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On the Independent Axiomatizability of Modal
and Intermediate Logics

Alexander Chagrov and Michael Zakharyaschev
Tver State University, Zhelyabova Str.33, Tver 170013
Institute of Applied Mathematics, Miusskaya Sq.4, Moscow 125047
RUSSIA

§0. This paper gives a solution to an old problem connected with the efforts to describe
the lattices of all normal modal and intermediate logics. The problem is as follows:

Does every normal modal or intermediate logic have an independent set of
axioms?

For intermediate logics it was formulated by A. Tsytkin in Logic Notebook [1986, Problem
148].

A way to the negative solution to this problem is opened by the following observation
of Kleyman [1983], which is presented here in a form suitable for our purpose:

Lemma 1 Suppose a logic L has an independent axiomatization. Then, for every finitely
aziomatizable logic Ly C Ly, the interval of logics [Le, L1] = {L: Ly C L C Ly} contains
an tmmediate predecessor of Ly, that is a logic L C L; which has no extension lying
properly between L and L.

Proof. If L, is finitely axiomatizable then the existence of an immediate predecessor of
Ly in [L, L] follows from Zorn’s Lemma.

Suppose now that L; has an infinite independent set of axioms {¢; : ¢ € w}. Since L, is
a finitely axiomatizable sublogic of L, there is n < w such that L, is contained in the logic
with the axioms ¢q, .. ., ¢,. Let L3 be the logic with the axioms ¢y, ..., ©n, Pni2, Pnts, - - -
Since the set of Ly’s axioms is independent, Ly C L3 C L; and ¢,+1 € L3. And now again
Zorn’s Lemma provides us with an immediate predecessor of L in the interval [Ls, L]

_I

Thus, to prove that there is a logic without an independent axiomatization it suffices to
produce a finitely axiomatizable logic L, and its proper extension L; having no immediate
predecessor in the interval [Lq, L4].

A lattice (e.g. the lattice of extensions of a given logic) is called strongly coatomic if
each its interval [Ls, L;] with Ly C L; contains an immediate predecessor of L;. Blok
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[1980] proved that the lattice of normal modal logics is not strongly coatomic (more
exactly, he showed that the dual lattice of varieties of modal algebras is not strongly
atomic). However, it seems unlikely that in the interval [Ls, L;], constructed by Blok
and containing no immediate predecessor of L;, the logic L, is finitely axiomatizable; in
any case its semantic definition involves the set of squares of natural numbers which can
hardly be described by a finite set of axioms.

We will strengthen appropriately Blok’s result to construct logics without independent
axiomatizations lying above K4, S4, Grz and intuitionistic logic, answering incidentally
his question concerning the strong coatomicity of the lattices of intermediate logics and
modal logics containing S4.

§1. We use standard notions and notations in the realm of non-classical logic. Here
we mention only those of them that have variants.
We denote by O, Oy, O™p and O™y the formulas ¢ A Op, oV Op, O...0p and

O L. O, respectively; (i /p) means the result of replacement of all occurrences of the

var?able pin ¢ with . :

All modal logics in this paper, except those in the final §, are assumed to be normal,
i.e. containing K and closed under modus ponens, substitution and necessitation ¢/Op.
The smallest normal modal logic to contain a logic L and a set of formulas I' is denoted
by L & I'. Intermediate logics are consistent extensions of intuitionistic logic Int closed
under modus ponens and substitution. L + I' means the closure of the set L U T under
the latter two rules.

Let L be a logic and I', A sets of formulas in the language of L. I is said to be an
independent set of azioms for L over A if, for every ¥ C I, L is the closure of ¥ U A under
the postulated inference rules of L iff ¥ = I'. For instance, we can say about independent
axiomatization of an intermediate logic over Int or that of a modal logic over K. If I is an
independent set of axioms for L over A = () then I' is called an (absolutely) independent
set of azioms for L. A logic L is independently aziomatizable (over A) if there is an
independent set of axioms for L (over A).

It is clear that the following lemma holds.

Lemma 2 If a logic L is independently aziomatizable over a finitely axiomatizable logic
then L is absolutely independently aziomatizable.

