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The Scope of Negation in Discourse

towards a flexible dynamic Montague grammar

Paul Dekker
ITLI/Department of Philosophy
University of Amsterdam

Abstract

This paper elaborates upon the system of dynamic Montague grammar
developed by Groenendijk and Stokhof [11]. This system of natural language
interpretation is characterized by the use of dynamic intensional logic, and
by a structural raising of the type of sentence translations. We argue that
a balanced system of dynamic interpretation requires a higher raising of the
type of sentence translations. Next, we show that the required higher order
dynamic type assignment is derivable from an old fashioned static type as-
signment if a version of Hendriks’ system of type change is used [15], [16].
The resulting flexible dynamic Montague grammar then is shown to apply
successfully to known and new examples that exhibit puzzling and complex
anaphoric dependencies.

Natural language semantics in the eighties exhibited an increased interest in
the partiality of information and the dynamics of interpretation. This increased
interest in both topics has led to the proposal of theories radically departing from
Montague’s paradigm of natural language interpretation [23], [24]. Notably, situa-
tion semantics (Barwise and Perry [3]) and discourse representation theories (Heim
[12] and [13], Kamp [20] and Seuren [29]) were proposed as an alternative to classical
Montague grammar. However, both kinds of alternatives appeared to be consistent
with Montague’s program. A version of situation semantics is restated as a partial
Montague grammar (Muskens [25]), and basic results of discourse representation
theories were captured in dynamic Montague grammar [11].

In this paper we build upon the dynamic renaissance of Montague grammar
boosted by Groenendijk and Stokhof. In section 1 we shortly review their dy-
namic Montague grammar (henceforth, DMG) and its successful, fully composi-
tional, treatment of the famous donkey sentences which can be said to lie at the
heart of the discourse representation theoretic enterprise. We then turn to the sys-
tem of extended dynamic interpretation that DM G naturally gives rise to. With
Groenendijk and Stokhof, we agree that their extended dynamics is corroborated
by linguistic facts, but we argue that their account is inevitably incomplete. The
extended dynamics of DMG originates from a notion of dynamic negation, which
itself, we argue, must be rejected.

In section 2 we propose a slight, albeit structural, conservative, modification of
DMG into DMG(2). We show that the modified framework of interpretation as well
allows incorporation of extended dynamic interpretation, this time, however, on the

*I would like to thank Jeroen Groenendijk, Herman Hendriks and Martin Stokhof for their stim-
ulating discussions and constructive comments. The research for this paper was supported by the
Foundation for Philosophical Research (SWON), which is subsidized by the Netherlands Organi-
zation for Scientific Research. Former versions of this paper were presented at the First European
Summer School on Natural Language Processing, Logic and Knowledge Representation, June 1989
in Groningen and at the Seventh Amsterdam Colloquium, December 1989 in Amsterdam.



basis of an adequate notion of dynamic negation. The crucial change involves a
raising of the type of sentence translations from the type of sets of propositions to
the type of generalized quantifiers over propositions. We show that the proposed
definition of dynamic negation enables a neat account of the puzzling interplay
between negation and anaphoric reference.

In section 3 we next show that DMG(2)’s highly typed translations of natural
language expressions can be derived from basically typed translations if a version of
Hendriks’ system of type change is used [15]. We argue that amended interpretation
of the type changes is needed when these deal with downward monotonic expres-
sions. The amendment that we propose, then, is a generalization of the definition
of dynamic negation that we introduce in section 2. We show that the resulting
system of flexible dynamic Montague grammar (FDMG) gives a neat account of all
kinds of puzzling inter- and extrasentential dependencies. Section 4, finally, reflects
upon possible future developments of FDMG and upon some remaining problems.

1 Dynamic Montague grammar

The last decade, natural language semantics has shown increased interest in the
dynamics of discourse. An important subject has become the semantic relations
that obtain at the intersentential level of discourse. Crucial phenomena are inter-
sentential anaphoric relationships between indefinite noun phrases and pronominal
anaphors that occur in different sentential clauses, such as those in examples 1, 2
and 3.

(1) A man walks in the park. He whistles.
(2) If a farmer owns a donkey, he beats it.
(3) Every farmer who owns a donkey beats it.

One may take it to belong to common knowledge by now, that these examples are
problematic for a Montague grammar that deals with anaphoric relationships by
means of quantification rules. In the first place, we find an anaphoric relationship
between noun phrases that occur in different sentences. If quantification rules are
used, an indefinite noun phrase must be quantified in in a piece of discourse after
all coreferential anaphors have occurred. This treatment can hardly be called com-
positional in an intuitive sense. In the second place, it gives counterintuitive results
if we use quantification rules for establishing the anaphoric relationships in 2 and
3. An alternative approach, therefore, is called for.

Already back in 1968, Karttunen [21] called attention to the context change
potential of indefinite noun phrases. Indefinites introduce discourse referents in
the domain of discourse, and these discourse referents figure as the referents of
pronominal anaphors occurring in sentences to be processed later on. In the eight-
ies, discourse representation theories (DRT) have been developed by Kamp [20],
Heim [12], [13] and Seuren [29], that gave a formal elaboration of this notion of
context change potential, an elaboration that also explains the universal impact
of the indefinites in 2 and 3. The basic idea in these theories is that meaning is
more than can be captured in terms of truth conditions alone. Certain expressions
have, aside from their so called static, truth-conditional contribution to meaning, a
dynamic meaning, which influences the interpretation of sentences to be processed
later on. The discourse representation theories introduce an independent level of
discourse representation in between the levels of syntactic analysis and semantic
interpretation. At this intermediary level discourse markers are introduced by in-
definite descriptions and coreference is established between pronominal anaphors
and such discourse markers. So, in DRT the representation of a part of text figures
as a context of interpretation for successive parts of text.



The major drawback of DRT is that its basic architecture is not compatible
with classical Montague grammar, for the most part because of its credited non-
compositionality. In standard formulations of DRT, the interpretation of natural
language expressions is mediated by the (claimed indispensable) discourse repre-
sentations that they give rise to. In other words, in DRT there is no one-to-one
map from expressions and syntactic constructions to semantic interpretations (but,
cf. Asher [1], Barwise [2], Rooth [28] and Zeevat [30]). DRT, then, does not just
provide for a fresh view on natural language phenomena, but it implies a com-
plete rebuilding of natural language semantics as well. However, Groenendijk and
Stokhof [9], [10], [11] have shown that a compositional reformulation of DRT in
the style of a Montague grammar is possible. The motivating idea is to stick to
the compositional format, and to incorporate the dynamic aspects of meaning right
into the meanings associated with basic expressions and construction rules.

Groenendijk and Stokhof developed dynamic predicate logic (DPL) as an alter-
native to DRT’s language of discourse representations. The meaning of a sentence
in DPL is not a set of verifying assignments, but a set of pairs of assignments that
form the context change potential of the sentence. The interpretation of a sentence
constitutes possible input—output pairs that are used in the sequential processing
of discourse. This formalizes the idea that the processing of a sentence brings the
interpreter from a certain state of information to another one. Furthermore, by
assigning the sentences themselves a dynamic interpretation, it is possible to give a
compositional account of interpretation at the intersentential level.

Still, in the construction of a dynamic Montague grammar, the development
of DPL could only be a first step. DPL is just a first order logic and, therefore,
it can not be used to give a compositional account of the semantics of natural
language at the subsentential level. So, the logical next step was to define a typed
logic that encompasses dynamic interpretation. In [11] Groenendijk and Stokhof
define a dynamic Montague grammar, based on a typed dynamic logic: dynamic
intensional logic (DIL). They show that this Montague grammar incorporates basic
DRT-results in a completely compositional way. Furthermore, they argue that the
compositionalization of DRT is easily extended to a system that accounts for the
dynamics of other quantifying noun phrases than indefinite descriptions only. This
extended system forms the starting point of the present paper. It is sketched in
section 1.3. Before we come to the extended dynamic system, however, we first
show how DMG is constructed (section 1.2) on the basis of DIL (section 1.1).

1.1 Dynamic intensional logic

In this section we introduce the system of dynamic intensional logic (henceforth,
DIL), which is used as the framework of interpretation throughout the rest of this
paper. DIL (Janssen [17], Groenendijk and Stokhof [11]) replaces intensional logic
(IL) as the language of translation in the dynamic Montague grammars defined
below. Using DIL we can give a compositional account of dynamic interpretation
in natural language, because DIL provides for the possibility of dynamic binding.
We will speak of dynamic binding when a quantifier binds, semantically, a pronoun
translation that is not in the syntactic scope of the quantifier. Basically, this is
achieved in DIL in the following way.

The language of DIL incorporates a distinguished set of discourse markers.
These discourse markers act as variables, that is, they figure as pronoun translations,
and they are bound by the existential and universal quantifier. The interpretation
of the discourse markers is also like that of variables. However, instead of variable
assignments, separate discourse markers assignments, which are called states, are
used to assign a value to them. Likewise, quantifying formulas are interpreted as
quantifying over the values of discourse markers instead of over the values of vari-
ables. So far, DIL does not really differ from IL. The crucial difference between



DIL and IL is the interpretation of the intension- and extension operators. These
operators express abstraction over, and application to states, respectively, that is,
abstraction over and application to discourse marker assignments.

Therefore, in DIL the intension of a formula is not the set of worlds in which the
formula is true, but the set of (discourse marker) assignments with respect to which
it is true. This has two important consequences. First, we can take the intension
of an expression containing a free discourse marker occurrence and A-convert it
into a context that quantifies over possible values of that discourse marker. As we
will see below, this property of DIL underlies the possibility of dynamic binding.
The second consequence is that, since the intension of a formula in DIL is a set
of states, instead of worlds, all of IL’s intensionality is lost. A proposition in DIL
contains information about the values of discourse markers, and not information
about the world. Wordly information, of course, can be incorporated in DIL in a
straightforward way (see, for instance, Chierchia [7]). However, for the purposes of
this paper, the purely dynamic intensionality of DIL will do. (In order to appreciate
this point, it may be useful to interpret ‘dynamic intensional logic’ not as the name
of an intensional logic that is dynamic, but as the name of a logic that is dynamically
intensional.)

