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Abstract

We propose a proof method that aims to show that the Fiat-Shamir proof system is SP-
extractable (statement preserving) in the quantum random oracle model, if the underlying
sigma-protocol has perfect unique responses. We furthermore prove that a signature scheme
which is based on a Fiat-Shamir proof system that is SP-extractable, is existentially unforge-
able for a quantum adversary.
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Introduction
Over the last few years, the development of quantum computers has taken a leap. It now seems
realistic that the technical difficulties involved may be overcome within the next few decades.
While this brings about many exciting prospects for such application areas as materials science,
pharmacological research and brain modeling, and even cryptography could benefit in some
respects, the outlook for this latter field is not exclusively good. A practical-scale quantum
computer could break almost all of the cryptographic protocols that are in use today.

To address the coming quantum threat, the United States National Institute of Standards
and Technology (NIST) has recently issued a competition for a new type of digital signature
scheme, that should be post-quantum secure. Digital signatures form an important part of
our current-day digital infrastructure. They allow for secure digital communication, including
financial transactions, private conversations and software distribution. Needless to say, the se-
curity of these digital signature schemes is of the utmost importance to the normal functioning
of modern society.

Perhaps less obvious is the significance of their efficiency. With billions of secure trans-
actions being carried out across the globe every day, a reduction in signature size from 3kb
(kilobyte) to 1kb could lead to huge energy savings. Whether the gain is measured in tonnes of
euros or tonnes of carbon dioxide – depending on your personal outlook on life – the importance
of every last millibit of bytes is clear.

The NIST competition has attracted contributions from research teams around the world.
A significant portion of them makes use of a generic technical tool called the ‘Fiat-Shamir
transformation’. The transformation takes a multiple round, interactive identification protocol,
and turns it into a non-interactive digital signature scheme. The Fiat-Shamir transformation
is famous for combining security with extreme efficiency, leading to the most desirable kind of
signature schemes.

Unfortunately, in 2011 a paper was published [BDF+11] that warned against a particular
vulnerability of Fiat-Shamir type signatures in the post-quantum era. The authors pointed out
that the classical proof of security, which is used to mathematically demonstrate the extreme
unlikeliness that anyone with a classical computer is able to falsify a Fiat-Shamir signature,
does not go through when a quantum computer is brought into the picture.

While the 2011 paper left open the possibility that a new proof could be found – showing
that Fiat-Shamir signatures are indeed unforgeable even for a quantum computer – we cannot
rely on good faith alone to protect us in the coming quantum age. Therefore, the NIST-
submissions that use Fiat-Shamir all had to build in a kind of extra security measure, which
significantly degrades their efficiency. In some cases the increase in data-usage is approximately
a factor of 3 [KLS18].

Many researchers find this situation unsatisfactory. It is widely believed that the Fiat-
Shamir transformation is in fact post-quantum secure, so that it should be possible to find
a proof confirming this intuition and do away with the extra security measures. However,
results of the last few years have rather pointed in the other direction. In 2014, a paper titled
‘The hardness of quantum rewinding’ by Ambainis et al. [ARU14] commented on the difficulty
of transporting classical proof techniques related to Fiat-Shamir to the quantum setting, and
actually found a quantum break (under suitable assumptions) of a range of schemes known
to be classically secure. The paper [DFG13] went a step further, claiming to have proven the
impossibility of a direct proof of quantum security for Fiat-Shamir. (We argue against their
conclusion in Section 3.2.) More recently, [Unr17] made an extensive study of the problem
and took some steps in the right direction. However, a crucial part of their analysis consisted
of proving the extractability of the related Fiat-Shamir proof system, for which they could give
no solution.

Our contribution

In spite of the recent negative results, and in direct contradiction to the claim of [DFG13],
we give a method to prove the extractability of the Fiat-Shamir proof system, filling in the
gap from [Unr17]. However, shortly after the submission of this thesis, it was discovered that
our proof method still contains an unproven assumption, and therefore cannot be considered a
full proof yet. Proving the assumption is non-trivial, nevertheless it is expected that a revised
and complete version of the proof will appear on the arXiv soon. For more details about the
unproven assumption, see page 31.

We use a slightly weaker definition of extractability than [Unr17] did, but we also prove
that their analysis of Fiat-Shamir signatures still goes through under the weaker definition,
leading to the conclusion that Fiat-Shamir signatures are indeed post-quantum secure.
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It should be noted that we use a technique from [Unr12], which puts a restriction on the
class of signature schemes to which our result applies. We require that the underlying sigma-
protocol has a property called ‘perfect unique responses’. Not all NIST-submissions satisfy
this condition. In particular, the popular lattice-based schemes do not fall in the category that
we prove post-quantum secure. The equally promising submissions based on supersingular
isogeny cryptography do satisfy the condition. However, we strongly believe that in the near
future our result may be extended to also include the lattice-based schemes.

To prove our result, we present a new technique for using a quantum adversary in a security
reduction. Normally, when the (intermediate) output of a quantum adversary is measured,
its internal state collapses, which means that we cannot continue to use the adversary in
our reduction — because in general the internal state will be disturbed so much that we
cannot know what the adversary will do from the measurement point on. In this thesis we
develop new tools that allow us to predict the behavior of the adversary after an intermediate
measurement. We use them to show that in the Fiat-Shamir case, quantum rewinding is
possible. We furthermore introduce a new ‘quantum forking lemma’ – in approximate analogy
to the classical forking lemma – which completes the proof of the quantum extractability of
the Fiat-Shamir proof system.
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1 Background
In this section we formally introduce the concepts that feature in this thesis. We present
only a small subset of the much broader fields of quantum information/computation and
cryptography. For a more comprehensive overview of both fields, see [NC11] and [KL14]
respectively.

1.1 Quantum computing
Quantum mechanics is a theory that predicts the behavior of physical systems at the subatomic
scale. Since any physical system can in principle be used to represent and manipulate infor-
mation, a natural question, which researchers started asking in the seventies of the twentieth
century, is whether quantum systems are suitable media for information processing tasks.

As it turns out, quantum information is fundamentally different from classical information,
in ways that allow quantum devices to perform qualitatively different operations than their
‘classical’ counterparts. Currently, a few specific problem classes have been discovered for
which a quantum algorithm outperforms the best known classical algorithm.

Quantum states

The fundamental unit of classical information is a bit; its value is either one or zero, as such
it discriminates between two possibilities. In quantum information, the fundamental unit is
a quantum bit or qubit. The quantum bit has a continuous value; its state can be described
by a unit vector in a two-dimensional complex Hilbert space. In general, a quantum system
is represented by a complex Hilbert space of some dimension d, and the state of the system
is described by a unit vector in this space. For most quantum computing applications, d is
finite.

Complex Hilbert spaces have a complex inner product that satisfies (in Dirac notation)

1. 〈φ|ψ〉 = 〈ψ|φ〉 (Complex conjugate)
2. 〈φ|ψ〉 = λ1〈φ1|ψ〉+ λ2〈φ2|ψ〉 where λ1, λ2 ∈ C and 〈φ| = λ1〈φ1|+ λ2〈φ2|

(Linear in the firstargument)
3. 〈φ|φ〉 ≥ 0 (Positive definite).

The inner product induces a norm on vectors in the Hilbert space:

‖|φ〉‖2 :=
√
〈φ|φ〉 (2-norm)

A useful lemma concerning the inner product is the Cauchy-Schwarz inequality, which says
that

|〈φ|ψ〉| ≤ ‖|φ〉‖2 · ‖|ψ〉‖2 (Cauchy-Schwarz inequality)
where | · | denotes the absolute value of a complex number.

As any vector in a vector space, a quantum state |φ〉 can be decomposed as a linear
combination of different component states:

|φ〉 = α|ψ1〉+ β|ψ2〉 α, β ∈ C

We say that |φ〉 is a superposition of |ψ1〉 and |ψ2〉 if both α and β are non-zero. In quantum
computing, we often consider states relative to the computational basis states:

|0〉 :=

(
1
0

)
|1〉 :=

(
0
1

)
(computational basis states)

Note that these states form an orthonormal basis for a two-dimensional Hilbert space. We
may put together different systems using the tensor product, and in the same way we can
extend the computational basis states. Composing two qubits for example gives

(α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉) =

(
α1

β1

)
⊗
(
α2

β2

)
=


α1α2

α1β2

β1α2

β1β2


where the last vector is written as a combination of computational basis states in a four-
dimensional Hilbert space:

α1α2

α1β2

β1α2

β1β2

 = α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉.
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In general, composing n two-dimensional systems (qubits) gives a system of dimension 2n,
and we identify the computational basis states with bitstrings of length n. In this way, the
system can be in a superposition of 2n classical data strings.

Often, the state of a system is only probabilistically known. We then say that the system
is in a mixed state and use the density operator

ρ :=

n∑
i=1

pi|φi〉〈φi| (density operator of a mixed state)

to indicate that it is in state |φi〉 with probability pi – where p is a (classical) probability
vector of dimension n. If p has all its weight on a single entry pi, we say that the state is pure
and simply write |φi〉.

As a notion of closeness between two quantum states, one metric that we may use is the
trace distance. It is defined as half the trace norm of the difference of two states:

‖ρ− σ‖Tr =
1

2
Tr
(√

(ρ− σ)2
)

(trace distance)

A quantum state may be measured in several ways. The most general measurement that
an observer can perform, is a positive operator valued measurement (POVM). A POVM is
given by a finite set of outcomes O corresponding to a set of operators {Ei}i∈O, such that∑
i∈O Ei = 1H. If the state we measure is ρ, then the probability of finding outcome i is

Pr
[
i ∈ O ←M{Ei}(ρ)

]
= Tr(Eiρ) (POVM)

where Tr denotes the trace function. As a result of the measurement, the state of the system
has now become √

Eiρ
√
Ei

Tr(Eiρ)
(Post-measurement state)

A more restrictive type is the projective measurement, where we require the operators {Ei}i∈O
not only to sum to identity, but also to be pairwise orthogonal, i.e. EiEj = 0 for i 6= j. This
implies that the number of outcomes in O is at most equal to the dimension of the system
being measured, and that for each i ∈ O we have E2

i = Ei. In other words, all operators are
projectors that project onto orthogonal subspaces of H.

Finally, we can set the operators to be rank one projectors that project onto each of the
basis states, for any basis that we like. A very common type of measurement is one where the
operators are the projectors onto the computational basis states, in this case we say that we
measure the system in the computational basis.

Note that for a subspace V spanned by (a subset of the) computational basis vectors, the
probability that the outcome of a measurement in the computational basis lies in V (i.e. is
one of the vectors that spans it) is equal to Tr(ΠV ρ), where ΠV is the projector that projects
onto V . If we are measuring a pure state |φ〉, we may write this as Tr(ΠV |φ〉〈φ|) = ‖ΠV |φ〉‖22.

Quantum algorithms

Quantum algorithms compute on quantum states by applying unitary transformations, and
by performing measurements. A unitary transformation is a linear map U : H → H (in
our case domain and codomain are the same) that preserves the inner product, and hence
the induced norm. Unitary transformations are characterized algebraically by the condition
UU† = U†U = 1H (where U† denotes the conjugate transpose of U).

A measurement is not a unitary operation. When we say that an algorithm (or adversary)
is unitary, we mean that it does not perform any measurements until the very end of its run.
Any quantum algorithm can, however, be made unitary by a process called purification; if we
have enough extra qubits at our command, all in-between measurements can be deferred to
the end without changing the statistics of the final measurement.

Just like in classical computation, we can define a quantum algorithm that has access to
some oracle O. As a special extra operation, the algorithm is allowed to prepare a state ρq in
an n-qubit query register, represented by the input/output space C2n . It may then apply the
quantum operation EO on C2n ⊗ HO (where HO contains the hidden state of the oracle). E
can implement any function and any algorithm.

In the case of black-box access to some unitary adversary A, we want to model an algorithm
that uses A as a subroutine, without making any assumptions about how A performs its
computation. In the quantum setting, we give an algorithm oracle access to both UA – the
unitary that represents the computation of A – and its inverse U†A. See Section 3 of [Unr17]
for a complete model of quantum black-box oracle access.
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We analyze a quantum algorithm by considering its circuit complexity and/or its query
complexity. The former is defined relative to a particular gate set (a set of unitaries that are
approximately universal for quantum computation). It counts the asymptotic amount of gates
required to execute the algorithm on a quantum computer, relative to the input size. Oracle
queries are usually considered to be of unit cost. Query complexity abstracts away from this
picture and only counts the amount of queries the algorithm needs, again asymptotically with
respect to the input length.

Another aspect by which we can judge an algorithm, is its success probability. An algorithm
may not succeed on every input, but still output a correct answer with good probability on a
random input, or it may use internal coin flips to guide its decisions, introducing a random
factor to its output. A quantum algorithm on top of this may use a quantum measurement,
the outcome of which is probabilistic.

A function µ(x) : N → R is called negligible if for every positive integer c there exists an
integer Nc such that for all x > Nc

|µ(x)| < 1

xc
(negligible function)

We say that an algorithm has negligible success probability if

Pr [success(x, η) = 1 : x← A(η)] ≤ µ(η) (negligible success probability)

where µ is a negligible function and η is the so-called security parameter.

1.2 Post-quantum cryptography
The development of quantum computers threatens the security of current-day cryptography.
Cryptographic schemes are often built on the assumption that some underlying problem is
computationally hard to solve. It now appears that what is hard to solve on a classical
computer, is not necessarily hard to solve on a quantum computer. Even though technology
has not yet progressed far enough to build a practical quantum computer, cryptographic
protocols that are in use today may well be at risk in the near future. Finding schemes that
are secure even against adversaries with a scalable quantum computer is the aim of post-
quantum cryptography.

A problem is said to be computationally (quantum-) hard if no (quantum-) algorithm exists
that solves the problem in polynomial time – where depending on the context we measure time
either in circuit complexity or query complexity, and the polynomial is taken relative to the
input size.

Private-key and public-key under attack

Cryptographic protocols fall apart in two branches: private-key and public-key schemes. In
private-key cryptography, parties share a key that has to be distributed beforehand. In public-
key schemes, some subset of parties has a pair of keys (sk, pk). They keep the secret key sk
to themselves, and give out the public key pk. In the case of an encryption scheme, external
parties can now send encrypted messages to the owner of the public key, who uses his secret
key to decrypt. In the case of authentication schemes, the owner of the public key can use
his secret key to authenticate himself towards external parties, who verify the authentication
with the help of the public key.

We often prove the security of a protocol, private-key and public-key alike, with a general
kind of reduction that goes as follows: Suppose that there exists a polynomial-time adversary
A, that has non-negligible probability of breaking our protocol. We then use this assumption
to solve a computationally hard problem. As long as the problem is truly hard, we are
comfortable that an actual (polynomial-time) adversary cannot break the protocol.

Two quantum algorithms in particular have challenged the presumed hardness of compu-
tational problems that are currently widely used in cryptography.

Shor’s algorithm [Sho94] is a quantum algorithm that can solve two important prob-
lems in polynomial-time (measured in circuit complexity). It solves both integer factorization
and the discrete-logarithm problem, which together form the basis of almost every public-key
protocol in use today. In such schemes, the public key is a large composite number and the
secret key its (usually two) prime factors, or the public key is a group element y := ge where
g is the (publicly known) group generator and e is the secret key. As we noted, the secret key
should be unobtainable from the public key, but this is precisely what Shor’s algorithm allows
one to do. To remain secure against a quantum adversary, such schemes will therefore have
to reduce to a different, quantum-hard computational problem.
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Grover’s algorithm [Gro96] for unstructured search forms a threat to any protocol where
the adversary can guess a key and then check whether this key is correct. The speedup over
classical algorithms however is not as big as with Shor’s algorithm. If we know the key-length
is n and want to have a fifty-percent chance of finding the correct key, a classical brute-force
algorithm would have to try at least 2n

2
, that is, half of the keys. Grover can do the same with

only 2
n
2 evaluations, giving a quadratic speedup in terms of query complexity. Doubling the

key length therefore effectively neutralizes a Grover attack.

Quantum-hard computational problems

A couple of (new) computational problems have been conjectured to be quantum-hard, and
proposed as a post-quantum alternative to the number-theoretic assumptions that are broken
by Shor’s algorithm. Next to code-based cryptography and hash-based cryptography, there are
two of them that we highlight:

Lattice-based cryptography (see [Pei16] for a survey) uses a ‘good’ basis (= close to
orthogonal) for some lattice in Rn as a secret key. Several computational tasks can be defined
– for example, finding the lattice point that is closest to some given vector – that are hard
to solve when only a ‘bad’ basis is known (for high dimensions). Lattices can have algebraic
structure on them, which increases the efficiency of lattice-computations, hence of the lattice-
cryptosystems, but also of any attacks on the scheme. Therefore, there is a trade-off between
efficiency and security. Currently however, even for some (but not all of them) of the more
structured variants based on module lattices, no subexponential (quantum) algorithms are
known that solve the corresponding computational problems.

Supersingular isogeny cryptography (see [De 17] for a good introduction) improves
on elliptic-curve cryptography, a branch of cryptography that in its original form is broken by
Shor’s algorithm. Elliptic curves over finite fields can be used to construct a group structure for
which the discrete-logarithm problem is believed to be at least as hard as over any other group.
With only classical adversaries to cope with, key lengths may therefore be kept relatively short,
leading to efficient protocols. Post-quantumly however such schemes are insecure, due to Shor’s
solution for the discrete-logarithm problem.

Recently, new computational problems involving elliptic curves have been defined. A par-
ticular type of algebraic map, which we call an ‘isogeny’ between two elliptic curves – actually,
the curves must be ‘supersingular’ elliptic – is believed to be hard to find even for a quantum
computer. Knowledge of the isogeny can serve as a secret key, with the corresponding public
key being the curves involved.

Quantum secure reductions

Basing schemes on quantum-hard computational problems is not enough to preserve security
in the post-quantum era. The security reduction itself, relating the security of the scheme to
the hardness of a computational problem, may not go through in the quantum world. In other
words, breaking the protocol might – for a quantum computer – not be equivalent to solving
the underlying problem. Replacing a classically hard problem by a quantum-hard problem
can therefore never be enough to reinstall our confidence in the security of the scheme.

When giving a security reduction for a post-quantum protocol, we always need to assume
the adversary to be quantum, with all the special quantum features that a quantum adversary
has. For example, when the adversary has private access to some function, we need to assume
that it could evaluate the function on a superposition of inputs. We will discuss related issues
in Section 1.7.

1.3 Identification and zero-knowledge proofs of knowledge
Cryptographic protocols are used in a variety of tasks. One particular goal that we may have,
is to be able to securely identify ourselves, perhaps to a party that we have not had any
previous contact with. As an example, I might want to place a bet with a bookmaker over the
internet. Even though we have never met in real-life, I want the bookkeeper to accept bets on
my name only if they come directly from me.

‘No previous contact’ means that we will need a public-key protocol, since there is no
opportunity to share a private key beforehand. A public key must also be shared, but it
could for example be broadcast by a trusted third party. What is the precise interpretation of
‘securely identify ourselves’? At the very least this should mean that no unauthorized party
can identify as someone else. A further demand that we might have, is that the protocol works
more than once, without any parties having to change their keys. Finally, it can be desirable
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to execute the whole protocol in a single message, instead of having to go through multiple
rounds of communication.

One solution to this cryptographic challenge is to use a so-called zero-knowledge proof of
knowledge. As the name suggests, it allows us to prove that we posses some piece of knowledge.
The paradoxical sounding prefix ‘zero-knowledge’ refers to the fact that eavesdroppers should
gain zero knowledge from overhearing the conversation, i.e. from obtaining a transcript of the
protocol, and also the verifier should learn nothing except that the proven statement is true.

A zero-knowledge proof of knowledge can be used for identification, if we let the honest
prover prove knowledge of a secret password that only he or she knows, without revealing
the password itself. The zero-knowledge property ensures that the same key can be reused
multiple times, since no knowledge – in particular about the secret password – is leaked from
the protocol.

