω-faithfulness
as defined in Definition 2.40. What happens for logics of the form Lκλ? Are
there connections to compact cardinals? Is the class of Iemhoff models ω-
faithful?

Question 6.4. Is it possible to strengthen Proposition 2.49 and show that
n-faithful does not imply (n+1)-faithful for natural numbers n? Moreover, are
there applications of n-faithfulness? Are there connections to computational
aspects of logic?
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Question 6.5. Modal algebras provide semantics for propositional modal logic
similar to how Heyting algebras do so for intuitionistic logic. Is it possible to
extend the theory of Heyting structures to obtain models of modal theories?
Can we then similarly analyse the underlying propositional logic of classes of
models in terms of loyalty and faithfulness? Can this be applied to modal set
theories as presented in [26] or [32]?

Question 6.6. The authors of [16] generalise the set-theoretical ultrapowers
to Boolean ultrapowers. Can the class of Boolean ultrapowers be evaluated
within our framework? Moreover, can it be generalised to Heyting ultrapowers
(of course, based on a Heyting algebra)? Are these structures loyal or even
faithful?

Question 6.7. Similar to the previous question, we can ask whether the topo-
logical models as defined in [18] can be analysed within our framework? If so,
are they loyal or faithful?

Question 6.8. The notion of Heyting structure that we took from [10] is used
in that paper in a topos-theoretic context. In how far can our analyses be
generalised for this context?

Question 6.9. Is it possible to extended our framework to analyse (set) the-
ories based on weaker logics such as minimal logic?
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Appendix A

Logics

For a general introduction to intuitionistic logic we refer to [30] and [5]. A
general overview on constructivism can be found in [33], and a proof-theoretic
exposition is [34].

We assume that we are given a first-order language L: The logical primitives
are ∧, ∨, →, ⊥, ∀ and ∃; the non-logical symbols might include constants,
function symbols and relation symbols. The latter are also known as predicate
symbols. The inductive definitions of terms and formulas are as usual, where
the negation ¬φ of a formula is defined as φ → ⊥. We will use x, y, z, . . . to
denote variables of the language and t, s, . . . to denote terms of our language.
The set of formulas of the language L will be denoted by Lform and the set of
sentences, again defined as usual, by Lsent.

Definition A.1. Intuitionistic predicate logic IQC can be axiomatised in a
Hilbert-style system in the following way. The axioms are all formulas of the
following forms:

(i) φ→ (ψ → φ)

(ii) (φ→ ψ) → ((φ→ (ψ → χ)) → (φ→ χ))

(iii) φ→ (ψ → φ ∧ ψ)
(iv) φ ∧ ψ → φ

(v) φ ∧ ψ → ψ

(vi) φ→ φ ∨ ψ
(vii) ψ → φ ∨ ψ
(viii) (φ→ χ) → ((ψ → χ) → (φ ∨ ψ → χ))

(ix) (φ→ ψ) → ((φ→ ¬ψ) → ¬φ)
(x) ¬φ→ (φ→ ψ)

(xi) ∀xφ(x) → φ(t)

(xii) φ(t) → ∃xφ(x)

We will write ⊢IQC φ to denote that φ is deducible in IQC. For every
φ in the list of axioms, we have that ⊢IQC φ. The following three rules of
interference hold:
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Modus Ponens If ⊢IPC φ→ ψ and ⊢IPC φ, then ⊢IPC ψ.
∀-Introduction If ⊢IPC ψ → φ(t), then ⊢IPC ψ → ∀xφ.
∃-Introduction If ⊢IPC φ(t) → ψ, then ⊢IPC ∃xφ→ ∀ψ.

If we want to consider IQC with equality, we have to add the following two
axiom schemes for all terms t and s:

(i) t = t, and,
(ii) t = s → (φ(t) ↔ φ(s)) for all formulas φ(x) with possibly more free

variables.

This finishes the definition of the Hilbert-style system for IQC.

We can obtain classical predicate logic CQC from IQC by adding the
axiom scheme φ ∨ ¬φ. Given a set of propositional letters Prop (also called
propositional variables) we can consider the restricted first-order language LProp
where all quantifiers and variables are removed, and Prop is taken as a set of
nullary predicates. Intuitionistic propositional logic IPC is obtained from IQC
by restricting to the language LProp, restricting to the first 10 axioms, and using
modus ponens as the only inference rule. We obtain CPC by adding the axioms
scheme p ∨ ¬p to IPC (or by restricting CQC in a similar way).

Having fixed a language L, we will sometimes abuse notation and identify
our logics with the set of formulas that they derive. We will do so in partic-
ular for propositional logics, such as IPC and CPC. Then we can make the
following definition.

Definition A.2. A set of propositional formulas J is an intermediate logic if
it is closed under modus ponens and uniform substitution, and it holds that
IPC ⊆ J ⊆ CPC.

A set of sentences T of a first-order language L will be called a theory. We
will usually assume that a theory is closed under some deductive system such
as IQC or CQC. Moreover, we will sometimes close a theory T under an
intermediate logic J.