One more thing needs to be noticed before we turn to the definitions of DIL. For
a first start, and to avoid unnecessary complications, we have discourse markers of
type e only. This suffices for a treatment of the whole array of discourse anaphora
presented below. An extension of DIL’s language with other types of discourse
markers is possible (see, for instance, Janssen [17], [18]), but this falls beyond the
scope of the present paper. Finally, we have slightly modified DIL for ease of
exposition. Those who are acquainted with the paper of Groenendijk and Stokhof
will notice that we have dropped the state switcher from the language. For as far
as the state switcher plays a role in the fragments defined below, its semantics is
incorporated in the interpretation of the quantifiers. We now turn to the definition
of DIL:

The system of dynamic intensional logic is a variant of the system of intensional
type theory IL, which is used in Montague’s PTQ [24]. (For further details, see also
Janssen [17].) The types of DIL are the same as those of IL:

Definition 1.1 (Types) T, the set of types, is the smallest set such that:
l.e,teT
2. If a,b €T, then {a,b) € T
3. Ifa €T, then (s,a) € T

As usual, the syntax takes the form of a definition of ME,, the set of meaningful
expressions of type a. Given sets of constants, CON,, and variables, VAR,, for
every type a, and a set of discourse markers DM, the definition runs as follows:

Definition 1.2 (Syntax) The syntax of DIL is like that of IL except for the fol-
lowing clauses:

1. If « € DM, then « € ME,
2. If $ € ME;,d € DM, then 3d¢,Vdo € ME,

The ordinary intensional operators O and < are omitted. The » and V-operators
are present, and will be seen to express abstraction over, and application to states
(discourse marker assignments) respectively. The quantifiers in (our version of)
DIL quantify over the values of discourse markers, not over the values of variables.



However, quantification over the values of variables can be defined using the M-
operator, which abstracts over the values of variables in DIL.

We now turn to the semantics. Starting from a set D of individuals, and a set S
of states, D,, the domain corresponding to type a, is defined in the familiar fashion:

Definition 1.3 (Domains)
1. D, =D
2. D, ={0,1}
3. Diap) = Dp*
4. Diyq = D3

A model M of DIL is a pair (D, F), where D is as above, and F' is a function
which interprets the constants of the language. Specifically, if « € CON,, then
F(a) € D,. Groenendijk and Stokhof also introduce the set of states in the defini-
tion of a model, and force these states, by postulate, to behave like discourse marker
assignments. However, for matters of conveniency, we will here identify the states
with discourse marker assignments and, thus, can keep them out of the model. So
we have that S, the set of states, or discourse marker assignments, is the set of all
functions s such that if d € DM, s(d) € D, and, likewise, G, the set of variable
assignments, is the set of all functions g such that if v € VAR,, g(v) € D,.

Now we state the semantics by defining the notion [a]as s 4, the interpretation
of a with respect to M, s, and g, as follows:

Definition 1.4 (Semantics)

1. [e]a,s,g = F(c), for every constant ¢
[VIm,s,g = 9(v), for every variable v
d]m,s,g = s(d), for every discourse marker d

2. [a(®)m,s,g = [adnt,s,6([81Ms,9)

3. [¢lm,s,g = 1iff I¢]M,s,y =0
[¢ A 1/"]]M,s,_q =1iff [¢]M,s,g = ['/)IIM,s,y =1

4. [3d¢]m,s,g = 1 iff there is a d € D, such that |[¢]]M’3[d/d]’g =
[Vd¢]a,s,g =1 iff for all d € D, it holds that [[qS]lM’s[d/d] ¢ = 1

5. [CY = ﬁ]M,s,g =1iff [[a]M,,,g = ILB]M,S,.(]

6. [M\velu,s,y = that function b € DP* such that h(d) = [aly,, ,r,/q; for all
d € Dy, where a is the type of «, and b the type of v

7. ["alm,s,y = that function h € D3 such that A(s') = [e]a,s 4 for all s’ € S,
where a is the type of «

8. [Valu,s,g = [e]n,s,4(5)

The notions of truth, validity, entailment and equivalence are defined in the usual
way: ¢ is true with respect to M, s and g iff [¢]a s, = 1; ¢ is valid iff ¢ is true with
respect to all M, s, and g; ¢ entails ¢ iff for all M, s, and g: if [@]arsg = 1 then
[¥1a,s,y = 1; @ and B are equivalent iff in all M, s, and g: [alars,g = [Blar,s,-

The clauses of definition 1.4 are completely standard, except that in the inter-
pretation of discourse markers, and of formulas that quantify by means of discourse
markers, the state parameter is involved, instead of the parameter that assigns val-
ues to variables. Now, because the intension operator abstracts over these states,



and because the extension operator involves application to them, we have the fa-
cility of dynamic binding that we sketched above. First observe the following two
familiar facts:

Fact 1.1 (V"-elimination) V7« is equivalent with o

Fact 1.2 (A-conversion) (Ava)(”B) is equivalent with [*3/v]« if all free variables
in 3 are free for v in «

Notice that in fact 1.2 no conditions on discourse markers in 2 need obtain, because,
although their interpretation is state dependent, S is intensionally closed. The
following example shows a non-trivial instance of this fact:

Ap(s,1yId(man(d) A Vp)(" whistle(d)) = Id(man(d) A whistle(d))

We see here that the DIL-expression Ap3d(man(d) A Vp) is dynamic in the sense
indicated above. The embedded existential quantifier, indirectly, binds a discourse
marker that occurs in an argument expression of the A-term, that is, a discourse
marker occurring outside of the syntactic scope of the quantifier.

1.2 A fragment of natural language
We now turn to the construction of a dynamic Montague grammar. As is usual in
such a grammar, basic expressions of natural language are translated into expres-
sions of a logical language with which a model-theoretic interpretation is associated.
The interpretation of a compound expression is determined by the meanings of the
basic constituent expressions, and operations associated with the rules that are used
in the construction of the compound expression. Like we said, the translation lan-
guage is DIL. However, the exposition of DM G, and its usage, is facilitated by using
a DMG-language, which is defined in terms of DIL. This language is presented first.
In DMG we only use a subset of the types of DIL. The types are built up from
the types e and ((s,t),t), instead of e and ¢. In fact, the type {(s,t),?), will take
the part of type t. As we will see shortly, DM G-formulas are of this type, and the
formulas therefore denote sets of propositions, that is, generalized quantifiers over
states. Apart from this complex type of formulas, the definition of DMG-types is
as usual:

Definition 1.5 (DMG-types)
Tp, the set of DMG-types, is the smallest set such that:

1. e,{{s,t),t) € Tp
2. If a,b € Tp, then (a,b) € Tp
3. If a € Tp, then (s,a) € Tp

The types of DMG stand in a one-to-one correspondence with DIL-types. The
following definition of the dynamic type shift, which constitutes a bijection, relates
to T to Tp:

Definition 1.6 (Dynamic type shift)
1. Te=e; Ts=s
2. Tt = ((s,1),1)
3. Wa,b) = (Ta,Td)

DIL-expressions can be turned into DM G-expressions by means of an operation
1 (uparrow). The interpretation of a DMG-expression {¢ is given by the fol-
lowing simultaneous recursive definition of T, the interpretation of the type shifts



into DMG-expressions, and |, the interpretation of shifts back into expressions of
the corresponding DIL-type (we let ¢ stand for DIL-expressions, and ® for DMG-
expressions):

Definition 1.7 (Uparrow, downarrow)
L 1¢e =¢

Pt =0

Té:t = Ap(s,1) (¢ AVP) (p not free in ¢)

1 @1, = ®("true)

16(a,p) = Az1, To(l2)

1®t(ap) = Aza |2(T2)

Td(s,a) = "V

1®1(s,q) = VO

® N > o e w o

The crucial clauses in definition 1.7 are the clauses 3 and 4. The lift of a formula ¢
denotes the sets of propositions true in conjunction with ¢ in the state of evaluation.
The lowering of a dynamic formula @ is its application to the necessarily true
proposition. (true is a constant of type ¢ that is assigned the value 1. One may
read it as an abbreviation of the formula £ = z.) This application has no truth-
conditional import, but it amounts to a closure of ¢’s dynamic potential. An easy
induction proves the following fact:

Fact 1.3 (|/]-elimination) |¢ = ¢

Compare this with VA-elimination. What does not hold in general is that 1|® = @,
as similarly AVa = « does not hold in general. We refer to T|® as the static closure
of ®. The static closure of a dynamic formula strips off the formula’s dynamic
potential.

The building blocks of DM G’s language are constants Tcon derived from DIL’s
constants con, DIL’s variables of D-types, and DIL’s discourse markers. The lan-
guage contains abstraction and application, restricted to dynamic expressions, and
the intension- and extension-operator, also restricted to dynamic expressions. Fur-
thermore, the language contains three dynamic sentential operators. Dynamic con-
junction, dynamic existential quantification and negation are defined as follows:

Definition 1.8 (DMG-operators)
1. ®;¥ = Ap,,n®(*(¥(p))), p not free in ® or ¥
2. £d® = Ap(,)3d®(p), p not free in
3. ~® = -|®

An expression ® ; ¥ represents the dynamic conjunction, or sequence, of two sen-
tences. The dynamic conjunction of two sentences amounts to the intensional com-
position of the functions that are denoted by the two sentences. Therefore, dynamic
conjunction is associative, it is a truly sequential notion of conjunction. Likewise,
dynamic existential quantification is the intensional composition of the dynamic
existential quantifier with the dynamic formula in its scope. The clauses 1.8.1 and
1.8.2, thus, form the basis for an account of intersentential anaphora, witness fact
1.4:

Fact 1.4 (Associativity)



1. [@;9]; T =&;[¥;7Y]

2. [£d®]; ¥ = £d[P; V]
Another typical fact is the non-commutativity of dynamic conjunction:
Fact 1.5 (Non-commutativity) [®;¥] # [T ;P]

The notion of negation defined in definition 1.8 is static negation. The negation
of @ in fact is the negation of the closure of ®, raised to the type of dynamic formulas
again. This means that the negation of ® involves two things: plain negation of the
truth-conditional content of ® and a discharge of ®’s dynamic potential. Therefore,
the law of double negation does not hold. The double negation of ® does preserve
®’s truth-conditional content, but not ®’s dynamics. The double negation of &
equals ®’s static closure.

