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This report is the first of a planned sequence of annual updates of the book
"Exploring Logical Dynamics", CSLI Publications, Stanford, summer 1996.
It contains a number of further results obtained since its first publication.

Sections 1, 2, 3 concern various issues in modal logic, 4, 5, 6  dynamic logic,
and 7 temporal logic, while Sections 8, 9 digress into infinitary logic.

Some corrigenda, and related results by others, have been included as well.

1 On the History of Bisimulation

Bisimulation is the characteristic semantic invariance for the language of modal logic.

In computer science, it is also a central notion of process equivalence in its own right.

At the request of some colleagues, I record a few personal notes about its history.

Modal Frames and p–Morphisms

When modal logic took off in the sixties, its practitioners focussed on semantic 'frames'

F =  (W, R)  of worlds with some accessibility relation. Frames are the underlying

structures of the usual Kripke models  M  = (W, R, V)  which add a valuation  V

evaluating the proposition letters in all worlds. A modal formula  φ  holds in model   M

at world  w  (M , w |= φ)  if it evaluates to true according to the usual truth definition.

It is then true in a frame if it is true at all worlds under all valuations over that frame.

(Note that this is second-order.) This led to an interest in truth-preserving operations on

frames. Examples of these are: generated subframes, disjoint unions, and in particular,

so-called  p–morphic images, where a  p–morphism  f  is an  R–homomorphism from

one frame onto another which satisfies the backwards condition that, whenever  Rf(w)v,

there exists  u  with  Rwu  such that  f(u)=v . This notion is due to Krister Segerberg,

and appeared in his dissertation "An Essay in Classical Modal Logic" (Philosophical

Studies, Uppsala 1971). For intuitionistic propositional logic, though, a similar notion

occurs earlier in  D. de Jongh & A. Troelstra (1966), 'On the Connection of Partially

Ordered Sets with Some Pseudo-Boolean Algebras', Indagationes Mathematicae 28,

317-329. The mathematical high-light of the frame tradition is the characterization of
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all modally definable classes of frames given in R. Goldblatt & S.K. Thomason 1975,

'Axiomatic Classes in Propositional Modal Logic' (J.N. Crossley, ed., Algebra and

Logic, Springer Lecture Notes in Mathematics 450, Berlin, 163-173). The general result

is somewhat cumbersome to state, but here is a beautiful special case. An elementary

(that is, first-order definable) class of frames  K   is definable by a set of modal formulas

iff  K   itself is closed under (1) generated subframes, (2) disjoint unions, and (of course)

(3)  p–morphic images, while the complement class  cK   is closed under (4) 'ultrafilter

extensions'. The first proof of this depended on Birkhoff's Theorem in universal algebra

– the first purely model-theoretic proof (via saturated models) is in J. van Benthem

1993, 'Modal Frame Classes Revisited', Fundamenta Informaticae 18: 2/3/4, 307-317.

Modal Models and Bisimulations

My dissertation Modal Correspondence Theory (Mathematical Institute, University of

Amsterdam, 1976 – published in expanded form as Modal Logic and Classical Logic,

Bibliopolis, Napoli, 1983) contains what I believe to be the first occurrence of

bisimulation. Overall, this work follows the frame trend, but it also considers modal

models on their own (as a base for frame theory), and it asks what semantic invariance

would be characteristic for modally definable classes of modal models. The natural

translation from modal formulas to first-order formulas over models was known, and

hence, the latter question is easily answered if we can only determine which first-order

formulas are definable by modal ones. The answer requires generalization of (directed)

p–morphisms between modal frames to a symmetric relation between models, and I

defined  'p–relations' (an awful name, enjoying a well-deserved oblivion) to that end.

These are relations between worlds in two models which only connect worlds satisfying

the same propositional atoms, and obeying the (nowadays) familiar bisimulation zigzag

conditions for  R-successors. I was thinking of  p–relations as total relations between

rooted models, and then used generated submodels to switch between arbitrary models

and rooted ones in the usual way. Then, my main result was this. A first-order formula

(in the appropriate similarity type) is definable by a (translated) modal formula  iff  it is

invariant for  p–relations and generated submodels. In modern jargon, the latter states

invariance for bisimulations! The heart of the proof is a Lemma stating that two models

M , x  and  N, y  satisfy the same modal formulas (in  x  and  y) iff they have elementary

extensions  M +, N+  that admit of a bisimulation between  x  and  y . As a special case,

this shows that finite models have the same modal theory iff they bisimulate – a result

rediscovered around 1985 by Hennessy & Milner. My results were stated for a language

with just one modality and its accessibility relation, but it was well-known around the

time that extension to the polymodal case with many relations is entirely routine.
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Newer Developments

Around 1990, I became interested in these matters again, partly by having heard about

the work of Park and Hennessy & Milner. My recent book Exploring Logical Dynamics

(CSLI Publications, Stanford, 1996) contains many subsequent developments, of which

I mention a few. (i) Many different proofs have been found for the 'Modal Invariance

Theorem' by now, including techniques like elementary chains, saturated models, and

Ehrenfeucht games. In particular, Eric Rosen proved in 1995 that the result also holds

in finite model theory. I suspect that more generally, unlike with full first-order logic,

most of modal model theory is robust under the transition from ordinary model theory

to finite model theory. (ii ) One can vary the expressive power of modal languages, and

then modify the matching 'simulations' so that the Invariance Theorem remains true.

Here is a small example: a first-order formula is invariant under  p–relations only ('total

bisimulations') iff it can be defined using ordinary modal operators plus the 'universal

modality' expressing truth "in all worlds". A broad investigation of this interaction is

Maarten de Rijke's dissertation Extending Modal Logic, ILLC, Amsterdam 1993. Also

of interest are studies of 'non-Boolean' languages, with non-symmetric simulations of

rather new flavours (cf. Natasha Kurtonina's dissertation Frames and Labels. A Modal

Analysis of Categorial Deduction, ILLC & OTS, Amsterdam & Utrecht 1995). Even so,

we still do not understand the route 'from languages to simulations' in full generality.

(iii ) In computer science, the route has been the reverse. One studies processes via

labeled transition systems (i.e., polymodal Kripke models) under various notions of

simulation, and then asks for logical languages matching these. Formal outcomes are

often the same, though! Comparisons between the two routes are in J. van Benthem &

J. Bergstra, 'Logic of Transition Systems', Journal of Logic, Language & Information

3:4, 1995, 247–283. Also relevant is Marco Hollenberg's forthcoming dissertation

(Utrecht, philosophy, 1997). (iv) One can also go upward to infinitary languages,

starting from the folklore observation that two models  M , x, N, y  admit a bisimulation

iff they have the same modal theory allowing infinitary conjunctions and disjunctions.

The modal and computational traditions are merged in a non-well-founded set theory

in J. Barwise & L. Moss, 1996, Vicious Circles. On the Mathematics of Non-Well-

Founded Phenomena, CSLI Publications, Stanford. A related proposal is the reanalysis

of modal invariance theorems as infinitary 'generalized interpolation theorems' found in

J. Barwise & J. van Benthem, 'Interpolation, Preservation, and Pebble Games' (Report

ML–1996–12, ILLC, Amsterdam). (v) Finally, the bisimulation analysis of 'modal

statements' may be extended to 'modal programs', introducing safety for bisimulation.

What one gets are (more or less) the regular operations plus an appropriate negation.

(See my paper 'Programming Operations that are Safe for Bisimulation', Report 1993-
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179, CSLI, Stanford. To appear in Studia Logica). This I view as the program core of

dynamic logic, playing the same role as the usual core repertoire of propositional logic.

Generalizations of this approach, covering most standard operations (also parallel ones)

of Process Algebra, are in Marco Hollenberg 1996, 'Bisimulation Respecting First-

Order Operations', Logic Group Preprint Series 156, Institute for Philosophy, Utrecht.

Where to Go From Here

I am interested in merges of modal logic, non-well-founded set theory, and brands of

process algebra, because I think these all have the same flavour and aims. Over the past

few years, our Dutch environment has organized some events to this effect, such as the

two workshops documented in J. van Eijck & A. Visser, eds., 1994, Dynamic Logic and

Information Flow, MIT Press, Cambridge (Mass.), and in   A. Ponse, M. de Rijke & Y.

Venema, eds., 1995, Modal Logic and Process Algebra, CSLI Lecture Notes, Stanford.

But there is much more pre-established harmony, as one can see, e.g., in Rob van

Glabbeek's work at Stanford. (Cf. R. van Glabbeek, 1990, 'The Linear Time –

Branching Time Spectrum', CONCUR '90, Lecture Notes in Computer Science 458,

Springer, Berlin, 278-297 – and R. van Glabbeek & G. Plotkin, 1995, 'Configuration

Structures', Department of Computer Science, Stanford University. E.g., Rob

independently discovered directed simulations for non-Boolean languages, in his case,

for intuitionistic logic.) I even suspect that existing category-theoretic approaches to

programming constructs are after essentially the same things, and have comparable

results (cf. Albert Thijs' dissertation "Simulation and Fixpoint Semantics", computer

science, Groningen, 1995). It would be nice to get yet more confluence in this field.

2 Another Bridge between Bisimulation and Elementary Equivalence

Modal logic resembles first-order logic, despite being much simpler combinatorially.

To understand these analogies, one needs systematic 'bridges'. We use a new one here.

Consider the key result relating labeled transition systems to poly–modal formulas:

Modal Invariance TheoremFor first-order formulas φ(x) the following are equivalent

(i) φ(x)  is invariant under bisimulations

(ii) φ(x)  is definable by a modal formula.

A key proof step for the MIT (cf. ELD, Chapter 4) replaces the 'linguistic' relationship

of 'modal equivalence' between two Kripke models by a 'structural' one of bisimulation,

among elementarily equivalent models (satisfying the same first-order sentences). Thus,

we can pass back-and-forth between bisimulation and modal equivalence:
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First Switching Lemma   For rooted models  M , x,   N, y,  the following are equivalent

(i) M , x  and  N, y  satisfy the same modal formulas

(ii)  M , x  and  N, y  have elementary extensions  M+, x  and  N+, y , 

respectively, which bisimulate (with  x  connected to  y ).

In a picture, this observation gives us the following square of related notions:

M , x modal equivalence N, y

first-order equivalence first-order equivalence

M+, x      bisimulation  N+, y

De Rijke 1993 uses walks through this diagram for a systematic comparison between

modal and first-order logic. But other 'Gestalt switches' occur, too. One 'boosts' modal

equivalence to first-order equivalence (Andréka, van Benthem & Németi 1996):

Second Switching Lemma   For rooted models M , x,  N, y, the following are equivalent

(i) M , x  and  N, y  satisfy the same modal formulas

(ii)  M , x  and  N, y  have bisimilar models  M * , x  and  N* , y , 

respectively, which are elementarily (i.e., first-order) equivalent.

This time, the picture has turned around – allowing us different back-and-forth trips:

M , x modal equivalence N, y

     bisimulation      bisimulation

M * , x          first-order equivalence  N* , y

One new application of this schema is the following alternative route toward the MIT.

A Quick New Proof of the Modal Invariance Theorem

Let  φ(x)  be a first-order formula which is invariant for bisimulation, and define

mod(φ)  to be the set of all modal consequences of  φ . We show that  mod(φ) |= φ ,

from which fact a modal equivalent for  φ  follows by Compactness (namely, as the

conjunction of some finite subset of  mod(φ) ). So, let  M , x |= mod(φ). By standard

reasoning, the full modal type of  M , x  together with  φ(x)  is finitely satisfiable.