Obviously, simply sending the password does not satisfy our constraints, since it would
reveal the secret both to the verifier and to any eavesdropper. The trick is to let the verifier
send a random challenge puzzle, one that requires knowledge of the secret to solve. Here
we have a connection with the computational problems from the previous section; the puzzle
should be (quantum-) hard to anyone who does not know the secret.

Toy example

To illustrate the idea, we present a simple zero-knowledge proof of knowledge (adapted from
[QGB89]). Imagine a cave, consisting of a tunnel that after a while splits into a left and a
right branch. At some further point the two branches meet again, but it is only possible to go
from the one to the other by passing through a locked gate. The gate however can be opened,
if and only if one knows its secret password.

Suppose that Alice wants to prove to Bob that she knows the password to the gate, without
revealing the password to him, or to anyone eavesdropping on their conversation. They could
agree on the following multi-round protocol: At the start of every round, Alice enters the cave
first, so that Bob cannot see which of the two branches she takes. After a minute Bob walks
up to the forking point, and shouts to Alice which of the branches he want to see her reappear
from, left or right.

If Alice knows the secret password, she can always open the gate to move to the desired
part of the cave. In an n round-protocol, she has a probability of 2−n of always showing up at
the right side without knowing the password. Thus, Bob will accept if and only if Alice meets
every single challenge.

Notice the importance of the randomness in this protocol. If Alice could predict the order
of left/right choices beforehand, she could always choose to enter via the tunnel she has to
come out of, without knowing the password. In fact, if Bob and Alice would secretly agree on a
specific order of challenges, they could stage an execution of the protocol that seemingly proves
Alice’s knowledge of the password, contrary to the facts. To an outside observer (eavesdropper)
everything seems as normal, only Alice and Bob know there is foul play at hand.

The above observation lies at the heart of the zero-knowledge property of the protocol; if
anyone not knowing the password could produce a transcript that is indistinguishable from an
honest execution, it must be impossible to extract any information about the password from
the honest transcript. The reason is that since the non-honest transcript per definition does not
contain any information about the secret, the honest version cannot contain any extractable
information about it either, or else the two would be distinguishable. The eavesdropper can
not even determine whether Alice knows the password or not, since he never knows whether
she cheated or not. Only Bob knows that his choices were random, and therefore he is the
only one who is convinced that Alice knows the password.

Formally, the zero-knowledge property is represented by the existence of a simulator. If
the simulator, who is not given access to the secret, can produce transcripts that are indistin-
guishable from an honest execution, the definition is fulfilled.

1.4 Sigma-protocols
A sigma-protocol is a three-round interactive proof system, tied to a family of relations Rη,
that for any integer η allows one party (the prover) to choose a statement x, and prove to
another party (the verifier) the following assertion:

∃w : (x,w) ∈ Rη.

We consider sigma-protocols for fixed length relations and quantum provers. A fixed-length
relation is such that for every η there exist values `xη and `wη such that (x,w) ∈ Rη implies
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|x| = `xη and |w| = `wη . We define

LRη := {x : ∃w. (x,w) ∈ Rη}

The protocol is given by the values `comη ,`chη ,`respη that specify the lengths of the three messages
‘commitment’, ‘challenge’, ‘response’, and by the quantum polynomial-time prover (P 1

Σ, P
2
Σ)

and the deterministic polynomial-time verifier VΣ.
A transcript of an honest execution of the protocol is generated as in the game Sigma,

which is defined as:

com← P 1
Σ(1η, x, w),

ch
$← {0, 1}`

ch
η ,

resp← P 2
Σ(1η, x, w, ch),

okV ← VΣ(1η, x, com, ch, resp)

Here the commitment satisfies com ∈ {0, 1}`com , the challenge is such that ch ∈ {0, 1}`ch and
for the response we have resp ∈ {0, 1}`resp . okV is a binary value. If okV = 1, we say that
the verifier accepts.

The following is a selection of formal properties that any sigma-protocol might have, taken
from [Unr17]:

Definition 1.1 (Properties of sigma-protocols)

• Completeness: For any quantum-polynomial time algorithm A, there is a negligible
function µ such that for all η,

Pr[(x,w) ∈ Rη ∧ VΣ(1η, x, com, ch, resp) = 0 : (x,w)← A(1η),

com← P 1
Σ(1, η, x, w), ch

$← VΣ(1η, x), resp← P 2
Σ(1η, x, w, ch)] ≤ µ(η)

• Statistical soundness: There is a negligible µ such that for any stateful classical (but
not necessarily polynomial-time) algorithm A and all η, we have that

Pr[ok = 1 ∧ x /∈ LRη : (x, com)← A(1η), ch
$← {0, 1}`ch ,

resp← A(1η, ch), ok ← VΣ(1η, x, com, ch, resp)] ≤ µ(η).

• Perfect special soundness: There is a quantum polynomial-time algorithm EΣ such
that for all η, x, com, ch, resp, ch′, resp′ with ch 6= ch′ and VΣ(1η, x, com, ch, resp) =
VΣ(1η, x, com, ch′, resp′) = 1, we have that

Pr[(x,w) ∈ Rη : w ← EΣ(1η, x, com, ch, resp, ch′, resp′)] = 1.

• Honest-verifier zero-knowledge (HVZK): There is a quantum polynomial-time al-
gorithm SΣ (the simulator) such that for any stateful quantum polynomial-time algorithm
A there is a negligible µ such that for all η and all (x,w) ∈ Rη,∣∣∣Pr[b = 1 : (x,w)← A(1η), com← P 1

Σ(1η, x, w), ch
$← {0, 1}`

ch
η ,

resp← P 2
Σ(1η, x, w, ch), b← A(com, ch, resp)]

− Pr[b = 1 : (x,w)← A(1η), (com, ch, resp)← S(1η, x),

b← A(com, ch, resp)]| ≤ µ(η).

• Perfectly unique responses: There exist no values η, x, com, ch, resp, resp′ with resp 6=
resp′ and VΣ(1η, x, com, ch, resp) = 1 and VΣ(1η, x, com, ch, resp′) = 1.

• Unpredicatable commitments: The commitment has superlogarithmic collision-entropy.
In other words, there is a negligible µ such that for all η and (x,w) ∈ Rη

Pr[com1 = com2 : com1 ← P 1
Σ(1η, x, w), com2 ← P 1

Σ(1η, x, w)] ≤ µ(η).

• [Unr12] Proof of knowledge property/extractability with knowledge error κ: There
exists a constant d > 0, a polynomially bounded function p > 0, and a quantum polynomial-
time oracle machine1K such that for any quantum polynomial-time algorithm A, there is
a negligible µ such that for all η and all x ∈ {0, 1}`

x
η we have that

Pr[ok = 1 : Sigma] ≥ κ(η)⇒
1See [Unr12] for a precise definition. For our purposes it is enough to say that an oracle machine has access

to a unitary describing some other (quantum) algorithm, and its inverse. We will discuss the motivation of this
definition in Section 2.1.
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Pr[(x,w) ∈ Rη : w ← KA(1η,x)(x)] ≥ 1

p(η)
· (Pr[ok = 1 : Sigma]− κ(η))d − µ(η)

where Sigma is the game we defined above, and K has oracle access to A = (A1, A2).

In [Unr12] it was shown that a sigma-protocol which has perfect special soundness and perfectly
unique responses, is a quantum proof of knowledge, i.e. is extractable in the sense of the
definition given above, where the adversary may be quantum. If we only consider classical
adversaries, any scheme that has special soundness is automatically a proof of knowledge,
since we can always rewind a classical adversary to obtain accepting responses for two different
challenges. In Section 2.1 we will discuss in more detail the concepts of extractability, proofs
of knowledge and rewinding.

Example: The Schnorr identification scheme

To illustrate these formal notions, we present an example sigma-protocol, the Schnorr identi-
fication scheme (originally in [Sch91], we adapted a version of the protocol found in [KL14] to
match our notation). Note that three-round identification schemes form a subclass of sigma-
protocols, where the relation R consists of a relation between public keys and corresponding
secret keys. The scheme is based on the discrete-logarithm problem, therefore it is only clas-
sically secure.

Let G be a cyclic group of order q with generator g. The prover chooses uniform w ∈ Zq,
and sets y := gw. It keeps w as its secret key, and broadcasts the public key x := (G, q, g, y).
We then have the following scheme:

Prover(w) : Verifier(G, q, g, y) :

k ← Zq

com := gk
com

−−−−−−−−−−−→
ch

←−−−−−−−−−−−ch $← Zq

resp := ch · x+ k mod q
resp

−−−−−−−−−−−→accept if gresp · y−ch = com

We will informally explain why the Schnorr scheme is a secure identification scheme. Note
first that it is correct for any properly formed pair (x,w), and therefore as a sigma-protocol
satisfies completeness. In an honest execution we have

gresp · y−ch = gch·x+k mod q · (gx)−ch = gk = com

so that the verifier will always accept in the honest case. Furthermore, the protocol satisfies
perfect special soundness. If ch 6= ch′ ∈ Zq and we have

gresp · y−ch = gresp
′
· y−ch

′
= com

then
gresp−resp

′
= ych−ch

′

which means that anyone who has access to these values (like the algorithm EΣ from the
formal definition of special soundness) can compute

w = logg y = (resp− resp′) · (ch− ch′)−1 mod q.

Finally, the Schnorr identification scheme satisfies the honest-verifier zero-knowledge
property. It is easy for any simulator S that does not know the witness w (the secret key), to
create a transcript indistinguishable from an honest execution, simply by reversing the order
of the messages. S starts by picking resp and ch independently at random from Zq. It may
then compute

com := gresp · y−ch

and output (com, ch, resp). Since resp and ch are uniform in Zq, com is uniform in G, exactly
as in the honest transcript. resp should be uniformly random in Zq with the constraint that
resp = logg[com · ych], which is indeed the case in the simulated transcript. Therefore, the
two transcripts are indistinguishable.

The three properties combined tell us that Schnorr is a secure identification scheme in the
following sense: 1. Any authenticated party (i.e anyone who knows the secret key) can always
identify successfully, and 2. Any classical adversary who does not know the secret key has only
negligible probability of doing the same.
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Completeness shows that requirement 1. is satisfied, for any valid key-pair. For requirement
2., note that by the honest-verifier zero-knowledge property, an adversary gains nothing from
passively eavesdropping on an honest execution. We can therefore restrict to an adversary who
can only do the following: It receives a public key y, it sends a message com and it receives a
random challenge ch. Now it has to compute a correct response resp. If it can succeed at this
task with more than negligible probability, taken over the randomness of ch, than it can also
succeed with non-negligible probability in two different runs. Of course it could also simply
pick two random challenges by itself, and compute the corresponding responses. Then by the
special soundness property, it can compute the secret key w. Computing w from only x is
assumed to be computationally hard (classically), so we conclude that any classical adversary
with non-negligible success probability must have known w all along, hence is an authorized
party.

1.5 The Fiat-Shamir transformation
Let us return to Alice and Bob and their special cave. In Section 1.3, we argued that for
any (passive) eavesdropper, it is impossible to determine whether Alice and Bob cooperated
to cheat or not, so that nobody except Bob can be convinced that Alice knows the secret
password.

What if Alice and Bob do want to convince the rest of the world of Alice’s knowledge?
Suppose that they want to send a single (video) message to all of their friends, to prove to
them that Alice knows the password to the gate. Filming just the execution of the protocol is
not enough, because as we noted above, the resulting video could have been made by anyone
who does not know the password. However, if they would outsource the randomness of the
choice of left-right challenges to a coin, which they would flip in public view – in front of
the camera – right before Bob shouts the outcome to Alice, then the video message would
definitely be convincing to anyone who sees it! (As long as they film in one shot, to prove that
no failed trials have been cut out.)

The Fiat-Shamir transformation takes a particular sigma-protocol, and outsources the
random choice of the challenge message to a cryptographic hash function, transforming the
protocol from an interactive proof system into a single message scheme – a non-interactive proof
system. A cryptographic hash function is a function that is believed to be computationally
hard to invert, and its output should be computationally hard to distinguish from random.

The Fiat-Shamir transformation is characterized by the following two algorithms [Unr17]:

PH
FS :

Input: 1η, x, w
Oracles: Classical queries to

H.

com← P 1
Σ(1η, x, w)

ch := H(x||com)
resp← P 2

Σ(1η, x, w, ch)
return π := com||resp

VH
FS :

Input: 1η, x, π
Oracles: Classical queries to H.

com||resp := π
ch := H(x||com)
return VΣ

For non-interactive proof systems zero-knowledge is defined as follows:

Definition 1.2 (Zero-knowledge ([Unr17], simplified)) A non-interactive proof system
(P, V ) is zero-knowledge iff there is a quantum polynomial-time simulator S such that for every
quantum polynomial-time algorithm A there is a negligible µ such that for all η∣∣∣Pr[b = 1 : H

$← Fun(`inη , `
out
η ), b← AH,P (1η)]

−Pr[b = 1 : H
$← Fun(`inη , `

out
η ), b← AH,S(1η)]

∣∣∣ ≤ µ(η)

where Fun(`inη , `
out
η ) is the set of all functions from {0, 1}`in to {0, 1}`out .

The definition says that it should be infeasible for an adversary to distinguish between interac-
tion with the simulator or an honest prover. Note that H is taken uniformly at random from
the set of all functions of its type. That is not the same as saying that H is a cryptographic
hash function, even though such functions are designed to be indistinguishable from random.
Choosing H at random in our security definitions is an idealization commonly known as the
random-oracle model. We will discuss this model in further detail in Section 1.7.

If the underlying sigma-protocol has the properties completeness, honest-verifier zero-
knowledge and unpredictable commitments, then the non-interactive proof system given by
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the Fiat-Shamir transform is zero-knowledge against a quantum adversary. The proof re-
quires special quantum techniques, and was first given in [Wat09]. We present here only the
simulator that produces the indistinguishable transcripts, which comes from a proof of the
zero-knowledge property in [Unr17]:

SH
FS :

Input: 1η, x
Oracles: Reprogramming

access to H.

(com, ch, resp)← SΣ(1η, x)
if VΣ(1η, x, com, ch, resp) =
1 then
H(x||com) := ch

return π := com||resp

Note that we allow the simulator to reprogram the oracle. A similar kind of cheating is what
enabled Alice and Bob to feign an honest execution in the cave, and the simulator for the
sigma-protocol to come up with fake transcripts. In all cases, the randomness of the chal-
lenges is what makes the task difficult, so controlling the source of randomness allows one
to produce the correct output without knowing the witness. We do not care that it involves
cheating, what matters is that such indistinguishable dishonest transcripts exist, so that honest
and dishonest alike contain no information about the witness.

Non-malleability

For non-interactive proofs, zero-knowledge is only the first level of protection against an eaves-
dropper. It is great that an adversary cannot learn anything about the secret from seeing the
proof, but maybe she does not need to learn the secret to achieve mischief. It could be that
getting her hands on a proof for some valid statement x, allows her to output a modified
proof for a false statement x′. In general, when the adversary can modify the proof in any
meaningful way, we say that the scheme is malleable.

For non-interactive proof systems, we discern four types of malleability and corresponding
security definitions. We say that a system is

• Weakly simulation-sound: When the adversary cannot change the proof of some
statement x into a valid proof for a different false statement x.

• Strongly simulation-sound: When the adversary cannot change the proof of some
statement x into a different valid proof for a false statement x′ (where possibly x = x′).

• Weakly simulation-sound extractable: When the adversary cannot change a proof
for some statement x into a valid proof for a different statement x′ for which it does not
know a corresponding witness.

• Strongly simulation-sound extractable: When the adversary cannot change a proof
for some statement x into a different valid proof for a statement x′ for which it does not
know a corresponding witness.

For Fiat-Shamir proof systems, when the underlying sigma-protocol has unique responses,
every statement has only a single proof. All the weak definitions are then equivalent to the
corresponding strong ones. In this thesis we are only concerned with protocols that have
unique responses, so we will only consider the strong definitions.

[FKMV12] showed – in the classical case – that if the sigma-protocol has honest-verifier
zero-knowledge and unique responses, then the Fiat-Shamir system is (strongly) simulation-
sound extractable, which implies that it is simulation-sound (because if a witness can be
extracted, the statement must be true). [Unr17] showed that in the quantum case, the sigma-
protocol needs to have statistical soundness and unique responses to be strongly simulation
sound. They also showed that quantumly, extractability implies simulation-sound extractabil-
ity, but left extractability as an open problem. The main goal of this thesis is to establish the
(simulation-sound) extractability of the Fiat-Shamir transformation.

1.6 Signatures
As a final scenario in our cave-analogy, we could imagine that Alice and Bob have some
important message to share with their friends. Since the content of the message is of a rather
sensitive nature, they want to be sure that the recipients can verify the integrity of the message,
and know for certain that is was Alice who sent it.
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Once again they think of a clever plan. Because everyone knows that Alice is the only one
who knows the secret password, they can use it as an identity marker (just like in the Schnorr
scheme). They decide to film one more execution of the cave protocol, but this time they
include in one long shot the successful trials, the tossing of the coin and their spoken message.
Nobody not knowing the password could create the same video, or one that is just like it but
with a different message.

Their method of creating a message has one consequence that Alice and Bob had not
thought of beforehand. If someone intercepts the video and sees its contents, Alice cannot
deny that she is the author of the message. With their (politically?) sensitive message, this
property could be to their disadvantage. It could also be an advantage, for example if Alice
uses their method to record a promise. Any receiver can then be sure that Alice will not back
away from it (which could be to Alice’s advantage!).

The properties of the message described above are called integrity, authenticity and non-
repudiation. They are precisely the properties we expect of a digital signature scheme. The
Fiat-Shamir transform was originally presented as a signature scheme [FS87]. In fact, any
non-interactive proof system can be made into a signature scheme. The simple idea behind
it is the same as with Alice and Bobs video technique; a signature consists of a proof that
includes our knowledge of the secret key and the message.

Definition 1.3 ([Unr17]; Signature schemes from non-interactive proof systems) We
say that G is an instance generator for a relation Rη if G(1η) outputs (x,w) ∈ Rη with over-
whelming probability. Fix a length `mη and define R′η := {(x||m,w) : |m| = `mη ∧ (x,w) ∈ Rη},
with hash function H. Let (P, V ) be a non-interactive proof system for the relation R′η. A sig-
nature scheme (KeyGen, Sign,Verify) with message space {0, 1}`

m
η is then defined as follows:

• KeyGen(1η) : Pick (x,w)← G(1η). Let pk := x and sk := w. Return (pk, sk)

• SignH(1η, sk,m) : Run σ ← PH(1η, x||m,w). Return σ.
• VerifyH(1η, pk,m, σ) : Run ok ← V H(1η, x||m,σ). Return ok.

We now have a signature scheme, and replacing (P, V ) by (PFS , VFS) we have our Fiat-Shamir
signature scheme. What about its security? The standard security definition for signature
schemes is

Definition 1.4 ([Unr17]; Existential unforgeability) A signature scheme (KeyGen, Sign,Verify)
is existentially unforgeable iff for all (quantum) polynomial-time algorithms A there exists a
negligible µ such that for all η we have

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Sig−queries : H
$← Fun(`inη , `

out
η ), (pk, sk)← KeyGen(1η)

(m∗, σ∗)← AH,Sig(1η, pk), ok ← VerifyH(1η, pk,m∗, σ∗)] ≤ µ(η)

where Sig is an oracle that accepts only classical queries (for the difference with quantum
oracles, see Section 1.7) that upon (classical) input m returns SignH(1η, sk,m). Note that
queries to H may be quantum. Sig−queries is the list of all queries made to Sig (when it
is queried with m and the oracle-answer is σ, then (m,σ) is added to the list). Finally,
Fun(`inη , `

out
η ) is the set of all functions from {0, 1}`in to {0, 1}`out .

The definition says that no adversary can output a valid message-signature pair that it has not
queried before. We give it access to a signing oracle because we want to model the situation
where the adversary might obtain some valid signature, and tries to modify it to a different
signature or a signature for a different message. Again, when we consider only sigma-protocols
with unique responses, any statement has only a single proof in the non-interactive proof
system and hence a message has only one signature in our signature scheme, and the above
definition is equivalent with the weaker one where only require m∗ /∈ Sig−queries instead of
(m∗, σ∗) /∈ Sig−queries.

