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Abstract

The fundamental problem of process-oriented qualitative models and simulations
is to extract as much useful information as possible from sparse or incomplete
descriptions. These qualitative reasoning approaches address the gap between
the infinite complexity of the world and our partial knowledge of it, which defies
traditional numerical modelling and generalises the reasoning to the qualitative
behaviour capturing the key aspects. We take a theoretical approach to this
problem, and make the following contributions. First, we develop a new partial
axiomatisation that is better suited for simulation analysis. Second, using this
axiomatisation, we identify inconsistencies of state graphs resulted from the use
of sparse knowledge, and suggest solutions for these. Third, we introduce the
problem of early inconsistency detection, requiring non-trivial inequality reason-
ing in the context of partial knowledge. Fourth, we formulate a generalisation
of this problem, called the “combining changes problem”, and analyse it from a
complexity theoretic perspective, proving it to be polynomial under reasonable
assumptions. Fifth, we derive a practical procedure for the early identification of
contradictory relations, making qualitative reasoning more efficient by reducing
the number of eligible compound terminations. As a general result, our work
demonstrates the value of a theoretical approach to this problem when grounded
by practical examples, realised using Garp3, clarifying the concepts and problems,
and motivating the methods we developed.
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Chapter 1

Introduction

Since there is an enormous gap between the infinite complexity of the world and
our finite knowledge of it, people react to the environment using their internal
representations, which are based on incomplete information (Kuipers, 1994). This
incomplete information is usually expressed qualitatively, by the relative differ-
ence between quantities, rather then quantitatively, by giving in exact numerical
values. For example, two people discussing future weather conditions would say
“the temperature in Amsterdam will be slightly higher than the one in Utrecht”,
rather than “the temperature in Amsterdam will be equal to the one in Utrecht
plus one degree”.

Qualitative Reasoning (QR), which is a field of Artificial Intelligence, investi-
gates how this type of reasoning can be automated (Van Harmelen et al., 2008).
The aim of this field is to develop the means for creating a model that captures
the available qualitative information (system structure, assumptions, conditions
etc.), and that can infer possible outcomes through simulation. The need for rea-
soning with incomplete knowledge and for human-machine interaction motivates
QR applications in a variety of subjects such as physics (De Kleer, 1990), ecology
(Bredeweg and Salles, 2009), engineering (Abbott et al., 1988), and robotics (Pin
et al., 1992). Lastly, it is very useful in education, as it gives a natural learning
environment for students in science, enabling them to formalise their knowledge
into models and use it through scenario simulations (Bredeweg and Forbus, 2003).

The focus of this thesis is on addressing the resolution problem, which is one
of the three main QR problems according to Weld and De Kleer (2013). In short,
since usually not all the necessary information is possessed, there is a need for
reasoning techniques that work even under partial knowledge. This means our
focus is on addressing the following research question:

How can we maximise the information inferable from sparse knowledge in
process-oriented qualitative reasoning?

Our main approach for tackling this question is theoretical. We formulate a
new axiomatisation based on the earlier attempts (see next paragraph for cita-
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tions), but tailored to the needs of addressing our research question focussing on
simulation rather than modelling. This axiomatisation is then used both to point
out incoherences and to find procedures for early identification of incompatible
system behaviour developments. The time analysis of these procedures is mostly
done theoretically. Occasionally, we look at some particular examples to investi-
gate practical benefits of our algorithms. This case analysis is done by running
simulations in Garp3 (Bredeweg et al., 2009), which is a workbench based on an
executable language that allows users to construct, simulate, and analyse models
based on qualitative knowledge.

This thesis is structured around four main chapters, each addressing a spe-
cific question and contributing towards answering our main research question.
Chapter 2 investigates how the earlier formalisations of process-oriented quali-
tative reasoning can be adapted to allow for theoretical analysis of simulations.
Consequently, this chapter brings three main contributions. First, it provides a
brief literature review of process-oriented QR. Second, it builds the clarity and
the vocabulary needed to theoretically discuss qualitative simulations by devel-
oping a partial axiomatisation. This is mostly based on the earlier formalisations
of Bredeweg et al. (2009), Liem (2013), and Linnebank (2004), but focusses on
defining the concepts needed in simulations and on providing clear notations and
definitions, similar to the work of Weld (1988). Third, to illustrate those defi-
nitions, a novel model from the field of Auction Theory is introduced. Fourth,
a large simulation example (Kansou et al., 2017) is used for further clarifying
the definitions and the simulation steps, and for a practical illustration of the
problems associated with sparse knowledge.

In Chapter 3, the question addressed is of whether, because of sparse knowl-
edge usage, principles of consistency are violated by the current qualitative sim-
ulation approach. First, this chapter underpins three types of incoherent be-
haviours that could be predicted by the previously axiomatised simulation ap-
proach. These violate either (a) model consistency, i.e. each state must be in
accordance with the model, both in point of dependencies and relations, (b) path
consistency, i.e. each possible sequence of events predicted should be coherent,
and in particular should not contain contradictory assumptions or misrepresent
extrema, or (c) inexplicit inequality consistency, i.e. the simulation result should
also be in accordance with the inequalities that are not explicitly stated. Second,
it finds solutions for solving these particular types of incoherences.

The focus of Chapter 4 is on whether there is a general formulation of a
problem that is related to the one of early identification of system behaviour de-
velopments and that can be efficiently solved. This is an important issue since,
because of the sparse nature of the available knowledge, evolution incompatibil-
ities are hard to detect. This chapter brings three main contributions. First,
it provides a formulation of a related problem, namely the combining changes
problem (COMB). Second, under some explicit assumptions, classical complexity
theoretical results (Boesch and Gimpel, 1977; Arora and Barak, 2009) are used
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to solve this problem in polynomial time. Third, a faster algorithm for COMB,
which is better for practical use, is provided.

Chapter 5 investigates how the solutions for the general problem presented in
the previous chapter can be adapted for efficiently using the sparse knowledge in
qualitative simulations. First, it finds that, in the case of non-changing models,
there is a reduction from COMB to the problem of finding plausible simultane-
ous next-state developments of systems (ELIG). Second, it adapts the previous
solution to work under changing models. Third, the benefits of these solutions
are illustrated by returning to the two examples from the second chapter.

This thesis finishes with a discussion and conclusions in Chapter 6, which
presents the general conclusions and directions for future work.





Chapter 2

Modelling and Simulation in the
Context of Qualitative Reasoning

This chapter aims to provide a clear understanding of process-oriented Qualitative
Reasoning, which is necessary for answering the research question posed in the
introduction. To achieve this, first, a partial axiomatisation for process modelling
and simulation is developed. Second, two examples of simulations are then used
with the double purpose of illustrating the concepts introduced in the earlier parts
of the chapter, and of hinting potential problems resulting from sparse knowledge
usage.

2.1 Qualitative Modelling and Simulation

As mentioned in the introduction, this thesis considers an executable language
with logical constraints. Therefore, after modelling a system, the user can de-
scribe a situation (by means of an initial scenario) and run the model to analyse
the possible qualitative developments. Hence, the process can be broken into
three phases, namely: understanding the model language, introduced in Sub-
section 2.1.1, describing a state in the world, discussed in Subsection 2.1.2 and
simulating the model, presented in Subsection 2.1.3. This section is based on the
previous formalisations of Bredeweg et al. (2009), Liem (2013), and Weld (1988).

2.1.1 Modelling Language

In this phase of modelling, the user acquires the means of describing their knowl-
edge about a system in a standardised form. There are various reasons for which
modelling is important. At a conceptual level, the act of formally expressing all
the aspects of one’s knowledge can help both organising it and revealing the miss-
ing parts that can be later developed (Alessi, 2000). At a practical level, since it
is expressed in a standardised form, other people can later understand and use
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the information contained within the model. Moreover, an algorithm can now
interpret the information and use it to produce predictions (i.e. run simulations).

Therefore, one needs first to understand a standardised language in order
to construct models. In this thesis, we build upon the language proposed by
Bredeweg et al. (2009). This is also used in Garp3, which will be the workbench
used for running examples. There are a multitude of ingredients used to construct
this language, and this subsection presents the structural ones.

Entities are the basic structural compounds of the system which do not change
during the simulation phase. Formally, we define an entity as a finite set of
quantities, E = {Q1, ..., Qn}. Quantities are the changeable features of entities.
For instance, the quantity “size” of the entity “population” might change over
time. Similarly, the quantity “bid” of an entity “bidder” has different values
throughout a simulation. At any given time, a quantity has also the tendency to
either increase, remain steady or decrease. This tendency is given by the value of
the derivative of a quantity at that given moment.

Hence, a quantity Q is defined as a variable, which has another associated
variable named (first order) derivative, denoted by dQ. Moreover, if Q is a set
of quantities, then the set of associated derivatives is denote by dQ, i.e. dQ =
{dQ|Q ∈ Q}. A parameter is defined inductively; any quantity is a parameter,
and so are the derivatives of any parameter. For practical reasons, not all order
derivatives are considered. In general, for a given set of quantities, the associated
parameters are only these quantities together with their first order derivatives,
that is PQ := Q∪ dQ. Notice that this is different from the usual definition of a
parameter (Weld and De Kleer, 2013).

The qualitative values that parameters can take are described by landmarks
and intervals. For instance, a bid could be “zero”, “plus”, or “maximum”, where
“zero” and “maximum” are points (i.e. landmarks) while “plus” is an interval.
The meanings associated with these are that the bid stands at zero, a positive
value, or the maximum amount the bidder is willing to offer, respectively. For-
mally, landmarks are considered constants that can be partially ordered by the
strict relation <. Two landmarks lu, lv within the set L of all landmarks are
considered consecutive if lu < lv and there is no lt ∈ L such that lu < lt < lv. As
always, given a set of landmarks L, a minimal landmark is an l1 such that there
is no l0 ∈ L with l0 < l1 (and similarly for the maximal).

An interval is also a constant which is associated either with two consecutive
landmarks or with a minimal or maximal landmark. So, for the consecutive
landmarks lu < lv, the associated interval will be iu,v. If l1 is minimal, then i0,1 is
its associated interval, while if lu is maximal it will have iu,u+1 as an associated
interval. The partial order < also extends over intervals, so lu < iu,v < lv.
However, the relation is not strict over intervals, as iu,v < iu,v is valid. The
intuition for this is that there are more values within a qualitative interval. For
example, if there are two bids that are at “plus”, there is still the possibility that
one is larger than the other, as being “plus” varies from being almost zero to
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being almost at maximum.
A given quantity can take different values depending on its nature. Therefore,

while modelling the system, the user needs to specify the qualitative values that
each quantity can take. So, for each quantity, there is an associated magnitude
space formed of landmarks and intervals, in which its value can vary. The land-
mark space associated with a quantity Q is defined as a set of landmarks totally
ordered by <, LQ = {l1 < l2 < ... < lm} that quantity Q can take, while the
interval space of Q is the set of intervals associated with these landmarks, that is
IQ = {i1,2, i2,3, ..., im−1,m} possibly together with one or both of i0,1 and im,m+1.
The magnitude space of Q is hence the set of landmark and interval spaces of Q,
i.e. MQ = LQ ∪ IQ.

Intuitively, the value of a derivative of a parameter P shows the tendency of
change for that parameter. So, a derivative should be either negative, indicating
that P is decreasing, zero, indicating that it is stable, or positive, indicating that
it is increasing. Hence, for any parameter P , LdP = {0}, IdP = {−,+}, and
MdP = {− < 0 < +}.

The model for a bidder, which is depicted in Figure 2.1, illustrates the concepts
defined above (see Section 2.2 for details and motivation on the auction model).
The entity Bidder has two associated quantities, namely Bid and To absolute.
Using the notation, Bidder = {Bid,To absolute}. The landmarks for the quan-
tity Bid are 0 and Max , and there is only one interval, namely Plus . Hence, the
landmark space is LBid = {0,Max}, the interval space is IBid = {Plus}, and the
magnitude space is MBid = {0,Plus ,Max}. As usual, the magnitude space for
the derivative is MdBid = {−, 0,+}.

Note however that the magnitudes are not necessarily equal between quanti-
ties, even though they have the same name. If two quantities Bidder1 ,Bidder2
have Max in their magnitudes space, formally they have the two associated land-
marks MaxBidder1 and MaxBidder2 , which in general might not be equal. However,
to simplify notation, the indices are sometimes dropped.

Figure 2.1: A model fragment for the English Auction model.

The complexity of a system usually comes not from the number of elements
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composing it, but rather from the interrelated nature of those elements. Usually, a
change in one quantity determines a change in another, which in turn might have
various effects on other quantities. For example, if a bidder is not the absolute
winner, that is it the value of its To absolute quantity is positive, this determines
an increase of its bid. This is modelled using causal ingredients, which are of
three types:

• Proportionality (which can be either positive or negative) models a corre-
lation between the tendencies of two quantities. An example is the pro-
portionality between the size and the number of births of a population: if
the first increases, this will determine an increase in the second. More pre-
cisely, if Q1 is positively proportionally influenced by Q2, Q1 has no other
dependencies, and Q2 is increasing, then Q1 should also be increasing.

More formally, the two types of proportionality are denoted by P+ or P−,
and each of them is an antisymmetric binary relation on Q.

• Influence (which can be positive or negative) models the dependency be-
tween the magnitude of a quantity and the tendency of another. To take an
example, the number of deaths negatively influences the size of a population
as, if the number of deaths is positive, and there are no births or immigra-
tion, then the size of the population should decrease. More precisely, if Q1

is positively (directly) influenced by Q2, Q1 has no other dependencies, and
Q2 is positive, then Q1 should also be increasing.

Formally, the two types of influences are denoted by I+ or I−, and each of
them is an antisymmetric binary relation on Q.

We also say that a dependency is either an influence or a proportionality
relation.

• Correspondence, which can be directed or undirected, shows co-appearing
magnitudes. For example, in an auction with two bidders, a zero difference
between the two bids means that the two bidders are not the absolute
winners, so their To absolute quantities should be Plus . Hence, a bidding
difference of zero unidirectionally corresponds to a To absolute value of
Plus .

Formally, the directed (value) correspondence set C is a binary relation on
PQ × ∪P∈PQMP . More precisely,

C ⊆ {((P1, v1), (P2, v2))|Pi ∈ PQ, vi ∈MPi
, P1 6= P2}.

In the example above we have the correspondence ((Bid difference, 0), (To
absolute,+)).
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Additionally, the undirected correspondence is symmetric. However, since
the undirected correspondence can be expressed in terms of directed corre-
spondences we will only use the latter, to which we will refer to simply as
correspondences.

With the elements presented above, one has the needed language to construct
a model. The inequalities extended to quantities, as well as the option of mod-
elling by fragments, are also useful, but will be discussed in the next subsection.
However, on its own, this language is not sufficient as, in order to use it, one
should be able to provide a description of the current state of the world, as well
as to run it in order to predict possible future developments.

2.1.2 World Description

Up to this point, the language for encoding the general information that remains
true throughout any simulation was presented. That is only the information that
does not depend on any particular value. However, in order to make the model
useful, one should be able to supply information about the state of the world
at a particular time. This means providing details about the magnitudes of the
quantities used and their derivatives, the relations between different quantities,
etc. In this subsection, we build the vocabulary used to provide the model with
a (partial) description of its state at a particular time.

Firstly, (in)equalities are used to compare certain ingredients. These are bi-
nary relations R ∈ {<,≤,=,≥, >}, which can appear between two quantities,
landmarks or derivatives, a quantity and a landmark, or a derivative and zero.
More precisely, for a given set of quantities Q, the elements of the relations R are
of the form:

• (Q1, Q2), for Q1, Q2 ∈ Q, i.e. comparing two quantities;

• (Q, l), for l ∈ LQ, i.e. comparing a quantity and a landmark;

• (l, l′), for l, l′ ∈ LQ, Q ∈ Q, i.e. comparing two landmarks;

• (dQ1, dQ2), for Q1, Q2 ∈ Q, i.e. comparing two derivatives;

• (dQ, 0), for Q ∈ Q, i.e. comparing a derivative and zero.

This is also extended to inequalities on terms, that is on expressions obtained
from parameters together with arithmetic operators.

The example in Figure 2.2 shows that the difference between the maximum
bids of the two bidders needs to be negative and large, i.e. Neg large. This
is expressed by an inequality between a term and a landmark, and is given by
(MaxBid1 −MaxBid2 ,Neg epsilon) ∈ <.
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In addition, one should also be able to specify qualitative values for different
ingredients in order to compare them. That is, if at a certain moment the bid of
the first bidder is 0, and a prediction of possible future developments from that
state is desired, one should be able to specify this value. A specification of one
or more such values will be referred to as an assertion. Formally, this is defined
as follows:

• A magnitude assertion for the set of quantities Q is a (partial) function
mag : Q → ∪Q∈QMQ, such that mag(Q) ∈ MQ for all Q ∈ Q and mag(Q)
defined. Hence, a magnitude assertion for Q is a function that gives to
(some) quantities in Q some magnitude within their associated magnitude
space.

• A derivative assertion for the set of quantities Q is a (partial) function
der : dQ → {−, 0,+}.

• A qualitative value assertion for the set of quantitiesQ is a (partial) function
val : Q∪dQ → ∪Q∈QMQ∪{−, 0,+} such that valm := val|Q is a magnitude
assertion, and vald := val|dQ is a derivative assertion.

As an example, in Figure 2.2 there is a magnitude assertion for the set of
quantities Q = {Bid1,Bid2,Bid difference} is a total function, such that:

• mag(Bid1) = mag(Bid2) = mag(Bid difference) = 0,

• mag(dBid difference) = 0, and

• mag(dBid1) = mag(dBid2) = +.

Moreover, since there are no derivative specifications, the qualitative value asser-
tion is the same as the magnitude assertion.

This gives all the elements to define a scenario, that is a partial qualitative
description of a situation. A scenario captures information about the qualitative
values and the relations between different ingredients of the model. Moreover, the
two elements of the scenario must be consistent with each other. For example,
if two quantities are equal, and they also have asserted values, then their values
should not be specified as being unequal.

An example of a scenario, realised using Garp3, is pictured in Figure 2.2.
This scenario presents an auction with two bidders, each of them currently bid-
ding zero, but with a tendency to increase the bid. In addition, the difference
between the two bidders is currently zero and stable. Finally, the second bidder
has a higher valuation than the first one, meaning that they are willing to bid
(significantly) more.

Formally, a scenario s is a tuple 〈E , val , <,≤,=〉, where E is a set of entities,
val is a qualitative value assertion for Q, and <,≤,= are inequalities on E .
In addition to this, if val(P1) and val(P2) are defined, and P1 R P2 for some
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Figure 2.2: English Auction with two bidders: initial scenario

R ∈ {<,≤,=}, then the relation between P1 and P2, if specified, should be
val(P1) R val(P2), where P1, P2 are parameters in E , formally in P∪E∈EE.

Another useful concept is that of model fragments (MF), used to describe
how parts of the system behave under certain conditions. One such example
was already mentioned in Figure 2.1. The conditions are shown in red, and the
consequences in blue. As a result, the model fragment reads as follows: if there is
an entity Bidder with quantities Bid and To absolute, such that Bid is at a value
smaller than Max , then the To absolute quantity positively influences the Bid .
Notice that the same model fragment can be used multiple times. For example,
if there are two bidders respecting the conditions of this model fragment, as it is
the case in Figure 2.2, then the model fragment would apply for both.

An active model fragment for a given scenario, is a model fragment that has
the conditions satisfied by that scenario. In order to provide a formal definition
for model fragments, a classification of the different types of ingredients is needed.

The behaviour ingredients of a scenario are the relations and the value as-
sertion function. That is, the behaviour ingredients of s = 〈E , val , <,≤,=〉 are
val , <,≤,=. The structural ingredients of a scenario are the set of its entities
(which also contains information about quantities), together with agents, config-
urations, attributes, and assumptions. The last four types are beyond the scope
of this thesis, so we will not insist on these. In general, the conditionals of a
scenario are its structural and behavioural ingredients.

Using this, MFs are then rules that link a set of conditionals to a set of causal
ingredients and possibly (in)equality restrictions. Hence, they can be determined
by a function, say the model fragment function mf : P(Cond) → P(Caus),
where Cond is the set of all possible conditionals, and Caus is the set of causal
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ingredients together with (in)equality relations.
Therefore, for every state there are associated proportionality, influence and

correspondence relations, plus possible (in)equality restrictions, that are given by
the MF function. Those will be referred to as the set of active causal ingredients,
which, for a scenario s, is given by

⋃
Co⊆Conds

mf (Co).
So, in this section, an axiomatisation for a state description was provided. In

addition, model fragments were used to account for case distinctive behaviours of
the system. The focus of the next section is on running a scenario in the context
of a given model fragment function.

2.1.3 Model Simulation

Having constructed a model, and presented it with an associated scenario, it is
now time to run the model with the scenario in order to predict possible system
behaviours. This is referred to as a simulation. Throughout this subsection, the
focus will be on providing the vocabulary for describing the simulation of a model
fragment function and a scenario.

To begin with, a state represents a complete version of a scenario. Differently
from a scenario, a state has known qualitative values for all the magnitudes
of quantities. More precisely, a state s is a scenario for which the magnitude
assertion is total, i.e. the qualitative value assertion restricted on quantities
(valm) is a total function. Furthermore, a state s extends a scenario s′ if all the
elements of s are supersets of the respective ones in s′. If the scenario is under-
specified, it can have more than one state extension. In that case the scenario is
called ambiguous.

In order to capture the dynamic nature of a system, states must be able evolve
into new ones. The way a state changes is by terminating the current one. Hence,
a simple termination is defined as a pair capturing a cause and a set of resulting
changes. So, a simple termination for a state s is a pair (c,Re), where c is a cause,
and Re is a set of results. Moreover, the tuple needs to satisfy the termination
validity criteria which will be defined later. The set of results is a collection of
relations on the parameters of s, while the different types of causes are defined
below.

A cause c of a termination for a state s = 〈E , val , <,≤,=〉 is a pair that gives
the type of change (i.e. a constant from Table 2.1) and a quantity (or a pair of
quantities) from ∪E∈EE, i.e. c = (cause name, Q), for some Q in ∪E∈E E. Table
2.1 presents the causes grouped into three possible categories. Formally, there are
four categories, as there are also exogenous terminations on derivatives (Bredeweg
et al., 2009), but these necessitate additional constraints, and are outside the
scope of this thesis. In additon, for the derivative and inequality causes, there are
also assumed versions of the constants, e.g. (assumed derivative stable to down,
Q).