Compactness then gives a model  N, y  for  φ  which is  modally equivalent to  M , x.

Now consider the two models  M * , x,  N* , y  given by clause (ii) in the Second

Switching Lemma. As  N* , y  is bisimilar to  N, y ,  φ  holds there (by its bisimulation

invariance). Hence,  φ  (being first-order) holds in the elementarily equivalent model

M * , x , too, and thus also  M , x |=φ  (again by  φ's bisimulation invariance).         n
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Coda  Generalized Translation

Analyzing the proof of the Second Switching Lemma more precisely (it employs

Ehrenfeucht games with invariants that can be stated in a modal logic over trees), we

can find out more. Here we take our cue from a result by Janin & Walukiewicz 1996

relating formulas from a monadic second-order logic over trees to formulas in the so-

called modal 'µ–calculus'. The models  M * , N*  are 'tree unravelings' of Kripke models

or LTSs, with additional duplication of nodes (just for technical reasons). Now, let an

extended modal formula be any formula constructed using Booleans plus ordinary

modal operators, as well as the 'universal modality' expressing truth "in all worlds".

Fact There exists an effective translation taking first-order formulas  φ  to 

extended modal formulas  µ(φ)  such that, for all models  M , x  and their

duplicated tree unravelings  M * , x,   M , x |=  µ(φ)   iff   M*, x |= φ .

For a more precise formulation and a genuine proof of this result, see Hollenberg 1997.

(Incidentally, for any two unraveled trees, modal equivalence in their roots implies

equivalence with respect to extended modal formulas.) The Fact suggests an intriguing

generalization of 'logical translation'. The MIT presupposes the well-known translation

taking modal formulas to first-order ones, on the class of all LTSs. There is no effective

converse translation, however – since this would reduce first-order logic (undecidable)

to modal logic (decidable). But the Fact shows how we can open up the game, widening

the relevant notion of translation to allow equivalences across different models.

3 Extending the Guarded Fragment to Betweenness and Pair Arrows

In modal logic, as in many other areas, there is always an option of either studying

proposed systems as such, or translating them back into fragments of first-order logic,

and then look at their properties in a standard light. A powerful part of first-order logic

serving this purpose is the so-called 'Guarded Fragment'. We shall extend this here.

The Guarded Fragment of first-order logic generalizes many modal languages, allowing

all quantifications of the form  ∃y (Qxy ∧ ψ(x, y)), where the atom  Qxy  is the 'guard'.

Here, variables in the finite sequences  x, y  may occur in any multiplicity and order.

The main result in Andréka, van Benthem & Németi 1996 (cf. ELD, chapter 4) says

Theorem Universal validity in the Guarded Fragment (GF) is decidable.
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Under the obvious first-order translations for their semantic truth conditions, this result

explains and extends the decidability of a large class of standard modal languages,

from basic modal and tense logic to even the polyadic version of first-order CRS.

Proof We recall the basic steps. Any satisfiable GF-formula  φ  has a finite 'quasi-

model', of 'types' consisting of subformulas of  φ,  of some effectively computable size,

which also conversely generates a model for  φ . Thus, whether a guarded formula is
satisfiable is equivalent to its having a finite quasi-model – a decidable property.

From Standard Models to Finite Quasi-Models     Suppose that formula  φ  is satisfiable

in standard model  M  . Let  V  be the set of variables occurring in  φ  (free or bound).

Henceforth, we restrict attention to the finite set  Subφ  consisting of  φ  and all its

subformulas, closed under simultaneous substitutions using only variables in  V, that do

not change syntactic forms. (This is feasible, by the cited references.) Each variable

assignment verifies a 'type'  ∆  of finitely many formulas from this set. Our quasi-model

has a universe consisting of the finitely many types realized in  M  . In this structure, for

each guarded formula  ∃y (Qxy ∧ ψ(x, y)) ∈∆ , there exists a type  ∆'  with (i)  Qxy ,

ψ(x, y) ∈∆' , (ii)  ∆, ∆'  agree on all 'unaffected' formulas with only free variables  in  x .

Definition    (i)  Let  F  denote the finite set of all guarded formulas of length  ≤ |φ|  that

use only variables from  V . Note that  φ∈F  and  F  is closed under taking subformulas

and 'alphabetic variants'.   (ii)  An  F-type is a subset  ∆  of  F  for which we have

(a)  ¬ ψ ∈ ∆  iff   not ψ ∈ ∆  whenever  ¬ ψ ∈ F
(b)  ψ∧ξ ∈ ∆  iff   ψ ∈ ∆  and  ξ ∈ ∆ whenever  ψ∧ξ ∈F

(c) [u/y]ψ  implies ∃y ψ ∈ ∆  whenever  ∃y ψ ∈F

[u/y]ψ  comes from  ψ  by replacing each free variable in  y  with the corresponding

variable in u , simultaneously.  (iii)  Let  y  be a sequence of variables, and ∆,  ∆'  types.

Write   ∆ =y ∆'  if  ∆ ,  ∆'  have the same formulas with free variables disjoint from  y .

(iv)  A quasimodel  is a set of  F–types  S  such that, for each ∆∈S  and each guarded

formula  ∃y (Qxy ∧ψ) ∈∆ , there is a type  ∆' ∈S  with  Qxy  and  ψ(x, y)  in  ∆'  and

∆ =y ∆' . We say that  φ  holds in a quasi-model if  φ∈∆  for some  ∆  in this model.     n

Clearly, if  φ  is satisfied by some model, then  φ  also holds in some quasi-model.

From Quasi-Models to Standard Models      From any quasi-model  M  , we can define a

standard model  N . Call  π  a path if  π = < ∆1, φ1, ..., ∆n, φn, ∆n+1 >  where  ∆1,  ∆n+1

are  types in  M  , each formula  φi  is of the form  ∃y (Qxy ∧ψ) ∈ ∆i  and  ∆i+1  is an

alternative type as described above (i.e.,  Qxy , ψ(x, y) in  ∆i+1  and  ∆i+1 =y ∆i ) . We
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say that the variables in  y  changed their values from  ∆i  to  ∆i+1 (the others did not).

Finally, variable  z  is called new in path  π  if either  |π| = 1  or  z's value was changed

at the last round in  π . Objects in  N  are all pairs  (π, z)  with  π  a path,  z  new in  π .
Next, we interpret predicates over these objects.  I(Q)  holds of the sequence of objects

<(πj, xj)>j∈J   iff  the paths  πj  fit into one linear sequence under inclusion, with a

maximal path  π*  such that  (i)  the atom  Q<xj>j∈J∈∆*   (the last type on  π* ) and for

no  (πj, xj)  does  xj  change its value on the further path to the end of  π* . Finally, we

define an assignment   sπ  for each path. We set  sπ (x)  =def  (π', x)  with  π'   the unique

subpath of  π*   at whose end  x  was new, while it remained unchanged afterwards.

The correctness of this model construction shows at last(π), the last type on the path  π :

Truth Lemma     For all paths  π  in  N , and all formulas  ψ ∈ F,

N, sπ  |=  ψ iff ψ ∈ last(π) .

Proof   Induction on ψ . Boolean cases  are immediate, by the closure conditions for  ¬

and ∧ on types. Atoms: involve a straightforward calculation, via the linearity condition

in the interpretation function I, plus  the '=y -clause' in quasi-models ensuring transfer of

'unaffected formulas' along paths. For later reference, we repeat the full argument for

bounded Existential Quantifiers  ∃y (Qxy ∧ ψ(x, y)) . (i) First, suppose that  ∃y (Qxy ∧
ψ(x, y)) ∈ last(π) . Then there is an extended path  π+  =def  π   concatenated with

< ∃y (Qxy ∧ ψ(x, y)), ∆' > , where  ∆'  is a successor type for  ∆  chosen as above with

Qxy, ψ(x, y) ∈∆'  (satisfying the transfer condition for unaffected formulas with free

variables  x ). All objects  (π+, yi)  with   yi  in  y  are new here. By definition, the

atomic guard  I(Q)  holds for the object tuples  sπ+ (y) , sπ+ (x) ( = sπ (x)) . Also, by the

inductive hypothesis,  N,  sπ+ |= ψ(x, y) . Therefore,  N,  sπ+ |=  ∃y (Qxy ∧ ψ(x, y)) .

By  x-invariance in the standard model  N , then, indeed  N,  sπ |= ∃y (Qxy ∧ ψ(x, y)).

(ii) Conversely,  suppose that  N,  sπ |= ∃y (Qxy ∧ ψ(x, y)) . By the truth definition,

there are objects  di  =  (π i, ui)  with N,  sπ yd |= Qxy ∧ ψ(x, y) . (Here,  sπ yd  is the

assignment which is like  sπ  except for setting all  yi  to  di .) In particular,  I(Q)  holds

of the objects  sπ (x),  di . This leads to a picture of forking paths. The  sπ (x)  were all

introduced by stage  π*  inside  π ,  and then the di  were (either interpolated, or) added

to form a maximal sequence  π+  with the atom  Qxy  true at the end. The fork is such

that  x-values do not change any more from  π*  onward, whether toward  π  or  π+ .

(This is the only case where the atomic guard on our quantifiers comes in essentially.)

We now analyse this situation a bit more carefully:
 

•
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•  π*

     •  π+

  •  π

Now, the variables  ui  do not have to be the  yi . Say,   π+  has sπ+(ui)  =  (πi, ui)  =  di .

Thus, the assignments  sπ yd  and  sπ+  agree on  x , and for all  yi∈y  we have  sπ yd(yi)

= di  =  sπ+(ui) . Then, by  N, sπ yd |= Qxy ∧ψ  and the above observations, we have  N,

sπ+ |= [u/y]Qxy,  N, sπ+ |= [u/y]ψ . By the inductive hypothesis,  [u/y]ψ ∈ last(π+) .

Also, from the initial description of  π+ , we see at once that  [u/y]Qxy ∈ last(π+)  (by

the interpretation of atomic predicates). By closure conditions (b), (c) for types, one

gets  ∃y (Qxy  ∧ ψ(x, y)) ∈last(π+) . Finally, since no changes in  x-values occurred on

the fork from  π* , the transfer condition for unaffected formulas along successor types

along paths ensures that this same formula is in last(π) .         n

Thus having a quasi-model implies having a real model, and the Theorem is proved.   n

The decidability of  GF explains that of many other systems, from basic modal logic to

CRS (predicate logic over 'generalized assignment models'), which can be effectively

translated into it. But some natural decidable modal logics remain beyond its scope.

Example 1 Pair Arrow Logic, i.e., relational algebra over arbitrary top relations

(not just full Cartesian squares). Here, the GF strategy would use ternary guards  Uxyz

for a composition, whereas pair arrow models in fact have the binary relativization  RoS

=def  λxy• ∃z ((Uxz ∧ Uzy) ∧ Rxy ∧ Szy), with a composite guard  Uxy ∧ Uyz .

Example 2 Temporal Logic. E.g., the well-known UNTIL AB says ∃y (x<y ∧ Ay ∧
∀z ((x<z ∧ z<y) → Bz)). Its "betweenness" clause has a composite guard  x<z ∧ z<y .

The point here cannot be that arbitrary conjunctions of atoms are acceptable guards.

For, the latter can express undecidable logics. An known example is CRS plus the

'Patchwork Property' for glueing compatible available assignments into new ones.

Given this warning, here is the proper generalization covering both the above examples.