In terms of the notions of negation, conjunction and existential quantification
we define the notions of implication, disjunction and universal quantification in the
usual way:

Definition 1.9 (Implication, disjunction and universal quantification)
1. 2= U =~[0;~V]
2. Por ¥ =~[~3;~¥]
3. AdP = ~Ed~D
By simply applying the definitions, the following facts can be proved:
Fact 1.6
1. £d® = U = Ad[® = ¥]
2. [®;¥]=>T]=[®=[¥=T]
3. Por ¥ =~® =T

Equivalence 1.6 is of paramount importance for a compositional interpretation
of the donkey-sentences 2 and 3. The static nature of negation also blocks certain
standard equivalences involving these notions. For example: £d~® is not equivalent
to ~Ad® However, as is to be expected, these formulas do have the same truth-
conditional content: [Ed~® = [~Ad®. So, although the dynamic properties of
these constants differ, at the truth-conditional level the existential and the universal
quantifier are related in the usual way.

The following equivalences enable us to replace dynamic operators by their static
counterparts when we determine the truth-conditions of dynamic formulas by means
of |:

Fact 1.7
L l1¢=¢
2. (16)(¥) = 1($(1¥))
3. [~® =0
4. |€d® =3d|®
5. |Ad® =Vd|®
6. 1[1¢;¥] = AT
T U=V =¢— ¥



8 |[1¢gor ¥]=¢V | ¥

Like we said, the lowering, or closure, of a formula generates its truth conditions.
The closure properties of formulas expressed in fact 1.7 show how we can transform
the closure of most dynamic DM G-formulas into DIL-formulas. We then push the
closure operator | over DMG-operators, which are replaced by their static coun-
terparts. The closure operator collapses when it confronts a lifted atomic formula.
(The reduction rules in 1.7 do not enable us to reduce all DMG-expressions. In
section 2.3 we give a complete reduction system.)

We now turn to the construction of a dynamic Montague style fragment of
natural language. Compared to traditional Montague grammar the following things
are changed. First, of all (constituent-)expressions the type is raised in accordance
with the dynamic type shift. Second, the constants are replaced by their raised
counterparts and sentential operators by their dynamic counterparts. Finally, in
the translation of pronouns and quantifying noun phrases we use indexed discourse
markers. The function of the indices is to indicate anaphoric relationships among
constituents.

The fragment has as its basic categories the usual categories IV (intransitive
verb phrases), CN (common noun phrases), and S (for (sequences of) sentences).
Derived categories are of the form A/B, A and B any category. Employed in the
fragment are NP (= S/IV, noun phrases), Det (= NP/CN, determiners), and TV
(= IV/NP, transitive verb phrases). We first define a function f from categories to
DIL-types:

Definition 1.10 (Category to type assignment)
L £(S) = 1 F(ON) = F(IV) = He, 1)
2. f(A/B) = ((s, f(B)), f(A))

We now give some examples of translations of basic expressions. In what follows
z and y are variables of type e, P and @ variables of type T(s, (e, t)), and T of type
(s, {(s,(e,t)),t)); j is a constant of type e, man and walk are constants of type
(e,t), and love of type (e, {e,t)); the d; are discourse markers.

Definition 1.11 (Translations of basic expressions)
1. man ~ Tman = AzTman(z)

walk ~ Twalk = Az{walk(z)

love ~» AT Az VT'("AyTlove(y)(z))

a; ~ APAQEd;[Y P(d;);VQ(d;)]

every; ~ APAQAd;[Y P(d;) = VQ(d;)]

no; ~» APAQ~Ed;[VP(d;);VQ(d;)]

he; ~ AQ VQ(d;)

John; ~ AQEd;[1(j = di);VQ(ds)]

The fragment contains the following construction rules. The interpretations
associated with the construction rules are like their ordinary counterparts but for
the use of Tp-types and the occurrence of dynamic logical constants.

® N > o s N

Definition 1.12 (Construction rules)

1. Functional application: (84 @a)B ~ B'("a')



2. Sentence sequencing: ¢ . ¢ ~ ¢’ ; ¢’

3. Conditional sentences: If @, then ¥ ~» ¢’ = 1’

4. Restrictive relative clauses: (acn Bs)en ~ Az [@'(z); 5]
5. Sentence negation: It is not the case that ¢ ~ ~¢'

We put the system of dynamic Montague grammar to work in the interpretation
of dynamic natural language expressions. We review three examples discussed in
Groenendijk and Stokhof [11].

A MAN WALKS. HE TALKS

The first example which we discuss, is the sequence of sentences A; man walks. He;
talks, a slightly simplified version of our example 1. Like we said, the indices indicate
intended anaphoric relationship. Functional application and some standard reduc-
tion produce the following translation of the first sentence: £d;[Tman(d;) ; Twalk(d;)].
The second sentence has as its reduced translation: {talk(d;). The translation rule
for sentence sequences tells us that the translation of the entire sequence is:

Ed;[Iman(d;) ; Twalk(d;)] ; Ttalk(d;)
The truth-conditions of this formula are determined as follows:

1[€d;[1man(d;) ; Twalk(d;)]; 1talk(d;)] <=> (fact 1.4)
1&€d;[tman(d;) ;[Twalk(d;) ; Ttalk(d;)]] <= (fact 1.7)
3d;(man(d;) A walk(d;) A talk(d;))

So, we see here that the pronoun he; is bound by the quantifying noun phrase ¢;
man, even though its translation does not occur in the immediate syntactic scope
of the translation of the noun phrase.

IF A MAN WALKS, HE TALKS

As our second example, we choose the donkey-conditional, which consists of the two
sentences which constitute our first example. It is a slight simplification of the real
donkey sentence 2. Using the translation rule for conditional sentences, we get the
following translation of the sentence:

Ed;[Iman(d;) ; Twalk(d;)] = Ttalk(d;)
The truth-conditions of the conditional are determined as follows:

|[€d;i[Tman(d;) ; Twalk(d;)] = Ttalk(d;)] <= (fact 1.6)
1 Ad;[[Tman(d;) ; Twalk(d;)] = Ttalk(d;)] <= (fact 1.6)
| Ad;[Iman(d;) = [Twalk(d;) = Ttalk(d;)]] <= (fact 1.7)
Vd;(man(d;) — (walk(d;) — talk(d;)))

EVERY FARMER WHO OWNS A DONKEY, BEATS IT
Although the previous example has already shown how donkey-type anaphora are
dealt with in DMG, we shall also show how the classical donkey-sentence Every
farmer who owns a donkey, beats it (example 3) is derived. We use the following
indexing: Ewvery; farmer who owns a; donkey, beats it;. The translations of the
main constituents of this sentence read as follows:

own a; donkey ~ Az€d;[1donkey(d;); Town(d;)(z)]
farmer who owns a; donkey ~» Az[{farmer(z);Ed;[Tdonkey(d;); Town(d;)(x)]]
beat it; ~ AzTbeat(d;)(z)
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Combining the translation of the determiner every; first with the translation of
the complex common noun phrase farmer who owns a; donkey, and next with the
intransitive verb phrase beat it;, we arrive at the following translation of the sentence
as a whole:

Ad;[[1farmer(d;) ; £d;[1donkey(d;) ; Town(d;)(d;)]] = Tbeat(d;)(d;)]
The sentence then is assigned the following truth-conditions:

JAd;[[1farmer(d;) ; £d;[Tdonkey(d;) ; Town(d; )(d;)]] = Tbeat(d;)(d;)] <=
| Ad;[Tfarmer(d;) = [£d;[1donkey(d;) ; Town(d;)(d;)] = Tbeat(d;)(d;)]] <=
| Ad;[1farmer(d;) = Ad;[[1donkey(d;) ; Town(d;)(d;)] = tbeat(d;)(d;)]] <=
JAd;[1farmer(d;) = Ad;[ldonkey(d;) = [fown(d;)(d;) = Tbeat(d;)(d;)]]] <
Vd;(farmer(d;) — Vd;(donkey(d;) — (own(d;)(d;) — beat(d;)(d;))))

(By means of the facts 1.6 (three times), and fact 1.7.)

This example concludes our exposition of the fragment. What we have shown is
that the two central phenomena of cross-sentential anaphora and donkey-sentences,
can be treated in DMG in an adequate and completely compositional way. In
fact, all that distinguishes DMG from static theories of interpretation, is the asso-
ciativity of the dynamic existential quantifier with dynamic conjunction, and the
non-commutativity of the last. This means that DMG is indeed a semantic the-
ory that unifies important insights from MG and DRT. We return to the general
characteristics of DMG, and variants that we will discuss presently, at the end of
section 2.

1.3 Extending the dynamics

In the last section of [11] Groenendijk and Stokhof point out that the framework
of DMG allows for a straightforward extension which enables them to cover certain
special examples of anaphoric relationships. On the face of it, these examples
involve a kind of dynamic implication, dynamic universal quantification, or dynamic
disjunction, and in DMG a quite acceptable definition of these notions can be
given. The possibility of such an extension, then, serves to indicate “-- that, even
restricting ourselves to the first-order level of quantification and anaphoric reference,
DMG is potentially more than just the sum of MG and DRT.”([11], p. 33). With
this we agree.

However, we will argue that only extending DMG will not make it cover a whole
class of examples, which are structurally related to the examples that Groenendijk
and Stokhof take in account. In fact, for a neat account of all these examples, also
a slight, but structural, modification of DMG into is needed. In the next section
we present the required modification of DMG into DMG(2). Here we first consider
the special examples that DMG can handle and the way in which DMG accounts
for them. Next we argue that Groenendijk and Stokhof’s extension of DM G must
remain incomplete.