Note that this is again a definition that is phrased in the paradigm of the random-oracle
model, which we will discuss in more detail in the next section.

[Unr17] proves that a non-interactive proof system with simulation-sound extractability
is existentially unforgeable. As we noted above, they also prove that an extractable non-
interactive proof system is simulation-sound extractable. The only thing left to prove is the
extractability of the Fiat-Shamir transform.

1.7 The (Quantum-) random-oracle model
In the previous sections, we noted a curiosity; the Fiat-Shamir transform was introduced as a
procedure that uses a cryptographic hash function H to take away the interaction in a sigma-
protocol, but in our security definitions (Definitions 1.2 and 1.4) we require H to be a truly
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random function. A cryptographic hash function is indeed designed to be as indistinguishable
from random as possible. In practice however, we need a function that is both deterministic
– because it needs to give the same query answers to all parties that query it – and efficiently
implementable. These two features are mutually exclusive for a truly random function (of
suitable domain size). We could obtain a deterministic random function by picking each of its
entries independently at random, but the lookup-table of this function would require memory
exponential in the input size. That also means that any efficient function will need to have
some algorithmic evaluation procedure which does not use a lookup table – such a function
cannot be fully random.

The cryptographic hash function that we use in practice is thus not a random function.
Modeling it as truly random is an idealization, which allows us to prove security in cases
where otherwise no security proof is known. Of course these proofs can no longer be taken as
absolute guarantees of security, they should be considered heuristically. In fact, some schemes
have been devised for which a security proof exists in the random-oracle model, but which
are also shown to be insecure when instantiated with any real cryptographic hash function
[CGH04]. These schemes however were especially designed for this purpose, and many people
believe that in general a proof in the random-oracle model provides good confidence in a
scheme’s practical security.

When we give a proof in the random-oracle model, it is often in the form of a reduction
– as we described in Section 1.2 – i.e. we assume the adversary can break our protocol, and
then use this assumption to solve a computationally hard problem. In the reduction, we may
reprogram the random oracle. Remember that we allowed the Fiat-Shamir simulator to do the
same in Section 1.5. It could be asked why it is natural to do so. Comparing it to the situation
of the simulator, what mattered there is that from the perspective of the eavesdropper, the
transcript could just as well have been produced honestly or dishonestly. Crucial here is the
(idealized) randomness of the oracle; if the oracle can produce any value with equal probability,
there is no way for the eavesdropper to tell a reprogrammed oracle from the original (that is,
if we reprogrammed it with a new random value) – and thus no way to tell an honest from a
dishonest transcript.

In the reduction, we should also argue from the perspective of the adversary. The assump-
tion is that it can break the protocol, if it receives random values from the random oracle.
Again we have that by the idealized randomness, it is impossible for the adversary to tell
the difference between the reprogrammed and the original oracle. Therefore, it can break
the protocol equally well on the original as on the reprogrammed version. Since the oracle is
implemented by the reduction, we may just as well program it with answers that suit the goal
of the reduction, as long as the resulting oracle still looks random to the adversary. In any
case, the adversary could have supplied these suitable answers itself if its goal was to solve
the underlying problem, so that the argument “if the adversary can break the protocol then
also the computational problem is solved” remains justified.

The Quantum random-oracle model

There is one ‘quantum’ issue with the random-oracle model that we cannot simply argue away.
In the real world, the evaluation procedure of a cryptographic hash function is publicly speci-
fied, so that all parties can use it. Any quantum adversary could download this specification
and implement it as a quantum circuit. Therefore, the adversary could evaluate the hash
function on quantum states, and hence on a superposition of (exponentially many) different
inputs. Our model should incorporate this special quantum feature.

In [BDF+11], the quantum random-oracle model (QROM) was introduced. In the QROM,
the adversary is allowed to query quantum states to the (idealized) random oracle. The authors
noted that the new model is problematic to some features that we are used to in the classical
random-oracle model:

1. Adaptive Programmability: In the classical ROM, the reduction often reprograms the
oracle at some point in the execution. We assume that the adversary queries every input
only once (classically this is not a restriction because the oracle answer, once obtained,
can be copied by the adversary indefinitely), so the reprogramming is impossible to
detect. In the QROM however, the adversary may query the same input multiple times.
Then, by querying a state in superposition, it may get some information about all values
of the oracle at once, making it difficult to reprogram the oracle adaptively without being
caught.

2. Preimage Awareness: When an adversary hides a specific input in a superposition of
exponentially many values, it may be hard for the security reduction to find out which
value the adversary is actually interested in.
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3. Efficient Simulation: Again due to superposition access, lazy sampling, a technique
used to let the reduction efficiently simulate a random function, is no longer possible.
Efficiently simulating the quantum random oracle therefore becomes a challenge.

4. Rewinding/Partial Consistency: Some proofs in the random-oracle model require
the reduction to rewind the adversary, which means that we replay the adversary from
a certain point in its execution, but with different outputs from the random oracle in
the second run. Here the difficulties are twofold: We cannot clone the quantum state of
the adversary in order to save it for a second execution, and secondly we face again the
problem of changing the oracle unnoticed.

[BDF+11] already presented a solution for point 3, using quantum-accessible pseudorandom
functions. The existence of such functions was still open at the time, but [Zha12] gave a
construction for them. Problem 4. was partially solved by [Wat09] and [Unr12] (we discuss
how in the next section).

In the same paper, the authors described the concept of a history-free reduction for sig-
nature schemes. When the (classical) security reduction answers oracle queries independent
of the query history (i.e. of the previous input-output pairs that passed through the oracle),
the reduction is called history-free. The authors prove that such reductions are valid in the
QROM as well.

The classical reduction for Fiat-Shamir signatures is not history-free. Its security in the
QROM is therefore left open by [BDF+11]. In Sections 4 and 5 we show that problems 1.
and 2. do not prevent a reduction in the Fiat-Shamir case, thereby proving the security of
Fiat-Shamir signatures in the QROM.
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2 Problem statement
Proving the security of Fiat-Shamir signatures comes down to the following: We need to show
that if the adversary can create a fresh signature, i.e. one that it has not seen before, than it
must be true that the adversary ‘knows’ the secret key. In this section, we explain how we
can formally define an adversary that ‘knows’ something, and why it is difficult to prove that
a successful quantum Fiat-Shamir forger must know the secret key.

2.1 Revealing the knowledge of the adversary
The concept of a proof of knowledge was first introduced in [GMR85], and more rigorously
defined in [BG93]. Intuitively, what we want is that if the verifier accepts the proof for a
statement x, then the prover knows a witness w for x (i.e (w, x) ∈ Rη). How can we test
the knowledge of the prover, to who’s inner workings we have no access at all? In fact, in
determining the knowledge of the prover, we should confine ourselves to examining only the
interaction between the prover and the verifier, for if we needed more evidence, then we could
hardly call this interaction a proof of knowledge.

To determine the knowledge (implicitly) present in the interaction only, we define the
demonstrated knowledge of the prover to be anything that an efficient extractor algorithm can
compute, when given black-box oracle access to the prover. If the demonstrated knowledge
includes a valid witness for the proven statement, we say that the protocol is extractable, or
equivalently that the proof is a proof of knowledge.

The black-box access ensures that we assume nothing about how the prover computes its
output, thereby not restricting the class of provers. It also enables the extractor algorithm to
simulate multiple executions of the prover, and to take the role of the verifier in asking the
prover clever questions. The output of the extractor is anything the verifier could have learned,
had it asked the right questions. Classically, making the prover act in multiple executions of
the protocol is not a stronger requirement than what we normally ask of the prover; if we
assume that it can convince the verifier with good probability in an average run, then it
should be able to succeed in multiple runs.

One further step is to note that if we can run the prover multiple times, then (again,
classically) we can also run it twice from the same intermediate state. In effect, we are
rewinding the prover after the first execution to a previous point in its run. Rewinding allows
the extractor to obtain two related proofs from the prover. As we have seen in Section 1.4, in
protocols with special soundness two proofs that have a particular relation to each other are
sufficient to compute a witness from.

Goal of the thesis

The main goal of this thesis is to show that the Fiat-Shamir proof system is quantum ex-
tractable. That is, we want to be sure that an adversary can only create a proof for a
statement x if it ‘knows’ a valid witness w for x. The post-quantum security of Fiat-Shamir
signatures will then follow by a previous result from [Unr17].

To achieve our goal, we may in principle use the same tools as described above, but we
have to account for the quantum nature of the adversary. Concretely, we may

• not copy the state of the adversary to run it again from the same point in its execution,
due to no-cloning.

• in general not run the adversary more than once, since we can also not copy its initial
state.

• not measure any (intermediate) output from the adversary without possibly disturbing
its internal state.

and we have to

• allow the adversary to perform quantum operations.

• allow the adversary superposition access to the random oracle.

• allow the adversary to query the same input more than once, because some quantum
algorithms require multiple queries on the same state, and the adversary can in general
not copy information it obtained in a particular query.

The challenge is to construct a (quantum) extractor that can use black-box access to the
quantum adversary to compute a valid witness, notwithstanding the above limitations.
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2.2 Why the classical proof does not work in the QROM
The classical extraction procedure for the Fiat-Shamir proof system [PS96] makes crucial use
of rewinding. Using our black-box access, we let the malicious prover (or adversary) A forge a
proof for a statement x of its choice, and we write the proof down for later reference. We then
rewind the adversary back to the point where it queried the particular commitment that it
forged on, and this time, using our ability to reprogram the random oracle, we feed it a different
random challenge. We now hope that the adversary will pick the same commitment for its
forgery in the second run. The forking lemma, essentially a pigeonhole-type argument, notes
that the adversary has only a polynomial amount of commitments to choose from, since it has
to query the designated commitment to the random oracle in order to find the corresponding
challenge. After two runs in polynomial-time, containing at most q different queries each, the
lemma says that we have a 1/q2 probability that A picks the same in both. Thus, with good
probability we have made the adversary output a different proof for the same statement x
and the same commitment com. With the two proofs in hand, we may then use the special
soundness property of the underlying sigma-protocol to obtain a valid witness w for x.

In the quantum random-oracle model, we must allow for A to have superposition access
to the random oracle H. Its final output state may therefore contain an (exponentially large)
superposition of different commitments, as long as a good portion of them is accompanied by
the correct response for the commitment-challenge pair given by H. This poses two major
difficulties to the classical extraction procedure.

The first problem is that a measurement of the output of A after the first run may sig-
nificantly disturb the internal state of the adversary. Running it again from the start may
not be possible if the adversary depends on an initial quantum state. Even if we assume A
to be unitary and allow the extractor access to its inverse (see Section 3.1), uncomputing the
post-measurement state will lead to unpredictable behavior for A in the second run.

Supposing for a moment that we could somehow obtain the adversary’s first response
and make it run properly a second time, it still seems impossible to ensure that the same
commitment is used in both runs. Remember that our QROM-adversary however can query
and forge on exponentially many different commitments. Therefore, even if it did output the
exact same state in both runs, the randomness inherent in the quantum measurement already
prevents us from hoping to see the same commitment twice.
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3 Previous results
Since the introduction of the quantum random-oracle model (QROM) [BDF+11], a number of
papers have been published that deal with the extractability of the Fiat-Shamir proof system
in the QROM. In this section, we highlight a few important papers.

3.1 The hardness of quantum rewinding
We noted is Section 2.2 that the classical proof method for the soundness of Fiat-Shamir relies
on a technique called rewinding, and that rewinding in the quantum setting brings about
a range of difficulties. The first positive result about quantum rewinding was introduced by
John Watrous in [Wat09]. They used a quantum rewinding lemma to prove the zero-knowledge
property of a couple specific interactive proof systems. However, Watrous’ rewinding technique
is sometimes referred to as oblivious rewinding (e.g. in [KMW17]) because while it can be used
to backtrack the to-be-rewinded algorithm, no information can be saved between the different
branches of the execution. In the Fiat-Shamir context, we may use Watrous’ technique to
rewind the adversary after it has output its first proof, but doing so discards any information
about that proof. The technique therefore fails to be of any use in using the special soundness
property of the underlying sigma-protocol.

Unruh rewinding

A rewinding technique more suited to quantum proofs of knowledge/extractability was given
by Dominique Unruh in [Unr12]. In the context of a proof of knowledge, he argued, it is
natural to assume that the adversary is given by a unitary operation. As we described in
Section 2.1, the idea of an ’extraction algorithm’ is to capture the knowledge contained in the
interaction between the prover and the verifier. The adversary could always purify itself to
become unitary, which for the interaction observed by the verifier (or the extractor) would
make no difference at all. Therefore, was may assume unitarity without loss of generality.

If we have black-box access to a unitary adversary, then it is not at all unreasonable to
assume that we also have access to its inverse, since any unitary quantum circuit can very easily
be run backwards. This allows Unruh to let his extractor perform rewinding quite similar to
the classical technique; even though we cannot copy an intermediate state of the adversary to
‘return’ to it later, we can still go back to any point in its execution by simply uncomputing
its final state. Moreover, this technique allows us to measure the final/intermediate output of
the adversary and uncompute/continue the run of the adversary after the measurement while
keeping the measurement outcome.

Unfortunately, not all problems are solved with Unruh’s technique. Continuing the run
of the adversary after a measurement may be possible in principle, but if the measurement
disturbs the state of the adversary too much, its ability to continue its computation as normally
may be harmed. Thus, after measuring the output of the first run, we no longer have a
guarantee that the adversary is able to forge a proof in the second run.

For interactive proofs of knowledge, specifically the class named ‘sigma-protocols’ that
we described in Section 1.4, Unruh was able to prove post-quantum security with the help
of an extra assumption: If the scheme under consideration has the property ‘perfect unique
responses’, then measuring its final output state does not disturb the state of the adversary,
because there is only one possible outcome for the measurement (but still unknown to the
extractor prior to the measurement). Hence, the extractor can uncompute the state of the
adversary after the measurement to a previous point in the run, and the adversary will be able
to forge a (different) proof in the second run.

For the Fiat-Shamir non-interactive proof system, this method does not suffice – even with
the assumption of unique responses in place – as we explained in Section 2.2. Note that in the
interactive setting the adversary is confined to just one commitment because it has to send
its commitment to the verifier in the first round of the protocol. The verifier will measure
the message so that it is essentially classical, as opposed to the Fiat-Shamir case were the
adversary sends a (or multiple) message(s) to the random oracle, so that the message(s) may
be quantum, and may contain a superposition of exponentially many commitments. Therefore
the final output state may contain a superposition of exponentially many commitments, and
thus the measurement does disturb the state of the adversary – even if there is only one (the
unique) response to every commitment-challenge pair.
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Figure 1: Table taken from [ARU14]. ‘Strict soundness’ is synonymous with ‘unique
responses’. ‘PoK’ stands for ‘Proof of Knowledge’, ‘proof’ for normal soundness of the
protocol. Computational security means against a polynomially bounded adversary,
statistically secure means against an unbounded adversary. Their caption: “Taxon-
omy of proofs of knowledge. For different combinations of security properties of the
underlying sigma-protocol (statistical (stat)/perfect (perf)/computational (comp)), is
there an attack in the quantum setting (relative to an oracle)? Or do we get a statisti-
cally/computationally secure proof/proof of knowledge (PoK)? The superscripts refer
to theorem numbers in this paper ([ARU14], JWD) or to literature references. Note
that in all cases, classically we have at least computational security.” In this thesis
we derive a positive answer for the bottom two question marks in the ‘Fiat-Shamir’
column.

Quantum attacks on classical proof systems

A paper by Ambainis et al. [ARU14] from 2014 shows that it is not simply a matter of
failing proof techniques, but instead some protocols may be under actual quantum threat. In
the paper, titled ‘Quantum Attacks on Classical Proof Systems; The Hardness of Quantum
Rewinding’, they show that sigma-protocols with certain properties, and the Fiat-Shamir non-
interactive proof systems that are based on them, are indeed completely broken by a quantum
adversary (relative to a certain oracle). Their attacks provide evidence for the necessity of
such an assumption as ‘perfect unique responses’ in the quantum setting, as they conclude
themselves. However, even under suitable assumptions they leave open the question of the
soundness of the Fiat-Shamir transformation. Figure 1 gives an overview of their results.

3.2 An impossibility result, or is it?
In 2013, [DFG13] claimed an impossibility result about proving the soundness of the Fiat-
Shamir transform as a quantum proof of knowledge. They gave a meta-reduction, which
uses any black-box extractor (i.e. an extractor that has only black-box oracle access to the
adversary) for a Fiat-Shamir proof system to break the (active, i.e. the adversary or in this case
the meta-reduction may choose x) honest-verifier zero-knowledge property of the underlying
sigma-protocol. The conclusion is that no black-box extractor that proves the security of
a Fiat-Shamir scheme based on a proper (meaning that it has active honest-verifier zero-
knowledge) sigma-protocol can exist.

However, it seems that their argument silently assumes that quantum rewinding is not
possible. Specifically, they write

“The quantum adversary here, however, queries the random oracle in a superpo-
sition. In this scenario, as we explained above, the extractor is not allowed to “read”
the query of the adversary unless it makes the adversary stop. In other words, the
extractor cannot measure the query and then keep running the adversary until a
valid witness is output.”

While this is partially in accordance with what we wrote in Section 2.2, the difference between
our viewpoints is this: We noted that in general a measurement will disturb the state of the
adversary, so that without further information, we can no longer assume that the adversary
will continue its run as normal. However, in Section 4 we develop tools that allow us to predict
the behavior of the adversary even after its state has been disturbed by a measurement. With
these tools in hand, the extractor can indeed “measure the query and then keep running the
adversary until a valid witness is output.”

If quantum rewinding is possible in the Fiat-Shamir case, as we indeed demonstrate in
Section 4, then the meta-reduction from [DFG13] is not valid. The reason is as follows: In its
(active) attack on the honest-verifier zero-knowledge property, the meta-reduction interacts
with an honest prover. It then uses the result of this interaction for its communication with
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the black-box extractor. The crucial observation is, that if the black-box extractor would
rewind the black-box (as our black-box extractor from Section 4 does), then it would rewind
the meta-reduction and a fortiori rewind the honest prover. Rewinding the honest prover
however is not allowed in an active attack on zero-knowledge, as the authors of [DFG13] write
themselves (differently phrased) in their definition of active security.

From the assumption in the quote given above, it follows (but this is not stated explicitly
in [DFG13]) that a black-box extractor for a Fiat-Shamir proof system does not rewind its
black-box. Therefore, under their assumptions there is no issue with the meta-reduction, and
the impossibility result goes through. The result is thus best explained as a confirmation
that it is not possible to prove the quantum extractability of the Fiat-Shamir transformation
without using some form of quantum rewinding.

3.3 Steps already taken by Unruh
We noted that Dominique Unruh has given a new formalism for quantum rewinding in [Unr12],
which he used to prove the extractability of (interactive) sigma-protocols that have perfect
unique responses. In [Unr17], Unruh extended his analysis of quantum proofs of knowledge
by giving an extensive study of the non-interactive case, the Fiat-Shamir proof systems. His
paper, and the formalisms introduced therein, have been of invaluable worth to the work in
this thesis. Concretely, Unruh has

• Given a complete and detailed formalism for black-box oracle access that is well-equipped
for the notion of extractability.

• Explored a range of possible definitions of extractability in the quantum case, each with
an extensive argumentation of its (un)suitability.

• Proven the unforgeability of Fiat-Shamir signatures under the assumption of extractabil-
ity of the Fiat-Shamir proof system.

• Proven the unforgeability of Fiat-Shamir signatures with the help of an extra feature
called a ‘dual-mode hard instance generator’, which unfortunately degrades the efficiency
of the signature scheme.

