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Abstract. If a formal theory T is able to reason about its own syntax, then the
diagonalizable algebra of a formal theory T is defined as its Lindenbaum sentence
algebra endowed with a unary operator O which sends a sentence ¢ to the sen-
tence O¢ asserting the provability of ¢ in T. We prove that the elementary theories
of diagonalizable algebras of a wide class of theories are undecidable and establish
some related results.

0. Introduction

A diagonalizable algebra D is a Boolean algebra A together with an operator O satisfying
the following identities:

O(e — f) < Da— Df
Oa < ODa

0(0a — a) = Oa

oT =T,

where T is the unit of A. These were introduced by Magari [13] with the following
example in mind:

Take a formal theory T over classical propositional logic containing some arithmetic
and consider At, the Lindenbaum sentence algebra of T. At consists of classes of
T-provably equivalent sentences (i.e. formulas without free variables). The Boolean
operations on At are induced by propositional connectives from the language of T in
the obvious way. The operator O, which turns At into a diagonalizable algebra Dt
called the diagonalizable algebra of T, comes from the provability predicate of T. This
provability predicate is a formula Prr(z) in the language of T expressing that z is a
godelnumber of a formula provable in T. One takes O : ¢ +— Prp( [l ), where [l is the



godelnumber of the sentence ¢. Prp(z) is constructed in such a way as to most faithfully
represent the inductive definition of (Hilbert-style) provability from the axioms of an
effectively presented formal system (see Feferman [9, § 4] for a detailed description of the
provability predicate), so that the theory T is itself able to follow many of our arguments
about provability in T, translating them as those about Prr(z). This circumstance takes
care of Dp’s being, as has been claimed, a diagonalizable algebra, which can be restated
as saying that for all T-sentences o and 8

FPrp(fa— g1) — (PrT(foﬂ) —Pr([ 4] )

+Prr(fal) — Pry ("Prr(Tal))) (Z-completeness)
+Prr (TPrr(fal) — o!) — Prr(Tal) (L&b’s Theorem)
Fo = FPrp(fal).

(+ stands for provability in T and, further on, will stand for that in the formal theory
currently under consideration. In parentheses the names by which the corresponding
principles will in future be referred to are given.) See Solovay [26] or Smorytiski [24,
Theorem 0.6.18(i)] for verifications of the four stated facts, which together go by the
name of Lob’s Derivability Conditions.

The present paper is entirely devoted to ThDr, the first order theory of the di-
agonalizable algebras of formal theories T. We present two (not too drastically) differ-
ent proofs of the undecidability of Th Dt for T coming from a reasonably large vari-
ety of formal theories, such prominent natural examples as Peano arithmetic PA and
Zermelo—Fraenkel set theory ZF included. The first proof establishes the nonarithmetic-
ity of ThDy for £1-sound T. (T is £;-sound if every sentence of the form Prr(l¢p!)
proved by T is true, or, equivalently, if T proves no false X;-sentences; T is ¥;-ill oth-
erwise.) The second proof gives mere undecidability, but works for a still larger class of
formal theories and gives a sharper upper bound on undecidable quantifier alternations.
Our theorems are answers to question(s) found in e.g. Montagna [18] and, more recently,
in Artemov & Beklemishev [3].

Among earlier results concerning (un)decidability questions related to diagonalizable
algebras, one should mention Solovay’s Theorem [26], which shows the equational theory
of D for T X;-sound to coincide with a decidable modal logic L. Later investigations
by Artemov [2] and Visser [27] adjust Solovay’s discovery to any formal theory fulfilling
minimal strength conditions. Smorynski [22] strengthens Solovay’s results upto the
decidability of ThyDr, the universal theory of Dr. For these T, Thy Dt does not
depend on the particular choice of one. In Section 4 we indicate how to get the same
for other kinds of formal theories. Artemov & Beklemishev [3] obtain decidability and
undecidability results for first order theories of a number of individual diagonalizable
algebras. It has also been known that the first order theory of the whole variety of
diagonalizable algebras is hereditarily undecidable (Montagna [19] and Smorynski [23]).

The paper is organized as follows: Section 1 constructs a parameter-free first order
definition of the set {0"0L},e, in diagonalizable algebras of Xi-sound theories. This
definability is put to use in Section 2, where it serves to extract the nonarithmeticity
of the first order theories of these algebras. In Section 3 we are going to show that
the mechanics of a special class of Post canonical systems are in a manner of way
reflected in the structure of the diagonalizable algebra of any theory of nfinite credibility
ertent, i.e. any theory satisfying - 0”0l for no n € w. Finally, Section 4 harvests



the undecidability of Th Dt for theories T of infinite credibility extent as well as the
undecidability of these theories’ opinions on their own diagonalizable algebras. New
questions generated by our answers are scattered around the paper in hope for potential
researchers.

Throughout the sequel we shall use O¢ in place of PrT(rgol) for T-sentences . Lob’s
Derivability Conditions, when written out using this convention, take on a more compact
form

F (e — 8) — (Do — 0Of)
FOa— 00«
FDO(Da — a) — Da

Fa = F0Oaq,

in which shape they could be forgivably mistaken for the extrapropositional axioms and
rules of the modal logic L (cf. Smorynski [24, Chapter 1, L=PRL]). A consequence of
this typographical coincidence is the wide-ranging utility of modal-logical methods in
the study of diagonalizable algebras of formal theories. In Section 2 we shall sample the
flavour of such applications.

To add to confusion, we shall even slightly readjust our way of presenting diago-
nalizable algebraic expressions, writing the more suggestive Fa for o = T; Fa —
for @ < f; etc. Please note that our conventions deal away with many distinctions
between diagonalizable algebraic, provabilistic, and modal-logical notation. Apart from
the obvious drawbacks, this notational manoeuvre may merit some appreciation for
promoting unity, for every once in a while the reader of this paper will be encountering
arguments about the diagonalizable algebra D, involving (and occasionally dipping
within) a formal theory T, that appeal to his/her knowledge of L for substantiation of
certain claims.

In the context of formal theories T this unified notation may, for the purposes of our
exposition, be treated as part of the generally more expressive vocabulary of T. A key
feature of T is that it is able to talk first order arithmetic, which is needed to carry out
the godelnumbering of the syntax of T in the first place, for otherwise Dt would not
be a well-defined object. Thus we shall assume either that the language of T physically
contains symbols for arithmetical operations, or that a particular interpretation of the
arithmetical language in T is given. (We shall later specify exactly how much arithmetic
T should know.) In order to grease the interaction between the arithmetic part of the
language of T and the chosen modal logic-like format for its pronouncements on Dy, we
shall somewhat relax the orthodoxy of that format.

The first step in this direction is to allow quantification to percolate inside (scopes
of) O’s as in the expression Yz OVy ¢(z, y), whose meaning should be transparent once
one recalls that O stands for the provability predicate of T. Next, in formal theories it
is possible to quantify over iterates OF of the provability predicate, which legitimizes
expressions like OVz 0OL (< is short for m0O-), with the understanding that 0% is
the same as ¢. Furthermore, we shall write O, (O<y¢) for the T-formula expressing
that ¢ has a T-proof of gédelnumber (smaller than or equal to) y. Their ‘informal’
analogues b, ¢ (<n ) are used to convey to the reader messages of similar content.
A very useful schema now easily formulated is known under the name of the Small



Reflection Principle:
FYo,z20(0ccp — ).

(Note, incidentally, that we do not hesitate to quantify over sentences occurring within
the scope of a O which is itself within the scope of the quantifier in question.) The Small
Reflection Principle is a formalization of the obvious fact for any natural number n and
any sentence ¢, either ¢ itself or the fact that no m < n is the godelnumber of a T-proof
of ¢ is provable in T.

The requirements on the strength of the formal theories T in this paper are as
follows: It is certainly safe to presuppose that T contains PA. In fact, the theory 1X;
suffices throughout, although not all of our arguments intended to formalize in T do so
in IZ; straightforwardly. Furthermore, it is even possible to obtain all our Theorems
and Corollaries for theories extending just IAg+exp. This would, however, necessitate
extensive modifications in our constructions as well as arguments along the lines of
Zambella [29].

The theories mentioned can be looked up in Héjek & Pudlék [10]. The definition of

. the hierarchy {¥,, I, }ne, of arithmetical formulas, to whose lower levels we are going
to refer, is also found there.

Underlying the heuristics of almost every construction in this paper is the mental
picture of DY, the dual space of Dt (which is not to say that familiarity with this
object is formally necessary for understanding our arguments). The dual space D* of
a diagonalizable algebra D is the Stone dual space of the Boolean structure of D (i.e.
the topological space of ultrafilters on D (= maximal consistent extensions of T in case
D = Dr) with sets of the form { z | & € z }, where a € D, constituting an open basis for
the accompanying topology; clopens a* in D* correspond to elements a of D) serving
as domain for a binary relation R defined by

zRy iff VaeD(Da€z = ac€y).

Boolean operations in D correspond to set-theoretical ones in D*. The operator O of D
is mimicked in D* by the operator O* on the power set of D*. For X C D* we have

O X ={zeD"|VyeD*(z Ry = y€ X)}.

0*X is clopen if so is X. The upshot is that O*a* = (Oa)" for all & € D (cf.
Abashidze [1] or Magari [14]). See Montagna [17] for a breathtaking glimpse inside Dj, .

We shall be referring to an element y of D* as lying (R-)above an element z if 2 R y.
This spatial orientation suggests the definition of d(z), the (R-)depth of an ultrafilter
z € D*. d(z) is an ordinal defined as the supremum of d(y)+ 1 over all y € D* satisfying
z R y. Clearly, only the ultrafilters in the well-founded part of R~! enjoy a well-defined
depth. The well-founded part of R~! can be shown to coincide with the finite (R-)depth
part of D*, i.e. the open set {z € D* | d(z) < w }.

Another circumstance contributing to the relevance of the earlier mentioned modal
logic L to the study of diagonalizable algebras of formal theories T is that its Kripke
models, that are indispensable in modal logic proper, come, for many practical purposes,
close to being factors of DY.. Many arguments shedding light on the structure of Dy
can be seen as demonstrating that Dt ‘factors’, in a weaker or stronger sense, onto a
particular (class of) Kripke model(s).



The first example of such an argument is found in Solovay [26], whence the method of
Solovay functions originated. These functions provide a systematic way of constructing,
given a Kripke model K, particular T-sentences , corresponding to nodes a of K such
that the dual space of the subalgebra generated within Dt by the sentences &, shares
with K some of its properties.

Solovay functions have also been successfully applied to the study of algebraic be-
haviour of formal predicates other than the provability predicate, accumulating a rich
variety of tricks for attaining diverse goals. The constructions in the present paper
borrow heavily from this arsenal. We employ two Solovay functions very close in form
and spirit to the ones devised by Berarducci [5] and Dzhaparidze [7] and [8] to deal with
problems (originating) in interpretability logic. This, in the author’s view, shows that
investigations into other predicates of metatheoretical extraction might be not irrelevant
to our better understanding of the provability predicate.

1. Defining the natural numbers

This Section is devoted to first order defining the set {0"OL},e. in the diagonalizable
algebras of X;-sound theories T. We therefore fix such a theory T for the whole of the
Section. On default, T is the formal theory we are dealing with in various definitions
and lemmas.

1.1. DEFINITION. We define two predicates in the language of the first order theory
of diagonalizable algebras:

c€B =3dplo—0Op

celT =oc€B
& Ve ((I—-D_L—>§ & VreB(FT—& = FOT—¢€)) = F—a—-»{).