Groenendijk and Stokhof discuss the following examples:

(4) It is not the case that John does not own a car. It is red and it is parked in
front of the house.

(5) John owns a car. It is red and it is parked in front of the house.
(6) If a client comes in, you treat him politely. You offer him a cup of coffee.
(7) Every player chooses a pawn. He puts it on square one.

(8) Either there is no bathroom here, or it is in a funny place. In any case, it is
not on the ground floor.
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(9) If there is a bathroom here, it is in a funny place. In any case, it is not on the
ground floor.

In example 4 we find a double negation of the sentence John owns a car. As
appears from the continuation It is red etc., the double negation should not only
preserve the truth-conditional content of John owns @ car, but its dynamic potential
as well. The pronoun it, seems to be bound by the quantifying noun phrase ¢ car,
even though this noun phrase is in the scope of the double negation. So, the most
likely reading of 4 is equivalent to that of 5, without the double negation. But, as
we already said, the notion of negation defined above does not license the law of
double negation. The double negation of a formula amounts to the formula’s static
closure.

Example 6 exhibits a dynamic implication. In this example, the quantifying
noun phrase a clientin the antecedent of the implication not only binds a pronoun in
the consequent, with universal force, but also a pronoun in the sentence that follows
the implication, again, with universal force. However, the notion of implication
defined above licenses the first kind of binding only. The static character of the
negation in terms of which the implication is defined blocks possible anaphoric
relationships between noun phrases in an implication and pronouns that follow
it. The same goes for example 7. The negation in terms of which the universal
quantifier is defined blocks dynamic binding by the noun phrases every player and
a pawn. Still, the pronouns ke and it seem to be bound by these two noun phrases.
Example 8 exhibits two kinds of binding which we cannot account for as yet. In the
first place, the noun phrase no bathroom in the first disjunct cannot bind the pronoun
it in the second disjunct since the determiner no is static and since the (second)
negation in the definition of the disjunction blocks binding of pronouns in the second
disjunct by noun phrases in the first. Furthermore, the negations in the definition
of the disjunction block anaphoric relationships between noun phrases figuring in
the disjunction and pronouns following it, so the pronoun in the second sentence
in 8 remains unbound as well. Now, if the classical equivalence between ® = ¥
and ~® or ¥ is valid (which it is not at present), and if the law of double negation
holds unconditionally, we can account for the first kind of binding. Furthermore,
if the implication is dynamic (as required for a proper account of example 6), then
also the second kind of binding is licensed. Example 9, which we can take to be
equivalent to example 8, may serve to illustrate the need to validate these classical
equivalences also at the dynamic level.

The nice thing about DMG is that it is easily modified into a system that
accounts for the anaphoric relationships in 4-9, and derives plausible readings for
these examples. What is more, in order to have this we only need to redefine
negation in a trivial way. Consider the following, standard, definition of negation
as complementation:

Definition 1.13 (Dynamic negation) ~® = Ap —-®(p)

The old definition 1.8.3 of static negation can be obtained from the dynamic one,
by taking the static closure of the dynamic negation: {|~® = 1-|® Now, if we
adopt the notion of negation as defined in 1.13, the law of double negation holds,
which enables an account of the equivalence of the examples 4 and 5:

Fact 1.8 ~~®d =9

The other dynamic operators are defined in the usual way, this time in terms of the
notion of dynamic negation:

Definition 1.14 (Implication, disjunction and universal quantification)

1. &= ¥ = ~[0;~V]
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2. dor U =~[~P;~V]
3. Ad® = ~E£d~D

Although these notions are defined with the help of dynamic negation, the equiva-
lences in fact 1.6 still hold and fact 1.4 and the reduction rules in 1.7 remain valid
as well. However, since we use the dynamic notion of negation from 1.13, we recover
the full interdefinability of the quantifiers, and of = and or:

Fact 1.9
1. £d~P = ~AdD
2. =V =~0or Vv

What is more important, we now also have associativity of =, or and .Ad with
dynamic conjunction:

Fact 1.10 (Extended associativity)
L. [@=>9];T=0=[¥;Y]
2. [® or ¥];T = ® or [T; Y]
3. [Ad9]; ¥ = Ad[®; ]

This fact expresses the dynamic properties of the dynamic operators. These dy-
namic properties enable a treatment of the examples 6—9. We present the treatment
of (slight variants of) examples 6-8, the treatment of 9 runs parallel to that of 6.

IF A CLIENT COMES IN, YOU PAMPER HIM. YOU OFFER HIM COFFEE
Functional application and some reductions give the following translation of 6:

[Ed;[Tclient(d;) ; Tcome(d;)] = Tpamper(d;)(y)]; Toffer(c)(d;)(y)
This expression is assigned the following truth-conditions:

[€d;[Tclient(d;); Tcome(d;)] = Tpamper(d;)(y)]; Totfer(c)(d:)(y)] <=
L[€d;[Tclient(d;) ; Tcome(d;)] = [Tpamper(d;)(y) ; Toffer(c)(di)(y)]] <=
LAd;[[Tclient(d;); Tcome(d;)] = [Tpamper(d;)(y) ; Toffer(c)(d:)(y)]] <=
LAd;[{client(d;) = [Tcome(d;) = [Tpamper(d;)(y); Totfer(c)(di)(v)]]] <=
Vdi(client(d;) — (come(d;) — (pamper(d;)(y) A offer(c)(d;)(y))))

(By means of facts 1.10, 1.6 (twice) and 1.7 respectively.)

EVERY PLAYER CHOOSES A PAWN. HE PUTS IT ON SQUARE ONE
Functional application and some reductions give the following translation of 7:

Ad;[1player(d;) = &£d;[Tpawn(d;) ; Tchoose(d;)(d;)]] ; Tput_on(1)(d;)(d;)
This expression is assigned the following truth-conditions:

|[Ad;[Tplayer(d;) => £d;[Tpawn(d;); Tchoose(d;)(d;)]] ; Tput_on(1)(d;)(d;)] <>
| Ad;[Tplayer(d;) = £d;[tpawn(d;);[Tchoose(d;)(d;) ; Tput_on(1)(d;)(d;)]]] <=
Vd;(player(d;) — 3d;(pawn(d;) A choose(d;)(d;) A put_on(1)(d;)(d;)))

(By means of the facts 1.10 and 1.4 and fact 1.7 respectively.)
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THERE IS NO BATHROOM HERE OR IT IS DOWNSTAIRS. IT IS NOT UPSTAIRS
Functional application and some reductions give the following translation of 8:

[~&d[1bathroom(d) ; there(d)] or tdown(d)]; ~Tup(d)
This expression is assigned the following truth-conditions:

L{[~€d[tbathroom(d) ; there(d)] or fdown(d)]; ~Tup(d)] <=
l[~&d[tbathroom(d) ; There(d)] or [fdown(d) ; ~Tup(d)]] <
|[Ed[Tbathroom(d) ; There(d)] = [{down(d) ; ~Tup(d)]] <=
| Ad[[tbathroom(d) ; There(d)] = [{down(d) ; ~Tup(d)]] <=
Vd((bathroom(d) A here(d)) — (down(d) A ~up(d)))

(By means of the facts 1.10, 1.9, 1.6 and 1.7 respectively.)

So far, it seems there is only reason to cheer. Just by reformulating MG in or-
der to capture DRT-results in a compositional way, we get a system that naturally
accounts for phenomena which it wasn’t designed to account for in the first place.
However, the extended dynamics is based, crucially, on a feature of dynamic nega-
tion which Groenendijk and Stokhof point at and which is not pleasant. Dynamic
negation is associative with conjunction:

Fact 1.11 ~® ;¥ = ~[®; ¥]

Obviously, this is something that one does not want. Fact 1.11 says that the nega-
tion of a sentence S extends to sentences that follow S in the discourse. So, whereas
the static negation of ® involves negation of truth-conditional content, but does
not preserve ®’s dynamic potential, this dynamic negation of ® does preserve ®’s
dynamics, but it does not involve negation of just the truth-conditional content of
®. The dynamic ngeation involves negation of the content of & conjoined with all
sentences that follow ®. We can accurately restate this problem in terms of the
monotonicity of DMG-formulas. In the original version of DMG all sentences de-
note upward monotonic quantifiers over states. This conforms to intuition, because
it means that if sentence 7" is more informative than sentence U, then the result of
sequencing a sentence S with 7" is more informative than the result of sequencing S
with U. Furthermore, upward monotonicity guarantees that (non trivial) sentence
sequencing always involves information update, because for any two dynamic for-
mulas ® and ¥, if ® is upward monotonic, then |[® ; ¥] entails . However, with
the notion of dynamic negation at hand, things get different. The dynamic nega-
tion of an upward monotonic formula returns a downward monotonic formula, and
if @ is a downward monotonic formula, then sequencing ® amounts to information
‘downdate’:
1 ® entails |[[®; ¥] if & is downward monotonic

Groenendijk and Stokhof propose to secure upward monotonicity and informa-
tion update in DMG by imposing constraints on translations. The translation of
each sentence which constitutes a separate step in the discourse may not be down-
ward monotonic. As Groenendijk and Stokhof remark, this constraint must not be
imposed on all sentence translations, because then, of course, the crucial dynamic
negation itself could never be used. The constraint should only apply to certain con-
structions. It must be invoked in discourse sequencing, in relative clause formation
and in the formation of conditional sentences.

Apart from a more general feeling of unease about constraints, the constraints
under consideration itch. For instance, things get troublesome when the fragment
is extended with the dynamic negation of other than sentential expressions. Groe-
nendijk and Stokhof themselves propose a dynamic interpretation of the determiner
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no which guarantees upward monotonicity:
APAQ ~Ed[YP(d) ;~TI~VQ(d)]
This enables them to account for the following examples:
(10) No player leaves the room. He stays were he is.
(11) No client that comes in is offered coffee. He is directly sent up to me.

