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Abstract

The modal mu-calculus is a very expressive formalism extending basic modal logic with
least and greatest fixpoint operators. In the seminal paper introducing the formalism in
the shape known today, Dexter Kozen also proposed an elegant axiom system, and he
proved a partial completeness result with respect to the Kripke-style semantics of the logic.
The problem of proving Kozen’s axiom system complete for the full language remained
open for about a decade, until it was finally resolved by Igor Walukiewicz. Walukiewicz’
proof is notoriously difficult however, and the result has remained somewhat isolated from
the standard theory of completeness for modal (fixpoint) logics. Our aim in this paper is
to develop a framework that will let us clarify and simplify parts of Walukiewicz’s proof.
We hope that this will also help to facilitate future research into completeness of modal
fixpoint logics, including fragments, variants and extensions of the modal mu-calculus.

Our main contribution is to take the automata-theoretic viewpoint, already implicit in
Walukiewicz’s proof, much more seriously by bringing automata explicitly into the proof
theory. Thus we further develop the theory of modal parity automata as a mathemat-
ical framework for proving results about the modal mu-calculus. Once the connection
between automata and derivations is in place, large parts of the completeness proof can
be reformulated as purely automata-theoretic theorems. From a conceptual viewpoint,
our automata-theoretic approach lets us distinguish two key aspects of the mu-calculus:
the one-step dynamics encoded by the modal operators, and the combinatorics involved
in dealing with nested fixpoints. This “deconstruction” allows us to work with these two
features in a largely independent manner.

More in detail, prominent roles in our proof are played by two classes of modal au-
tomata: next to the disjunctive automata that are known from the work of Janin &
Walukiewicz, we introduce here the class of semi-disjunctive automata that roughly cor-
respond to the fragment of the mu-calculus for which Kozen proved completeness. We will
establish a connection between the proof theory of Kozen’s system, and two kinds of games
involving modal automata: a satisfiability game involving a single modal automaton, and
a consequence game relating two such automata. In the key observations on these games
we bring the dynamics and combinatorics of parity automata together again, by proving
some results that witness the nice behaviour of disjunctive and semi-disjunctive automata
in these games. As our main result we prove that every formula of the modal mu-calculus
provably implies the translation of a disjunctive automaton; from this the completeness
of Kozen’s axiomatization is immediate.

Mathematics Subject Classification (MSC2010): 03B45; 03B70; 68Q60; 91A43.
Keywords: modal mu-calculus; modal fixpoint logic; completeness; parity automata; infinite
games
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1 Introduction

The modal µ-calculus The modal µ-calculus µML is an extension of basic modal logic with
least and greatest fixpoint operators. In the shape known today, it was introduced by Dexter
Kozen [36], building on earlier work by others, including de Bakker & Scott [3], Park [49],
and Pratt [54]. Since then it has been the subject of extensive research, see [1, 27, 8] for some
surveys.

The µ-calculus has its roots in computer science, where it serves to unify and provide
a foundation for the various modal logics that have featured as specification languages for
programs and reactive systems. For example, linear temporal logic LTL [52, 23], computation
tree logic CTL [13] and its extension CTL? [19] can all be embedded into the µ-calculus (see
[15] for the non-trivial case of CTL?), as can propositional dynamic logic PDL [53] and Parikh’s
dynamic logic of games GL [48]. In this sense, the µ-calculus serves as a “universal” modal
specification language.

Besides this important role in formal verification, it has become increasingly clear over the
years that the modal µ-calculus also has a rich and beautiful meta-theory, and deserves a place
in “pure” (mathematical) logic as well as in computer science. A paper that highlights this is
the work by d’Agostino & Hollenberg [14], which shows that the µ-calculus enjoys several nice
model-theoretic properties such as a Lyndon theorem and a  Los-Tarski preservation theorem.
Among the results obtained, the most striking is perhaps the interpolation theorem, which
shows that the µ-calculus has the very strong uniform interpolation property. This property
fails for first-order logic, but has previously been shown for a select number of logics, most
famously intuitionistic logic [51], but also basic modal logic [24, 70].