As to our semantic apparatus, we use here differentiated general frames. Recall that
a general frame (§, P), where § = (W, R) is a Kripke frame and P a set of possible values
in §, is differentiated if, for every two distinct points x,y € W, there is a set X € P such
that z € X and y ¢ X. For more information on general frames consult Goldblatt [1976],
from which it follows in particular that every normal modal logic is characterized by a
class of rooted differentiated general frames.

All our frames are assumed to be transitive. We will define them by drawing diagrams
(directed graphs) in which reflexive and irreflexive points are denoted by o and e, respec-
tively, and, for distinct points z and y, Ry means that there is a directed path from z
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to y. We write zRy if zRy or ¢ = y. So § = (W, R) is rooted if there is € W such that
xRy for every y € W in this case z is called a root of 3. :

§2. First we give a solution to the independent axiomatizability problem for modal
logics containing K4. Though afterwards stronger results will be obtained, we prefer to
begin with logics above K4 because in this case our construction is more transparent.

We require a number of modal formulas:

a=pA-0p, & =a(Op/p), o' = o/(Cp/p) = a(O?p/p),
a; = a(O'T/p), aipr = (O T /p), aiys = (O T /p),
B =Can-0td, B = 6(Op/p),
Bi = B(O T [p) = Oa; A ~OF
B = B/(O1T/p) = Oayyr A =0y,
v =OB AOAd"A=OB, v =v(Cp/p),
Yir1 = 7(O'T[p) = Obisa A Qe A ~OB;,
Yirz =7 (O'T/p) = OBira A Gaips A =OBir (12> 0).
Define L, as

L, = K4 @ {azl,az2, a3, az4,az5.9 : ¢ € {a,3,7}},
where
arl =ap VOTay, az2 =7 —= Oy, ax3 =7 = O,
azd = Of' A Od" — O, azb.ap = OF (g = —p) V OF (=g — ).

It is not hard to verify that L, is consistent. Indeed, all its axioms are valid in the
frame shown in Fig. 1 with empty V.

Our first goal is to characterize the constitution of rooted differentiated frames for L.
To this end we require the following substitution instances of its axioms:

az2.i = y; = Oy = ax2(O'T /p),
ax3.i =y; = Oviy1 = az3(O T /p),
azd.i = OB A Cajpy — Oy = azd(OT /p) (5> 1),
azb.o; = O (q = —q;) vV O (=g = ~¢q;) = az5.a(O T /p),
az5.6; = O (g = =6;) V O (=g = =5;) = az5.8(CT /p),
az5.7i11 = 0% (g = ~Yip1) V OF (ng = ~%i41) = a25.9(O'T/p), (i 2 0).

For each n > 1, by 3(n,V) we denote the rooted subframe of the frame in Fig. 1
generated by c,; §(1,V) is that frame itself. Here V' is a (possibly empty) set of points
which see all a;’s and are seen from all ¢;’s (as it follows from the diagram, b;’s do not see

3



Figure 1:

points in V' and are not seen from them); the accessibility relation between points in V'
is of no concern to us.

Observe that the points a;, b;11, ¢it1, for ¢ > 0, are characterized in §(1,V’) by the
formulas ;, Bit1, Yit+1, respectively, in the sense that under any valuation in F(1,V) we
have:

{z: e}t =A{a}, {z: 2B} ={bii}, {z: 2 F vt} = {cita}

And the points in V' are exactly those points in §(1,V) at which all Coy’s are true and
all ©B;,1’s are false, for 7 > 0.

Lemma 3 Suppose (§, P) is a rooted differentiated frame for L. Then § is (isomor-
phic to) a rooted generated subframe of a frame of the form §(1,V), for some V, and
{ai}, {bi+1},{ci+1} are in P, for alli > 0.

Proof. Let r be the root of §. As it was done above, we classify the points in § according
to which of the formulas o;, §; and +; are true at them.

Say that a point z in § is of type a; (respectively, b; 11, civ1) if o; (respectively, 541,
Yi+1) is true at z; z is of type a, if ¢ = Oy and z £ Of;, for all i >0, 7 > 1.