The last two items deserve further explanation. Theorem 25 from [Unr17] states that a Fiat-
Shamir proof system that is extractable, is also simulation-sound extractable (see Section
1.5). Theorem 31 then states that a Fiat-Shamir signature scheme based on a proof system
that is simulation-sound extractable and zero-knowledge, is existentially unforgeable. The
two theorems combined shift the burden of the signature security to the extractability of the
Fiat-Shamir proof system (and its zero-knowledge property, but Fiat-Shamir has already been
proven zer-knowledge, while extractability is still open).

When a signature scheme uses a ‘dual-mode hard instance generator’, there exist real public
keys and fake public keys, which however are indistinguishable for a computationally bounded
adversary. This feature comes at the cost of having a less compact scheme, approximately
three times less compact in the analysis of [KLS18]. Theorem 30 from [Unr17] proves that
the feature is sufficient for existential unforgeability in the QROM, with no further conditions
(i.e. not dependent on the extractability of the underlying Fiat-Shamir proof system).
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4 The Fiat-Shamir proof system is extractable in the
quantum random-oracle model
In this section we answer the challenge from Section 2.1: We give a black-box extractor for a
quantum adversary in a Fiat-Shamir proof system. We define the notion of SP-extractability
(statement preserving), which is closely related to, but weaker than the definition of ex-
tractability that Unruh gave in [Unr17]. Relative to this notion, we prove that the Fiat-Shamir
proof system is extractable in the QROM.

The weakening consists in only requiring that properties of the to-be-proven (classical)
statement x are preserved across the extraction procedure. Such a requirement is necessary
at all, because the x output by the extractor may not be the same as the x output by the
adversary. Unruh’s definition demands that on top of this the internal state of the adversary,
possibly containing quantum data, is more or less unaffected by the extraction.

In Section 5, we show that SP-extractability is sufficient for the existential unforgeability
of Fiat-Shamir type signatures, by adapting the proof that was given in [Unr17]. (Which
requires Unruh’s stronger, as of yet unfulfilled notion of extractability.) The stronger notion
might still be needed2 in proving the security of more advanced schemes (group signatures,
identity-based signatures). For the basic signature case, our result shows that the inefficient
(extra) security measure of dual-mode hard instance generators is unnecessary.

4.1 Proof idea
We described the problems involved in translating the classical proof of extractability to the
quantum random-oracle model in Section 2.2. In the interactive setting, most of these prob-
lems do not occur. The adversary, be it quantum or not, must send a single commitment
to the verifier in the first round. This can be seen as restricting the adversary to a single
classical query, and thus provides us with a natural way to force a measurement before the
oracle is queried, so that the final output of the adversary cannot contain a superposition of
exponentially many commitments. Although some difficulties remain, [Unr12] showed that
with the additional assumption of perfect unique responses, the interactive proof system is
indeed extractable against a quantum adversary.

We prove that the Fiat-Shamir proof system is SP-extractable in the QROM by giving a
reduction to the interactive case. We show that a polynomial amount of superposition queries
does not give the adversary any (significant) advantage over a single classical query. Therefore,
a subroutine R(eduction) of the extractor can use its black-box access to the Fiat-Shamir
adversary to make the verifier from the underlying sigma-protocol accept. The ‘canonical
extractor’ given in [Unr12] then uses black-box access to the extractor subroutine R to compute
a valid witness. Note that in order to use the canonical extractor, we still need the assumption
of perfect unique responses, even though the reduction itself does not require it.

How the reduction works

We work with a unitary quantum polynomial-time adversary AH that runs from a fixed
but arbitrary initial internal state. Its behavior up to the measurement of its final output
state depends only on the oracle H, therefore it makes sense to speak of ‘a run under H’ to
distinguish different runs of A.

We start from the assumption that for random H, AH makes exactly q queries and has
probability acc of producing an output (x, com,H(x||com), resp) such that Q(x) = 1 (Q can
be any predicate on x) and such that VFS(x, com||resp) = 1. Note that it is non-standard to
require A to output ch = H(x||com), but we may do so without loss of generality at the cost
of at most one extra query to H for A.

The reduction picks one of A’s queries at random and measures it. The measurement
collapses the state of the adversary, but we prove that the collapse does not impair its ability
to find a correct response for the specific y0 = x′||com′ that was obtained in the measurement.
The reduction forwards y0 to the the Sigma-verifier, and uses the reply Σ(y0) = ch′ to repro-
gram the random oracle at y0. We prove that with good probability, the final output of A is
a triple (y0,Σ(y0), resp) such that V H∗Σy0

FS (x′, com′||resp′) = 1, hence VΣ(x′, com′, resp′) = 1,
and furthermore Q(x′) = 1.

The explicit dependence on H allows us to prove that for any set of output triples of the
form (y,H(y), z) that occurs with squared amplitude p in the final output state, the y’s from
that set must have been queried with squared amplitude roughly equal to p/q. We know
that the set of accepting triples (y, c, z) such that y = x||com and Q(x) = 1 is of this form,

2Suggested by Dominique Unruh in a private correspondence.
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and occurs with squared amplitude acc in the output state. We conclude that with good
probability, y0 = x′||com′ is of the kind that A can forge on (relative to the original oracle),
and such that Q(x′) holds.

Suppose that y0 occurs only in a single query. The state of the adversary directly after
this query can be divided in two orthogonal parts. One, the y0-part, is the ‘knowledgeable’
part that contains information about H(y0). The other is the rest of the state. These two
parts evolve independently during the second stretch of A’s run, because unitary computation
preserves orthogonality. The correct response that appears in the final output state must come
from the knowledgeable part, for the following simple reason: Not even the best basketball
player in the world can shoot the right hoop, if he does not know which hoop is the right one –
especially when there are exponentially many hoops to choose from. The halfway measurement
collapses the state onto the knowledgeable part, which must be sufficient to compute a good
response, by its independence from the non-knowledgeable part and the assumption that A
can forge at all.

The collapse has a magnifying effect, zooming in on the y0-part of the state. As a con-
sequence, we have a good probability of finding y0 again in the final measurement, but only
if the following condition is satisfied: the magnitude of y0 in the measured query must not
be too large compared to the magnitude of y0 in the (undisturbed) output state. A counting
argument shows that this condition is satisfied by almost all y that A forges on in a run under
some specific H. If such y further satisfy the property that a correct response occurs in the
output with non-negligible magnitude relative to the total magnitude on y-triples, then we
say that y is solved under H.

Contributing queries

The main difficulty of the reduction comes from the fact that A may query the same y multiple
times. Classically we assume that A makes only a single query per y, but in the quantum
case this assumption is untenable. By the No-Cloning Theorem, quantum information can
in general not be copied, and may thus be used up during A′s computation. Furthermore,
algorithms like Grover’s depend on querying a superposition of all inputs on every iteration.
Not allowing A to query y multiple times would significantly restrict the class of adversaries
under consideration.

For any y, we make a distinction between queries that are contributing for y, and those
that are not. We described how in the single y-query setting, the knowledgeable part must
be sufficient to compute a valid response. With multiple queries that feature y, each of them
creates a knowledgeable part that contains information about H(y), but not each of these
are necessarily used to compute a valid response for (y,H(y)). The ones that are, we call
contributing for y.

We prove that there exists at least one contributing query for each y that is solved under
H. We also prove that the first of these must have a decent amount of magnitude on y relative
to the total query magnitude for y across all queries. Therefore, conditioned on obtaining
y0 in the halfway measurement, we have a good probability that the random query that we
picked for the measurement is in fact the first contributing one for y0.

While our pick may be the first contributing query for y0, we have no guarantee that there
have not been (m)any non-contributing queries before this point. This causes a potential
hazard, because it forces us to feed the adversary inconsistent oracle answers. Namely, we
want to reprogram the oracle at y0, but before the measurement we do not know the value
of y0. Before the measurement we will have to answer queries on y0 with H(y0), after the
measurement with Σ(y0) . The fact that all pre-measurement queries are not contributing for
y0 will help us prove that the adversary is (mostly) unaffected by this inconsistency. Concretely
we prove that if y0 is solved under H ∗Σy0 (i.e. in a run where we would hypothetically use the
reprogrammed oracle from the start), then it is also solved in a run under Γm. Here Γm is what
we call an oracle sequence, that denotes for each query which oracle is used. The subscript
m signals that we use H up to the m-th query (the one we measure), and H ∗ Σy0 from
and including the m-th query on. Γm is a realistic sequence that we can actually implement,
because it tells us to switch to H ∗ Σy0 only after we have queried y0 to the Sigma-verifier.

Quantum Forking Lemma

One problem remains. In the above argument, we conditioned on y0 being solved under
H ∗ Σy0. While we know that in an average run (i.e. a run under random H) most y will be
solved, this refers to being solved relative to H. In other words, there is a good chance that A
can find a response z that fits y0 and H(y0), but can it also find a response for the challenge
Σ(y0)?
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If we were to run A on H ∗Σy0 from the start, measuring a query at random would likely
give some y0 for which A can forge relative to H ∗ Σy0. But that is not what we do. We
simulate A under Γm, which up to the measurement point equals a run under H. Because A
may query adaptively, the constitution of the m-th query – and hence the probability that y0

is solved under H ∗Σy0 – may be very different in both runs. What we need is a lower bound
on the probability that y0 taken from a run under H is solved under H ∗ Σy0.

It turns out that the easiest way to prove such a lower bound, is by considering the
probability that y0 is solved under H as well as H ∗ Σy0. Our Quantum Forking Lemma
states that this probability is polynomially related to the probability of being solved under
H, for which we already had a good bound. By the result from the previous paragraph, y0 is
then also solved under Γm.

Bringing everything together, we conclude that since the m-th query (in a run under
Γm) is contributing for y0 (relative to H ∗ Σy0-correct responses), our measurement does not
significantly disturb the adversary, who will thus compute a good response for (y0,Σ(y0))
that we may use to make the Sigma-verifier accept. The canonical extractor for interactive
Sigma-protocols will do the rest, providing us with the valid witness w for x′ that we were
after.

4.2 Preliminaries
We define some formal notation used throughout the proof of our main theorem. More notation
will be introduced along the way as needed.

Notation for modelling the adversary

The complete system of A consists of the registers Y,C, Z, SA of size `x+ `com, `ch, `resp, `state
respectively (implicitly these sizes depend on η, which we choose to not always include as a
subscript). All oracles implement a function with domain {0, 1}`in and codomain {0, 1}`out
where `in = `x + `com and `out = `ch.

An oracle sequence Γ is a string of length q, such that in a run under Γ, each [Γ]i denotes
the oracle to be used in answering the i-th query. The output of A under Γ is given by the
state UAΓρ (UAΓ)† where ρ is the initial state of A and UAΓ is defined as

UAΓ := Uq−1O[Γ]q−1
. . . U1O[Γ]1U0O[Γ]0

with q the number of queries made by A. In our proof it will be convenient to use a different
set of unitaries: We define for 0 ≤ i < q

UΓ
i := Uq−1O[Γ]q−1

. . . Ui+1O[Γ]i+1
UiO[Γ]i

to model the computation of AΓ from right before the i-th query until the end of the run,
including the quantum operations implemented by the remaining oracle queries. Note that we
assume that A starts the run by immediately querying the oracle (the zeroth query). This is
without loss of generality since we allow the adversary to start from any pre-computed state.

The unitary UΓ
i acts on the state |φΓ

i 〉, which is the state A’s complete system is in right
before it makes the i-th query, if all previous queries have been answered according to Γ. For
any 0 ≤ i ≤ q we then have UΓ

i |φΓ
i 〉 = |φΓ

q 〉, which denotes the final output state of a run
under Γ. For technical reasons we include q in the range of i, so that the previous statement
implies that UΓ

q is the identity.
We use the unitary UΓ

(i,k) :=
(
UΓ
k

)†
UΓ
i to denote the computation under Γ from right before

the i-th query until right before the k-th query. To move one query up, we use V Γ
i := UΓ

(i,i+1).
Whenever the oracle sequence Γ consists of a single oracle H only, we write H instead of

Γ in all definitions that make use of a superscript Γ.
When we reprogram an oracle H on the single value y, where the new output at y is equal

to Θ(y), we write H ∗Θy to denote the resulting oracle.
Unless specifically noted otherwise, a subscripted oracle sequence Γi, with 0 ≤ i < q, is

defined as follows:

[Γi]k :=

{
H for k < i

H ∗ Σy0 otherwise.

where y0 is the outcome of the halfway measurement, and H is the random oracle implemented
by the reduction. In words, Γi is the oracle sequence where we have replaced the reprogrammed
oracle H ∗ Σy0 by the original oracle H for all queries up to (not including) the i-th one.
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Calculating success probabilities

For each y ∈ {0, 1}`in we define the projector Y := |y〉〈y| ⊗ 1C ⊗ 1Z ⊗ 1I . For y that satisfy
y = x||com such that Q(x) = 1, where Q is any fixed but arbitrary predicate, we define

GHy :=
∑

z:VH
FS

(y,z)=1

|y〉〈y| ⊗ |H(y)〉〈H(y)| ⊗ |z〉〈z| ⊗ 1I .

For y = x||com such that Q(x) = 0, we define GHy to be the projector that projects any vector
onto the zero vector. For the specific y0 that we obtain in the halfway measurement, we may
use the simplified G0 := GH∗Σy0

y0
, which equals

G0 := GH∗Σy0
y0

=
∑

z:V
H∗Σy0
FS

(y0,z)=1

|y0〉〈y0| ⊗ |Σ(y0)〉〈Σ(y0)| ⊗ |z〉〈z| ⊗ 1I

if y0 = x||com with Q(x) = 1, and equals the ‘zero projector’ if Q(x) = 0.
The G projectors project onto ‘the good part’ of the output state, that contains accepting

responses for the y that satisfy the property Q. The (squared) length of the resulting state
comes up in a lot of calculations, so we use a shorthand for it:

αΓ
y := ‖GH

′
y |φΓ

q 〉‖22

where H ′ = [Γ]q−1 (i.e. we let the final oracle in Γ determine what counts as a ‘good’ response).
Two other quantities play an important role throughout the proof. For 0 ≤ i < q we define

κΓ
y,i :=

αΓ
y

‖Y |φΓ
i 〉‖22

if ‖Y |φΓ
i 〉‖22 6= 0 and βΓ

y :=
αΓ
y

‖Y |φΓ
q 〉‖22

if ‖Y |φΓ
q 〉‖22 6= 0.

κΓ
y,i guards the ratio between the good part of the output for y and the magnitude of y in

a specific query i, which needs to be non-negligible in order to make use of the ‘magnifying
effect’ as explained in the previous section. βΓ

y does the same for the size of the good part for
y relative to the total magnitude of output triples starting with y, where intuitively a non-
negligible βΓ

y means that AΓ has done significantly more than pure guessing in computing a
correct response for y. To refer to the minimum ratio κΓ

y,i across all queries, we further define

κΓ
y := min

0≤i<q
[κΓ
y,i].

Borrowing notation from [ABB+17], we write

QA(Γ)
(y) :=

∑
0≤i<q

‖Y |φΓ
i 〉‖22

for the total query magnitude of y across all queries in a run under Γ.
Relative to some predicate Q and a specific choice of random oracle H, we define accH to

be the probability that AH outputs a triple (y,H(y), z) such that y = x||com, Q(x) = 1 and
V HFS(x||com, z) = 1. Note that

∑
y∈{0,1}`in α

H
y = accH . In expectation over allH : {0, 1}`in →

{0, 1}`out , we write
E
H

[accH ] := acc.

When considering a function H, we write H \ y for the function that is equal to H, except
that it leaves its value at y undefined.

To indicate that a vector is not necessarily a unit vector, we use round kets, as follows:

|φ) (is not necessarily a unit vector)

To increase the readability of the proofs, we often indicate the justification of an (in)equality
by superscripting it with

• a number, to refer back to an earlier equation (40), lemma (L.9) or definition (D.4).

• (∆) to indicate that we used the triangle-inequality, or (C-S) where we used the Cauchy-
Schwarz inequality.

• (�) or (∗) to refer to statements from elsewhere inside the same lemma.
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Notation from [Unr17]

In [Unr17], Unruh introduced a formalism for oracle machines, i.e. quantum algorithms that
may have access to one or more oracles and may also be passed as an oracle to another
algorithm themselves. Since our definition of SP-extractability is an adaptation of Unruh’s
definition, we take over much of his notation. Notably: Fun(`in, `out) is the set of all functions
from {0, 1}`in to {0, 1}`out . ass is a list of assignments, that records the reprogramming of the
random oracle by the extractor. EA

rew
η (SA),H(1η, `(η), shapeAη ) denotes the extractor, with

rewinding access to the pure oracle circuit A. Therefore, E can simulate A by applying the
unitary A or A†, possibly conditioned on some part of its own state. For this it needs to know
the amount of qubits A operates on, `(η), and the shape of A, which describes what oracles
A expects for its queries. For a more in-depth treatment of the formalism, see [Unr17].

4.3 Comparison between Unruh’s and our notion of extractabil-
ity
The notion of extractability that we use in our proof, statement-preserving extractability, is
weaker than the definition from [Unr17]. The stronger definition is as follows:

Definition 1 ([Unr17]) A non-interactive proof system (P, V ) for a relation R is ***ex-
tractable*** iff there is a quantum polynomial-time oracle algorithm E and a constant d > 0,
such that for any polynomial-time family of pure oracle circuits Aη (with output `outputAη =

`xη + `comη + `respη ) there exists a polynomial ` ≥ 0 such that ***for any polynomial-time family
of projective measurement circuits Πη*** there exists a polynomial p > 0 and a negligible
function µ such that for all η and all `stateAη -qubit density operators ρ, we have that:

Pr [(x,w) ∈ R ∧ okA = 1 : Extract] ≥ 1

p(η)
Pr [okV = 1 ∧ okQ = 1 : ProveFS]d − µ(η)

where ProveFS is following game:

H
$← Fun(`inη , `

out
η ),

SA ← ρ

∗ ∗ ∗ x||π ← AHη (SA),

okV ← V HFS(1η, x, π),

∗ ∗ ∗ okA ← ΠH
η,x||π(SA)

and Extract is the following game:

H
$← Fun(`inη , `

out
η ),

SA ← ρ,

(x,w, π, ass)← EA
rew
η (SA),H(1η, `(η), shapeAη )

∗ ∗ ∗ okA ← Π
H(ass)

η,x||π (SA)

where ass is an assignment-list and H(ass) is the result of reprogramming H according to ass.

Closely related, but requiring that properties are preserved across the extraction procedure
only on the to-be-proven statement x, instead of x, π and SA, is our new definition:

Definition 2 A non-interactive proof system (P, V ) for a relation R is ***SP-extractable***
(statement preserving extractable) iff there is a quantum polynomial-time oracle algorithm E
and a constant d > 0, such that for any polynomial-time family of pure oracle circuits Aη
(with output `outputAη = `xη + `comη + `chη + `respη ) there exists a polynomial ` ≥ 0 such that *** for
any classical predicate Q (possibly dependent on η)*** there exists a polynomial p > 0 and a
negligible function µ such that for all η and all `stateAη -qubit density operators ρ, we have that:

Pr [(x,w) ∈ R ∧ okQ = 1 : Extract] ≥ 1

p(η)
Pr [okV = 1 ∧ okQ = 1 : ProveFS]d − µ(η)

where ProveFS is following game:

H
$← Fun(`inη , `

out
η ),

SA ← ρ
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∗ ∗ ∗ (x, com,H(x||com), resp)← AHη (SA),

π := com||resp,

okV ← V HFS(1η, x, π),

∗ ∗ ∗ okQ ← Q(1η, x)

and Extract is the following game:

H
$← Fun(`inη , `

out
η ),

SA ← ρ,

(x,w, π, ass)← EA
rew
η (SA),H(1η, `(η), shapeAη )

∗ ∗ ∗ okQ ← Q(1η, x).

Some notable differences

The first thing to notice, is that our definition puts a seemingly stronger requirement on
the output of A in the game ProveFS. We require the adversary to output H(x||com),
where x||com is the instance it forged on. However, since we already assume A to make any
polynomial amount of queries to H, the requirement does not restrict our class of adversaries.
Namely, any adversary that would output a superposition of strings (x, π) = (x, com, resp),
can simply send its final state to the random oracle in order to obtain the output that we
require. Therefore, this particular difference does not weaken our definition.