The modal µ-calculus is a natural extension of basic modal logic, and retains many of
its good properties. For example, Kozen [37] showed that the finite model property is pre-
served and, improving on a series of earlier results, Emerson & Jutla [20] could pin down the
complexity of the satisfiability problem for the µ-calculus as being exptime-complete. While
basic modal logic has a pspace-complete satisfiability problem, already minor extensions of it
are exptime-hard, including the logic obtained by adding the global modality [66]. Moreover,
the µ-calculus retains what is often viewed as the defining property of modal logic, namely, its
tight link with the notion of bisimilarity. For modal logic, this is highlighted by van Benthem’s
celebrated characterization theorem [4], exhibiting modal logic as the bisimulation-invariant
fragment of first-order logic. It turns out that the µ-calculus is also the bisimulation-invariant
fragment of an important system, namely monadic second-order logic (MSO). In the context of
applications in process theory, this result, due to Janin & Walukiewicz [31], can be seen as an
expressive completeness theorem, stating that all “relevant” MSO-formulas can be expressed
in the modal µ-calculus.

Completeness Besides the topics we have mentioned so far – expressive power, complexity,
preservation theorems etc. – one of the first problems normally considered for any logical
formalism is to provide a sound and complete deductive system of axioms and rules. Indeed
this was among the very first problems raised about the modal µ-calculus. In his seminal
paper, Kozen already suggested an axiomatization which is as simple and elegant as the µ-
calculus itself: on top of the usual rules and axioms of the least normal modal logic K, Kozen’s
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axiom system adds a single axiom schema and a rule schema to handle the fixpoint operators.
Together, the new axiom and rule schemas express in a straightforward way the equivalent
characterization of the least fixpoint, well known from the Knaster-Tarski theorem, as the
least pre-fixpoint. The axiom captures the pre-fixpoint property:

ϕ[µx.ϕ/x]→ µx.ϕ.

The rule schema, which is sometimes referred to as Park’s induction rule, expresses in an
equally simple way that µx.ϕ is indeed the least pre-fixpoint:

ϕ[γ/x]→ γ

µx.ϕ→ γ

The problem of proving the completeness of this axiom system turned out to be rather
hard: Kozen presented a proof only for a fragment of the µ-calculus, which he called the
aconjunctive fragment, and the completeness problem for the full language remained open for
more than a decade. After proving the completeness of a different axiomatization, where the
induction rule was replaced with a somewhat less elegant derivation rule [71], Walukiewicz
finally provided a positive solution to the completeness question of Kozen’s system for the
full language [72] — in the sequel we shall refer to the extended journal publication [73].

Theorem 1 (Kozen-Walukiewicz) Kozen’s deductive system provides a sound and com-
plete axiomatization for the set of valid formulas of the modal µ-calculus.

Walukiewicz’ proof is widely considered to be very hard to understand, and while the
Kozen-Walukiewicz completeness theorem is often cited and generally recognized as a land-
mark in the theory of the modal µ-calculus, it has remained something of an isolated point
in the completeness theory of modal (fixpoint) logic. Modal logic has a well established the-
oretical framework for completeness theory [6], with many standardized techniques such as
canonical models and filtration, and sweeping general results like Sahlqvist’s theorem. The
completeness theorem for the modal µ-calculus, on the other hand, does not seem to have
given rise to any comparable follow-up in the literature on completeness for fixpoint logics
(some exceptions to this rule will be discussed in a moment).

If we try to diagnose this situation, two obvious differences between the µ-calculus and the
modal logics that are covered by the general completeness theory come to mind. First, the
µ-calculus lacks the compactness property, which is tightly related to the Stone-like duality
between modal algebras and (descriptive) frames that underlies much of modal completeness
theory [32, 26]. This obviously prevents the possibility of having a strongly complete and
finitary system of axioms, but besides this the lack of compactness does not appear to be the
heart of the matter: for example, the non-compact logic PDL has an elegant weak completeness
proof using essentially a finitary version of the canonical model construction [38]. Likewise,
Emerson & Halpern’s completeness proof for CTL is relatively straightforward [18], and Lange
& Stirling [40] present a game-theoretic framework for establishing completeness results for
simple modal fixpoints logics such as LTL and CTL. For certain fragments of the µ-calculus
(Santocanale & Venema’s “flat fixpoint logics” [62]) a generic completeness proof is known
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that stays much closer to familiar algebraic techniques in modal logic than Walukiewicz’ proof
for the full µ-calculus.