Clearly, o € B expresses that ¢ is of the form O¢p. In the dual space of a diagonaliz-
able algebra, o corresponds then to an R-upwards closed eclopen ¢*. Note that in any
diagonalizable algebra the set B is closed under conjunction.

We shall be referring to elements of B as boz elements (or sentences) and to those in
T as top-boz ones. The prefix “top-” hints at the fact that in the diagonalizable algebra
of any theory S, a top-box sentence corresponds to a clopen lying entirely within the
finite R-depth part of the dual space Dg, as we shall shortly see.

1.2. LEMMA. In any diagonalizable algebra, if - T — 0”01 for some n € w and T is
a box sentence, then 7 € T. In particular, O"0OL1 € T for all n € w.
Proor. First, it is clear that if c € B, 7 € T and o — 7, then ¢ € T. Second, one

easily verifies by induction on n € w that O"0L € T. ]

1.3. LEMMA. In the diagona]izable algebra of any theory S, T € T if and only if T is
a box sentence and there is ann € w s.t. b7 — 0"0OL.



Proor. The (if) direction follows from Lemma 1.2.

(only if). Following Lindstrém [12], we consider the sentence ¢ defined, with the
help of self-reference, as follows: ‘

£ = 32 (D$D_L/\Vgo (DST(Dgo—»f)—»ﬁDw)).

We are going to show that for an arbitrary box sentence ¢ = O% one has o — £ iff
o — 0”0l for some n € w.

Suppose F 0¥ — 0*0OL. Reason in S:

Assume Oy and —¢. By the Small Reflection Principle we have that for all
sentences ¢, O<p(Op — ) implies Op — € and hence —Og. Thus we have
Vo (O<n(Op — §) — —0O¢) and O"OL (this follows from O%), which, taken
togeth_ér, imply €.

Therefore, - 0% — € as was to be shown.
Conversely, suppose - Oy —¢. For some n € w we then have I 0, (0% — €). Reason
in S:
Assume 0O and hence £, which says that there is an y s.t. OYOLl and
Vo (O<y(Op — &) — ~0O¢p)). We can not have y > n for then we would have
O<y (0% — &) implying ~O% contrary to the assumption. Thus we have y < n
and, in particular, 0”01 by Y-completeness.

We have just mferred } o — 0”01 as we said we would.

Now note that one has 01 — ¢ and, for any box sentence 7, 7 — ¢ implies
F7— 0™0L for an appropriate m € w, hence Or — O0™*'0OL, hence | OT — €.
Therefore, by the definition of T', ¢ € T implies I ¢ — £ which, as we have seen, entails
Fo—0O™0Ol.

This completes the proof. ]

We proceed to introduce more first order diagonalizable algebraic abbreviations.

1.4. DEFINITION.
S(a;p, 7)

TEB & p—0O(t—a)
& Yo€B t pp— (O(0c — a) — O(c — 7))

Qa,e;7) = p(f-p & Fp—e & S(o;p,7))
veN=veT
& Va,e ((Q(a,e;[l_l_) & V€T (Q(a, ;1) = Q(a,s;Dr))) = Q(a,e;v))

S(a; p, T) translates, roughly, as saying that p is of the opinion that 7 is the weakest box
sentence provably implying «, while @Q(«a,¢;7) says that such an opinion is consistent
with €. The content of ¥ € N is that the top-box sentence v is contained in any set
of the form {p € T | @Q(a,¢€;p)} once this set contains OL and is closed under O. In
diagonalizable algebras of ¥;-sound theories, the formula ¥ € N is intended to single
out sentences of the form 0”01 with n € w. While one direction is rather trivial, the
other will take us the rest of this Section: We shall have to show that an appropriate
choice of & and ¢ can prevent unwanted sentences from satisfying Q(e,¢; ).



Here is what one should know about S(---):

1.5. LEMMA. In any diagonalizable algebra,
(a) If FA— p and S(a;p, ), then S(a; A, 7).
(b) Ifc € B, S(a;u,7) and b p— O(o <« T), then S(a; pu,0).
(c) IfS(a;p,7)and S(a;p,0), then b p— O(0 « 7).
Proor. Both (a) and (b) are quite obvious.

(¢). S(e;p,7) implies | 4 — O(T — ), and, since T € B, S(a; y,0) implies -y —
(o(r—a)—0O(r—0)). Thus - u—0O(7—0). The converse - pu— O(c —7) is symmetric.
"

1.6. LEMMA. In any diagonalizable algebra, for alln € w, D"OL € N.

Proor. Immediate from Lemma 1.2 and the definition of N by induction on n. ]

To prove that sentences of the form O"0O_L exhaust the set N of Dy, we shall construct
a Solovay function. Since our purpose is to take good care of certain top-box sentences’
being or not being (seen by other sentences as) the weakest box sentences implying yet
another given sentence (see Definition 1.4, esp. S(--)), it is hardly surprising that the
definition of our Solovay function occasionally almost quotes from Definition 5.6.3 of
Dzhaparidze [7] and Definition 8.1.3 of Dzhaparidze [8] which create functions intended
to gain thorough control over the behaviour w.r.t. £; sentences of the sentences arising
from the function constructed. Dzhaparidze’s Solovay functions are descendants of the
one in Berarducci [5], who deals with relative interpretability between extensions of the
ground theory, a relation reducing, in certain cases, to II; conservativity.

1.7. DEFINITION. Until Proposition 1.15, fix a true II; sentence 7. Working within T,
we define a recursive function H,, ranging over the set {a;}icw U{di }icw—{0} U{ei}icw U
{0}, where the elements indicated are assumed to be pairwise distinct. We use the usual
abbreviation L,=f for 3z Vy>z H,(y)=f.

We set

H.(0) = 0.

The value of Hr(z + 1) is defined by Cases:
Case A. Hy(z)=0and Oz(m — Lr#e;) for some i € w.

H,,(x+ 1) =e;.

Case B. Hy(z)=e; and for some sentence ¢ and y < = we have O, O, (Op—
(m — Lz#ei+1)) and Hx(y) = 0.

Hp(z + 1) = ei41.



Case C. Hp(z)=e;, Case B is not the case and O, L,+#a; for some j € w.
Hy(z+ 1) = q;.

Case D. Hz(z) = ai+1 and for some sentence ¢ and y < z we have Oz,
Oy (0@ — Lx#d;41) and Hx(y) = e;.

HW(J) + 1) = d,'+1.

Case E. Hi(z)=a; or Hi(z) = d;, Case D is not the case and O, L.#a; with
Jj<z.

He(z+ 1) =aj.
Case F. None of the preceding Cases takes place.
Hy(z+ 1) = Hp ().

This completes the definition of H,.
Finally, we define two sentences:

ar = Jilr=a;, and e = TAI L, = e;.

The sentence 7 indexing H; is the parameter that we later are going to vary to demon-
strate the versatility of the predicate @{a,¢;-) by substituting e, and €, for a and ¢
respectively. A similar, although much more accurate treatment of arbitrary true II; sen-
tences within a Solovay function forerunning ours is found in Beklemishev [4, II].

Figure 1.1 is intended to help the reader visualize the behaviour of H,. Note that
this picture is in fact that of an infinite Kripke frame with the straight arrows playing the
role of the familiar accessibility relation r associated with the O operator. Transitions
of the function H, along these arrows correspond to Cases A, C and E of Definition 1.7,
while those along the dotted arrows are due to Cases B and D.

The relations Sy and S, come from interpretability logic (see De Jongh & Velt-
man [11]). The way H, goes about the relations Sp and Se; (in Cases B and D resp.) is
reminiscent of the Solovay functions appearing in Dzhaparidze [7] and [8] and especially
in Zambella [28, Section 5]. Our H, pursues much the same ends as in Zambella [28],
but, since our situation is simpler in that we deal with an individual, albeit infinite,
frame of a not too intricate structure, we are able to leave out some of the complica-
tions in Zambella [28]. In particular, the convergence of H is, in our case, due to rather
trivial reasons.

One superficially confusing distinction between our and many preceding similar
constructions is that we do not describe the behaviour of H; in the general terms of
relations R and S,, advocating rather an individual approach to particular nodes of the
frame. (Note, for example, that So and Se, are not treated by H, in exactly the same
way.) This is because we only handle a single frame rather than a class of those and
because we have got an extra complication with the sentence 7.

Next we proceed along the well-throdden path of demonstrating the adequacy of a
Solovay function for our purposes. These are, however, somewhat different from many
earlier cases (i.e. proving completeness theorems for various logics). Thus, we only need



(Figure 1.1)
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‘commutation lemmas’ in a very modest degree of generality. In particular, we do not,
as many authors do, take care of nested occurrences of modal operators other than O.

1.8. LEMMA. (a) F3f€{a;i}icwU{di}icu—{o)U{ei}icwU{0} Lr=f.
(b) For all k € w, Hr(k) = 0.
(¢) ¥m— Lry=eg.

ProoF. (a). We prove that H, reaches a limit value. If it ever leaves 0 for {e;}icw
then there is an ¢ s.t. Hx(z) # 0 and, while H, remains among the e’s, it can change
its value at most z times, for, by inspection of Case B of Definition 1.7, each change of
value requires a different proof <z.

Leaving the e’s, H, finds itself among a’s and d’s. Each two moves of the function
diminish the subscript of its value by at least 1 (see Cases D and E). Clearly, this can
not go on forever.

(b). Suppose H leaves 0. Then, by (a), it arrives at its limit value L, = f # 0, for
which there has to be a proof of Ly #f or of #— L. #f, possibly from a true sentence of
the form O¢p as a hypothesis. By X-completeness, we then have 7 — L, #f in either
case. Now, since our theory T has been assumed to be ¥;-( and hence II»-)sound,
T — Lpx#f is true. We have chosen 7 true, so L # f, which is a contradiction that
leaves H, safely at 0.

(c). Immediate from (b) on inspection of Case A. "



In Lemmas 1.9-10 we show that L, respects the R-depth of the nodes {a;}ic.
and {d; }icw—{o0}-

1.9. LEMMA. (a) FVi(Lr=a; — 03j<iLr=a;).
(b) FVi(Lr=a; V Ly=d; —.Vj<iOLy=a;).
(¢) FVi,j(Lr=e; —OLr=a;).
(d) FVYj(Lrz=0— CLr=a;).
ProoOF. (a). We reason in T. Assume L, = a; and fix an z s.t. H,(z) = a;, so that one
also has OH,(z)=a;, and hence 03j<i(Ly=a; V Lr=d;) for a;’s and d;’s with j <
are the only places that H, can go from a;. On the other hand, we must have OLr#a;
for H, to get to a; in the first place. Suppose 0 < j < 7 and reason inside O:
If Ly = d; then 0O,(0¢ — Lr#d;) holds for some provable ¢ and y satisfying
H:(y) = ej_1. Clearly, y < z so that one has O«,(0Op — Lr#d;) implying
O¢— Lrx#d; by Small Reflection. Since ¢ is actually provable, we have L, # d;,

a contradiction.
Thus OL,#d; whenever 0 < j < i. We are left with 03j<i L,=a; as required.

(b) is immediate on inspection of Case E of Definition 1.7.
(c). See Case C.

