(=

Institute for Logic, Language and Computation

DECLARATIVE PROGRAMMING
IN PROLOG

Krzysztof Apt

ILLC Prepublication Series
for Computation and Complexity Theory CT-93-06

%
&
%

University of Amsterdam

The ILLC Prepublication Series
1990 Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives
LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburm Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Montague Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar

LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Inequality .

LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience

LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations

ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Sfﬁments) . .

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a
Problem of F. Richman

ML-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx =~ Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jon%ljénl?uccw Pianigiani Solution of a Problem of David Guaspari

ML-90-10 Michiel van balgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas _ Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osalsneu Watanabe, José L. Balcézar Generalized Kolmogorov Complexity in Relativized
arations

CT-90-04 Harry Buhrman, Edith Spaan, Leen Toregvliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets . Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel
Other Prepublications Conditional, a case study in conditional rewritin,
-90-01 K.S. Troelstra_ Remarks on Intuitionism and the Philosophy of ematics, Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexitg of Arithmetical Interpretations of Modal Formulae
X-90-04 . Annual Report 1989
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questions
X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1
X-90-11 Alessandra Carbone Provable Fixed points in IAj+£2,, revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev l?r%hapandzz's olymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's
rty
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory
X-90-15 A.S. Troelstra Lectures on Linear Logic
1991 Logic, Semantics and Philosophy of Language
LP-91-01 Wiebe van der Hoek, I\gaanen de Rijke Generalized tifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groeneveld %'namic Semantics and Circular Propositions
LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Noun Phrases

LP-91-08 Victor Sdnchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema . Cylindric Modal Logic

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories

ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic

ML-91-04 Raymond Hoofman, Harold Schellinx Col]apsinéGraph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century

ML-91-06 Inge Bethke Finite Structures within Combinatory Algebras

ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahlqvist's Theorem for Boolean Algebras with Operators

ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

Computation and Coi lexngT heo

CT-91-01 Ming Li%aul B. \’/yitényi Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitinyi How to Share Concurrent Wait-Free Variables | .
CT-91-03 Ming Li, Paul M.B. Vitinyi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence .
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak E%u;}/alence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus - o .
1-09 Ming Li, Paul M.B. Vitinyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity

CT-9

CT-91-10 John Tromp, Paul Vitdnyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

CL-91-01 J.C. ScholtesComputational Linguistics Kohonen Feature Maps in Natural Language Processing

CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

EROE ERT

Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

HE Institute for Logic, Language and Computation

DECLARATIVE PROGRAMMING
IN PROLOG

Krzysztof Apt

Department of Mathematics and Computer Science
University of Amsterdam

ILLC Prepublications
for Computation and Complexity Theory
ISSN 0928-3323

Coordinating editor: Dick de Jongh received July 1993

Declarative Programming in Prolog

Krzysztof R. Apt
CwI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and
Faculty of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Abstract

We try to assess to what extent declarative programming can be realized in Prolog and
which aspects of correctness of Prolog programs can be dealt with by means of declarative
interpretation.

More specifically, we shall discuss termination of Prolog programs, partial correctness,
absence of errors and the safe use of negation.

1991 Mathematics Subject Classification: 68Q40, 68T15.
CR Categories: F.3.2., F.4.1, H.3.3,1.2.3.
Keywords and Phrases: declarative programming, Prolog programs, verification.

Notes. This research was partly supported by the ESPRIT Basic Research Action 6810
(Compulog 2). This paper will appear as invited lecture in: Proc. of International Logic
Programming Symposium (ILPS ’93), The MIT Press, D. Miller (editor).

1 Introduction

1.1 Motivation

Verification of Prolog programs has been an ongoing research endeavour since the beginning of
logic programming. Already Clark and Tarnlund [CT77], and more extensively, Clark [ClaT79]
addressed this issue. Hogger [Hog84] dealt with this subject in his book, Deransart [Der90]
compared various approaches to partial correctness, and Deville [Dev90] studied systematic
development of logic and Prolog programs from specifications.

In the case of other styles of programming analogous research resulted in clearly isolated and
widely recognized proof principles and design methods, which can be readily used when dealing
with specific programs or programming problems (see e.g. Dijkstra [Dij76] and Gries [Gri81] for
sequential imperative programming, Chandy and Misra [CM88], Apt and Olderog [AO91], and
Manna and Pnueli [MP92] for concurrent imperative programming; and Burstall and Darlington
[BD77], Meertens [Mee86] and Bird and Wadler [BW88] for functional programming).

Regrettably, such development did not take place in the case of logic programming. Among
the reasons might be two often repeated claims. According to one of them, a well-written Prolog
program is “obviously correct” because it can be viewed as a self-evident specification of the
problem under consideration. According to another, any correctness proof of a program will be
so obscure that its validity will be less convincing than that of the program itself.

We strongly disagree with these statements and find that their widespread popularity is one
of the causes why programming in logic programming is not yet considered as a viable and
attractive alternative to programming in other styles.

Of course, from the programming point of view, the main interest in logic programming
is due to its capability to support declarative programming. Loosely speaking, declarative
programming can be described as follows. Specifications, when written in an appropriate format,
can be used as a program. Then the desired conclusions should logically follow from the program.
To compute these conclusions some computation mechanism should be used.

Clearly, logic programming comes close to this description. The soundness and completeness
results relate the declarative and procedural interpretations and consequently the concepts of
correct answer substitutions and computed answer substitutions. However, these substitutions
do not need to coincide, so a mismatch may arise. Additional complications result from adding
negation.

When moving from logic programming to Prolog new difficulties arise due to the use of
depth-first search strategy combined with the ordering of the clauses, the fixed selection rule,
the omission of the occur-check in the unification, and the use of built-in’s and various “non-
logical” features.

If we wish to consider declarative programming in Prolog seriously, we should identify the
programs whose correctness can be established by means of simple methods based on declarative
semantics. This is the aim of this paper.

1.2 Terminology and Notation

Given a list t we write a € t when a is a member of t and a ¢ t when a is not a member of
t. Given two syntactic expressions FE and F, we say that E is more general than F, and write
E < F,if Ef = F for some substitution 6.

We work here with queries, that is sequences of atoms, instead of goals, that is constructs
of the form <« @, where @ is a query. Throughout the paper we restrict attention to one
selection rule, namely Prolog’s leftmost selection rule. We refer to SLD-resolution with the
leftmost selection rule as LD-resolution. All proof-theoretic notions, such as the computed
answer substitution refer to LD-resolution.

Apart from this we use the standard notation of Lloyd [L1087] and Apt [Apt90]. In particular,
for a program P, Bp stands for its Herband base, Mp stands for its least Herbrand model,
ground(P) for the set of all ground instances of clauses of P, and [A] for the set of all ground
instances of the atom A.

2 Setting the Stage

2.1 Syntax
We shall deal here with three subsets of Prolog.

Pure Prolog

The syntax of programs written in this subset coincides with the customary syntax of logic
programs, though the ambivalent syntax and anonymous variables are allowed.