Rather, what is special about the modal µ-calculus are the combinatorial issues that
arise with simultaneous fixpoints, especially in the presence of alternation between least and
greatest fixpoints (i.e., mutual dependencies between least and greatest fixpoint operators).
There is some evidence that this is indeed the crucial threshold: PDL, CTL, and flat fixpoint
logics all sit inside the alternation free fragment. Also quite telling is that for the dual-free
fragment of Parikh’s game logic, completeness is proved by a gentle modification of the proof
for PDL [48], while for the full logic GL (which spans the whole alternation hierarchy, see
[5]), finding a complete system of axioms remains an intrigueing open problem. In addition,
the “exceptions” that we just mentioned, that is, the few papers that do address complete-
ness questions for modal logics with explicit fixpoint operators and do make a link with the
Kozen-Walukiewicz result, seem to support our claim. For instance, all papers that report
positive results based on (relatively) easy proofs, seem to focus on settings where the alter-
nation hierarchy collapses: ten Cate & Fontaine [2] prove a completeness result for the set
of µML-validities on the class of finite trees (where nontrivial least and greates fixpoints co-
incide), while Kaivola [34] proves completeness for the linear time modal µ-calculus, that is,
the modal µ-calculus interpreted on the structure of the natural numbers with the successor
relation (where the alternation hierarchy collapses at the alternation-free level). Doumane &
coauthors [17] obtain stronger positive results for this linear-time interpretation of µML, but
only for fragments of the language. Similarly, Santocanale’s analysis of Kozen’s axiomati-
zation in [61] indicates that familiar algebraic methods can only prove completeness for the
alternation-free fragment of the language.

It is also worth mentioning that the only known completeness proof for CTL?, due to
Reynolds [57], is quite complex. The logic CTL? can be seen as a fragment of the µ-calculus,
and as such it is not alternation-free. However, it is less clear how the case of CTL? fits
into our description. Rather than a fragment of the µ-calculus, it might be more natural
to think of CTL? as a sort of combination of LTL with S5 modal logic, and furthermore the
difficulties that Reynolds deals with in his proof do not seem to be primarily concerned with
the combinatorics of simultaneous fixpoints. Similarly, the completeness proof for ECTL?, due
to Kaivola [35], seems to be based on regarding this extension of CTL? as a combination of S5
with the linear µ-calculus, rather than as a fragment of µML.

Finally, in passing we note that in this paper we focus on finitary proof systems. If one
is happy to work with infinitary proof systems (or finitary systems derived from these by an
appeal to the small model property of the modal µ-calculus), then completeness for the full
language of µML can be obtained in more direct ways than by the Kozen-Walukiewicz proof,
see for instance the work of Kozen [37] or Jäger, Kretz & Studer [29].

Logic and Automata A mathematical framework for the modal µ-calculus that is tailor
suited precisely to deal with the combinatorics of fixpoint alternation is the theory of finite
automata. This places the µ-calculus in a long tradition connecting logic and automata
theory, going back to the seminal work of Büchi, Rabin and others. As two landmark results
in this tradition we mention Büchi’s result showing that finite automata and monadic second-
order logic have the same expressive power over infinite words [9], and Rabins’ decidability
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theorem [55] for the monadic second-order theory SnS.

More specifically, in the context of fixpoint logics, the natural and most frequently used
type of automata are the parity automata, indepently introduced by Mostowski [45] and
Emerson & Jutla [20]. And indeed, most of the deep results on the modal µ-calculus have
used parity automata in one way or another; in particular, Walukiewicz’ completeness proof
heavily uses automata-theoretic ideas and insights. Specifically, the proof proceeds from the
observation that the satisfaction problem is easy for formulas of a certain normal form, called
disjunctive formulas, that correspond to the µ-automata (here called disjunctive automata)
introduced by Janin & Walukiewicz in [30]. The strategy of Walukiewicz’ proof is thus to
prove that every formula ϕ of the µ-calculus can be rewritten as a semantically equivalent
disjunctive formula ϕ̂, such that the implication ϕ → ϕ̂ is provable in Kozen’s system. In
a sense, this can be seen as re-establishing the equivalence of µ-calculus formulas and µ-
automata as a proof-theoretic result.