(d). Assuming, in T, L, = 0, one has OL,=eg by inspection of Case A, whence
OOLyr=a; follows by (c) for any j € w. OLr=a; follows then by E-completeness. ]

1.10. LEMMA. (a) FVi(3j<il.=a; —DO'OL).
(b) I—Vi(DiD_L—>3jSi(L,,=ajVL.,,:dj)).
(¢) Fer—ViOIOT.

PROOF. (a) is proved by formal induction on ¢. For i = 0 the claim is immediate by
Lemma 1.9(a). Assume it to hold for ¢ and consider 7 + 1:

FIj<i+lL, =a; — 3j<i+103k<j L, = az : (by Lemma 1.9(a))
— 03Jk<i L, = a;
— ool (by TH)
— ool qed.

(b). Again, induction on i. For ¢ = 0 one uses Lemma 1.9(b)—(d) to infer 0L —
Lr=ag. Here is the induction step:

FO™ 0oL — 03j<i (Lr = a; V Ly = dj) (by TH)
— OLx # ai41
— 3j<i+1(Lr = a; V Ly = d;)
(by Lemmas 1.8(a) and 1.9(b)—(d)) q.e.d.
(c). Observe:
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Fexr =3t Ly =¢; (by the definition of £,)

/
—VjOLy =a;” (by Lemma 1.9(c))
= Vi>0009710T o (by (b))
—YjOI0T qged. =

Lemmas 1.11-14 establish that the set { p € T' | Q(ax,€x;p) } contains OL and is closed
under O.

1.11. LEMMA. If a box sentence p is consistent with Lr=e; over T for some i € w,
then p is consistent over T with m A Ly=ei41.

PROOF. Suppose p = O¢p is not consistent with 7 A Ly=e;y1: F Op — (T — Ly#€it1)-
It follows that I Ox(O¢ — (7 — Lx#ei+1)) for some k € w. Note that, by Lemma 1.8(b),
we have H,(k) = 0. Reason in T:
Assume Og. Suppose that Lp = e;. Pick an z s.t. Oz¢ and Hx(z) = e;. By
instructions of Case B of Definition 1.7, we get Hx(z+1) = ei4+1. Hence L # e;.
So we have established - O¢ — L,#e; which contradicts our assumption. Therefore,
O¢ must be consistent with 7 A Ly=e;4;. [

1.12. LEMMA. (a) FVi(3j>iLx=e; — O(D'0L — ay)).
(b) S(ar; Lr=e;,0'0L) hofds for all i € w.

Proor. (a). Our argument takes place in T. Fix an i € w and let Ly = e; for some
J 1. Let z be s.t. Hx(z) = ej. Reason inside O:
Assume Ly = di with 0 < k& < ¢. This can only happen if O, (0@ — Lx#di) with
Hx(y) = ex—1 and ¢ provable. Clearly, we have y < z so that O<(Qp—Lx#ds),
whence, by Small Reflection, Oy — Lr#d; and, therefore, L, # di since Op is
: true.
Thus OVk (Ly=dx — k > ). By Lemma 1.10(b) we get O(0'OL — 3k<i(Ly=ax V
Lx=dy)), so by the above it follows that O(0'0.L —3k<i Lr=a;). Ergo O(0'0L—ax)
q.ed. ’

(b). We fix an arbitrary sentence ¢ and argue in T:

Suppose Ly = e; and O(Op — ax) so that Oy(Op — Lx#di41) for some y. We

may assume Hy(y) = e;. Reason inside O:
Assume Oy and suppose Ly = @i+1. Since ¢ must be provable by arbi-
trarily large proofs, there is an z s.t. O,¢ and Hy(z) = a;4+1. Obviously,
z > y. But then, since 0,(0p — Lx#di4+1) and H.(y) satisfies the con-
ditions of Case D of Definition 1.7 for z, we would have Hy(z+1) = di41,
contradicting Ly = ai4+1. Thus Ly # ajt1.

The above argument formalizes in T to the effect that O(Op —
Ly#a;41). Since, having assumed O¢p, we have 00Oy by X-completeness,
this implies OLr#a;4+1, which by Lemma 1.9(b) entails L, # a; for all
k > i+ 1 and, sirice we have established O¢ — Lr#a;41, also for all
k> -

Since O¢ implies ax, we have that 3k Ly=a and hence, by the pre-
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ceding argument, 3k<i L,=a;. By Lemma 1.10(a), this implies 0‘0L.
Thus O(Op — O'OL).
Thus for all ¢ there holds + Ly=¢; — (0(0¢ — ax) — (O(Dp — 0'0L)). To get the
required S(ax;Lx=e;,0°'0.L), we put this together with the obvious 001 € B and
b Ly=e; — 0O(0'0L — @), the latter fact being implied by clause (a). .

1.13. LEmMMaA. If7 € T and Q(ax,ex;7), then there exists an i € w s.t. O(tr —0'0L)
is consistent over T with # A Lry=e;.

Proor. Since 7 € T, we have by Lemma 1.3 that +7 — 0"0.L for some n € w.
Q(an, £x;7) means that there is an irrefutable y formally implying e, and s.t. S(ax; p,7)
holds. One therefore has  p— (0(D"*! 0L — o, )— 0O(0"t' 0L — 7)) by the definition
of S(---). Reason in T:
Assume g and 3i>n Lr=e;. From Lemma 1.12(a) we have D(O"*'0L — a,).
Now, g implies 0(0"*'0L — o, ) — O(0"H 0L — 7), so that O(0" 0L — 1),
whence, due to the way we have chosen n to be related to 7, one has
o(o"t*'nLl—0"0l). By Lob’s Theorem it follows that 0”10 contradicting,
by Lemma 1.10(c), £» and hence also p.
Thus | p — Vi>n L, #e;. Recall that g, through ¢, provably implies 3¢ L,=e;, so that
Fpu — 3i<n Lr=e;. Since yu is irrefutable, we can fix an i < n s.t. p is consistent with
Lr=e;. Let A = pu A Ly=e;. Applying Lemma 1.5(a), we get S(as;A, 7). On the
strength of Lemma 1.12(b), there holds S(ax; Lr=e;,0'0L). By Lemma 1.5(a), this
entails S(ax; A, 0'0L), whence, by Lemma 1.5(c), one has - A — O(7 < 00.L). Since
A is irrefutable and, clearly, - A — ¢, we are done. ]

1.14. LEMMA. (a) Q(ag,eq;0L).
(b) ForallT €T, Q(ar,eqx;7) implies Q(ax,ex; 0T).

ProoF. (a). Consider y = 7 A Ly=eq. We have |- 4 — ¢, and | -p by Lemma 1.8(c).
By Lemmas 1.12(b) and 1.5(a), one has S(ax; 7™ A Ly=eq, OL). Thus Q(axr,&x;0L) is
established. '

(b). Take 7 € T and suppose Q(axr,ex;7). We have by Lemmas 1.13 and 1.11
that for some i € w the sentence O(7 « 0O0.L) is consistent over T with 7 A Ly=e;;.
This means that there is a sentence y irrefutable in T s.t. -y —. 7 A Ly=e;41 and
Fu — O(7 < 0'0.L), which implies }- p — O(O7 « 0+10.L) by T-completeness. Now,
since S(ar; Lr=e;s41, 0°710L1) holds by Lemma 1.12(b), we also have S(ax; u, 0't10L)
by Lemma 1.5(a). Therefore, by virtue of Lemma 1.5(b), one gets S(an;u,07). Since
we clearly have + u — €4, clause (b) is through. .

We are now in a position to show that the formula v € N is not satisfied in Dt by
sentences v not of the form 0*0O_L.

1.15. PROPOSITION. For all sentences v, we have v € N iff +v « 0O'0OL for some
1 Ew.

PROOF. (if) was established in Lemma 1.6. We concentrate on (only if).
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Suppose, for a contradiction, that v« 0'OL is not the case for any ¢ € w, and
yet v € N, that is v € T and

Va,e ((Q(a,s; OL) & VreT (Q(a,;7) = Q(ae; Dr))) = Q(a,s;u)).

By our assumptions on v, 7 = Yj =0O(v «» 0/0.L) is a true II; sentence. Consider the
sentences a, and ¢, corresponding to m by Definition 1.7. By Lemma 1.14 one has

Qo €x;0L) & VTET (Q(an,e2;T) = Q(an,ex;07))

and, therefore, Q(ay,ex;v) should hold. By Lemma 1.13, this implies that 7 is consis-
tent with O(v «— O'0O.L) for some i € w which is clearly absurd.
The contradiction settles our Proposition. ]

Our argument can be visualized in the dual space D% as follows:

The clopen €, * lies well below the finite R-depth part of D}.. An observer inside €5,
looking R-upwards, will see the clopen a,* as a vertical slate almost completely lying
within the finite depth part of D}. On this slate notches can be discerned in the
following way: Suppose a nonempty clopen p* C e,*, from its R-upwards viewpoint,
sees 7* as the largest box clopen contained in a,* (that is, S(ax;u, 7) holds). Suppose
further that 7* is a top-box clopen, i.e. it is contained in the finite depth part of DF.
Let us then say that 7* is, from the viewpoint of €,*, a notch on a,* (this is equivalent
to Q(ax,€x;T)).

Our construction provides for (O.L)*’s being a notch, and for the closure of the
collection of top-box notches under O0* (Lemma 1.14).

Note that the sentences 0"0O.L correspond to clopens { & € D | d(z) < n}. These
are stripes at the very R-top of D% that are n+1 elements R-thick. (One should not
take this too literally: There are maximal R-chains within (O”0O.1)* containing less than
n+1 elements.) ,* knows that each of them notches a,*. Moreover, if any nonempty
subclopen p* of ;* observes a top-box notch, then it is guaranteed that a nonempty
subclopen of u* does not see any difference between this notch and one of (0"0OL)*’s
(this is the content of Lemma 1.13).

If a top-box sentence v fails to equate to any of the 0" 0O.L’s, then the clopen v* does
not match any of these stripes. Intersecting (3i Lr=e;)* with 7* = (Vj ~0O(v+—/0L))*
is a way to focus the resulting clopen e¢,*’s attention on the part of v* that does not
level up to any of the (0"0O.L)*’s. No nonempty subclopen of e;* will then think that
v* is the same as any of these. In this way v fails to satisfy Q(ax,€x; ) and hence finds
itself outside N.

2. Representing arithmetical operations

Having established in Proposition 1.15 that the set {0 0L}, is elementarily definable
in diagonalizable algebras of ¥;-sound theories, there are several ways we can use this
circumstance to show that the first order theories of these diagonalizable algebras are
undecidable. We are going to indicate two approaches that have been known to special-
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ists and elaborate on a third one of our own that affords a proof of the nonarithmeticity
of the theories in question.

First we introduce some notation and state a lemma that will be needed here as well
as in Section 3.

2.1. DEFINITION. For each n < 0 we define a term {}” in the language of diagonalizable
algebra theory:

Po=¢ and Y"tlo=-0% A0 e

In the dual space of a diagonalizable algebra, §7*1* X is an R-antichain which, in case of
an R-upwards closed set (in particular, a box clopen) X, finds itself n R-steps below X.

2.2. LEMMA. In any theory one has that for all sentences ¢,
(@) FYz,y> 0" Ao —.z=y).
(b) FVz > 0(O~y%p — O%).
(c) FVa > 0Vy(Ie TV o §oHvy).

Proor. (a). Working within a theory S, observe that, if both ¢ and {¥¢ hold,
then z can not be smaller than y, for 0% and ~0Y !¢ are otherwise incompatible by
Y-completeness.

(b). This is a disguised instance of Lob’s Theorem:
' D—IUISO — D(Dzso__) Da:—lso)
— O%p.

(c). One only has to carefully count the O’s. "

The elementary definability of {0" 0.1 },¢. in the diagonalizable algebra of a ¥;-sound
theory affords a first order definition of the domain of its i-generated subalgebra, which
answers a question in Artemov & Beklemishev [3].