We call a quantification loosely guarded if it has the following format:

∃y ( & Qxy  ∧ ψ(x, y))

where  & Qxy  is a conjunction of atoms with free variables  y, x  in which every

variable y  in  y  co-occurs with every other variable in  y∪x  in at least one of the listed

atoms, conjoined with a matrix formula  ψ(x, y)  from the Loosely Guarded Fragment.
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Single atomic guards exemplify this, and so does the above  x<z ∧ z<y  (with  z  in the

role of  y ). A typical non-example is transitivity  ∀y1y2y3 ((y1<y2 ∧ y2<y3) → y1<y3),

without co-occurrence of  y1, y3  in a guard atom. The Patchwork Property is similar.

Theorem The Loosely Guarded Fragment is decidable.

Proof   We analyse the above representation argument. The definition of quasi-models

carries over without major changes, as does their representation via 'path models'. Here,

we now allow path extensions via the new generalized form of bounded quantification.

Again, the crucial result is the Truth Lemma, saying that guarded formulas hold under

the assignment induced by a path iff they occur in the last set encoded in that path. The

step from right to left here is as before. Thus, the key is a combinatoric aspect of the

converse direction, whose main step was illustrated in the above picture. The argument

for true existential formulas still works with a conjunction of atomic guards like above.

We look at the maximal position  π*  as before. For each new variable  y , again given

the truth condition for atomic statements, loose guardedness requires that the path of the

new  y-value fits linearly with the original path on which the x-values occurred.

Therefore, it either lies on the latter, or it extends it starting from  π* . Moreover, the

condition also applies to all new values  y  amongst each other - and hence, these form

at worst some linear path  π+  extending π*, up to some maximal node where the

highest new  y-value has been introduced. The rest of the argument is as before, since

all relevant  y-atoms hold at  π+, and no  y-values change in going back towards π*.

Cases of mere interpolation of the new  y-values on the old path  π  are merely simpler.

(Here, we heavily use the constancy of relevant variable values in an atom along the

path up to the highest variable mentioned. This requires some checking of cases.)       n

Is this result the best that we can do? Here is a new challenge. Consider Pair Arrow

Models with a polyadic composition  RoSoT different from iterated binary composition.

This employs clauses   ∃y1y2 (Uxy1 ∧ Uy1y2 ∧ Uy2z ∧ Rxy1 ∧ Sy1y2 ∧ Ty2z), that are

not loosely guarded. Test question then: is this polyadic arrow logic still decidable?

But there are other interesting open questions concerning the Guarded Fragment as a

classical mirror of modal logic. For instance, modal and dynamic logic can be extended

with arbitrary fixed-point operators   µp• φ(p)  (where  p  occurs only positively in  φ )

to obtain the earlier-mentioned  µ–calculus, which remains decidable. Likewise, does

the Guarded Fragment remain decidable when we add first-order fixed-point operators?

4 Continuity as a Constraint on Program Operations
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What are natural program operations? Formats in the literature often involve semantic

invariances, such as 'safety for bisimulation'. But there are also semantic requirements

of 'computability'. We discuss the syntactic repertoire of operations induced by one of

these, viz. the requirement of Continuity, as distributivity over unions of finite sets.

Continuity of a function  expresses 'computability' for its values from finite information

about arguments. An abstract formulation of this is Scott's  Finite Distributivity (FD):

F (X)  =  ∪ { F (X0) | X0 ⊆ X  finite} . This implies that  F  is upward monotone in its

argument, while all fixed points arising in this way emerge after  ω  iteration steps.

What syntactic definitions of functions guarantee this pleasant behaviour? ELD,

Chapter 11 gives a syntactic preservation theorem for first-order definable functions  F

given as first-order formulas  φ (P)  with a predicate letter  P  of the required arity.

Theorem A first-order formula  φ (P)  defines a finite–distributive operation on  P

iff  φ  is definable from (i)  P–atoms and (ii) arbitrary  P-free formulas,

using only conjunction, disjunction and existential quantification.

Proof     That all given syntactic forms define  FD  operations, follows by induction.

Conversely, by Finite Distributivity, formula  φ (P)  implies the countable disjunction

of all formulas of the form  ∃x1 ... ∃xk (Px1 ∧ ... ∧ Pxk ∧ [λu• u=x1 ∨ ... ∨ u=xk / P] φ) .

(Here the  x  are tuples of variables, appropriate to the arity of the relevant  P-atoms.)

Hence, by the Compactness Theorem,  φ  implies some finite subdisjunction  δ  of the

latter. Moreover, by the monotonicity of  φ , each disjunct of  δ  also implies  φ . Thus,

δ  is the required definition, which indeed satisfies the given syntactic constraints.       n

This argument hinges on a substitution trick involving identity. In many practical

settings, however, these would not be naturally available in our format of definition.

Can we do without them? Our new observation here is that we can.

Theorem The preceding preservation result for first-order finite-distributive 

definitions  φ (P)  also holds in a predicate-logical language without identity.

Proof    Consider all models  M   of  φ (P)  where  P  consists of some finite relation –

over some finite subdomain  d1, ..., dn  of distinct objects. By Finite Distributivity,

each model for  φ  contains such a model, obtained by shrinking P to some finite subset

of its original denotation. For any such  M  , let  T (M , φ)  be the complete  P-free-type

of  d1, ..., dn  ( that is, all  P-free formulas, in some fixed set of free variables  x1, ..., xn ,

which are true of d1, ..., dn  in  M  ) together with a direct transcription of all true atomic
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P-statements among d1, ..., dn  . First, we observe that this information implies  φ – by

a routine argument, paying some extra attention to the syntactic form of our formulas:

Claim T (M , φ)   |=   φ

Proof   Let  N  be any model satisfying  T (M , φ)  in objects  e1, ..., en . The latter need

not be all distinct, as we have no identity statements in the language enforcing this.

Now, let  N'  be obtained from  N  by shrinking the interpretation of  P  to just its tuples

among the  e–objects. Moreover, construct  M'   from  M   by (possibly) extending the

denotation of  P  so that the match  (di, ei) (1≤i≤n)  becomes a strong homomorphism.

As  φ  is monotone, it still holds in  M' . Now, take new constants for each object in  N'

distinct from all  ei . Since  N'   satisfies  T (M , φ), its  P-free theory (without identity) is

finitely satisfiable in the model  M'  . Therefore, by a standard Compactness argument,

there exists an elementary extension  K   of  M'  (in the  P-free language with identity)

which also verifies the  P-free theory of  N'  (without identity). Now, copy the  M' –

interpretation of  P  into  K  , to obtain an expanded model  K'  . Since  P  is definable in

M'  with identity and finitely many parameters,  K'  is an elementary extension for the

full language of  φ, and hence, this formula holds in  K' . Finally, the obvious match

between interpreted N'–constants and objects assigned to the above variables  x1, ..., xn
is a strong homomorphism between  N', K'  for the identity-free language including  P

(even though it need not be injective either way). Therefore, we also get  φ  true in  N' .

But then, by upward monotonicity plus the definition of  N' ,  φ  is also true in  N .      n

The remaining argument is similar to the above. From the Claim, by the Compactness

Theorem, the conjunction   ∆  of some finite subset of  T (M , φ)  implies  φ . Choose

such a formula  ∆  for each case, and take its existential closure with respect to the

variables  x1, .., xk . By the above construction,  φ  implies the disjunction of all these

formulas, and once again by Compactness, it implies some finite subdisjunction of

these. But then, since all the disjuncts implied  φ , we have the required definition.      n

Finite Distributivity Requires Horn Clause Definitions

These results provide a useful normal form for first-order finite-distributive operations.

For instance, it is precisely the format found in so-called 'completed logic programs'.

To see this, let  φ (P, x)  define a finite-continuous unary operation on an argument  P .

Its fixed points satisfy the equivalence  ∀x (Px ↔ φ(P, x)) . Via our syntactic format,

the right-hand side becomes a finite disjunction of existentially quantified conjunctions

α  of  P-atoms and  P-free formulas. These conjuncts form a finite set of (possibly  P-

recursive) Horn clauses  α(x) → Px – where we drop the existential quantifiers as usual.
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Thus, one interpretation of the above results is that they justify the Horn clause format

of logic programming as provably the broadest one which guarantees  ω–fixed-points.

Enumerating Admissible Infinitary Forms

The above argument gets simpler  for the infinitary first-order language  L∞ω . For then,

we can transcribe Finite Distributivity directly into a countable disjunction of cases,

with which the formula  φ (P)  must then be equivalent. (A syntactic characterization for

the identity-free infinitary language remains open.) An interesting special case are

formulas  φ (R, S, ..., x, y)  defining  k–ary program operations on binary relations.

Successive elimination of the binary predicates  R, S, ..., using our existential prefixes

∃x1 ... ∃xk (Rx1 ∧ ... ∧ Rxk ∧  plus the above identity substitutions, yields a normal

form stating the existence of some finite set of objects, with a number of specified

binary relational links, followed by a pure identity formula concerning these objects.

In  L∞ω , the latter can only state identities and non-identities among our objects, plus a

cardinality statement via a countable Boolean combination of forms "there exist  k

objects", with  k  running from zero to 'infinity'. Disregarding the latter (which may be

filtered out by further semantic requirements on definitions), we get a simple format for

defining finite-distributive operations. They are countable disjunctions of descriptions

of finite 'transition graphs' between the input argument  x  and the output argument  y .

This includes the usual operations of relational algebra (union, converse, composition),

but also Boolean intersection, or more involved cases with branching transition graphs.

What we do not get is a functional completeness theorem with only finitely many

operations. By the Immermann Ehrenfeucht-plus-pebble technique (ELD, Chapter 5),

no finite set of relational operators captures all the above finite-distributive operations.

Zooming in on the Regular Operations

The preceding concerns meet in the regular program operations  ;  ∪  *  . These are both

finite-distributive and safe for bisimulation. The functional completeness theorem of

Section 7 below says all infinitary safe operations are definable by 'strong negation',

composition, and infinitary union. Finite Distributivity rules out the negations. So, is

their combination charcateristic for the regular operations? The answer is negative, as

FD  still admits arbitrary unions. Therefore, the two requirements combined still allow

countable unions over uncountably many non-iterative patterns. (The definition might

prescribe  x-to-y  R-sequences of lengths taken from any set of natural numbers.)

Regular operations only refer to some finite linear route from input to output argument

– and this is much more restrictive than the Distributivity investigated in this Section.
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5 Resolution in Dynamic Logic as Task Calculus

Dynamic logic is a general logic of action, not just a program calculus. In particular,

implications between standard correctness assertions function as a simple task calculus.

We identify the latter as a simple fragment of modal logic, and discuss its peculiarities.

Hoare Calculus is usually presented as a system for proving correctness of programs, or

more interactively, for developing correct programs. But computations are just one kind

of action, and correctness assertions  {A}S{B}  may just as well be read as descriptions

of some available routine  S  that will produce effects described by postcondition  B

given resources described by precondition  A . Our more general planning task does not

consist in proving isolated correctness statements. It is rather one of logical derivation.

Given a number of routines  {A}S{B}, how can we put together some combination of

them performing some new task, from a given precondition to a given postcondition?

Such a more general 'calculus of tasks' (ELD, chapter 11) is a common interpretation of

propositional dynamic logic. It only involves a small fragment of the latter system,

however. We can take the conditions to be Boolean, and the given actions to be atomic.

So our question is, what is a complete subsystem for planning derivations?

Resolution and Monotonicity

One natural analogy is with propositional resolution. We can normalize task statements

– using the valid rules of Disjunction of Antecedents and Conjunction of Consequents,

to conjunctions of universal 'action clauses' of the form  A →S B , where  A  is a

conjunction of literals,  S  is a program expression, and  B  is a disjunction of literals.