As stated before, in order for a pair t = (c,Re) to be a termination of state
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Class of causes Type of cause

Value causes (to point above, Q)
(to point below , Q)
(to interval above, Q)*
(to interval below , Q)*

Derivative causes (derivative stable to down, Q)*
(derivative stable to up, Q)*
(derivative down to stable, Q)
(derivative up to stable, Q)

Inequality causes (from equal to greater , (Q1, Q2))*
(from equal to smaller , (Q1, Q2))*
(from smaller to equal , (Q1, Q2))
(from greater to equal , (Q1, Q2))
(from smaller or equal to smaller , (Q1, Q2))∗
(from smaller or equal to equal , (Q1, Q2))
(from smaller or equal to greater , (Q1, Q2))∗
(from greater or equal to greater , (Q1, Q2))∗
(from greater or equal to equal , (Q1, Q2))
(from greater or equal to smaller , (Q1, Q2))∗

Table 2.1: Types of causes

s = 〈E , val , <,≤,=〉, t needs to satisfy the termination validity criteria. This
means that only certain pairs of causes and results are valid. Moreover, these
are valid for the state s only when a certain set of conditions (constraints) of s is
valid. The condition function of s, denoted by cond, is a function from the set of
simple terminations to the power set of constraints of s. Hence, cond(t) is the set
of constraints for the termination t. Table 2.2 outlines the termination validity
criteria. This is based on the work of Linnebank (2004).

Not all terminations have the same level of priority, as some happen before
others. The set of terminations is therefore divided into two parts, namely imme-
diate terminations, which are from a point or from equality, i.e. the ones marked
with * in Table 2.1, and non-immediate terminations, which are to a point or
to equality. Hence, the set of simple terminations Ts is the disjoint union of the
set of immediate terminations Is and the set of non-immediate terminations Ns.
That is, Ts = Is∪̇Ns.

Because of the inter-related nature of the elements of the system, one termi-
nation is usually not sufficient to reach another state. Instead, more terminations
would need to co-occur. To capture this behaviour, a compound termination for
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Cause type Elements of cond(t) Elements of re-
sults set

(to point above, Q) val(Q) = iu,u+1, for iu,u+1 ∈ IQ
val(dQ) = +

val(Q) = lu+1

val(dQ) ≥ 0

(to point below , Q) val(Q) = iu,u+1, for iu,u+1 ∈ IQ
val(dQ) = −

val(Q) = lu
val(dQ) ≤ 0

(to interval above, Q) val(Q) = lu, for lu ∈ LQ

val(dQ) = +
val(Q) = iu,u+1

val(dQ) ≥ 0

(to interval below , Q) val(Q) = lu+1, for lu+1 ∈ LQ

val(dQ) = −
val(Q) = iu,u+1

val(dQ) ≤ 0

(derivative stable to
down, Q)

val(dQ) = 0
val(ddQ) = −*

val(dQ) = −
val(ddQ) ≤ 0*

(derivative stable to
up, Q)

val(dQ) = 0
val(ddQ) = +*

val(dQ) = +
val(ddQ) ≥ 0*

(derivative up to
stable, Q)

val(dQ) = +
val(ddQ) = −*

val(dQ) = 0
val(ddQ) ≤ 0*

(derivative down to
stable, Q)

val(dQ) = −
val(ddQ) = +*

val(dQ) = 0
val(ddQ) ≥ 0*

(from equal to greater ,
(Q1, Q2))

Q1 = Q2

dQ1 > dQ2*
Q1 > Q2

dQ1 ≥ dQ2*

(from equal to smaller ,
(Q1, Q2))

Q1 = Q2

dQ1 < dQ2*
Q1 < Q2

dQ1 ≤ dQ2*

(from smaller to equal ,
(Q1, Q2))

Q1 < Q2

dQ1 > dQ2*
Q1 = Q2

dQ1 ≥ dQ2*

(from greater to equal ,
(Q1, Q2))

Q1 > Q2

dQ1 < dQ2

Q1 = Q2

dQ1 ≤ dQ2*

Table 2.2: Termination validity criteria. Note that the inequality transitions
from a weak constraint to a strong one were omitted, but these are similar to the
mentioned ones. In addition, if the constraints marked with star do not appear
explicitly, but could be added while maintaining consistency of the state, then
the cause is assumed.

a state s is defined to be a set of simple terminations of s. Since immediate ter-
minations take priority over non-immediate one, a compound terminations only
has elements from the immediate terminations, if such elements exist, otherwise
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it is composed by non-immediate terminations. Formally,

T ⊆

{
Is, if Is 6= ∅
Ns, otherwise

,

where Is is the set of immediate terminations of s, Ns is the set of non-immediate
ones, and T is a compound termination. This rule of prioritising immediate
terminations will be referred to as the epsilon ordering rule.

The set of compound terminations of s is denoted by Ts. The set of causes
of the compound termination T is the set of causes that belong to the simple
terminations within T , that is {c|(c,Re) ∈ T}. Similarly, the results of T is the
union of the result sets of the simple terminations, i.e. ∪(c,Re)∈TRe. Moreover,
the condition function naturally extends over compound terminations by letting
cond(T ) = ∪t∈T cond(t).

The physical world is continuous, in the sense that there are no jumps in
tendencies between consecutive states of the same system. So, the continuity
criterion states that the tendency of a quantity cannot jump from the positive
to the negative interval or vice-versa without first passing through zero. Another
way of saying this is that a pair of states (s1, s2) satisfies the continuity criterion
iff for every parameter P appearing resulting from the entity spaces of the two
states the following holds:

• if val1(dP ) = −, then val2(dP ) ≤ 0

• if val1(dP ) = +, then val2(dP ) ≥ 0

At this point a state and a compound termination can produce a new state
by implementing the resulting changes, captured by the termination, into the old
state. A transition scenario from state s with the compound termination T is
then defined as the scenario s′ obtained from s by changing with the results in
T , that is with ReT = ∪(c,Re)∈TRe.

However, simply making the changes within a state does not guarantee the
consistency of the state, as it is not necessarily in accordance with it active causal
ingredients. Therefore, we say that a state s = 〈E , val , <,≤,=〉 with its active
causal ingredients P+, P−, I+, I−, C is stable if:

• There is an influence balance. This happens when the qualitative value
assertion val is plausible with the influence relation of s. Formally, that is
when for every Q ∈ ∪E∈EE, the relation

dQ =
∑

(Q1,Q)∈I+

f1(Q1)−
∑

(Q2,Q)∈I−

f2(Q2),

where the functions fi are strictly increasing and with zero as a fixed point,
holds.
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• There is a proportionality balance. Similarly, this happens when the quali-
tative value assertion val is plausible with the proportionality relation of s.
Formally, that is when for every Q ∈ ∪E∈EE, the relation

dQ =
∑

(Q1,Q)∈P+

g(dQ1)−
∑

(Q2,Q)∈P−

g(dQ2).

where the functions gi are strictly increasing and with zero as a fixed point,
holds. Notice that in this case, because of the possible values of the deriva-
tives, the relation is equivalent with val(dQ) =

∑
(Q1,Q)∈P+ val(dQ1) −∑

(Q2,Q)∈P− val(dQ2).

• There is a correspondence fit. This happens when the qualitative value as-
sertion val is plausible with the correspondence relation of s. Formally, that
is when for every P1, P2 ∈ ∪E∈EE and vi ∈Mi, such that ((P1, v1), (P2, v2)) ∈
C, if val(P1) = v1, then val(P2) = v2.

Notice that the influence and proportionality balances are separate, and not
mixed. The reason for this is that in qualitative reasoning, the dependencies are
interpreted as causalities, so a quantity cannot have both incoming influences and
proportionalities.

There are now all the components needed to define the possible developments
of a current state. A successor of a state s is a continuous and stable state
s′, extending the transition scenario of s and some compound termination T .
The change between the successive states s and s′ is captured by a transition.
Hence, a transition is formally defined as a pair of successor states (s, s′). Now
there is a visual representation of the system’s development by the states and
the transitions between them. This is in the form of a state graph (or behaviour
graph), which is a directed graph G = (V,E) where V is a set of states and E
is the set of transitions between them. Moreover, any behaviour graph must be
maximal, in the sense that there is no state in V with a successor outside V . A
path in this state graph, which shows a possible development of the system, is
referred to as a track. Examples for those are discussed in the next section.

This finalises our axiomatisation of the system. As mentioned in the intro-
duction of this section, this is only a partial one meant to bring the conceptual
clarity needed for investigating the research question. Throughout this section,
the formal definitions were illustrated using examples from an English Auction
model. These example will be discussed in the next section.

2.2 Continuous English Auction with Two Bid-

ders from a Qualitative Perspective

This section has the purpose of explaining the English Auction model into more
detail in order to further exemplify the notions introduced before. In doing so,
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the first subsection discusses the English Auction, the second one the modelling,
and the last one, the simulation.

2.2.1 Continuous English Auction

During a classical English Auction, an item is presented to people in the room,
and the ones interested bid for this item. Each person has a valuation, that is a
maximum value that they are prepared to bid. During the bidding, one person
starts with an offer. If anybody is willing to offer more, they can challenge the
highest current bid by offering a higher amount. The auction stops when nobody
wants to bid over the highest offer. The item is usually indivisible, so there can
only be one winner (McAfee and McMillan, 1987).

This system is obviously not continuous. However, for theoretical analysis in
Auction Theory, the continuous version is used. According to that, the bidders
increase their offer in a continuous manner, and the winner is the person that
offers more than any other one by at least some epsilon (an arbitrarily small con-
stant). This version is similar to the ascending bid or Japanese Auction (Milgrom
and Weber, 1982), where the interested people stay in a room where an initial
price is displayed. The price increases continuously, and the bidders that are not
interested in purchasing the item at that price exit the room. The winner is the
last bidder remaining in the room.

For clarity, this section aims at modelling the continuous version of the English
Auction for two bidders only, but the same principles can be used for larger num-
bers of bidders. To achieve this aim, the model fragments need to be constructed
based on entities. This is done in the Subsection 2.2.2.

2.2.2 Qualitative Model

Having described what a Continuous English Auction is, this subsection presents
the model fragments used for its qualitative modelling. Figure 2.1, already showed
one such model fragment. This encodes an obvious strategy for a bidder, namely
that if their bid is not maximum, then the difference they have until becoming
the absolute winner positively influences their bid. Another model fragment,
shown in Figure 2.3, says that once at the maximum value, the bid stagnates,
i.e. one cannot bid over their valuation. The fragment in Figure 2.4 ensures
that the bidding difference is indeed the first bid minus the second one, that
is Bid difference = Bid a − Bid b. There are also proportionality relations: a
positive one from Bid a to Bid difference, as an increase in the first bid produces
an increase of the difference, and a negative one from Bid b to Bid difference, as
if the former increases the latter would decrease. In addition, the Epsilon and
Neg epsilon landmarks have the same absolute values, but opposite signs, i.e.
their sum is zero.
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Figure 2.3: English Auction with two bidders: model fragment for the strategy
according to which bidders do not bid over their valuation.

Figure 2.4: English Auction with two bidders: model fragment for the behaviour
of Bid difference.

The only quantities not covered by the previously introduced model fragments
are the To absolute quantities of the two bidders. To do this, the model fragment
from Figure 2.4, is extended to the one in Figure 2.5, which shows the corre-
spondences for the To absolute quantities. A bidder is the absolute winner if the
difference between them and any other bidder is at least epsilon. For the case of
two bidders, this means that To absoluteBiddera = 0 iff Bid difference ≥ Epsilon,
and To absoluteBidderb = 0 iff Bid difference ≤ Neg epsilon. This is precisely
what is encoded by the value correspondences in the model fragment. In addition,
whenever To absolute has a non-zero value, it is proportionally influenced by the
Bid difference ≥ Epsilon. In other words, whenever Bid difference ≤ Epsilon
this negatively proportionally influences To absoluteBid a , see Figure 2.6, and
whenever Bid difference ≥ Neg epsilon this positively proportionally influences
To absoluteBid b , see Figure 2.7. So, To absoluteBid a is a quantity that is zero
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whenever Bid difference is Large or Epsilon and otherwise it increases if and only
if Bid difference is decreasing.

Figure 2.5: English Auction with two bidders: model fragment showing the cor-
respondences from the Bid difference quantity to the To absolute quantities.

This finalises the building of the model for the English Auction. It was done
via six model fragments that encode the obvious strategies of the bidders, i.e.
“do not bid over valuation”, “if the bid did not reach the valuation, increase bid
iff not the absolute winner”, as well as the behaviour for the other quantities,
i.e. the Bid difference which is the difference between the two bids, and the two
To absolute quantities. In the next subsection the simulation is discussed.

2.2.3 Example of a Simulation

This section presents the simulation for the scenario in Figure 2.2. Remember
that according to that scenario, the maximum of Bid1 is lower than the maximum
of Bid2 by a non-negligible amount, that is an amount greater than Epsilon. In
addition, the two bids are currently at zero, as is their difference.

This scenario is firstly extended to a state, i.e. state 1 in Figure 2.8a. Ac-
cording to Table 2.2, this state has four possible simple terminations, which are
pictured in Figure 2.8b. Since the two quantities Bid are at 0 with a posi-
tive derivative, (to interval above, Bid i) are hence simple terminations for both
bidders, i.e. for both i = 1 and i = 2. In addition, since the derivative of



20 Chapter 2. Modelling and Simulation in QR

Figure 2.6: English Auction with two bidders: model fragment showing how
Bid difference influences the To absolute of Bid a.

Bid difference, and second order derivatives are unknown, there are also assumed
derivative terminations for this quantity. So the other two simple terminations
are (assumed derivative stable to up,Bid difference), and (assumed derivative
stable to down,Bid difference). The compound terminations in Figure 2.8c are
obtained by combining the simple ones. Since the two value terminations are
immediate and non-assumed, by epsilon ordering, they should always co-appear.
Moreover, the two assumed terminations are contradictory, so they cannot co-
occur. Therefore, the three compound terminations that may produce successor
states are obtained from the two value terminations together with one or no
assumed derivative change. Each of these gives a successor for 1.

To continue this example, consider state 2. In this state both bids are, ac-
cording to the valuation, Plus and have a positive derivative. Moreover, the
Bid difference is 0 and decreasing. According to the model fragments in figures
2.5, 2.6, and 2.7, both To absolute quantities are Plus , the one corresponding
to a is increasing, while the one corresponding to b is decreasing. This state
has five simple terminations, as shown in Figure 2.9a, but only one of those,
namely (to interval below ,Bid difference) is an immediate termination, so this
forms alone the only compound termination, see Figure 2.9b. Consequently, only
one successor for state 2 exists, as shown in Figure 2.9c.

With similar reasoning, the entire state graph can be constructed; this graph
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Figure 2.7: English Auction with two bidders: model fragment showing how
Bid difference influences the To absolute of Bid b.

(a) The extension of
the initial scenario.

(b) The simple ter-
minations.

(c) The compound
terminations.

(d) The successors.

Figure 2.8: The stepwise identifications for the successors of the state extending
the initial scenario in Figure 2.2. To see the diagram with the specific values and
their derivatives, please refer to Figure 2.11.

is pictured in Figure 2.10. One of its tracks is shown in Figure 2.11. The values
of the quantities are represented by circles at the height of the corresponding
interval or landmark, and the derivatives are shown by arrows within the circles.
The arrows next to the cycles are for the second order derivatives. To read it out,
according to this track both bidders are increasing their bids until the last two
steps. The difference between their bids is always non-positive, meaning that the
second bidder always has a higher offer. This difference does not distance itself
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(a) The simple termina-
tions.

(b) The compound termi-
nations.

(c) The successors.

Figure 2.9: The stepwise identifications for the successors of the second state for
the simulation with the initial scenario from Figure 2.2. To see the diagram with
the specific values and their derivatives, please refer to Figure 2.11.

from zero by at least epsilon until the last state, namely state 8. Also until this
last state, none of the bidders is the absolute winner. In the penultimate state,
namely state 10, the first bidder reaches his maximum valuation, and, therefore,
they stop increasing their bid. The second bidder then increases their offer until
they become the absolute winner.

Figure 2.10: The state graph of the model for the two bidders continuous English
Auction, together with the initial scenario from Figure 2.2.

From the state graph, notice that state 8 is the only state without any suc-
cessors. This is, therefore, the only equilibrium point of the auction, that is the
only point when bidders do not have an incentive to change their offer. Since, in
this state, the revenue, i.e. highest offer, equals the second highest valuation plus
Epsilon, and Epsilon is arbitrarily small, the result of the simulation is in accor-
dance with Vickrey’s theorem (Vickrey, 1961). This theorem also proves that the
expected revenue for the English Auction equals the second highest valuation.

All the diagrams in this section were produced using Garp3, and had the
purpose of clarifying the concepts introduced in the previous section. Next, we
investigate one way of computing the state graph in a given setting, by referring
to the example of the reasoning engine in Garp3 (Bredeweg et al., 2009).
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Figure 2.11: A path in the state graph from Figure 2.10.

2.3 Reasoning Engine

The previous section exemplifies the general axioms for qualitative modelling and
simulations which were introduced in Section 2.1. In this section, the question of
how qualitative simulations can be carried out in practice is addressed. To answer
this, Garp3 is considered as an example of an engine that automatically performs
simulations for provided model fragments and scenarios. Based on the work of
Bredeweg et al. (2009) and our own analysis of the code, this chapter gives an
overview of the engine’s reasoning aspects that are relevant for this thesis.
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2.3.1 Outline

As explained in Section 2.1, a simulation is based on a given library of model
fragments, which encode the general behaviour of the system, and on a scenario,
which provides some information about a state the system could be in. Given
these two elements, the engine firstly extends the provided scenario to one or more
initial states, depending on whether the scenario was ambiguous. After this, for
each state, its successors are found and added to the state-graph, together with
the respective transitions.

The process of finding states and transitions is done in phases. Firstly, when
a state is created, either as an extension of a scenario or as a successor of an
existing state, its state is marked as interpreted. Next, the simple terminations of
the state are identified and the state is marked as terminated. Then, the eligible
compound terminations are found, via a procedure that we will later describe,
and the state is marked as ordered. Lastly, the state becomes closed when its valid
successors obtained from the short-listed compound terminations are identified,
and the respective transitions are found. At this point, it is known that the
state at hand cannot be further continued to a successor. Figure 2.12 gives an
visualisation of these phases of a state.

Figure 2.12: The phases of a state in the state-graph generation process

Each of the three phases has its own procedure. Firstly, in order to identify
the simple terminations, and hence change the phase of the current state from
interpreted to terminated, the rules shown in Table 2.2 are used. Secondly, the
state becomes ordered by finding combinations of simple terminations that might
lead to valid successors. More precisely, a series of rules that will be later intro-
duced is used to early identify incompatible combinations of simple terminations,
and hence reduce the number of eligible compound terminations. Lastly, the state
becomes closed. This is the most complex phase in terms of the number of steps
involved, as it contains continuity checks, the identification of the new applicable
model fragments, and, in case the current compound termination results in a
successor, a check to see if that state already exists in the graph. From the per-
spective of our axiomatisation, for each compound termination T , in this phase,
the engine first finds the transition scenario from s with T . Then it applies the
continuity criterion, and stabilises the state.

Two particular procedures used within these phases are worth mentioning in
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the context of this thesis. One is model fragment selection, which does repeated
checks for finding active model fragments (Bredeweg et al., 2009). The other one
is inequality reasoning, which verifies the consistency of a scenario with a given
model fragment function. The latter one will be further discussed at the end of
this section.

From the three phases, a closer examination is only needed for the ordering
one. The termination phase is already clarified due to the axiomatisation from
Section 2.1. Regarding the closing phase, for the purpose of this thesis there are
only two important aspects to mention. First, it requires at least two calls to
the inequality reasoner for each eligible compound termination. Second, given a
transition scenario and a compound termination, it gives a continuous and stable
extension of the scenario with the termination, i.e. it finds valid successors.

Having provided a general overview of the reasoning engine, the remaining two
subsections focus on further discussing some of the procedures involved, namely
inequality reasoning and state ordering.

2.3.2 Inequality Reasoner

A key component of the engine is the inequality reasoner. This is a procedure
that given a set of relations, S, together with an extra relation r, tries to add the
relation r to the set S. There are three possible answer based on the compatibility
between r and S. First, if S and r form an inconsistent system, then r cannot
be added to the system. Second, if r can be inferred from S, then it is deducible,
so there is no need to add it to the system. Third, if r is consistent with S but
not inferable, then it is added to S. For the purpose of this thesis, the inequality
reasoner will be only used to check for consistencies of relation sets. Obviously,
this can be done. To check if a set S is consistent, S together with a tautology,
such as 0 = 0 is passed to the inequality reasoner. Then S is consistent if and
only if 0 = 0 is found to be deducible.

Since, at an internal level, the information in models and scenarios can be
represented by qualitative systems of (in)equalities, the inequality reasoning pro-
cedure is essential. It is always used at least twice in the closing of a state for
each eligible compound termination. In addition, it is occasionally also used in
the ordering phase, as will be discussed in the next subsection.

Even though extremely useful, inequality reasoning is computationally expen-
sive. This is because the detection of all implicit contradictions requires the full
transitive closure of the internal system of (in)equalities, together with addition
and subtraction inferences (Bredeweg et al., 2009). In fact, according to Veber
et al. (2004), the problem of finding a solution for system of (in)equalities is NP-
complete, as SAT, the satisfiability problem for sets of clauses, reduces to this
inequality reasoning problem.

As a result, there is a link between better using sparse knowledge and im-
proving the time complexity of the reasoning procedure. Since the closing of a
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state uses inequality reasoning, this is in turn also time expensive. Therefore,
reducing the number of transition scenarios requiring closing is useful. Hence,
lowering the number of eligible compound terminations found in the ordering
phase corresponds to lowering the time required by the simulation.

In the next subsection, some methods for reducing eligible combinations cur-
rently in use are presented.

2.3.3 Ordering a State

Within this subsection, it is assumed that there is a terminated state, that is a
state together with a set of its simple terminations, which will be denoted by
(s = 〈E , val , <,≤,=〉 , T ). Since the total number of compound termination is
exponential in the number of simple terminations, O

(
2|T |
)
, the engine cannot

analyse all the possible combinations. Hence, some rules must be used in order
to lower this amount. The aim of this phase is to find a short-list of eligible com-
pound terminations. In the current subsection, the approach of Garp3 (Bredeweg
et al., 2009) is presented.