2.3. COROLLARY. For T a X;-sound theory, the (domain of the) |-generated subal-
gebra of D is first order definable in the language of diagonalizable algebra theory.

CoMMENT. This subalgebra is defined by, e.g., the following formula:

E€eC =3weN(Frwv—€orFw——€) & (FOL—€ or FOL ——E)
& YveN (Fv — ¢ or v — =E),

as can be inferred from Proposition 1.15 and the fact that this subalgebra, considered
as a Boolean algebra, is atomic and that its atoms are precisely sentences of the form
J"0L, n € w, which is the content of Corollary 2.5 in Artemov & Beklemishev [3]. In
fact, this subalgebra is (isomorphic to) the free diagonalizable algebra on no generators.

"
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In anticipation of Corollary 2.3, Artemov & Beklemishev [3] enrich the language of
diagonalizable algebra theory with a unary predicate £ € C, which they interpret as
distinguishing the L-generated subalgebra, and prove the hereditary undecidability (i.e.
the undecidability of the theory as well as that of any of its subtheories) of Th(Dr, C) for
an arbitrary X;-sound theory T (Theorem 3 of that paper). This is done by elementarily
defining, relative to a parameter, each finite partial order in (D, C). (In fact, their proof
only appeals to the definabity from C of the set A = {§"0OL}pew-) By our Corollary 2.3
the undecidability of Th Dt follows.

In dual spaces, elements of A correspond to maximal R-antichains of constant finite
depth.

Another way to exploit the set A for undecidability results has been suggested by
Domenico Zambella: Define the following two binary relations in first order diagonaliz-
able algebraian:

(=€ =VacA(ra—( = Fa—¥§)
(& =(2E&€EXC

Clearly, < is a preorder and ~~ is the corresponding equivalence relation. One easily
establishes that, in theories of infinite credibility extent, for each r.e. set V there exists
an arithmetical sentence vs.t. -0l —viff n € V, all n € w (see e.g. Shavrukov [20,
Lemma 11.7(a)]). Moreover, the set of n s.t. -{"0.L — v is r.e. for any sentence v, for
so are the theories we are involved with. Therefore, the structure induced by < on the
~-equivalence classes is isomorphic to the lattice £ of recursively enumerable sets under
inclusion. Soare [25, Theorem XVI.2.2] claims that Herrmann and Harrington have
established the undecidability of the first order theory of £. By the above isomorphism,
this undecidability also hits the diagonalizable algebras of ¥;-sound theories.

Here is the promised third approach. The idea is to treat the set N = {0"0L}new
as the domain of the standard model of arithmetic with 2 : n +— O"0OL the intended
isomorphism. The missing bit of work we still have to do is to represent arithmetical
predicates and operations. For equality, zero and successor this is trivial:

n=m iff Fi(n)ei(m),
#(0) =01, and
t(Sn) = Oi(n).
Representing + and x will require the use of parameters. Namely, we shall construct a

tuple of arithmetical sentences that in a certain sense codes the i-images of + and x.

2.4. DEFINITION. Let us define a particular diagonalizable algebraic polynomial:
C(r1,72,73;01,42,93) = O(r1 < q1) AO(r2 < ¢2) —. O(r3 < ¢3).

2.5. ProprosITION. There exist sentences <1,62,3 and wy, @z, @s s.t. for alln,m, k €
w

(a) FC(Eorol,omol,0f0l) iffn+m =k, and
(b) FO(&;0"0l,0m0l,0%0l) iffn-m=k:
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The proof of this Proposition will rely heavily on certain results from Shavrukov [20] and
Zambella [29] characterizing diagonalizable algebras embeddable into those of ¥;-sound
theories. We shall now quote the relevant definitions and facts.

Modal formulas are built up from propositional letters using Boolean connectives and
the unary operator O. They are, essentially, diagonalizable algebraic terms with propo-
sitional letters for variables.

Take a finite tuple § of propositional letters. A (Kripke p-) model K is a tuple
(K,r,a,V) with r a treelike irreflexive partial order on K and a the root of K w.r.t.
this order. V is a subset of K x g which gives rise to a forcing relation between elements
of K (= nodes) and modal formulas in p:

k forces p iff (k,p) € V,

k forces =D iff £ does not force D,

k forces D A E iff k forces both D and E,

k forces OD iff h forces D for any h € K with k » A.

D holds at k is another way to say k forces D. If D holds at each node of a model K
then K is said to be a model of or just to model D.

We shall be drawing pictures of models with arrows between nodes standing for the
‘immediate predecessor’ relation corresponding to r. The presence of a propositional
letter near a node in the picture will indicate that this letter is forced at that node.

Recall the modal logic L mentioned in the Introduction.

2.6. FacT (Completeness Theorem for L; Segerberg, cf. Smoryniski [24, Theorem 2.2.6]).
A modal formula A(p") in propositional letters p is derivable in L (L |- A(p)) iff A(p)
is modelled in every p-model iff A(p’) holds at the root of every p-model. "

A model (K,r,a,V) is a proper cone of the model (H,s,b,W)ifa € H, K = {a} U
{ceH|asc},r=s[Kand V= W[K.

2.7. Fact (Shavrukov [20, Theorem 7.1, Lemmas 5.13 and 5.15]; Zambella [29, (proof
of) Theorem 1]). Let T be a X;-sound theory. Suppose A(7) is an r.e. collection of
modal formulas in finitely many variables 7 s.t.

(i) the conjunction of any finite subset of A(7) is irrefutable in L, and

(ii) for any two 7-models K1 and K there is an 7-model H s.t. K1 and K, are
isomorphic to proper cones of H and if both K, and K5 model some element of A(7)
then so does H. (The readers of Shavrukov [20] should recognize this condition as saying
(something stronger than) that the conjunction of any finite subcollection of A(7) is
steady.)

Then there is a tuple g of arithmetical sentences s.t. in (the diagonalizable algebra
of) T we have for any modal formula B(7) that - B(g) if and only if L |- 0t N\ G(F)—
0% B(7) for some finite subset G(7) of A(7) (O ¢ is short for ¢ AQg). (This translates
into the language of [20] as embeddability into D of the factor of the free diagonalizable
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algebra on the generators ¥ modulo the t-filter corresponding to A(7).) "

2.8. PROOF of Proposition 2.5. We only handle clause (a), for (b) can be verified in
a very similar manner.

Let the recursive set A(3") consist of the following modal formulas:
A m(5) = C(5,0"0L,0™oLl, 0" 0l)

with n, m ranging over w. In order to obtain the required tuple ¢’'we would like to apply
Fact 2.7 to which end we check that .4(5") meets conditions (i) and (ii) of that Fact.

For (i) just note that the 5~model in Figure 2.1 (all variables from § are taken to be
false at both nodes) models A, () for any n,m € w.

O

(Figure 2.1)
O

Turning to (ii), imagine any two 5~models K; and K, grafted just above the lower
node of the &model in Figure 2.1 to form a new model H. We claim that if both
grafts happen to model A, ,,,(§") for some n,m € w then the same is true of H. Indeed,
An,m(5) holds at the new nodes of the model by assumption. That same formula holds at
the higher old node because the latter forces O(s3«—~D"T™0L), the succedent of A, m(3).
Finally, the bottom node forces A, ,,(5) since it does not force O(s; « O"0OL) (nor
O(s2 < O™0OL) for that matter).

By Fact 2.7 this shows that there are arithmetical sentences ¢1,¢2,¢3 s.t.

FC(&o"ol,0™ol,0fol)  iff
Lot A Awn(3)—0otC@E ool 0m0L,0f0L) for some I € w,

n,m<l! -

which immediately implies that if n4+m = k then + C(¢;0"0L, 0™0L, 0F0L) is indeed
the case.
To establish the converse, we have to show under the assumption n + m # k that

Lot M Aun(5)—0tC(E ool 0™ol,0fol)

n,m<lI

holds for no ! € w. We take a particular case n = 2 and m = 1. Consider the following
5-model in Figure 2.2. Observe that this is a model of every formula A; ;(5), that is
A; ;(5) holds at each node of this model for any z,j € w. On the other hand, it is easily
seen that k = 3 = 24 1 = n + m is the only value of k& s.t. the bottom node of this
model forces C(5:0?0L,0'0L,0%0L). The proof is now easily completed by applying
the Completeness Theorem for L. n
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O 81982983

QO 8158524983

(Figure 2.2)

2.9. THEOREM. For T a ¥;-sound theory, Th Dt is mutually interpretable with true
first order arithmetic.

Proor. For any X;-sound theory, ThDr is straightforwardly interpretable in true
arithmetic by godelnumbering all the objects in question (cf. Montagna [18]).

Let us consider an inverse interpretation [ -] of the variant of arithmetical language
with ternary predicates in place of binary function symbols for addition and multipli-
cation. [-] is defined by relativizing quantifiers to the set N of Definition 1.4 and the
following translation of terms and atomic formulas:

[0] = oL
[Sz] = Ofz]
[t1 = 12] = F[t1] < [t2] .
[t +t2=1t3] = V& @ (E(S @) = FC(S [t [t2], [ta]))
[t to=t3] = V& & (E(G®) = FC(&; [, [t2], [ta])),
where E(S @ ) is the following predicate:
E(S®) = Vv,ueN IkeN +C(Siv, pu, k) & Vv, u€N k€N + C(@; v, p, &)
& YveN +C(S v, 0Ll,v) & Yy, p, k€N (F C(Siv, pu, k) = +C(S v, Oy, Ok))
& YveN C(&;v,0l,01)
& Vv, p, K, \eN ((;~ C(&;v,p,5) & FCEx,1,1) = FC(&;v, Dp,)\)).
E(S: @) obviously says that C(S%+,-,-) and - C(@;-,,- ) are functional and that the

clauses of the recursive definitions of addition and multiplication in terms of zero (OL)
and successor function (O) hold for these formulas respectively.
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Mimicking computations using these recursive definitions, one easily proves that
once E(S@) holds in some diagonalizable algebra of infinite credibility extent, the
formulas + C(¢%-, -, ) and - C(&@; -, -,+) do indeed correctly represent + and x on the
superscripts of elements of the set {0"0OL},e, which, by Proposition 1.15, is itself
singled out by the formula » € N in diagonalizable algebras of ¥i-sound theories.
Proposition 2.5 is now all that is needed to see that [-] is the sought after interpretation.

]

2.10. CoroLLARY. The first order theory of the diagonalizable algebra of any X-
sound theory T (or even that of any collection of diagonalizable algebras of such) is not
arithmetic.

ProoF. This is so because Theorem 2.9 interprets true arithmetic into Th Dt by an
interpretation which does not depend on T. "

In connection with Corollary 2.10 it is perhaps worth pointing out that it is not known
whether Th D is at all influenced by particular choices of a X1-sound theory T, although
nonisomorphic diagonalizable algebras are indeed found among the ones of theories from
this class (cf. Shavrukov [21]).

3. Simulating monogenic normal canonical systems

Our proof of Proposition 1.15 depended in an essential way on the unprovability of the
sentence m — Ly=ep in the formal theory under consideration and, ultimately, on the
¥j-soundness of that theory (see Lemma 1.8). In this Section we are going to deal
with an arbitrary theory T of infinite credibility extent which we now fix for this whole
Section. Under these circumstances we can no longer count on the good behaviour
of T w.r.t. Il sentences and the proof of Proposition 1.15 is generally no longer valid
for theories from this wider class. In D%, the reason why we can not just repeat the
construction of Section 1 is that it is no longer clear why the mere truth of the sentence
Vj=0O(v +» 0/ 0.L) should guarantee that the clopen ¢* N (¥j —O(v < 0/0.L))* is non-
empty.