What does weaken our definition, is that we enlarge the class of allowed extractors com-
pared to Unruh’s extractability. As was noted before, the x output by A in the game ProveFS

is not necessarily the same as the x output by E in the game Extract. There is not much
that we can do about this, simply because we are considering two separate games and the
output of A may be probabilistic. However, what we need to prevent is that E outputs some
x that is not a ‘hard instance’. Usually, we assume that it is hard to – without knowing a
corresponding witness – forge on a particular kind of statement x. We want that, assuming we
have an adversary that can forge on this kind, E uses A to output a witness for a statement
of the special kind.

We enforce the correct behavior by only accepting extractors that preserve any (classical)
predicate on x. To be more precise, what we demand is that if A has some probability p of
forging on a statement x that satisfies Q(x) = 1 for a particular predicate Q, the probability
that E outputs a witness for some x that also satisfies Q(x) = 1 is polynomially related to p.

Unruh’s definition restricts the class of acceptable extractors even further. It requires
properties of the output x, π and the internal state of the adversary (after execution) to be
preserved by the extractor with good probability. Because the internal state of the adversary
may contain quantum data, ‘properties’ here is formalized by polynomial-time measurement
circuits (see Preliminaries, Section 4.2) instead of classical predicates.

Consequences

Our definition preserves properties of x across the extraction, Unruh’s also preserves the state
of the adversary. The consequence is this: Sometimes we assume that an adversary is able to
forge in a specific situation, e.g. that it can forge a signature when it assumes the identity of
some designated party in an identity based signature scheme. We then need the extractor to
be in the same situation when it obtains a witness, simply because we assume that it is has
hard to do so, and we are looking for a contradiction to our assumptions. With our weaker
definition, the extractor might escape its responsibility of solving a hard problem, by being
in a different situation than the adversary. In the previous example of the identity based
signature scheme, it might obtain a witness while assuming its own identity, something that is
not assumed to be hard at all. Therefore, our definition does not suffice to prove the security
of such more advanced signature schemes. For basic signatures (which are widely used), our
proof technique does work out.

4.4 Structural overview of the proof
The narrative of the proof is roughly as follows: Lemmas 1 to 4 establish a connection
between the success probability of AH and the query magnitude of solved instances y in a run
under H. In other words, with a good forger A, we have a good probability of finding in both
our halfway and our final measurement the same instance y0, that satisfies Q and which A
moreover has a good probability of successfully forging on. However, this still only applies to
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forgeries with respect to the oracle H (i.e A can find a response z such that V HFS(y0, z) = 1)
and depends on measuring the right kind of query, namely one that is contributing for y0.

Next, Lemmas 5 to 9 together imply that if y0 is solved under H ∗ Σy0 (i.e. A would
solve y0 if we were to hypothetically run it on H ∗ Σy0 from start to finish, which is impos-
sible because at the start of our run, we do not know which y0 we are going to find in the
halfway measurement) then there must exist a query number m, such that the m-th query is
contributing for y0, and even if we answer all queries before m (which may contain y0 in their
superposition) according to H, then still measuring both the m-th query and the final output
state leads us to a forgery on y0 relative to H ∗Σy0, i.e. a response z such that VΣ(y0, z) = 1.

Lemma 11 says that conditioned on measuring y0, there is a good probability that we
have measured the m-th query, where m is as above.

The ‘quantum forking lemma’ Lemma 12 says that for any y0 that we find in a halfway
measurement in a run under H, which for the outcome of this measurement is the same as a
run under Γm, there is a good probability that the condition left open by Lemma’s 5 to 9 is
indeed fulfilled. That is, y0 is likely solved under H ∗ Σy0. Lemma’s 11 and 12 both rely on
the technical result of Lemma 10.

Lemmas 9, 11 and 12 together prove the following: If we have a random oracle H,
simulate A on H up to a random query, measure that query to obtain y0, reprogram the oracle
at y0 from H(y0) to Σ(y0) and continue the run of A on this new oracle, then a measurement
of the final output state will give us (x, com, ch, resp) such that VΣ(x, com, resp) = 1 and
Q(x) = 1 with good probability. Applying the result from [Unr12] shows that the Fiat-Shamir
proof system is SP-extractable in the QROM.

Figure 2 shows the structure of the proof at one further level of detail.

4.5 Formal proof
Definition 3 We say that y is solved under H respectively Γ if

βHy ≥
acc

q
and κHy ≥

acc

q2
respectively βΓ

y ≥
acc

2q7
and κΓ

y ≥
acc

q7
.

Definition 4 (Contributing) We say that UΓi
i respectively UΓi+1

i is contributing for y0 if

ri = ‖G0U
Γi
i Y0|φΓi

i 〉‖2 ≥
√
αΓ
y0

4q
respectively r′i = ‖G0U

Γi+1

i Y0|φ
Γi+1

i 〉‖2 ≥

√
α

Γi+1
y0

4q
.

Theorem 1 (The Fiat-Shamir proof system is SP-extractable in the QROM) Let Σ
be a sigma-protocol with special soundness and perfect unique responses, for the relation Rη,
and such that for every x ∈ dom(R) the size of the challenge space #Cηx is exponential in η.
The Fiat-Shamir transformation (PFS , VFS) of this protocol is SP-extractable.

Proof. We prove the existence of a polynomial-time oracle algorithm E that satisfies Definition
2. We first define the intermediate game R−ProveΣ, which we show to be polynomially
related to both games from the definition, proving the theorem.

R−ProveΣ is the following game:

(x, com)← R
Arew
η (SA),H

0 (1η, `(η), shapeAη )

ch
$← VΣ(1η, x)

(resp, ass)← R
Arew
η (SA),H

1 (1η, `(η), shapeAη , ch)

okV ← VΣ(1η, x, com, ch, resp)

okQ ← Q(1η, x)

where R0,1 is a polynomial time oracle algorithm that does the following:

1. Randomly pick an integer m′ between 0 and q − 1.

2. Run A(SA) on the random oracle H until right before the m′-th query is answered.

3. Measure A’s query register, obtaining the outcome y0 = (x0, com0).

4. Start interaction with the verifier VΣ from the sigma-protocol. In the commitment phase,
send y0 to VΣ. Receive a challenge ch ∈ C, define Σ(y0) := ch.

5. Continue the run of A. Flip a coin to decide whether to reprogram the oracle before or
(right) after answering the m′-th query. Reprogram the oracle at y0 to Σ(y0).
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Lemma 1: If some state |φ〉
is independent of H(y), then
GH

y |φ〉 is negligible relative to
Y |φ〉.

[BBBV97] Lemma 2: Low query
magnitude of a set X leads to
small trace distance between
two states prepared using ora-
cles that differ only on X.

Lemma 3: If a portion p of the
output state depends on H(y)
for some y ∈ S, then the query
magnitude of S is at least p

q .

Lemma 4: The query magni-
tude of y that are solved under
H is at least close to accH

q .

Lemma 5: If y0 is solved under
Γ with [Γ]q−1 = H ∗ Σy0, and y0

is not queried to H ∗ Σy0 before
or after the i-th query, then UΓ

i

must be contributing for y0.

Lemma 6: If Γ is an oracle se-
quence that keeps giving the
‘wrong’ oracle so long as no
contributing unitary is encoun-
tered, αΓ

y0
is close to αH∗Σy0

y0
.

Lemma 7: Feeding A the
’wrong’ oracle for the first j
queries does not increase the
magnitude of y0 in the j + 1-th
query too much.

Lemma 8: If y0 is solved under
H ∗ Σy0, it will also be solved
under an oracle sequence Γ that
keeps giving the ‘wrong’ ora-
cle so long as no contributing
unitary is encountered.

Lemma 9: If y0 is solved under
H ∗ Σy0, it will also be solved
under an oracle sequence Γ that
gives the ‘wrong’ oracle up to
the first contributing unitary.

Lemma 10: If we run A under
two different extensions of the
function H \y, the query magni-
tude of y in the one run will not
be much larger than the query
magnitude of y in the other run.

Lemma 11: If UΓ
i is the first

contributing unitary for y0,
then the i-th query must con-
tain a good portion of the total
query magnitude of y0 in a run
under Γ.

Lemma 12 (QFL): For random
H, the query magnitude – in a
run under H – of those y that
are solved under both H and
H ∗ Σy, is sufficiently large.

Theorem 1: Fiat-Shamir is
SP-extractable in the QROM.

Definition 2: y = x||com is
solved under Γ if both κΓ

y and
βΓ
y are sufficiently large.

Definition 3: A unitary UΓ
i is

contributing for y0 if it maps
the y0-part of the i-th query
state to a sufficiently large por-
tion of the good state.

Figure 2: Structural overview of the proof
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6. After the completion of the run, measure the output to obtain (x, com, ch, resp). Return
resp to VΣ. Output ass, the singleton list containing the assignment (y0 := Σ(y0)).

Let acc = Pr [okV = 1 ∧ okQ = 1 : ProveFS]. We now show that if q is the number of queries
made by A, then

Pr [(x,w) ∈ R ∧ okQ = 1 : R−ProveΣ] ≥ 1

32q35
· acc4 − µ(η).

In all of the following lemma’s, assume any parameter that is not given explicitly to be as in
the game R−ProveΣ:

Lemma 1 Let S be any subset of {0, 1}`in . If some state |φ〉 is stochastically independent
from all values H(y) with y ∈ S – the state and the values considered as random variables –
then

Pr
H�S

[∑
y∈S

‖GHy |φ〉‖22 ≥ µ(η) ·
∑
y∈S

‖Y |φ〉‖22

]
≤ µ(η) (1)

for some negligible function µ. Note: Here it is silently assumed that PrH(y) [H(y) = c] =
2−`ch for any c ∈ {0, 1}`ch and y ∈ S even if S depends on H. This assumption remains to
be proven. A complete proof will later appear on the arXiv.

Proof. From the assumption (∗) of the independence of |φ〉 it follows that

E
H�S

[∑
y∈S

‖GHy |φ〉‖22

]
= E

H�S

[∑
y∈S

〈φ|GHy |φ〉

]
(∗)
=

∑
y∈S

〈φ|
(

E
H(y)

[
GHy

])
|φ〉 (2)

where we for now zoom in on the term

E
H(y)

[
GHy

]
=

∑
c∈{0,1}`ch

∑
z∈{0,1}`resp

Pr
H(y)

[
V HFS(y, z) = 1 ∧ c = H(y)

]
· |y〉〈y| ⊗ |c〉〈c| ⊗ |z〉〈z| ⊗ 1I

≤
∑

c∈{0,1}`ch

Pr
H(y)

[c = H(y)] · |y〉〈y| ⊗ |c〉〈c| ⊗ 1Z ⊗ 1I

= 2−`ch · |y〉〈y| ⊗ 1C ⊗ 1Z ⊗ 1I

=: µ1(η) · Y (3)

where µ1(η) is the inverse of the size of the challenge set for Σ, and thus a negligible function.
Note that we assumed here that ∀y ∈ S (y = x||com⇒ Q(x) = 1), but this is without loss of
generality since we are proving an upper bound. Plugging this expectation into Equation 2,
we get

E
H�S

[∑
y∈S

‖GHy |φ〉‖22

]
(2,3)

≤ µ1(η) ·
∑
y∈S

〈φ|Y |φ〉 = µ1(η) ·
∑
y∈S

‖Y |φ〉‖22

Finally, applying Markov’s inequality, we find

Pr
H�S

[∑
y∈S

‖GHy |φ〉‖22 ≥
√
µ1(η) ·

∑
y∈S

‖Y |φ〉‖22

]
≤

µ1(η) ·
∑
y∈S ‖Y |φ〉‖

2
2√

µ1(η) ·
∑
y∈S ‖Y |φ〉‖22

=
√
µ1(η) =: µ(η).

�

Lemma 2 ([BBBV97], Theorem 3.3 - with notation taken from [ABB+17]) The fol-
lowing holds for each ε > 0. Suppose ρH was prepared by some party R using t queries to some
hash oracle H : X → Y . For each 1, . . . , t, let ρi denote the state of R’s system immediately
prior to the ith query to H(·). For each hash input x ∈ X let

QR(H)
(x)

def
=

t∑
i=1

Tr(|x〉〈x|ρi) (4)

denote the query magnitude of x for R’s interaction with the hash oracle H(·). Let furthermore
H ′(·) be a hash oracle that agrees with H(·) except on a subset X ′ ⊂ X of inputs with the
property that ∑

x∈X′
QR(H)

(x) ≤ ε2

t
.

Let ρH′ be the state prepared when R uses hash oracle H ′(·) instead of H(·). It then holds that

||ρH − ρH′ ||Tr ≤ ε.
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Lemma 3 Let S ⊆ {0, 1}`in be some set for which it holds that∑
y∈S

‖GHy |φHq 〉‖22 = p. (5)

Then except with negligible probability, the query magnitude of S has the following lower bound:∑
y∈S

QA(H)
(y) ≥ p

q
− µ(η)

for some negligible function µ(η).

Proof. Let H ′ : {0, 1}`in → {0, 1}`out be a function that agrees with H everywhere except on
S. Naturally, this means that |φH

′
q 〉 ⊥ H(y) for all y ∈ S. From Lemma 1 we get that

Pr
H�S

[∑
y∈S

‖GHy |φH
′

q 〉‖22 ≥ µ1(η)

]
≤ µ1(η) (6)

for some negligible function µ1. We use this bound to compute the overlap

|〈φH
′

q |φHq 〉| =

∣∣∣∣∣〈φH′q |
(∑
y∈S

GHy

)
|φHq 〉+ 〈φH

′
q |

(
1−

∑
y∈S

GHy

)
|φHq 〉

∣∣∣∣∣
(∆)

≤

∣∣∣∣∣〈φH′q |
(∑
y∈S

GHy

)
|φHq 〉

∣∣∣∣∣+

∣∣∣∣∣〈φH′q |
(

1−
∑
y∈S

GHy

)
|φHq 〉

∣∣∣∣∣
(C-S)
≤

√√√√〈φH′q |
(∑
y∈S

GHy

)
|φH′q 〉+

√√√√〈φHq |
(

1−
∑
y∈S

GHy

)
|φHq 〉

(5,6)

≤
√
µ1(η) +

√
1− p (7)

except with probability at most µ1(η). This gives us a (conditional) bound on the trace
distance

‖|φH
′

q 〉〈φH
′

q | − |φHq 〉〈φHq |‖Tr =
√

1− |〈φH′q |φHq 〉|2

(7)

≥
√

1− (1− p+ µ2(η))

=
√
p− µ2(η)

We may now apply the contrapositive of Lemma 2 to conclude that∑
y∈S

QA(H)
(y) ≥ p− µ2(η)

q
=:

p

q
− µ(η)

except with probability at most µ1(η). �

Lemma 4 Define SH to be the set that contains all y that are solved under H. Then

E
H

 ∑
y∈SH

QA(H)
(y)

 > acc · q − 2

q2
− µ(η)

where µ(η) is a negligible function.

Proof. Define
∑
y α

H
y = accH . Then

1 =
∑
y

‖Y0|φHq 〉‖22 =
∑
y

αHy
βHy

= accH ·
∑
y

αHy
accH · βHy

= E
y∼

αHy
accH

[
accH
βHy

]

so that by Markov’s inequality we get that

Pr

y∼
αHy
accH

[
accH
βHy

≥ c
]
≤ 1

c
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for any constant c that we may choose, which means that

∑
y:

βHy
accH

≤ 1
c

αHy
accH

=
∑

y:βHy ≤
accH
c

αHy
accH

≤ 1

c
.

It follows that if we consider only y for which βΓ
y is smaller than acc

q
, we may simply choose c

such that accH
c

= acc
q

to find that∑
y:βHy ≤

acc
q

αHy ≤ accH
c

=
acc

q
. (8)

Let DH be the set which for any oracle H contains all y for which κHy is defined, but there
exists some 0 ≤ i < q such that κHy,i < acc

q2
. Then∑

y∈DH

αHy =
∑
y∈DH

min
0≤i<q

[
κHy,i

]
· ‖Y |φHi 〉‖22

≤
∑
y∈DH

min
0≤i<q

[
κHy,i

]
· QA(H)

(y)

≤ max
y∈DH

min
0≤i<q

[
κHy,i

]
·
∑
y∈DH

QA(H)
(y)

≤ max
y∈DH

min
0≤i<q

[
κHy,i

]
· q

<
acc

q
(9)

where we have used the trivial bound q for the total query magnitude in the second to last
step.

We can write the set of instances solved under H as SH = {y ∈ DH : βHy > acc
q
}, so that

Equations 8 and 9 together imply∑
y∈SH

αHy
(8,9)
>

∑
y

αHy −
acc

q
− acc

q
= accH − 2 · acc

q
.

Note that this holds for any H. In expectation over H we thus get

E
H

 ∑
y∈SH

αHy

 > acc · q − 2

q
.

Applying Lemma 3, we find

E
H

 ∑
y∈SH

QA(H)
(y)

 > acc · q − 2

q2
− µ(η).

�

Observation 1 (Decomposition of |φΓ
q 〉)

Remember that for 0 ≤ i < q, we have

[Γi]k :=

{
H for k < i

H ∗ Σy0 otherwise.

Now since H �{y0}{ = H ∗ Σy0 �{y0}{ , it follows that

UΓi
i (1− Y0) = U

Γi+1

i (1− Y0).

Note furthermore that |φΓi
i 〉 = |φΓi+1

i 〉 since [Γi]k = H = [Γi+1]k for all k < i. We thus find

UΓi
i (1− Y0)|φΓi

i 〉 = U
Γi+1

i (1− Y0)|φΓi+1

i 〉

and also note that
UΓi
i (1− Y0)|φΓi

i 〉 = |φΓi
q 〉 − UΓi

i Y0|φΓi
i 〉. (10)
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It will prove useful to have shorthands for the norms of certain states related to the above:

si := ‖G0U
Γi
i (1− Y0)|φΓi

i 〉‖2 ri := ‖G0U
Γi
i Y0|φΓi

i 〉‖2

ti := ‖Y0U
Γi
i (1− Y0)|φΓi

i 〉‖2 r′i := ‖G0U
Γi+1

i Y0|φ
Γi+1

i 〉‖2

We derive ri = ‖G0U
Γ
i Y0|φΓi

i 〉‖2
(∆)

≤ ‖G0U
Γi
i |φ

Γi
i 〉‖2 + ‖G0U

Γi
i (1− Y0)|φΓi

i 〉‖2

=

√
αΓi
y0 + si (11)

and furthermore we may bound si and ti by

si = ‖G0 U
Γi
i (1− Y0)|φΓi

i 〉‖2
≤ ‖Y0 U

Γi
i (1− Y0)|φΓi

i 〉‖2 = ti

(10)
= ‖Y0|φΓi

q 〉 − Y0 U
Γi
i Y0|φΓi

i 〉‖2
(∆)

≤ ‖Y0|φΓi
q 〉‖2 + ‖Y0 U

Γi
i Y0|φΓi

i 〉‖2
≤ ‖Y0|φΓi

q 〉‖2 + ‖Y0|φΓi
i 〉‖2

≤

√
αΓi
y0

βΓi
y0

+

√
αΓi
y0

κΓi
y0

(12)

where the last inequality is (possibily) not an equality because we used κΓi
y0

instead of κΓi
y0,i

.

In the next lemma, we find that in a scenario where y0 is queried only once (say at query
i), and if further we know that y0 is solved under the oracle sequence Γi, then the i-th query
must be contributing for y0. Later, in Lemma 9, this will lead to the conclusion that also in
the multi y0-query setting at least one of the queries must be contributing.

Lemma 5 Fix i, and suppose that y0 is solved under Γi. Suppose further that both UΓi
i+1

and |φΓi
i 〉 are stochastically independent of Σ(y0) (considered as random variables), and that

‖Y0|φΓi
i 〉‖2 6= 0. Then except with negligible probability, UΓi

i is contributing for y0.