To form this short-list, the epsilon ordering rule is firstly used. As explained
in the previous section, the set of terminations T is partitioned in the class of
immediate and non-immediate terminations. If the first one is non-empty, then
all the compound terminations must be a subset of it, while if it is empty, the
compound terminations are formed from non-immediate simple ones.

Secondly, three more rules are used in order to infer constants on the termi-
nation combinations. In general, these rules will be referred to as combination
concepts. A combination concept function, for a given state and model fragment
function, is a function, comb, that, given a set of simple terminations, say S,
returns a set of combination constraints, that is of logical relations that constrain
the possible ways of combining the terminations in S. One example of such a
rule is t1 ∈ T ↔ t2 ∈ T , which says that t1 and t2 must co-occur. This will
be abbreviated as t1 ↔ t2 Another example is when t1 and t2 are incompatible,
which is given by the relation t1 /∈ T ∨ t2 /∈ T , and is abbreviated as ¬t1 ∨ ¬t2.

One combination concept is the mutually exclusive terminations constraint.
This rule identifies terminations that might not appear together, which may hap-
pen in the case of terminations with assumed causes. For example, if a bid
difference is at Epsilon with an unknown derivative, then there could be as-
sumed terminations that either change it to Small or Large, and these two can-
not be combined. That is, combinations of terminations with causes such as
(assumed to interval above, Q) and (assumed to interval below , Q), are not al-
lowed.

Another combination concept is the correspondence ordering. When there are
correspondences between values within the magnitude spaces of two parameters,
these two parameters do not change values independently. To explain this, let us
suppose that within the correspondence set from the causal ingredients of s there
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is the pair ((P1, v1), (P2, v2)) for some parameters P1, P2, and values v1, v2 within
their magnitude spaces, vi ∈ MPi

. As a reminder, this means that whenever P1

has value v1, P2 must have the corresponding value v2. Suppose moreover that
the value assertion of s, that is val , is such that val(P1) = v1, and val(P2) = v2.
Then, if there is no simple termination changing the value of P1, either above or
below, then any simple termination changing the value of P2, if such exists, must
not occur in eligible compound terminations. In other words, if T contains a
termination changing the value of P2 but none changing the value of P1, then the
first one cannot be used in any combination. This is because P1 cannot change
value, so it will remain at v1, and by the value correspondence, P2 should not
change either from v2.

Table 2.3 presents an overview of the rules used in the correspondence order-
ing. As in the example before, those are under the assumption of an existing
correspondence ((P1, v1), (P2, v2)). This table analyses the cases when the two
parameters are both at the corresponding values, both not at the corresponding
values, and when only P2 is at the corresponding value v2. The fourth case, when
only P1 is at the corresponding value, that is when val(P1) = v1 and val(P2) 6= v2,
cannot appear, as it does not satisfy the correspondence constraint, so s is not
stable, and hence it cannot be a state.

The last combination concept in use is the mathematical ordering. This is
a rule that checks if combinations of changes can occur from the perspective of
relation-correctness. More precisely, if we have two parameters, P1, P2, and three
terminations, a value ti termination for each Pi and an inequality termination t3
for the pair (P1, P2), then there are certain bounds on how these terminations
can appear together. For instance, if currently P1 = P2, then a change of in-
equality can only appear together with at least a change in the values of the two
parameters, i.e. t3 → t1 ∨ t2.

To apply this, the engine takes every pair of quantities that have a specified
relation between them and that is still valid under the previous two combination
concepts. Since this step is computationally demanding, it is actually important
to be the last one that is checked, in order to have the least amount of valid com-
binations as input. In addition, every considered pair needs to have inequality
constraints on the landmarks that could be reached through combinations. Fi-
nally, the inequality reasoner is used to check which combinations of terminations
are valid.

Lastly, after using all these three combination concepts, the constraint cross
product of the simple terminations is taken. This means that the engine finds
the subset of the cross product such that all the compound terminations in this
subset satisfy the conditions returned by the combination concept function, that
is the conditions within comb(T ).

As a final mention, an additional step needs to be taken in the case of im-
mediate terminations. Due to their nature, immediate terminations must always
occur together. So, if the set of immediate terminations is non-empty, then the
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Value
assertion

Combination
constraint

Description

val(P1) = v1,
val(P2) = v2

t2 → t1 If P1 and P2 are both at the corresponding
values, then P2 cannot change value alone.
In the particular case when there are no ter-
minations changing the value of P1, then P2

cannot change at all, so any value termina-
tion on P2 can be eliminated.

val(P1) = v′1,
val(P2) = v′2

t1 → t2 If P1 and P2 are both at adjacent values to
the corresponding ones, then P1 cannot move
alone to the corresponding value. Similarly,
when there are no terminations changing the
value of P2, then P1 cannot change at all,
so any value termination on P1 can be elim-
inated.

val(P1) = v′1,
val(P2) = v2

¬t1 ∨ ¬t2 If P2 is at the corresponding value, while P1 is
at an adjacent one, P1 cannot change to the
corresponding value, while P2 moves away
from it.

Table 2.3: Correspondence ordering constrains for parameters P1, P2, where v1 ∈
MP1 corresponds to v2 ∈ MP2 . Each v′i is a value within MPi

that is adjacent
to vi (either smaller or larger), and each ti is a termination on Pi with value or
derivative causes that change the parameters either from vi to v′i, or the other
way around.

constraint cross product is further reduced by eliminating all the compound ter-
minations that are a subset of another compound termination.

This finalises the explanation of how the eligible compound terminations are
selected in Garp3. The next section analyses the impact of using these combina-
tion concepts by considering a large simulation example.

2.4 A Large Simulation

In this section, a large scientific model is discussed as an example of how the
engine functions and how important each phase of the state is in the simulation.
For this purpose, the model of cellulose hydrolysis, which was introduced by
Kansou et al. (2017), is used. Explaining the motivation behind the model is
outside the scope of this thesis. Instead, this section analyses the first few steps
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in the simulation of this model. The most attention is paid to state 3, as this is
also used as an example at the end of Chapter 5.

Quantity Magnitude Derivative

ConcentrationActivenzyme Plus +

ConcentrationFreeenzyme Plus +

ConcentrationProduct Plus +

ConcentrationSubstrat Max 0

ConcentrationSurfaceenzyme Plus +

Quant enzymeEnzyme Total 0

Quantity of submolSugar Total 0

Rate inAdditionenzyme Plus −
RateadsSurfaceenzyme Plus +

RatecatActivenzyme Plus +

RatecompActivenzyme Plus +

RatedesFreeenzyme Plus +

Rateoff Activenzyme Plus +

Surface availableSubstrat Plus −
Surface coveredSubstrat Plus +

Surface maxSubstrat Max 0

Table 2.4: Cellulose Hydrolysis: values of quantities in state 3.

As an initial scenario, the basic enzymatic reaction restart is considered. The
resulting state graph has 83 states, and takes almost two days to be fully com-
puted. 1 For the first 14 states of this simulation, we used the profiler procedure
in SWIProlog (Graham et al., 2004) to record the CPU times for each phase
in simulating in the state. As expected from the theoretical complexity results,
for all these states the most time was spent in the closing of a state; while the
terminating and ordering phases were always carried out in less than 1 minute,
some closing of states took almost 1 hour. For instance, one state with only two
valid successors but 255 compound terminations took 34 minutes to close. In ad-
dition, also in accordance with the theoretical results, most time was spent in the
inequality reasoner (more than 80%). This suggests that, for practical reasons as

1These results were obtained on an Intel Core i5 1.7GHz processor, with 4 GB of RAM
machine running Ubuntu 16.04.
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Label Simple termination cause

1 (to point below , Surface availableSubstrat)

2 (to point above,ConcentrationSurfaceenzyme)

3 (to point above, Surface coveredSubstrat)

4 (to point above,ConcentrationProduct)

5 (to point above,ConcentrationFreeenzyme)

6 (to point below ,Rate inAdditionenzyme)

7 (to point above,ConcentrationActivenzyme)

8 (assumed derivative up to stable,ConcentrationSurfaceenzyme)

9 (assumed derivative up to stable,ConcentrationFreeenzyme)

10 (assumed derivative up to stable,ConcentrationActivenzyme)

11 (assumed derivative up to stable,RateadsSurfaceenzyme)

Table 2.5: Cellulose Hydrolysis: simple terminations for state 3.

well, it would be useful to lower the number of calls to the inequality reasoner.

Let us now consider a particular state, which has valuation in accordance
with Table 2.4. From this, 11 simple terminations are found (see Table 2.5).
One can check that these are in accordance with the termination validity criteria
from Table 2.2. The number of eligible compound terminations identified is 511.
Notice that this is reduced as, by combining all the simple terminations, 211−1 =
2047 compound terminations would have been found. Figure 2.13 shows the
development of the state graph throughout these phases.

(a) The extension of the
initial scenario.

(b) The simple termina-
tions.

(c) The successors.

Figure 2.13: Cellulose Hydrolysis: the stepwise identifications for the successors
of state 3.
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2.5 Conclusion

To summarise, this chapter made four contributions. First, and most importantly,
it has introduced a new axiomatisation that focuses more on the simulation as-
pects than the previous formalisation attempts (Bredeweg et al., 2009; Liem, 2013;
Weld, 1988). It used clear notations and definitions for simple terminations, which
are possible next-state developments of a system, and compound terminations,
which correspond to simultaneous developments. This leads to clear definitions
for the simulation output, i.e. state graph, which is the overview of the possible
future behaviours of the system. All those definitions are indispensable in order
to perform a theoretical analysis of the process-oriented qualitative simulations,
in their current form. Second, since this is done in the context of the earlier
formalisations, this chapter also serves as a literature review.

Third, for clarifying those definitions, the continuous English Auction with
two bidders model was used. This is a novel example extending the applications
of qualitative simulations to the field of Auction Theory. The results of the sim-
ulation were in accordance with the theoretical ones in the field, hence implying
the correctness of our model.

Fourth, Garp3 (Bredeweg et al., 2009) was used as example of a qualitative
reasoning engine. Its inner workings were illustrated by means of a large example
of cellulose hydrolysis (Kansou et al., 2017). Three important phases were iden-
tified for obtaining successors, namely termination, ordering, and closing. Also,
a very important procedure within simulation is the inequality reasoner, which
checks the consistency of systems of qualitative (in)equalities. This was shown
by Veber et al. (2004) to be NP-complete. The brief practical case analysis car-
ried out in the last section revealed that this theoretical result correlates with
slow running times. As a result, since the closing phase requires multiple calls
to the inequality reasoner, the number of compound terminations requiring anal-
ysis during closing should be lowered. This can be done by better using sparse
knowledge for early identification of incompatible compound terminations.

In the next chapter, the problem of whether sparse knowledge leads to in-
coherent behaviours is investigated. The axiomatisation build in this chapter
proves useful in identifying and analysing different situations that could result in
not meeting consistency principles.





Chapter 3

Criteria for Simulation Consistency

As already mentioned in the previous chapter, data is sparse in qualitative models,
in the sense that not all valid relations in the model are made explicit. Conse-
quently, the simulation is based on incomplete information, leading in some cases
to incoherent results. The goal of this chapter is to use the axiomatisation created
before in order to identify incoherences, as well as to find solutions for eliminating
them.

Three principles of coherence are discussed. The first section investigates
model consistency, that is whether transitions in simulation results are in accor-
dance with the constraints of the system. The second section considers paths
in the resulting state graph. As a principle, each state graph should be path
consistent, meaning that the information recorded in successions of states should
describe a coherent behaviour. The last section discusses consistency from the
perspective of inexplicit (in)equalities, as, even when relations are not explicit
but only inferable from either a scenario or a model fragment, the state graph
should still be consistent with them.

3.1 Model Consistency

Every system is described qualitatively by its model fragments. Therefore, in
order to have coherent results, the simulation result should be in accordance with
the model ingredients. This principle is reffered to by the term model consistency.
Depending on which type of ingredients are considered, this principle branches
out into two parts. Firstly, the simulation result should respect the information
provided by the dependency relations, that is it should be dependency consistent.
Secondly, it should be in accordance with the relations in the model, that is
it should be relation consistent. In this subsection, we discuss each of these two
principles and investigate the extent to which the current procedures in qualitative
reasoning respect model consistency.
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3.1.1 Dependency Consistency

As already mentioned, dependency consistency is the principle which states that
each transition should be in accordance with the dependency relations given by
the model fragment function, that is with the influences and proportionalities.
Because each state is stable, it is clear that the influence and proportionality
balances are respected. However, dependencies could provide other information
as well.

To see this, first consider an example. Suppose there is a meeting room in
which people enter via an entrance corridor, and from which they exit via an exit
corridor. In terms of qualitative modelling, this means that we have the entity
room with three quantities: the number of people in the room, to which we will
refer to as No room, the number of people in the entrance corridor, No entrance,
and the number of people in the exit one, No exit . In addition, there is a positive
influence from No entrance to No room, as if there are people at the entrance,
then they will go in the room, so the number of people in the room will increase
(if none of them are exiting). Similarly, there is a negative influence from No exit
to No room.

The model fragment for the system described above is shown in Figure 3.1.
The conditionals, which, in this case, are the entity Room together with its three
quantities, are drawn in red. The causal ingredients returned by the model frag-
ment, namely the two inferences, are pictured in blue.

Figure 3.1: The model fragment for a room with entrance and exit corridors.

Given this system, the following initial scenario is considered. Suppose that
at a certain meeting there is a medium number of people in the room, and the
number of people at the entrance is constant (people are coming in at a constant
pace). Suppose moreover that more and more people in the room decide that the
meeting is not worth their time, so the number of people in the exit hall increases.
Hence, we have the scenario from Figure 3.2.
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Figure 3.2: An initial scenario for the meeting room model.

Next, the evolution of this situation is analysed. To begin with, accord-
ing to the scenario, the tendency of the number of people in the room is com-
pletely balanced at 0 by the ones entering and the ones exiting. So, dNo room =
f(No entrance) − g(No exit). Since dNo room = 0, then we should have f(No
entrance) = g(No exit). Moreover, as the derivative of No exit is positive and g is
strictly monotonous, g(No exit) is increasing, so we will immediately have in the
next state f(No entrance) < g(No exit), and, hence, dNo room < 0. Therefore,
we would expect an unique successor of the state extending the given scenario,
which would be the same as the current state, but with dNo room = −. However,
without considering the second order derivatives, this is not the case, because for
each of the three values of dNo room, the resulting state is stable and continuous,
but neither is justified by an simple termination according to Table 2.2. This can
also be exemplified by running this simulation in Garp3 with the default training
preferences. According to this, no successors of state 1, the state extending the
initial scenario from Figure 3.2, can be found.

This is a general issue extending beyond our example. Such a problem might
appear whenever there is a quantity with at least two incoming dependencies.
One way of fixing it is to consider second order derivatives. To understand why
doing so solves the issue, we return to the example before. Now, when extending
the given scenario, the second order derivatives of the three quantities will also
be identified. Hence, ddNo room = df(No entrance) − dg(No exit) is deduced
since dNo room = f(No entrance)− g(No exit). Because f and g are continuous
and strictly monotonous, ddNo room = 0−minus = minus . As now the deriva-
tive of dNo room is negative, this will trigger only one derivative termination on
No room, changing its value from 0 to −. Even though using second order deriva-
tives produces the expected output, this will mean that each quantity would have
an additional parameter. This increases the number of parameters by 50%, hence
requiring more analysis when, in fact, these might only be needed for one case.
Moreover, doing this just moves the issue onto second order derivatives, so, it is
not entirely solved. In Garp3, this solution is implemented by customising the
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simulation preferences.

Another way of producing the expected behaviour would be to add extra
causes for terminations based on the model fragment function. More precisely,
for a state s = 〈E , val , <,≤,=〉, the Table 2.1 is extended with the four causes
in Table 3.1. As before, the starred causes are for immediate terminations. The
associated sets of constraints and results set are presented in Table 3.2.

Class of causes Type of cause

Model consistency causes (mc derivative stable to down, P )*
(mc derivative stable to up, P )∗
(mc derivative down to stable, P )
(mc derivative up to stable, P )

Table 3.1: Model consistency causes

For clarity purposes, let us now explain the second validity criteria in Table
3.2. Because of the inference and proportionality balance, we have that

dP =
∑

Pi∈Pr+

fi(dPi)−
∑

Pj∈Pr−

fj(dPj) +
∑

Pk∈In+

fk(Pk)−
∑

Pu∈In−

fu(Pu),

where Pr+ = {Pi|(Pi, P ) ∈ P+}, Pr− = {Pj|(Pj, P ) ∈ P−}, In+ = {Pk|(Pk, P ) ∈
I+}, and In− = {Pu|(Pu, P ) ∈ I−}. So if all dPi, Pk are steady or increasing, all
dPj, Pu are steady or decreasing, and at least one of them all have the tendency
to change, then P should immediately have the tendency to increase. That is,
there is a termination with dP = +.

In the meeting room example, there are two influences to No room. The
positive one comes from a steady quantity, while the negative one comes from
an increasing quantity. This state description matches the constraints of (mc
derivative stable to down,No room), which is an immediate termination chang-
ing the value of dNo room to −.

To summarise, originally the principle of dependency consistency is not met
without considering higher order derivatives, even though there is sufficient in-
formation in the model. This situation was firstly exemplified using the meeting
room model. Afterwards, it was generalised to any quantity with at least two
incoming dependencies. A solution for this general formulation of the problem
was then provided. More precisely, a new class of causes was introduced that ac-
counts for the changes determined by information deducible from dependencies.
The next section considers the coherence of the system from the point of view of
relations.
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Cause type Elements of cond(t) Elements of
results set

(mc derivative
stable to down, P )

val(dP ) = 0
∀(P ′, P ) ∈ P+ val(ddP ′) ≤ 0 defined
∀(P ′, P ) ∈ P− val(ddP ′) ≥ 0 defined
∀(P ′, P ) ∈ I+ val(dP ′) ≤ 0 defined
∀(P ′, P ) ∈ I− val(dP ′) ≥ 0 defined
at least one of the inequalities is strict

val(dP ) = −

(mc derivative
stable to up, P )

val(dP ) = 0
∀(P ′, P ) ∈ P+ val(ddP ′) ≥ 0 defined
∀(P ′, P ) ∈ P− val(ddP ′) ≤ 0 defined
∀(P ′, P ) ∈ I+ val(dP ′) ≥ 0 defined
∀(P ′, P ) ∈ I− val(dP ′) ≤ 0 defined
at least one of the inequalities is strict

val(dP ) = +

(mc derivative
down to stable, P )

val(dP ) = −
∀(P ′, P ) ∈ P+ val(ddP ′) ≥ 0 defined
∀(P ′, P ) ∈ P− val(ddP ′) ≤ 0 defined
∀(P ′, P ) ∈ I+ val(dP ′) ≥ 0 defined
∀(P ′, P ) ∈ I− val(dP ′) ≤ 0 defined
at least one of the inequalities is strict

val(dP ) = 0

(mc derivative
up to stable, P )

val(dP ) = +
∀(P ′, P ) ∈ P+ val(ddP ′) ≤ 0 defined
∀(P ′, P ) ∈ P− val(ddP ′) ≥ 0 defined
∀(P ′, P ) ∈ I+ val(dP ′) ≤ 0 defined
∀(P ′, P ) ∈ I− val(dP ′) ≥ 0 defined
at least one of the inequalities is strict

val(dP ) = 0

Table 3.2: Termination validity criteria for model consistency causes for state s
with active causal ingredients P+, P−, I+, I−.

3.1.2 Relation Consistency

Besides dependencies, other model fragment ingredients that should be respected
are the relations between parameters. The ones that are made explicit in the
system are trivially considered, as it is a requirement for the stability of states.
However, the relations that are inferable from the explicit ones by taking deriva-
tives are not necessarily considered. In general, if there is an equality between
terms, then the relation obtained by taking derivatives should hold as well.

For an example, consider the case of a mathematics seminar where both pure
and applied mathematicians are coming. So, the number of pure mathemati-
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cians equals the total number of mathematicians minus the number of applied
ones. This, together with the analogous condition on the medium values of each
quantity, are pictured in Figure 3.3a, i.e. No pure = No math − No applied . In
addition, it is assumed that this seminar is more popular among pure mathemati-
cians, in the sense that the derivative of the number of mathematicians is always
greater than the derivative of the number of applied ones, as shown in Figure
3.3b. That is, dNo math > dNo applied .

(a) The model fragment giving equality constraints.

(b) The model fragment showing derivative constraints.

Figure 3.3: The two model fragments of the mathematical seminar example.

This model fragment information completely determines the value derivative
for the number of pure mathematicians. Because of the equality between quan-
tities, by taking derivatives, it can be inferred that dNo pure = dNo math −
dNo applied . Since, moreover dNo math > dNo applied , dNo pure > 0 should
be inferred. However, if, for instance, initially all the values are low and all the
three quantities are increasing, as in Figure 3.5, dNo pure > 0 is not inferred.
One path in the resulting state-graph is shown in Figure 3.5. According to that
path, the number of pure mathematicians remains at medium, with an unknown
derivative.

The solution for this issue is to extend the set of equality relations with the
corresponding derivative ones. For Garp3, doing so will surely solve the issue,
as by explicitly adding the constraint on derivatives in Figure 3.3b, this issue is
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Figure 3.4: Initial scenario for the mathematical seminar.
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Figure 3.5: Result of the simulation of the mathematical seminar.

solved. At a higher level, this issue could be solved by updating the inequality
reasoner with the derivative taking rule.

This finalises our discussion on relation consistency. In the next section, the
focus is moved from individual transitions, to sequences of transitions.

3.2 Path Consistency

The coherence of all transitions is not enough to ensure the coherence of the
entire state graph. This is because each state only provides partial information
of the system at a particular time. Therefore, there could still be situations
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with tracks that do not describe a valid development of the system. We call the
principle which states that each track contains a correct evolution of the system
path consistency. The purpose of this section is to check whether path consistency
holds according to our axiomatisation. In order to do this, the next two sections
analyse two aspects of this principle.

3.2.1 Assumption Consistency

During a simulation, some states are consistent only due to some assumptions
about the system. However, these assumptions are not recorded in state’s repre-
sentation. Therefore, there might be cases when contradictory assumptions are
made within the same path. This obviously leads to incoherent tracks. Hence,
we introduce the assumption consistency principle which states that once an as-
sumption or inference is made within a path, all the remaining states in the path
must be in accordance with it.