I do not know whether the diagonalizable algebraic formula v € N defines in Ds the
set {O0"0L},¢. Tor every theory S of infinite credibility extent.

What we are able to do using a technique similar to the one featured in Section 1
is to translate into the structure of D1 computations performed by monogenic normal
canonical systems.

A monogenic normal canonical system (mcesystem for short) t consists of a finite
alphabet A = {{g,...,¢x}, a non-null word %, called the aziom of t, in this alphabet,
and a finite collection of productions. The latter are expressions of the form g$ — $h,
where g and h are words in A, g non-null, and § is a special symbol outside A. The
monogeneity condition states that the multiset {g | g8 — $h is a production of t } is
prefix-free. Minsky’s book [16, Part III] contains a detailed exposition of monogenic
normal as well as other kinds of canonical systems.

The purpose of a mesystem t is to produce a monologue, which is a sequence (¢;)ies
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of words in A, where & stands for some ordinal <w, #; is the axiom of t, and for each
word t;41 in the monologue we have that there are words g, f and h s.t. t; = gf,
tiy1 = fh and g$ — 8$h is a production of t. Finally, if & is finite and £x is the last
word of the monologue then no production of t should be applicable to tk, i.e. tx can
not be represented as gf for any production g8 — $h of t. Note that the monogeneity
condition ensures that at most one production is applicable to any word, and hence the
monologue of a mesystem is determined uniquely by the identity of that system. Words
in the monologue are said to be produced by t. The mcsystem is mortal or immortal
according to whether @& is finite or infinite.

Owing to the fact that the words #; and #;4; in the monologue may overlap consid-
erably, there is a more economic way to write down the monologue of a mcsystem.

We consider three sequences (ti)iew—{o}a (ri)iee and (s;)iew, the first of symbols
in A, the second and the third of natural numbers €o+1. (%;)ica—{0} is called the tape
of t and (7;)iew and (si)ica the delimiting sequences. The words of the monologue
are written consequtively on the tape with a suffix of each word overlapping with the
identical prefix of the following one, and the delimiting sequences tell us where each
word begins and ends. Formally, for ¢ € &, we have t; = ,, ---t5, (if ¢; is the null
word, then r; = s; + 1), and if g8 — $h is the (unique) production of t that bridges
t; and t;4;, theng =14, - -4, 1 and h =141 1,5, sothat t;43 =2, - 15,
(The overlapping part ¢,,,, - - -1, is then understood to correspond to $.) & < w is the
ordinal just large enough to record all the words in the monologue, so that @ = w if
@ =w, and maxw = sk if max® = K.

Two words are called compatible if one of them is a prefix of the other. |e| denotes
the length of (= the number of letters in) the word e. (e); is the ith letter in that word.
Each non-null word begins with its 1st letter.

Let us fix a mcsystem t along with the accompanying monologue, tape and delimiting
sequences for this Section.

On pages to follow we shall quite often be reasoning about t within the formal
theory T. We assume that the formalization of the objects related to t is honest and
coherent so that T is aware of simple facts of t’s life like e.g. s; = r; — 1 + |2;].

Let us now try to explain our intentions from the viewpoint of the dual space Df.

As in Section 1 (see the digression immediately after Proposition 1.15), a prominent
role will be played by a certain clopen £* which will this time observe R-above itself two
slates corresponding to clopens o™ and (@ V 3)*. The single slate ar* of Section 1 was
designed to represent the natural numbers. Here o* and o* U #* are going to represent
the tape of the mcsystem t. These two clopens are notched by box clopens in technically
the same way as in Section 1. Notches on a* relate to the delimiting sequence (7;)ica
and those on (aV f)* to (si)ica-

Imagine a nonempty clopen p* C ¢* distinguishing two notches 7* and ¢* on o*
and (a V 3)* respectively. In accordance with our intended interpretation, we shall then
think of the clopen (=7 A ¢)* as delimiting a certain word e on t’s tape. Since words
are made of letters, we shall take account of these by associating to each letter £ € A a
particular clopen Az*. The situation ({}i7)* C A¢* N7* will signal that (e); = £.

With these intuitions we shall be able to first order express that, for example, the
word £1¢5 occurs on the tape of t by saying that there is a nonempty clopen p* C &*
observing a pair (7%, (007)*) of notches with the antichains ({7)* and ({}27)* contained
in the clopens Ay, * and Ag,* respectively.

Note that our present aspirations are only limited to talking about the behaviour
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of clopens (A;*)gca W.r.t. one another involving a fixed finite difference in R-depth
between antichains, whereas in Sections 1 we succeeded with ¥;-sound theories in first
order defining membership in {O0”0.1},¢., Which is a property concerning arbitrary
finite R-depth of clopens. This restraint on ambitions owes to the now less manageable
nature of the relation R of the dual space: R™! in Dg is directed if and only if S is
¥1-sound.

The ability to express that a given word is produced by a given mcsystem will
eventually lead us to undecidability results. What we have to do next, however, is to
develop a language in which one can comprehensibly talk about a mesystem to ThDr.

3.1. DEFINITION.  We define two elementary diagonalizable algebraic predicates.
Below, S(- - -) is taken as specified by Definition 1.4, A stands for a collection of elements
of a diagonalizable algebra indexed by letters in A, and e is a (meta)variable for words
in A. For the |J! operator, confer Definition 2.1.

R(e,Bip,7,0) = S(a;u,7) & S(aV Bp,0)

We(:\.;ﬂ77-) = & l_“__’D('U‘iT—_))‘(e)‘)
1<i<]e]

R(a, B; i, 7,0) expresses that u* detects the box clopens 7™ and ¢* as notches on o*
and a* U B* respectively, these two clopens delimiting a space on the tape in which we
shall be trying to read a A-word. p” is of the opinion that a word e is read below 7 if
We(A; u, 7) holds, that is, if 4* thinks that the antichain finding itself 7 R-steps below 7*
is entirely contained in A),* whenever 0 < i < |e|]. W®(---,7) will, in practice, only
be applied to box elements 7.

3.2. LEMMA. In any diagonalizable algebra,
(a) If +x— p and R(a,B;p,7,0), then R(a,fB;&,7,0).
(b) Ifpe€ B, R(a,B;p,7,0) and - p— O(p < 7), then R(a, B; p, p,0).
(¢) Ifp€ B, R(a,B;p,7,0) and + p— O(p < o), then R(a, B; p,7,p).
(d) If R(e,p;p,7,0) and R(a, B;p, p, ), then - p—O(p—7) and - p— O(m —0).

Proor. All clauses follow straightforwardly from Lemma 1.5. ]

3.3. LEMMA. In any diagonalizable algebra,
(a) If Fk— p and W‘(X;/z,r), then W‘(X;n,‘r).
(b) If W‘(X;u, 7) and - p— O(0 < T), then W‘(X; i, 0).
(c) WeI(X;p,7) if and only if We(X;u,7) and WJ(X; u, Ol¢l7).

PRrROOF. (a) and (b) are quite obvious; to establish (c), one applies Lemma 2.2(c). =

We go on to display the diagonalizable algebraic formulas intended to embed the given
mesystem t into Th Dr.
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3.4. DEFINITION. Below, e, g and h are arbitrary words in A, and X is taken as in
Definition 3.1. B and T are described in Definition 1.1.

X%(a,B,6,%7) = Ju(f-u & Fp—e & R(a,fip,7,0%7) & We(X;p1,7))
0%(a,B,¢,X) = 3reT X*(a,B,¢,X;7)
P’$_’$h(a,ﬂ,e, X) = Vr,0€T VpEB

(Eu(b‘-’u & Fp—e & R(o,Bip,7m,0) & WI(X;p,7) & Fp—p)

= Jv (lf—u/ & Fv—e & R(e,Bsv, D"l'r,l:llhltf) & W"(X;u,a) & l"I/—;p))

Di(a,B,6,X) = X*(a, 8,6, %;0L) & & P B e X)
all productions
g% — $h of t

M§ = Ya,B,¢,) (Di(a, B,6,X) = 0%(a, B,¢, X))

X ‘(a,ﬂ,s,).\'; T) asserts that there is a nonempty clopen p* C &* relative to which
(7, (0!®l7)*) is a pair of notches on the tape which delimits the word e. O%(a, 8,¢,X)
just says that there is such a pair of top-box notches.

The predicate P95~%4(a, 3, ¢, /\) is very similar to

Vr,0€TVf (X9 (@, 8,6, % 7) = XT2(a,B,¢6,X;011 7)),

which is very much in tune with the effect of a production g$ — $h. The quantifier V f
over words in A is, of course, not allowed in the first order language of diagonalizable
algebras. Therefore wi (/\ p, 0191 7)) which has the form }p — p for a certain box
element p, is replaced by this expression and quantification over f by that over box
elements p. Thus P33 (o, B3 ¢, /\) says something ever so slightly stronger than what
we actually need.

Di(a,B,€,A): the axiom tg of t is written at the very beginning of the tape and all
productions of t are operative. We like to think of Di(e, g,¢, X) as describing t w.r.t.
the parameters ¢, §, ¢, X.

The diagonalizable algebraic sentence ME claims that the word e occurs in the
monologue once the parameters a,ﬁ,s,x match the description of t. Observe that
MY is constructed effectively from t and e.

We would like to verify that M holds in Dt if and only if t actually produces e.
QOur strategy is to show, in one direction, that Dt(a,ﬂ,s,X) describes t in sufficient
detail to infer O%(a, 8,¢, X) for every word e in the monologue of t (Lemma 3.5). The
other direction establishes that we can avoid every other word by choosing appropriate
parameters at, b, €t, Xt in D (Definition 3.6-Proposition 3.18).

3.5. LEMMA. If t produces e then ME holds in any diagonalizable algebra.

Proor. If t produces e then e = t; for some k € &. We fix parameters «, §,¢, X and
prove by induction on k£ € & that
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Di(a,B,e,X) = X*(a, B¢, X;0™"10L),

whence Dy(a, B,e,X) = O*(a, B¢, X) readily follows.

We proceed under the hypothesis Di(«, 8¢, X)

X “’(a,ﬁ,e,j; g7~!'ol) follows from this hypothesis by the definition of Dy(:--)
since rg — 1 = 0. :

Turning to k + 1 € @, let us suppose that £;4; is obtained from ¢; by a production
g% — 8$h of t so that t, = gf and #;4; = fh for some word f. By IH, we have
Xt (a, B¢, X; o™~10.1) which proclaims the existence of an element y # L (i.e. i =)
s.t.

Fu—e & R(a,f;p, 0™ ‘oL, oltlo-101) & W (X;u,0™* tol).

Since t; = gf, W*(X; 4, 07*~10L) implies, by Lemma 3.3(c), both W#(X; , 0™~ 10.L)
and Wf(x;,u, olslgre=1pl). This latter fact can be rewritten as Fp —
D/X\lsjslfl(lljl:l'-°]+”‘_1l:!_L — A(s);)- Note that |tg|+ 7, —1=s; and |g|+r — 1 =
Tk4+1 — 1. .