Since (3, P) | az5.q;, ¥ contains at most one point of type a;, for each i > 0. Indeed,
suppose there are two distinct points z, y of type a;. Since (g, P) is differentiated, there
is X € P such that ¢ € X and y ¢ X. Define a valuation 9 in § by taking 9(q) = X.
Then r & az5.;, which is a contradiction. Likewise, for each 7 > 1, there are at most
one point of type b; and one point of type c;.

By the definition of «;, each point = of type a;, if any, is irreflexive and must see a
point of type a;, for every j < i, and every point accessible from z is of type a;, for
some j < 7. Therefore, in view of their uniqueness, the points of type a;, = > 0, form a
descending chain in .
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By ax3.1, each point of type ¢; for ¢ > 1, if any, sees a point of type c;, for every 7 > 1,
and, by the definition of +;, a point of type a;, for every j > 0; besides, by ax2.: and the
uniqueness of points of type c¢;, every such point is reflexive.

If some point z in § sees a point of type a; and neither sees a point of type a;;1 nor is
of type a;,; itself then, by the definition of §3;, = is of type b;. Besides, by azl, az4.: and
the properties of points of types c; and a; established above, every point accessible from
z is of one of the types ag,...,a; b;. It follows in particular that x is reflexive. For if
is irreflexive then either it sees only points of types ay, ..., a; and so is of type a;; itself,
contrary to our assumption, or sees a point of type b;, contrary to the uniqueness of such
a point.

It should be clear from the arguments above that each point in ¥ is of at most one
type. We show now that each point in ¥ ¢s of some type indeed.

Let = be an arbitrary point in §. By azl, among the points y such that zRy there is
at least one point of type a;, for some 7 > 0. If z sees only finitely many points of type
ai, t > 0, then, as was established above, z is either of type a; or of type b;, for some 7. If
z sees points of type a; for all 2 > 0 then we have the following alternatives. First, = sees
no point of type b;, for j > 1, which means that z is of type a,. Second, z sees a point
of type b;, for some j > 1, and no point of type b, for 0 < k < j, which means that z of
type c;. We have exhausted all the possibilities, and so each point in §, in particular r, is
of some unique type.

The isomorphism we are after is quite clear now: we map every point of type a;
(respectively, b;y1, ¢ivr1) to a; (respectively, b;11, ¢;41). The uniqueness of points of types
a;, b;y1 and c;11 guarantees that P satisfies the desirable condition.

Now we are in a position to define L;. Let C; be the class of all differentiated frames
for L, whose underlying Kripke frames have the form shown in Fig. 2. Since §(1,0) &= L,
and the frame in Fig. 2 with empty V is a generated subframe of F(1,0), C; # 0. We
define L, as the logic characterized by the class Cy, i.e. put

Li={p: V€l T E ¢}
Observe that L, C Ly; moreover, this inclusion is proper, since —y; € Ly — L.

Lemma 4 L; has no immediate predecessor in the interval [Lq, Ly].
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Proof. Suppose otherwise. Let L be an immediate predecessor of L; containing L.
Since L C Ly, there exists a rooted differentiated frame (g, @) such that (§,Q) = L and
(%,Q) £ Li. On the other hand, since L, C L, we have (§,Q) = L, and so, by Lemma
3, (%, Q) is of the form (§(n, V), P), for some n > 1, V and P. Then -y, ¢ L; for, as we
know, ¢, = Yn.

Let C' be the class of frames containing all the frames in C; and also the subframe
of (§(n,V), P) generated by c,1, and let L' be the logic characterized by C'. By the
definition, L C L' C L;. Moreover, (§(n+1,U),Q) E —,, for every U and @, from
which =y, € L', and ¢,41 E Yny1, from which =y, & L', while —y,,; € L;. Therefore,
L c L' C Ly, contrary to L being an immediate predecessor of L;. -

As a consequence of Lemmas 1 and 4 and the fact that L, is finitely axiomatizable we
obtain our main result:

Theorem 5 L; has no independent axiomatization.

Remark. It is worth noting that L, is recursively axiomatizable. Indeed, using Lemma
3 one can readily prove that

L1=L2@{—I’Yil 2_>_1}

§3. Now we show how to modify the construction above in order to obtain much
stronger logics without independent axiomatizations. First we consider intermediate log-
ics.