One example of assumption inconsistency comes from inferred inequalities
between landmarks. Considering the example of population dynamics, assume
that in some state the number of births equals the number of deaths, and that
both of them are at their medium value, as in Figure 3.6. It should then be the
case that in any future state developed from this one, if the two quantities have
the medium value again, they should be considered equal. That is, for any track
containing this state, two medium points should be equal in any later state.

Figure 3.6: A state where the number of deaths and the one of births are equal.
Both of them have the medium magnitude.

The approach of Garp3 already gives a solution to this issue. Using one of
the optional simulation preferences, namely the ”Constrain interaction between
possible worlds (derive landmark relations)”, the engine considers the previously
inferred landmark relations in order to ensure consistency within the state-graph
from a parameter inequality perspective. However, this is not sufficient for the
simulation to make sense. There might still be incoherent behaviour between
states within the same path, as we will see in the next example.
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As in Section 3.1, we consider the example of the meeting room, this time with
more detailed quantity spaces for the number of people in the entrance and in the
exit. More precisely, this time we have the model fragment in Figure 3.7. Each of
the quantities can take values from the magnitude space {0,Low ,Medium,High}.
The initial scenario is the one from Figure 3.8: all quantities are at their medium
value, with the number of people in the room and in the entrance being constant,
and the number of people in the exit increasing.

Figure 3.7: The model fragment for a meeting room with entrance and exit
corridors.

Figure 3.8: An initial scenario for a meeting room with entrance and exit corri-
dors.

As before, it should be inferred that as long as both quantities are at the
medium value, the entrance and the exit balance each other out, resulting in
the number of people in the room remaining steady. Moreover, if the number of
people in the exit is greater than the medium, then they should outnumber the
ones in the entrance, so the number of people in the room should be decreasing.
However, this is not the case. As shown in Figure 3.9, even though the number
of people in the entrance remains medium, and the number of people in the exit
remains high, the number of people in the room does not necessarily decrease.
Instead, this number may have any possible derivative. Remember that, in the
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figure, the position of a circle shows the value of the quantity, while the drawing
within it represents the derivative. For example, the number of people in the
room is decreasing in state 5, is steady in state 7, and is increasing in state 8. Its
magnitude in the first state is Medium, while in the last two states is 0.

Figure 3.9: Value assertion for the states within the state graphs of the meeting
room example.

The reason for this behaviour is that the engine does not consider how strong
the dependency is. This could be added by associating a quantity with the same
magnitude space as the influencing quantity or its derivative to each influence
and proportionality pair. Moreover, since the influences and proportionalities
are associated with strict monotonous functions with a fixed point at zero, the
two quantity spaces must be in full correspondence. To give an example, assume
(Q,Q′) ∈ I, so there is an associated quantity, I+(Q,Q′), with magnitude space MQ.
Since it is an influence relation, it means that there exists a strictly monotonous
function f such that Q contributes to the derivative of Q′ with f(Q). Therefore,
it has a contribution of zero if Q is zero, it has a medium one if Q is at medium
and so on. This is why Q and I+(Q,Q′) should have the same landmarks, which
should also correspond to each other.

Formally, we modify the model fragment function. That is, if mf (Cond)
currently gives the causal ingredients P+, P−, I+, I−, and C, for each dependency
we will add a new quantity, and new correspondences to C. Table 3.3 outlines
the changes to the model fragment function.

Since within the model the influence and proportionality balances must hold,



3.2. Path Consistency 43

Dependency Quantity
name

Magnitude
space

Addition to C

(Q,Q′) ∈ I+ I+(Q,Q′) MQ ((Q, I+(Q,Q′)), (l, l)),∀l ∈MQ

(Q,Q′) ∈ I− I−(Q,Q′) MQ ((Q, I−(Q,Q′)), (l, l)),∀l ∈MQ

(Q,Q′) ∈ P+ P+
(Q,Q′) MdQ ((Q,P+

(Q,Q′)), (l, l)),∀l ∈MQ

(Q,Q′) ∈ P− P−(Q,Q′) MdQ ((Q,P−(Q,Q′)), (l, l)),∀l ∈MQ

Table 3.3: Introducing dependency quantities: the changes in the result of
mf (Cond), where P+, P−, I+, I−, and C are its current active causal ingredients,
and E is the set of entities from its returned conditionals. The new quantity is
added under a new entity named Dependency.

we should also add relations such that

dQ =
∑

I+(Q,Q′) −
∑

I−(Q,Q′) +
∑

P+
(Q,Q′) −

∑
P−(Q,Q′).

These equations are also added to the conditionals of mf (Cond).
The result of this change is that landmark relations for the contribution

of dependencies are also tracked. Coming back to the meeting room exam-
ple, the model fragment in 3.7 is completed with two dependency quantities,
namely I+No entrance,No room and I−No exit ,No room , each having the magnitude space
{0,Low ,Medium,High}. Besides the respective correspondences, the relation
dQ = I+No entrance,No room−I−No exit ,No room is added. In the initial scenario from Fig-
ure 3.8, the landmark relation 0 = MediumI+No entrance,No room

−MediumI−No exit,No room
is

recorded. Therefore, under the simulation preference ”Constrain interaction be-
tween possible worlds (derive landmark relations)”, the engine will ensure track
consistency. As a result, when the number of people in the exit is at high, and
the one of the people in the entrance is at medium, the number of people in the
room will be decreasing.

To summarise, in this section we introduced quantities for each dependency
in a model fragment. By doing so, it was ensured that the relations between the
amount of influence and proportionality are also tracked. As a result, the coher-
ence within a path was improved upon by ensuring more assumptions are made
explicit. In the next section, the paths describing behaviours with extremum
values are considered.

3.2.2 Extrema Consistency

Other information that can be deduced from a path, but is not encoded in a state,
is the difference between an extremum and a plateau point. For example, if, when
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considering a track, a quantity has a negative derivative at some state s1, then,
in the successor of that state, s2, the derivative becomes zero, and, immediately
after, in s3, it is positive, then state s2 corresponds to an extremum point for the
quantity in question. Differently, if in the successor of s2 the derivative of the
quantity remains steady, then s2 is the start of a plateau interval. This distinction
is extremely important as transitions from extrema should be immediate. That
is, if there is some parameter at a landmark value with a tendency to change, and
another parameter at an extrema, then those two quantities should change their
value in the same state; contrarily, if the second parameter is at a plateau, then
only the first one should change. We will refer to this principle as extrema consis-
tency. In this subsection we investigate whether state-graphs are in accordance
with this principle.

To start, let us investigate what is the path development in the case of an
extremum point according to the axiomatisation in Chapter 2. Looking back at
Table 2.2, it can be seen that a value and a derivative to-point simple termination
of a quantity can co-occur within the same compound termination. That is, we
can have a quantity transiting, for example, from value i0,1 to l1, and its derivative
going from + to 0. If the resulting state is an extremum, then its successor should
have an opposite value for the derivative of the quantity and return to the previous
value. However, according to the same table, the change in value is not possible,
as the derivative is 0. Hence, a derivative change takes place instead, modifying
the value of the derivative from 0 to −. This is problematic as, in the same
transition, another termination from point to value can take place, resulting in
an extrema inconsistent path.

To give an example, we once again model a meeting room, this time in the
transition period between two consecutive meetings. Instead of considering the
number of people in the exit and the entrance separately, there is a Flow quantity
that gives the number of people in the exit minus the one in the entrance. So,
there is a negative influence from Flow to No room, i.e. the number of people in
the room. Moreover, since this is a transition period between the meetings, the
derivative of Flow should be negative, as initially people from the first meeting
are exiting the room, but, afterwards, people starting the second meeting are
entering. This behaviour is captured in the model fragment from Figure 3.10a.

For the initial scenario, we assume the number of people in the room and the
flow are both positive, as in Figure 3.10b. According to the explanation before,
an extrema inconsistent behaviour is expected within a path. By running the
simulation in Garp3, this indeed turns out to be the case. As shown in Figure
3.11, there is a track with an extremum state, namely state 2, that continues with
a value change on another quantity. More precisely, in state 2, both the flow and
the derivative of the number of people in the room are zero, while immediately
as the flow becomes negative, the derivative becomes positive, but the number
of people in the room remains at zero. This leaves the impression that at some
point the number of people in the room is zero and the flow is non-zero, which is
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(a) The model fragment
(b) The initial scenario

Figure 3.10: A model fragment and a scenario for a meeting room transiting
between two meetings.

never the case.

Meeting room: No people

Zero

Plus

1 2 4 5

 

  

 

Meeting room: People flow

Min

Zero

Plus

1 2 4 5

 

 

  

Figure 3.11: Value assertion for the states within the state graphs of the meeting
room example transiting between two meetings.

To solve this, there are two possible approaches. One of them is to prioritise
derivative terminations over value ones. This means that the epsilon ordering rule
is enriched with another step that gives priority to terminations of parameters
depending on the derivative order. For example, if there are from-point termina-
tions that change the value of some quantity, the value of some derivative, and
the value of a second order derivative, then the second order derivative change
has the highest priority. By doing so, the track from Figure 3.11 would have a
different state 4. More precisely, the number of people in the room would still be
at zero and increasing, and the flow would still be decreasing, but this time with
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a zero value.

A more elaborate solution is to adapt the behaviour of derivatives. Instead of
requiring a strict derivative inequality for a change in value, we could also allow
for changes with zero derivative. This is in accordance with the mathematical
form of derivatives, as, at any extremum, the derivative is zero, and this value
changes only when the quantity moves away from the extremum and enters the
interval. In the example before, this second solution eliminates state 4 entirely
from the simulation.

This behaviour can be obtained with three changes. Firstly, for the to-point
terminations, some constraints are added on the successor. More precisely, for
each termination moving the value of some quantity Q to a landmark above
(or below) and its derivative to 0, the constraint val(dP ) ≤ 0 (or ≥) is added
to the successor. This means that if the derivative becomes zero, then, at the
next state, it can either remain zero, that is to plateau, or go back to its value
before, that is move away from the extremum. Secondly, Table 2.2 is adapted
to allow value changes even under 0 derivative, as long as it is in accordance
with the constraints. For example, the conditions for a termination with cause
(to interval above, Q) are val(Q) = lu, and either val(dQ) = +, or val(dQ) = 0
and the constraint on the next state is val(dQ) ≥ 0. Lastly, the results sets of
the terminations should also be adapted. More precisely, any from-point change
will have a strict condition on the value of the derivative. In the example before,
instead of ensuring val(dQ) ≥ 0, the required relation should be val(dQ) > 0.

3.3 Inexplicit Inequality Consistency

As mentioned in Chapter 2, each state has a set of entities, a valuation for
the parameters of these entities, and (in)equality relations. However, not all
(in)equalities inferable from the valuation are explicit in the relations within
states. For example, if two quantities have the same value according to the val-
uation, the explicit relation that the valuation results at the two quantities are
equal may not be in the state. If a state graph is also in accordance with the
inexplicit inequalities we will say that it is inexplicit inequality consistent. This
section investigates conditions for inexplicit inequality inconsistency within qual-
itative simulations, and suggests solutions for obtaining coherent behaviour.

To analyse this problem, let us first consider an example of inexplicit inequality
inconsistency. Assume two runners are competing in a race. One of them is
always faster than the other. To model this, there are two entities Fast Runner
and Slow Runner , each of them with an associated progress quantity, and the
consequence returned by the model fragment functions is dProgressFast Runner >
dProgressSlow Runner . This is shown in Figure 3.12. Moreover, they both compete
on the same track, so the magnitude spaces of the two progresses quantities are
equal. In Garp3, it is not necessary to make this explicit in the model, as there is a
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simulation preference, namely “Assume equal quantity spaces have equal points”,
that does precisely this.

Figure 3.12: The model fragment for two competing runners, when one is faster
than the other.

For the initial scenario, assume that the two runners start from the begin-
ning of the track, that they have a progress equal to 0, but they have the ten-
dency to increase it. With the formal notation, this means that in the first
state val(ProgressFast Runner) = val(ProgressSlow Runner) = 0, and moreover that
val(dProgressFast Runner) = val(dProgressFast Runner) = +. The diagram for this
scenario can be found in Figure 3.13. The expected simulation result is that the
first runner reaches the end of the race, i.e. achieves maximum progress, first.
However, this is not the case.

Figure 3.13: Initial scenario for two competing runners.

During simulation, since the initial equality between the two runners is not
made explicit, the relation between the two quantities is not tracked. Therefore,
the successor of the initial state has both runners with a positive progress, but
with an unknown inequality between them, when in fact it should be inferred that
the progress of the fast runner is greater than the one of the slow runner. In the
case of adding the equality between value spaces to the initial scenario in Figure
3.13, then, according to Table 2.2, there would be an inequality termination on
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the added equality, and the correct behaviour would be inferred. This can be
checked by performing the simulation in Garp3. Figure 3.14 shows a path in
the resulting state-graph according to which the slow runner achieves maximum
progress first, hence winning the race.

Fast runner: Progress

Zero

On track

Finish

1 2 4 3

 

  

 

Slow runner: Progress

Zero

On track

Finish

1 2 4 3

 

 

  

Figure 3.14: One track in the state graph of the simulation for two competing
runners.

A solution for this was hinted in the analysis of the problem. As discussed be-
fore, making inequalities explicit would solve the issue, since then the inequality
terminations can be applied. It is not necessary however to make all the inequali-
ties explicit. Since the condition functions of inequality terminations also contain
an inequality between the derivatives of the quantities, it is enough to make the
relations explicit only between parameters with known inequality relations of their
derivatives.

This section introduced a new consistency principle that states that inequal-
ities must be accounted for even when they are not stated explicitly. Using the
example of two competing runners, we presented a particular case where this prin-
ciple is not valid. Furthermore, the analysis of the reason for this inconsistency
suggested a solution for improving the simulation output.

3.4 Conclusion

To summarise, this chapter investigated whether sparse knowledge gives rise to
incoherent simulation behaviour and if methods for solving these inconsistencies
can be found. In this process, three novel consistency principles were introduced.

First, model consistency is the general principle saying that each state should
be in accordance with the knowledge encoded by its active model fragments. In
particular, two sub-types were discussed. According to dependency consistency,
each simulation should be in accordance with the proportionality and influence
relations. By means of an example, it was shown that this principle is not always
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respected without considering higher order derivatives, even though all the needed
information is present. This is because the dependency relations, through the
balances they impose, may give reason for particular next-state behaviours, i.e.
simple termination. This observation was made possible by the axiomatisation
and, based on it, a solution for this issue was proposed in the form of adding new
simple terminations. According to relation consistency, each state should also be
in accordance with the relations explicitly stated in the active model fragments or
scenario. This principle was also not satisfied, as from an equality between terms
on parameters, by taking derivatives, new inexplicit equalities can be inferred,
which were sometimes not accounted for.

Second, path consistency states that each path should describe a plausible
development of the system. One sub-type is assumption consistency, according
to which, if an assumption about the system is needed for a state to be valid,
then all of the future states developing from it must also be in accordance with
this assumption. This turned out not to be satisfied either because of dependency
relations, which might give assumptions about the amount of influence they offer
at a specific point. To solve this, the solution of adding quantities for the depen-
dency relations was suggested. Another sub-type of path consistency is extrema
consistency, according to which, if an extremum point exists in some paths, the
valuation should appropriately show this. Using an example, it was illustrated
that the problem hinted by our axiomatisation was indeed present, and, while one
value was at an extrema point, some other value could change as well. This is
not possible as a from-extremum transition should be immediate. Two solutions
were suggested. One was to change the priority of terminations, while the other
was modelling the mathematical version of functions.

Third, inexplicit inequality consistency was discussed. According to this prin-
ciple, a simulation should also be in accordance with the inequalities that are
deducible from other information. An example of inequalities deducible from val-
uation was discussed. According to this, a race between a fast and a slow runner,
both starting at the same time and running without interruptions, could finish
with the slow runner winning. As a solution for this issue, it was suggested to find
the inequalities that should be made explicit, and apply inequality terminations
for these as well.

All the work carried out in this chapter brings two valuable contributions.
First, this proves the axiomatisation to be highly valuable in investigating prob-
lems associated with sparse knowledge. Second, it shows five different methods
for inferring more information from available sparse knowledge.

In the next section, the focus switches from analysing simulation results to
analysing simulation processes. More precisely, a formal problem corresponding
to a better use of the knowledge available in order to early identify inconsistencies
between possible state developments is introduced and evaluated.





Chapter 4

Dynamic Systems of (In)Equalities

In the previous chapter, we have seen that, because data is sparse, the state-
graph is sometimes not coherent. This is, however, not the only effect of sparse
data. Because of it, incompatibilities between a model and a scenario are hard to
determine. As a result, for each state, a large number of compound termination
are found to be eligible, each of them then requiring multiple calls to the expen-
sive inequality reasoning procedure for validation. This chapter aims to describe
and analyse a formal problem corresponding to eligible compound termination
selection.

To do this, Section 4.1 introduces two formal problems. Firstly, the combin-
ing changes problem takes as input a system of (in)equalities and a collection
of changes that can be performed on that system, and finds a superset of the
combinations of changes that give consistent developments of the original sys-
tem. Secondly, the inequality reasoning problem decides the consistency of a set
of (in)equalities, which may be linked with logical connectors. Thirdly, the pair
ordering problem, which decides dependencies between occurrences of the pairs of
changes, is discussed in Section 4.2. Sections 4.3 and 4.4 look at the theoretical
complexity analysis of these problems. Section 4.5 presents a procedure improv-
ing the number of calls to the inequality reasoner, and hence better suited for
practical use. This chapter ends with a discussion on the benefits of introducing
these procedures.

4.1 Combining Changes and Inequality Reason-

ing

Consider a set of (in)equalities which is initially consistent. This set may develop
into another consistent one by performing one or more changes of its elements.
If only certain changes are allowed, but in any combination, we wish to identify
which combinations of changes could preserve the consistency of the set. In this
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section, we formally define this problem. Since solving this problem requires
performing calls to the inequality reasoning procedure, the latter will be formally
defined first.

4.1.1 Inequality Reasoning Problem

This chapter considers dynamic sets of (in)equalities. The (in)equalities are de-
fined as usual as two terms linked by one of the relations <,≤,=, 6=,≥ and >. A
term is formed from constants and variables linked together with arithmetic op-
erations and parenthesis. In addition to this, an (in)equality relation is obtained
from (in)equalities linked together with logical connectives. A set of (in)equality
relations will also be referred to as a system of (in)equalities.

When considering a system of (in)equalities, the problem of its consistency
(i.e. is the system non-contradictory) can be introduced. For example, the system
{x = 1, x + y < 2} is non-contradictory, but adding the relation y = 1 makes it
inconsistent, as the new relation with x + y < 2 implies x < 1, which in turn
gives 1 < 1 since x = 1. Of course, this is a contradiction. Hence, the problem of
deciding if a system is consistent, which we will refer to as the inequality reasoning
problem, is defined as follows:

IR := {S|S is a consistent system of (in)equalities}

Given a system of (in)equalities, new relations can be deduced from it using
arithmetic rules and natural deduction. Returning to the previous example, y < 1
can be deduced from {x = 1, x+y < 2}. For this, the notation S ⇒ r will be used
to signify that relation r can be inferred from system S. Hence, {x = 1, x + y <
2} ⇒ y < 1. The inconsistency of a set S is then simply a proof of ⊥ from S,
i.e. S ⇒ ⊥. There is also a link between the deductibility of some relation r
from S and the inconsistency of S ∪{¬r}, which will be used later. Notice that a
tautology is needed for pragmatic reasons, since, in practice, inequality reasoning
engines check consistency of a system together with a relation (see Section 3.2).

Lemma 4.1.1. If S is a system of (in)equalities, and r is an (in)equality, then
S ⇒ r iff S ∪ {¬r} ⇒ ⊥.

Proof. We prove each implication in turn:

(⇒) If r is deducible from S this means that there is an arithmetic proof of r
from S. The same proof holds of course from S ∪ {¬r}. But, of course, in
S ∪ {¬r}, r is also deducible, so we have both r and ¬r being true. This
gives a contradiction, that is a deduction of ⊥ and hence the inconsistency
of S ∪ {¬r}.

(⇐) To show this, we prove r from S. As the reasoning is done in classical logic,
either r or ¬r must hold. But, by hypothesis, adding ¬r to S gives an
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inconsistent system. Hence, r holds. This gives a proof of r from S, and,
therefore, S ⇒ r.

By the two implications we conclude that S ⇒ r iff S ∪ {¬r} ⇒ ⊥.

Another property of the systems of (in)equality is the monotonicity of their
inconsistency. To see this, consider some inconsistent set S. This means there
is a proof of falsehood from S, i.e. S ⇒ ⊥. But the same proof will hold when
extending S with some other system S ′. So, if S ⇒ ⊥ then for any S ′, S∪S ′ ⇒ ⊥.

4.1.2 Combining Changes Problem

The problem of performing certain modifications to systems of (in)equalities will
now be considered. A change on a given (in)equality relation r is an ordered
pair where the first element, the source relation, is r and the second one, the
destination relation, is r′, i.e. c = (r, r′). The update with a change of a system
of (in)equalities, S, results in a new system, Sc, obtained from S by replacing
any occurrence of r with r′. Formally, if r /∈ S then Sc = S, otherwise, Sc =
S−{r}∪{r′}. For example, the system S = {x < y, x+ z < y+ z} updated with
the change c = (x < y, x = y) forms Sc = {x = y, x + z < y + z}. Notice that
we can also (simultaneously) update a system with a set of one or more changes
as long as they do not change the same relation, that is if any two changes have
different source relations. Moreover, C is a set of changes on S if for all (r, r′) ∈ C,
r ∈ S. A subset of changes from C is called a combination. Such a combination C
is considered valid for a system S if the resulting updated system SC is consistent.

Using this, the search problem of combining changes, COMB can be formu-
lated as follows:

Input: A consistent set of (in)equalities S, and a set of
changes, C, on S.

Output: Some set Comb ⊆ P(C) such that, for all C ⊆ C,
if C is valid for S, then C ∈ Comb.