Now, since g8 — 8h is a production of t, Di(e,3,¢,X) includes the formula
pe3=8h(o ﬂ,e,X) among its conjuncts. In the preceding paragraph we have in effect
established that

V- & bp—e & Rla,Bin,1,0) & WIpr) & Fp—p,

the antecedent of the matrix of Ps%=8h(y 3 ¢ X), holds for r = 0™~ !'0L, ¢ = 0°* 0L,
P =0 NigjqnW O™ 7101 — X(5);) and the element y whose existence is asserted

by X** (e, 8,¢,X; 07~10L). Therefore, as follows from P95=3k(o B ¢ X), there is an
element v # L s.t.

Fv—e & R(e,B;v,0f 0™~ oL, o*lo*ol) & W*(X;v, 0% 01)

&rv—o N (U’jDrk+1-lD_|..">A(f)j).
1<i<If]

The last conjunct rewrites as W7 (X, v,07+1~101) and, since s, = |f|+7rry1—1, the last
two give W/ (X;v, 0"+ ~101) by Lemma 3.3(c). Recalling that |g|+7x—1 = rgqq—1,
|h| + sk = sg41 = |teg1]| + rky1 — 1 and fh = £, we obtain

Jv (b‘ - & Fv—e¢ & R(a,ﬂ, v, Drk-ﬂ—lDJ_,Dltk;lIDrk"‘l_lD_L)
& Wh+(X;v, 0™+ 1nl)),

or Xte+i(a, B¢, X; o™+1-10 1) as we have pledged to show. "

To reverse the implication of Lemma 3.5 for D1 we define another Solovay function
similar to the one of Definition 1.7.

3.6. DEFINITION. Here Hy ranges over the set {a;}icw U {bi }icw—{0} U {¢i}icw—{o)} U
{ei }iew U {0}. We abbreviate 3z Vy>z Hi(y)=f by Li=f.
As usual, we have

Next we define the value of Hy(z + 1):
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Case A. Hi(z)=0and O, Li#e; for some i € &.
Hi(z+1)=e;.
Case B. Hi(z) =e€;,1+1 €@ and for some sentence ¢ and y < = we have
Oz, Dy(D(,D-—> Ltgéei_H) and H[(y) =0.
Ht(l‘ -+ 1) = €i41-
Case C. Hi(z)=e;, Case B is not the case and O, Lt#a; with j < s + 1 for
some k € & s.t. Hy(k=i) = 0.
Hy(z + 1) = aj.
Case D. Hi(z)= a,, and for some sentence ¢ and y < z we have Oy, O,(0p—
Li#b,,) and Hi(y) = e;.
Hy(z+1) = by,.
Case E. Hiz)=as41 or Hi(z) = bs,41, Case D is not the case and for some
sentence ¢ and y < z we have Oz, Oy(0O¢ — Li#cs,41) and Hi(y) = e;.
Ht(x + 1) = Cs41-
Case F. Hi(z)=a; or Hi(z) = b; or Hi(z) = ¢;, Cases D-E do not hold and
O;Lt#a; with j < 4.
_Ht(:L‘ -+ 1) =a;.
C ase G. None of the preceding Cases takes place.
Ht(-'l? + 1) = Ht(dl).

The function H; is thus successfully defined.
We also give special names to three sentences:

at = EiLtzai, ﬁt = HiLt =bi, and &t = aiLt= €;.

Note that the region accessible to H from 0 and {e; };¢., depends on the size of t’s mono-
logue (Cases A—C). The extra complication in Case C, i.e. the requirement Hi(k--7) = 0,
is designed to keep H: at 0 for the standard period of its life. What goes on in Cases D-F
is fairly analogous to Cases D-E of Definition 1.7, although now we have got two series
{bi}icw-{0} {¢i}icw—q{0} of auxiliary nodes in place of one.

Figure 3.1 shows what things look like if one tries to partially grasp the definition
of Hy in a Kripke frame. Cases D and E correspond to transitions along the S,, arrows.

Now come the lemmas. While the convergence of Hy does not present a problem,
we shall have to exercise a little patience before we can claim that H; is, at standard
arguments, constantly =0 (Lemma 3.10).

3.7. LemMA. F3fe{aiticwU{biicw—{0yU{citicw—{0yU{ei}iewU{0} Li=F.

ProoF. The proof proceeds parallel to that of Lemma 1.8(a). The relevant observation
here is that from a; the function H; can go to b; and then to ¢; whereafter, to keep on
moving, it will have to go to a; with j < 7. _ ]
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(Figure 3.1)

O
0

Lemmas 3.8-9 are largely similar to Lemmas 1.9-10 of Section 1.

3.8. LEMMA. (a) FVi(Lt=a; V Lt=b; V Li=c; —. D3j<i Lr=a;).

(b) If Hiy(k) = e; for some i and k, then there exists an m € & s.t.
F3j<sm+1(Lt=a; V Lt=b; V Li=c;). Moreover, this fact formalizes in T.

(C) Vi (Lt=a,- V Ly=b; V Li=c; —. Vj<i<>Lt=aj).

(d) Ifk € @ and Hi(k) = 0, then +Vi(Li=e; — Vj<sy+1OLy=a;), and this
formalizes in T.
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(e) - Lt=0 - OLtZCO.
PROOF. (a) and (c) are similar to (a) and (b) of Lemma 1.9 respectively.

(b). Assume Hi(k) = e;. Reason in T:
Suppose Lt = e; for some j. Then there has to exist a proof <k of Li#e; from
a true box sentence. By the Small Reflection Principle, Ly # e;. Therefore, Ht
ends up among a’s, b’s and ¢’s. The only way for Hi to get there away from
the e’s is via Case C of Definition 3.6. Hence there is an z with Hi(z) = e,,
O, Lt#a; for some j < sp,+1, where m € & and Hy(m=n) = 0. Thus m—n < k.
Note also that n — i < k, for to get to e, from e;, Hy has to make n — 7 moves,
each corresponding to a different proof <k. Therefore m < k +n < 2k + 2.
Thus Hi(z+1) = a; with j < s, + 1 where 2k +4 > m € @. No matter
how H; moves from then on, the subscript of its value can not decrease. So,
Jj<sm+1 (Ltzaj \% Ltzbj \Y Ltzcj).
This shows that one can put m = 2k + 1.
(d). Assume k € & and Hi(k) = 0. Reason in T:
Suppose Ly = e; and j < sg + 1. If we had O, Lt#a; for some z s.t. Hy(z) = e;,
then, since £ — 7 < k and so Hi(k—i) = 0, instructions of Case C would bring
Hy(z+1) to a; contradicting Li=e;.
Thus |- Vi(Li=e; — Vj<s;+1OLi=a;) q.e.d.

(e) is clear on inspection of Case A because 0 € @. .

3.9. LEMMA. (a) +Vi(3j<i(Li=a; V Li=b; V Ly=c;) — O'OL).
(b) +View (Ltzei —Vj5<s;+1 D(l:]j 0l —3k<j (Ltzak V Li=b; V Ltzck))).
(c) If He(k) # 0 then 0*~*'OL for some m € &.

PROOF. (a) is analogous to Lemma 1.10(a).

(b). Working in T, assume Lt = e; for some i € &. We show 0O(0/0L —3k<j (- -+))
by induction on j < s; + 1. For j = 0 this follows by Lemma 3.8(c) and the formalized
version of clause (b) of the same Lemma. To carry out the induction step, reason
inside O: .

We have that 0/t1'0L implies 03k<j (Lt=ag V Lt=bi V Ly=c) by the IH. In
particular, OLt#ag41. Therefore, by Lemma 3.8(c), Lt=am V Lt=bpy V Li=cm
can only hold for m < j + 1.
Thus we have seen that 0¥t10L — Vk(Li=ay V Li=b; V Li=cx —. k < j +1). Applying
Lemma 3.8(b) formalized, we get O(0/ 0L — 3k<j+1(Li=ax V Li=bg V Li=c})) as
required.

(c). Suppose Hi(k) # 0 holds for some k € w. Take the minimal such k. We then
have that Hi(k) = e; for an appropriate ¢, whence it follows by Lemma 3.8(b) that
F3j<sm+1(Li=a; V Li=b; V Li=c;) for some m € &. By (a) of the present Lemma
one gets F 0°~t10L q.e.d. n

3.10. LemMa. (a) For allk € w, Hi(k) =0.
(b) ¥ Lt # eo.
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(¢) Fer—OSHIOT foralli €@.
(d) If t is mortal and K = max®, then Ok +20T — Ly=0.

Proor. (a). If Hi(k) # O then, by Lemma 3.9(c), rO*=*1OL for some m € @,
contradicting the infinite credibility extent of T.

(b) follows from (a) by Lemma 3.8(c).

(¢). By Lemma 3.8(d) and clause (a) of the present Lemma we have }-¢&; —
OLy=a,,41 for all ¢ € &. By Lemma 3.9(b), there holds I Li=a,,4; — O*OT, so
Fep — ONTIOT.

(d). To prove this, we have to formalize the proof of (a) in T. The only ingredient
of the proof that fails to formalize is that ¢ O°=+10L for all m € &. However, since
K = max @, this aspect is captured by the antecedent OS*+20T. ]

Lemmas 3.11-13 are analogous to Lemmas 1.11-13.

3.11. LEMMA. For all box sentences p and all ¢ s.t. i+ 1 € @, if p is consistent over T
with Li=e;, then p is consistent over T with Li=e;;1.

ProoOF. Very similar to Lemma 1.11. ]

3.12. LEMMA. (a) FView (3j>iLi=e; — 0(0O7 0L — at)).
(b) For alli € &, R(a, Br; Ly=e;, 07101, 0%0OL) holds.

Proor. (a). We work in T. Pick an 7 € @ and imagine Ly = e; for some j > 7. Since

H; can only get to'e; if £ € & (see Cases A and B of Definition 3.6), we have that j € &.

Let z be s.t. Hy(z) = e; and argue inside O:
Assume Lt = by, or Lt = c¢ with 0 < k < r;. This can only happen if O, (0p —
Li#be) (or Oy(0Op — Li#c) respectively) with Hi(y) = e, where k = rp,, (or
k = sm + 1), and ¢ provable. Since r; > 7y (5 +1 > r; > 5, + 1), we have
that j > 7 > m. Therefore, y < z so that O¢y(0Op — Lt#bk) (Ocz(Op —
Li#ck)) whence, by Small Reflection, Lt # bg (Lt # c respectively), which is a
contradiction.

So, OVk(Lt=bg V Li=cy —. k>r;). Since r; —1 < s; +1 < s; + 1, one has

o(0™ 0L — 3k<r; (Li=ar V Li=b; V Lt=ck)) by Lemma 3.9(b). It therefore fol-

lows that O(0™ 0L — Jk<r; Ly=a;) implying O(O™ 101 — o) q.ed.

(b). For an arbitrary ¢ € &, we have to prove
S(Ott; Li=e;, Dri-ID_L) & S(at V By; Li=e;, DS‘D_L).