What we need is a suitable style of reasoning on these clauses. Now, resolution is really

a form of Monotonicity, a very general logical inference allowing insertion of suitable

formulas in syntactically 'positive' positions. For instance, consider  ¬ A ∨ B,  A ∨ C .

The former says that  A  implies  B . Therefore, we may substitute  B  for  A  in the

positive occurrence of  A  in the second disjunction, to get the usual resolvent  B ∨ C.

This is the 'upward' view. Alternatively, we can use a 'downward monotonic' inference

where  ¬ C  implied  A, substituting  ¬ C  for the negative occurrence of  A  in the first

clause. With labeled action clauses  A →S B, however, some complications arise. (1)

First, consider analogues of standard propositional inferences. Let  A →S  B,   B→T C .

We want to conclude A →S;T C . But what is the precise mechanism producing the

right programs in these conclusions?  (2)  Next, take two action premises  A →S B ∨ C,

B ∧ D →T E . Given that the actions separate the Boolean atoms, is there some obvious

format for an evident conclusion at all? Instead of giving a close analogue to resolution,

we make a simple proposal based on 'plan trees' describing actions with conditions.
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Plan Implications

Let us replace the above correctness statements  A →S B  by Boolean implications of

the form  PSA → B – or more generally, by 'plan implications'

Π → B

where  Π   describes the succesful execution of some actions from given resources,

using existential modalities  PSA  looking backward into the past of the current state.

(Cf. the folklore observation that strongest postconditions are best expressed in a

backward looking 'temporal' logic). In general,  Π  describes a finite tree of previous

atomic actions, with literals true at its nodes. Thus, it may be constructed using only

literals, conjunctions and indexed program modalities  PS . The conclusion  B  may be

a disjunction of literals. One further elucidation is needed. As usual in Hoare Calculus,

we read the premises as universally quantified, over all available states in our model.

The above examples become (1)  PS A → B, PT B → C,  with conclusion   PT PS A→ C

by downward Monotonicity. The passage to one complex program  PS;T A → C  will

come later. (2)  From  PS A → B∨C,   PT (B∧D) → E , downward Monotonicity yields

PT (¬ C ∧ PS A ∧ D) → E . This may be 'linearized' to  P (A)? ; S ; (¬ C ∧ D)?  ; T → E .

Tree Calculus

We now present a very simple Tree Calculus which justifies these inferences. Given

premises of the above form, plus a tree formula  Π*  , apply the following three rules.

In general, starting from  {Π* } , these will lead to the formation of a finite set of tree

(formula)s  {Π1, ...,  Πk} , to be viewed as a disjunction of possible cases:

I If the tree for some premise  Π → B   'fits inside' some tree  Πi ,

at any node position, then we may write  B  at that node.

II If a tree has a disjunction  D  at a node, we may replace it by

a disjunction of trees with the successive  D-literals at that node.

III If a contradiction occurs at a node, remove the tree.

A set of trees implies a disjunction  B  if  B  follows from the literals at each root. We

revisit the above examples to demonstrate how this works. In particular, we show what

is meant by 'fitting inside' – leaving further formal details to those inclined that way.

(1) Start: {PT PS A}

I: {PT (PS A ∧ B)}

I: {PT (PS A ∧ B) ∧ C}

The literal  C  at the root implies the desired conclusion.
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(2)  Start:  {PT (¬ C ∧ PS A ∧ D)}.

I: {PT (¬ C ∧ PS A ∧ (B ∨ C ) ∧ D)}

II: {PT (¬ C ∧ PS A ∧ B ∧ D), PT (¬ C ∧ PS A ∧ C ∧ D)}

III: {PT (¬ C ∧ PS A ∧ B ∧ D)}

I: {E ∧ PT (¬ C ∧ PS A ∧ B ∧ D)}

The desired conclusion  E  follows from inspection of the root.

Theorem The Tree Calculus is complete for our task inference.

Proof  Starting with the set  {Π}  for the conclusion  Π → B , perform all possible

inferences allowed by the calculus, using the given premises to perform substitutions.

Moreover, remove trees which are subtrees of other ones. (These are implied anyway.)

This process will stop after finitely many steps. Note in particular, that it only produces

trees richer than the original one – which therefore imply it, in an obvious semantic

sense. Now, suppose some tree  Π i  in the resulting set has root literals whose

conjunction does not imply  B .  Πi  gives a countermodel to the implication as follows.

Take this tree itself as a model, with only the atomic relations described, and only those

atomic propositions true at each node which were explicitly indicated at that position.

Evidently,  B  fails at the root. But, each premise is true at every node in this model.

For, if its antecedent tree is true at a node, then it 'fits' inside  Πi  (this is because of the

special form of the corresponding modal formulas), and hence, it would have given rise

to a further  I-move adding literals. In general, this will be a disjunction, whence a

further  II-move was applied, yielding trees with extra literals (as compared with  Πi ).

Not all of these can have been removed by III-moves,  or  Πi  would not have survived

into the final set. But the other situations are impossible, too, as  Πi   would then have

been removed for not being maximal. The outcome must be that no antecedent of a

premise is true at any node in our model – and hence all premises hold vacuously.       n

A complete calculus of task inference comes as no surprise. Inference between plan

implications is decidable, even with premises read universally (cf. ELD, Chapter 7,

Theorem 10). Our analysis leads to several further open questions of logical interest.

Program Operations for Hoare-Style Conclusions

First, is there a standard procedure for linearizing statements  Π → B  into more

standard correctness assertions  A →S  B, of course, for suitable complex programs  S ?

The matter is not entirely clear-cut. In particular, branching patterns in a tree may call

for parallel program operators, going beyond dynamic logic. E.g.,  premises  A →S  B,

C →T  D  naturally suggest a conclusion  A∧C  →U  B∧D  for some new program  U .

One valid option for this purpose is Boolean intersection  S∩T. But we can also use
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other parallel operators. The tree transcription of our premises suggests a conclusion

(PSA ∧ PTC) → B∧D, whose linearisation might read  true → ((A)? ; S) | | ((B)? ; T) C .  A

third option would employ new  n–ary modalities directly over tree-like structures (cf.

Hollenberg 1996B for examples), which also support parallel program operations. We

leave the proper design of a suitably expressive repertoire of program operations for our

task calculus as an open question here. But even without such a program repertoire,

trees themselves may be just as convenient representations of plans.

Synthesizing Plans

The Tree Calculus also helps in synthesizing plans out of premise routines. This time,

we only have 'resource propositions'  A  and a 'goal'  G , and the desired plan is a tree

with leaves from  A  only which implies  G . One procedure is to enumerate all possible

resource-to-goal implications from the given premises (with accompanying plan trees).

A finite upper bound to the number of these derived implications can be determined in

advance (since it only depends on the proposition letters occurring in the problem).

Then, we solve the standard propositional search problem from  A   to  G  using these

derived implications. The associated plan with intermediate actions indicated arises

from successive leaf substitution of trees for auxiliary implications.

Example

Let the resource proposition be   A  and the goal  G . The available action premises are

PSB ∧ C  → G,  PT B → C,  PU A → B . We derive  G  from  A  as follows:

1 G  from  B, C

2 B  from  A

3 C  from  B

4 B  from  A

The associated trees will work out to (via their above normal form descriptions):

1 PSB ∧ C
2 PSPU A ∧ C
3 PSPU A ∧ PT B

4 PSPU A ∧ PT PU A       n

Less blindly, we would need a search procedure providing guidance. And indeed, the

preceding example is reminiscent of a logic programming derivation. Here we need a

translated first-order version of our plan implications, in the standard modal fashion.

Consider the earlier Example (1). Take first-order clause forms for its two premises:
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Ax ∧ Sxy → By  and  Bx ∧ Txy → Cy . From an assumption  Au , the standard search

procedure for a proof of the goal  Cv  will produce an outcome  Sus ∧ Tsv – whose

quantified version  ∃s (Sus ∧ Tsv)  is exactly the definition of program composition

proposed earlier. The preceding example may be analyzed in a similar manner through

its first-order transcriptions, trying to get  Gv  from instances of  Au  using the clauses

Bx ∧ Sxy ∧ Cy  → Gy  Bx ∧ Txy → Cy Ax ∧ Uxy → By

Thus, standard proof search via first-order transcriptions may produce useable answers.

Another angle on this problem of synthesis is one of 'propositional completeness'.

Note first that all valid consequences between plan implications reduce to valid

propositional inferences by disregarding all action operators  PS . (The reason is simply

that these consequences must also hold on models where all atomic relations coincide

with the identity relation.) Conversely, consider any valid propositional inference from

a set of implicational clauses to one implicational clause  D → E . Now, assume that the

premise clauses all carry an action  S  producing their consequent from their antecedent.

Question Is there always a plan implication  Π → E  for a valid conclusion

whose antecedent  Π  only employs conditions that occur in  D ?

A positive answer expresses a kind of functional completeness for the programming

repertoire encoded in our Tree Calculus. We proceed to discuss a case of plan inference

where additional expressive power seems needed.

Incorporating Negations and Converse

The obvious dynamic version of the propositional law of Contraposition

A → B  |=  ¬ B → ¬ A

is the inference from

from  PSA → B   to   PSˇ ¬ B → ¬ A ,

involving a relational converse  Sˇ . Contraposed once more, this implication reflects

the well-known tense-logical inference from  P A → B  to  A → G B . This example

shows that we need plan trees which also allow converse arrows, going to successors,

rather than predecessors in the atomic relations. It may be checked that the above rules

remain complete. E.g., dynamic contraposition remains derivable in this fashion.

6 Dynamic Logic over Sequences as Path Geometry
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Dynamic Logic interprets programs as binary input–output relations between states.

A richer semantics should employ complete finite traces of succesful computations.

We explore the resulting dynamic logic of states and computation sequences – which

naturally extends into a more general arrow–logic style geometry of points and paths.

The usual interpretation of Propositional Dynamic Logic in labeled transition systems

M   is a mutual recursion on  M , s |= φ  (formula  φ  is true at  s ) and  M , s1, s2 |=  π
(program  π  has a succesful execution starting from  s1  and ending in  s2 ). Thus,

programs are interpreted as binary input–output relations, without the intermediate

computation traces. But the later are surely the more intuitive interpretation of program

execution. Accordingly, we can formulate a new truth definition  M , σ |=  π  , where   σ
is any sequence of states – so that programs now express properties of computations.

Let  σ1 • σ2  be the result of concatenating two sequences, identifying the end of  σ1

with the start of  σ2 . (Unlike ordinary concatenation, this operation is only partial.)

M , σ |= a iff σ ∈ V(a)

M , σ |= π1 ; π2 iff σ = σ1 • σ2  with  M , σi |= πi  ( i = 1, 2)

M , σ |= π1 ∪ π2 iff M , σ |= π1  or  M , σ |=  π2

M , σ |= π* iff σ  is a finite  •–concatenation of

finite sequences satisfying  π  in  M

M , σ |= (φ)? iff σ  is a one-element sequence  <s>

such that  M , s |=  φ

The clauses for the statement part are as usual, with the following modality:

M , s |= <π>φ iff there exists a sequence  σ  with  M , σ |= π
and  endpoint  s  such that  M , s |= φ

Our first observation is that this reinterpretation does not change the logic.

Theorem The PDL language interpreted over finite sequences has the

same logic as standard PDL interpreted over binary transition relations.