The construction in §2 was based upon the frame in Fig. 1 containing the descending

chain ag, aq, ... of irreflexive points. We replace it with ”Fine’s ladder” consisting of the
pairs of reflexive points ag,a2,al,a?,...; see Fig. 3 where the points a! ; and a?, play an

auxiliary role (cf. Fine [1974, p.26]).



Since in the case under consideration variable free formulas are not expressive enough
— there are only two of them (up to equivalence, of course), namely, L and T — we shall
use as a "starting formula” the following one:

d=(@—qV-qV(-p—qVg).

It is not hard to see that a rooted Kripke frame § refutes ¢ iff it contains a (not necessarily
generated) subframe of the form shown in Fig. 4, with a and b having no common
successors in §. Since the frame in Fig. 3 contains only one (modulo interchanging
superscripts) subframe of that sort, without loss of generality we may assume that under
any valuation refuting ¢ in the frame we have:

a’é |:p7 a’é l?éqV'ﬂq, al;l I=q,
Clg i= P, a’g t#q\/—'q, az—l l"—'q
Now, taking the formulas
al.l =pAqg— 1, a2_1 =-pAqg— L,
ap=p—qV g apg=-p—qVg
aj,=af s Valy, o =af 5 Ve,
Bi = ag Aagyy = a; Vs,
Vi1 =0 = Bia Vg, Vai, (1>0)

we obtain, under a valuation refuting §, a classification of points in the frame in Fig. 3
similar to that in §2:

{z: oo} ={a}, {z: x|t oi} ={af} (i 2 1),

oo sy={ G 20 6 ekt = fend 620

Here z [~ ¢ — 9 means z |= ¢ and z [~ 9.
L, can be defined by adding to Int the following axioms:

Bo, &= G VS GomVEVEVS,

Figure 4:



P(€o) V&V &, ¢(&) V&, d(&) V& d(m), (Gr),
where
§s=ry, fl_a =7y, 2 =81, 5’—2 = 82,

fn == :;«1 — £n—1 Vv 57,1-—2a f;; = ‘Sn——l — 6, -1 \ gn—Z (n Z _1)a
M = gn-}-l A 6:,_}.1 - gn \ 5;; (TL > 0)7
gn =Mp1 = MV §n+1 \ E':),-[-]_ (Tl > 1)

and ¢(p — 1) is an abbreviation for (t A ¢ — ¢) V (p = tV %) V 4. The meaning and
purpose of the axioms above are analogous to those of the axioms in §2; namely, the first
axiom is similar to azl, the second one to az3, the third to ax4, the forth, fifth and sixth
axioms play the same role as az5.a, the seventh is like az5.3 and the eighth is like ax5.y.

By using these axioms one can prove an analog of Lemma 3 which looks like this: ¢f
a rooted differentiated frame (g, P) for L, refutes § then § is isomorphic to a generated
subframe of a frame of the form shown in Fig. 8, with the sets generated by each of the
points aj-, b, ck, fori € {1,2}, j > —1, k > 1, belonging to P. Now, by defining L, as the
intermediate logic characterized by the class of all differentiated frames validating § and
all differentiated frames for L, whose underlying Kripke frames have the form shown in
Fig. 3, but with the points ¢;’s removed, we obtain an analog of Lemma 4 for intermediate
logics. Thus we arrive at

Theorem 6 There is an intermediate logic without an independent axiomatization.

Lemma 4 (for intermediate logics) provides us with an interval [L,, L;] of intermediate
logics in which L; has no immediate predecessors. This result and the Blok-Esakia
Theorem, according to which the lattices of varieties of pseudo-Boolean (alias Heyting)
algebras and Grzegorczyk algebras are isomorphic, give a solution to the Blok’s [1980]
problem:

Theorem 7 (i) The lattice of varieties of pseudo—Boolean algebras is not strongly atomic.
(ii) The lattice of varieties of topological Boolean (and even Grzegorczyk) algebras is
not strongly atomic.