We clearly have 0™~'0L1, 0% 0L € B, and | Ly=e; — O(0™~10L — a) has already
been established in clause (a). F Liy=e; — O(0% 0L —. oy V ft) is verified in perfect
analogy with (a) (for 0 < k < s;, one follows the parenthetical line in the formalized
part of the argument in (a) to show | Ly=e; — OVk (Li=cy — k>s;)). Thus we only
have to verify
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FLi=e; — (D(a’ —ay) — O(c — Dr"‘lD_L)) and
FLi=e; — (O(c —. ar V ) — D(c — 0> 0L))

for any box sentence o. Again, since these two facts are (proven) very similar(ly), we
only do the second one.
Fix ¢ = Op and reason in T:
Assume Lt = e; and O(Op —. ot V ft), so that O,(0¢ — Li#cs,4+1) for some y
s.t. Hi(y) = e; and step inside O:
Assume O¢ and suppose Ly = as,47 or Ly = bs,11. Then Case E of
Definition 3.6 will, on encountering a proof of ¢, bring H: to ¢;;41,
contradicting both Ly=a;,+1 and Li=bs,41. Therefore Ly # a,,4+1 and
Lt # bs‘-_‘_].
Formalizing this, we get O(Op —. Li#as,.41 A Lt#bs,4+1) imply-
ing O(Lt#as,+1 A Li#bs,41) since ¢ is, by assumption, provable. By
Lemma 3.8(c), this results in Ly # ai and Ly # by for all £ > s; + 1 and,
taking into account the earlier argument, also for all & > s;.
Since Oy implies at V B, one has 3k (Ly=ay V Lt=>bg ), whence, by the
above, 3k<s; (Ly=ax V Lt=b;). By Lemma 3.9(a) this entails O°:0O.L.
So, O(¢ — O**0OL).
Thus, - Lt = ¢; — (O(¢ —. ¢ V ) — O(c — 0°*0.1)) is established.
The proof of the Lemma is now complete. "

3.13. LEMMA. If u is an irrefutable sentence s.t. - u — e and R(a, Bt; p, T, 0) holds

for some top-box sentences T and o, then there exists an i € & s.t. p Is consistent over
T with Lt=ei-

ProoF. If t is mortal then for K = max& we clearly have |- Vi(Li=e; — t<K) since
H; can only get to e; if ¢ € & and, therefore, since - p— ¢, one has  p— F<K Li=e;.
If t is immortal then sup;¢; 7& — 1 = w and hence, by Lemma 1.3, thereisa k €@
s.t. F7—0™~10L1. Note that from R(at, ft; 1, T,0) we have S(ar; i, 7) which implies
Fp—(O(0™ 0L — a;) —» O(0™ 0L — 7)). Reason in T:
Assume g and Ji>k Ly=e;. From Lemma 3.12(a) we have O(0™ 101 — at)
and hence, by ¥-completeness, O(D"™*OL — at),.for k¥ < i. By p we have
0(0™ 0L — 7). By our assumption on 7, there holds O(r — 0™ ~10.L) and so
D(0™ 0l — 0™~!0l) which, by Lob’s Theorem, gives D"*0O.L, contradicting
Lemma 3.10(c).
Therefore, |- p—3i<k Li=e; holds for an appropriate k € & regardless of the lifespan
of t. Since u is irrefutable, it should be consistent with Li=e; for some i < k, q.e.d. =

Next we fix the last remaining parameters in our construction.

3.14. DEFINITION. For each letter £ of A we define
Ay = Fzew—{0} (V"OL AL, = £).

Thus an element z of D% of finite depth ¢ is in A* if and only if ¢; = £.
Xt will henceforth stand for Aeys-- -, Aen, Where £1,.. . £n is the tuple listing A.
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Lemmas 3.15-17 establish that the parameters ay, f, €t, Xt satisfy D¢(---), that is, they
satisfactorily code the computation executed by t.

3.15. LEMMA. Forallf€ A, FVzeo—{0} (J*0L — (A — t=£)).

ProoF. Immediate from the definition of ), and Lemma 2.2(a). n

3.16. LEMMA. (a) For alli € & and all sentences y there holds W* (Xy; u, 07— 100L).

(b) If oy, Fpu— OHIOT forall i € &, m € & and We(X;p, 0™OL), then
m+ |e| €@.

(¢) If op, Fp— OFIOT for all i € &, m € @, W‘(Xt;,u,[]mDJ_) and
WY (A; p,0™0L), then the words e and f are compatible.

Proor. (a). By Lemma 3.15 we have Vzew—{0}(J*0L — A;,). In particular,
FU¥OL — Xy, whenever r; < k < s;. Since ¢; = t,,---t,,, Lemma 2.2(c) gives
Yool — Ag,); for all j s.t. 1 < j < [¢;], which implies -y — o(om-lol —
A(t;),; ), or, in other words, Wt 1,07 101), qed.

(b). We can clearly assume that e is non-null. Suppose m + |e| € @. The mem-
bership of a natural number in & can only fail if t is mortal so that @ < w. Recall
that then max® = sk, where K = max@. Thus one has Fsx+1 ¢ & which en-
tails - §***'0L — Yze€w~|§*0L by Lemma 2.2(a), hence F{***10L — =\, As
and Fp — O**H0L — = W,ep Ae). Now, since m + |e| > sk + 1 and m < sk
by assumption, we can find an n st. 1 < n < |lej and m+n = sg + 1. From
W‘(Xt; #,0™0L) we have - p— O(J"0™0L — () ). By Lemma 2.2(c), this rewrites
as p — O(*+t1OL — Xy ). Together with the preceding argument, this gives
Fu — O0-y**t10L implying, by Lemma 2.2(b), Fu — 0**+t'0.L, which contradicts
our assumptions on y. Therefore, m + |e| € @.

(c). By (b), we have that m+ |e|,m+ |f| € @. If e and f were not compatible then
there would exist an ¢, 1 < 7 < min{|e|, |f|} s.t. (€); # (F)i. Note that m+i € &. Now,
W‘(Xt; u, 0™ 0L) and W/ (X; p, 0™0OL) imply that + u—*_D(-U'iDm'DJ_ﬁ./\(e)‘, AXr))
which, by Lemma 3.15 and since (e); # (f);, implies  p — O-§*0™0OL whence, by
Lemma 2.2(b),  p—0O™+0.L. Since m+i € @ and so m+1i < sg+1 for an appropriate
k € @, we get - u — 0%**+10L contrary to the assumption on gx. Thus e and f have to
be compatible. m

3.17. LeMMA. Di(at, B, et Xt) holds. Moreover, if t is mortal and K = max&, then
this formalizes in T under the hypothesis O*<+2OT.

ProoF. First we have to establish X‘°(at,ﬂt,5t,Xt; 0O.l). Consider the sentence y =
Li=ep. By Lemma 3.10(b), u is irrefutable in T and, since ro — 1 = 0 and so = [to],
Lemma 3.12(b) gives R(ex, fr; 1, OL, D""'D_L). Further, we clearly have -y — ¢; and
W“’(Xt;u, 0L) by Lemma 3.16(a). Thus X*°(ay, ft, €, Xt; 0L) holds.

Second, we check P9%~%8(q, ﬁt,et,xt) for an arbitrary production g8 — $h of t.
Suppose p is an irrefutable sentence s.t. - p — €, R(a, Pr; p, 7,0) for some top-box 7
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and o, W’(Xt;ﬂ,T) and } u — p for some p € B. By Lemma 3.13, u is consistent with
Li=e; for some i € &. Let &K = p A Ly=e;. By virtue of Lemmas 3.2(a) and 3.3(a),
K satisfies all properties that have been assumed of x. Note that by Lemma 3.10(c),
F &k — O%+t1OT. Further, by Lemmas 3.12(b), 3.16(a), 3.2(a) and 3.3(a) we have

(1) R(at,f;%,07 '0L,0%01) and
(2) Wk, 07 10l).
From (1) it follows by Lemma 3.2(d) that
bk —. O(r 0"~ 10L) A O(c < 0%0.L).
Hence, by Lemma 3.3(b), one has
(3) Wo(X;&,07 10l).

Lemma 3.16(c) infers from (2) and (3) that ¢; must be compatible with g. Obviously,
we can not have |t;| < |g| for then, by the monogeneity condition, no production of t
applies to #; and hence s; = max@. By Lemma 3.16(b) we could not then have (3).
Thus |g| < |t;| and, therefore, g8 — $h is applicable to #; and hence is the production
responsible for the transition from ¢; to ;41 so that i + 1 € &. Since & is irrefutable,
Fk—.pAD(T—0""10L)AD(c—D0%0L) and } s— Li=e;, & testifies to the consistency
of Li=e; with p ADO(---) A O(---). Now, the latter, being a conjunction of three such,
is a box sentence. Therefore, by Lemma 3.11, it is consistent with Ly=e;4+;. In other
words, there exists an irrefutable sentence v s.t. b ¥ — Li=e;;; (note that this implies
Fv—et), Fv—pand

(4) Fv—.0(r 0" 'ol)AD(c - 0%0l),
whence by X-completeness one has

(5) Fv—.o@9r - ado-tol) Ao(@*le - oltlotol).
Next, by Lemmas 3.12(b), 3.16(a), 3.2(a) and 3.3(a),

(6) R(at,fr;v, 07+~ oL, 0% 0L) and

() Wht (v, 0+ 10l).

Since |g| + 7: — 1 = ri41 — 1 and |h| + s; = s;41, Lemma 3.2(b) and (c) apply to (5)
and (6) to produce

R(at, Br;v, 07+ 1oL, alflr, oltlg).

Furthermore, observe that since t;41 = fh, (7) implies W"(:\'t;v, alflgr+-1gl)
through Lemma 3.3(c). Now, recall that |[f| + 741 — 1 = |g|+ |fl+ -1 =
[t:]+7;—1 = s; and, therefore, W"(:\}; v,0%0.1). Finally, W"(:\'t; v, o) follows from (4)
by Lemma 3.3(b).

We have thus inferred that the sentence v satisfies all the requirements needed to
verify P93=3k(ay, fi, €1, Xy).
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The only point in our proof that does not formalize in T is our appeal to
Lemma 3.10(b) in the very beginning of the proof. Under the hypothesis G5 +20T
for t mortal and K = max®&, this can however be remedied within T by Lemmas
3.10(d) and 3.8(e). ' .

We approach the denouement of this Section’s story, Proposition 3.18. It also points
out that our considerations on D1 have not been completely lost on the formal theory T
itself.

3.18. ProPoSITION. (a) If t produces e then M{ holds in Dt. Moreover, - Mf.

(b) If t does not produce e then M{ does not hold in Dr. If, in addition, t is
mortal, then | ME.

Proor. (a) follows from Lemma 3.5: Since M¢ holds in any diagonalizable algebra
and T verifies that O satisfies all the axioms of the diagonalizable algebra theory (cf.
Montagna [18]), M¢ is provable in T.

(b). Suppose M¢ holds, that is, one has Dt(a,ﬂ,s,X) = Oe(a,,@,s,X) for
any choice of parameters. By Lemma 3.17, we have Dy(at, B, €t, At) and, therefore,

0°(a, B, et, Xt) must hold.
This means that there exists a top-box sentence 7 and an irrefutable u s.t.

Fu—ee & Rar, Bep, 7,007 & We(Ae; p, 7).

By Lemmas 3.13, 3.2(a) and 3.3(a), we may assume |y — Li=e; for a certain i € &.
By Lemmas 3.12(b) and 3.2(d) we then have u —. O(T « 0™~101) A O(0l®lr
0%01) whence We(X; 4, 07 ~10L) follows by Lemma 3.3(c). Combining this with
W"’(Xt;u,lj“‘ltll), which we may count on by Lemma 3.16(a), we get that e is
compatible with #; by virtue of Lemma 3.16(c). Now note that we have

Fu—o(@fon-lol o olélr)
«~ 0%0ol)
— altlgn-1ol)
for s; = |t;| + r; — 1. If |e| failed to be equal to |¢;| then we would have
pu— D(Dmax“c‘rl‘i'}g"i—lml — Dmin{|e|,|t;|} Dr‘_lD_L)
— grirllebit+igri-1n | (by (X-completeness and) Lob’s Theorem).
Now, min{le|, |t} + 1+ — 1 < max{le],|t:;|} + s — 1 € & by Lemma 3.16(b),
whereas Fpu — gy and ey — O/OT for any j € @ by Lemma 3.10(d), so that
Fp — Omin{lelItl}+10m-10 | - which is a contradiction. This shows that |e| = |t
and, since these words are compatible, e = ¢; so that e is actually produced by t as was
to be shown.