An alternative, stricter formulation of this problem would be to demand the
output set containing precisely the valid combinations, and no invalid ones. Notice
however that, when using IR as an oracle, the two problems belong to the same
time complexity class. To see this, firstly a solution for the strong version of the
formulation is obviously also a solution for the weak version. For the converse,
by updating S in turn with each member of the result set, and checking its
consistency with IR, the output of the strong version can be produced linearly
from the weak version’s one. To avoid appending this last step of IR checks at
the end, we choose to analyse the weak version.

Having introduced the combining changes problem, its complexity will be con-
sidered. The trivial case when all individual changes give consistent updates will
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have exponentially many valid combinations, so the problem COMB is clearly
exponential. However, when the relations within the system are interdependent,
the number of valid combinations decreases. In the remaining part of this chapter
we investigate what are some conditions that would make the problem of com-
bining changes polynomial in time when given access to constant time inequality
reasoner checks.

4.2 Pair Ordering Problem

In the previous section, the problem of combining changes was introduced. So,
given a consistent set and some changes, our aim is to find combinations of changes
that might maintain the consistency of the set. Of course, some combinations can
be ruled out immediately because the changes they contain are inconsistent with
each other, so, a sub-problem of COMB is to look for logical dependencies between
two changes. For instance, when two changes are inconsistent with each other,
then if one appears the other one should not. In this section, we look at how
these types of dependencies can be formally expressed, and how to formulate the
problem of identifying them.

4.2.1 Pair Constraints

Given a consistent set of relations S and a set of changes C, there may be certain
constraints on the combinations of changes that make them valid for S. Even
when only considering pairs of changes, dependencies may be found. For instance,
if the system S = {x < y, x + z < y + z} and changes c1 = (x < y, x = y) and
c2 = (x + z < y + z, x + z = y + z) are considered, then in order to obtain a
consistent updated set from S, the two changes must be applied together. This
gives us the constraint that for any C ⊆ {c1, c2} such that SC is consistent,
c1 ∈ C ⇐⇒ c2 ∈ C. Similarly to Section 2.2.2, a constraint for S and C
is formally defined as a logical relation that bounds the way combinations of
changes in C can be used to update S in order to maintain the set’s consistency.

The pair constraints for S and C are relations of the form (¬)c1 → (¬)c2
with c1, c2 ∈ C. This shorthand notation of c1 → c2 is similar to the one used
in Chapter 2, and signifies that for every C ⊆ C, if SC is consistent and c1 ∈ C,
then c2 ∈ C. Similarly, c1 → ¬c2 will be used when c1 ∈ C implies c2 /∈ C. We
claim that these two types of relations are sufficient to capture all the restrictions
on combinations of two changes, in the sense that considering relations of the
form ¬c1 → c2 and ¬c1 → ¬c2 is redundant. This is shown by the following two
lemmas, but more work is needed to find a canonical form for pair constraints.

Lemma 4.2.1. If S is a consistent set of (in)equality relations, and C is a set of
changes on S, then there are no c1, c2 ∈ C such that ¬c1 → c2.
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Proof. We prove this by contradiction. Suppose that there are c1, c2 ∈ C such
that ¬c1 → c2. Making the notation explicit, this means that for every C ⊆ C, if
SC is consistent and c1 /∈ C, then c2 ∈ C. Let C = ∅. Then SC = S, which by
hypothesis is a consistent set. Then c1 /∈ C but c2 /∈ C, giving a contradiction,
and hence proving the lemma.

Lemma 4.2.2. If S is a consistent set of (in)equality relations, C is a set of
changes on S, and c1, c2 ∈ C, then ¬c1 → ¬c2 iff c2 → c1.

Proof. By definition, ¬c1 → ¬c2 iff for all C ⊆ C with SC consistent c1 /∈ C →
c2 /∈ C. But, c1 /∈ C → c2 /∈ C is the same as ¬(c1 ∈ C) → ¬(c2 ∈ C) which
is logically equivalent with c2 ∈ C → c1 ∈ C. This equivalence can be shown by
first using the contrapositive rule and then the double negation one. This means
that ¬c1 → ¬c2 iff for all C ⊆ C with SC consistent c2 ∈ C → c1 ∈ C, which is
the definition of c2 → c1.

Those two results show that, in the above context, all pair constraints can
be represented by relations of the form c1 → (¬)c2. However, this is not enough
to assign a canonical form for pair constraints, as there might still be logically
equivalent relations of the form c1 → (¬)c2. The next result underlines such an
equivalence.

Lemma 4.2.3. If S is a consistent set of (in)equality relations, C is a set of
changes on S, and c1, c2 ∈ C, then c1 → ¬c2 iff c2 → ¬c1.

Proof. Analogous to the proof of lemma 4.2.2.

So, in order to identify a canonical form for the pair constraints, a fixed
representative should be found for {c2 → ¬c1 c1 → ¬c2}, which, by the lemma
above, is an equivalence class with respect to logical equivalence. This can be
solved by ordering the set of changes with some ordering rule. Then, if c1 appears
first in the set of changes, then c1 → ¬c2 will be considered the representative of
the given class. At this point, all the ingredients have been presented in order to
construct a canonical form for the pair constraints.

Theorem 4.2.4. If S is a consistent system of (in)equality relations, C is a set
of changes on S, ≺ is a total order on C, and PairS,C is the set of pair constraints
for for S and C then the function can : PairS,C → PairS,C

can(pair) =


pair , if pair = c1 → c2

c2 → c1 , if pair = ¬c1 → ¬c2
pair , if pair = c1 → ¬c2 and c1 ≺ c2

c2 → ¬c1 , if pair = c1 → ¬c2 and c2 ≺ c1

is a canonicalisation of PairS,C.
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Proof. Firstly, can is indeed a function since, by lemma 4.2.1, PairS,C has no
elements of the form ¬c1 → c2, and the branching definition of can covers all the
other cases.

For idempotence, we need to check that for any pair ∈ PairS,C, can(pair) =
can(can(pair)). This is easily checked: in the case pair is c1 → c2 or ¬c2 → ¬c1,
can(pair) = c1 → c2, which is a fixed point of can. Otherwise, pair = c1 → ¬c2,
so can(pair) will be the same constraint but with the variables in accordance
with the order ≺, which is again a fixed point of the function.

Lastly, we prove decisiveness: that pair1 ↔ pair2 iff can(pair1) = can(pair2).
The converse of this follows immediately from lemmas 4.2.2 and 4.2.3. For the
direct implication, we assume can(pair1) 6= can(pair2) and want to prove that
pair1 and pair2 are not equivalent. By symmetry, and since the constraints in
the image of can can be either of the form c1 → c2 or of the form c1 → ¬c2,
we can assume w.l.o.g. that can(pair1) = c1 → c2 and can(pair2) ∈ {c2 →
c1, c1 → ¬c2, c2 → ¬c1}. We show that pair1 and pair2 are not then necessarily
logical equivalents by means of an example. Assume S = {x = 1, x > 0} and
C = {c1 = (x = 1, x = 0), c2 = (x > 0, x ≥ 0)}. Then, the changes that results
in consistent updates are ∅, {c2}, and {c1, c2}. Hence, c1 only appears together
with c2, i.e. c1 → c2, but c2 may appear together with c1 or alone, i.e. c2 → c1
and c2 → ¬c1 do not hold, and, c1 does not imply the non-appearance of c2, i.e.
c1 → ¬c2 does not hold. Therefore, pair1 ↔ pair2 iff can(pair1) = can(pair2),
which finalises the proof of can being a canonicalisation of PairS,C.

To conclude, a pair constraint is in canonical form if it is in the form c1 → c2,
or of the form c1 → ¬c2 with c1 ≺ c2. This will be used in the definition of the
pair ordering problem. From now on, in the absence of an explicit ordering being
mentioned, it will be assumed that the set of changes is ordered.

4.2.2 Definition of the Problem

In this context, it is natural to formally define the pair ordering decision problem,
PAIR, as follows:

PAIR :={〈S, C, pair〉 |S is a consistent set of relations, C is a set of changes

on S, and pair is a pair constraint, in canonical form, for S and C}

Hence, PAIR is the language deciding whether a certain pair constraint holds
for S and C. These types of constraints are very useful in lowering the number
combinations of changes in the output of COMB. For example, consider the co-
occurrence graph, GS,C = (V,E), where the set of vertices V is precisely C, and
the set of edges, E, is {(c1, c2)|c1 → c2 ∈ PairS,C}. Notice that the cliques of this
graph correspond to combination of changes that must always occur together. So,
if there exist such a clique, of size k, then the number of eligible combinations of
changes is reduced by 2k.
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In addition, the co-occurrence graph has a transitive set of edges. This is due
to the transitivity of the implication relation. If a system S has three changes
such as c1 → c2 and c2 → c3, by definition, for every set of changes C giving
a consistent update of S, if c1 ∈ C then c2 ∈ C, and if c2 ∈ C then c3 ∈ C.
Therefore, if c1 ∈ C then c2 ∈ C, which in turn gives c3 ∈ C, i.e. c1 → c3. Hence,
the co-occurrence graph has a transitive edge set.

Having defined the problem of deciding pair constraints for given (in)equality
collections and sets of changes, the next section focuses on its complexity. As
seen above, this will be useful for the time complexity analysis of COMB.

4.3 Complexity Analysis of PAIR

Pair constraints carry important information about how two constraints can ap-
pear together in a combination. Therefore, the focus of this section will be on
finding the computational complexity of checking if a certain constraint in the
form c1 → (¬)c2 is a pair constraint for a given system of (in)equalities S and a
set of changes C. This will be done under the assumption of constant time checks
on the membership of systems in IR. In order to do this, the first subsection
identifies the non-changing aspects of the current set of relations when transiting
to any of its updates.

4.3.1 Common Relations

Given a consistent system of (in)equalities S and a set of changes C, some knowl-
edge can be inferred about the commonalities of all updates of S. For example, if
S = {x < y, x+z < y+z} and C = {(x < y, x = y), (x+z < y+z, x+z = y+z)},
then it can be deduced that any update of S will have x ≤ y and x + z ≤ y + z.
Those statements that can be inferred to hold for any update of S will be referred
to as the common relations for S and C.

Formally, the set of common relations for S and C is

CommonS,C = {r ∨
∨

(r,r′)∈C

r′|r ∈ S}.

This says that, for every relation r in the system, after an update, the new system
must have either r or one of its possible developments according to C. So, for
the example before, the set of common relations is {x < y ∨ x = y, x + z <
y + z ∨ x + z = y + z}.

This concept will be used later, when analysing the complexity of PAIR.
The construction of the set of common relations can be done in polynomial time;
starting with the set equal to S, each r ∈ S is replaced with the logical expression
er := r ∨

∨
(r,r′)∈C r

′. This expression is formed by starting with er = r, then
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looping through all elements of C and adding ∨r′ whenever some (r, r′) is found.
Therefore, the common set of constraints can be constructed in O (|S| · |C|) time.

Hence, we have identified a set of relations that remain invariant over updates.
Note the important fact that the construction of this set is polynomial. In the
next subsection, we use this set to check the validity of pair constraints.

4.3.2 Complexity of PAIR

At this point, we have all the ingredients needed to analyse the complexity of
deciding whether a pair constraint is valid for a given system of (in)equalities and
changes. Therefore, in this section, we prove the following result.

Theorem 4.3.1. PAIR ∈ PIR.

Since IR is NP-hard, and PAIR is clearly in NP, this theorem follows imme-
diately. However, for pragmatic reasons, we opt for also providing a constructive
proof, which will prove useful in the following chapter.

To show this, let’s consider the following algorithm, P .

1. Check the validity of the input:

• that S is a system of (in)equalities, C a set of changes on S, and pair
is in the form c1 → (¬)c2 with ci ∈ C; the notation of ci = (ri, r

′
i) will

be used;

• moreover, check that S ∈ IR.

If the input is not valid, then output 0.

2. Construct the set of common relations for S and C, CommonS,C.

3. Next, proceed by cases:

• First, suppose pair = c1 → c2. In the particular case that c1 = c2,
always output 1. Otherwise, output 1 iff for all r ∈ {r|(r2, r) ∈ C, r 6=
r′2} ∪ {r2} CommonS,C ∪ {r′1, r} /∈ IR.

• If pair = c1 → ¬c2, then output 1 iff CommonS,C ∪ {r′1, r′2} /∈ IR.

This procedure is polynomial with an oracle for language IR. The first step,
checking the validity of the input, can be done in O (|S| · |C|). The second step
builds the common set of relations, and, as shown in the previous section, is
polynomial, while the last step consists of at most |C| calls to the oracle.

Therefore, it remains to show that the presented algorithm indeed outputs 1
iff pair is a pair constraint in canonical form for S and C.

Lemma 4.3.2. If S is a consistent system of (in)equality relations, C is a set of
changes on S, then procedure P outputs 1 iff pair is a pair constraint in canonical
form.
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Proof. We prove each implication in turn.

(⇒) If P outputs 1, then, by the first step, pair = c1 → (¬)c2. Now we proceed
by cases.

If pair = c1 → c2, and c1 = c2, then pair = c1 → c1 which is trivially true.
However, if c1 6= c2, since P produced output 1, for all r ∈ {r|(r2, r) ∈
C, r 6= r′2} ∪ {r2} CommonS,C ∪ {r′1, r} /∈ IR. Informally, this means that
any update of S that uses the change c1, but either leaves r2 as it is, or
changes it to something different from r′2 is inconsistent.

For a formal proof, let C ⊆ C such that c1 ∈ C , SC is consistent, but
c2 /∈ C. By definition, SC ⇒ CommonS,C ∪ {r′1,∨r∈{r|(r2,r)∈C−{c2}}∪{r2}r}.
Since, CommonS,C ∪ {r′1, r} ⇒ ⊥ for all r 6= r′2, this means there is a
proof by cases of ⊥ from CommonS,C ∪ {r′1,∨r∈{r|(r2,r)∈C−{c2}}∪{r2}r}, and,
therefore, Sc is inconsistent, which is a contradiction. Hence, any set of
changes containing c1 and consistently updating S also contains c2.

Otherwise, if pair = c1 → ¬c2, since 1 is the output of P , CommonS,C ∪
{r′1, r′2} /∈ IR. By lemma 4.1.1, this is equivalent to CommonS,C ∪ {r′1} ⇒
¬r′2. Let C ⊆ C such that c1 ∈ C and SC is consistent. Then, SC ⇒
CommonS,C ∪ {r′1} directly from proof theoretic axioms. Therefore, SC ⇒
¬r′2, which means c2 /∈ C.

(⇐) By hypothesis pair = c1 → (¬)c2 is a pair constraint. We consider each of
the two cases.

If pair = c1 → c2, then for all C ⊆ C such that SC is consistent, c1 ∈
C ⇒ c2 ∈ C. In other words, for all C ⊆ C such that c1 ∈ C and c2 /∈ C,
SC is inconsistent. Hence, any update from S obtained by changing r1 to
r′1, r2 with something different from r′2 and any other change of relations
according to C results in an inconsistent set. Hence, there is a proof by
cases that if the update contains r′1 but something different from r′2, then
falsehood will result. That is, for all r ∈ {r|(r2, r) ∈ C, r 6= r′2} ∪ {r2} we
have CommonS,C ∪ {r′1, r} ⇒ ⊥, which means CommonS,C ∪ {r′1, r} /∈ IR.

Otherwise, that is if pair = c1 → ¬c2 is a pair constraint, then for all
C ⊆ C such that SC is consistent, c1 ∈ C ⇒ c2 /∈ C. In other words, for
all C ⊆ C such that c1 ∈ C and c2 ∈ C, SC ⇒ ⊥. Similarly as above,
we then have a proof by cases of ⊥ from CommonS,C ∪ {r′1, r′2}. That is,
CommonS,C ∪ {r′1, r′2} /∈ IR.

This finalises the proof of the correctness of the output of P .

With the above result, P is known to be both polynomial with oracle IR and
to decide PAIR. Therefore this concludes the proof of theorem 4.3.1. Next, we
show how this result is used to solve the search problem COMB, and under which
conditions it becomes polynomial.
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4.4 Complexity Analysis of COMB

Construction of algorithms for solving COMB can be approached from two di-
rections, depending on what information on pair constraints is used. On the one
hand, one can only use the bidirectional co-occurrences which show changes that
must always appear together. We already mentioned the benefits of this approach
in Subsection 4.2.2, when the co-occurrence graph was introduced. On the other
hand, one could also use the unidirectional co-occurrences. This section addresses
the question of which assumptions are necessary to ensure the solving of COMB
in polynomial time.

4.4.1 Bidirectional Perspective

The first approach to solving COMB is from the perspective of using bidirectional
co-occurrences of changes. These are described by pair constraints of the form
c1 ↔ c2, so they are changes that may only happen together. A set of changes for
which its elements are pairwise bidirectional co-occurring for some given S and
C forms a clique in the co-occurrence graph. The clique cover number of a graph
is the minimum number of cliques that cover all vertices of the graph. For our
problem, the lower this number is, the more dependencies are identified, which
reduces the number of eligible combinations of changes. The next theorem looks
at the complexity of COMB in terms of the clique cover number.

Theorem 4.4.1. If S is a consistent system of (in)equality relations, C is a set of
changes on S, and the clique cover number of the associated co-occurrence graph
is logarithmic in the size of C, then COMB with oracle IR is polynomial.

Proof. Once again, we will opt for a constructive proof, so we consider the fol-
lowing procedure P :

1. Construct the bidirectional co-occurrence graph for S and C, say G = (C, E).
This is done by starting with the set of edges E being empty and for
each c1, c2 ∈ C such that 〈S, C, (c1, c2) ∈ PAIR〉 and 〈S, C, (c2, c1) ∈ PAIR〉,
adding (c1, c2) to E. Notice that this graph is undirected, so E is a set of
unordered pairs.

2. For each ci find the first cj, which will be referred to as f(ci), with j ≤ i
such that (ci, cj) ∈ E.

3. Find the image of f , i.e. f [C].

4. Construct the power set of f [C]. This will be referred to as Comb.

5. Take in turn each set A in Comb. For all c ∈ A, c′ ∈ C such that f(c′) = c,
add c′ to set A.
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6. Return the updated set Comb.

At this point, we claim that {{c|f(c′) = c}|c ∈ f [C]}, that is the collection
of sets of changes with the same value of f is a minimum clique cover of G.
Remember that the set of edges of the co-occurrence graph, and hence also of
its bidirectional version, is transitive. Moreover, if Clc = {c|f(c′) = c}, then, by
construction, for all c′ ∈ Clc (c, c′) ∈ E. Therefore, for each c1, c2 ∈ Clc, by
construction, (c, c1) ∈ E, and (c, c2) ∈ E, and by the transitivity of E, (c1, c2) ∈
E. That is, each Clc describes a complete subgraph of G. Moreover, this subgraph
is maximal since, if there was some other c3 ∈ V −Clc to be added to the clique,
then (c, c3) ∈ E, so f(c) = f(c3), which is not the case. Hence, {{c|f(c′) =
c}|c ∈ f [C]} is a clique cover. It is also the only one, as none of those cliques are
connected by edges, due to the transitivity of E.

This procedure is clearly polynomial in the number of calls to IR. The first
step uses O (|C|2) many calls to PAIR, which, by theorem 4.3.1, is in PIR. The
next two steps also have the same complexity. Since the clique cover number is
logarithmic in |C|, constructing the power set will also be polynomial. This means
in turn that step 5 is done in O (|C|3), while the output is again quadratic in |C|.

Regarding the correctness of this program, by definition, the first step correctly
constructs the bidirectional co-occurrence graph. The next steps identify, for each
change c′, the minimum labelled change c that is in the same maximal clique
containing c′. Therefore, in any combination that results in a consistent update, c′

appears iff c appears. Hence, only the clique representatives, i.e. members of f [C]
can appear freely, the other changes depending on their respective representatives.
Since, by assumption, their number is logarithmical with respect to the size of C,
the construction of the power set is done in polynomial time. Step 5 extends each
subset of f [C] with the changes equivalent to its members according to f . The
result is a set R. So, by construction, any combination set in P(C) − R results
in an inconsistent update, since there would be some c1 ↔ c2, such that the set
contains c1 but not c2. In other words, R contains all the valid combinations of
changes.

Therefore, the problem of finding some superset of the combination of changes
resulting in consistent updates is polynomial when the clique cover number is
logarithmic in the size of the input. The proof above is done by finding the
maximal clique cover of the bidirectional co-occurrence graph, and allowing for
all the combinations between the representative of each clique. Notice however
that the clique cover problem is NP-complete (Karp, 1972) and we were able
to solve it polynomially only because the co-occurrence graph has the special
property of having a transitive set of edges. In the next section this problem will
be viewed from the perspective of unidirectional co-occurrences.
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4.4.2 Unidirectional Perspective

The approach presented in the previous subsection is useful in case there are
many changes that only give consistent updates when applied together. We will
now investigate whether it is possible to solve in polynomial time the combining
changes problem even when there are only few such dependencies. We will an-
swer this by considering paths in the co-occurrence graph. These correspond to
sequences of implications. For example, given a sequence c1 → c2 → c3, which
says that if c1 appears so does c2, and if c2 appears, so does c3, the only valid
combinations of changes can be ∅, {c3}, {c2, c3}, and {c1, c2, c3}. This reasoning
lowers the number of valid combinations from 8 to 4.

First, let’s introduce some useful definitions. A (vertex-disjoint) path cover of
a directed graph G = (V,E) is given by a set of paths (i.e. sequences of vertices)
Pathi = vi0, ..., v

i
ni

on vertex sets Vi = {vij|j ≤ ni} such that all (vij, v
i
j+1) ∈ E,

the vertex sets of the paths are pairwise disjoint, and V = ∪̇iVi. So, a path cover
of G is a set of vertex disjoint paths in G such that all vertices in V belong to
some path. Moreover, a minimum path cover has the least number of paths, i.e.
there is no path cover with a smaller number of paths. The size of a minimum
path coverage is called the path cover number (Boesch and Gimpel, 1977).

In order to be able to use path covers for the current problem, it should be
possible to find one in polynomial time. In general this is not possible, as this
problem is known to be NP-hard. To see this, in the special case that the answer
is a path coverage of size 1, this corresponds to solving the well known NP-hard
problem of finding a Hamiltonian path (Arora and Barak, 2009). However, the
co-occurrence graph has the special property of having a transitive set of edges.
The next lemma uses this property to construct a polynomial time algorithm for
finding a minimum path coverage.

Lemma 4.4.2. For any oriented graph G = (V,E) with a transitive set of edges,
a minimum path cover can be constructed in polynomial time.