Proof   One easily checks that all principles in the well-known complete axiomatization

of PDL are valid on the new sequence interpretation. For the converse direction,

suppose that some formula fails in a binary standard model  M  . We construct a

sequence model  M seq  as follows. The states remain the same, and we interpret each

atomic relation  a  as the set of  two-element sequences  σ = (s, t)  such that  Ra st .

Then a straightforward simultaneous induction proves the following:



20

M , s |=  φ iff Mseq, s |=  φ
if  M seq, σ |=  π then M , begin(σ), end(σ) |=  π
if  M , s1, s2 |=  π    then  there is a sequence  σ  with  begin (σ) = s1,

end(σ) =  s2 , and  M seq, σ |=  π

(Note the analogy with the safety analysis of ELD, Chapter 5.) As a consequence,

counter-examples to validity on standard models transfer to sequence models.       n

Language Extensions

This harmony changes when we take advantage of the richer structure of sequence

models to interpret more expressive formalisms. For instance, sequences also support

other operations, including standard (total) concatenation, juxtaposing the end of the

first sequence with the beginning of the second. This would correspond to a new form

of program composition – more like  π1 ; 1 ; π2 , where  1  is an arbitrary move. (Thus,

the logic will encode a part of elementary syntax.) For more finely detailed properties

of computations, a natural extension is the usual temporal logic of "Since" and "Until",

which allows us to talk about what went on in between the input state and output state.

Open Question Axiomatize temporal PDL over sequence models.

Finally, we can also add Booleans to enrich the program class. (Németi 1991 shows the

resulting algebraic structure is problematic – but the move seems natural from a logical

point of view.). As with ordinary PDL, this move increases complexity.

Fact PDL over sequences with all Boolean operations is undecidable.

Proof  We can embed full Relational Algebra as in standard PDL. The reason is that we

can define the relevant algebraic operations by singling out the two-element sequences

through the following definition (with  id =def  (true)? )

 ¬ id ∧ ¬  (¬  id ; ¬  id)       n

Remark (Infinite Sequences)  In addition to changing the language, one can also change

the ontology still further. For instance, Edsger Dijkstra's notion of 'total correctness'

for a program  π  says that, starting from some state satisfying a given precondition, all

execution sequences for  π  terminate, in a final state satisfying the given postcondition.

This excludes infinite computation sequences, which then have to be semantic objects.

Arrow Logic Strategies
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In order to restore decidability of PDL with all Booleans, we can follow the arrow logic

strategy (ELD, Chapter 8) and work with models restricted to some set of 'admissible

sequences'. The above truth definition can then be relativized in an obvious manner.

Open Question         Prove decidability for relativized sequence PDL, and axiomatize it.

In particular, this system loses Associativity for composition. This reduces the power of

other principles, such as induction. The latter effects already show in the arrow version

of PDL (ELD, Chapter 8). Dynamic Arrow Logic was intended as an abstract version of

binary relation algebra, but a more general interpretation for its semantics and valid

laws suggests itself. States are 'points', and 'arrows' are abstract paths containing these.

Thus, DAL is also an abstract theory of information states and computation paths. It

would be of interest to investigate the deductive power of this system more practically.

Example (Induction Principles)

For its program iteration, DAL has the two axioms  (i)  π  →  π*  ,  (ii)  π* ; π*  →  π*  ,

plus the induction rule (iii) if   |– π →  α  and  |– α ; α →  α , then  |– π* →  α . These

derive at least the rule form of standard PDL induction  (φ ∧ [π*] ( φ → [π]φ)) →  [π*]φ
– using  Bφ  (Eφ)  for  " φ  is true at the beginning (end)" :

|–  π → (Bφ→ Eφ)   (given)

|–  (Bφ→ Eφ) ; (Bφ→ Eφ) → (Bφ→ Eφ) (derivable in Arrow Logic)

|–  π* → (Bφ→ Eφ) (DAL induction)       n

Induction reflects the finiteness of paths in our models. More technically, the semantic

content of our theory would be clarified by a representation theorem for abstract DAL

models in terms of relativized sequence models – in the style of Marx 1995.

Finally, a sweeping reinterpretation of all the above is as a form of Modal Geometry

of points and paths. In the underlying abtract spaces, we have three basic notions:

point  s  lies on path  π s  is the beginning of  π s  is the end of π

These binary relations induce six forward and backward modalities (plus, of course,

richer temporal and first-order languages). This leads to a new kind of geometry, where

segments and lines need not be 'straight'. Much of its elementary first-order theory is

decidable, as it translates into the Guarded Fragment – with the above three relations as

atomic guards. Explicit axiomatizations will provide new modal geometries.

7 The Narrative Flow of Time
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In temporal narrative, subsequent utterances build up a consecutive picture of events

that occurred and states that obtained. This picture is obtained dynamically through the

application of recurrent discourse rules (cf. Kamp & Reyle 1993, Ter Meulen 1995).

E.g., successive past tenses introduce a linear sequence of events (the 'consecutio

temporum' of traditional linguistics), while the ubiquitous connective "and" often means

"and next". This dynamic semantics (cf. ELD, chapters 2, 12) has interesting features.

We discuss these in connection with 'dynamic aspect trees' (DATs, Ter Meulen 1995).

The same issues would arise in connection with Hans Kamp's more widely used DRTs.

Two Strategies of Dynamification

ELD, chapter 2, follows one particular strategy of dynamification for standard logics.

Formulas are reinterpreted as evaluation or update procedures, involving state changes

over standard models. Thus, as in the DPL treatment of anaphora, no separate level of

syntactic representation is needed. But discourse representations as in DRT provide an

alternative strategy. Its dynamics involves construction of successive syntactic (or

mental) states, whose relation to standard models remains static. It is instructive to

compare the two for the same logical system. Consider propositional temporal logic,

with operators  Fφ  (' at least once in the future') and  Pφ  ('at least once in the past').

On the first strategy, its dynamic semantic involves transitions between points in time:

M , t1, t2 |=  φ iff there exists a succesful evaluation of  φ
starting from  t1  and ending in  t2

The temporal operators  F, P  can be read as existential quantifiers, denoting forward

or backward moves along the temporal order. For instance,  M , t1, t2 |= F  iff   t1 < t2  .

The resulting system is a dynamified version of (a bounded fragment of) first-order

logic. Van Benthem 1995 shows how it can be translated into standard temporal logic,

by a simple recursive definition of pre- and postconditions for these evaluations. (This

is one case where dynamification does not increase complexity.) The second strategy

would rather turn sequences of formulas into (descriptions of) 'small models', which are

then to be related to real models as to their 'truth'. We shall see this at work with DATs.

When stated at this level of generality, there may be no essential difference between the

two dynamic strategies. With enough freedom in the definition of a 'model', one can

incorporate representations into new-fangled denotations, and hence the second strategy

is contained in the first. The converse route also seems feasible, turning computation

traces into syntactic objects. An abstract mathematical equivalence seems  plausible.

DATs in a Nutshell
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Processing narrative discourse can be viewed as stepwise construction of tree patterns.

Here is a simplified sketch. Each DAT is a finite graph, with nodes standing for

temporal intervals. Nodes can carry propositional information, and stand in relations of

precedence and inclusion to other nodes. We designate one node as the 'active' one (in

the full system, there are more such roles). Verb tenses modify the current DAT. E.g.,

an event reported in the past tense  PAST φ  leads to attachment of a new active node to

the right of the current active one, where  φ  is written. An auxiliary  PERF φ  leads to

attachment of a new node to the left of the currently active one, with  φ  written on it.

(Here, the old active node remains the active one.) Finally, a progressive  PROGR φ
creates a new node above the currently active one, with  φ  written on it (again, no shift

in active node). Temporal adverbs ("always  φ") involve propagation rules spreading

propositional information around a DAT. Other rules spread information, too. Thus,

PERF φ  labels carry over to nodes to the right, while  PROGR φ  carries over to nodes

underneath. This algorithm provides a dynamic semantics for temporal discourse, with

update conditions modifying DATs, now viewed as constructive information states.

In a more standard semantics, DATs can now be related to temporal interval models

(I, <, ⊆ , V) via an obvious notion of 'embedding' sending nodes to intervals, and

preserving all stated relationships, as well as the propositional information recorded.

Together, all succesful embeddings for a DAT encode its classical truth-conditional

content. Moreover, we may now define new styles of dynamic inference. For instance,

say that conclusion  ψ  follows from premises  φ1, .., φk  if each succesful embedding of

the DAT for the discourse  φ1, .., φk  validates  ψ  (viewed as an ordinary statement).

Other such notions can be defined along the lines of ELD, chapter 7. Seligman & ter

Meulen 1995 discuss logical features of this paradigm. Here, we add a few thoughts.

Connections with Temporal Interval Logic

As in ELD, chapter 2, a new dynamic system like this may be analysed by familiar

logical techniques. For instance, the DAT constructions are reminiscent of standard

temporal logic. What would be a temporal formalism expressive enough to capture the

truth-conditional content of the above? For a start, the constructions given so far require

only future and past  Fφ,  Pφ,  as well as a progressive operator   Πφ  stating that  φ
holds in at least one superinterval of the current one. It is easy then to describe temporal

formulas with the right meaning for each successive DAT (see below). As a result, one

can explain most of the above spreading rules. For instance, this temporal logic will

validate the rightward spread of statements  Pφ   for perfect tense (by transitivity of  < ),

as well as downward spread of progressive tense statements  Πφ  (by transitivity of  ⊆ ).
Moreover, the 'monotonicity law' for intervals ( ∀xyz ((x<y ∧ z⊆y) → x<z) )  implies
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downward transfer of Perfect statements as well – another law of DAT construction.

Other transfer rules in DATs have no such general structural temporal background, but

reflect the lexical semantics of specific aspectual classes. E.g., we must have downward

transfer of 'state propositions'. Temporal interval logic can also be used as an aspectual

calculus handling the latter cases, through suitable axioms (van Benthem 1995).

Richer DAT systems need further temporal operators. An example is a construction

putting two successive intervals under one current node ("and next"). This requires a

binary modality  φ& ψ  true at an interval if it has a subinterval satisfying  φ  preceding

another subinterval satisfying ψ . Also, with further distinguished nodes present in

DATs ('speech time', 'reference time', etcetera), the format of embeddings changes, and

we will need a many-dimensional temporal logic keeping track of these. (Marx &

Venema 1995 is an up-to-date treatment of many-dimensional temporal logic.) There

are questions of explicit axiomatization for such DAT-induced temporal logics. Here,

we only note that one of our earlier techniques is applicable, too. All we have said can

be translated into the obvious first-order language over temporal interval models. But

then, we can measure the complexity of the system by means of the resulting forms of

quantification, using the earlier Guarded Fragment (section 3 above).

Proposition The temporal interval logic of  P, F, Π  and  &  is decidable.

Proof It suffices to show that the translations of the above operators all land up in the

'loosely guarded' extension of the Guarded Fragment (cf. Section 3 above). This is

obvious for the first three operators, whose quantifier forms are guarded:

Pφ     ∃y (y<x ∧ φ(y)) Fφ     ∃y (x<y ∧ φ(y))          Πφ     ∃y (x⊆y ∧ φ(y))

For  φ& ψ  we have the loosely guarded  ∃yz (y⊆x ∧ z⊆x ∧ y<z ∧ φ(y) ∧ ψ(z)) . (These

truth conditions stay loosely guarded, even with additional requirement found in DATs.

For instance, progressive is taken to require that the superinterval  y  starts before  x .