However, this upward monotonic interpretation of the determiner no undermines
Groenendijk and Stokhof’s own approach to the bathroom disjunction (8) Either
there is no bathroom here or it is in a funny place. In any case, it is not on
the ground floor. If the first disjunct there is no bathroom here in the dynamic
disjunction is allowed to be upward monotonic, then 8 comes to mean that there
is no bathroom here, and that every bathroom that is in a funny place is on the
ground floor. Of course, the constraint that the antecedent of a conditional be
upward monotonic, should be mirrored by a constraint that the first disjunct of
dynamic disjunction be downward monotonic. But then, in order to be able to
interpret 8, we need a downward monotonic interpretation of no again, that is, we
must require it to be ambiguous.

Furthermore, the proposed dynamic interpretation of no that guarantees upward
monotonicity, closes off the dynamic potential of the second argument of no. This
should not be, witness the following example:

(12) No farmer beats a donkey he owns. He doesn’t kick it either.

If we use the upward monotonic interpretation of no in 12, the pronoun it can not
be bound by the (closed) quantifying noun phrase a donkey he owns. On the other
hand, if we use the downward monotonic interpretation, 12 comes out to mean that
for every farmer and every donkey that he owns it holds that if the farmer beats
the donkey, he also kicks it. A plausible interpretation would result if we could take
No farmer beats a donkey he owns to be equivalent with Every farmer does not beat
every donkey he owns, with a static negation of the T'V beat. However, only ad hoc
amendations will give us this.

We can also find examples of dynamic implication and dynamic disjunction
which Groenendijk and Stokhof’s proposal excludes. For instance, in example 13
we have a dynamic disjunction with an upward monotonic first disjunct, and in the
examples 14 and 15 we find an existential quantifier that is in the scope of a negation
in the antecedent, but that nevertheless binds a pronoun in the consequent:

(13) Either there is a bathroom downstairs, or it is upstairs.
(14) If it is not the case that there is a bathroom downstairs, then it is upstairs.
(15) If a chessbox doesn’t contain a spare pawn, then it is taped on top of it.

If we forget the constraints for a minute, examples 13 and 14 turn out to mean
that there is a bathroom that is downstairs and not upstairs. Example 15 can be
read in two different ways. We can take the negation to be T'V-negation, and the
interpretation that results then is that every chessbox contains every spare pawn and
that no spare pawn is on top of any chessbox. We can as well take the negation to
be I'V-negation, and derive the interpretation that every chessbox contains a spare
pawn that is not on top of it. In any case the interpretations of 13-15 are wrong. If
we follow Groenendijk and Stokhof, all we can do about these examples is exclude
them, on behalf of the monotonicity constraint, but this is hardly acceptable.

So, we think, Groenendijk and Stokhof’s constraints miss the point. It seems
that the notion of dynamic negation is in need of revision. Now let us consider
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what an adequate definition of dynamic negation should be like. We can think of
two requirements. First, of course, we want the law of double dynamic negation
to hold. The validity of this law ensures that dynamic negation preserves dynamic
potential, which is what we need in order to cope with the examples 4-15. Second,
we want that ~T¢ = T—¢. This requirement must ensure that dynamic negation
involves negation of truth-conditional content. Clearly, since ¢ has no dynamic
potential whatsoever, its dynamic negation ~T¢ should amount to the negation
of the truth-conditions of ¢, and nothing more. Furthermore, once we have that
~1¢ = 1—¢, a simple induction shows that all dynamic formulas constructed from
atomic formulas with the help of T, £, A, ;, =, or and ~ are upward monotonic.
(As a corollary, this monotonicity naturally refutes the associativity of dynamic
negation with dynamic conjunction, which is expressed in fact 1.11. Like we said,
this associativity should be ruled out in the first place.)

So, we have two requirements that a notion of dynamic negation must satisfy. We
know that negation in the restricted version of DM G obeys the second requirement,
but not the first, and that negation in the extended version of DMG obeys the
first requirement, but not the second. The natural question then is whether it
is possible to define a notion of dynamic negation within the framework of DMG
that obeys both requirements. And the straighforward answer to that question is
that it is impossible, since the only possible definition of negation that gives way
to the equivalence ~7¢ = ¢ is static negation. We conclude that no adequate
definition of dynamic negation within the framework of DMG is possible and that
the extended version of DM G exhibits a structural gap, precisely because it is based
on an inadequate definition of dynamic negation.

Where does this leave us? We have examined DM G and the way in which it gives
a true compositionalization of DRT. Furthermore, with Groenendijk and Stokhof,
we enjoyed DMG’s inherent possibility to treat extended dynamics of natural lan-
guage. However, we observed a gap in the extended dynamic system, the origins
of which were traced back to the roots of the extension itself: dynamic negation.
We next pointed out that it is impossible to give a proper definition of dynamic
negation within the framework of DMG, and we concluded that DMG does not
lay the proper foundation for an extended dynamic system of interpretation. So, it
seems that the extended dynamic prospect was an illusion after all. However, in the
next section we show that a slight, structural, modification of DMG into DMG(2)
makes it possible to come up with a definition of dynamic negation that satisfies
the requirements we imposed on it.

2 Quantification over propositions

In this section we show that a notion of dynamic negation can be defined adequately,
if we raise the DMG type of formulas one more time. In our proposal, labeled
DMG(2), formulas denote generalized quantifiers over propositions instead of sets
of propositions (generalized quantifiers over states). We first introduce this raised
fragment, and then come back to the issue of dynamic negation again.

2.1 Dynamic Montague grammar (2)

The basic difference between DMG and DMG(2) resides in the type assigned to
formulas. If we let 7 abbreviate the type ((s,t),t) of DM G-formulas, then the type of
DMG(2)-formulas is ((s, 7),t), the type of generalized quantifiers over propositions.
The definition of the DMG(2)-types runs as follows:

Definition 2.1 (DMG(2) types)
Tp(2), the set of DM G(2) types, is the smallest set such that:

1. e, {{s,7),t) € Tp(2)
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2. If a,b € Tp(a), then (a,b) € Tp(2)

3. If a € Tp(y), then (s,a) € Tpp(y)
We redefine the type shift from DIL-types into DMG(2)-types in the following way:
Definition 2.2 (Dynamic type shift(2))

1. Te=e; Ts=s

2. Tt=((s,1),t)

3. Ya,b) = (Ta,Td)

Notice that the set of DMG(2) types Tp(2) again is a subset of the set of DIL types
T. We also define a type shift ¥ from Tp(2) to Tp, which relates the DMG(2) types
to the corresponding DMG types:

Definition 2.3 (Type shift from Tp(2) to Tp)
1. He=e; Hs=35
2. Wt = ((s,t),t)
3. UT(a,b) = (g ¥t b)

DIL-expressions will now be turned into DMG(2)-expressions by means of a
redefined operation f. The interpretation of a DMG(2)-expression 1¢ is given by
the following simultaneous recursive definition of 1, the interpretation of type shifts
into DMG(2)-expressions, and |, the interpretation of shifts back into expressions
of the corresponding DIL-type:

Definition 2.4 (Uparrow(2), downarrow(2))
L T¢e=¢
2. 1P, =9
3. 16t = AR(s,r)VR("¢) (R not free in ¢)

1 @1y = @("Ap(s,1)VP)

Té(ap) = Az1, T6(l2)

[®1(ap) = Aza |&(T2)

Td(s,a) ="V

[®@1(5,0) ="V

The crucial clauses in definition 2.4 are clause 3 and 4 again. The raising of a
formula ¢ denotes the properties of the proposition that ¢. The lowering of a
dynamic formula ® comes down to the statement that & has the property of being
a true proposition. Again, the lowering of a dynamic formula ® gives us ®’s truth-
conditions, with its dynamics stripped of. The following fact remains valid:

Fact 2.1 (|{-elimination(2)) [1¢ = ¢

What still does not hold in general is that {|® = ®. The operator | functions as a
kind of closure operator, one which closes off a (piece of) text.

The language of DMG(2) is constructed in complete analogy to the language of
DMG. The constants Tcon of DMG(2) are derived from the constants con of DIL,
DMG(2)’s discourse markers are DIL’s discourse markers, and DM G(2)’s variables

®© N > o e
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are DIL’s variables of the raised dynamic type. DMG(2)’s language contains ab-
straction and application of dynamic expressions, and the intension- and extension-
operator, restricted to dynamic expressions. Only the interpretation of dynamic
conjunction is changed, and dynamic existential quantification and static negation
differ with repect to the associated types:

Definition 2.5 (DMG-operators(2))
1. ;¥ = AR(, -y ®("Ap (Vp A ¥(R))), R not free in @ or ¥
2. £d® = AR(, ;)3d®(R), R not free in @
3. ~® = |®

The dynamic conjunction of ® and ¥ now denotes the set of properties R of propo-
sitions such that ® has the property of being true in conjunction with the fact that
R is a property of ¥. The clauses 2.5.1 and 2.5.2 as well guarantee associativity
and non-commutativity:

Fact 2.2 (Associativity(2), non-commutativity(2))
L [2;¥]);T = &;[¥; ]
2. [£dD]; ¥ = £d[® ; ¥]
3. [2; 0] # [¥; 9]

The definitions of implication, disjunction and universal quantification are the
same as in DMG, but they are based on the DMG(2) definition of ;, £d, and ~:

Definition 2.6 (Implication disjunction and universal quantification(2))
1 &= =~[B;~7]
2. dor ¥ =n~[~P;~T]
3. Ad® = ~Ed~D

The categories and the syncategorematic constructions of the fragment remain
the same. The function f from DMG(2)-categories to types differs only with respect
to the interpretation of T:

Definition 2.7 (Category to type assignment(2))
1. £(S) =Tt; f(CN) = fF(IV) = Te, 1)

2. f(A/B) = ({(s, f(B)), f(4))

The relation with the ordinary MG-types remains obvious: ¢ is replaced by Tt.

The translations of basic expressions remain the same, except that the DMG(2)-
interpretation of the abbreviations is used. We will not repeat the fragment here,
because it is typographically identical to the fragment defined in 1.11. The only
real change is in the types assigned to the expressions, and in the interpretation of
the abbreviations. The interpretations of the syncategorematic constructions are
typographically identical as well.