Proof. To solve this, we will reduce the given problem to solving the same one on a
directed acyclic graph using a similar procedure as for theorem 4.4.1, and then use
the maximum-matching algorithm (Hopcroft-Karp) to solve the latter problem
(Hopcroft and Karp, 1973). In short, the resulting procedure is as follows:

1. Order the vertices in V in some arbitrary order. So, V = {v1, v2, ..., vn}.

2. Construct the function f for the representative of each vertex: for each
v ∈ V find the minimum labelled v′ such that (v, v′) ∈ E and (v′, v) ∈ E
and set f(v) = v′.

3. Construct the graph G′ = (V ′, E ′) from G by contracting the classes of
vertices with the same value of f to their representative. More precisely,
V ′ = f [V ] and E ′ = {(f(v), f(v′))|v, v′ ∈ V, f(v) 6= f(v′)}.
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4. Form two subsets of vertices. The first one, O, contains the vertices in
V ′ with at least one out-edge, and I contains the vertices in V ′ with at
least one in-edge. That is, O = {〈v, 0〉 |v ∈ V ′,∃v′ ∈ V (v, v′) ∈ E ′},
and I = {〈v, 1〉 |v ∈ V ′,∃v′ ∈ V (v′, v) ∈ E ′}. Then, set Vm = O ∪ I.
In addition, form a set Em the set of edges corresponding to E ′ for Vm,
that is Em = {(〈v, 0〉 , 〈v, 1〉)|(v, v′) ∈ E ′}. The new resulting graph is
Gm = (Vm, Em).

5. Use the maximum matching algorithm for finding a maximum matching,
M , in Gm.

6. Form a corresponding path cover in G′. The edges of the paths in the cover
are (v, v′), such that (〈v, 0〉 , 〈v, 1〉) ∈M .

7. Expand the cliques in any order. That is, given a path as a sequence of
vertices in G′, if some vertex v has multiple other vertices with the same f
value, then put all of them, in any order (say in the order of their original
label), between v and its successor in the path.

8. Return the resulting path coverage of G.

This procedure is polynomial, since the maximum matching algorithm has
complexity O((|Vm|+ |Em|)

√
|Vm|) (Hopcroft and Karp, 1973). Moreover, using

König’s Theorem (Konig, 1931), it can be proven that this algorithm outputs a
minimum path coverage.

This means, that we can decompose a graph into paths. To see how this is
useful in the context of dynamic sets of (in)equalities, an analysis on the number
of valid combinations for the changes in a given path is needed.

Lemma 4.4.3. If S is a consistent set of (in)equality relations, C is a set of
changes on S, and Path is a path of length n in the associated co-occurrence
graph, then at most n + 1 combinations of the changes in Path can be extended
to a set of changes resulting in a consistent update of S.

Proof. Suppose Path = c1, c2, ..., cn. Since this is a path in the co-occurrence
graph, ci → ci+1. So, if a set of changes contains ci and gives a consistent update,
then it also contains cj for all i ≤ j ≤ n. That is, any set giving consistent updates
and containing some c from Path, also contains all the changes that follow c in
Path. By distinguishing the cases based on the first change that appears in the
set, this means that {{cj|j > i}|0 ≤ i ≤ n} are the only subsets of {c1, c2, ..., cn}
that can be extended to sets giving consistent updates. Hence, they are at most
n + 1.

Putting the above two results together, we find another case when the com-
bining changes problem can be solved polynomially. This finding is captured in
the theorem below.
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Theorem 4.4.4. If S is a consistent set of (in)equality relations, C is a set of
changes on S, and the path cover number of the associated co-occurrence graph
is bounded by a constant k, then COMB with oracle IR is polynomial.

Proof. To show this constructively, we consider the following procedure P :

1. Construct the co-occurrence graph for S and C, say G = (C, E). This is
done similarly to the construction in the proof of theorem 4.4.1.

2. Form a minimal path cover of G, using the procedure in the proof of lemma
4.4.2. Denote the paths in the cover by Path1, ..., Pathk.

3. For each Pathi find the eligible combinations of changes, Combi, as shown
in lemma 4.4.3.

4. Return the cross product between all Combi.

The procedure P is polynomial with oracle IR. As in the proof of theorem 4.4.1,
the construction of the co-occurrence graph is done in polynomially many steps
with calls to the IR. From lemma 4.4.2, a minimal path cover of G is constructed
polynomially. Step 4 is done linearly, as shown by lemma 4.4.3. Lastly, since, by
hypothesis, the number of paths is bounded by the constant k, the cross product
is done in O(nk).

To prove the last claim, check how many sets are in the cross product of
Combi. By lemma 4.4.3, each such set has the size equal to 1 plus the length
of the path Pathi. Say that Pathi has length pi. Then |Combi| = pi + 1. In
addition, since the vertices of the paths partition V ,

∑
i pi = n and k ≤ n.

Putting these together, the cross product of all the Combi has size
∏

i(pi + 1).

By the inequality of arithmetic and geometric means,
∏

i(pi + 1) ≤
(∑

i(pi+1)

k

)k
.

Using the previously found observations, the right hand side is
(
n+k
k

)k
, which is

less than or equal to (n + 1)k.

The correctness of this procedure follows immediately from lemma 4.4.3, as
any combination of changes not in the results set is not in accordance with the
conditions imposed by some path i.

To conclude, the combining changes problem with oracle access to the in-
equality reasoning problem can be solved in polynomial time if the minimum
path coverage number is constant. In the next section, focus shifts from solving
COMB in polynomial time to reducing the size of the output as much as possible
while using as few calls as possible to the oracle. A discussion on the benefits of
the two algorithms presented in this section also follows.



4.5. Minimising IR Calls in Solving COMB 65

4.5 Minimising IR Calls in Solving COMB

Until now, the complexity analysis was carried out under the assumption that
checks to the inequality reasoning problem take constant time. However, in prac-
tice, this problem is computationally expensive, so the practical aim is to lower
the number of calls to the oracle IR. In this section, we discuss the benefits of
using pair constraints to lower this number.

The brute force algorithm takes all combinations of changes, updates the
system of (in)equalities with each combination to generate new systems, and uses
IR to check the consistency of each of these systems. This procedure uses an
exponential number of calls to oracle IR, i.e. 2|C|, where C is the set of changes.
In the two approaches presented in the previous section, calls to IR were done
only when constructing the (bidirectional) co-occurrence graph, which used 2·|C|2
many calls, one for each ordered pair of changes, before calling IR again to check
the validity of each combination in the output.

Since now we want to minimise the size of the output with the information
from the pair constraints, the entire information on these is needed. Moreover,
we want to do this minimisation with as few calls to the oracle as possible. The
intuition on how to do this is to find co-occurring sets of changes as fast as
possible, and afterwards determine the dependencies between these. Observe
that, because of the transitivity of relation →, the vertices of a cycle in the co-
occurrence graph form a clique. In addition, since relations of the type ¬c1 → c2
are not pair constraints and those of type ¬c1 → ¬c2 are redundant (see lemmas
4.2.1 and 4.2.2), extending our reasoning on ¬C will not help identify cliques, as
a change from ¬C can never be in the same clique with one from C.

Using these observations, we suggest the following procedure for identifying
the co-occurring sets of changes and the pair constraints between them. As before,
we assume that the input is some consistent system of (in)equalities S and some
(ordered) set of changes on it C. For readability, we also assume that there is at
most one change on each relation, but the generalisation is straightforward and
does not change the results. By having this assumption, checks of membership in
PAIR are done with only one call to IR. We will refer to the following procedure
as PCo−occurrence:

1. Start with the function clique(c) = c for all c ∈ C. This labelling function
will return, for each possible c, which change is the representative one in its
equivalence class.

2. Also, start with Pair(c) = ∅, where Pair(c) is the set of all pair constraints
of type c→ c′.

3. Construct the common set of relations, CommonS,C.

4. Form the class of changes which could not be used for any consistent update.
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Take the first change (r, r′) ∈ C such that CommonS,C ∪{r′} /∈ IR, and, if it
exists, denote it by c⊥. Continue with the remaining changes, and for each
c = (r, r′) ∈ C such that CommonS,C ∪ {r′} /∈ IR, make clique(c) = c⊥.

5. Find other cliques while keeping notes on the pair constraints that were
already discovered.

(a) Let visited(c) = 0 iff clique(c) 6= c⊥.

(b) Take each cs = (r, r′) ∈ C such that visited(cs) = 0. For each, start
with path = [cs] and do the following DFS procedure:

i. Let cl = (rl, r
′
l) be the last change in path.

ii. Take, in order, each change c ∈ C for which visited(c) = 0 and
cl 6= c. First process the changes that are not in path, and then
the other ones, in the order they appear in path, from first to last:

A. Check if cl → c, i.e. if CommonS,C ∪ {r′l, r} /∈ IR. If true,
proceed to step B, otherwise, process the next change. If all
changes were processed, proceed to step iii.

B. If c is in path, then for each c′ appearing in path after c,
make clique(c′) = c, visited(c′) = 1, and remove c′ from path.
Also remove c and make visited(c) = 1. Add to Pair(cn) the
constraint cn → c, where cn is the new last element in path.
Otherwise, i.e. c is not in path, add c at the end of path.

C. Continue recursively from step i.

iii. Before backtracking, remove c from path, make visited(c) = 1,
and add cl → c to Pair(cl), where cl is the current last change in
path. Then backtrack and continue processing changes for cl.

6. Use the algorithm from theorem 4.4.4 to find the valid combinations for the
co-occurrence graph with vertices in clique[C]−{c⊥} and edges from Pair.
This will return a set of combinations Comb of representative changes.

7. Expand the representatives. In this step, for each combination set ∈ Comb,
and any change c ∈ Q, add all the changes in the same equivalence class
with c to Q, i.e. all c′ such that clique(c′) = c.

8. Return the updated set of combinations Comb.

Now, PCo−occurrence efficiently finds a super set of the valid combinations. Re-
garding the size of the final output, almost the same results hold as in the previous
section. In case the number of cliques, i.e. |clique[C]|, is logarithmic in |C|, then
the size of the output is polynomial. The same result is achieved when the mini-
mum path cover number is constant.

The great benefit of this new procedure is that it does not check for deducible
pair constraints. For example, for an existing path of the form c1 → c2 → c3,
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PCo−occurrence only checks for c1 → c2 and c2 → c3, but once these are found, c1 →
c3 is not verified. This means that we identify the minimum set of relations that,
when taking their transitive closure, would give the full set of pair constraints.
Moreover, observe that cliques are identified by finding only a cycle rather than
all edges, and the relations c⊥ → c, and c⊥ → ¬c (or its equivalent form) trivially
hold and can be added without any call to the IR.

4.6 Conclusion

In this chapter, the problem of maximising the amount of information inferable
from sparse knowledge is viewed from the perspective of a simulation. A theoreti-
cal problem correlated with this issue is introduced and evaluated. Consequently,
three contributions are distinguished.

First, this chapter provides precise definitions of two relevant problems. One
is the inequality reasoning problem, a problem deciding the consistency of quali-
tative systems of (in)equalities, i.e. IR. The discussion from Chapter 2 according
to which the inequality reasoning problem is computationally expensive (NP-
hard) motivated us to use IR as an oracle throughout the complexity analysis.
The other one, is the problem of combining changes, which is a search problem
that, given a set of (in)equalities and a set of changes on these, it returns at least
all the combinations of changes giving consistent updates, i.e. ELIG.

Second, a complexity analysis of COMB with IR as an oracle was performed.
Using pair constraints, which shows dependencies between occurrences of changes
in combinations that give consistent updates, it was shown for two situations
that COMB is polynomial when assuming constant time checks to IR. One such
situation is if the number of cliques in the co-occurrence graph, that is in the
graph given by the pair constraints on the set of changes, is logarithmic. Another
such situation, is if the co-occurrence graph can always be covered by a number
of paths smaller than some constant.

Third, an adapted algorithm better suited for practical use was presented.
With that algorithm cliques and paths were identified while constructing the co-
occurrence graph. In addition, only the pair constraints in canonical form were
considered, hence not double checking for pair constraints validity.

As a result, in case of highly dependent changes, the method introduced in this
chapter manages to infer more from sparse knowledge. More precisely, in these
cases the problem becomes from exponential polynomial, and hence improving
its theoretical complexity.

In the next chapter we look at how these results can be used for our original
problem of reducing the number of eligible compound terminations.





Chapter 5

Reducing Eligible Compound
Terminations

A qualitative simulation is complex and requires several steps, as outlined in
Chapter 2. To compute the behaviour graph, for each state its set of simple
terminations must first be computed. Because of the sparse nature of the data,
identifying combinations of these terminations that do not produce valid updates
usually requires a full analysis of the system of (in)equalities describing the model
and the restrictions of the next state. As a result, the inequality reasoning pro-
cedure is used for almost all compound terminations in turn, even when only a
few successors emerge. However, in the previous chapter we have introduced a
method for efficiently selecting valid combination of changes. Importantly, we
showed that the method only has polynomially many calls to the inequality rea-
soner in certain cases. The focus of this chapter is to investigate the extent to
which this method can be applied for reducing the number of eligible compound
terminations.

The current chapter is structured into three sections. The first section shows
that the problem of finding eligible compound terminations can be reduced to
combining changes, while also underlining the assumptions under which this re-
duction applies. In the second section we eliminate one of those assumption, and
adapt the solution to work with changing model fragments. Lastly, the benefits
of this method are illustrated by means of two examples.

5.1 Reduction to COMB

In this section, we will look at the correspondence between the eligible compound
termination selection and the combining changes problem. In order to construct
a reduction from the first to the second, a precise formulation of the two problems
is needed. In addition, transformations that encode the input and decode output
should be found. To perform the reduction, the input of the first problem is
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encoded into an input for the second one, the algorithm for COMB is used find a
solution, which is decoded into an output for the original problem. For this to be
a solution, the correctness of the output should be checked. Each of these issues
are addressed in the next three subsections.

5.1.1 Eligible Compound Terminations Selection Problem

The problem we wish to express is part of the state ordering phase. Remember
from Section 2.2 that this is done after a state is terminated. So, at that point,
the system has a set of simple terminations that can be combined and applied in
order to construct successor states. The aim of the ordering phase is to combine
those simple terminations into compound ones such that none of the compound
terminations giving valid successors is left out. Of course, this can be done by
including all the compound terminations, but this would take exponential time.

The aim is then to identify the compound terminations leading to inconsistent
states as early as possible. The reason for this is that each eligible compound
termination found in the ordering phase will be analysed in the closing phase using
multiple calls to the inequality reasoner. Much of the reasoning is then redone,
because when two terminations cannot lead to a successor together, then, if no
initial elimination is done, this combination will be tested with the inequality
reasoner together with all possible choices of taking other terminations. This
means exponentially many calls have to be made to the inequality reasoner. The
better approach would be to have a method for identifying the incompatibility
between the termination pairs with polynomially many checks.

Reducing the number of eligible compound terminations is of course not al-
ways possible. If the system has only few constraints, and almost all compound
terminations give valid successors, this procedure would only perform a polyno-
mial number of additional checks. Since, in that case the output is exponential,
this does not affect the theoretical complexity. So adding this procedure is not
detrimental. From a practical perspective, the systems that are usually modelled
are ones with highly dependent quantities, and have only a few successors for each
state. Simulations where most of the states can evolve to any possible combina-
tion are not interesting. Therefore, reducing the number of eligible compound
termination with pair constraints should, in general, be useful.

In this chapter we will analyse the problem of eliminating compound termina-
tions that cannot appear. Formally, this problem will be referred to as the eligible
compound termination selection, ELIG, and is defined below.
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Input: Some state s, a model fragment function mf , the
mathematical representation for s, Ss, the con-
straints of s according to the causal ingredients
of mf , Const, and a set of simple terminations for
s that are epsilon ordered, T .

Output: Some set Comb ⊆ P(T ) such that all compound
terminations resulting in a successor for s are in
the set Comb.

Observe that the input and output are similar to the ones in the problem of
combining changes. The epsilon order constraint on the set of simple terminations
is added to ensure that combinations of terminations that give continuous and
stable extensions of their transition scenario are indeed successors. The next
subsection investigates the functions that transform the inputs and outputs of
the two problems.

5.1.2 Definitions for the Reduction Functions

Since the aim is to construct a reduction from ELIG to COMB, the inputs and
outputs of the two problems must be transformed into one another. That is, we
need a (polynomial time-computable) function f that given an input of ELIG re-
turns a corresponding one for COMB, and another (polynomial time-computable)
function g that given an output of COMB returns the corresponding one for ELIG.

For the input function, assume there is an input 〈s,mf , Ss,Const , T 〉 for
ELIG. This should be transformed to a pair where the first element is a system of
(in)equalities, and and the second one is a set of changes on some (in)equalities
of that set.

To do this, firstly, we adapt Ss into the system S. Since Ss is the mathematical
model for state s, it is already a system of (in)equalities. From it, we construct
a continuous extension, that is the mathematical model of s together with the
constraints for continuity in the next state. That is, to form S, we start with it
being equal to Ss and for each parameter with known valuation of its derivative,
S is built according to Table 5.1.

The set of changes is obtained from the set of simple terminations. Table 2.2
outlines the possible simple terminations together with the conditions under which
they were selected, and the results set, which shows the changes they produce
in successors. Due to continuity, the results set of termination also contains a
weak constraint on the derivative of the modifying parameter. However, since
in the continuous extension of the state the continuity criterion was applied, the
results equations on these weak constraints are not needed. Hence, the set of
changes is constructed from the set of simple terminations by making pairs of the
relation from the conditions that modifies and the new one that will appear in the
new state if that simple termination is used. Table 5.2 shows the corresponding
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Eliminated relation Added relation

val(dP ) = 0, or
val(dP ) ≤ 0, or
val(dP ) ≥ 0

val(dP ) = ?

val(dP ) > 0 val(dP ) ≥ 0

val(dP ) < 0 val(dP ) ≤ 0

Table 5.1: Construction of the continuous extension for the state s with value
assertion val . Initially the extension is the mathematical model describing s.

changes for a few examples of terminations. Finally, after changing the constraints
of Sc, the relations in Const are added to the set S.

Simple termination Modifying
condition

Corresponding change

(to point above, Q) val(Q) = iu,u+1 (val(Q) = iu,u+1,
val(Q) = lu+1)

(to interval below , Q) val(Q) = lu+1 (val(Q) = lu+1,
val(Q) = iu,u+1)

(derivative down
to stable, Q)

val(dQ) < 0 (val(dQ) ≤ 0
val(dQ) = 0)

(from equal to
greater , (P1, P2))

P1 = P2 (P1 = P2, P1 > P2)

(from greater or
equal to equal , (P1, P2))

P1 ≥ P2 (P1 ≥ P2, P1 = P2)

Table 5.2: Some simple terminations with their corresponding change.

Remember that in the mathematical model, only landmarks are used as
constants, so val(Q) = iu,u+1, is a shorthand notation for the relation lu <
val(Q) ∧ val(Q) < lu+1. In addition, for the derivative terminations, the changes
are done on the continuous extension of the condition, since the original condi-
tion which was in the mathematical model of s, Ss, is not in the same form in its
continuous extension S. The values of the derivatives were changed according to
Table 5.1.

The resulting set is obviously a set of changes. It is also a set of changes
on S, as the first elements of the pairs are members of S. For the changes
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obtained from value and inequality terminations, the first elements in the pair
are conditions of the termination, so they must be in the mathematical model of
s. For the derivative and exogenous ones, we have used the continuous version
of the constraint known to be in Ss, and by our construction of the continuous
extension that must be in Ss. This describes a linear procedure for computing
f(x).

For the name of the changes, this is similar to the ones of the corresponding
terminations. The simple terminations are labelled with increasing numbers in
the order in which they were found in the termination phase of a state. The
corresponding change then inherits the same label, i.e. ti has the corresponding
change ci. Using this notation system, it is easy to decode an output of COMB.
Given a set of combinations of changes, each change in each combination is re-
placed with its corresponding termination. This procedure is a description of the
function g, and is linear in the size of its input.

5.1.3 The Reduction

In the previous section, the reduction functions for both the input and the output
were defined. Hence, there is a function f encoding the input x of ELIG, then
f(x) is passed to COMB resulting in a set of combinations of changes Comb,
and that set is decoded into an output for ELIG using function g. It remains
to be shown that this procedure indeed solves the eligible combination selection
problem. That is, we want to show that 〈x, g(Comb)〉 is a pair where g(Comb)
is a solution of ELIG given input x iff 〈f(x), Comb〉 is an input/output pair for
COMB.

For notation purposes, since x is an input for ELIG, it is of the form x =
〈s,mf , Ss,Const , T 〉. Moreover, as described in the previous section, S is the
continuous extension of Ss together with Const , while C is the set of changes
obtained from the set of simple terminations T . Then, the key observation to
prove the equivalence is that the compound terminations in P(T ) that do not
result in a successor correspond with the combinations of changes that do not
give consistent updates of Ss.

To prove the converse, notice that the relations in S must hold for all succes-
sors of the state s, as a successor needs to be stable and consistent. Moreover, if
a certain simple termination is used for a successor, then a relation in S changes
to the ones in the results set of that termination. So, if a combination of changes
gives an inconsistent update on S then the corresponding compound termination
cannot lead to a successor for that state. The direct implication is similar. If a
compound termination is not valid, this can be because either the terminations
are not at the same level according to the epsilon ordering, the resulting suc-
cessor is not valid, or the resulting successor is not stable. The first cannot be
the case as, according to the input restrictions, the set of simple termination is
epsilon ordered. Both of the other restrictions are encoded into the set S, as the
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continuity is ensured when the continuous extension of Ss is computed, and the
stability comes from the active constraints given by the model fragment function,
so they are given by the set Const . To put these together, if a set of simple
terminations does not give a successor, this must be because the results sets of
those terminations are not consistent with S. Hence, the corresponding changes
do not give a consistent updated of S. As a result, the problem ELIG reduces to
COMB.

The results on the complexity of COMB presented in the previous chapters
hence also extend to the problem ELIG. In particular, using the reduction func-
tions, together with the procedure PCo−occurrence, the size of the output becomes
polynomial, performing polynomially many checks to the inequality reasoner in
some cases: if either the number of classes of simple terminations that always ap-
pear together is logarithmic, or if the minimum cover with chains of implications
of the set of terminations is bounded by a constant.