Pure Prolog with Arithmetic

This subset extends the previous one by allowing in the bodies of the program clauses the
arithmetic comparison operators <, <,==, #, >, > and the binary “is” relation of Prolog.

Pure Prolog with Negation

This subset extends the first one by allowing negative literals in the bodies of the program
clauses. Thus it coincides with the syntax of general logic programs.

The methods discussed in this paper can be readily used to deal with the “union” of the last
two subsets, that is pure Prolog with arithmetic and negation.

When considering a specific logic program one has to fix a first-order language w.r.t. which
it is analyzed. Usually, one associates with the program the language determined by it — its
constants, function and relation symbols are the ones occurring in the program (see e.g. Lloyd
[L1087] and Apt [Apt90]). Another choice was made by Kunen [Kun89] who assumed a first-order
language with infinitely many constants, function and relation symbols in which all programs and
queries are written. In this paper we follow Kunen’s choice. In contrast to the other alternative
it imposes no syntactic restriction on the queries which may be used for a given program. This
better reflects the reality of programming. In Section 2.3 we shall indicate another advantage of
this choice. Of course, the sets ground(P) and [A] refer to the ground instances in this universal
language.

2.2 Proof Theory

Let us explain now the proof theory for the three subsets introduced above.

Pure Prolog

We use, as expected, the LD-resolution. However, in most implementations of Prolog, unification
without the occur-check is used. So we have to deal with this issue. Due to the lack of space we
refer the reader to Apt and Pellegrini [AP92] whose work builds upon Deransart, Ferrand and
Téguia [DFT91] and whose methods based on syntactic analysis can be applied to all programs
here considered.

Moreover, we assume that, as in Prolog, the clauses of the program are ordered. This ordering
will be reflected in the considered LD-trees. It should be added, however, that in our approach
to correctness the ordering of the clauses will never play any role. In other words, our approach
will not be able to distinguish between programs which differ only by the clause ordering.

Pure Prolog with Arithmetic
Consider the program QUICKSORT:

gs([X | Xs], Ys) «
part(X, Xs, Littles, Bigs),
gs(Littles, Ls),
qs(Bigs, Bs),
app(Ls, [X | Bs], Ys).
qs([1, [D.

part(X, [YIXs], [YILs], Bs) « X > Y, part(X, Xs, Ls, Bs).

part(X, [YIXs], Ls, [YIBs]) « X <Y, part(X, Xs, Ls, Bs).
part(X, [1, [1, [1).

augmented by the APPEND program defined by:

app([X | Xsl, Ys, [X | Zs]) « app(Xs, Ys, Zs).
app([], Ys, Ys).

When studying it formally as a Prolog program we have to decide the status of the built-in’s
> and <. Are they some further unspecified relation symbols whose definitions we can ignore?
Well, with this choice we face the following problem. In Prolog the relations > and < are
built-in’s whose evaluation results in an error when its arguments are not ground arithmetic
expressions (in short, gae’s). Consequently, the query qs([3,4,X,7], [3,4,7,8]) results in
an error at the moment the variable X becomes an argument of >.

Now, logic programming does not have any facilities to deal with run time errors, but at least
one could consider trading them for failure. Unfortunately, this is not possible. Otherwise for
some terms s and t the query s>t would succeed and then by the Lifting Lemma the query X>Y
would succeed, as well. So what is the conclusion? The standard theory of logic programming
cannot be used to capture properly the behaviour of the built-in’s > and < and it is not possible
to model the fact that the query qs([3,4,X,7], [3,4,7,8]) results in an error.

Consequently, when interpreting the arithmetic relations we follow Prolog’s interpretation,
according to which, as just stated, when at the moment of evaluation the arguments of the
comparison relations are not gae’s, the computation ends in an error. Also, the assignment s
is t ends in an error when at the moment of evaluation t is not a gae.

To model this interpretation of arithmetic relations we follow Kunen [Kun88]. First we
extend the LD-resolution by stipulating that an LD-derivation ends in an error precisely in
the cases stated above. Next, we add to each program infinitely many clauses which define the
ground instances of the used arithmetic relations. Given a gae n we denote by val(n) its value.

For < we add the following set of unit clauses:

Mc={m<n |m, naregae’s and val(m)<val(n) },

for “is” we add the set
Mis = {val(n) is n |nis a gae},

etc. Note that thanks to the “ending in an error” provision the resulting LD-trees remain finitely
branching. In fact, every query with a selected atom the relation of which is an arithmetic one
has at most one descendant in every LD-tree.

Pure Prolog with Negation

As expected, to interpret these programs we use the SLDNF-resolution with the leftmost se-
lection rule, further referred to as LDNF-resolution. Less expected is the fact that the usual
definition of the SLDNF-resolution given in Lloyd [L1o87] needs to be modified.

We leave to the reader the task of checking that according to the definition of SLDNF-
resolution given in Clark [Cla79] and reproduced in Lloyd [Llo84] it is not clear what is the
SLDNF-derivation for the program P = {p < p}, and the query —p, whereas according to the
definition given in Lloyd [Llo87] no SLDNF-derivations exist for the program P = {p — -p}
and query p. The problem with the first definition is that it is circular and not all cases for
forming a resolvent are defined, whereas the latter definition is mathematically correct, but more
restrictive than the first one.

It should be pointed out here that the latter definition is sufficient for proving soundness and
various forms of completeness of SLDNF-resolution. However, when reasoning about termination
of Prolog programs we need to have at our disposal a definition of SLDNF-resolution (with the
leftmost selection rule) which properly formalizes the computation process and not only correctly
predicts the computed results.

Such a definition was proposed by Martelli and Tricomi [MT92]. In their revision the sub-
sidiary trees used to resolve negative literals are built “inside” the main tree. Another solution
was suggested later in Apt and Doets [AD92], where, as in the original definition the subsidiary
trees are kept “aside” of the “main” tree but their construction is no longer viewed as an atomic
step in the resolution process.

Additionally, when studying the LDNF-resolution we need to modify the definition of floun-
dering. It occurs when a negative non-ground literal is selected. We say that P U {Q} does not
flounder if no LDNF-derivation of P U {Q} flounders.

2.3 Semantics

There is no universal agreement what is the declarative semantics of a logic program. In this
paper we advocate for a program without negation the use of its least Herband model as its
declarative semantics. However, we have to be careful when making this seemingly unique choice.

Consider the proverbial APPEND program. With the first choice of Subsection 2.1 the un-
derlying first-order language has only one constant, viz. [, and one, binary, function symbol
[.1.]. Thus the Herbrand universe consists of ground lists whose all elements are equal to [].
Call such lists trivial. It is easy to see that then

Myppenp = {app(s, t,u) | s,t,u are trivial lists and s * t = u},

where “* “ denotes the operation of concatenating two lists. This is the semantics of the APPEND
program given in Sterling and Shapiro [SS86]. Clearly it cannot be used to render the meaning
of queries in which other constants and functions than [] and [.].] are used.