Our aim Our main goal in this paper is to streamline, clarify and, where possible, sim-
plify the proof of the Kozen-Walukiewicz completeness theorem for the modal µ-calculus, by
exhibiting and further developing the key mathematical concepts underlying the proof. In
particular, we set up a framework for dealing with the completeness problem, in the hope that
this will help to facilitate future research into completeness of modal fixpoint logics, including
fragments, variants and extensions of the modal mu-calculus. In addition, our approach leads
to a number of new automata-theoretic concepts and results that we believe to be of inde-
pendent interest. In the remainder of this introduction we outline some of our main ideas,
novel concepts and technical results.

Automata, coalgebra and proof theory The main conceptual difference with the ap-
proach taken by both Kozen and Walukiewicz is that automata feature far more prominently
in our proof. That is, one of the main novelties in our approach is that we make an explicit
and mathematically precise connection between the proof theory for the µ-calculus and the
theory of modal parity automata. Following this idea, we may rework large parts of Kozens’s
and Walukiewicz’ arguments in an entirely automata-theoretic framework, where we may
clearly distinguish what we take to be the two main parallel aspects of the completeness
proof: the combinatorics involved in reasoning with fixpoints, and the dynamics encoded in
the semantics of the modal operators. The combinatorics is dealt with by a purely combina-
torial framework that we will call “trace theory”. The dynamics is understood by studying
the so-called “one-step logic”, a concept originating from the theory of coalgebraic logic.

In fact, much of our approach here has been inspired by coalgebraic ideas. Universal coal-
gebra [58] is a categorical theory that has been developed to provide a uniform mathematical
framework for point-based evolving systems, such as, indeed, traces (streams) and Kripke
models. In particular, much of the theory of automata operating on infinite structures is
essentially coalgebraic in nature, in the sense that many key results have a natural general-
ization at a coalgebraic level of abstraction [39]. And with Kripke structures providing key
examples of coalgebras, the same applies to modal logic, which has been recognized as the
natural branch of logic for coalgebras [11]. The power of coalgebra lies in its combination
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of mathematical simplicity with broad applicability, and the approach we take here can be
generalized to a much wider setting (we will come back to this below). Since we want to focus
on the classical case of the µ-calculus for standard Kripke structures here, and in order to
suppress the use of categorical methods, we have chosen to keep the coalgebraic perspective
implicit, with three exceptions.

First of all, it will often be convenient for us to work with a coalgebraic presentation of
a Kripke structure S, viz., as a function σS mapping each state s to a small window on the
Kripke structure, consisting of the pair, formed by the set of proposition letters that s satisfies,
together with the collection of its (immediate) successors. Such “one-step unfoldings” can
then be examined by means of formulas of the one-step language that forms the codomain
of the transition map of our automata — this is what the game-theoretic semantics of our
automata will be based on. Starting from this, we will investigate the one-step logic of Kripke
structures, involving notions like one-step equivalence and one-step completeness. One-step
logic, stemming from the work on coalgebraic logic by Ĉırstea, Pattinson, Schröder and
others [12, 50, 64, 65], is then the second important tool that we will take from coalgebra. And
third, we will make extensive use of the coalgebraic cover modality ∇; this modality, which
was introduced by Janin & Walukiewicz [30] as the natural modality of their µ-automata,
(and which features also prominently in Walukiewicz’ completeness proof), was independently
introduced in the context of coalgebraic logic by Moss [43].

Returning to the global picture of our proof, on the one hand its “deconstruction” allows
us to deal with the combinatorial and the dynamic concepts in largely separate frameworks.
On the other hand, the use of modal parity automata will allow us to combine these two
features, to understand where and how the two perspectives interact, and how they connect
to each other. In particular, we will see that the trace theory of an automaton is largely
determined by the shape of the formulas of the one-step language.