This says that  ∃u (u⊆y ∧ u<x), which does not endanger loose guardedness.)        n

What this still leaves open is decidability of these languages over temporal interval

models satisfying additional restrictions of transitivity and monotonicity.

Structural Rules

The above dynamic inference over DATs may be studied as an abstract reasoning style,

just as in ELD, chapter 7. Then, we find that none of the usual structural rules are valid,

not even in plausibly modified dynamic versions (such as those for Update-to-Test).

For Permutation, Contraction, or Monotonicity this is clear, as the flow of temporal
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narrative will not tolerate such changes in 'the story'. But one might want to have at

least some version of Reflexivity or Cut. This may involve changing valid inference

after all, or having special structural rules for special types of temporal statement only.

E.g., merely adding propositional information without temporal side effects will be an

admissible form of Monotonicity. We leave these matters open here, and conclude with

a more concrete, though highly simplified, logical calulus for DAT-like reasoning.

A Simplified Logic of Tree Modification

The main moves in the above can be viewed as rules for constructing LTSs by adding

new nodes, and annotating existing ones with atomic propositions. Moreover, there

were shifts in 'perspective', as the distinguished node of the LTS is allowed to wander.

From a logical point of view, the most elegant instruction set is as follows.

Move 1 write  p  on the distinguished node

Move 2 adjoin an outgoing  a-arrow to the distinguished node

with a new node at the end, where we write  p

Move 3 the same as Move 2, but making the new node the distinguished one

Move 4 adjoin an incoming  a-arrow to the distinguished node

with a new node at the beginning, where we write  p

Move 5 the same as Move 4, but making the new node the distinguished one

Together, these moves build any directed acyclic graph with propositional annotations.
It is easy to describe this process via transformation of modal graph formulas  τ  :

Move 1 go to τ ∧ p
Move 2 go to τ ∧ <a>p

Move 3 go to p ∧ <ǎ  >τ
Move 4 go to τ ∧ <ǎ  >p

Move 5 go to p ∧ <ǎ >τ

It is easy to describe the generally valid inferences associated with this tree calculus,

in a standard modal logic with relations and their converse. Alternatively, we can

redescribe these construction processes via binary transition relations on larger LTSs

(cf. ELD, chapter 10). The format is  M , s1, s2 |= DAT  iff  s2  is a result of performing

the instructions encoded in DAT, starting from  s1 . Thus, we have an analogy with the

representation-free dynamics of our introduction after all. We leave its extent, and its

general moral, for further investigation. Our claim is merely that representation-based

dynamic formalisms can be profitably viewed as part of the broader ELD framework.
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8 Characterizing Safety in L∞ω

The modal characterization of assertions invariant for bisimulation has a counterpart in a

description of all program operations that are safe for bisimulation. By a technique from

Barwise & van Benthem 1996, both results can be lifted to infinitary logic, which is the

language of choice for many process operations, as well as non-well-founded set theory.

The analysis of assertions in the Modal Invariance Theorem extends to programs in

dynamic logic. Consider the following notion of invariance for program operations:

Definition An operation  O (R1, ..., Rn)  on programs  is safe for bisimulation if,

whenever  C  is a relation of bisimulation between two models for their transition

relations  R1, ..., Rn , then it is also a bisimulation for the defined relation  O (R1, ..., Rn).

It is easy to show that the regular operations of relational composition  ;  and choice  ∪
(Boolean union) have this property, and so do test relations  (φ)?  for modal formulas  φ .

Typically non-safe operations are program intersection and Boolean complement. But

the following negation operation is safe: ~ (R)  = { (x, y)  |  x=y  and  for no  z : x R z }.

All these operations are first-order definable in an obvious language over LTSs. Indeed,

we have this counterpart to the above Modal Invariance Theorem (ELD, chapter 5):

Modal Safety Theorem       A first-order operation  O(R1, ..., Rn)  is safe for bisimulation

iff   it can be defined using atomic relations  Raxy  and atomic tests  (q)?  for 

propositional atoms  q  in our models, using the three operations  ; ,  ~  and  ∪ .

This result expresses functional completeness for dynamic counterparts of the Boolean

primitives  ∧ , ¬ , ∨  . New proofs are in Hollenberg 1995 giving safety over much

broader notions of process equivalence. (Hollenberg 1996 extends MST to monadic

second-order logic, following Janin & Walukiewicz 1996.) Now, it is natural to seek

infinitary versions of MIT and MST. The usual regular program operations include

Kleene iteration – and many further natural programming constructs are infinitary.

Barwise & Moss 1996 show how infinitary modal logic ties in with non-well-founded

set theory, and the first-order logic of bisimulation. So, consider an infinitary first-order

language over possible worlds models with arbitrary set conjunctions and disjunctions.

The infinitary modal language extends the basic one likewise. Clearly, infinitary modal

formulas are invariant for bisimulation: infinitary conjunctions and disjunctions fall

within the obvious inductive argument. What is more, we also have the converse result,

even though its first-order proofs based on compactness and saturation fail  for  L∞ω .
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Theorem An infinitary first-order formula is invariant for bisimulations  iff  it is 

definable by an infinitary modal formula.

Proof   One proof of this result is in ELD Chapter 10, using modified 'consistency

families' to circumvent compactness. Another proof is in Barwise & van Benthem 1996.

We will use techniques from the latter to also extend the Safety Theorem to  L∞ω .

Therefore, we give a brief sketch of the relevant argument. It involves crucial use of the

following remnant of compactness retained by the infinitary language:

Boundedness Theorem   Let  ψ(<) be a formula of  L∞ω  with models whose domains 

can be well-orders  <  of any size. Then  ψ  has a model where  <  is no well-order.

Now, suppose that  φ  is invariant for bisimulation. We prove that

# There exists an ordinal  κ  such that for all models  M , s |= φ  and all models  M' , s'

having the same modal theory as  M , s  up to modal operator depth  κ , M' , s' |= φ

Modal operator depth is measured in the usual way. (Through infinitary combinations,

it can run up to arbitrarily high ordinals.) The crucial property of this notion is this

(compare the similar results for Ehrenfeucht games in standard logic, Doets 1996):

Lemma Two models  M , s,  M' , s'  share the same modal theory up to depth  κ  

iff  there exists a descending chain of sets of 'partial bisimulations' between them of

length  κ , with zigzag conditions holding downward from levels  β+1 to  β .

From #, modal definability of  φ  follows easily. Consider the set (!) of all complete

modal descriptions up to depth  κ  of all models for  φ . Then  φ  is equivalent to the

disjunction of all of these. (That it follows from each disjunct is the main content of #.)

Proof of #     Suppose that for each ordinal  κ , there are models  M , s  and  M' , s'  with

(i)  M , s |= φ , (ii) M , s  and M' , s' have the same modal theory up to depth  κ , but (iii)

not  M' , s' |= φ . By the above lemma,  M   and  M'   have a descending 'κ–tower' of

partial bisimulations. Now, this situation may be coded up by an infinitary first-order

formula  Φ(<) . (This trick comes from a well-known proof of Lindström's Theorem.)

Using fresh predicate letters  A, B, Ck, I, <, one states that  (φ)A, (¬φ)B, while  Ck i x y

is a  (1+2k)-ary predicate defining a partial bisimulation of size  k  between matched

members in the sequences  x, y . Here, the variable  i  runs over an index set  I  linearly

ordered by  < , and we can also state the key zigzag properties. E.g.,  if  Ck (i+1) x y

and  Au, Ra(x)ju , then there exists  v  with  Bv, Ra(y)jv  such that  Ck+1 i xu yv . Now,

the Boundedness Theorem says that  Φ(<)  has a model in which  <  is not a well-order.
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That model, must have at least one countably descending chain of indices. Collecting

all finite partial bisimulations along its stages, we get a true bisimulation, without a

bound on its zigzag properties. But then, we have two models  A, B  connected by a

bisimulation which disagree on  φ : which refutes invariance for bisimulation.       n

By similar reasoning, we now derive our main result.

Theorem    A relational operation  O(R1, ..., Rn)  in  L∞ω  is safe for bisimulation   

iff   it can be defined using atomic relations  Raxy  plus atomic tests  (q)? , using

only three operations  ; ,  ∪  and  ~ , where the unions may now be infinitary.

Proof We recall the proof for the finitary first-order case (ELD, chapter 5), identifying

the part where a new route is needed. The outermost argument remains the same, up to

an important module.  I   For a start, specifying the relevant languages, it is clear that, if

a relational operation defined by  π (x, y)  is safe for  L-bisimulations, then the  L∞ω–

formula  ∃y (π (x, y) ∧ Qy)  is invariant for  (L+Q)-bisimulations, where  Q  is a new

unary predicate letter. But then, by the infinitary Modal Invariance Theorem, there is an

equivalent infinitary modal formula  φ(q) . II   Due to the simple occurrence of  Q , the

latter has a strong semantic property. Call  φ (q)  continuous in the proposition letter  q

if the following equivalence holds in each model (with some benign abuse of notation):

for each family of subsets  {Pi} i∈ I ,    φ ( ∪i∈ I Pi )   ↔  ∨i∈ I  φ (Pi)

From right to left, this is the well-known monotonicity whose syntactic correlate is

obligatory positive occurrence for  q – but the other half excludes a lot more. We want a

syntactic preservation theorem for continuous modal formulas. This can be done – and

the resulting normal forms are described in the main theorem below.  III   From these

forms, one can extract the following explicit information. Any safe relation  π (x, y)

may be defined as an infinitary union of finite sequential compositions of successive

atomic actions  Raxy  plus tests  (α)?  for some infinitary modal formulas  α .  I V

Finally, the latter tests unpack to combinations of atomic tests by the valid equivalences

(∨i∈ I  φi)?  =  ∪i∈ I (φi)?       (¬φ)?  =  ~ (φ)?      (<a>φ)?  =  ~ ~ (a ; (φ)?)        n

At this point, we prove an independent model-theoretic preservation theorem.

Theorem Up to logical equivalence, the  q–continuous infinitary modal formulas

φ (q)  are just those that can be written as infinitary disjunctions of formulas of

'existential forms  α0 ™ q ,  α0 ™ <a1> (α1 ™ q), α0 ™ <a1> (α1 ™ <a2> (α2™

q)), etcetera, where all formulas  αi  are  q–free.
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Proof   All forms described are evidently continuous w.r.t. the proposition letter  q .

The hard part is the converse. Let us first analyse the models  M , s  where a continuous

formula  φ(q)  holds. The denotation of  q  can be written as a union of singletons, and

so, by continuity,  φ  will hold with  q  true in only one world  t . (In case the denotation

of  q  is empty, monotonicity wil keep it true for any singleton denotation  {t}  of  q .)

Moreover, we may assume that this single  q–world lies at some finite successor distance

from  s , since we also have  φ  true at the submodel generated from the root. Thus, there

is some finite sequence  s=s1, ..., sn=t . Call a model  M' , s'  a  κ–relative of  M , s  if it

has a corresponding sequence  s1', ..., sn'  leading to a  q–world  t'=sn', such that matched

worlds  si, si '  satisfy the same infinitary  q–free modal formulas up to operator depth  κ .

(Henceforth, we will refer to the relevant vocabulary as language  L .) We prove this

Lemma There exists an ordinal  κ  such that, if  M , s |=  φ  and  M' , s'  is a

κ–relative of  M , s , then  M' , s' |=  φ .

From this, the required definition for  φ  arises as a disjunction of all modal descriptions

up to depth  κ  of finite  q–paths in models  M , s  for  φ  as described just now. (This is a

set, because of the restriction to fixed modal depth.) Clearly,  φ  implies this disjunction.