As soon as the underlying first-order language has another constant than [], so in particular
in our case, the Herbrand universe contains elements which are not lists. Consequently, on the
account of the second clause of APPEND, Mjppeyp contains elements of the form app(s,t,u)
where neither t nor u is a list. (On the other hand, it is still the case that whenever app(s,t,u)
€ MappEND, then s is a list.) So the choice of the first-order language affects the structure of the
least Herbrand models of the considered programs.

The fact that APPEND and various other well-known programs do admit “ill-typed” atoms
in their least Herbrand models complicates matters somewhat. To simplify our presentation we
therefore continue our discussion with the “correctly typed” version of APPEND, which we denote
by APPEND-T:

app([X | Xs], Ys, [X | Zs]) « app(Xs, Ys, Zs).
app([], Ys, ¥Ys) « 1list(¥s).

augmented by the LIST program defined by:

list(Xs) « Xs is a list.

list([H | Ts]) « 1list(Ts).
list([1).

Note that

MppEND-T = {app(s,t,u) | s,t,u are ground lists and s ¥t = u}
U Muyist,

where
My1st = {1list(s) | s is a ground list}.

We shall return to the original program APPEND in Subsection 6.1. Discussion of the semantics
of the other two fragments of Prolog is postponed till Subsections 4.2 and 5.3.

3 Pure Prolog

We now discuss correctness of programs written in the three defined subsets of Prolog. We start
with pure Prolog.

3.1 Termination

First we deal with termination. We present here the approach of Apt and Pedreschi [AP93]
which makes use of the declarative semantics. For simplicity we restrict out attention to queries
which consist of single atom. We recall the relevant concepts.

Definition 3.1 A program is called left terminating if all its LD-derivations starting with a
ground query are finite. O

To prove that a program is left terminating, and to characterize the queries that terminate
w.r.t. such a program, the following notions are introduced.

Definition 3.2

e A level mapping for a program P is a function | | : Bp — N from ground atoms to natural
numbers. For A € Bp, |A]| is the level of A.

e An atom A is called bounded with respect to a level mapping | |, if | | is bounded on the
set [A]. For A bounded w.r.t. | |, we define |A|, the level of A w.r.t. | |, as the maximum
| | takes on [A].

e A clause is called acceptable with respect to || and I, if I is its model and for every ground
instance A — A, B, B of it such that [= A

|A] > |B].
e A program P is called acceptable with respect to || and I, if every clause of it is. O

The following results link the introduced notions.

Theorem 3.3 Let P be acceptable w.r.t. | | and I. Then for every atom A bounded w.r.t. | |
all LD-derivations of P U {A} are finite. In particular, P is left terminating. i

Theorem 3.4 Let P be a left terminating program. Then for some level mapping | | and an
interpretation I of P

(i) P is acceptable w.r.t. || and I,
(1) for every atom A, all LD-derivations of P U {A} are finite iff A is bounded w.r.t. ||. O

The model I represents the limited declarative knowledge needed to prove termination. Note
that we can only handle termination of a query w.r.t. a left terminating program and we use
here the notion of so-called “universal” termination, according to which the query terminates
irrelevant of the clause ordering. We found that this strong form of termination is satisfied by
most pure Prolog programs and queries considered in standard books on Prolog.

Example

To see how this method can be applied considered the following problem from Coelho and Cotta
[CC88, page 193] and its formalization in Prolog: arrange three 1’s, three 2’s, ..., three 9’s in
sequence so that for all 7 € [1,9] there are exactly ¢ numbers between successive occurrences of
i.

sublist(Ys, XsYsZs) «— app(Xs,YsZs,XsYsZs), app(Ys,Zs,Y¥sZs).
sequence([—s—’—-s—a—:—’—s—:—’—’—s—s—a—:—’—,—’—:—s—s—’—s—’—’—’—’—])'

question(Ss) «
sequence(Ss),
sublist([1,_,1,_,1], Ss),
sublist([2,_,_.,2,-,-,2], Ss),
sublist([3,_,_,_,3,_,_,-,3], Ss),
sublist([4,_,_,_,_,4,_,_,_,_,4], Ss),
sublist([5,_,_5-5-5-3Ds_s_5_5-5_5D1, S8),
sublist([6, _,_y_s_s_s_36s_s_s5-5-5_5_,6]1, Ss),
sublist (L7, s y—s-s-s—s—sTs—s—3-3-3-3-3-371, S8),
sublist (I8, _, 5 s_s-s-35-35-38s—_s-s-3-3-3-3-5-38]1, Ss),
sublist (L9, _, 5 5s-s-s-35-3-5s-s—s—s—s—s-3-3-5-59], Ss).

augmented by the APPEND-T program.

Call the above program SEQUENCE-T. Consider the following function | | from ground terms to
natural numbers:

|[z|zs]| = |zs| + 1,
|f(z1,..zn)| = 0N f # [.].].

Then for a list zs, |zs| equals its length.
It is straightforward to verify that SEQUENCE-T is acceptable w.r.t. the level mapping | |
defined by:

|question(xs)| = 57,

|sequence(xs)| = 0,
|sublist(xs,ys)| = |xs|+ |ys|+2,

|app(xs,ys,zs)] = min(|xs|,|zs|) +1,

|list(xs)|

0,

and any model I of SEQUENCE-T such that for a ground s
I = sequence(s) iff s is a list of 27 elements.

Also, the query question(Ss) is bounded w.r.t. | | and consequently all LD-derivations of
SEQUENCE-T U {question(Ss)} are finite.

3.2 Partial Correctness

Our approach to partial correctness is based on the use of the least Herbrand model Mp. We
restrict our attention to left terminating programs. This explains why we treated termination
first. The following observation of Apt and Pedreschi [AP93] explains why for a left terminating
program it is easier to verify that a Herbrand interpretation is its least Herbrand model.

Definition 3.5 An interpretation I for a program P is called supported if for every ground
atom A such that I = A there exist Bi,..., B, such that A« By,...,B, € ground(P) and
IEBi A...N\ By, |

Lemma 3.6 For a left terminating program P, Mp is the unique supported Herbrand model of
P. a

For all programs considered here, and for plenty of other “correctly typed” programs, check-
ing that a given Herbrand interpretation is a supported model is straightforward. Consequently,
we omit the proofs that a given Herbrand interpretation is the least Herbrand model of a given
left terminating program. Of course, it is legimitate to ask how one finds a candidate for the
least Herbrand model. According to our experience it is usually the “specification” of the pro-
gram limited to ground queries. We do not consider here the problem in what language it is
most convenient to write this specification.

In the sequel it will be more convenient to work with the instances of the queries instead
with the substitutions. More precisely, we introduce the following definition.

Definition 3.7 Consider a program P.

(i) We say that Q' is a correct instance of the query @, if for some correct answer substitution
6 for Q, Q' = @6, that is if Q' is an instance of @ and P = Q'.