Technically, the way we achieve this is to work with the wider class of modal automata
(introduced under the name of “alternating automata” by Wilke [74]), rather than passing
directly to the µ-automata used by Walukiewicz. One might say that we introduce automata
into the picture at an earlier stage: as mentioned, the main goal in Walukiewicz’ proof strat-
egy is to show that every formula of the µ-calculus proves some formula that corresponds
to a syntactic representation of a disjunctive automaton. By working with arbitrary modal
automata, we can prove an analogous result by much more elementary techniques: every for-
mula is provably equivalent to a formula in a normal form, that is the syntactic representation
of some modal automaton. Formally we provide a modal automaton Aϕ for each formula ϕ
and a formula tr(A) for each modal automaton A, and prove the following proposition (with
≡K denoting provable equivalence with respect to Kozen’s axiomatization):

Theorem 2 For every formula ϕ ∈ µML, we have ϕ ≡K tr(Aϕ).

Technically, Theorem 2 is not a very deep result, but we see it as an important conceptual
contribution of our approach. Bringing automata into the proof theory, so to say, it enables
us to apply proof-theoretic notions such as derivability and consistency to automata, and thus
it takes us “half-way” towards Walukiewicz’ result, where the remainder of the distance can
now be addressed by wholly automata-theoretic methods. In some sense then, Theorem 2
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answers a question raised by Lange & Stirling [40], who wrote “When proving completeness,
one needs to establish that a finite consistent set of formulas is satisfiable. It is not known,
in general, how to plug into such a proof automata theoretic constructions (such as product
and determinisation) for satisfiability”.

Games and special automata The main tools that we employ in our automata-theoretic
approach towards Kozen’s deductive system are two kinds of games for modal automata: the
satisfiability game and the consequence game, and two special kinds of modal automata: next
to the disjunctive automata, the class of semi-disjunctive automata.

The satisfiability game S(A) related to a modal automaton A, was introduced in [22] in
the more general setting of the coalgebraic µ-calculus. It is an infinite two-player game, that
can be seen as a streamlined, game-theoretic analog for automata to what tableaux are for
formulas. In this game, the dynamics of the semantics appears in the moves of the player ∃
(Éloise) who has the role of “model builder”, and attempts to construct a satisfying model
one layer at a time, while constrained by the one-step transition structure of the automaton.

The combinatorics of the trace theory enters the picture through the winning condition
for infinite matches. As we shall see, each infinite match naturally induces a trace graph,
an intricate graph structure of which the finite and infinite paths correspond to A-traces:
finite and infinite sequences of states of the automaton A. The winning condition of S(A)
states that, for ∃ to win the infinite match, all infinite traces, corresponding to full branches
through this graph, need to satisfy the acceptance condition of A. Intuitively then, the
smaller and simpler the trace graph, the easier it is for her to win. In particular, it will be
to her advantage if we restrict the use of conjunctions in the one-step language, since these
correspond to branching in the trace graph.

As we shall prove, the satisfiability game is adequate in the sense that ∃ has a winning
strategy in S(A) iff the automaton A is satisfiable, that is, has a non-empty language. Hence
our overall approach towards the completeness proof will be to prove that for any consistent
automaton A, ∃ has a winning strategy in the satisfiability game associated with A. This
makes that we will generally “take sides” with ∃ in the satisfiability game.

Before moving on to the other game featuring in our proof, we mention that the game
S(A) comes in two flavours: the standard and the thin satisfiability game Sthin(A). The two
versions of the game have identical sets of positions for ∃ and her opponent ∀ (Abélard), the
only difference being that in Sthin(A) we curtail the power of ∀ by restricting his moves.

The consequence game C(A,A′), an original contribution of this paper, is an infinite two-
player game that can be seen as a kind of implication game between the two automata A
and A′. Its moves revolve around one of the players, prosaically named “player II”, trying to
establish some structural connection between the two automata to support the claim that A
implies A′. We write A |=G A′ in case he succeeds, in the sense of having a winning strategy
in the game C(A,A′). This relation |=G is a strong consequence relation between automata,
indicating a close structural relation between the automata; for instance, we shall see that
A |=G A′ implies that A′ is a semantic consequence of A, but not vice versa.