But also conversely, whenever some disjunct holds, we are in a model which is a  κ–

relative of some such  M , s , and the Lemma tells us that  φ  must hold.

Proof of Lemma  The argument starts like in the earlier proof of the infinitary Modal

Invariance Theorem. Assume that, for each ordinal  κ , there are models  M , s |= φ  and

M' , s'  with  κ–corresponding finite branches as above, such that  φ  fails in  M' , s' .

Now, code up this situation in one infinitary formula  Ψ(A, B, x, y, Ck, I, <) which

describes, in particular, the existence of a  <–descending sequence (along the index set

I ) of partial  L-bisimulations with the simulation sending the (x)i  to the  (y)i  at the top.

Moreover, we can state that in  A, there is just one  q–world. This formula then has

models with well-orders of arbitrarily high cardinality for  < . By the Boundedness

Theorem, it must have a model where  <  is not a well-order. Using a countable

descending chain of indices as before, such a model yields the following situation:

• a model  M , s |= φ  with finite action sequence  s=s1, ..., sn=t  to its only  q–world  t

• a model  M' , s'  where  φ  fails, with action sequence  s1', ..., sn'  to  q–world  t'=sn'

• an  L–bisimulation  C  between  M  and  M'   with  si C si ' (1≤i≤n) .

The remainder of the argument is as for the finitary Safety Theorem (ELD, chapter 5).

Given a situation like this, using successive simple  (L+q)–bisimulation-preserving
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moves of copying subtrees and re-attachment of nodes, one can unravel  the original

models  M   and  M'   to obtain the above situation with the following extra:

the links between corresponding nodes in the distinguished branches are unique:

these nodes do not attach to any others.

Then consider the model  N*   which is  M'  with one difference:  q  is true only in  t' .

Clearly, our  L-bisimulation is even an  (L+q)–bisimulation between  M , s  and  N* , s' .

Then we can argue as follows. Since the modal formula  φ(q)  holds at  M , s , it also

holds at  N* , s' . But then, by monotonicity, it also holds at  N', s' (whose denotation for

q  can only be larger). But this refutes the given failure of  φ  at  N ', s' (which was

unaffected by our (L+q)–bisimulation-preserving tree surgery). A contradiction.       n

Finally, from the syntactic description in the preservation theorem for continuity, one

easily extracts the stated normal form for operations that are safe for bisimulation.      n

9 A Henkin Proof for Infinitary Generalized Interpolation

There exists a more traditional proof of generalized interpolation in infinitary logic

which suggests a new ternary format for Gentzen sequents, keeping track of relevant

'transition vocabulary', that may work for logics lacking ordinary complete proof calculi.

Barwise & van Benthem 1996 propose a generalization of the Craig Interpolation

Theorem which also applies to infinitary first-order logic, as well as other logical

formalisms which lack the standard version of interpolation. (Examples where this

works are finite-variable fragments of first-order logic.) Their general strategy is the

replacement of ordinary consequence by a more general notion of consequence  A|=B

along an arbitrary model relation  R :  whenever  M |= A  and  M  R N, then  N |= B.

An important case has  R  as 'potential L-isomorphism': the existence of a family of

finite partial L-isomorphisms between  M , N  with the usual back and forth properties.

We state the main result here, and provide a new more traditional Henkin-style proof,

derived from an earlier one in ELD, chapter 10, for the Modal Invariance Theorem.

It avoids the Boundedness Theorem (while using notions from the cited paper). This

proof is more laborious – but in return, it provides suggestive additional information.

Theorem For  L∞ω–formulas  φ(x), ψ(x), the following are equivalent:

(i) there is an  α∈ Lφ∩Lψ  such that  φ |= α |= ψ
(ii)  φ  implies  ψ  along potential  Lφ∩Lψ –isomorphism.
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Proof  From (i) to (ii), this is an immediate consequence of the fact that potential

isomorphism in a similarity type  L  preserves truth of the corresponding  L–formulas.

For the direction from (ii) to (i), assume that  φ, ψ  have no interpolant in  L = Lφ∩Lψ .

We are going to construct a counterexample to (ii), using 'good triples'   (E, Σ, ∆),

where the idea is that  Σ  describes a model for  φ  over some domain of constants A,

∆  one for  ¬ ψ  over constants  B, and  E  a potential  L–isomorphism between  A, B,

all 'in statu nascendi'. We start with some preliminaries. First, set  µ =def max (ℵ0,

|subformulas(φ)|, |subformulas(ψ)|). Next, choose two disjoint sets of constants  A, B

of size  µ+, the first regular cardinal greater than  µ . For convenience, in what follows,

we shall be working with formulas in normal form, constructed from atoms and their

negations using both quantifiers, as well as arbitrary set conjunctions and disjunctions.

Moreover, throughout, formulas will only contain a finite number of constants.

Definition A good triple  (E, Σ, ∆)  satisfies the following requirements:

(1)  E  is a set of tuples  a, b  (a ⊆A, b⊆B)  with length (a) = length (b)

(2)  Σ  is a set of subformulas of  φ  made into sentences by plugging in constants 

from  A; and likewise for  ∆  w.r.t. subformulas of  ¬ψ  and constants from B

(3)  |E|, |Σ|, |∆|   are all smaller than  µ+

(4)   Σ, ∆  are  L-inseparable via E . That is, there is no set  ai, bi  of tuples in  E , 

each with a corresponding  L-formula  β(xi) , such that for some infinitary

∨, ∧ –combination  α  of  the formulas  β(xi),  (i) Σ |=  α  [xi:=ai] , while

(ii) ∆ |=  ¬ α  [xi:=bi]

Note These  ∨, ∧–combinations genuinely extend  L∞ω , but they are still invariant

under potential  L–isomorphism, in an obvious sense. (Allowing existential quantifiers

over infinite combinations, like in  ∃x  ∧n Rxan, would give problems with invariance.)

Fact Choose any starting tuple  a, b  for the free variables of  φ , ¬ ψ.

Then  ( {<a, b>}, { φ(a)}, {¬ ψ(b)} )  is a good triple.

Proof   The only non-trivial property to be checked is Non-Separation. But the above

strong formulation reduces to the usual inseparability given by the negation of clause

(ii) in our Theorem, in this special case where we only have one tuple  a, b  in  E .      n

We check a bunch of extension principles for  Σ  (those for  ∆  are entirely similar),

which are like the usual ones for 'consistency properties' in infinitary logic.

Facts
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(i)   If  (E, Σ, ∆)  is good, and ∧i φi ∈Σ, then  (E, Σ ∪{ φi} i, ∆)   is  good

(ii)  If  (E, Σ, ∆)  is good, and ∨i φi ∈Σ, then for some  i,  (E, Σ ∪{ φi} , ∆)   is good

(iii) If  (E, Σ, ∆)  is good, and  ∀xφ∈Σ, then for all  a∈A,  (E, Σ ∪{ φ(a)}, ∆)  is good

(iv) If  (E, Σ, ∆)  is good, and  ∃xφ∈Σ, then for any  a∈A  that is new to  Σ  and  E ,

(E, Σ ∪{ φ(a)}, ∆)  is good

Proof   (i)  Adding all consequences  φi   of  ∧i φi ∈Σ  does not affect (non-)separation.

Moreover, the cardinality of the extended  Σ  stays below  µ+ .  (ii) Here we need the

extended class of infinitary  ∨, ∧ –combinations. Suppose that all triples   (E, Σ ∪{ φi} ,
∆)  do  L–separate, say via extended formulas  αi  . Then  ∨i αi  separates  Σ, ∆  via  E :

quod non. (To be completely precise, one needs to spell out some details about tuples of

variables.) (iii) Again, adding the logical consequence  φ(a)  does not affect separation.

(iv) Adding  φ(a)  with a new constant  a does not yield new separations. For, this move

does not trigger new tuples in  E, and then we have the usual valid inference from  Σ
∪{ φ(anew)} |= α  to   Σ ∪{ ∃xφ} |= α . (Note that the new  a  does not occur in  α ).     n

The new feature, as compared with consistency properties, are extension principles for

the component  E , that will create the required features of a potential  L–isomorphism.

Facts (Continued, Symmetric Forms Suppressed)

(v) If  (E, Σ, ∆)  is good, a, b ∈E, P ∈L,  Pa ∈Σ  , then  (E, Σ, ∆ ∪ (Pb})  is good

(vi) If  (E, Σ, ∆)  is good, a, b ∈E, then for any  a∈A  and any  b∈B  that is new

to  ∆, E ,   (E∪ (aa, bb}, Σ, ∆ )  is good

Proof  (i)  Suppose there were a separation, say by the formula  α . Then we must have

Σ |= α [A–substitutions] ∧ Pa ,  and  ∆, Pb |=  ¬ α [B–substitutions]. The latter implies

∆ |=  ¬ (α ∧ Px) [B–substitutions] . But this is a separation for  Σ, ∆  via  E  after all.

(ii) Suppose that we get a separation via the new  E–link. I.e.,   Σ |= α [A–substitutions],

and  ∆ |=  ¬ α [B–substitutions], where  α  is an extended  L–formula as before, now

also involving  L–subformulas  β(x, y)  associated with aa  (for  Σ )  and  bb  (for  ∆ ) .
This gives the following separation for the original case:  Σ |= ∃yα [a],  ∆ |= ¬ ∃yα [b]

(recall that  b  was new). We must show here that  ∃yα  is equivalent to an admissible

extended formula. Using an infinitary distributive normal form for  α , we first move

the existential quantifier inside over disjunctions. Over the remaining conjunctions,

we then move  ∃y  inside until it only prefixes new subformulas  β(x, y), using the valid

equivalence  ∃y ∧ (β(x, y) ∧ γ(x))  ↔  ∧ (∃yβ ∧ γ) . The result of this procedure is an

ordinary  L-formula with respect to the old pair  (a, b).           n
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Now we construct our models. We list all good triples in a sequence of length  µ+ ,

interspersed with all relevant formulas, and all constants. We make each item occur

cofinally often, to ensure fair scheduling. This can be done, for cardinality reasons.

Here is a construction sketch, via a (componentwise) growing sequence of good triples

in an ordinal sequence  T0, T1, ..., Tα, ...  (α < µ+) . Our steps follows the above

decompositions, starting from the initial good triple  ( {<a, b>}, { φ(a)}, {¬ ψ(b)} ) ) .

Whenever a formula is scheduled, we check if it triggers a possible extension as listed

in the above Facts, and then perform that – and the same with constants and  E–zigzags.

At limit ordinals, we take the union of our efforts so far, and continue. In the standard

manner, this gives us two models – one based on  A  for   ∪i Σi , one based on  B  for

∪i ∆i , while  ∪i Εi   describes a potential  L–isomorphism between these two.        n

Here is the surplus in this proof. The core of the argument are the construction rules.

These may also be viewed as tableau rules for a calculus of 'joint consistency' along

potential  L–isomorphism. The rules deviate from standard ones in their ternary format

Σ consE  ∆

where  E  codes the relevant vocabulary and object links. The intended interpretation

validates equivalences like the following:

Fact

(i) Σ + Pa  consE + a, b   ∆ iff Σ + Pa consE + a, b  ∆ + Pb

(ii) likewise for negated atoms  ¬ Pa, ¬ P b
(iii) Σ  + ∧i φi   consE  ∆ iff Σ  + ∧i φi + {φi} i   consE  ∆
(iv) Σ  + ∨i φi   consE  ∆ iff for some  i , Σ  + φi   consE  ∆
(v) Σ  + ∃x φ  consE  ∆ iff for some new  a , Σ  + φ(a)  consE  ∆
(vi) Σ  consE + a, b  ∆          only if for some new  b ,  Σ consE + a, b + aa, bb  ∆

DIGRESSION       A New Proof Format:  Ternary Sequents for Interpolation Inferences

The preceding analysis suggests an independent study of 'interpolation inferences'.