Proof. Taking notation from Observation 1, we find

αΓi
y0

= ‖G0|φΓi
q 〉‖22

= ‖G0 U
Γi
i (1− Y0)|φΓi

i 〉+G0 U
Γi
i Y0|φΓi

i 〉‖
2
2

(∆)

≤
(
‖G0 U

Γi
i (1− Y0)|φΓi

i 〉‖2 + ‖G0 U
Γi
i Y0|φΓi

i 〉‖2
)2

= s2
i + 2siri + r2

i (13)

Using the bound from Equation 11, we get

αΓi
y0

(13)

≤ s2
i + 2siri + r2

i

(11)

≤ s2
i + 2siri +

(√
αΓi
y0 + si

)
· ri

=

√
αΓi
y0 · ri + s2

i + 3siri

(11)

≤
√
αΓi
y0 · ri + s2

i + 3si ·
(√

αΓi
y0 + si

)
=

√
αΓi
y0 · ri + 4s2

i + 3si ·
√
αΓi
y0 . (14)

We argue that the state UΓi
i (1− Y0)|φΓi

i 〉 must be independent of the value Σ(y0). Note first
that this state equals UΓi

i+1V
Γi
i (1 − Y0)|φΓi

i 〉. The state |φΓi
i 〉 is independent by assumption,

and V Γi
i (1−Y0) cannot introduce any dependence to Σ(y0) because it does not ‘query’ y0 and

H ∗ Σy0(y) is independent of Σ(y0) for any y 6= y0 by the independence of the random oracle.
Thus V Γi

i (1− Y0)|φΓi
i 〉 is independent of Σ(y0). By the assumption on UΓi

i+1, this means that
UΓi
i+1V

Γi
i (1− Y0)|φΓi

i 〉 = UΓi
i (1− Y0)|φΓi

i 〉 is independent.
We may therefore apply Lemma 1 to find

Pr
Σ(y0)

[
s2
i ≥ µ(η) · t2i

]
=
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Pr
Σ(y0)

[
‖G0U

Γi
i (1− Y0)|φΓi

i 〉‖
2
2 ≥ µ(η) · ‖Y0U

Γi
i (1− Y0)|φΓi

i 〉‖
2
2

]
≤ µ(η). (15)

We thus assume that s2
i ≤ µ(η) · t2i . Combining this information with Equation 12, we obtain

αΓi
y0

(14)

≤
√
αΓi
y0 · ri + 4s2

i + 3si ·
√
αΓi
y0

(15)

≤
√
αΓi
y0 · ri + t2i · µ1(η) + ti ·

√
αΓi
y0 · µ2(η)

(12)

≤
√
αΓi
y0 · ri +

(√
αΓi
y0

βΓi
y0

+

√
αΓi
y0

κΓi
y0

)2

· µ1(η) + ·

(√
αΓi
y0

βΓi
y0

+

√
αΓi
y0

κΓi
y0

)
·
√
αΓi
y0 · µ2(η)

=

√
αΓi
y0 · ri +

αΓi
y0

βΓi
y0

+
αΓi
y0

κΓi
y0

+ 2
αΓi
y0√

βΓi
y0 · κ

Γi
y0

 · µ1(η) +

 αΓi
y0√
βΓi
y0

+
αΓi
y0√
κΓi
y0

 · µ2(η)

where (except with negligible probability) for each i ∈ {1, 2}, µi is a negligible function. We
will rewrite this in order to obtain the required bound on ri:

ri ≥
αΓi
y0
−
(
α

Γi
y0

β
Γi
y0

+
α

Γi
y0

κ
Γi
y0

+ 2
α

Γi
y0√

β
Γi
y0
·κΓi
y0

)
· µ1(η)−

(
α

Γi
y0√
β

Γi
y0

+
α

Γi
y0√
κ

Γi
y0

)
· µ2(η)√

αΓi
y0

=

√
αΓi
y0 −


√
αΓi
y0

βΓi
y0

+

√
αΓi
y0

κΓi
y0

+ 2

√
αΓi
y0√

βΓi
y0 · κ

Γi
y0

 · µ1(η)

−

(√
αΓi
y0

βΓi
y0

+

√
αΓi
y0

κΓi
y0

)
· µ2(η)

which is easily seen to be bigger than
√
α

Γi
y0

4q
if both βΓi

y0
and κΓi

y0
are non-negligible. Since we

assumed that y0 is solved under Γi, this condition is indeed satisfied. �

If A can forge on y0 when given the oracle H ∗Σy0 from the start, it can still do that when we
feed it the wrong oracle (i.e. H) in the first half of its run, but only as long as no contributing
unitaries are encountered along the way. This is what the next lemma is concerned with.

Even if A does query y0 in the first part of its run, the inconsistent answers will not
cause it to defect on y0. The secret to this surprising result is an offensive strategy from our
side: As soon as A threatens to ‘undo’ (i.e. counter with opposite phase amplitude) any good
computation that comes from the consistent part of its state, we stop the run and declare that
this is the query that we want to perform our halfway measurement on. This measurement
then throws away the amplitude in the final output state that was being countered, leaving
only the opposite phase amplitude, so that we still have a good chance of measuring the correct
response at the end of the run.

In reality we do not sense and ‘declare’ that this is the query we want to measure, we
pick a random one instead. This comes down to the same thing because at the current i, the
unitary UΓi+1

i must be contributing for y0 (namely, it contributes ‘negative’ amplitude). By
Lemma 11 this means that our random pick has a good chance of landing on query i.

Lemma 6 Suppose that for each i < j we have that both UΓi
i and UΓi+1

i are not contributing
for y0. Then

α
Γj
y0 ≥ (1− j

q
) · αΓ0

y0
.

Proof. Assume (to our disadvantage) that for each i < j it holds that αΓi+1
y0 ≤ αΓi

y0
. We then

have

α
Γi+1
y0 = ‖G0|φ

Γi+1
q 〉‖22

(O.1)
= ‖G0U

Γi
i (1− Y0)|φΓi

i 〉+G0U
Γi+1

i Y0|φΓi
i 〉‖

2
2

(∆)

≥
(
‖G0U

Γi
i (1− Y0)|φΓi

i 〉‖2 + ‖G0U
Γi+1

i Y0|φΓi
i 〉‖2

)2

(O.1)
= s2

i − 2sir
′
i + (r′i)

2 (16)
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and furthermore

si
(O.1)

= ‖G0|φΓi
q 〉 −G0U

Γi
i Y0|φΓi

i 〉‖2
(∆)

≥ ‖G0|φΓi
q 〉‖2 − ‖G0U

Γi
i Y0|φΓi

i 〉‖2
(O.1)

=

√
αΓi
y0 − ri (17)

si
(O.1)

= ‖G0|φΓi
q 〉 −G0U

Γi
i Y0|φΓi

i 〉‖2
(∆)

≤ ‖G0|φΓi
q 〉‖2 + ‖G0U

Γi
i Y0|φΓi

i 〉‖2
(O.1)

=

√
αΓi
y0 + ri. (18)

We then find

α
Γi+1
y0

(16,17,18)

≥ (

√
αΓi
y0 − ri)

2 − 2(

√
αΓi
y0 + ri) · r′i + (r′i)

2

= αΓi
y0
− 2ri

√
αΓi
y0 + r2

i − 2r′i

√
αΓi
y0 − 2r′iri + (r′i)

2

(∗)
≥ αΓi

y0
− 2ri

√
αΓi
y0 − 2r′i

√
αΓi
y0

(�)
≥ αΓi

y0
−
αΓi
y0

q
(19)

where we have used (∗) that r2
i − 2r′iri + (r′i)

2 = (r2
i − r′i)2 ≥ 0 and (�) the fact that both UΓi

i

and UΓi+1

i are not contributing, which by Definition 4 means that

ri <

√
αΓi
y0

4q
and r′i <

√
α

Γi+1
y0

4q
≤

√
αΓi
y0

4q
.

We thus have that for each i < j, αΓi+1
y0 ≥ αΓi

y0
− α

Γi
y0
q

. It follows that

α
Γj
y0 ≥ (1− 1

q
)j · αΓ0

y0
≥ (1− j

q
) · αΓ0

y0
. �

A may query adaptively. This means that feeding it a different oracle in the first part of
the run not only influences αΓ

y0
, but also the composition of all queries that come after the

oracle swap. This could be problematic because of our dependence on the ratios βΓ
y0

and κΓ
y0
.

Lemma 7 shows that the specific element y0 that separates the two oracles in the oracle
sequence Γj , cannot grow too much compared to the straight oracle run.

Lemma 7 Let 0 ≤ j, k ≤ q. Then

‖Y0|φ
Γj
k 〉‖

2
2 ≤

(
‖Y0|φΓ0

k 〉‖2 +

j−1∑
n=0

(j − n+ 1) · ‖Y0|φΓ0
n 〉‖2

)2

.

Proof. We will use the fact (∗) that V Γj
i (1 − Y0) = V Γ0

i (1 − Y0) for any i, and (�) that
V Γ0
i = V

Γj
i for i ≥ j. We assume k ≥ j, but note that if k < j we have |φΓj

k 〉 = |φΓk
k 〉, so in

this case we can simply set j to be equal to k.
We define the operator

ΛΓ
j :=

∑
x∈{0,1}j\{0j}

(
0∏

i=j−1

V Γ
i (Y0)xi(1− Y0)1−xi

)
(20)

Any state |φΓ
j 〉 may then be split up as follows:

|φΓ
j 〉 = ΛΓ

j |φΓ0
0 〉+

0∏
i=j−1

V Γ
i (1− Y0)|φΓ0

0 〉 =: ΛΓ
j |φΓ0

0 〉+ |φΓ∗
j ). (21)

Using this split we derive

‖Y0|φ
Γj
k 〉‖

2
2 = ‖Y0 U

Γj
(j,k)|φ

Γj
j 〉‖

2
2

(�)
= ‖Y0 U

Γ0
(j,k)|φ

Γj
j 〉‖

2
2

(21)
= ‖Y0 U

Γ0
(j,k)Λ

Γj
j |φ

Γ0
0 〉+ Y0 U

Γ0
(j,k)|φ

Γ∗
j )‖22

(∆)

≤
(
‖Y0 U

Γ0
(j,k)Λ

Γj
j |φ

Γ0
0 〉‖2 + ‖Y0 U

Γ0
(j,k)|φ

Γ∗
j )‖2

)2

≤
(
‖ΛΓj

j |φ
Γ0
0 〉‖2 + ‖Y0 U

Γ0
(j,k)|φ

Γ∗
j )‖2

)2

(22)
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We first analyze the term ‖Y0 U
Γ0
(j,k)|φ

Γ∗
j )‖2:

‖Y0 U
Γ0
(j,k)|φ

Γ∗
j )‖2 = ‖Y0 U

Γ0
(j,k)

(
0∏

i=j−1

V Γ0
i (1− Y0)

)
|φΓ0

0 〉‖2

(∆)

≤ ‖Y0 U
Γ0
(j,k)

(
0∏

i=j−1

V Γ0
i

)
|φΓ0

0 〉‖2

+ ‖Y0 U
Γ0
(j,k)

∑
x∈{0,1}j\{0j}

(
0∏

i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉‖2.

(23)

We compute the sum inside the last term separately. Because it has recursive structure, we
consider it in a generalized form, where the original term is given by the case n = 0. This
generalized form then rewrites to

∑
x∈{0,1}j−n\{0j−n}

(
n∏

i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
|φΓ0
n 〉 =

∑
x∈{0,1}j−n−1

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n Y0|φΓ0

n 〉

+
∑

x∈{0,1}j−n−1\{0j−n−1}

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n (1− Y0) |φΓ0

n 〉

=: |ψna ) + |ψnb ) (24)

of which we may rewrite |ψna ) as

|ψna ) =
∑

x∈{0,1}j−n−1

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n Y0|φΓ0

n 〉 =

(
n+1∏
i=j−1

V Γ0
i

)
V Γ0
n Y0|φΓ0

n 〉 = UΓ0
(n,j)Y0|φΓ0

n 〉. (25)

The recursive structure lies within the other term. We have

|ψnb ) =
∑

x∈{0,1}j−n−1\{0j−n−1}

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n (1− Y0) |φΓ0

n 〉

=
∑

x∈{0,1}j−n−1\{0j−n−1}

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
|φΓ0
n+1〉

−
∑

x∈{0,1}j−n−1\{0j−n−1}

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n Y0|φΓ0

n 〉

=: |ψn+1
c )− |ψnd ). (26)

Note that in this formalism, our original term from (23) corresponds to |ψ0
c ). We may further-

more write |ψnd ) as

|ψnd ) =
∑

x∈{0,1}j−n−1\0j−n−1

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n Y0|φΓ0

n 〉

=
∑

x∈{0,1}j−n−1

(
n+1∏
i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
V Γ0
n Y0|φΓ0

n 〉

−

(
n+1∏
i=j−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉

=

(
n+1∏
i=j−1

V Γ0
i

)
V Γ0
n Y0|φΓ0

n 〉 −

(
n+1∏
i=j−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉
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= UΓ0
(n,j)Y0|φΓ0

n 〉 −

(
n+1∏
i=j−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉

= |ψna )−

(
n+1∏
i=j−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉

=: |ψna )− |ψnf ). (27)

Summarizing, we see that

|ψnc ) = |ψna ) + |ψnb )

= |ψna ) + |ψn+1
c )− |ψnd )

= |ψna ) + |ψn+1
c )−

(
|ψna )− |ψnf )

)
= |ψn+1

c ) + |ψnf ). (28)

This recursive structure holds through up to and including the case n = j − 2. At n = j − 1
the sum inside |ψnc ) dissolves, and we are left with

|ψj−1
c ) = V Γ0

j−1Y0|φΓ0
j−1〉.

It follows that

|ψ0
c ) =

j−2∑
n=0

|ψnf ) + V Γ0
j−1Y0|φΓ0

j−1〉. (29)

Returning to Equation 23, we substitute according to (29):

‖Y0 U
Γ0
(j,k)|φ

Γ∗
j )‖2

(23)

≤ ‖Y0 U
Γ0
(j,k)

(
0∏

i=j−1

V Γ0
i

)
|φΓ0

0 〉‖2

+ ‖Y0 U
Γ0
(j,k)

∑
x∈{0,1}j\{0j}

(
0∏

i=j−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉‖2

(29)
= ‖Y0 U

Γ0
(j,k)

(
0∏

i=j−1

V Γ0
i

)
|φΓ0

0 〉‖2 + ‖Y0 U
Γ0
(j,k)

(
j−2∑
n=0

|ψnf ) + V Γ0
j−1Y0|φΓ0

j−1〉

)
‖2

≤ ‖Y0|φΓ0
k 〉‖2 + ‖

j−2∑
n=0

|ψnf ) + V Γ0
j−1Y0|φΓ0

j−1〉‖2

(∆)

≤ ‖Y0|φΓ0
k 〉‖2 +

j−2∑
n=0

‖|ψnf )‖2 + ‖V Γ0
j−1Y0|φΓ0

j−1〉‖2

(27)
= ‖Y0|φΓ0

k 〉‖2 +

j−2∑
n=0

‖

(
n+1∏
i=j−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉‖2 + ‖V Γ0
j−1Y0|φΓ0

j−1〉‖2

≤ ‖Y0|φΓ0
k 〉‖2 +

j−2∑
n=0

‖Y0|φΓ0
n 〉‖2 + ‖Y0|φΓ0

j−1〉‖2

= ‖Y0|φΓ0
k 〉‖2 +

j−1∑
n=0

‖Y0|φΓ0
n 〉‖2. (30)

Turning now to the other term in Equation 22, we see that we can actually relate it to the
bound that we just derived. Remember that

‖ΛΓj
j |φ

Γ0
0 〉‖2 = ‖

∑
x∈{0,1}j\{0j}

(
0∏

i=j−1

V Γ
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉‖2. (31)

For every x ∈ {0, 1}j \ {0j} there is at least one i such that xi = 1. We may thus regroup the
sum into subsets that contain all terms with exactly m leading zeros. We define for 0 ≤ m < j:

Xm := {x : xm = 1 ∧ i < m→ xi = 0} (32)

For any x ∈ Xm we then have(
0∏

i=m−1

V
Γj
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉 =

(
0∏

i=m−1

V
Γj
i (1− Y0)

)
|φΓ0

0 〉
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(∗)
=

(
0∏

i=m−1

V Γ0
i (1− Y0)

)
|φΓ0

0 〉

= |φΓ∗
m ). (33)

We may thus rewrite Equation 31 as

‖ΛΓj
j |φ

Γ0
0 〉‖2 = ‖

j−1∑
m=0

∑
x∈Xm

(
0∏

i=j−1

V
Γj
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉‖2

= ‖
j−1∑
m=0

∑
x∈Xm

(
m∏

i=j−1

V
Γj
i (Y0)xi(1− Y0)1−xi

)(
0∏

i=m−1

V
Γj
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉‖2

(33)
= ‖

j−1∑
m=0

∑
x∈Xm

(
m∏

i=j−1

V
Γj
i (Y0)xi(1− Y0)1−xi

)
|φΓ∗
m )‖2

(32)
= ‖

j−1∑
m=0

∑
x∈Xm

(
m+1∏
i=j−1

V
Γj
i (Y0)xi(1− Y0)1−xi

)
Y0|φΓm

m )‖2

= ‖
j−1∑
m=0

(
m+1∏
i=j−1

V
Γj
i

)
V

Γj
m Y0|φΓ∗

m )‖2

(∆)

≤
j−1∑
m=0

‖UΓj
(m,j)Y0|φΓ∗

m )‖2

=

j−1∑
m=0

‖Y0|φΓ∗
m )‖2. (34)

Zooming in on the term ‖Y0φ
Γ∗
m ‖2 we find

‖Y0|φΓ∗
m )‖2 = ‖Y0

(
0∏

i=m−1

V Γ0
i (1− Y0)

)
|φΓ0

0 〉‖2

(∆) ≤ ‖Y0

(
0∏

i=m−1

V Γ0
i

)
|φΓ0

0 〉‖2

+ ‖Y0

∑
x∈{0,1}m\{0m}

(
0∏

i=m−1

V Γ0
i (Y0)xi(1− Y0)1−xi

)
|φΓ0

0 〉‖2. (35)

where the sum inside the last equation looks very familiar to us; it is equal to |ψ0
c 〉 except that

we have substituted m for j. The substitution does not effect the derivations from 24 to 29 at
all, so that we may conclude

[m/j] in
[
|ψ0
c 〉
] (29)

= [m/j] in

[
j−2∑
n=0

|ψnf ) + V Γ0
j−1Y0|φΓ0

j−1〉

]
. (36)

Therefore, Equation 35 becomes

‖Y0|φΓ∗
m 〉‖2

(35,36)

≤ ‖Y0

(
0∏

i=m−1

V Γ0
i

)
|φΓ0

0 〉‖2 + [m/j] in

[
‖Y0

(
j−2∑
n=0

|ψnf ) + V Γ0
j−1Y0|φΓ0

j−1〉

)
‖2

]

≤ ‖Y0|φΓ0
m 〉‖2 + [m/j] in

[
‖
j−2∑
n=0

|ψnf ) + V Γ0
j−1Y0|φΓ0

j−1〉‖2

]
= ‖Y0|φΓ0

m 〉‖2

+ [m/j] in

[
‖
j−2∑
n=0

((
n+1∏
i=j−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉

)
+ V Γ0

j−1Y0|φΓ0
j−1〉‖2

]

= ‖Y0|φΓ0
m 〉‖2 + ‖

m−2∑
n=0

((
n+1∏

i=m−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉

)
+ V Γ0

m−1Y0|φΓ0
m−1〉‖2

(∆)

≤ ‖Y0|φΓ0
m 〉‖2 +

m−2∑
n=0

‖

(
n+1∏

i=m−1

V Γ0
i (1− Y0)

)
V Γ0
n Y0|φΓ0

n 〉‖2 + ‖V Γ0
m−1Y0|φΓ0

m−1〉‖2
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≤ ‖Y0|φΓ0
m 〉‖2 +

m−2∑
n=0

‖Y0|φΓ0
n 〉‖2 + ‖Y0|φΓ0

m−1〉‖2

=

m∑
n=0

‖Y0|φΓ0
n 〉‖2 (37)

so that we may write Equation 34 as

‖ΛΓj
j |φ

Γ0
0 〉‖2

(34,37)

≤
j−1∑
m=0

m∑
n=0

‖Y0|φΓ0
n 〉‖2. (38)

With the bounds from Equations 30 and 38 in place, we can return to Equation 22:

‖Y0|φ
Γj
k 〉‖

2
2

(22)
=

(
‖ΛΓj

j |φ
Γ0
0 〉‖2 + ‖Y0 U

Γ0
(j,k)|φ

Γ∗
j )‖2

)2

(30,38)

≤

(
‖Y0|φΓ0

k 〉‖2 +

j−1∑
n=0

‖Y0|φΓ0
n 〉‖2 +

j−1∑
m=0

m∑
n=0

‖Y0|φΓ0
n 〉‖2

)2

=

(
‖Y0|φΓ0

k 〉‖2 +

j−1∑
n=0

‖Y0|φΓ0
n 〉‖2 +

j−1∑
n=0

(j − n) · ‖Y0|φΓ0
n 〉‖2

)2

=

(
‖Y0|φΓ0

k 〉‖2 +

j−1∑
n=0

(j − n+ 1) · ‖Y0|φΓ0
n 〉‖2

)2

�

Lemma 8 Suppose that y0 is solved under H ∗Σy0. If j < q, and for each i < j we have that
both UΓi

i and UΓi+1

i are not contributing for y0, then y0 is solved under Γj.