(i) We say that Q' is a computed instance of the query @ if for some computed answer
substitution 6 for Q, Q' = Q6. 0

Clearly a unique correct (resp. computed) answer substitution can be computed from a
query and its correct (resp. computed) instance in a straightforward way. So considering
instances instead of substitutions is just a matter of convenience. Using this terminology the
usual soundness and strong completeness properties of logic programs, now restricted to the
leftmost selection rule, can be formulated as follows.

Theorem 3.8 (Soundness of LD-resolution) Consider a program P and a query Q. Every
computed instance of Q is a correct instance of Q. m|

Theorem 3.9 (Strong Completeness of LD-resolution) Consider a program P and a query
Q. For every correct instance Q' of Q there exists a computed instance Q" of Q such that

Q'<Q. O

Let us introduce now the following notation. For a program P, a query @ and a set of queries
Q, we write

{Q} P Q

to denote the fact that Q is the set of computed instances of Q. {Q} P Q should be read as:
“the program P transforms @ into the set of its computed instances Q”. In particular, when
Q is a singleton, say @ = {Q'}, we have {Q} P {Q'} which not accidentally coincides with the
syntax of correctness formulas in Hoare style approach to verification of imperative programs
(see e.g. Apt and Olderog [AO91]). We now present an easy method of establishing constructs
of the form {@Q} P Q.

Theorem 3.10 Consider a program P and a query Q. Suppose that the set Q of ground correct
instances of @Q ts finite. Then

{QyPo.
Proof. First note that
every correct instance Q' of @ is ground. (1)

Indeed, otherwise, by the fact that the Herbrand universe is infinite, the set Q would be infinite.
Consider now @; € Q. By the Strong Completeness Theorem 3.9 there exists a computed
instance @2 of @ such that Q2 < @;. By the Soundness Theorem 3.8 Q)2 is a correct instance
of @, so by (1) Q3 is ground. Consequently @2 = @1, that is Q; is a computed instance of Q.
Conversely, take a computed instance Q2 of Q. By the Soundness Theorem 3.8 Q3 is a
correct instance of Q. By (1) Q2 is ground, so @2 € Q. O

Examples

Note that for a query consisting of just one atom A the assumption of the theorem can be
rephrased as “the set [A] N Mp is finite”. This simplifies checking its validity and explains the
relevenace of Mp in our approach. As the examples below indicate, the above theorem is quite
useful.

First consider the APPEND-T program and three of its uses.

(i) Given ground lists s,t,u we have app(s,t,u) € Mpppenp-t iff s * t = u. Consequently
e when s*t = u, {app(s,t,u)} APPEND — T {app(s,t,u)},
e when s*t # u, {app(s,t,u)} APPEND —T 0.

(ii) Given ground lists s,t, the set [app(s,t,Zs)] N Myppenp-T consists of just one element:
app(s,t,s*t). Thus

{app(s,t,Zs)} APPEND — T {app(s,t,s *t)}.
(iii) Finally, given a ground list u, we have
[app(Xs, Ys,u)] N Mappenp—T = {app(s,t,u) | s,t are ground lists, s * t = u}.

But each list can be split only in finitely many ways, so the set [app(Xs,Ys,u)] NMappeNp—T is
finite. Thus

{app(Xs,Ys,u)} APPEND — T {app(s, t,u) | s,t are ground lists, s *t = u}.

9

A more interesting example is the SEQUENCE-T program. Call a list of 27 numbers satisfying
the description of the sequence a desired list. We leave to the reader checking that

Msequence-1 = MappEND-T

U {sublist(s,t)|s,t are ground lists, s is a sublist of t}
U {sequence(s) | s is a ground list of length 27}
U

{question(s) | s is a desired list}.

Thus [question(Ss)] N Msequence-t1 = {question(s) | s is a desired list}. But the number of
desired lists is obviously finite (in fact, there are 6 of them). Consequently,

{question(Ss)} SEQUENCE — T {question(s) | s is a desired list}.
Exercise 1 Consider the following REVERSE-T program:

reverse(Xs, Ys) « reverse dl(Xs, Ys-[]).
reverse d1([X | Xs], Ys-Zs) <« reverse dl(Xs, Ys-[X | Zs]).
reverse d1([], Xs-Xs) « 1list(Xs).

augmented by the LIST program.
Given a list s let rev(s) denote its reverse. Prove that for a ground list s

{reverse(s,Ys)} REVERSE — T {reverse(s,rev(s))}

by checking that reverse_dl(s,t-u) € Mggyverse-T iff s,t,u are ground lists and rev(s)*u
t.

Clearly, the above approach to partial correctness cannot be used to reason about queries with
“non-ground inputs”, like app(s,t,Zs) where s,t are non-ground lists, since [app(s,t,Zs)] N
Myppenp-T is then infinite. The treatment of such queries needs to await another paper.

4 Pure Prolog with Arithmetic

We now move on to the study of the second subset of Prolog, namely pure Prolog with arithmetic.
The previous approach to termination can be readily applied to this subset — it suffices to use
level mappings which assign to ground atoms with arithmetic relations the value 0. We refer to
Apt and Pedreschi [AP93] for a proof that QUICKSORT is left terminating and that for a list t
all LD-derivations of QUICKSORT U {gs(t,Ys)} are finite.

4.1 Absence of Errors

To deal with errors we provide some proof theoretic means to prove absence of runtime errors
for desired queries. We found it convenient to use the notion of a well-typed program recently
proposed by Bronsard, Lakshman and Reddy [BLR92] (where, unfortunately, it is called a well-
moded program). It allows us to ensure that the input positions of the selected atoms remain
correctly typed during the program execution. We recall here the definitions. We follow here
the presentation of Apt and Etalle [AE93].

We start with the notion of a mode used to define input and output positions of a relation.

10

Definition 4.1 A mode for an n-ary relation symbol p is a function m, from [1,7n] to the set

{+, =} If mp(i) = ‘+’, we call ¢ an input position of p and if mp(i) = ‘—’, we call i an output
position of p (both w.r.t. mp). A moding is a collection of modes, each for a different relation
symbol. a

The definition of moding assumes one mode per relation in a program. Multiple modes
may be obtained by simply renaming the relations. When every considered relation has a mode
- associated with it, we can talk about input positions and output positions of an atom.

Next, we introduce types. The following very general definition is sufficient for our purposes.

Definition 4.2 A type is a decidable set of terms closed under substitution.
O

By a typed term we mean a construct of the form s : S where s is a term and S is a type.
Given a sequence s : S = 81 : S1,...,8, : Sy of typed terms we write s € S if for 7 € [1,n] we
have s; € S;.

Certain types will be of special interest below:

U — the set of all terms,

List — the set of lists,

Gae — the set of of gae’s,

ListGae — the set of lists of gae’s.

From now on we fix a specific set of types, denoted by Types, which includes the above ones.
We also associate types with relation symbols.