The consequence game C(A,A′) is tightly connected to the satisfiability games S(A) and
S(A′); for instance, we will see that an infinite match Σ of the consequence game naturally
induces infinite matches of the two respective satisfiability games, and that the winning
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condition on infinite matches of the consequence game is formulated accordingly.
As a third novelty of this paper, related to these games, we identify a new class of au-

tomata, which we call semi-disjunctive. These structures can be viewed as an automata-
theoretic counterpart to the “weakly aconjunctive formulas” introduced by Walukiewicz.
They are much less constrained than disjunctive automata, but their one-step formulas are
still of a shape that guarantees the trace theory of an infinite match of the satisfiability game
to be well behaved. In fact, by restricting the use of conjunctions in the one-step formulas of
a semi-disjunctive automaton, we can guarantee that the collection of bad traces associated
with a match of the satisfiability game is finite (modulo a natural equivalence relation of cofi-
nal equality). Another important observation is that the standard and the thin satisfiability
games for a semi-disjunctive automaton A are equivalent in the sense that ∃ has a winning
strategy in the one game iff this applies to the other game as well.

Main results Concerning the concepts that we just discussed, we prove a number of results
that we consider to be of independent interest. Here we outline three contributions that stand
out as lemmas in the main proof.

The first result, which involves the Boolean operations of conjunction and negation that
we shall define on modal automata, provides an essential link between the consequence game
and the thin satisfiability game. We say that an automaton has a (thin) refutation if player
∀ has a winning strategy in the (thin) satisfiability game for the automaton.

Theorem 3 Let A and D be respectively a semi-disjunctive and an arbitrary modal automa-
ton, and assume that A |=G D. Then the automaton A ∧ ¬D has a thin refutation.

This result can be seen both as an automata-theoretic counterpart and as a significant
strengthening of a key result in Walukiewicz’ proof, viz., his Lemma 36.

Our second main auxiliary result, which also concerns the consequence game, can be seen
as a strengthening of a classic result, viz., the simulation theorem for modal (or alternating)
automata. Simulation theorems are among the pillarstones of automata theory. They gener-
ally show that an automaton of certain given type can be transformed into, or “simulated”
by, an automaton that recognizes the same language, but in which the transition structure
is of a conceptually simpler kind. Typically this either means that the transition structure
is deterministic rather than non-deterministic or non-deterministic rather than alternating.
The simplest result in this category is the standard powerset construction for (finite) word
automata [56]; other examples include the simulation of non-deterministic Büchi automata
for streams (infinite words) by deterministic Rabin automata due to Safra [59], or the simu-
lation of alternating parity tree automata by non-deterministic ones due to Emerson & Jutla
[20]. In our terminology, the simulation theorem says that any modal automaton A can be
simulated by a disjunctive automaton sim(A). Our contribution is to show that this can be
strengthened as follows.

Theorem 4 The map sim(·) assigns to each modal automaton A a disjunctive modal automa-
ton sim(A) such that

(1) A |=G sim(A) and sim(A) |=G A;
(2) B[sim(A)/p] |=G B[A/p], for any modal automaton B which is positive in p.
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Here the substitution of an automaton for the variable p in B is a well-defined operation
on automata that will be introduced in Section 4. This result also has a counterpart from
Walukiewicz’ proof: it roughly corresponds to his Lemma 39 in [73], but again ours is a
stronger result since we place no restrictions at all on the automaton B that appears as a
parameter (apart from requiring that all occurrences of the proposition letter p are positive).

Note that Theorem 3 and Theorem 4 can be formulated and proved completely indepen-
dently of any deductive system for the modal µ-calculus.

The third result that we want to mention here crucially involves Kozen’s axiomatization.
Recall that as the main goal of our completeness proof, we stated our intention to prove that ∃
has a winning strategy in the satisfiability game for any consistent automaton A. Theorem 5
below states a slightly weaker version of this, phrased in terms of the thin satisfiability game.

Theorem 5 ∃ has a winning strategy in the thin satisfiability game for any consistent modal
automaton A.

We will informally refer to this observation as “Kozen’s Lemma”, since it is an automata-
theoretic version of Kozen’s partial completeness result for the aconjunctive fragment of the
modal µ-calculus [36]. As a consequence of the fact that for semi-disjunctive automata the
standard and the thin satisfiability game are equivalent, our Theorem 5 also yields a partial
completeness result, stating that any consistent (formula corresponding to a) semi-disjunctive
automaton is satisfiable.

Proof of completeness Bringing all these ideas and results together, as the principal
lemma in our proof we obtain the following version of Walukiewicz’ main technical result,
with ≤K denoting provable implication with respect to Kozen’s axiomatization.