84. Now we consider the correlation between the independent axiomatizability of inter-
mediate logics and normal modal logics above S4. We remind the reader that there is a
lattice homomorphism p from the lattice of normal extensions of S4 onto the lattice of
extensions of Int which is defined as follows: for every normal logic M 2O S4,

pM ={p: Tpe M}

where T is the Gddel translation prefixing O to every subformula of an intuitionistic
formula. The logic M is called a modal companion of pM. The set of all modal companions
of an intermediate logic L = Int+{y; : 7 € I'} forms the interval of logics [7L,o L], where

TL=S4®{Ty;: i €I},
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cL=7L® Grz=7L®0(0(p— Op) = p) — p,

with 7 being an isomorphism between the intervals [Int, Cl] and [S4, S5] and o the Blok-
Esakia isomorphism between the lattices of extensions of Int and normal extensions of Grz
mentioned at the end of §3. For more information on modal companions of intermediate
logics and references consult Chagrov and Zakharyaschev [1992].

It follows immediately from these facts and Lemma 4 for intermediate logics that in
the intervals [7Ly, 7L1] and [0 Ly, 0L;], where L; and L, are the intermediate logics con-
structed in §3, the modal logics 7L; and 0 L; have no immediate predecessors, respectively.
Thus we obtain

Theorem 8 There are a normal modal logic in the interval [S4,S5] and a normal logic
containing Grz without independent axiomatizations.

Remark. It is not hard to modify the proof of Theorems 6 and 8 to construct a normal
extension of the Godel-Lob provability logic GL without an independent axiomatization.

Another consequence of the properties of 7 and o mentioned above is
Theorem 9 For every intermediate logic L, the following conditions are equivalent:
¢ L is independently aziomatizable over Int;
o 7L is independently axiomatizable over S4;
o oL is independently axiomatizable over Grz.

The maps p, 7 and o can be characterized with the help of the apparatus of the modal
and intuitionistic canonical formulas, which are denoted here by a(§,®, L) and 8(3,9, 1),
respectively; for a brief exposition and further references consult Zakharyaschev [1993].
Namely, a normal logic M O S4 is a modal companion of an intermediate logic

L =1Int+{8(5:,2:,L): t €I}
iff M can be represented in the form
M =548 {a(3:,9i;,1): i€} D {a(s;,¢,L): je T},
where each &;, for j € J, contains at least one proper cluster; in particular,
7L =S4 ®{a(F:;,Di,L): 1 €1},

oL =540 {a(3:,9;, L) : i € I} ® (@9, ).
Here (9) is the two point cluster.

Theorem 10 If an intermediate logic L has an infinite independent aziomatization over
Int then every logic in the interval [TL,o L] is independently aziomatizable (over S4).



Proof. Suppose L = Int + {¢; : i € w} with independent axioms ¢;. According to the
characterization above, every logic M € [rL,oL] can be represented as

M=S4&{Ty;: i€ w}d{a(3:D:L): t €w},
where each §;, for ¢ € w, contains a proper cluster. Therefore,
M =S4 (o) ‘[T'QOz N a({s’i,iDi,_L) P 1€ CLJ}.

The latter axiomatization is independent over S4, for otherwise we would have, for some
1EwW
To;, e M =S4@ {Tp; Na(3;,D,L): jew, j#1},
and hence
pi € pM' =Int +{p;: j€w, j#i},
which is a contradiction. By Lemma 2, M is absolutely independently axiomatizable. -

That L in Theorem 10 is infinitely independently axiomatizable over Int is essential.
For, as is shown by the following theorem, Int itself has a modal companion without an
independent axiomatization.

Theorem 11 The interval [TInt, oInt] = [S4, Grz] contains a logic without an indepen-
dent aziomatization.

Proof (a sketch). We point out how to change the proof of Theorem 6 in order to obtain
a logic we need.

As a ”starting formula” §, we take a modal formula which is refuted in a rooted Kripke
frame § iff § contains a subframe shown in Fig. 4, a and b have no common successors in
% and d (or ¢) is contained either in a proper cluster or in an infinite strictly ascending
chain. Besides, in the frame in Fig. 3 we replace a®; with the two point cluster.