Definition 4.3 A type for an n-ary relation symbol p is a function t, from [1,n] to the set
Types. If tp(i) = T, we call T the type associated with the position i of p. Assuming a type t,
for the relation p, we say that an atom p(s1,..., sn) is correctly typed in position i if s; € t5(3).
O

We now assume that every considered relation has a mode and a type associated with it,
so we can talk about types of input positions and of output positions of an atom. An n-ary
relation p with a mode m, and type t, will be denoted by

p(mp(].) : tp(l)a ey mp(n) : tp(n))'

For example, part(+ : Gae,+ : ListGae,— : ListGae,— : ListGae) denotes a relation part
with four arguments: the first position is moded as input and typed Gae, the second position
is moded as input and typed ListGae, and the third and fourth positions are moded as output
and typed ListGae.

Well-Typed Programs

The notion of well-typed queries and programs relies on the concept of a type judgement.

Definition 4.4
e A type judgement is a statement of the forms:S = t:T.

o A typejudgements: S = t: T is true, notation: |=s:S = t: T, if for all substitutions
6, sf € S implies td € T. m|

11

For example, the type judgement z : Gae, [: ListGae = [z |l]: ListGae is true.

To simplify the notation, when writing an atom as p(u: S,v : T) we now assume that u: S
is a sequence of typed terms filling in the input positions of p and v : T is a sequence of typed
terms filling in the output positions of p.

The following notion is due to Bronsard, Lakshman and Reddy [BLR92].

Definition 4.5

e A query pi(i1 : I1,01 : O1),...,0n(in : In,0n : On) is called well-typed if for j € [1,n]
f= 07 : 01,...,05_1 : Oj—l = ij :Ij.

e A clause

po(00 : 00,in+1 : Iny1) < pi(iz : 11,01 : O1),.. ., Pn(in : In,0n : On)
is called well-typed if for j € [1,n + 1]

E og: Oop,..0j-1: 051 = i5: ;.

e A program is called well-typed if every clause of it is. a

In general it is undecidable whether a program is well-typed. However, recently Aiken and
Lakshman [AL93] showed that this problem is decidable for a large class of types which includes
the ones studied here.

Bronsard, Lakshman and Reddy [BLR92] noticed the following persistence property of the
notion of being well-typed.

Lemma 4.6 An LD-resolvent of a well-typed query and a well-typed clause that is variable
disjoint with it, is well-typed. a

This allows us to draw the following important conclusion.

Corollary 4.7 Let P and Q be well-typed, and let £ be an LD-derivation of PU{Q}. All atoms
selected in € are correctly typed in their input positions.

Proof. A variant of a well-typed clause is well-typed and the first atom of a well-typed query
is correctly typed in its input positions. m|

To see the usefulness of this corollary let us return to the QUICKSORT program. To prove
absence of errors we start by typing the relation gs in the way reflecting its use, so gs(+ :
ListGae,— : ListGae), and the built-in’s > and < in such a way that the above corollary can
be applied so > (+ : Gae, + : Gae), < (+: Gae,+ : Gae).

We now complete the typing in such a way that QUICKSORT is well-typed:
part(+ : Gae,+ : ListGae, — : ListGae, — : ListGae),
app(+ : ListGae, + : ListGae, — : ListGae).

Assume now that s is a list of gae’s. By Corollary 4.7 we conclude that all atoms selected
in the LD-derivations of QUICKSORT U {gs(s, t)} are correctly typed in their input positions. In
particular, when these atoms are of the form u > v or u < v, both u and v are gae’s. Thus the
LD-derivations of QUICKSORT U {qs(s,t)} do not end in an error.

12

Exercise 2 Consider the LENGTH program:

length([H | Ts], N) « length(Ts, M), N is M+1.
length([]1, 0).

Prove that for a ground list t

{length(t,N)} LENGTH {length(t, |t|)}.

4.2 Partial Correctness

When dealing with partial correctness of programs that use arithmetic relations we have to re-
member that to each program we added infinitely many clauses which define the used arithmetic
relations. Both the Soundess Theorem 3.8 and the Strong Completeness Theorem 3.9 remain
valid for programs with infinitely many clauses, however completeness does not hold anymore in
presence of arithmetic relations. Indeed, we have P |= X < Y{X/1,Y/2} for any program P that
uses <, whereas the LD-derivations of PU{X < Y} end in an error. Also Theorem 3.10 does not
hold then, as the query X < 2 shows. Still, the following version of this theorem can be used for
proofs of partial correctness.

Theorem 4.8 Consider a program P and a query Q. Assume that the LD-derivations of PU{Q}
do not end in error. Suppose that the set Q of ground correct instances of Q is finite. Then

{Q} P Q.

Proof. Under the assumptions of the theorem both the Soundess Theorem 3.8 and the Strong
Completeness Theorem 3.9 remain valid. For the completeness theorem this is not obvious, since
it usually relies on the Lifting Lemma which not does not hold now. However, the admirably
short and elegant proof of Stirk [St490] does not use the Lifting Lemma and carries through.
Consequently, the proof of Theorem 3.10 carries through, as well. |

To apply this theorem let us return to the QUICKSORT program. We deal here with its
“correctly typed” version QUICKSORT-T obtained by using APPEND-T instead of APPEND and in
which the last clause defining the part relation is replaced by

part(X, [1, (1, [1D <« X > X.

This forces the first argument of part to be a gae. (Without this change the query qs([s],Ys)
would succeed for any s.)

Below we use the following terminology. An element a partitions a list of gae’s s into ls
and bs if a is a gae, 1s is a list of elements of s which are < a and bs is a list of elements of s
which are > a.

By extending the previously considered typing by 1ist (+:ListGae) we can conclude that for
a list of gae’s s the LD-derivations of QUICKSORT-T U {qs(s, Ys)} do not end in error. Moreover,
the previously given argument about the termination of QUICKSORT is also valid for QUICKSORT-T

13

It is easy to check that
MguicksorRT-T1 = MyppENp-T U M5 U M<
U {part(a,s,1s,bs) | s,1s,bs are lists of gae’s and
a partitions s into 1s and bs}

U {as(s,t) | s,t are lists of gae’s and
t is a sorted permutation of s}.

For a list of gae’s s the set [gs(s, Ys)] N MquicksorT—T consists of just one element: gqs(s,t),
where t is a sorted permutation of s. Consequently, by Theorem 4.8

{as(s,¥s)} QUICKSORT — T {gs(s,t)}.

5 Pure Prolog with Negation

Finally, we deal with the third subset of Prolog, namely pure Prolog with negation. We call
programs written in this subset general programs.

5.1 Absence of Floundering

To prove absence of floundering w.r.t. leftmost selection rule we use the notion of a well-moded
program, is essentially due to Dembinski and Maluszynski [DM85]. We generalize it here to
general programs. Assume that every considered relation has a mode associated with it. To
simplify the notation, when writing an atom as p(u, v), we now assume that u is a sequence of
terms filling in the input positions of p and that v is a sequence of terms filling in the output
positions of p. Below ® stands for — or for the empty string.