Theorem 6 For every formula ϕ ∈ µML there is a semantically equivalent disjunctive au-
tomaton D such that ϕ ≤K D.

We prove this theorem by a formula induction, and it should not come as a surprise that
the key inductive cases are those concerning the fixpoint operators. In particular, the case
where ϕ is of the form ϕ = µx.ψ requires all of the machinery developed earlier on.

Finally, from Theorem 6, the completeness theorem is almost immediate. If ϕ is an
arbitrary consistent formula, then by Theorem 6 it is semantically equivalent to a consistent
disjunctive automaton D. But for disjunctive automata it is easy to prove that consistency
implies satisfiability, and so we are done.

Future work Our hope is that our “deconstruction” of the results and methods involved
in the proof of the Kozen-Walukiewicz completeness theorem will lead to a better and wider
spread understanding of a difficult result, but also that it will serve as a stepping stone for
future research. In particular, we believe that an important direction for future work is
to provide complete axiomatizations of several extensions, variations of and systems related
to the modal µ-calculus. An example that we already mentioned is Parikh’s game logic,
more directly related examples are the µ-calculus with converse [68] and the closely related
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guarded fixpoint logic [28], hybrid µ-calculus [63], probabilistic variants as in e.g. [42], or even
inflationary modal fixpoint logic [16]. We should mention here that a complete axiom system
for the hybrid µ-calculus was recently presented by Tamura [67], but this system uses a rule
that directly involves a bound on model sizes for satisfiable formulas, rather than the Park
induction rule used in Kozen’s system. We are currently studying the problem of proving
completeness for coalgebraic generalizations of the µ-calculus, and a result that covers all
weak pullback- and finite set preserving functors has appeared as [21]. We hope to be able in
the near future to extend this result further, covering systems like the monotone µ-calculus
[41].

Two additional possible directions of research deserve to be mentioned. First, an interest-
ing task would be to aim for generic completeness results for fragments of the µ-calculus. This
would be a continuation of the work of Santocanale & Venema in [62] which provides generic
completeness results for flat fixpoint logics, and the main question would be whether it is
possible to push these results beyond the flat and even alternation-free fragments. (Again,
this naturally ties in with the problem of proving completeness for game logic.) Second, we
would like to study the problem of completeness for axiomatic extensions of the µ-calculus (as
opposed to the expressive extensions mentioned earlier). This would be another step towards
bridging the gap between the study of modal fixpoint logics and general research in modal
logic, where the study of axiomatic extensions of the minimal normal or classical modal logic
is usually at the centre of attention. Although such extensions of the µ-calculus are relatively
rarely mentioned in the literature, some research does exist that suggests they are worthy of
investigation, see for example [25] for a study of the least fixpoint extension of the logic S4
in a topological context.

Overview of paper In section 2 we fix some notation and terminology on infinite games,
and on elementary mathematics. Section 3 introduces the syntax and semantics of the modal
µ-calculus, and we define Kozen’s deductive system Kµ. Section 4 sees the appearance of the
main characters of our work, viz., the modal automata; we also discuss their one-step logic,
and define the translation from µML-formulas to modal automata which is based on automata-
theoretic operations that correspond to syntactic operators of µML. In section 5 we define the
two satisfiability games and the consequence game. Section 6 is pivotal to our paper: here we
introduce the disjunctive and semi-disjunctive automata, and we prove Theorem 3. Section 7
is devoted to the proof of our strong simulation result, Theorem 4. In section 8, which can
be read independently of the sections 5 – 7, we provide the translation back from automata
to formulas, and we prove Theorem 2. In section 9 we focus on the proof of Kozen’s Lemma,
Theorem 5. We wrap things up in the final section 10, where we prove our main lemma,
Theorem 6, and we show how to derive the Kozen-Walukiewicz result, Theorem 1, from this.
Finally, while we have made an effort to provide all main results with detailed proofs, we have
moved some of the more tedious arguments and derivations to two appendices.

The structure of the paper is shown in the following dependency graph, where the arrows
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represent the order in which individual sections may be read:
7

��
1 // 2 // 3 // 4 //

''

5 // 6 //

@@

9 // 10

8

@@

12



2 Preliminaries

We assume familiarity with the basic notions concerning infinite games [27]. Here we fix some
notation and terminology, also regarding elementary mathematical concepts.