Definition A.3. Let T be a theory and J be an intermediate logic. With T(J)
we will denote the closure of T under substitutions into the formulas of J and
modus ponens.
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Appendix B

Set Theories

The main three axiom systems used in this thesis are classical Zermelo-Fraenkel
set theory with choice ZFC (or without choice ZF), intuitionistic set theory IZF
and constructive set theory CZF. For the presentation of these axiom systems,
we will follow the book [1] of Aczel and Rathjen, to which we also refer for a
deeper introduction to intuitionistic and constructive set theory.

Before listing the three axiom systems in detail, we refer to the following
table for an overview.

ZFC IZF CZF CZF−c

Extensionality Extensionality Extensionality Extensionality
Empty set Empty set Empty set Empty set
Pairing Pairing Pairing Pairing
Union Union Union Union
Power set Power set
Infinity Infinity Strong Infinity Strong Infinity
Foundation

Set Induction Set Induction Set Induction
Separation Separation Bounded Separation Bounded Separation
Replacement

Collection
Strong Collection
Subset Collection

Choice

Zermelo-Fraenkel Set Theory ZFC

The axiom system ZF of Zermelo-Fraenkel set theory consists of the following
axioms.

Extensionality ∀a∀b(∀x(x ∈ a↔ x ∈ b) → a = b)

Empty set ∃a ∀x ∈ a ⊥
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Pairing ∀a∀b∃y∀x(x ∈ y ↔ (x = a ∨ x = b))

Union ∀a∃y∀x(x ∈ y ↔ ∃u(u ∈ a ∧ x ∈ u))

Power set ∀a∃y∀x(x ∈ y ↔ x ⊆ a)

Infinity ∃a(∃x x ∈ a ∧ ∀x ∈ a∃y ∈ a x ∈ y)

Foundation ∀a(∃x(x ∈ a) → ∃x ∈ a∀y ∈ a(y /∈ x))

Separation ∀a∃y∀x(x ∈ y ↔ (x ∈ a ∧ φ(x))), for all formulas φ(x).

Replacement ∀a∀x ∈ a∃!y φ(x, y) → ∃b∀y(y ∈ b ↔ ∃x ∈ a φ(x, y)), for all
formulas φ(x, y), where b is not free in φ(x, y).

By adding the following axiom of choice AC, we obtain the system ZFC.

Choice ∀a((∀x ∈ a∀y ∈ a (x ̸= y → x ∩ y = ∅)) → ∃b∀x ∈ a∃!z ∈ b z ∈ x)

Note that ZF and ZFC use classical logic.

Intuitionistic Zermelo-Fraenkel Set Theory IZF

Intuitionistic Zermelo-Fraenkel set theory IZF consists of the axioms (or axiom
schemes) of Extensionality, Empty set, Pairing, Union, Power set, Infinity,
Separation together with the following axioms:

Set Induction (∀a(∀x ∈ a φ(x) → φ(a))) → ∀aφ(a), for all formulas φ(x).

Collection ∀a(∀x ∈ a∃y φ(x, y) → ∃b∀x ∈ a∃y ∈ b φ(x, y)), for all formulas
φ(x, y), where b is not free in φ(x, y).

Intuitionistic set theory IZF uses intuitionistic logic instead of classical logic.

Constructive Set Theory CZF

The constructive set theory CZF consists of the axioms of Extensionality,
Empty set, Pairing, Union, Set Induction and the following axioms:

Bounded Separation ∀a∃y∀x(x ∈ y ↔ x ∈ a ∧ φ(x)), for all bounded (i.e.,
∆0) formulas φ(x), where y does not appear free in φ(x).

Strong Infinity ∃a(Ind(a)∧∀b(Ind(b) → ∀x ∈ a(x ∈ b))), where Ind(a) is the
formula denoting that a is an inductive set:

Ind(a) abbreviates ∅ ∈ a ∧ ∀x ∈ a∃y ∈ a y = {x}.

Strong Collection

∀a(∀x ∈ a∃y φ(x, y) →
∃b(∀x ∈ a∃y ∈ b φ(x, y) ∧ ∀y ∈ b∃x ∈ a φ(x, y))),

for all formulas φ(x, y) with potentially more free variables.
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Subset Collection

∀a∀b∃c∀u(∀x ∈ a∃y ∈ b ψ(x, y, u) →
∃d ∈ c(∀x ∈ a∃y ∈ d ψ(x, y, u) ∧ ∀y ∈ d∃x ∈ a ψ(x, y, u))),

for all formulas ψ(x, y, u) with potentially more free variables.

Note that CZF is based on intuitionistic logic. By CZF−c we denote CZF
without the collection axioms.

Proposition B.1 ([1, Theorem 5.1.2]). The axiom of Subset Collection implies
the principle of exponentiation, i.e., the statement that for any two sets a and
b, the set of functions from a to b does exist.
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