Definition 5.1

e A general query ®p;(s1,t1),-- ., ©pn(Sn,tn) is called well-moded if for i € [1,n]

i—1

Var(s;) € | Var(t;).
i=1

e A general clause
pO(th Sn+1) — 0O pl(sla tl)a ey @pn(sn, tn)
is called well-moded if for i € [1,n + 1]

i-1

Var(s;) C U Var(t;).
J=0

e A general program is called well-moded if every clause of it is. a
This definition will be useful later.

Definition 5.2 A general program is called non-floundering if no LDNF-derivation starting in
a ground general query flounders. a

The following result is due to Apt and Pellegrini [AP92] and, independently, Stroetman
[Str93].

Theorem 5.3 Consider a well-moded general program P and a well-moded general query Q.
Suppose that all relations used in negative literals of P and Q are moded completely input. Then
PU{Q} does not flounder. In particular, P is non-floundering. m]

14

Example

To see the use of this theorem consider the general program TRANS-T which computes the
transitive closure of a binary relation. Such a relation is represented below as a ground list of
edges. In turn, an edge from a to b is represented by a list [a, b].

trans(X, Y, E, Avoids) « list(Avoids), member([X, Y], E).
trans(X, Z, E, Avoids) «

member([X, Y], E),

- member(Y, Avoids),

trans(Y, Z, E, [Y | Avoids]).

member(X, [Y | Xs]) « member(X, Xs).
member (X, [X | Xs]) « 1list(Xs).

augmented by the LIST program.

In a typical use of this program in order to check that [x,y] is in the transitive closure of the
binary relation e, one evaluates the query trans(x, y, e, [x]).

With the moding trans(-,-,+,+), member(+,+) for the occurrence of member in the neg-
ative literal = member(Y, Avoids), and member(-,+) for the other occurrences of member,
TRANS-T is well-moded. Thus for e,s ground, TRANS-T U {trans(a,b,e,s)} does not flounder.
In particular, TRANS-T is non-floundering.

5.2 Termination

To deal with termination we use the approach Apt and Pedreschi [AP93] which generalizes the
method of Subsection 3.1 to general programs.

Definition 5.4 A general program is called left terminating if all its LDNF-derivations starting
with a ground query are finite. a

Given a general program P, we now define its “negative part” P~.

Definition 5.5 Let P be a general program and p, g relations.

p refers to q iff a general clause in P uses p in its head and ¢ in its body.

p depends on q is the reflexive, transitive closure of refers to.

Negp is the set of relations which are used in a negative literal in P,

Negp is the set of relations on which the relations in Negp depend.
e P~ is the set of general clauses in P in whose head a relation from Negp is used. a

Definition 5.6

e Given a level mapping | |, we extend it to ground negative literals by putting |~A| = |A].
—A is bounded with respect to | | if A is.

o A general clause is called acceptable with respect to || and I, if I is its model and for every
ground instance A — K, L, M of it such that I E K

| Al > |L].

15

o A general program P is called acceptable with respect to || and I, if every general clause
of it is and if I is a model of comp(P~). O

The following results relate these notions.

Theorem 5.7 Let P be a general program acceptable w.r.t. || and I. Then for every literal L
bounded w.r.t. | | all LDNF-derivations of PU{L} are finite. In particular, P is left terminating.
O

Theorem 5.8 Let P be a left terminating, non-floundering general program. Then for some
level mapping | | and an interpretation I of P

(i) P is acceptable w.r.t. || and I,
(ii) for every literal L all LDNF-derivations of PU{L} are finite iff L is bounded w.r.t. | |. O

Apt and Pedreschi [AP93] showed that TRANS-T is acceptable w.r.t. a level mapping | | such
that |trans(a,b,e,s)| is a function of e and s, and an interpretation I. Thus for e,s ground
all LDNF-derivations of TRANS-T U {trans(a,b,e,s)} are finite. In particular, TRANS-T is left
terminating.

5.3 Partial Correctness

When reasoning about partial correctness of general programs we face the obvious problem of
determining their declarative semantics. We solve this problem by restricting our attention to a
specific class of general programs. The notion of a supported interpretation extends to general
programs in an obvious way. The following result of Apt and Pedreschi [AP93] is crucial.

Theorem 5.9 Consider a left terminating, non-floundering general program P. Then
(i) P has a unique supported Herbrand model, Mp,
(i) Mp is a model of comp(P),

(iii) for a ground general query @ such that P U{Q} does not flounder,
Mp = Q iff there exists a successful LDNF-derivation of PU{Q}. O

As in the case of pure Prolog programs, it is usually straightforward to check that a Herbrand
interpretation is a supported model of a general program.
We now need to revise Definition 3.7.

Definition 5.10 Consider a general program P and a general query Q. We say that @' is a
correct instance of @, if @' is an instance of @ and comp(P) = Q' O

The definition of a computed instance remains the same. The following soundness and com-
pleteness theorems are of help.

Theorem 5.11 (Soundness of LDNF-resolution) Consider o general program P and a
general query Q. Every computed instance of Q is a correct instance of Q. a

Theorem 5.12 (Limited Completeness of LDNF-resolution) Consider a left terminat-
ing, non-floundering general program P and a general query Q such that P U {Q} does not
flounder. For every ground correct instance Q' of Q there exists a computed instance Q" of @
such that Q" < Q'.

16

Proof. By Theorem 5.9 there exists a successful LDNF-derivation of P U {Q'}. P U {Q} does
not flounder, so we can lift this derivation to a successful LDNF-derivation of P U {Q} which
yields a computed instance Q" of @ such that Q" < Q'. O

These theorems are needed to establish the following result.

Theorem 5.13 Consider a left terminating, non-floundering general program P and a general
query @ such that PU{Q} does not flounder. Suppose that the set Q of ground correct instances
of Q is finite. Then

{QtprPo.

Proof. Analogous to the proof of Theorem 3.10. O

As in the case of pure Prolog programs, for a query consisting of just one atom A the
assumption of the theorem can be rephrased (thanks to Theorem 5.9) as “the set [A] N Mp is
finite”.

We now show how to apply this theorem to the program TRANS-T. In the previous two
subsections we proved that TRANS-T is left terminating and non-floundering. Adopt the following
terminology. Given a list e, a path in e from a to b is a sequence ai,...,a, (n > 1) such that

- [ai,ai+1] € e for i € [1,n — 1],

— a1 = a,

—an =b.
An interior of a path ay,...,a, (n > 1) is the set {ag,...,an—1}. A pathai,...,a, (n > 1)
is called acyclic if the elements of its interior are pairwise different. A path a1,...,a, (n > 1)

avoids a list s if no element of its interior is a member of s.

In particular, a path consisting of two elements has an empty interior and consequently is
acyclic and avoids every s.

It is routine to check that

Mrpans—1 = MuL1st

U {trans(a,b,e,s) |e,s are ground lists, an acyclic path
in e from a to b exists which avoids s}

U {member(a,t) |t is a ground list and a € t}.