We will not show the determination of the truth-conditions of the sentences
treated above in the framework of the DMG-fragment. Instead, we prove that all
DM G-sentences are assigned the same truth-conditions in DMG and DMG(2). For
this, we first define an operation {} which turns expressions of the DM G(2)-type into
expressions of the corresponding DMG-type (see the definition of the type shift ¥
in 2.3). The interpretation of |® is given by the following simultaneous recursive
definition of |} and 1}:
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Definition 2.8

21, =@

st = ¢

Y1y = Agsey 2(*Ap (VP AVg)), R not free in ¢
st = AR(s 1y ¢(* VR("true)), ¢ not free in ¢
Y@t (a5 = Azar, $2(112)

fut(ap) = Az1, ()

V@150 ="V

8. figut(sqy =MV

In the appendix, we prove the following two facts. Let ®' be the DIL-equivalent
of a DMG-expression ®, and &} the DIL-equivalent of the DMG(2)-expression ®,
then:

Fact 2.3 If ® is a DMG-expression without free variables, then |®* = &t

Fact 2.3 shows that the translation @ of a DMG(2)-expression ® gives us the
DMG-interpretation ®. Next, let |' furthermore denote the DMG interpretation
of | as defined in 1.7, and |} the DM G(2) interpretation of it defined in 2.4, then:

Fact 2.4 If & is a DMG-expression without free variables, then |{®* = |T{®?

The facts 2.3 and 2.4 suffice to prove the equivalence of DMG(2) and DMG. Since
the translations of natural language expressions in DMG(2) and DMG are syntac-
tically identical and do not contain free variables, these facts show that the truth-
conditions of a sentence S in DMG(2): 145t = |Ts't = |15t are the sentence’s
truth-conditions in DMG.

Those who inspect the appendix observe that the restriction to D M G-expressions
without free variables is crucial for the validity of the equivalence fact. Those who
do not inspect the appendix may take this observation for granted. One question
naturally emerges in view of this observation, the question what these free variables
could stand for if they were there. There is a clear answer to this: these variables
can denote functions f that do not obey the reduction scheme: |[(f(«)) = (1 f)(Te).
In other words, these functions would be inherently dynamically intensional and
would not be derivable from extensional (static) functions.

For the present purposes it is reasonable to restrict our attention to dynamic
semantic objects that, in the end, derive from static objects. However, one might
think of incorporating atoms in the language that are inherently dynamic inten-
sional. A case in point might be the verb believe. Treating this verb as a dynamic
intensional verb might give way to an interesting new treatment of belief sentences
next to two well-known approaches to the semantics of belief sentences. According
to one approach, believe is an intensional verb that characterizes a subject’s dis-
position to act. According to another approach, it is a hyperintensional verb that
characterizes a subject’s disposition to assent. In a dynamic Montague grammar,
we can treat believe as a dynamic intensional verb, and this may very well charac-
terize a subject’s disposition to comment, or react. However, we will not pursue an
analysis of belief along these lines here, but we leave it at this vague hint. Still,
notice that we may preserve the equivalence of DMG and DMG(2) if we introduce
such dynamic intensional verbs in the language, that is, if we disregard expressions
with free variables again. If we allow such verbs in the language and if we want to
preserve the equivalence, then we only need to use as dynamic intensional constants
in DMG(2) the raising ficon of dynamic intensional constants con in DMG.

NS e e e
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2.2 Dynamic negation

We saw above that DMG is potentially more then DRT, and the same holds of
course for DMG(2). If we interpret negation as complementation in DMG(2), we get
a system provably equivalent to the extended dynamic variant presented in section
1.3. (The translation algorithm || maps DMG(2) with negation as complementation
onto the extended version of DMG.) But, of course, in that case we inherit both
virtue and vice of that dynamic negation. However, whereas the language of DMG
leaves no room for an adequate definition of dynamic negation, the language of
DMG(2) does. The language of DMG(2) is more expressive than that of DMG,
and provides for the logical space necessary for an adequate definition of dynamic
negation. In this section we present our definition of dynamic negation, we show
that it has the logical properties that we required it to have above, and we show
that it applies successfully to cases of dynamic negation in natural language.

In DMG(2), sentences have the same monotonicity properties as in DMG. All
DMG(2) formulas denote upward monotonic quantifiers over propositions. Further-
more, as a direct consequence of fact 2.4, sentence sequencing in DMG(2) always
produces information update, like it does in DMG. Our task is to define a notion of
dynamic negation that preserves both upward monotonicity and dynamic potential
of the formulas negated.

When a dynamic formula is sequenced in DMG(2), its interpretation is applied
to the property of propositions that their conjunction with the information expressed
by the continuation of the discourse holds true. This application comes down to the
statement that the interpretation of the first sequent remains true under a certain
extension of information. In fact, something similar holds for classical (intensional)
conjunction. In classical conjunction, one might say, the property of propositions
to be true in conjunction with the second conjunct is applied to the proposition ex-
pressed by first. In the system of DMG(2), this property of propositions is said to be
a property of the quantifier over propositions expressed by the first sequent. There-
fore, the crucial difference with classical conjunction is that the function argument
structure is turned around. (And, since we use DIL, a corollary of this reversed
application structure is that the information expressed by further discourse may be
in the dynamic scope of expressions in the first sequent.)

In a dynamic Montague grammar we are interested in the properties of proposi-
tions that quantifiers over propositions have. When we turn to the dynamic negation
of such quantifiers, the focus switches to the properties of propositions that these
quantifiers do not have. The similarity with the classical case of conjunction now
guides us towards a proper understanding of dynamic negation. Clearly, if in the
classical case the negation of ¢ is conjoined with %, then the result does not mean
that ¢ has the property of propositions whose truth is not preserved when extended
with the information expressed by 1. This wouldn’t entail anything about the truth
or falsity of ¢, nor of ¢. Likewise, it is wrong to define dynamic negation in DMG(2)
as complementation. If we did so, then a sequence with a negated dynamic formula
® as the first sequent amounts to the statement that the truth of ® is not preserved
under extension with the contents of the continuation of discourse. However, what
the classical conjunction does attribute of the proposition expressed by ¢ when
its negation is conjoined with 1, is that it does not preserve truth under a weak-
ening of information expressed by the disjunction with —), witness the following
equivalence:

(A (VP A9))("¢) = =(Ap (YPV ~¥))("¢)

In other words, when the negation of ¢ is classically conjoined with %, then it is
this property of propositions Ap Vp V =, that is said not to apply to ¢. The same
kind of reasoning holds at the dynamic level of DMG(2). When in DMG(2) the
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dynamic negation of ® is sequenced, then the interpretation must be that ® does not
preserve truth under a weakening of information expressed by the disjunction with
the negation of the contents of further discourse. More formal, the interpretation
of the sequence ~® ; ¥ must be that & does not have the property Ap (VpV -¥(R))
(where R, again, figures as the landing site for further discourse continuation).

For the sake of compositionality, dynamic negation must be defined in such a
way that if an extension with the contents of further discourse is in the dynamic
scope of the negation, then it takes the form of a weakening of information with the
negation of the contents of further discourse. The following definition of the dual
captures this transformation:

Definition 2.9 (Dual) R, )* = *Ap -VR(" =Vp), p not free in R

Fact 2.5 shows that the dual turns an extension of information into the required
weakening:

Fact 2.5 ("p (VpAY))* =" dp =(=VpA ) ="dp (VpV o)

Now we can turn to the definition of dynamic negation itself. The dynamic negation
of a formula ® denotes the properties of propositions whose duals are not in ®:

Definition 2.10 (Dynamic negation(2)) ~® = AR —=®(R*), R not free in &

So the dynamic negation of a dynamic formula brings about a main negation over the
formula, and two more negations that enclose the variable R over which abstraction
takes place. These two internal negations, so to speak, constitute a context of
reversed monotonicity within the downward entailing context induced by the main
negation, and this local context of reversed monotonicity is reserved precisely for
material that stands outside of the syntactic scope of the negation, but that lands
inside its scope by A-conversion. The following facts are easily proved:

Fact 2.6

1. R* =R

2. ~~d =D
3. |~® =]
4. ~1¢=1-¢

The facts 2.6.2 and 2.6.4 show that the definition of dynamic negation in 2.10 satis-
fies the requirements we set out at the end of section 1.3. An immediate consequence
is that dynamic negation as such is not associative with dynamic conjunction.

The definitions of implication, disjunction and universal quantification remain
the same, but now they depend on the DMG(2) interpretation of ; and £d and
on the definition of dynamic negation. The following equivalences remain valid in
DMG(2):

Fact 2.7 (Associativity(2))
(@595 = @5[¥; Y]

. [£d9); ¥ = £d[®;¥]

. [e=29];T=20=[V;T]
. [® or ¥];T = & or [¥; Y]
. [Ad®]; ¥ = Ad[®;¥]

[

[S2 S N U ]
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Fact 2.7 indicates that the dynamic potential of DMG(2) equals that of DMG.
Dynamic negation also takes scope over further discourse, as in the extended version
of DMG, but not over the continuation of the discourse itself, but over its dual now:

Fact 2.8 (Dual associativity) ~® ;¥ = ~[® or ~V]

Notice that fact 2.8 is reminiscent of the classical equivalence ~¢ A ¢ = —(¢ V —).
Fact 2.9 next shows that dynamic negation behaves like its classical counterpart:

Fact 2.9

1. v =@

2. ~EdP = Ad~D

3. ~AdP = Ed~D

4. ~[; V] = => ~T

5, ~[@=2> U] =0 ;~T

6. ~[® or ¥] = ~P;~TF
Finally, the closure properties remain the same. We repeat them here:
Fact 2.10

L l1¢=¢
(Te)(#) = 1(6(14))
I~®=-]®
1€d® =3d|®
lAd® =Vd|P
i¢; W] = ALY
e=>¥]=¢—|¥
g or ¥l =9V |V

Summarizing the facts 2.6-2.10, we conclude that the dynamic negation defined
in 2.10 has the dynamic properties that we required it to have above and that, apart
from that, it has the properties of classical negation. We now show some applications
of DMG(2) with dynamic negation. We consider the DMG(2)-treatment of (simple
variants of) the examples that posed a problem to the extended version of DMG.
From now on, we let DM G(2) refer to the extended version, and the original version
presented in section 2.1 we will denote as the restricted version of DMG(2). We
start with Groenendijk and Stokhof’s example 10.