If t is mortal then the above argument can be formalized in T, for then we only need
finitely many instances of |- ey — <7/ OT. Thus we have - O%(ex, Br, €1, At) — W; e €=ti-

1€EW

Therefore, in the case that e is not produced by t, we get - -0%(ay, ft, €t, Xt), for the
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absence of a word in a finite monolggue is verifiable in T. By Lemma 3.17, however,
there holds F O*OT — Dy(au, Bt €1, At) for an appropriate n € w. Thus - M — 0”01
and we can not have  M¢{ by the assumption on the credibility extent of T, q.e.d. =

4. Wordworks

In Proposition 3.18 we have seen that the question whether or not an arbitrary mecsystem
produces a given word can be reformulated in terms of validity of first order statements
in diagonalizable algebras of theories T of infinite credibility extent. Starting from
this we shall diagnose the undecidability of Th D, for mcsystems are known to be a
universal breeding ground for undecidability phenomena in that they can, in a certain
sense, simulate any computational process, as was first established by Minsky [15]. A
particularly sharp version of this result is given in Cocke & Minsky [6] complete with
a remarkably transparent proof reproduced in Minsky’s book [16]. Unfortunately, we
are not able to benefit from every aspect of this accomplishment, and we therefore only
state their potent theorem in a rather general and simplified form.

4.1. Fact (Minsky [15, §2]; Cocke & Minsky [6]; see also Minsky [16, Theorem and
Corollary 14.6-1]). To every deterministic (say, turingmachine) computation C we can
effectively associate a mcsystem tc in an alphabet Ac, a one-one total recursive func-
tion fc from the configuration space of C to words in Ac, and its effective ‘inverse’ gc
which, given a word e in Ac, tells whether there exists a configuration s with fc(s) = e
and, if so, finds this s. These objects are related to C in the following way:

(i) C terminates iff t¢ is mortal, and

(it) C reaches a configuration s iff tc produces fc(s). "

In order to utilize Proposition 3.18 and Fact 4.1 for obtaining the promised undecid-
ability results, we have to make precise agreements on the nature of computational
devices we shall be dealing with. We opt for the usual Turing machines with a number
of ridiculous restrictions on the kind of configurations accepted as legitimate output.
The class of good old Turing machines consists of the usual single two-way infinite
tape Turing machines with two distinct distinguished starting and halting states. Good
old Turing machines present the results of their computations by arriving at their halt-
ing state with the read/write head positioned at the leftmost non-blank square which
marks off the beginning of the answer. That the imposition of this particular format is
harmless can be gleaned from Minsky [16, chapter 6]. The point is that in each good old
Turing machine to every natural number there corresponds a unique configuration that
is considered to output that natural number. We give the name (¢;)icw to the num-
bering of the class of unary recursive functions by (gédelnumbers of) good old Turing
machines. :

4.2. THEOREM. The first order theory of any class of diagonalizable algebras contain-
ing that of a theory of infinite credibility extent is undecidable.
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ProoF. Fix a nonrecursive r.e. set U and let (up)new be its effective repetition-free
enumeration. Define a recursive function h by putting

~ Uj41 ifz= U;,
h(z) = { 1 otherwise.

We now design the following Turing machine k: Take the good old Turing machine
computing A and identify its starting and halting states under the name of enumerating
state, then feed it ug as input. (Note that & is not good old.)

Observe that k just iterates h and therefore goes on and on enumerating U with
transition through the enumerating state indicating the finding of the next element of U.
Therefore, the question “Does k reach the enumerating state with the number z written
on its tape?” is equivalent to “z €7 U”.

By Fact 4.1, find a mcsystem t simulating the behaviour of k£ and call “z € U” the
word corresponding to &’s finding itself in the enumerating state and z written on &’s
tape. Then, clearly, t produces “z € U” iff z € U.

Recalling Propositions 3.5 and 3.18(b), we see that if 2 € U then the sentence
M;? €U” holds in any diagonalizable algebra and M, > €U” does not hold in the diag-
onalizable algebra of any theory of infinite credibility extent unless z € U. Since U is
not recursive, the proof is complete. "

4.3. COROLLARY. For T a theory of infinite credibility extent, Th Dt is hereditarily
undecidable.

ProOF. Recall that the theory of all diagonalizable algebras is finitely axiomatized and
use Theorem 4.2. "

Now that we know ThDt to be undecidable for certain theories T and recalling that
first order statements about Dt are straightforwardly formalizable in T itself (cf. Mon-
tagna [18] or note that in Sections 1 and 3 we have been using such formalizations all
along), one might ask whether this is the case with these theories as seen by T, that is,
whether or not the theory '

Th™ Dy = { diagonalizable algebraic sentences Z | T |- ‘Dr 2’}

is decidable. For T = PA, Montagna [18] does so. The following Theorem gives an
answer for all formal theories T of infinite credibility extent, which, for T # PA, is
generally not a straightforward consequence of Corollary 4.3 because T may very well
happen to prove statements Z about Dt that are not, in the real world, valid in this
structure. One example of such Z is the diagonalizable algebraic sentence B = T, with
B and T as in Definition 1.1.

4.4. THEOREM. For any theory T of infinite credibility extent, ThT Dr is hereditarily
undecidable.

ProoF. We shall do something similar to the proof of Theorem 4.2.
As in that proof, we fix a nonrecursive r.e. set U and an effective repetition-free
enumeration (u,)neo of it and agree additionally that 0 ¢ U.
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Let us now devise a computable numbering of a certain class of computations (%; )icw
by Turing machines with prescribed input like the one we employed in the proof of Theo-
rem 4.2. The whole of the good old Turing machine k computing ¢; along with its states
and instructions is subsumed within the Turing machine executing the computation ;.
Within the new machine, the starting state of k bears the name of enumerating state
and the halting state of k that of contemplating state. On top of that, there is at least
one new state called the stop state. The new machines start off in the contemplating
and finish, if so luck has it, in the stop state.

This is how ¥ works: Contemplate the number written on the tape. If it is 0,
then pass on to the stop state and finish your activities. Otherwise, assume the enu-
merating state and run as k£ does. On reaching the halting state of k, which now is the
contemplating state, start all over again.

Essentially, ¥, performs the iteration of ¢} starting with ug as long as 0 does not
crop up among the iterated values, in which case it halts.

By Fact 4.1, to every k& we can effectively associate a mesystem t; mimicking the
computation ¥ in the sense of that Fact. “z € U” will stand for the word, effective
in z, corresponding to the enumerating state of our machine for computing % and z on
the tape.

Invoking the Recursion Theorem, we call into existence a particular index k s.t.

uiy1  if £ = u;, and whenever |-¢; Mt:z €U” one has z € {uo, ..., ui},
pr(z)~ <0 if z = u;, and F<; Mt‘;z €U” for some z ¢ {uo, ..., u},
1 otherwise.
Claim. Forallzandi, bg; M{;’ €U” implies z € {uo, ..., u;}.
Suppose this were not the case: F<; My°€Y” and z ¢ {uo,...,u;} and i is the

minimal s.t. this happens. Consider the computation t;: Since u; # 0, we have
or(uj) = ujy1 for all j < 7 and, by our assumption, @g(u;) = 0. By the minimal-
ity condition on 7 this means that 3 passes through the enumerating state exactly i+1
times with wug, ..., u; showing up then on the tape, whereafter it proceeds to the stop
state and grinds to a halt. By Fact 4.1, t; is then mortal. By Proposition 3.18(b) we
therefore have it M;? € U” for, by our assumptions, z & {uo, ..., u;} and hence the word
“z € U” is not produced by ty. But we have assumed E—Mt‘;" ev”,
The contradiction settles the Claim. ’

We are now adequately equipped to see that |- Mt‘;‘ €U” if and only if z € U. One

direction is an immediate consequence of the Claim. For the opposite direction note
that since, as follows from the Claim, ¢i(u;) = w41 for all ¢ € w, we have that ¥
eventually enumerates all elements of U, whence by Fact 4.1 we have that z € U implies
that t; produces “z € U” which, by Proposition 3.18(a), implies in its turn - Mt‘:f ev”,
This shows that Th™ Dy is undecidable.

The heredity of this undecidability follows, as in Theorem 4.2 and Corollary 4.3 by
recalling that, by Proposition 3.5, t;’s producing “z € U” implies that Mt‘; 2 €U” holds
in any diagonalizable algebra, and that the diagonalizable algebra theory is finitely
axiomatized. ]

A bookkeeper’s analysis of our constructions, which the reader is invited to follow, shows
that the undecidability of Corollary 4.3 (as well as that of Theorem 4.4) already strikes
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at the V3V3 level of quantifier alternation in diagonalizable algebraic sentences. Indeed,
the sets B and T of Definition 1.1 are 3 and V3 definable respectively; the formula
We(---) of Definition 3.1 is quantifier-free; formulas S(---) and R( -} of Definitions
1.4 and 3.1 are 3&V. In Definition 3.4 we have that O°(--+) is 3v3, and Xe(--+) is v,
P93—3B(...) and Dy(- --) are V3V. (The most complex aspect in O( - -) and P95—-8A(...)
is the restriction of certain quantifiers to 7'.) Finally, the complexity of sentences M,
whose validity was shown to be undecidable, is vava.

In the opposite direction, we have Corollary 3.12 of Smoryiniski [22] to Lemma 5.4 of
Solovay [26] stating that, for X;-sound theories T, Thy D is decidable. The situation
for other kinds of theories is the same:

4.5. PROPOSITION. Thy; Dt is decidable for each theory T.

PrOOF-SKETCH (for readers of Shavrukov [20]). We only treat X;-ill theories T and we
rather look at ThyDy. A natural number n + 1 is the credibility extent of T if n is the
minimal s.t. - 0”01 holds in Dr. The height of an arbitrary diagonalizable algebra is
defined in exactly the same way.

After a few straightforward manipulations the question whether Dt | Z for 3
diagonalizable algebraic sentences boils down to those Z of the form

#* (FPE) & &),

where P(£') and U;(Z) are modal formulas. Consider the factor P of the free diagonal-
izable algebra on the generators & modulo the r-filter corresponding to the formula
P*(7) = P(Z) if T is of infinite credibility extent,
T | P()AD"OL if n+1is the credibility extent of T.

Using Corollary 2.14 of Shavrukov [20] it is effectively verifiable whether the height of P
matches the credibility extent of T, which signals embeddability of P into D and is a
necessary condition for the sentence Z to hold in Dr. If this is indeed the case then, in
order to make sure that Dt |= Z, one only has to check that

L | otP*(7) — ot Us(%)

takes place for no i. ‘ n

All in all, this leaves a comfortably large gap for further investigations into exactly how
many quantifier changes one needs to get undecidability.

4.6. CONJECTURE. V3 is decidable and V3V is not.

The reader will certainly have also noticed that the question of complexity of the first
order theories of diagonalizable algebras of ¥1-ill theories of infinite credibility extent is
left wide open. In particular, it is not known to the author whether any or all of these
theories are arithmetic.

Neither am I aware of any information whatsoever on the question of decidability
of first order theories of diagonalizable algebras of formal theories of finite credibility
extent apart from the trivial case of credibility extent 1.
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