There are also two underlying assumption made within the procedure. The
first is that the completeness of the inequality reasoning routine holds. We as-
sumed that the inequality reasoner always give the correct answer, which in prac-
tice might not be the case. As explained by Bredeweg et al. (2009), this procedure
is not complete, and inconsistencies might not be determined even though they
might be derivable. However, the inequality reasoner is optimised so that in most
cases the inconsistencies are identified. The second assumption is that the active
model fragments are non-changing. For this proof, we assumed that all the ac-
tive causal ingredients that are valid for the state s will always be valid in any
possible successor. This is not always the case, even though, for most examples,
there is little change of the active model fragments from one state or another. In
fact, for the correspondence ordering rule that is currently applied in Garp3, the
correspondences of the parent state are used for eliminating terminations, so this
assumption already exists in the current implementation.

So far, the solutions for solving COMB were used for reducing the number
of eligible compound terminations under the assumption of an ideal inequality
reasoner, and of invariant active model fragments. The next section considers
the case of dropping the second assumption and accounting for changing model
fragments between states.

5.2 ELIG with Changing Model Fragments

Previously, the problem of eligible compound termination selection was considered
by using the same active causal ingredients and relations for the successor states as
for the parent state. This section investigates whether this is a correct assumption
to make, and, if not, whether the ideas presented before can still be used to lower
the number of combinations.
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5.2.1 Stable and Unstable Constraints

Since model fragments are carrying information about the system behaviour,
attention must be paid to their changes in each of their instances. As noted
by Bredeweg et al. (2009), since the qualitative values and relations between
parameters change from one state to another, the model fragment function might
return a different set of causal ingredients. Therefore, if we label two simple
combinations as being co-occurring in the context of the parent state, based on,
say, an explicit equality given by a model fragment, this elimination might be
incorrect because the constraint will be dropped in the next state.

For example, suppose there are two quantities, Decreasing and Increasing ,
both at their medium value. Suppose moreover that there is a model fragment
asserting that if Decreasing is at the high value there is a bidirectional value corre-
spondence between the two medium values, as shown in Figure 5.1. Assume now
an initial scenario is given where the two functions are a high and low value, with
negative and positive derivative respectively (see Figure 5.2). In this situation,
there are two possible simple terminations, as each of the two quantities can go
to their medium values. This results in three possible combinations of changes:
either both, only the decreasing one, or only the increasing one become medium
in value. From these only the last one is inconsistent with the system as the model
fragment will be active and its constraint will not be satisfied. Therefore, two
successor states are expected. However, only the successor state resulting from
the first compound termination is found. The reason for this is the heuristic used
by the old procedure which states that the set of constraints given by the model
fragment function does not change over the states of the simulation. Using this
assumption, the engine uses the value correspondence between the two medium
values and, because of the correspondence ordering combination concept, infers
that the simple terminations changing the values of the two functions to medium
must be co-occurring.

Figure 5.1: Model fragment showing the correspondence of the medium values of
two functions, in the case the decreasing one is known to have a high value.

This suggests that a distinction needs to be made between the different types
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Figure 5.2: An initial scenario with two functions: a decreasing one at a high
value, and an increasing one at a low value.

of constraints between parameters. Given a parent state s and a set of simple
terminations T , we say that an active constraint cons is stable if it will remain
active in any transition scenario resulting from s with some compound termina-
tion in P(T ). A constraint cons that is active in s, but could become inactive in
some transition scenario is called unstable. For instance, the value correspondence
in the example above is an unstable constraint for the initial state, as it might
become not active in a following transition scenario.

Since, as shown in the example, assuming unstable constraints might result
in eliminating valid successors, these should be used with caution. In Garp3,
there are simulation preferences that eliminate the use of correspondence and
mathematical orderings, and hence do not make any reductions based on active
causal ingredients. However, this is a drastic approach, as some of the constraints
are stable, and may therefore be used in the elimination of compound termina-
tions. There are though two alternative solutions to this problem. One is to not
use the unstable constraints at all. In this case, for any given state and set of
simple terminations, the stable constraints are identified and are then the only
ones used to invalidate combination of changes. Another solution is to group
compound terminations by the (unstable) constraints active in the transition sce-
nario that would result with that compound termination. This will result in a
partition of the power set of simple terminations based on the constraints active
in their resulting transition scenario. Hence, the constraints that will become
active are known, and they can be used to identify illegal combinations of simple
terminations within each set of the partition.

Initial analysis has shown the second solution to be too expensive for its
benefits in most cases, as most model fragments active in the parent states will
also remain active in the successor ones. Therefore, the next section focuses on
the first solution.
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5.2.2 Stable Constraints Extraction

In this section, we assume that there is a state s together with a set T of its
simple terminations in epsilon order. Then, the program needs to identify the
associated stable constraints. The resulting system of (in)equalities corresponds
to the set of invariant relations used in Chapter 4. It is constructed in three steps.

Firstly, the common scenario for s = 〈E , val , <,≤,=〉 and T is found. This
scenario is formed from s by keeping only the information known to be true
in any possible successor state. More precisely, the common scenario is cs,T =
〈E , val c, <c,≤c,=c〉 where the valuation and relations are constructed from the
ones in s according to Table 5.3. In this table we consider that, initially, val c = val
and all (in)equalities Rc = R, while later these will be adapted through additions
and eliminations of relations/function definitions. Notice that, since v and v′ are
adjacent qualitative values, the relations in the last column of the table can be
written in terms of inequalities.

Cause Eliminated
relation

Added relation

Some t changes the
value of Q from v to v′

val(Q) = v val c(Q) ∈ {v, v′}

Some t changes the
value of dQ from v to v′

val(dQ) = v val c(dQ) ∈ {v, v′}

Some t changes the rela-
tion between Q1 and Q2

from R to R′

(Q1, Q2) ∈ R (Q1, Q2) ∈ R′ ∪R

Continuity on all deriva-
tives

val(dP ) = +/
val(dP ) = −/
val(dP ) = 0

val c(dP ) ≥ 0/
val c(dP ) ≤ 0/
val(dP ) = ?

Table 5.3: Construction of the common scenario from a given state s and its set
of simple terminations T . Initially the valuation and relations of the common
scenario are the same as in s. For each simple termination t ∈ T , depending on
its nature, some relations are eliminated and some are added. There is also a
condition ensuring continuity on derivatives.

As an example, consider the first line of Table 5.3. This says that if in T there
is a value termination on Q, say, to point above(Q), that changes the value of the
quantity, say, from i0,1 to l1, then the definition of the valuation val(Q) = i0,1
is eliminated. This means that val c(Q) is undefined. Moreover, the constraint
val c(Q) ∈ {i0,1, l1} is added. Formally, this means that the pairs (l0, Q) and
(Q, l1) are added to the relation sets < and ≤, respectively.
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In the case there are multiple terminations on the same quantity, the disjunc-
tion of these will be taken. For the example before, if, besides to point above(Q),
to point below(Q) is also a simple termination and both of them are assumed
(i.e. the derivative of dQ is unknown, but it can have any qualitative value), then
the added relations for these two terminations are l0 ≤ val c(Q) and val c(Q) ≥ l1.
Intuitively, the common scenario will contain all the quantities from the par-
ent state, the valuations for the unchanging parameters, and the non-changing
(in)equalities. In addition, the possible future valuation for the changing param-
eters are also specified.

Secondly, given the common scenario, the active model fragments are iden-
tified. This is done using the model fragment selection process from the closing
phase of a state. Notice that this needs to not duplicate work. If in the ordering of
the state some model fragments are found to be active for the common scenario,
they will also be active for any possible successor state. Therefore, in the closing
phase of that state, these model fragments will be known to be active and hence
need not be re-checked.

Lastly, the stable constraints are identified. Using the active model fragments
of the common scenario, there will be a resulting set of active constraints given
by their consequences. These constraints might give (in)equalities between land-
marks and/or parameters, as well as causal ingredients. In the case of using
constrained next steps, as suggested in Chapter 3, the next-step constraints are
added to this set.

At this point, a set of all the constraints that need to hold in the next step
have been identified based on the model fragments that are known to be invariant.
In the next subsection we investigate how this can be used in combination with
the ideas for solving COMB in order to lower the number of eligible compound
terminations.

5.2.3 Pair Constraint Ordering

Using the solution for COMB, as well as the stable constraints extracted as shown
in the previous section, this section constructs a new combination concept. In
addition, it investigates this rule’s correctness and the extent under which the
previously obtained results still hold.

Section 5.1 presented an algorithm for reducing the number of eligible com-
pound termination under the assumption of non-changing model fragments. In
the case this assumption is not true, given the input is x = 〈s,mf , Ss, Cons, T 〉,
not all the constraints in Cons necessarily hold in the successor states. Instead,
only the stable constraints do. So, the procedure of solving ELIG using COMB
should adapt the input encoding function, f , to use the set of stable constraints
instead of Cons.

It remains to be investigated if the previous results generalise to this situation.
The answer is no, as new model fragments that are valid in the successor states
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introduce additional constraints. Therefore, a compound termination with a cor-
responding set of changes giving a consistent update might give an inconsistent
update after the new model fragment constraints are applied. This is problematic
because if a pair constraint of the form t1 → t2 holds, that is if for all compound
terminations giving successors T , if t1 ∈ T then t2 ∈ T , then it might not be
identified by our procedure. This happens because c1, the change corresponding
with t1, might lead to a new model fragment being applied, and the implication
that c2 must also be applied could now result from the constraints added by this
new model fragment.

In the example with the two quantities Decreasing and Increasing , there are
no stable constraints. Therefore, according to this information, no pair ordering
constraint is discovered. However, c1 → c2, where the two changes are c1 =
(val(Increasing) = Low , val(Increasing) = Medium) and c2 = (val(Decreasing) =
High, val(Decreasing) = Medium), since while the valuation of Decreasing is High
the correspondence ordering in Figure 5.1 applies. This shows that, using this
approach, not all existing pair constraints are guaranteed to be found. In practice
though, most of the model fragments are not changing, and this means that most
of the pair constraints should still be found.

By only using stable constraints it is ensured that valid compound termi-
nations are not eliminated in this process, as constraint sets are inconsistency
monotonous. The common scenario is an underspecification of the successor
states, so it is not necessary that all model fragments valid in successors are
found. However, if an inconsistency is derived in this underspecified system, this
means there is a proof of falsehood and that proof will still be valid in an ex-
tended system. Consequently, if a pair constraint is valid for the common scenario
together with the stable constraints, that pair constraint will still be valid with
additional model fragments.

Combining all the observations from before, ELIG can be solved in the follow-
ing way: firstly, the common scenario and the stable constraints are combined to
make a system of (in)equalities. Secondly, the simple terminations are adapted,
using function f from Section 5.2, to form a corresponding set of changes. Next,
the COMB problem is solved, using the procedure PCo−occurrence, to find a su-
perset of the valid combination of changes. This is done by identifying cliques
and a minimal path coverage in the co-occurrence graph. Finally, the result is
translated back into sets of terminations using the procedure in g. This gives a
new combination concept, which will be referred to as pair constraint ordering.

So, in this section, we have constructed a new ordering rule that gives a correct
output even under changing model fragments. The next section showcases the
benefits of this rule by means of two examples.
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5.3 Using the Pair Constraint Ordering

After presenting the pair constraint ordering as a solution for reducing the num-
ber of eligible compound terminations, a natural question is how efficient this
combination concept is in practice. It was already shown that if the quantities
are sufficiently interdependent and there are no model fragment changes, then
the number of calls to the inequality reasoner for identifying the successors of a
state is reduced from exponential to polynomial.

We analyse such situations and the actual differences in the number of calls
to IR by revisiting the two main models used in chapter 2. One is the continuous
version of a two-bidder English Auction, and the other one is the large simulation
investigated in section 2.4. For each of them some simulation steps are carefully
considered in order to compare the performance with and without the use of pair
constraint ordering.

5.3.1 English Auction Simulation with Pair Constraint
Ordering

Returning to the English Auction example from Section 2.2, this section inves-
tigates what is the practical effect of adding pair constraint ordering. For this,
let us consider state 7 in Figure 2.11. In that state, as shown in the figure, both
quantities Bid have positive value and a positive derivative, as do both quantities
To absolute. The Bid difference is at Neg small with a negative derivative. The
simple terminations associated with this state can be obtained from the termina-
tion validity criteria in Table 2.2, and are shown in Table 5.4. Notice that all five
terminations are non-immediate, so the epsilon ordering rule is not eliminating
any of them.

Label Simple termination cause

1 (to point below ,To abslolute2 )

2 (to point above,Bid1 )

3 (to point above,Bid2 )

4 (to point below ,Bid difference)

5 (assummed derivative down to stable,Bid difference)

Table 5.4: English Auction: simple terminations for state 7.

The first step in applying the pair constraint ordering is to construct the
common scenario. To do this, the method outlined in Table 5.3 are applied,
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using the valuation in step 7 together with the simple terminations enumerated
before. As a result, the scenario with the valuation described in Table 5.5.

Valuation in state 7 Valuation in the common sce-
nario of state 7

val(Bid1 ) = + val(Bid1 ) > 0

val(Bid2 ) = + val(Bid2 ) > 0

val(dBid1 ) = + val(dBid1 ) ≥ 0

val(dBid2 ) = + val(dBid2 ) ≥ 0

val(Bid difference) = Neg epsilon 0 > val(dBid1 ) ≥ Neg epsilon

val(dBid difference) = − val(dBid1 ) ≤ 0

val(To abslolute1 ) = + val(To abslolute1 ) = +

val(To abslolute2 ) = + val(To abslolute2 ) ≥ 0

val(dTo abslolute1 ) = + val(To abslolute1 ) ≥ 0

val(dTo abslolute2 ) = − val(To abslolute2 ) ≤ 0

Table 5.5: English Auction: common scenario for state 7.

Let us explain the intuition behind this table. All the constraints on the
derivatives of quantities are obtained from continuity; if the derivative was previ-
ously +, in the common scenario it will be greater or equal to 0. Similarly, for −
and lower or equal to 0. This is because, due to continuity, in all possible succes-
sors of the state, the derivative should not have the opposite sign. Value changes
can only be a result of terminations. Therefore, each quantity can either have its
original value or one obtained from the termination. For example, since Bid1 can
either remain at + or use the simple termination with cause (to point above,Bid1 )
to change to Max , it is known to be greater than 0. However, as there is no simple
termination for the quantity To abslolute2 its value is known to remain at +.

The second step is to identify the model fragments that are active for this
common scenario. To do this, each model fragment is analysed and its conditions
are checked. In the current example, by referring back to the model fragments
presented in Subsection 2.2.2, it can be noticed that the only model fragments
that are not active is the ones in figures 2.1 and 2.3. This is because a condition
of that model is that the Bid is at Max which is not known to be the case for
any of the two bidders.

Third, the constraints are extracted from the model fragments. Doing so
means making the conditions explicit. For example, since the model fragment in
Figure 2.4 is active, is known that Bid difference = Bid1 − Bid2 . In addition,
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because of the proportionality relations, there is a proportionality balance con-
straints saying that dBid difference = dBid1 − dBid2 . Similar reasoning gives
additional relations according to the other model fragments. This, together with
the landmark relations from the original scenario, gives the stable constraints.

Finally, the procedure form the combining changes problem, PCo−occurrence,
is used to identify the pair constraints and the eligible compound terminations.
This results in the following steps:

• Each simple termination is checked to be consistent with the model. Con-
sequently, termination 3 is found to be non-applicable. This uses five calls
to the inequality reasoner.

For each of the five simple terminations, the value change imposed by
that termination is added to the common scenario. Then the resulting
scenario together with the stable constraints are passed to the inequality
reasoner. For example, for the third termination, val(Bid2 ) = Max is added.
But, because, from the landmark relations in the scenario Max1 −Max2 <
Neg epsilon, and Bid difference ≥ Neg epsilon, this is not possible. Hence,
t3 → ¬t3, and the third termination is marked as contradictory and not
considered.

• Construct the co-occurrence graph on the remaining terminations, while
also checking for cliques. Consequently, t1 ↔ t4. This uses 7 calls to the
inequality reasoner.

This is done by adding in turn two results of simple termination to the
common scenario and stable constraints, and checking for consistency. To
do this the algorithm firstly takes t1 and tries finding a → relation to some
of the other three simple terminations. Only to t4 this is possible (because
of the value correspondence, see Figure 2.7). Next, it tries to extend the
path, so it looks for edges from t4 to t2, t5, and t1 in this order. The only
one found is to t1. This closes a cycle; t1, t4, are not further considered in
this step. One additional check finds no correlation between t2 and t5. This
means that t4 is in the class with representative t1.

• Look for pair constraints of the type ti → ¬tj. Consequently, t1 → ¬t5.
Done with 3 checks.

From the 3 representative terminations check the relation of that type, with
i < j. Because of the correspondence relation, t1 → ¬t5 is found.

• Find the sets of eligible compound terminations using only representatives.
The elements of this set are {t1}, {t1, t2}, {t2}, {t2, t5}, and {t5}.

Until now, the procedure has found that t1 and t4 must always appear
together, and that t3 can never be part of a compound termination giving
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a consistent update. This leaves us with 3 simple terminations that can be
combined in any way, such that t1 → ¬t5 holds.

• Extend these by adding the representative. This gives {t1, t4}, {t1, t2, t4},
{t2}, {t2, t5}, and {t5}.
For each set in in the previous step that contains t1, the termination t4 is
also added to the set.

Therefore, this procedure returns 5 eligible compound terminations using 15
calls to the inequality reasoner. This is a very positive result taking into account
that three of these eligible compound terminations result in a state. In contrast,
the brute force procedure identifies 31 eligible compound terminations. Since the
process of closing the state makes at least two inequality reasoning calls for each
eligible compound termination, this means at least 62 calls to the inequality rea-
soning. Moreover, the current procedure, even when using all three combination
concepts, finds 7 eligible compound terminations, requiring 14 additional calls.
Those are additional since the mathematical ordering already uses the inequality
reasoning. If deciding to drop this combination concept, 15 eligible compound
terminations are identified.

To summarise, this subsection discussed an example of how pair constraint
ordering is working in practice and that, even for a small simulation, it is ben-
eficial. In the next subsection, the large simulation from Section 2.4, with pair
constraint ordering is considered.

5.3.2 Large Simulation with Pair Constraint Ordering

In Section 2.4 the cellulose hydrolysis model of Kansou et al. (2017) was discussed
from a simulation perspective. In particular, for state 3 the description (see
Table 2.4) and the 11 simple terminations (see Table 2.5) were shown. It was
also mentioned that the number of eligible compound terminations found by the
current combination concepts is 511, while the state has only 3 successors. This
is better, however, than a brute force procedure which would find 2047 compound
terminations. In this section, the implications of using pair constraint ordering is
discussed.

Because of the large gap between the number of possible combinations of
simple terminations and the number of successors, it is obviously the case that
there are dependencies between those terminations. Table 5.6 shows which simple
terminations are used in the creation of each of the three successor states.

As shown in the table, terminations t1, t2, t3, t4, t5 and t7 are not used for the
construction of any successor. Form the theoretical analysis, it should be expected
that the reason for this is an inconsistency between the common scenario with
the stable constraints, and each of these 6 terminations. By looking at the model
fragments, one can check that this is indeed the case, and each of these is not
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Successor t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

4 7 7 7 7 7 3 7 3 3 3 3

5 7 7 7 7 7 7 7 3 3 3 3

6 7 7 7 7 7 7 7 7 7 7 3

Table 5.6: Cellulose Hydrolysis: simple terminations applied to form each of the
three successors of state 3.

aligned with the known commonalities of successors. This leaves only 5 states to
be combined for making compound terminations. Hence, with only 11 calls for
the inequality reasoner, one for each simple termination, the number of eligible
compound ones was reduced from 511 to 31.

From Table 5.6, it should be derived that t8 ↔ t9 ↔ t10 is also valid. However,
because of the complexity of the model, we did not manage to pinpoint the precise
model fragment giving each of this constraints. But, a model fragment giving the
constraint t8 → t11 was found. This will further reduce the number of compound
terminations from 31 to 23.

In point of calls to the inequality reasoner the compression is immediate.
Using the combining changes concept, 11 calls are used to find the inconsistent
terminations, and after this at most 2·52 = 50 more calls are used for constructing
the rest of the co-occurrence graph. Since the current procedure identifies 511, at
least 1022 calls are due in the closing state of the state. Hence, this combination
concept is beneficial for this example as well.

5.4 Conclusion

This chapter, using the axiomatisation constructed in Chapter 2, adapts the
procedure for solving the combining changes problem (i.e. COMB, see previous
chapter) in order to address the problem of lowering the number of eligible com-
pound terminations (ELIG). That is, is done in the ordering phase of states, so
it is assumed that a state together with its simple terminations is given. In doing
so, three main contributions should be mentioned.

First, it was found that in the case of invariant active model fragments over
states, there is a reduction from ELIG to COMB. This means that a procedure for
solving ELIG can be found by encoding the input into one for COMB, then using
the procedure from Chapter 4, and finally decode the result into one for ELIG.
These two polynomial time-computable functions for encoding and decoding are
presented in detail in the first section. This means that all the theoretical results
found in the previous chapter are also valid for ELIG with a non-changing model.
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Hence, in the case of systems with high dependencies between quantities, this
problem can be solved with polynomially many calls to the inequality reasoner.

Second, this method was adapted to account for changing model fragments.
It was firstly shown that in the case of changing model fragments the reduction
is not possible any more. This motivated finding an alternative procedure. From
the relations known to hold in all successors of a state, a common scenario is
built. Using this together with the model fragment selection procedure, the model
fragments known to be active in all future states are identified. These give a set of
stable constraints. Next, the same procedure described in the previous paragraph
is used, but this time it is performed only on the stable constraints instead of
on the ones from the states active model fragments. This combination concept is
referred to as pair constraint ordering. Using this routine, however, the theoretical
results do not extend. But, since in practice systems are highly dependent, model
fragments should not change much, and, therefore, good results are still expected.

Third, two examples are considered to test this hypothesis. One, which was
discussed into much detail, was the English Auction model. Using this model, the
number of eligible compound terminations for some state, namely 7, was 5, which
is less than 32, the number of terminations found by the brute force procedure,
and also less than 7, the number of ones found by the current procedure. It
is also shown to use less calls to the inequality reasoner throughout the phases
of this state. The other example was the large model of Cellulose Hydrolysis
from Section 2.5. The results of this example were equally encouraging, as the
number of eligible compound terminations was found to drop from 511, which is
the number obtained by the current procedure, to 23.