I B R

No PLAYER LEAVES. HE STAYS
Application and reduction yields the following translation of 10:

~&d;[Tplayer(d;); Tleave(d;)]; Istay(d;)

The truth-conditions of this formula are determined as follows:
l[~&d;[Tplayer(d;); 11leave(d;)]; Istay(d;)] <
l[Ad;~[tplayer(d;); 1leave(d;)]; Istay(d;)] <

1[Adi[Tplayer(d;) = ~Tleave(d;)]; Istay(d;)] <

|[Ad;[Tplayer(d;) = T-1leave(d;)]; Istay(d;)] <

lAd;[Tplayer(d;) = [1-1leave(d;); Istay(d;)]] <=
Vd;(player(d;) — (—leave(d;) A stay(d;)))

(By means of the facts 2.9 (twice), 2.6, 2.7 and 2.10.)
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NoO FARMER BEATS A DONKEY HE OWNS. HE DOESN’T KICK IT EITHER
Application and reduction yields the following translation of 12 (the negation is
interpreted as IV negation):

~Ed;[1farmer(d;); £d;[1donkey_of(d;)(d;); Tbeat(d;)(d;)]]; ~Tkick(d;)(d;)
The truth-conditions of this formula are the following:

l[~&d;[Tfarmer(d;) ; £d;[Tdonkey_of(d;)(d;) ; Tbeat(d;)(d;)]] ; ~Tkick(d;)(d;)] <=
1[Ad;i[1farmer(d;) = ~Ed;[1donkey_of(d;)(d;) ; Tbeat(d;)(d;)]]; ~Tkick(d;)(d;)] <=
|[Ad;[1farmer(d;) = Ad;[Idonkey_of(d;)(d;) = ~Tbeat(d;)(d;)]]; ~Tkick(d;)(d;)] <=
|[Ad;[1farmer(d;) => Ad;[ldonkey_of(d;)(d;) = 1-beat(d;)(d;)]; T-kick(d;)(d;)] <
1 Ad;[1farmer(d;) = Ad;[{donkey_of(d;)(d;) = [1—-beat(d;)(d;) ; T-kick(d;)(d;)]]] <
Vd;(farmer(d;) — Vd;(donkey_of(d;)(d;) — (—beat(d;)(d;) A ~kick(d;)(d;))))

(By means of the facts 2.9 (twice), 2.6, 2.7 and 2.10.)

EITHER THERE IS A BATHROOM DOWNSTAIRS, OR IT IS UPSTAIRS.
This sentence is equivalent to the sentence If it is not the case that there is a
bathroom downstairs, then it is upstairs. In normal form, the translation of both
sentences reads as follows:

~Ed;[Ibathroom(d;) ; Tdownstairs(d;)] = Tupstairs(d;)
The truth-conditions of this formula are the following:

l[~&d;[Tbathroom(d;) ; {downstairs(d;)] = Tupstairs(d;)] <=
l~[~Ed;[tbathroom(d;) ; Tdownstairs(d;)]; ~Tupstairs(d;)] <=
l~~[Ed;[Tbathroom(d;) ; Tdownstairs(d;)] or ~~Tupstairs(d;)] <=
1[€d;[tbathroom(d;) ; Jdownstairs(d;)] or Tupstairs(d;)] <=
1&d;[Tbathroom(d;) ;[{downstairs(d;) or fupstairs(d;)]] <=
3d;(bathroom(d;) A (downstairs(d;) V upstairs(d;)))

(By means of definition 2.5, and facts 2.8, 2.6, 2.7 and 2.10.)

IF A CHESSBOX DOESN’T CONTAIN A SPARE PAWN, IT IS TAPED ON TOP OF IT.
The last example that we discuss has the following translation:

£d;[fcbox(d;) ; ~£d;[1s-pawn(d;) ; Tin(di)(d;)]] = Ton(d;)(d;)

Truth-conditions are determined as follows:

[Edi[Te-box(ds) s ~Ed; [Ts_pawn(d;); Tin(ds)(d;)]] = Ton(de)(d)] +=
|[Edi[Tcbox(d;) ; Ad;[1s_pawn(d;) = ~Tin(d;)(d;)]] = Ton(d;)(d;)] <=
|~[€d;[Tcbox(d;) ; Adj[Ts_pawn(d;) = ~Tin(d;)(d;)]]; ~Ton(d;)(d;)] <=
|~Ed;[Tcbox(d;) ; Ad;[1s_pawn(d;) = [~Tin(d;)(d;) ; ~Ton(di)(d;)]]] <=
l.Ad,'[Tc_box(d;) = NAdj [Ts_pawn(dj) = [~T1n(d,)(d]) ;~Ton(d,~)(dj )]]] <~
LAd;[Tcbox(d;) = £d;[Ts_pawn(d;) ; ~[~Tin(d;)(d;) ; ~Ton(di)(d;)]]] <=
L Ad;[tc_box(d;) = £d;[1s-pawn(d;) ;[tin(d;)(d;) or Ton(d;)(d;)]]] <=
Vd;(c_box(d;) — 3d;(s_pawn(d;) A (in(d;)(d;) V on(d;)(d}))))

(By means of the fact 2.9, definition 2.5, fact 2.7, fact 2.9 again (twice), and defini-
tion 2.5 and fact 2.10.)

2.3 Discussion

It may be useful to take a break here, and recapitulate our findings thusfar. We
have sketched Groenendijk and Stokhof’s DMG and we proposed an alternative
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equivalent to it: the restricted version of DMG(2). Furthermore, we considered
Groenendijk and Stokhof’s extended dynamic version of DMG, and we indicated
that an equivalent alternative in the format of DMG(2) is equally definable. Finally,
we proposed our own strongly dynamic version of DMG(2), that is based on an
adequate notion of dynamic negation. In fact, then, three different systems are
at stake here. In order to conclude this part of the paper, we briefly indicate the
characteristic properties of these three systems.

The crucial distinction between the three systems on the one hand, and classical,
static, theories of interpretation on the other, lies in the associativity-facts, and the
non-commutativity of dynamic conjunction, facts that we repeat here:

Fact 2.11 (Associativity, non-commutativity)
1. [@;9];T =®;[¥;T]
2. [£dD]; ¥ = £d4[®; ¥]
3. [@; V] # ;9]
(Fact 2.11 also distinguishes all three dynamic Montague grammars from standard

DRT, because of the compositional treatment of the dynamics.) The three systems
also have the following closure properties in common:

Fact 2.12
L lt¢g=¢
2. [M\T1,®@ = AT U[1T/T]®; (16)(¥) = T(¢(1¥))
3. 1N =125 Vg =1
4. |~®=-|®; |EdP=3d|D
5. l[1¢;¥]=¢Al¥

The differences between the three systems lie in the ways in which closed dy-
namic expressions further reduce to DIL-formulas without dynamic operators. A
complete reduction from DMG-formulas in normal form to proper DIL-formulas,
we can obtain by means of fact 2.11, fact 2.12 and the definition of DM G-negation,
which is repeated here (an expression is in normal form if Ad, = and or are re-
placed by £d, ~ and ;, and if all possible VA-eliminations and A-conversions have
been executed, the last possibly after renaming of variables):

Fact 2.13 ~® = 1-|®

Fact 2.14 If ® is a DMG-expression in normal form, without free variables, then
l®can be reduced to a proper DIL-expression by means of 2.11, 2.12 and 2.13.

. In the appendix we prove this fact. Fact 2.14 indicates that the associativity and
non-commutativity expressed by 2.11 in fact is the only difference between DMG
and static theories.

In the extended version of DM G, a full, meaning-preserving reduction is possible
if instead of 2.13, the associativity of negation is used:

Fact 2.15 ~® ;¥ = ~[®; ¥]

Fact 2.16 If @ is an extended DMG-expression in normal form, without free vari-
ables, then |®can be reduced to a proper DIL-expression by means of 2.11, 2.12
and 2.15.
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The reduction fact 2.16 implies that the facts 2.11 and 2.15 constitute the only
difference between the extended version of DMG and traditional theories. The
associativity of ~ with ;, we argued, is awfull on the one hand, but it generates
the law of double negation on the other hand, and it underlies the associativity
of Ad, = and or with ;, all of which is pleasant. On the remaining first hand,
2.15 makes a mess again in case of triple negation, or in case a negation is added
to or deleted from a dynamic universal quantification, a dynamic implication, or a
dynamic disjunction, that was treated successfully in extended DMG.
A complete reduction in DMG(2), finally, draws from the following facts:

Fact 2.17
1. ~[®;9];T = ~®;~[~¥;T]

2. ~[EdD]; ¥ = ~Ed~[~D; T]
3. ~n® =9
4. ~1¢=1-¢

Fact 2.18 If ® is a DMG(2)-expression in normal form, without free variables,
then |®can be reduced to a proper DIL-expression by means of 2.11, 2.12 and 2.17.

The first two facts in 2.17 guarantee associativity of .Ad, => and or with ;. The two
facts clearly exhibit the dual interpretation of further discourse processing within
the dynamic scope of the negation. That the last two facts in 2.17 hold, we argued, is
a basic requirement for a proper notion of dynamic negation. The last fact, notably,
is an ensurance against the plain associativity of ~ with dynamic conjunction that
troubled the extended version of DMG.

Now that we have come to this point, there seem to be two ways to go. The first
one is to stick to DMG’s compositionalization of DRT'. True, the restricted version of
DMG(2) is equivalent with DMG itself, but if one doesn’t agree with the extended
dynamic account of examples 4-15, one better translates sentences in the most
perspicuous way into DIL-expressions of the lowest possible type, that is, then it is
better to use DMG instead of DMG(2). And, of course, there is reason not to agree
with the extended dynamic account, because the examples under consideration are
quite special in a sense, and because the extended dynamic approach is not without
problems after all, as we will see shortly.