Given a binary relation e denote its transitive closure by e*. Then [a,b] € e* iff there
exists in e an acyclic path from a to b which avoids [a]. By Theorem 5.13 we conclude that

e when [a,b] € e*, {trans(a,b,e,[a])} TRANS —T {trans(a,b,e,[a])},
e when [a,b] ¢ e*, {trans(a,b,e,[a])} TRANS — T 0.
Note that [a] can be replaced here by [] or by [a,b].

Exercise 3 Prove that for a binary relation e

{trans(X,Y,e,[])} TRANS — T {trans(a,b,e,[]) | [2,b] € e*}.

17

6 Conclusions

6.1 Dealing with “Ill-typed” Programs

In our analysis we only dealt with the “correctly typed” programs, i.e. programs named XXX-T.
These programs are easier to handle than their corresponding “ill-typed” XXX versions, but they
are much more inefficient due to the added “type checks”.

It is possible to deal directly with the “ill-typed” programs, but the study of their partial cor-
rectness is quite a nuisance, because it is awkward to describe their unique supported Herbrand
models in simple and intuitive terms.

Therefore we propose the following alternative, which we illustrate on the program QUICKSORT.
Consider the typing of QUICKSORT defined at the end of Subsection 4.2. Let qs(s,t) be a well-
typed query and let £ be an LD-derivation of QUICKSORT U {qs(s,t)}. By Corollary 4.7, if the
selected atom is of the form part(si,sz,ss,ss) then s; € Gae, and if the selected atom is of
the form app(si, s2, s3) then sy € List.

Thus in both cases in the corresponding LD-derivation of QUICKSORT-T U {qgs(s,t)} the
inserted “type checks”, namely X > X and 1ist(Y), succeed with the empty computed answer
substitution. Consequently, the computed instances of the query qs(s,t) are the same w.r.t.
both programs. In particular, for a list of gae’s s we have

{as(s, Ys)} QUICKSORT {gs(s,t)}.

The same approach can be applied to other programs, including TRANS-T for which Corollary
4.7 needs to be extended to general programs in the obvious way.

6.2 Final Remarks

The aim of this paper was to show that it is possible to reason about correctness of various
Prolog programs by means of simple arguments based on declarative semantics. We hope that
this work can form a basis for a similar study of other languages based on the logic programming
paradigm. It is quite possible that the proposed methods are in some instances special cases
of approaches proposed earlier. Our point is that unless the verification method is easy and
amenable to informal use, it will be ignored. So searching for simplicity is worth the effort.

We conclude by stating a number of, perhaps controversial, opinions.

1. A Prolog program written in one of the considered subsets is declarative if its correctness
for the class of queries “of interest” can be established by means of static analysis and using
first-order semantics. In this paper we showed how to reduce the latter to a simple study of
supported Herbrand models.

2. From this viewpoint some pure Prolog programs are not declarative.

3. The following view of (general) left terminating programs can be helpful. The supported
Herbrand model uniquely determines ground queries which succeed and terminate w.r.t. the
leftmost selection rule. In pure Prolog by the Lifting Lemma all generalizations of these ground
queries also succeed ... but only in case of logic programming. In pure Prolog such a general-
ization can fail to terminate, and for the other two subsets it can end in an error or flounder. So
first we should think in terms of ground queries and then “lift” each of them, but “carefully”.

4. Assertional proof methods, while helpful, do not reflect the essence of declarative program-
ming.

18

5. Correctness of programs that use accumulators and difference lists should be preferably dealt
with by means of program transformations.

6. The treatment of “ill-typed” programs is quite roundabout and justifies a systematic intro-
duction of types (or sorts) into the basic framework of logic programming.

7. It would be interesting to develop a theory of correctness of non-terminating Prolog programs
based on their declarative semantics (like the one developed in Chapter 6 of Lloyd [L1o87)).

Acknowledgements

Joint research and discussions with Dino Pedreschi on the subject of verification of logic programs
helped us to clarify the opinions expressed in this paper.

References

[AD92]

[AE93]

[AL93]

[A091]

[AP92]

[AP93]

[Apt90]

[BD77]

[BLR92]

[BWS8S|

[CCs8]

K.R. Apt and K. Doets. A new definition of SLDNF-resolution. ILLC Prepublication
Series CT-92-03, Department of Mathematics and Computer Science, University of
Amsterdam, The Netherlands, 1992. Accepted for publication in Journal of Logic
Programming.

K. R. Apt and S. Etalle. On the unification free Prolog programs. In S. Sokolowski,
editor, Proceedings of the Conference on Mathematical Foundations of Computer Sci-
ence (MFCS 93), Lecture Notes in Computer Science, Berlin, 1993. Springer-Verlag.
To appear.

A. Aiken and T.K. Lakshman. Automatic mode checking for logic programs. Technical
report, Department of Computer Science, University of Illinois at Urbana Champaign,
1993.

K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science, Springer-Verlag, New York, 1991.

K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. Technical
Report CS-R9238, CWI, Amsterdam, 1992. Accepted for publication in ACM Toplas.

K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and Computation, 1993. to appear.

K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, 1977.

F. Bronsard, T.K. Lakshman, and U.S. Reddy. A framework of directionality for prov-
ing termination of logic programs. In K.R. Apt, editor, Proc. of the Joint International
Conference and Symposium on Logic Programming, pages 321-335. MIT Press, 1992.

R. Bird and Ph. Wadler. Introduction to Functional Programming. International Series
in Computer Science, Prentice Hall, Englewood Cliffs, NJ, 1988.

H. Coelho and J.C. Cotta. Prolog by Ezample. Springer-Verlag, Berlin, 1988.

19

[Cla79]

[CMsS]

[CT77]

[Der90]

[Dev90]

[DFT91]

[Dij76]

[DMS5]

[Gri81]

[Hog84]

[Kun88|

[Kun89]

[L1o84]
[L1087]

[Mee86]

[MP92]

[MT92]

[SS86]

K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC 79/59,
Imperial College, Dept. of Computing, London, 1979.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
New York, 1988.

K. Clark and S-A. Tarnlund. A First Order Theory of Data and Programs. In Infor-
mation Processing ‘77, pages 939-944. North-Holland, 1977.

P. Deransart. Proof methods of declarative properties of definite programs. Technical
Report 1248, INRIA - Rocquencourt, 1990.

Y. Deville. Logic Programming. Systematic Program Development. International Series
in Logic Programming. Addison-Wesley, 1990.

P. Deransart, G. Ferrand, and M. Téguia. NSTO programs (not subject to occur-
check). In V. Saraswat and K. Ueda, editors, Proceedings of the International Logic
Symposium, pages 533-547. The MIT Press, 1991.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.,
1976.

P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtracking for
annotated logic programs. In Proceedings of the International Symposium on Logic
Programming, pages 29-38, Boston, 1985.

D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.
C.J. Hogger. Introduction to Logic Programming. Academic Press, London, 1984.

K. Kunen. Some remarks on the completed database. In R.A. Kowalski and K.A.
Bowen, editors, Proceedings of the Fifth International Conference on Logic Program-
ming, pages 978-992. The MIT Press, 1988.