Proof. To prove that y0 is solved under Γj , we need to show that βΓj
y0 ≥ acc

2q7
, and that

κ
Γj
y0 ≥ acc

q7
. Combining Lemma’s 6, 7 and the definition of y0 being solved under Γ0 = H

(Definition 3), we get for any k < q:

κ
Γj
y0,k

=
α

Γj
y0

‖Y0|φ
Γj
k 〉‖22

(L.7)

≥ α
Γj
y0(

‖Y0|φΓ0
k 〉‖2 +

∑j−1
n=0(j − n+ 1) · ‖Y0|φΓ0

n 〉‖2
)2

(∗)
≥

α
Γj
y0 · κΓ0

y0

j4 · αΓ0
y0

(L.6)

≥
(q − j) · αΓ0

y0
· κΓ0

y0

q · j4 · αΓ0
y0

=
(q − j) · κΓ0

y0

q · j4

(D.3)

≥ (q − j) · acc
q3 · j4

≥ acc

q7

where in the third (in)equality (∗) we have used that ‖Y0|φΓ0
n 〉‖2 ≤

α
Γ0
y0

κ
Γ0
y0

for all n, k < q. Since

the derived bound holds for all k < q, we have κΓj
y0 ≥ acc

q7
. Similarly we obtain

β
Γj
y0 =

α
Γj
y0

‖Y0|φ
Γj
q 〉‖2

(L.7)

≥ α
Γj
y0(

‖Y0|φΓ0
q 〉‖2 +

∑j−1
n=0(j − n+ 1) · ‖Y0|φΓ0

n 〉‖2
)2

(∗)
≥ α

Γj
y0

j4 · α
Γ0
y0

κ
Γ0
y0

+ j2 · α
Γ0
y0√

β
Γ0
y0
·κΓ0
y0

+
α

Γ0
y0

β
Γ0
y0
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(L.6)

≥
(q − j) · αΓ0

y0

q ·
(
j4 · α

Γ0
y0

κ
Γ0
y0

+ j2 · α
Γ0
y0√

β
Γ0
y0
·κΓ0
y0

+
α

Γ0
y0

β
Γ0
y0

)
(D.3)

≥
(q − j) · αΓ0

y0

q ·
(
j4 · q

2·αΓ0
y0

acc
+ j2 · q

2·αΓ0
y0

acc
+

q·αΓ0
y0

acc

)
=

(q − j) · acc
q · (j4 · q2 + j2 · q2 + q)

≥ acc

2q7
.

where this time in the third (in)equality (∗) we used ‖Y0|φΓ0
q 〉‖2 =

α
Γ0
y0

β
Γ0
y0

and again ‖Y0|φΓ0
n 〉‖2 ≤

α
Γ0
y0

κ
Γ0
y0

for all n < q. By Definition 3, these things together imply that y0 is solved under Γj . �

Lemma 9 Suppose that y0 is solved under H ∗ Σy0. Then except with at most negligible
probability, there exists some 0 ≤ m < q for which

1. y0 is solved under Γm.

2. For each i < m, both UΓi
i and UΓi+1

i are not contributing for y0.

3. Either UΓm
m or UΓm+1

m is contributing for y0. (In the latter case we have m < q − 1.)

Proof. We prove by induction on the oracle sequences Γj . We show that requirement 1. and 2.
are inherited by every new oracle sequence, until we hit a sequence that satisfies requirement
3., in which case the induction stops. If the induction does not stop before Γq, we derive a
contradiction.

As a base case, we are given that y0 is solved under H ∗ Σy0, i.e solved under Γ0. For the
induction step, suppose that y0 is solved under Γj and that for all i < j both UΓi

i and UΓi+1

i

are not contributing for y0. If ‖Y0|φ
Γj
j 〉‖2 = 0, then the runs under Γj and Γj+1 are identical,

hence y0 is solved under Γj+1. Suppose therefore that ‖Y0|φ
Γj
j 〉‖2 6= 0. Now since [Γj ]k = H

for all k < j, it must be that |φΓj
j 〉 is stochastically independent of Σ(y0). By Lemma 5 this

means that, except with negligible probability, we either have that UΓj
j is contributing for

y0, or else U
Γj
j+1 is not stochastically independent of Σ(y0). In the former case, the induction

stops. In the latter, we have derived a contradiction if j = q − 1, since UΓj
q is the identity,

which is trivially independent of Σ(y0). If j < q − 1, then by Lemma 8 we get that either
U

Γj+1

j is contributing for y0, or else y0 is solved under Γj+1. In the former case the induction
stops, in the latter we move to the next step. �

In the following, we write H \ y for a function from {0, 1}`in to {0, 1}`out that leaves its value
at y undefined. In this context, H ∗ Θy is the function the function that completes H \ y by
defining

H ∗Θy(x) :=

{
Θ(y) for x = y

H \ y(x) otherwise
.

Lemma 10 Let y be fixed, and let Θ1(y),Θ2(y) ∈ C be any two values such that H ∗ Θiy
completes H \ y. Then

QA(H∗Θ2y)(y) ≥
QA(H∗Θ1y)(y)

q5
.

Proof. If we define the oracle sequence Γj to be

[Γj ]i :=

{
H ∗Θ1y for i < j

H ∗Θ2y otherwise.

then we have Γ0 = H ∗ Θ2y and Γq = H ∗ Θ1y. Since QA(H∗Θ1y)(y) is a sum of the q terms
‖Y |φΓq

i 〉‖
2
2 for 0 ≤ i < q, it must be that for at least one of these terms – let term j be the

first such term – we have

‖Y |φΓq
j 〉‖

2
2 ≥
QA(H∗Θ1y)(y)

q
.

Note furthermore that for all 0 ≤ i < q we have

‖Y |φΓq
i 〉‖

2
2 = ‖Y |φΓi

i 〉‖
2
2 hence in particular ‖Y |φΓj

j 〉‖
2
2 ≥
QA(H∗Θ1y)(y)

q
(39)
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since the state |φΓ
i 〉 is independent of the choice of oracles in Γ from the i-th oracle on.

Now assume - to derive a contradiction - that for all i ≤ j

‖Y |φΓ0
i 〉‖

2
2 <
QA(H∗Θ1y)(y)

q5
. (40)

Then

‖Y |φΓj
j 〉‖

2
2

(L.7)

≤

(
‖Y0|φΓ0

q 〉‖2 +

j−1∑
n=0

(j − n+ 1) · ‖Y0|φΓ0
n 〉‖2

)2

(40)
< j4 ·

QA(H∗Θ1y)(y)

q5

<
QA(H∗Θ1y)(y)

q

contradicting Equation 39. We conclude that there is at least one 0 ≤ i ≤ j such that

‖Y |φΓ0
j 〉‖

2
2 ≥
QA(H∗Θ1y)(y)

q5
.

This proves the claim of the lemma. �

Lemma 11 Suppose that either UΓj
j or UΓj+1

j is contributing for y0, with j < q in the first
case and j < q − 1 in the second. If furthermore for each i < j both UΓi

i and UΓi+1

i are not
contributing for y0, then we have the following bound for the relative query magnitude of y0

at i
‖Y0|φ

Γj
i 〉‖

2
2

QA(H)(y0)
≥

κΓ0
y0

16q9
.

Proof. We derive:

‖Y0|φ
Γj
i 〉‖2 ·

‖G0 U
Γj
i Y0|φ

Γj
i 〉‖2

‖Y0|φ
Γj
i 〉‖2

(D.4)

≥

√
α

Γj
y0

4q
or

‖Y0|φ
Γj
i 〉‖2 ·

‖G0 U
Γj+1

i Y0|φ
Γj
i 〉‖2

‖Y0|φ
Γj
i 〉‖2

(D.4)

≥

√
α

Γj+1
y0

4q

‖Y0|φ
Γj
i 〉‖2 ≥

√[
α

Γj
y0 /α

Γj+1
y0

]
4q

‖Y0|φ
Γj
i 〉‖

2
2 ≥

[
α

Γj
y0 /α

Γj+1
y0

]
16q2

‖Y0|φ
Γj
i 〉‖

2
2

QA(H)(y0)
≥

[
α

Γj
y0 /α

Γj+1
y0

]
QA(H)(y0) · 16q2

. (41)

Note that we have used the identity |φΓi+1

i 〉 = |φΓi
i 〉 to tweak Definition 4 to our needs in the

second case. Here
[
α

Γj
y0 /α

Γj+1
y0

]
denotes “either αΓj

y0 or αΓj+1
y0 ”.

Now let i0 be the query-number of the query that contains the most amplitude on y0 in a
run under Γ0, i.e. such that

κΓ0
y0

=
αΓ0
y0

‖Y0|φΓ0
i0
〉‖22

. (42)

We may then continue with Equation 41 as follows:

‖Y0|φ
Γj
i 〉‖

2
2

QA(H)(y0)

(41)

≥

[
α

Γj
y0 /α

Γj+1
y0

]
16q2 · QA(H)(y0)

(L.6)

≥
(1− j+1

q
) · αΓ0

y0

16q2 · QA(H)(y0)

(L.10)

≥
(1− j+1

q
) · αΓ0

y0

16q7 · QA(Γ0)(y0)

42



(4)

≥
(1− j+1

q
) · αΓ0

y0

16q7 · q · ‖Y0|φΓ0
i0
〉‖22

(42)
=

(1− j+1
q

) · κΓ0
y0

16q8

≥
κΓ0
y0

16q9
. �

Note that ‘y0 is solved under H ∗ Σy0’ means that y0 would have been solved had we run
A under H ∗ Σy0, from the beginning to the end and without intermediate measurement.
The specific y0 that we want to consider however is obtained in a run under H. While we
are interested in the question of whether y0 is solved under H ∗ Σy0, in the next lemma we
derive a bound on the probability that it is both solved under H and H ∗Σy0. The lemma is
similar to the classical forking lemma (see [PS96]) in the sense that here too we use the known
probability that A solves some instance y on a random challenge, to bound the probability
that it can solve y on a second, independently chosen challenge as well. The proof shares one
further trick with the proof of the ‘general forking lemma’ in [BN06] (using Jensen’s inequality
to get rid of the square), the rest of the proof techniques are special to the quantum setting.

Note that Dominique Unruh at some point gave out a note about a ‘Quantum Forking
Conjecture’ (unpublished). This conjecture was subsequently broken by Alexander Belov.
The conjecture, while it could equally well be described as a generalization of the classical
forking lemma, otherwise has nothing in common with our quantum forking lemma.

Lemma 12 (Quantum Forking Lemma) Suppose that we run AH up to the i-th query,
where i is chosen at random, and measure the register that contains A’s next oracle query,
obtaining y0 as the outcome. The probability that y0 is solved under H as well as under H∗Σy0

is then at least acc2

q19 .

Proof. We want a bound on the following quantity:

E
H,Σ

 ∑
y∈SH∩SH∗Σy

QA(H)(y)

 (43)

since this gives us the expectation of the query magnitude in a run under H of those y that
will be solved in a run that uses H from start to end as well as a run that uses H ∗ Σy from
start to end. In order to rewrite this expression, we first prove the following claim:

Claim (*): For any function F and any sequence of independently chosen random values
h1, . . . , hn we have for any 1 ≤ i ≤ n that

E
h1,...,hn

[F (h1, . . . , hn)] = E
h1,...,hi−1,hi+1,...,hn

[
E
hi

[F (h1, . . . , hn)]

]
(44)

Proof. We have

E
h1,...,hn

[F (h1, . . . , hn)] =
∑

h1,...,hn

Pr[v1, . . . , vn = h1, . . . , hn] · F (v1, . . . , vn)

=
∑

h1,...,hn

Pr[v1, . . . , vi−1, vi+1, . . . , vn = h1, . . . , hi−1, hi+1, . . . , hn]

· Pr [vi = hi] · F (v1, . . . , vn)

=
∑

h1,...,hi−1,hi+1,...,hn

Pr[v1, . . . , vi−1, vi+1, . . . , vn = h1, . . . , hi−1, hi+1, . . . , hn]

·
∑
hi

Pr [vi = hi] · F (v1, . . . , vn)

= E
h1,...,hi−1,hi+1,...,hn

∑
hi

Pr [vi = hi] · F (v1, . . . , vn)


= E

h1,...,hi−1,hi+1,...,hn

[
E
hi

[F (h1, . . . , hn)]

]
where the second step in the derivation is justified by the independence of the choice of the
random values h1, . . . , hn. �
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The claim, together with Lemma 10, allows us to rewrite and bound the term in 43. In the
following, let SH(·) be the indicator function for the set SH of solved instances in a run under
H. Let furthermore Σ,Θ : {0, 1}`in → {0, 1}`out both be (independent) random functions.
Then

E
H,Σ

 ∑
y∈SH∩SH∗Σy

QA(H)(y)

 = E
H,Σ

[∑
y

SH(y) · SH∗Σy(y) · QA(H)(y)

]

=
∑
y

E
H,Σ(y)

[
SH(y) · SH∗Σy(y) · QA(H)(y)

]
∗
=

∑
y

E
H\y

[
E

H(y),Σ(y)

[
SH(y) · SH∗Σy(y) · QA(H)(y)

]]

=
∑
y

E
H\y

[
E

Θ(y),Σ(y)

[
SH∗Θy(y) · SH∗Σy(y) · QA(H∗Θy)(y)

]]
.

Here we consecutively used the definition of the indicator function, linearity of expectation
and the above claim (∗). The claim makes that we can consider the (expectation over) the
set of random values {(H \ y) (x)) : x 6= y} and the single random value H(y) separately.
Then in the last step, we may replace H(y) by the equally random value Θ(y), this should not
change the (inner) expectation.

The goal of the substitution is this: Further on, we need the object H(y) both as a
fixed value and as a variable in the same expression. We need it as a fixed value to have a
determinate object QA(H)(y); something like QA(H\y)(y) is not well defined. We need it as
a variable to take a probability over its choice. In the next step, we reintroduce H(y) in the
outer expectation. This ‘incarnation’ of H(y) will play the role of a fixed value inside the
square brackets of the expectation. The substitute Θ(y) that we introduced in the previous
step will play the role of a variable, over which we may take a probability.

Note that we now have two terms in our expression that feature Θ(y), namely SH∗Θy(y)
and QA(H∗Θy)(y). The first we need in the variable setting, the second in the fixed value
setting. We therefore need to transform the occurrence of Θ(y) in the second term back to
H(y). This is what Lemma 10 allows us to do. We furthermore add q4 on both sides of the
equation as a normalization factor. By the linearity of expectation we may move it inside the
brackets.

q4 · E
H,Σ

 ∑
y∈SH∩SH∗Σy

QA(H)(y)

 =
∑
y

E
H

[
E

Θ(y),Σ(y)

[
SH∗Θy(y) · SH∗Σy(y) · QA(H∗Θy)(y)

]]
· q4

(L.10)

≥
∑
y

E
H

[
E

Θ(y),Σ(y)

[
SH∗Θy(y) · SH∗Σy(y) ·

QA(H)(y)

q5
· q4

]]

=
∑
y

E
H

[
QA(H)(y)

q
· E

Θ(y),Σ(y)
[SH∗Θy(y) · SH∗Σy(y)]

]

= E
H

[∑
y

QA(H)(y)

q
· E

Θ(y)
[SH∗Θy(y)] · E

Σ(y)
[SH∗Σy(y)]

]

= E
H

[∑
y

QA(H)(y)

q
· Pr

Θ(y)
[y ∈ SH∗Θy] · Pr

Σ(y)
[y ∈ SH∗Σy]

]

= E
H

[∑
y

QA(H)(y)

q
· Pr

Θ(y)
[y ∈ SH∗Θy]2

]

To recap, in the first step we introduced H(y) to the range of the outer expectation, but left it
unused. Then we applied Lemma 10 to rewriteQA(H∗Θy)(y) as

QA(H∗Hy)(y)

q5
=
QA(H)(y)

q5
for the

specific value H(y) that we just introduced, which is fixed inside the brackets. We then used
the linearity of expectation three times, to move the rescaled term

QA(H)(y)

q
out of the inner,

the sum over y into to the outer expectation and to split the inner into separate expectations
of its two factors. Next, we observed that the expectation of the indicator function equals the
probability of set inclusion. The two probabilities that we obtain are independent and equal,
since the expressions they range over are the same, and the functions Θ and Σ are chosen
independently at random from the same codomain. We may thus write their product as a
square of the first.
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Note that the expression inside the remaining expectation has a special form. The values
QA(H)(y)

q
for all y ∈ {0, 1}`in sum up to exactly 1, because no matter how the different y’s are

distributed over A’s queries, their combined query magnitude always equals q. This means
that we may consider δ(y) :=

QA(H)(y)

q
as a probability density function. The expression∑

y δ(y) ·X[y] is then an expectation of X taken over y distributed according to δ. We may
therefore write

q4 · E
H,Σ

 ∑
y∈SH∩SH∗Σy

QA(H)(y)

 = E
H

[
E
y∼δ

[
Pr

Θ(y)
[y ∈ SH∗Θy]2

]]

≥ E
H

[
E
y∼δ

[
Pr

Θ(y)
[y ∈ SH∗Θy]

]]2

= E
H

[∑
y

QA(H)(y)

q
· Pr

Θ(y)
[y ∈ SH∗Θy]

]2

= E
H

[∑
y

E
Θ(y)

[
SH∗Θy(y) ·

QA(H)(y)

q

]]2

The inequality is Jensen’s inequality, applied both to the inner and the outer expectation in
one step. We then work our way back through the definitions to get to the expectation over
Θ(y).