The other way to go is to embrace DIL’s potential to account for a dynamic
interpretation of all logical operators. We hope to have shown that, if this option
is taken, then it is better to use DMG(2), and to translate sentences as generalized
quantifiers over propositions, instead of as sets of propositions.

However, if this last line is chosen, two problems have to be solved that pertain
to the extended dynamic theories. We end this section by briefly touching on these
two problems.

Among the surprising equivalences in DMG(?2) (and in the extended version of
DMG), we find two facts that we did not explicitly drew attention to up to now.
They are the logical mirror images of equivalences that we used frequently above,
and that we repeat here in the clauses 1 and 2 of fact 2.19:

Fact 2.19
1. £d® = ¥ = Ad[® = V]
2. [@;9]=>Y]=[®=[V=T7]]
3. Ad® = ¥ = &d[P = V]
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4. [[2=V]=T]=[@;[¥=1T]]

Fact 2.19.1 is a typical donkey fact, and fact 2.19.2 is classical. However, their
dynamic reverses 2.19.3 and 2.19.4 are not classical, and there seems to be no
linguistic support for them. Still, we used facts supporting these equivalences in
the interpretation of the examples 13, 14 and 15 above. These facts are puzzling
indeed. Whereas our example 14, (repeated here as 16) seems perfectly acceptable,
its alleged equivalent 17 seems not:

(16) If there is no bathroom downstairs, then it is upstairs.
(17) If every bathroom is not downstairs, then it is upstairs.

We will come back to this problem in section 4.

Another problem with extended DMG and DMG(2) is its dynamic rigidity. By
this we mean the following. As they are defined presently, all logical operators are
assigned a dynamic interpretation and this, of course, is not what we want in general.
Quite the reverse, one might say: negation, universal quantification, implication
and disjunction in general should be given their static, DMG, interpretation, and
only in a very limited number of cases a dynamic interpretation of them seems
appropriate. Now, although we can derive a static interpretation of these operators
from their dynamic interpretation by means of the closure operation 1], still it
seems somewhat counterintuitive that the most frequently used interpretations, the
static ones, derive from the rarely used dynamic ones.

In the next section we will sort of tackle this last problem. We will argue that
dynamic interpretations of logical operators can be derived from static interpreta-
tions, this in a flexible dynamic Montague grammar. The transition from a rigid
to a flexible semantics is inspired by the observation that the primary instance of
DMG(2)’s raising operation corresponds to a theorem in flexible calculi such as the
Lambek calculus L, the Lambek calculus with permutation LP, and all kinds of
calculi in between, beyond, and next to these two. For that reason, we pick out, in
the next section, the most elaborate calculus that suits our purposes, which is Hen-
driks’ system of type change [15], [16]. Hendriks’ calculus is a semantically oriented
system that can be seen as a subsystem in between L and LP. In [16], this system
is incorporated in a Montague grammar.

We will show that a slight variant of Hendriks’ system of type change allows it to
extend to discourse phenomena, and that a structural change in the interpretation
of type changes of downward monotonic expressions makes it cover all examples
discussed in this paper, and even more. We must, however, issue a warning here.
The proposals made in the next section are not completely definitive. The type
changing calculus is in some respects a too powerfull generator of readings for
sentences, and future research is needed to keep these under control. Furthermore,
there are some typical side-effects of our use of the type changing system, which we
will address in the final section of this paper.

3 Type change and dynamic interpretation
From now on we take a somewhat shifted perspective on the dynamics of discourse.
The dynamics will no longer be built into the system of interpretation, but it will
appear as a derived property, originating from the possibility to assign scope bearing
elements in discourse a number of different scopes. Here, we build upon Hendriks’
flexible treatment of quantifier scope phenomena. Hendriks’ system is devised to
account for scope ambiguities at the sentential level and we will transpose it to the
intersentential level of discourse.

One thing we have to point out before we start being flexible. We will use
Hendriks’ system of type change within the framework of DIL, and not in that of
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IL, as Hendriks does. The reason is obvious. When in Hendriks’ system a quantifier
is given wide scope over a certain part of a text, it will not bind pronouns occurring
freely there. With DIL, however, a quantifier’s scope coincides with the domain
where it has binding potential. (Some confusion might arise about what we mean
by scope here. Strictly speaking, the scope of a quantifier is its syntactic scope. On
a more liberal reading, the scope of a quantifier consists of the parts of text that
land in its syntactic scope by A-conversion, possibly after renaming of variables.
This we call a quantifier’s dynamic scope. Clearly, then, a quantifier in DIL can
bind pronouns in its dynamic scope, whereas in IL it doesn’t.)

In this section, we show that by using both type flexibility and DIL, we can
capture all DM G(2)-results in a compositional way, this on the basis of the simplest
basic translations of atomic expressions. We proceed as follows. We first present a
slight modification of Hendriks’ system of type change, and indicate how it can be
used to account for scope ambiguities. Next, we extend the language with categore-
matic sentential connectives with a most intuitive basic translation. This already
paves the way for dynamic interpretation. A real hurdle has to be taken in section
3.3, where we readdress the issue of downward monotonicity and wide scope. We
propose an amended interpretation of the type changing operations that act upon
downward monotonic expressions, and this amendation largely consists of a general-
ization of the dual operation that we presented in section 2.2. Finally, we show that
the resulting flexible Montague grammar extends the descriptive power of DMG(2).
Some more puzzling examples involving wide scope of downward monotonic opera-
tors are treated to our satisfaction.

3.1 A flexible account of scope phenomena

In a flexible Montague grammar, syntactic categories are assigned the most simple
basic types. For instance, the basic type assigned to the category of NP’s is the
type e of individuals. Now, since intransitive verb phrases denote functions from
individual concepts to truth values, these need not be of a basic category. Therefore,
the basic categories in a flexible Montague grammar are the categories S, CN and
NP. Derived categories are of the form A/B and B\ A. Abbreviations used in the
fragment are IV (= NP\S), Det (= NP/CN), and TV (= IV/NP). We redefine the
function f from categories to basic DIL-types:

Definition 3.1 (Basic category to type assignment)
1. f(S) =t f(NP) = ¢; f(CN) = ((s,€),t)
2. f(A/B) = f(B\A) = ((s, f(B)), f(4))

As appears from definition 3.1, the basic types assigned to syntactic categories are
essentially simpler than they are in traditional Montague grammar. Like we said,
the type of NP’s is as simple as can be, and the type of T'V’s is now basically the type
of relations between individual concepts instead of between individual concepts and
quantifiers over individual concepts. Of course, the use of basic types will not suffice
for the interpretation of a comprehensive fragment of natural language. Notably, a
treatment of quantifying noun phrases does not fit in, and requires an extension of
the fragment. In [16], Hendriks presents a system of type change, with associated
interpretation, that allows one to deal with quantifying noun phrases, and with their
scope, on the basis of the category to type assignment in 3.1. The type changing
system is presented as an alternative to and an improvement of other approaches to
quantifier scope phenomena. Here, we will not discuss the relative merits of different
approaches to quantifier scope phenomena, but we present Hendriks’ system right
away.

There are at least two phenomena that a treatment of quantification in natu-
ral language must account for. First, it must explain the conjoinability of proper
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names, whose type is e, intuitively, and quantifying noun phrases, whose type in a
compositional theory of interpretation must minimally be ({e,t),t). Second, it must
account for scope ambiguity such as exhibited in the sentence Every man loves a
woman. This sentence can be taken to mean that for every man there is a (possibly
different) woman that he loves, and it can mean that there is a woman whom every
man is in love with. Both phenomena are dealt with in Hendriks’ flexible Montague
grammar by letting the interpretations of expressions shift through types. Before
we state the required type shifts, it is useful to define some abbreviations:

Notation convention 1
1. If @~ is a sequence of types a,,...,a,, then (@*,b) = (a,,...,(an,b)...)
2. If #~ is a sequence of variables z,,...,z,, then AZ"¢ = Az, ... Az, ¢

3. If " is a sequence of variables z,, ..., ,, ¢ an expression of type (a",b) where
z; is of type a; (1<i<n), then ¢(Z*) = ¢(z,)...(zn)

When we use the notation of generalized abstraction and application, we include
abstraction over and application of states, as if these constitute a type of their own.
Clearly, the loosely formulated expressions Az;¢ and ¢(z,) must be read as *¢ and
Vé then. Furthermore, in the sequel we also use the abbreviation "a for the type
(s,a).

In order to capture the idea that expressions are subject to type shifts, each
syntactic category C is not associated with one type, but with a set of types T(C),
the type set of C. This set contains the basic type assigned to C, and types derived
from the basic type by the following type changing rules:

Definition 3.2 (Type set) The type set of C, T(C') is the smallest set such that:
1. f(C)eT(C)
2. If (@*,b) € T(C), then (@', ("("b,t),t)) € T(C)
3. If (@, (b,(¢",t))) € T(C), then (@, ("("(b,1),1), (¢%,¢))) € T(C)

4. If (@, (B, (d™, 1)), (d", 1)) € T(C), then (@, ({F’, (c,(d",1))), (c, (d",1)))) €
T(C)

The second clause of this definition is related to the rule of value raising ([VR])
defined below. By means of this rule we can raise an object of type b into a gen-
eralized quantifier over objects of type b. A crucial example is the raising of the
value of individual denoting expressions like proper names. If the type of a proper
name is raised, it has the same type as that of quantifying noun phrases. Another
important application is the raising of the value of sentences. As we will see below,
raising the value of a sentence corresponds to the dynamic lift of DMG(2). The
third clause in definition 3.2 corresponds to argument raising ([AR]). This type shift
allows a function from objects of type b to apply to generalized quantifiers over ob-
jects of type b. More specific, on the basis of this type shift the basic translation of
an extensional transitive verb can be made to apply to two quantifying argument
expressions. And what is more, it can be made to apply to the two quantifying ar-
guments in two different ways, and the two ways of making it applicable correspond
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