K. Kunen. Signed data depedencies in logic programs. Journal of Logic Programming,
7:231-246, 1989.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

L. Meertens. Algorithmics — towards programming as a mathematical activity. In
J. W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Proceedings of the CWI
Symposium on Mathematics and Computer Science, volume 1 of CWI Monographs,
pages 289-334. North-Holland, 1986.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, 1992.

M. Martelli and C. Tricomi. A new SLDNF-tree. Information Processing Letters,
43(2):57-62, 1992.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

20

[St490] R. Stérk. A direct proof for the completeness of SLD-resolution. In E. Bérger, H. Kleine
Biining, and M.M. Richter, editors, Computation Theory and Logic 89, Lecture Notes
in Computer Science 440, pages 382-383. Springer-Verlag, 1990.

[Str93] K. Stroetman. A completeness result for SLDNF resolution. The Journal of Logic
Programming, 15:337-357, 1993.

21

The ILLC Prepublication Series
Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics .
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional

Logics
X-91-03 V. Yu. Shavrukov Sugalﬂ ebras of Diagonalizable Alﬁbras of Theories containing Arithmetic
X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics
X-91-05 Johan van Benthem Temporal Logic
X-91-06 Annual Report 1990
X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement
X-91-08 Giorgie Dzhaparidze Logic of Tolerance . .
X-91-09 L.D. Beklemishev On Bimodal Provability Logics for IT;-axiomatized Extensions of Arithmetical Theories
X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice
X-91-11 Michael Z aschev Canonical Formulas for K4. Part I: Basic Results
X-91-12 Herman Hendri Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en
Michael Moortgat .
X-91-13 Max 1. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Horn Fragment of Linear Logic is NP-Complete .
X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version
X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson's Internal Set Theo:
X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version .
X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Loagic: an Analysis from a standard point of view
X-91-19 Papers presented at the Provability Interpretability Arithmetic Conference, 24-31 Aug. 1991, De%{. of Phil., Utrecht University
1992 Logic, Semantics and Philosophy of Langauge. Annual Report 1991
LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar
LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures
LP-92-03 Szabolcs Mikul4s The Completeness of the Lambek Calculus with respect to Relational Semantics
LP-92-04 Paul Dekker An I%&ilate Semantics for Dynamic Predicate Logic
LP-92-05 David I. Beaver The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Complexity of Attribute Value Grammar
LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of ic Modal Logic

LP-92-09 Johan van Benthem tifiers in the world of Types

LP-92-10 Maarten de Rijke eeting Some Neighbours (a dynamic modal logic meets theories of change and
knowledge representation)

LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic

LP-92-12 Heinrich Wansing Sequent Caluli for Normal Modal Propositional Logics

LP-92-13 Dag Westerstdhl Iterated Quantifie;

TS
LP-92-14 Jeroen Groenendijk, Martin Stokhof Interrogatives and Adverbs of Quantification
Mathematical Logic and Foundations
ML-92-01 A.S, Troelstra Comparing the theory of Representations and Constructive Mathematics
ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman l\faxlm al Kripke-type Semantics for Modal and Superintuitionistic

Predicate Logics

ML-92-03 Zoran Markovi¢ On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I

ML-92-05 Domenico Zambella Shavtul;ov’lsAoTheg;gn on the Subalgebras of Diagonalizable Algebras for Theories
containin, +

ML-92-06 D.M. Gabbay, Valentin B. Shehtman ‘}Jndebﬁidgbility of Modal and Intermediate First-Order Logics with Two Individual

ariables

ML-92-07 Harold Schellinx How to Broaden your Horizon

ML-92-08 Raymond Hoofman Information Systems as Coalgebras

ML-92-09 A.S. Troelstra Realizability

ML-92-10 V.Yu. Shavrukov A Smart Child of Peano’s

Compution and Complexity Theory
CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented A;fplication Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets A new Definition of SLDNF-resolution

Other Prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures

X-92-02 Konstantin N. Ignatiev The Closed Fragment of D;h?lﬁa:uidze's Polymodal Logic and the Logic of Z; conservativity
X-92-03 Willem Groeneveld %'nmmc Semantics and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meaning

X-92-05 Erik de Haas, Peter van Emde Boas ~ Object Oriented Application Flow Graphs and their Semantics, revised version
Logic, Semantics and Philosophy of Langauge

LP-93-01 Martijn Spaan Parallel Quantification

LP-93-02 Makoto I&nazawa Dynamic Generalized Quantifiers and Monotonicity

LP-93-03 Nikolai Pankrat'ev Completeness of the Lambek Calculus with respect to Relativized Relational Semantics

LP-93-04 Jacques van Leeuwen Identity, Quarrelling with an Unproblematic Notion

LP-93-05 Jaap van der Does Sums and tifiers

LP-93-06 Paul Dekker Updates in ic Semantics

LP-93-07 Wojciech Buszkowski On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars

Mathematical Logic and Foundations

ML-93-01 Maciej Kandulski Commutative Lambek Categorial Grammars

ML-93-02 Johan van Benthem, Natasha Alechina Modal Quantification over Structured Domains

ML-93-03 Mati Pentus The Conjoinablity Relation in Lambek Calculus and Linear Logic

ML-93-04 Andreja Prijatelj Bounded Contraction and Many-Valued Semantics

ML-93-05 Raymond Hoofman, Harold Schellinx Models of the Untyped A-calculus in Semi Cartesian Closed Categories

ML-93-06 J. Zashev Categorial Generalization of Algebraic Recursion Theory

ML-93-07 A.V. Chagrov, L.A. Chagrova Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the
Class of All Finite Frames

MIL-93-08 Raymond Hoofman, Ieke Moerdijk Remarks on the Theory of Semi-Functors

ML-93-09 A.S. Troelstra Natural Deduction for Intuitionistic Linear Logic

ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx .
The Structure of Exponentials: Uncovering the D ics of Linear Logic Proofs

ML-93-11 Lex Hendriks Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic
Compution and Complexity Theory . . .

CT-93-01 Marianne beck The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
CT-93-02 Sophie Fischer A Note on the Complexity of Local Search Problems

CT-93-03 Johan van Benthem, Jan Bergstra LoFic of Transition Systems .

CT-93-04 Karen L. Kwast, Sieger van Denneheuvel The Meaning of Duplicates in the Relational Database Model =

CT-93-05 Erik Aarts Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time
CT-93-06 Krzysztof R. Apt Declarative programming in Prolog

Computaional Linguistics

CL-93-01 Noor van Leusen, L4szl6 Kdlmén The Interpretation of Free Focus

Other Prepublications

X-93-01 Paul Dekker Existential Disclosure, revised version

X-93-02 Maarten de Rijke ‘What is Modal Logic? . .

X-93-03 Michiel Leezenberg Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing) »
X-93-04 A.S. Troelstra geditorg Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition
X-93-05 A.S. Troelstra (editor) = Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Second, corrected Edition
X-93-06 Michael Zakharyashev Canonical Formulas for K4. Part II: Cofinal Subframe Logics

Lo