We can recast the preceding principles as inference rules manipulating ternary

sequents, with an additional argument recording relevant vocabulary:

Σ  ⇒E  ∆

Historically, notions of inference keeping an explicit record of variable and fixed

vocabulary occur as early as Bernard Bolzano's work (1837) on styles of consequence.

Working with such sequents may change familiar features of logical consequence.
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There are now three positions at which to formulate structural rules, and e.g., one can

have Monotonicity or Additivity w.r.t. vocabulary. In this connection, recall that

consequence along a model relation did not necessarily retain all usual structural rules.

(In fact, what it does retain are strengthening and disjunction of antecedents, as well as

weakening and conjunction of consequents.) We pursue these matters a little bit.

Indeed, a number of ternary inference notions occurred in the above. For convenience,

disregard the complication of the family of links in  E , with infinitary conjunctions and

disjunctions over the associated formulas. The negation of  Σ consE  ∆  then states the

existence of some separating  L-formula  γ  with  aEb ,  γ(a)  implied by  Σ  and  γ(b)

refuted by  ∆ . If we turn this into a positive statement, using negations of the formulas

in  ∆  for convenience, then we get the existence of some L-formula with  γ(a)  implied

by  Σ  and  γ(b)  implying the disjunction of  ∆ , as usual. This notion of 'interpolation

consequence' implies our initial one of 'consequence along potential  L-isomorphism'.

But the latter may also, of course, be studied in its own right. (By the analysis of

Barwise & van Benthem 1986, it is RE for first-order logic, and many of its variants.)

Consequence along potential isomorphism has some interesting features, as compared

with ordinary sequent calculi. We already mentioned the structural rules. But also, this

calculus does not obey all the usual logical rules. E.g., the usual conditionalization rule

fails for conditionals. To see this, let the infinitary formula  φ = φ (D, <, =)  define the

ordinal  ω0  categorically, with  D  interpreted as the whole domain. Likewsie, let the

formula  ψ = ψ (D', <', =)  define the ordinal  ω1  categorically, with  D'  equal to the

whole domain. Evidently,  φ (D, <, =), ψ (D', <', =)  ⇒{=}  ⊥ . But this does not imply

φ (D, <, =)  ⇒{=}  ψ (D', <', =)→⊥ , since any two infinite domains admit of a  {=}-

potential isomorphism. Conditionalization does hold when we modify the  E-argument.

For, if  Σ, A  ⇒ E  D, and  L(A)  is the vocabulary of  A, then  Σ  ⇒ E ∪ { L(A) }  A → D.

We conjecture that this ternary rule format captures consequence, even for deviant

languages like finite-variable fragments, where no Gentzen system can ever axiomatize

ordinary validity (cf. Andréka, van Benthem & Németi 1996). E.g., consider the

following counter-example to interpolation inside the two-variable fragment (with  = ):

|A| ≤1, |–A|≤1 ⇒ ¬ (∃x (Bx ∧ Cx) ∧ ∃x (Bx ∧ ¬ Cx) ∧ ∃x (¬ Bx ∧ Cx))

There is no pure identity interpolant in two variables. Such formulas cannot distinguish

between domains with 2 objects (where the antecedent may hold) and domains with 3

objects (where the consequent can be refuted). With our ternary inference, we do obtain

|A| ≤1, |–A|≤1, ∃x (Bx ∧ Cx), ∃x (Bx ∧ ¬  Cx), ∃x (¬ Bx ∧ Cx)  ⇒  ⊥
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|A| ≤1, |–A|≤1 ⇒{=, B, C}  ¬ (∃x (Bx∧Cx) ∧ ∃x (Bx∧¬ Cx) ∧ ∃x (¬ Bx∧Cx))

The enforced E–registration of cross-over blocks the sequent for a standard interpolant:

|A| ≤1, |–A|≤1 ⇒{=}  ¬ (∃x (Bx∧Cx) ∧ ∃x (Bx∧¬ Cx) ∧ ∃x (¬ Bx∧Cx))

This analysis can be pushed still further, to probe where the classical proof of the

preceding sequent must employ principles beyond the two–variable Gentzen format.

10 Relevant Results by Other Authors

Here are a few relevant results obtained by others in the interval since ELD appeared.

D'Agostino and Hollenberg 1996, 1997 use the µ–automata techniques of Janin &

Walukiewicz 1996 to generalize modal interpolation theorems and Los-Tarski

preservation theorems to the µ–calculus (i.e., modal logic with arbitrary fixed points).

Van Eyck 1996 gives a modal lambda calculus with update operators (in the tradition of

Janssen and Muskens) that combines dynamic operations with type theory, with an

explicit terminating decidable rewriting system. The semantics shares some features

with modal CRS-style models for predicate logic in its use of 'admissible registers'.

Gerbrandy & Groeneveld 1996, Gerbrandy 1996 propose a convincing account of

collective epistemic updates over non-well-founded information models (i.e., LTSs for

multi-S5 modulo bisimulation), which dynamifies the epistemic logic of Fagin,

Halpern, Moses & Vardi 1995 – and axiomatize the resulting logic. Their update

conditions may be cast as bisimulation-respecting process operations (ELD, chapter

10). For instance, updating with  a's learning that  φ  amounts to one-step unrolling all

a-links from the root and then updating that separate  a-structure with  φ  (just once, or

iteratively at all finite levels down), while tagging on the other  b-links unchanged.

Groenendijk 1997 shows how to combine dynamic predicate logic with Groenendijk &

Stokhof's partition semantics for questions, to obtain information states that can deal

with changing focus in discourse, and the attendant inferences. Hollenberg 1996

extends the modal safety theorem to the µ–calculus: the repertoire is the original modal

one (as above) plus arbitrary fixed points. His forthcoming dissertation also contains a

full proof of the generalized modal translation found at the end of the above Section 2.

Kurtonina 1996 introduces a new kind of bisimulation between states and sets of states

(cf. Concurrent PDL, ELD chapter 10) characterizing disjunction-free modal languages.

Marx 1996 shows that Pair Arrow Logic is EXP-TIME complete, and indeed,

polynomially equivalent with basic modal logic plus a universal modality. Abstract

Arrow Logic remains PSPACE-complete. Further arrow axioms can easily lead to
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undecidability. (In private correspondence, Marx has also announced EXP-TIME

complexity for the original Guarded Fragment, via a reduction to CRS over 'locally

cube' models.) Marx and Venema 1996 is a systematic state-of-the-art presentation of

many-dimensional modal logic, including bridges with algebraic logic, as well as many

key techniques for dynamic logic, broadly conceived. Ter Meulen 1995 proposes a

concise framework for temporal representation in natural language that may be viewed

as an alternative dynamification of temporal logic, using an extra, intermediate level of

representation. Successive formulas algorithmically generate successive 'dynamic

aspect trees', for which there is a notion of 'succesful embedding' into standard temporal

models. Valid inference can then be defined as verification of the conclusion by any

succesful embedding for the DAT of the premise sequence. This alternative dynamic

architecture, employing 'constructive states', needs to be compared with the

dynamification strategy of ELD, chapter 2. Seligman & ter Meulen 1995 analyse

further logical aspects of this framework. In response to the open question following the

above analysis of GF, Németi & Kurucz (personal communication) have announced

decidability of Arrow Logic with arbitrary polyadic compositions. Otto 1997

characterizes the bisimulation-invariant queries over finite models that are computable

in polynomial time as being precisely those definable in k-variable fragments of

propositional  µ–calculus (with operators for smallest and greatest fixed points).

Finally, Patterson 1996 gives a bisimulation-cum-heredity analysis of intuitionistic

propositional logic, plus analogies with other modal results. In a different formulation,

involving non-symmetric directed bisimulations, some of these results had been found

independently by Rob van Glabbeek.

11 First Batch of Errata for ELD

Most items in the following list of Errata were kindly supplied by Eva Hoogland.

p. 18,  +14 [[φ ∧ ψ]] (X)   =   [[φ]] (X) ∩ [[ψ]] (X)

p. 18, –1 (RF)#

p. 19, –14 ... instructions (ii) will produce {¬ s} ...

p. 20 The counterexample to Cut is defective, and should be replaced by

◊p, ¬◊p  |=upd  q  and  ¬p  |=upd  ¬ ◊p  but not    ◊p, ¬p  |=upd  q.

A valid Cut rule:  X |=upd A  and  A, Y  |=upd B   imply  X, Y |=upd B

p. 29, + 1 ...  (¬ ∃x Dx) 6
p. 30, +8 ... the De Morgan law interchanging negation with disjunction ...

p. 34, –21 λP •

p. 35, +16 shift  P  (presence of P) and ¬P  (absence of p) to right under the nodes.
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p. 65 Fact    'In the limit', Relational Set Algebra reduces to Boolean Algebra.

Proof  Valid SRA identities remains BA-valid when read with Booleans

unchanged, converses disregarded, conjunction for composition, taking

Boolean 1 for identity. The reason is that such an identity must hold on

the full set RA over a singleton point (an isomorph of the two-element

Boolean set algebra) – and there, the given syntactic transformations are

true. But now, one can use the fact that the identities valid on the two-

element Boolean algebra are in fact valid on all Boolean algebras.         n

p. 65, –3 ... (Ř   o – ....

p. 73, +4 ... and t ≡ t' .
p. 91, +3 "From left to right, this is a simple induction."

p. 91, +5 "Success paths" are finite sequence of states running from the initial one,

via successive atomic transitions, to some success state (where √ holds).

"Succesful path formulas" are existental first-order formulas describing 

success paths, including truth/falsity of all relevant atoms at their  nodes.

p. 96, +3 ... to Fragments 1 and 3 ...

p. 96 First picture:  y1  instead of  x1

p. 99, –5 ... is the unique subpath of  π  ...

p. 100,  –6 Delete the sentence beginning with "We can be sure..."

p. 112, –16 ... and t ≡ t' .
p. 112 For finite models  M , x  and  N, y,  equivalence of their modal theories 

implies the existence of a bisimulation linking  x  and  y, and vice versa.

A similar result for fails for safety of operations on finite models.

Counter-example Consider the model

•  2 •  3 •  5 •  6
a         b a   a b

•  1 •  4

with the relation  R = { <1, 2>, <4, 5>, <4, 6>}. This relation is safe:

every bisimulation on the model w.r.t. the two actions  a, b  respects it.

But  R  has no definition in the standard format of the Safety Theorem. n

What we can show, however, is that all 'internally safe' relations must

belong to the transitive closure of the union of all atomic actions.

Passing from a model to its obvious 'bisimulation collapse', this does



38

come close to an actual enumeration in the prescribed syntactic format

which allows only uses of composition, union, and arbitrary modal tests.

In general we are left with this OpenQuestion:  "Find an internal version

of the Safety Theorem on finite models".

p. 114, – 2 ... Φn (xn)  and Pxn , ...

p. 115, –16 .... modal equivalence between states ...

p. 116, +4   ... Start with the match  w1, v1 . ...

p. 117, In lines –14, –15 and –18, replace  w  by  v .

p. 129, +4 ...  (¬ ∃x Dx) 6
p. 168, –1 replace first  x  by  s .
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