Consequently, this chapter gives a method that uses the sparse knowledge
about a system to infer more information. More precisely, it uses the known
commonalities between successors in order to lower the number of eligible com-
pound terminations, and hence faster identifying them. In addition, it further
shows the value of the axiomatisation.





Chapter 6

Discussion and Conclusion

In its aim of addressing the research question of maximising the information
inferable from sparse knowledge in process-oriented qualitative reasoning, this
thesis made several advances in the use of incomplete information for qualitative
models and simulations.

Chapter 2 provides partial axiomatisation of process-oriented qualitative rea-
soning. This axiomatisation is based on earlier formalisations, but differs in a
few key aspects. For model construction, it follows the approach of Liem (2013),
but still uses precise notation similar to the one of Weld (1988). The main dif-
ference from earlier attempts is the focus on simulation. Instead of opting for
purpose oriented definitions of state graphs, our axiomatisation uses the work of
Bredeweg et al. (2009) and Linnebank (2004) in order to give precise notions for
simulation results. As a result, using these notions, a state graph for a given quali-
tative model and scenario can be constructed, but there are also formal notations
allowing for theoretical problem analysis. In clarifying these newly introduced
definitions, different examples were used, including a novel one from the field of
Auction Theory, and a large one from the work of Kansou et al. (2017). This
axiomatisation was extensively used throughout the remaining chapters of the
thesis as a theoretical basis.

Chapter 3 uses the clarity derived from the axiomatisation to pinpoint some
types of results and introduce three types of consistency principles. These prin-
ciples were the following. First, all models need to be model consistent, that is
each state and transition should respect the information provided by model frag-
ment. This means both in terms of dependencies, i.e. dependency consistency,
and relations, i.e. relation consistency. Second, all state graphs formed by quali-
tative simulations should be path consistent, meaning that each path in the graph
should describe a coherent development of the system. In particular, each track
should not contain contradictory assumptions, i.e. be assumption consistent, and
should properly describe developments with local minima and maxima, i.e. be
extrema consistent. Third, each behaviour graph should be inexplicit inequality
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consistent in the sense that coherent behaviour should result even when not all
inequalities are explicitly stated. All of these principles were accompanied by
particular examples where they occurred, and by suggested solutions.

Chapter 4 investigates the problem of combining changes in dynamic systems
of (in)equalities as a generalisation of the problem of selecting the eligible com-
pound terminations in the ordering phase of a state. In this chapter, it was
considered that a consistent set of inequality relations together with a set of
changes on these is given; a change was defined simply as an ordered pair of
relations, with the meaning that, if the change is applied to a set, the first rela-
tion in the pair will be substituted with the second one. The combining changes
problem (i.e. COMB) aims at finding some superset of combinations of changes
that give consistent updates of the given system. Throughout this chapter, it was
assumed that the inequality reasoning problem, which checks system consistency,
is provided as an oracle. Under this assumption and using the concept of pair
constraints, COMB was proven to be polynomial in two cases: if the number
of cliques in the co-occurrence graph, which is formed from pair constraints, is
logarithmic in the size of the input, or if the path cover number of the same
graph is bounded by a constant. To prove these claims several classical results
from complexity theory were used (Boesch and Gimpel, 1977; Arora and Barak,
2009). A procedure improving the complexity constants of the routine for solving
COMB was presented at the end of the chapter.

Chapter 5 investigates the extent to which the previously introduced proce-
dure for solving COMB can be applied for the problem of lowering the number
of eligible compound terminations (i.e. ELIG). This is problem is difficult be-
cause data is sparse, so not all derivable relations in the system are made explicit.
Consequently, if existing, contradictions are rarely obvious, and spotting usually
require using the inequality reasoner. In the case of invariant model fragments,
a reduction from ELIG to COMB was found. Moreover, an adaptation of the
procedure for solving COMB was developed in order to account for simulations
with changing model fragments. To illustrate these methods together with their
practical benefits, the two main examples in Chapter 2 are used again and the
changes in the numbers of eligible compound terminations is analysed.

Consequently, we made several contributions towards our original aim of max-
imising the amount of information derivable from sparse knowledge in process-
oriented qualitative reasoning. First, we developed and showed the usefulness of
a new partial axiomatisation providing the means for theoretical analysis of the
simulation process. Second, we identified incoherences in simulation results, and
suggested solutions for these. Third, we introduced the problem of combining
changes which, in the context of a dynamic system of (in)equalities, aims at us-
ing the available incomplete knowledge in order to identify the combinations of
changes that maintain the system’s consistency. Fourth, we analysed this problem
and showed that under some explicit assumption it is time polynomial. Fifth, we
generalised the procedure found during the theoretical analysis to work for better
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using the knowledge available, and reducing the number of eligible compound
terminations in the ordering phase of a state.

There are various directions for future research based on the work of this
thesis. To begin with, as already mentioned, our axiomatisation is only partial.
Extending it would be very useful as it might pinpoint new issues and help iden-
tifying novel solutions. In addition to this, the list of incoherences provided in
Chapter 3 is by no means exhaustive, so further investigation may undercover
additional consistency concepts. Moreover, from a practical point of view, imple-
menting the ones already mentioned would be valuable. Regarding the analysis
of COMB, its complexity was only analysed for pair constraints and with IR as
an oracle, but it is natural to wonder what happens in other cases. For example,
one could use the relations in the system to underpin more complex dependencies
between multiple changes. Finally, it would be useful to provide a procedure for
automated evaluation of the practical benefits for the methods in Chapter 5.
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D. Konig. Gráfok és mátrixok. matematikai és fizikai lapok, 38: 116–119, 1931,
1931.

B. Kuipers. Qualitative reasoning: modeling and simulation with incomplete
knowledge. MIT press, 1994.

J. Liem. Supporting conceptual modelling of dynamic systems: A knowledge en-
gineering perspective on qualitative reasoning. Universiteit van Amsterdam
[Host], 2013.

F. E. Linnebank. Common sense reasoning-towards mature qualitative reasoning
engines. 2004.

R. P. McAfee and J. McMillan. Auctions and bidding. Journal of economic
literature, 25(2):699–738, 1987.

P. R. Milgrom and R. J. Weber. A theory of auctions and competitive bidding.
Econometrica: Journal of the Econometric Society, pages 1089–1122, 1982.

F. G. Pin, H. Watanabe, J. Symon, and R. S. Pattay. Autonomous navigation
of a mobile robot using custom-designed qualitative reasoning vlsi chips and
boards. In Robotics and Automation, 1992. Proceedings., 1992 IEEE Interna-
tional Conference on, pages 123–128. IEEE, 1992.

F. van Harmelen, V. Lifschitz, and B. Porter. Handbook of knowledge represen-
tation, volume 1. Elsevier, 2008.

P. Veber, M. Le Borgne, A. Siegel, S. Lagarrigue, and O. Radulescu. Complex
qualitative models in biology: A new approach. Complexus, 2(3-4):140–151,
2004.

W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The
Journal of finance, 16(1):8–37, 1961.

D. S. Weld. Theories of comparative analysis. Technical report, Massachusetts
Inst of Tech Cambridge Artificial Intelligence Lab, 1988.

D. S. Weld and J. De Kleer. Readings in qualitative reasoning about physical
systems. Morgan Kaufmann, 2013.



Appendices





Appendix A

Axiomatisation for Process-Oriented
Qualitative Reasoning

• Entities are the basic structural compounds of the system which do not
change during the simulation phase. Formally, we define an entity as a
finite set of quantities, E = {Q1, ..., Qn}.

• A quantity Q is defined as a variable, which has another associated variable
named (first order) derivative, denoted by dQ. Moreover, if Q is a set
of quantities, then the set of associated derivatives is denote by dQ, i.e.
dQ = {dQ|Q ∈ Q}.

• A parameter is defined inductively; any quantity is a parameter, and so
are the derivatives of any parameter. For practical reasons, not all order
derivatives are considered. In general, for a given set of quantities, the
associated parameters are only these quantities together with their first
order derivatives, that is PQ := Q ∪ dQ. Notice that this is different from
the usual definition of a parameter (Weld and De Kleer, 2013).

• Landmarks are considered constants that can be partially ordered by the
strict relation <. Two landmarks lu, lv within the set L of all landmarks are
considered consecutive if lu < lv and there is no lt ∈ L such that lu < lt < lv.
As always, given a set of landmarks L, a minimal landmark is an l1 such
that there is no l0 ∈ L with l0 < l1 (and similarly for the maximal).

• An interval is also a constant which is associated either with two consecutive
landmarks or with a minimal or maximal landmark. So, for the consecutive
landmarks lu < lv, the associated interval will be iu,v. If l1 is minimal, then
i0,1 is its associated interval, while if lu is maximal it will have iu,u+1 as
an associated interval. The partial order < also extends over intervals, so
lu < iu,v < lv. However, the relation is not strict over intervals, as iu,v < iu,v
is valid.
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• The landmark space associated with a quantity Q is defined as a set of
landmarks totally ordered by <, LQ = {l1 < l2 < ... < lm} that quantity
Q can take, while the interval space of Q is the set of intervals associated
with these landmarks, that is IQ = {i1,2, i2,3, ..., im−1,m} possibly together
with one or both of i0,1 and im,m+1. The magnitude space of Q is hence the
set of landmark and interval spaces of Q, i.e. MQ = LQ ∪ IQ; e.g. for any
parameter P , LdP = {0}, IdP = {−,+}, and MdP = {− < 0 < +}.

• Causal ingredients are binary relation, which can be of three types:

– Proportionality (which can be either positive or negative) models a
correlation between the tendencies of two quantities; if Q1 is positively
proportionally influenced by Q2, Q1 has no other dependencies, and
Q2 is increasing, then Q1 should also be increasing. The two types
of proportionality are denoted by P+ or P−, and each of them is an
antisymmetric binary relation on Q.

– Influence (which can be positive or negative) models the dependency
between the magnitude of a quantity and the tendency of another; if Q1

is positively (directly) influenced by Q2, Q1 has no other dependencies,
and Q2 is positive, then Q1 should also be increasing. Formally, the
two types of influences are denoted by I+ or I−, and each of them is
an antisymmetric binary relation on Q.

We also say that a dependency is either an influence or a proportion-
ality relation.

– Correspondence, which can be directed or undirected, shows co-appearing
magnitudes. These are elements of the (value) correspondence set C,
which is such that

C ⊆ {((P1, v1), (P2, v2))|Pi ∈ PQ, vi ∈MPi
, P1 6= P2}.

Additionally, the undirected correspondence is symmetric. However,
since the undirected correspondence can be expressed in terms of di-
rected correspondences we will only use the latter, to which we will
refer to simply as correspondences.

• (In)equalities are binary relations R ∈ {<,≤,=,≥, >}; for a given set of
quantities Q, the elements of the relations R are of the form:

– (Q1, Q2), for Q1, Q2 ∈ Q, i.e. comparing two quantities;

– (Q, l), for l ∈ LQ, i.e. comparing a quantity and a landmark;

– (l, l′), for l, l′ ∈ LQ, Q ∈ Q, i.e. comparing two landmarks;

– (dQ1, dQ2), for Q1, Q2 ∈ Q, i.e. comparing two derivatives;
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– (dQ, 0), for Q ∈ Q, i.e. comparing a derivative and zero.

This is also extended to inequalities on terms, that is on expressions ob-
tained from parameters together with arithmetic operators.

• An assertion attributes values to parameters:

– A magnitude assertion for the set of quantities Q is a (partial) function
mag : Q → ∪Q∈QMQ, such that mag(Q) ∈ MQ for all Q ∈ Q and
mag(Q) defined. Hence, a magnitude assertion for Q is a function that
gives to (some) quantities inQ some magnitude within their associated
magnitude space.

– A derivative assertion for the set of quantities Q is a (partial) function
der : dQ → {−, 0,+}.

– A (qualitative) value assertion for the set of quantities Q is a (partial)
function val : Q∪ dQ → ∪Q∈QMQ ∪{−, 0,+} such that valm := val|Q
is a magnitude assertion, and vald := val|dQ is a derivative assertion.

• A scenario is a partial qualitative description of a situation. Formally, a
scenario s is a tuple 〈E , val , <,≤,=〉, where E is a set of entities, val is
a qualitative value assertion for Q, and <,≤,= are inequalities on E . In
addition to this, if val(P1) and val(P2) are defined, and P1 R P2 for some
R ∈ {<,≤,=}, then the relation between P1 and P2, if specified, should be
val(P1) R val(P2), where P1, P2 are parameters in E , formally in P∪E∈EE.

• The behaviour ingredients of a scenario are the relations and the value as-
sertion function. That is, the behaviour ingredients of s = 〈E , val , <,≤,=〉
are val , <,≤,=.

• The structural ingredients of a scenario are the set of its entities (which
also contains information about quantities), together with agents, configu-
rations, attributes, and assumptions. The last four types are beyond the
scope of this thesis, so we will not insist on these.

• The conditionals of a scenario are its structural and behavioural ingredients.

• A model fragments (MF) is used to describe how parts of the system behave
under certain conditions. These are then rules that link a set of conditionals
to a set of causal ingredients and possibly (in)equality restrictions. Hence,
they can be determined by a function, say the model fragment function mf :
P(Cond) → P(Caus), where Cond is the set of all possible conditionals,
and Caus is the set of causal ingredients together with (in)equality relations.

• Therefore, for every state there are associated proportionality, influence
and correspondence relations, plus possible (in)equality restrictions, that
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are given by the MF function. Those will be referred to as the set of active
causal ingredients, which, for a scenario s, is given by

⋃
Co⊆Conds

mf (Co).

• A state represents a complete version of a scenario, i.e. the qualitative value
assertion restricted on quantities (valm) is a total function. Furthermore,
a state s extends a scenario s′ if all the elements of s are supersets of the
respective ones in s′. A scenario is called ambiguous if it can have more
than one state extension.

• A simple termination for a state s is a pair (c,Re), where c is a cause, and
Re is a set of results. Moreover, the pair needs to satisfy the termination
validity criteria which will be defined later. The set of results is a collection
of relations on the parameters of s, while the different types of causes are
defined below.

• A cause c of a termination for a state s = 〈E , val , <,≤,=〉 is a pair that
gives the type of change (i.e. a constant from Table 2.1) and a quantity
(or a pair of quantities) from ∪E∈EE, i.e. c = (cause name, Q), for some
Q in ∪E∈E E. Table A.1 presents the causes grouped into three possible
categories. Formally, there are four categories, as there are also exogenous
terminations on derivatives (Bredeweg et al., 2009), but these necessitate
additional constraints, and are outside the scope of this thesis. In additon,
for the derivative and inequality causes, there are also assumed versions of
the constants, e.g. (assumed derivative stable to down, Q).

• As stated before, in order for a pair t = (c,Re) to be a termination of state
s = 〈E , val , <,≤,=〉, t needs to satisfy the termination validity criteria.
This means that only certain pairs of causes and results are valid. More-
over, these are valid for the state s only when a certain set of conditions
(constraints) of s is valid. The condition function of s, denoted by cond, is a
function from the set of simple terminations to the power set of constraints
of s. Hence, cond(t) is the set of constraints for the termination t. Table
A.2 outlines the termination validity criteria. This is based on the work of
Linnebank (2004).

• The set of terminations is divided into two parts, namely immediate termi-
nations, which are from a point or from equality, i.e. the ones marked with
* in Table A.1, and non-immediate terminations, which are to a point or to
equality. Hence, the set of simple terminations Ts is the disjoint union of the
set of immediate terminations Is and the set of non-immediate terminations
Ns. That is, Ts = Is∪̇Ns.

• A compound termination for a state s is defined to be a set of simple termina-
tions of s. Since immediate terminations take priority over non-immediate
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Class of causes Type of cause

Value causes (to point above, Q)
(to point below , Q)
(to interval above, Q)*
(to interval below , Q)*

Derivative causes (derivative stable to down, Q)*
(derivative stable to up, Q)*
(derivative down to stable, Q)
(derivative up to stable, Q)

Inequality causes (from equal to greater , (Q1, Q2))*
(from equal to smaller , (Q1, Q2))*
(from smaller to equal , (Q1, Q2))
(from greater to equal , (Q1, Q2))
(from smaller or equal to smaller , (Q1, Q2))∗
(from smaller or equal to equal , (Q1, Q2))
(from smaller or equal to greater , (Q1, Q2))∗
(from greater or equal to greater , (Q1, Q2))∗
(from greater or equal to equal , (Q1, Q2))
(from greater or equal to smaller , (Q1, Q2))∗

Table A.1: Types of causes

one, a compound terminations only has elements from the immediate termi-
nations, if such elements exist, otherwise it is composed by non-immediate
terminations. Formally,

T ⊆

{
Is, if Is 6= ∅
Ns, otherwise

,

where Is is the set of immediate terminations of s, Ns is the set of non-
immediate ones, and T is a compound termination. This rule of prioritising
immediate terminations will be referred to as the epsilon ordering rule.

The set of compound terminations of s is denoted by Ts. The set of causes
of the compound termination T is the set of causes that belong to the simple
terminations within T , that is {c|(c,Re) ∈ T}. Similarly, the results of T
is the union of the result sets of the simple terminations, i.e. ∪(c,Re)∈TRe.
Moreover, the condition function naturally extends over compound termi-
nations by letting cond(T ) = ∪t∈T cond(t).

• The physical world is continuous, in the sense that there are no jumps in
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Cause type Elements of cond(t) Elements of re-
sults set

(to point above, Q) val(Q) = iu,u+1, for iu,u+1 ∈ IQ
val(dQ) = +

val(Q) = lu+1

val(dQ) ≥ 0

(to point below , Q) val(Q) = iu,u+1, for iu,u+1 ∈ IQ
val(dQ) = −

val(Q) = lu
val(dQ) ≤ 0

(to interval above, Q) val(Q) = lu, for lu ∈ LQ

val(dQ) = +
val(Q) = iu,u+1

val(dQ) ≥ 0

(to interval below , Q) val(Q) = lu+1, for lu+1 ∈ LQ

val(dQ) = −
val(Q) = iu,u+1

val(dQ) ≤ 0

(derivative stable to
down, Q)

val(dQ) = 0
val(ddQ) = −*

val(dQ) = −
val(ddQ) ≤ 0*

(derivative stable to
up, Q)

val(dQ) = 0
val(ddQ) = +*

val(dQ) = +
val(ddQ) ≥ 0*

(derivative up to
stable, Q)

val(dQ) = +
val(ddQ) = −*

val(dQ) = 0
val(ddQ) ≤ 0*

(derivative down to
stable, Q)

val(dQ) = −
val(ddQ) = +*

val(dQ) = 0
val(ddQ) ≥ 0*

(from equal to greater ,
(Q1, Q2))

Q1 = Q2

dQ1 > dQ2*
Q1 > Q2

dQ1 ≥ dQ2*

(from equal to smaller ,
(Q1, Q2))

Q1 = Q2

dQ1 < dQ2*
Q1 < Q2

dQ1 ≤ dQ2*

(from smaller to equal ,
(Q1, Q2))

Q1 < Q2

dQ1 > dQ2*
Q1 = Q2

dQ1 ≥ dQ2*

(from greater to equal ,
(Q1, Q2))

Q1 > Q2

dQ1 < dQ2

Q1 = Q2

dQ1 ≤ dQ2*

Table A.2: Termination validity criteria. Note that the inequality transitions
from a weak constraint to a strong one were omitted, but these are similar to the
mentioned ones. In addition, if the constraints marked with star do not appear
explicitly, but could be added while maintaining consistency of the state, then
the cause is assumed.

tendencies between consecutive states of the same system. So, the continu-
ity criterion states that the tendency of a quantity cannot jump from the
positive to the negative interval or vice-versa without first passing through
zero. Another way of saying this is that a pair of states (s1, s2) satisfies
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the continuity criterion iff for every parameter P resulting from the entity
spaces of the two states the following holds:

– if val1(dP ) = −, then val2(dP ) ≤ 0

– if val1(dP ) = +, then val2(dP ) ≥ 0

• A transition scenario from state s with the compound termination T is then
defined as the scenario s′ obtained from s by changing with the results in
T , that is with ReT = ∪(c,Re)∈TRe.

• A state s = 〈E , val , <,≤,=〉 with its active causal ingredients P+, P−, I+, I−, C
is stable if:

– There is an influence balance. This happens when the qualitative value
assertion val is plausible with the influence relation of s. Formally, that
is when for every Q ∈ ∪E∈EE, the relation

dQ =
∑

(Q1,Q)∈I+

f1(Q1)−
∑

(Q2,Q)∈I−

f2(Q2),

where the functions fi are strictly increasing and with zero as a fixed
point, holds.

– There is a proportionality balance. Similarly, this happens when the
qualitative value assertion val is plausible with the proportionality
relation of s. Formally, that is when for every Q ∈ ∪E∈EE, the relation

dQ =
∑

(Q1,Q)∈P+

g(dQ1)−
∑

(Q2,Q)∈P−

g(dQ2).

where the functions gi are strictly increasing and with zero as a fixed
point, holds. Notice that in this case, because of the possible values of
the derivatives, the relation is equivalent with val(dQ) =

∑
(Q1,Q)∈P+ val(dQ1)−∑

(Q2,Q)∈P− val(dQ2).

– There is a correspondence fit. This happens when the qualitative value
assertion val is plausible with the correspondence relation of s. For-
mally, that is when for every P1, P2 ∈ ∪E∈EE and vi ∈ Mi, such that
((P1, v1), (P2, v2)) ∈ C, if val(P1) = v1, then val(P2) = v2.

Notice that the influence and proportionality balances are separate, and not
mixed. The reason for this is that in qualitative reasoning, the dependencies
are interpreted as causalities, so a quantity cannot have both incoming
influences and proportionalities.

• A successor of a state s is a continuous and stable state s′, extending the
transition scenario of s and some compound termination T .
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• A transition is a pair of successor states (s, s′).

• A state graph (or behaviour graph) is a directed graph G = (V,E) where V
is a set of states and E is the set of transitions between them. Moreover,
any behaviour graph must be maximal, in the sense that there is no state
in V with a successor outside V .

• A path in this state graph, which shows a possible development of the
system, is referred to as a track.

• A simulation is a function that for a given model fragment function and
initial scenario returns a representation of the possible developments of the
system, i.e. a state-graph.