From here the goal is to get
∑
y∈SH

QA(H)(y) inside the brackets, for which we already
know a bound by Lemma 4. To do so, we first need to make sure that every term uses the
same function H ∗ Θy, so that we may relabel them collectively. We thus apply Lemma 10
again. The value H(y) is now not in use anymore, therefore we can just as well take the
expectation over H \ y. This allows us to take the sum out in the next step. Then we can do
the relabeling, join the expectations together again and complete our plan.

q4 · E
H,Σ

 ∑
y∈SH∩SH∗Σy

QA(H)(y)

 (L.10)

≥ E
H

[∑
y

E
Θ(y)

[
SH∗Θy(y) ·

QA(H∗Θy)(y)

q6

]]2

= E
H\y

[∑
y

E
Θ(y)

[
SH∗Θy(y) ·

QA(H∗Θy)(y)

q6

]]2

=
∑
y

E
H\y

[
E

Θ(y)

[
SH∗Θy(y) ·

QA(H∗Θy)(y)

q6

]]2

=
∑
y

E
H\y

[
E

H(y)

[
SH(y) ·

QA(H)(y)

q6

]]2

∗
=

∑
y

E
H

[
SH(y) ·

QA(H)(y)

q6

]2

=
EH
[∑

y SH(y) · QA(H)(y)
]2

q12

=
EH
[∑

y∈SH
QA(H)(y)

]2
q12

(L.4)

≥

(
acc · q−2

q2
− µ(η)

)2

q12

>
acc2

q15

which means that

E
H,Σ

 ∑
y∈SH∩SH∗Σy

QA(H)(y)

 > acc2

q19
. �

We are now ready to evaluate the probability Pr [okV = 1 ∧ okQ = 1 : R−ProveΣ]. Let y0

be the outcome of the measurement performed by R at step 3 of its execution. By Lemma 12,
the probability that y0 is solved under H ∗ Σy0 is then at least acc2

q15 . If it is indeed solved
under H ∗Σy0, then we get from Lemma 9 that except with negligible probability, there exists
some 0 ≤ m < q such that
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1. y0 is solved under Γm.

2. For each i < m, both UΓi
i and UΓi+1

i are not contributing for y0.

3. Either UΓm
m or UΓm+1

m is contributing for y0. (In the latter case we have m < q − 1.)

Remember that R measures the m′-th query, where m′ is chosen at random. We need to find
the probability that m′ = m. This probability is not simply 1/q, because we assumed – and
therefore need to condition on – that the measurement outcome is y0. Note that the above
conditions 1 - 3 allow us to apply Lemma 11, to find that

Pr
m′

[
m′ = m | y0 ←M|φHm′〉

]
=

‖Y0|φΓm
m 〉‖22

QA(H)
(y0)

(L.11)
=

κΓ0
y0

16q8
≥ acc

16q10
.

where the last inequality follows from Definition 3, since we assumed that y0 is solved under
H ∗ Σy0 = Γ0.

We thus assume that R measured the right kind of query, i.e. some query m where either
UΓm
m or UΓm+1

m is contributing. Next, R obtains Σ(y0) from the Σ-verifier and flips a coin,
to determine whether it reprograms the random oracle now or right after answering the m-th
query. This corresponds to applying either UΓm

m or UΓm+1
m to the current state. We thus have

a 50% chance that R applies a unitary that is contributing for y0.
Due to the measurement, the current state on A’s complete system has become

|φpostm〉 =
Y0|φΓm

m 〉
‖Y0|φΓm

m 〉‖2
.

Case 1: UΓm
m is contributing for y0. When we now compute the length of the projection

of the final output state onto ‘the good part’, we find

‖G0U
Γm
m |φpostm〉‖2 =

‖G0U
Γm
m Y0|φΓm

m 〉‖2
‖Y0|φΓm

m 〉‖2
≥

√
αΓm
y0

‖Y0|φΓm
m 〉‖2 · 4q

.

where the last inequality follows because UΓm
m is contributing for y0 (Definition 4). Therefore,

‖G0U
Γm
m |φpostm〉‖22 ≥

αΓm
y0

‖Y0|φΓm
m 〉‖22 · 16q2

=
κΓm
y0,m

16q2
≥ acc

16q9

where the last inequality follows from the fact that y0 is solved under Γm (Definition 3).
Case 2: UΓm+1

m is contributing for y0. In this case we find

‖G0U
Γm+1
m |φpostm〉‖2 =

‖G0U
Γm+1
m Y0|φΓm

m 〉‖2
‖Y0|φΓm

m 〉‖2
≥

√
α

Γm+1
y0

‖Y0|φΓm
m 〉‖2 · 4q

.

where the last inequality follows because UΓm+1
m is contributing for y0 (Definition 4). Therefore,

‖G0U
Γm+1
m |φpostm〉‖22 ≥ α

Γm+1
y0

‖Y0|φΓm
m 〉‖22 · 16q2

(19) ≥
αΓm
y0

‖Y0|φΓm
m 〉‖22 · 16q2

−
αΓm
y0

‖Y0|φΓm
m 〉‖22 · 16q3

=
κΓm
y0,m

16q2
−
κΓm
y0,m

16q3

(D.3) ≥ acc

16q9
− acc

16q10

≥ acc

q10
for q > 16.

Summarizing, we see that the probability that R obtains output (x, com, ch, resp) that will
make VΣ accept, and such that Q(x) = 1, is at least

Pr [okV = 1 ∧ okQ = 1 : R−ProveΣ] ≥ acc2

q15
·(1− µ1(η))· acc

16q10
·1
2
·acc
q10

=
acc4

32q35
−µ2(η).

Since the the Sigma-protocol underlying our proof system has special soundness and perfect
unique reponses, we may now apply Theorem 9 from [Unr12]. It says that

PrK ≥

(
acc4

32q35
− µ2(η)− 1√

c(η)

)3

=
acc12

32768 · q105
− µ(η)
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where PrK is the success probability of the canonical extractor applied to our reduction algo-
rithm R, and c(η) is a function such that for all η ∈ N, x ∈ {0, 1}∗ we have that #Cηx ≥ c(η).
The canonical extractor outputs a pair (x,w) such that w is a valid witness for x, and x is the
statement chosen by R, which we argued is such that Q(x) = 1.

This means that if we let our Fiat-Shamir extractor E use its black-box access to A to run
the canonical extractor on R applied to A, we get that

Pr [(x,w) ∈ R ∧ okQ = 1 : Extract] ≥ 1

32768 · q105
Pr [okV = 1 ∧ okQ = 1 : ProveFS]12−µ(η)

proving the claim of Theorem 1. �

4.6 Discussion
We have proven that Fiat-Shamir is SP-extractable in the QROM. Why did we have to weaken
the definition of [Unr17], which further requires the internal state of the adversary to be
preserved (to a certain degree) across the extraction procedure?

Concretely, the stronger definition requires that any projective measurement ΠH
η,x||π on

the internal state of the adversary after a normal run (1), should succeed with polynomially-
related probability on the internal state of the adversary after the extractor has used it as an
oracle to obtain a witness (2). As is evident from the notation, the measurement may depend
on η, x, π and H.

The problem is that our extractor is forced to answer oracle queries according to two
different, conflicting functions. While the two functions differ only on a single input, they
differ exactly on the input y0 = x||com that is eventually used in the forgery we obtain at the
end of the run.

Lemma 6 shows that the inconsistent answers do not decrease (too much) the amount of
amplitude that sits on a correct response for (y0,Σ(y0)). However, it is not given that this
amplitude is on the same basis states of the internal state, compared to the situation where we
would have used the correct oracle answers from the start. In other words, while we prove that
the adversary is not handicapped by the inconsistent oracles too much to do what we want it
to do, we have not excluded the possibility that its internal state somehow got ‘scarred’ by the
inconsistencies. We therefore cannot prove that any projective measurement that succeeds in
situation (1), will succeed in situation (2) with polynomially related probability.

We have also not excluded the possibility. We have tried to give a more fine grained
analysis in place of Lemma 6, where we differentiated between ‘positively’ and ‘negatively’
contributing unitaries, but it turned out to be not enough to remove the possible ‘scars’ from
the adversary’s internal state. However, perhaps a better analysis could extend our results to
include Unruh’s requirements in the future.

(Non)-tightness of the reduction

In cryptography, the parameters (which influence the all-important efficiency) of a scheme are
often set according to the tightness of the security reduction. A reduction is said to be tight
when the success probability – or equivalently the run time – of the adversary against the
scheme is of the same order as the that of the reduction against the hard problem. We have
shown that a Fiat-Shamir adversary can break an underlying hard problem, but only with
probability approximately acc12

q105
, where acc is the success probability of the adversary against

the Fiat-Shamir scheme, and q is the number of queries it makes. Our result is therefore a prime
example of a non-tight reduction. However, two things can be said to put the astronomical
bound in perspective.

Firstly, we do not believe that our reduction is optimal. As it is often the case in computer
science, the first barrier to breach is the one between exponential and polynomial time, what-
ever the exact parameters are. We have not tried at all to optimize our result in this respect.
Very likely the exact bound will be reduced in the future.

Secondly, there is a history with Fiat-Shamir proof systems of ignoring the tightness of
the reduction. In the classical case, the reduction factor is approximately 1

q2
. On could

argue however that this factor is merely an artifact of the proof. It comes entirely from the
uncertainty of the reduction as to which query the adversary will use in its forgery, for both
the first and the second run. One could imagine the adversary using itself as a subroutine, in
which case it could pick the correct query with no uncertainty. Of course this is not a very
rigorous argument, but in practice at least many implementations of Fiat-Shamir schemes
ignore the looseness of the reduction.

In any case, our reduction shows that an adversary who has non-negligible probability at
breaking the Fiat-Shamir scheme, also has non-negligible probability of solving a problem of
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which we assume that any efficient algorithm can only solve it with negligible probability. As
long as the hardness-assumption is unbroken, the scheme is unbroken.
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5 Existential unforgeability of Fiat-Shamir signatures
In [Unr17], Unruh proves that an extractable Fiat-Shamir proof system is also simulation-
sound extractable, and that simulation-sound extractable proof systems can be used to create
a signature scheme that has existential unforgeability. Theorem 1 from the previous section
states that for suitable sigma-protocols, the corresponding Fiat-Shamir proof system is SP-
extractable. In this section, we show that the proofs from [Unr17] can be adapted to work for
this weaker definition as well.

We first need to adapt Unruh’s definition of simulation-sound extractability to fit our
notion of SP-extractability:

Definition 5.1 (simulation-sound SP-extractable) A non-interactive proof system (P, V )
for a relation R is simulation-sound SP-extractable with respect to the simulator S iff there
is a quantum polynomial-time oracle algorithm E and a constant d > 0, such that for any
polynomial-time family of pure oracle circuits Aη (with output `outputAη = `xη+`comη +`chη +`respη )
there exists a polynomial ` ≥ 0 such that for any classical predicate Q (possibly dependent on
η) there exists a polynomial p > 0 and a negligible function µ such that for all η and all
`stateAη -qubit density operators ρ, we have that:

Pr [(x,w) ∈ R ∧ okQ = 1 : Extract]

≥ 1

p(η)
Pr
[
okV = 1 ∧ okQ = 1 ∧ (x, π) /∈ S−queries : ProveS

FS

]d
− µ(η)

where ProveS
FS is following game:

H
$← Fun(`inη , `

out
η ),

SA ← ρ

∗ ∗ ∗ (x, com,H(x||com), resp)← AH,S
′′

η (SA),

π := com||resp,

∗ ∗ ∗ okV ← V H
final

FS (1η, x, π),

okQ ← Q(1η, x).

(Here *** marks the difference with the game ProveFS from Definition 2). The oracle S′′(x)
invokes S(1η, x), and Hfinal refers to the value of the random oracle H at the end of the
execution (remember that invocations of S may change H). S−queries is a list containing all
queries made to S′′ by A, as pairs of input/output. (Note that the input and output of S′′ are
classical, so the list is well-defined.) Furthermore, Extract is the following game:

H
$← Fun(`inη , `

out
η ),

SA ← ρ,

(x,w, π, ass)← EA
rew
η (SA),H(1η, `(η), shapeAη )

okQ ← Q(1η, x).

We need to consider two different proofs. Because we already assume perfect unique
responses in the proof of SP-extractability, we only consider the ‘strong’ versions (see Section
1.5) of both. The first is

Theorem 25 ([Unr17]) (If Fiat-Shamir is extractable, then it is strongly simulation-
sound extractable)
Assume that Σ has unique responses. Assume that the Fiat-Shamir proof system (PFS , VFS)
based on Σ is extractable. Then the Fiat-Shamir proof system (PFS , VFS) is strongly simulation-
sound extractable with respect to the simulator SFS from [Section 1.5 of this thesis, JWD].

We prove our own theorem by adapting Unruh’s proof.

Theorem 2 (Fiat-Shamir is strongly simulation-sound SP-extractable) Let Σ be a
sigma-protocol with special soundness and perfect unique responses, for the relation Rη, and
such that for every x ∈ dom(R) the size of the challenge space #Cηx is exponential in
η. Then the Fiat-Shamir proof system (PFS , VFS) based on Σ is strongly simulation-sound
SP-extractable with respect to the simulator SFS from Section 1.5.
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Proof. We need to take the game ProvesS
FS and transform it into the game Extract, and

show that the probabilities of winning in these games are not too far apart. Since our predicate
Q is a special case of Unruh’s projective measurement circuit Π, it suffices to point out the
differences in the intermediate games of the proof. The reader is referred to [Unr17] to check
that the transitions between these games go through as normal.

We leave out the input 1η for convenience. In all of the following games, we have H $←
Fun(`inη , `

out
η ).

Game 1 (Real world) SA ← ρ. (x, com,H(x||com), resp)← AH,SFS (SA)

okV ← V H
final

FS (x, com||resp). okQ ← Q(x) win := (okV = 1 ∧ okQ = 1 ∧ x /∈ S−queries).

This game is equal to the game in [Unr17], except that we substituted our condition okQ
for their okA and adapted the output of A to match our definition. Since both are not used
in the transition to the next game, we may conclude that

Pr[win = 1 : Game 2a] ≥ Pr[win = 1 : Game 1] (45)

where

Game 2a (Unchanged H) SA ← ρ. (x, com,H(x||com), resp)← AH,SFS (SA)
okV ← V HFS(x, com||resp). okQ ← Q(x) win := (okV = 1 ∧ okQ = 1 ∧ x /∈ S−queries).

Quite obviously, when we drop one of the winning requirements, namely x /∈ S−queries,
winning becomes easier, and thus

Pr[win = 1 : Game 2b] ≥ Pr[win = 1 : Game 2a] (46)

with

Game 2b (Dropped S−queries) SA ← ρ. (x, com,H(x||com), resp)← AH,SFS (SA)
okV ← V HFS(x, com||resp). okQ ← Q(x) win := (okV = 1 ∧ okQ = 1).

Next, Unruh introduces a quantum polynomial-time pure oracle circuit B, which behaves
exactly as A, but also simulates the simulator SFS . Since SFS is an efficient algorithm itself,
nothing really has changed and we get

Pr[win = 1 : Game 4] ≥ Pr[win = 1 : Game 2b] (47)

using the game

Game 4 (Simulating SFS) SA ← ρ. (x, com,H(x||com), resp)← BH(SA)
okV ← V HFS(x, com||resp). okQ ← Q(x) win := (okV = 1 ∧ okQ = 1).

(Note that we skipped game 3, becuase it only refers to the projective measurement from
Unruh’s definition.) We now apply Theorem 1, to obtain that (PFS , VFS) is SP-extractable.
Note that game 4 is exactly the game ProveFS from Definition 2, for an adversary ‘B’. Since
(PFS , VFS) is SP-extractable, we get that

Pr[win = 1 : Game 5] ≥ 1

32768 · q105
Pr[win = 1 : Game 4]12 − µ(η) (48)

where

Game 5 (Extraction for B) SA ← ρ, (x,w, π, ass) ← E
Brew(SA),H
0 (`0, shapeB), okQ ←

Q(x).

The final thing to note is that B can be simulated using only oracle access to Arew. There
must therefore exist an extractor algorithm E that behave just like E0, except that whenever
E0 makes a query to Brew, E queries Arew instead and computes the part of B that simulates
SFS by itself. It must then be that

Pr[win = 1 : Game 7] = Pr[win = 1 : Game 5] (49)

with

Game 7 (Extraction) SA ← ρ, (x,w, π, ass)← EA
rew(SA),H(`, shapeA), okQ ← Q(x).
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(Again Game 6 from the original proof deals only with aspects specific to the measurement
circuit Π that we do not use.) Since Game 1 is exactly the game ProveS

FS and Game 7 is
exactly Extract both from Definition 5.1, and Equations 45 – 49 together imply that

Pr[win = 1 : Game 7] ≥ 1

32768 · q105
Pr[win = 1 : Game 1]12 − µ(η)

the claim of the Theorem has been proven. �

We next turn to the theorem about unforgeability. First we need another definition.

Definition 5.2 ([Unr17]; Hard instance generator) We call an algorithm G a hard in-
stance generator for a fixed-length relation Rη iff

• G is quantum polynomial-time, and

• there is a negligible µ such that for every η, Pr[(x,w) ∈ Rη : (x,w)← G(1η)] ≥ 1−µ(η),
and

• for any quantum polynomial-time A, there is a negligible µ such that for every η, Pr[(x,w′) ∈
Rη : (x,w)← G(1η), (x,w′)← A(1η, x)] ≤ µ(η).

Theorem 31 (Unforgeability from simulation-sound extractability) If (P, V ) is zero
knowledge and has strong simulation-sound extractability for R′η, and G is a hard instance
generator for Rη, then the signature scheme (KeyGen, Sign,Verify) from Definition 1.3 is
existentially unforgeable (see Definition 1.4).

We only have to replace ‘extractability’ by ‘SP-extractability’ to get our own theorem:

Theorem 3 (Unforgeability from simulation-sound SP-extractability) If (P, V ) is zero
knowledge and has strong simulation-sound SP-extractability for R′η, and G is a hard instance
generator for Rη, then the signature scheme (KeyGen, Sign,Verify) from Definition 1.3 is
existentially unforgeable (see Definition 1.4).

Proof. Again we leave out the input 1η for convenience, and we implicitly assume
H

$← Fun(`inη , `
out
η ) in all of the following games. We write x ≤ x∗ to indicate that the first

|x| bits of x∗ are equal to x. Furthermore, let G be a hard instance generator for the relation
Rη, as defined in Definition 5.2.

According to Definition 1.4, we need to show that

Pr[win = 1 Game 1] ≤ µ(η) (50)

for some negligible function µ, and the following game:

Game 1 (Unforgeability) (pk, sk)← KeyGen(), (σ∗,m∗)← AH,Sig(pk),
ok ← VerifyH(pk, σ∗,m∗), win := (ok = 1 ∧ (σ∗,m∗) /∈ Sig−queries).

We will transform this game in a series of steps, following [Unr17]. We immediately skip
to Game 5, for everything in between is exactly the same with both definitions of simulation-
sound extractability. We thus get, by the proof in [Unr17], that∣∣∣Pr[win = 1 : Game 1]− Pr[win = 1 : Game 5]

∣∣∣ ≤ µ(η) (51)

where

Game 5 (x,w)← G(), (x∗, π∗)← CH,S
H

(x), ok ← VH
final

(x∗, π∗),
win := (ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S−queries).

Of course this game is easily seen to be equivalent to the following:

Game 5a (x,w)← G(), (x∗, π∗)← CH,S
H

(x), okV ← VH
final

(x∗, π∗), okQ ← Qx(x∗)
win := (okV = 1 ∧ okQ = 1 ∧ (x∗, π∗) /∈ S−queries).

if we define Qx(x∗) = x ≤ x∗. Note that Game 5a is exactly like the game ProveS
FS from

Definition 5.1. We may therefore apply the assumption that (P, V ) has simulation sound
extractability for the relation R′η, to find that

Pr[win = 1 : Game 6] ≥ 1

32768 · q105
Pr[win = 1 : Game 5a]12 − µ1(η) (52)
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where

Game 6 (Extraction for C) SA ← ρ, (x,w, π, ass) ← E
Crew(SA),H
0 (`0, shapeC), okQ ←

Q(x).

Completely analogous to the prove of Theorem 2, we now need to transform the last game
from one where the extractor takes the algorithm C as a black-box input, to one where the
extractor takes the original adversary A. We leave the details to the reader, and conclude that
by the fact that G is a hard instance generator,

Pr[win = 1 Game 6] ≤ µ2(η)

for some negligible function µ2, and hence

Pr[win = 1 Game 1] ≤ µ(η)

for some negligible function µ by Equations 50 and 52. �
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6 Conclusion
We have proposed a proof method which aims to show that the Fiat-Shamir proof system
is SP-extractable (statement preserving), if the underlying sigma-protocol has perfect unique
responses. Currently, the method still relies on an unproven assumption. We have furthermore
proven that a signature scheme which is based on a Fiat-Shamir proof system that is SP-
extractable, is existentially unforgeable.
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