Then we construct a finite number of axioms for L, in such a way that Lemma 3
holds for every rooted differentiated frame for L, refuting 6. And L; is defined as the
logic characterized by the class of all differentiated (reflexive) frames validating § and all
differentiated frames for L, of the form shown in Fig. 3 with a?; replaced by the two
point cluster and the points ¢;, ¢ > 1, removed. This class contains all the finite partially
ordered frames (since all of them validate §) which means that pL; = Int. The fact that
L; has no independent axiomatization is proved in the same way as in §2 and §3.

That the property of independent axiomatizability is not in general preserved while
passing from an intermediate logic to its arbitrary modal companion can hardly be re-
garded as a great surprise. Many other properties (such as the decidability, finite model
property, Kripke completeness, etc.) behave in this respect in the same way. What is
rather unexpected is that unlike the other ”good” properties of logics (at least those
known to us) the independent axiomatizability is not in general preserved under the map

p.
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Theorem 12 There is an independently aziomatizable normal modal logic M D S4 such
that pM does not have an independent aziomatization.

Proof. We are going to construct an independently axiomatizable modal logic M such
that pM = L;, where L, is the intermediate logic without an independent axiomatization
constructed in the proof of Theorem 6. By the definition of L;, each subframe &; of the
frame in Fig. 3 generated by b;, for ¢ € w, validates L;, and so each frame §;, which is
obtained from ®&; by replacing b; with the two point cluster is a frame for 7L;. For i € w,
we denote by 37 the formula

T(agys Aejyy) = T(og Voi) vV (B(@A(r — Or) = r) = 1),

where af’s are taken from the proof of Theorem 6. It is not hard to verify that 3; j~ 3F
and §; |= B7, for every j # i. Therefore, the set {3} : i € w} is independent over 7L;.
Let {¢; : i € w} be a set of axioms for L; over Int. Then, by defining M as

S40{Tp;: icw}d{B: i €w}, (1)
we clearly have 7L C M C oL, with
S46 {T(p:) A B!+ i €}
being an independent axiomatization of M. -

Remark. It may be of interest that it is impossible to extract an independent set of
axioms for M from the axiomatization (1). By using the logic L; constructed in the proof
of Theorem 6, it is not difficult to construct an intermediate logic with the same property.

§5. We conclude the paper with some questions to which we could not find answers.
The first three questions concern the difference between absolutely independent ax-
iomatizability and independent axiomatizability over a finitely axiomatizable logic.

¢ Is an absolutely independently axiomatizable logic L; containing a finitely axioma-
tizable logic L, is independently axiomatizable over Ly?

e Does the conversion of Lemma 1 hold?

e Do Theorems 9 and 10 hold for the case of absolutely independent axiomatizability?

Our forth question is connected with that there are two ways of axiomatizing modal
logics, namely, with the rule of necessitation and without it. The results above establish
the existence of modal logics having no independent axiomatizations only of the former
kind. In the proof of Theorem 5 the rule of necessitation was used together with the
formulas az3.7, which can be rewritten as O-;,; — —y;, to ensure that —vy; is in an
extension of L, whenever —y; belongs to it, for some j > 7. Without this rule the set {—; :
i > 1} is independent over Lo, and it is not hard to show that Ly = Ly +{0O%—y;: i > 1}
In the proof of Theorem 8 we used the Blok—-Esakia isomorphism between the lattices of
intermediate logics and normal extensions of Grz, with the condition of normality being
essential here (for details see Chagrov and Zakharyaschev [1992]).

11



e Do there exist modal logics having no independent axiomatizations without the
postulated rule of necessitation?

One can show, using the mystical part V of the frames in Fig. 1 and 3 that all the
logics without independent axiomatizations above have rooted frames of infinite width
and depth. Besides, the frames in Fig. 1 and 3 are closely related to the frame which
was used by Fine [1974] for constructing an incomplete modal logic. So our three final
questions are:

e Do there exist Kripke complete (modal or intermediate) logics without an indepen-
dent axiomatizations?

e Do there exist (modal or intermediate) logics without an independent axiomatiza-
tions but with the finite model property?

~® Do there exist (modal or intermediate) logics of finite width or finite depth without
an independent axiomatizations?

(As to the last question, our conjecture is that such logics do not exist.)
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