2.1 Basic mathematical concepts and notation

Definition 2.1 Let A be some set. We denote its size as |A|, and its power set as PA. �

Since binary relations play an important role in our work, we will frequently use the
following notation.

Definition 2.2 The collection of binary relations over a set A is denoted as A].
Given a relation R ⊆ A × A′, we let DomR and RanR denote its domain and range,

respectively; for a subset B′ ⊆ A′, we define RanB′R := RanR ∩ B′. Furthermore, we denote
the converse relation of R as R−1 := {(a′, a) ∈ A′ ×A | (a, a′) ∈ R}, and we set R[a] := {a′ ∈
A′ | Raa′}. Given a relation R ⊆ A× A and a subset B ⊆ A, we let ResBR := R ∩ (B × B)
denote the restriction of R to B. �

Definition 2.3 Given a relation R ⊆ A × A′, we define the following relations between PA
and PA′:

−→
PR := {(B,B′) ∈ PA× PA′ | for all b ∈ B there is a b′ ∈ B′ with Rbb′}
←−
PR := {(B,B′) ∈ PA× PA′ | for all b′ ∈ B′ there is a b ∈ B with Rbb′}
PR :=

−→
PR ∩

←−
PR.

The relation PR is called the Egli-Milner lifting of R. �

Definition 2.4 We write f : A
◦→ B to denote that f is a partial map from A to B, and

we denote the graph of f as Grf := {(a, fa) | a ∈ Domf}; here Domf denotes the domain

of f . The composition of two (partial) functions f : A
◦→ B and g : B

◦→ C is denoted as

g ◦ f : A
◦→ C. �

Definition 2.5 Given a set A, we let A∗ and Aω denote, respectively, the set of words (finite
sequences) and streams (infinite sequences) over A. We will write both ww′ and w · w′ to
denote the concatenation of the words w and w′, and similar for the concatenation of a word
and a stream. The last symbol of a word w is denoted as last(w).

Two A-streams σ and τ are eventually equal, denoted as σ =∞ τ , if there is a k ∈ ω such
that σ(j) = τ(j) for all j ≥ k. �

2.2 Graph games

Definition 2.6 A board game is a tuple G = (G∃, G∀, E,W ) where G∃ and G∀ are disjoint
sets, and, with G := G∃ ∪ G∀ denoting the board of the game, the binary relation E ⊆ G2

encodes the moves that are admissible to the respective players, and W ⊆ Gω denotes the
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winning condition of the game. In a parity game, the winning condition is determined by a
parity map Ω : G → ω with finite range, in the sense that the set WΩ is given as the set
of G-streams ρ ∈ Gω such that the maximum value occurring infinitely often in the stream
(Ωρi)i∈ω is even.

Elements of G∃ and G∀ are called positions for the players ∃ and ∀, respectively; given a
position p for player Π ∈ {∃,∀}, the set E[p] denotes the set of moves that are legitimate or
admissible to Π at p. In case E[p] = ∅ we say that player Π gets stuck at p.

An initialized board game is a pair consisting of a board game G and a initial position p,
usually denoted as G@p. �

Definition 2.7 A match of a graph game G = (G∃, G∀, E,W ) is nothing but a (finite or
infinite) path through the graph (G,E). Such a match ρ is called partial if it is finite and
E[lastρ] 6= ∅, and full otherwise. We let PMΠ denote the collection of partial matches ρ
ending in a position last(ρ) ∈ GΠ, and define PMΠ@p as the set of partial matches in PMΠ

starting at position p.
The winner of a full match ρ is determined as follows. If ρ is finite, then by definition

one of the two players got stuck at the position last(ρ), and so this player looses ρ, while the
opponent wins. If ρ is infinite, we declare its winner to be ∃ if ρ ∈W , and ∀ otherwise. �

Definition 2.8 A strategy for a player Π ∈ {∃,∀} is a map χ : PMΠ → G. A strategy
is positional if it only depends on the last position of a partial match, i.e., if χ(ρ) = χ(ρ′)
whenever last(ρ) = last(ρ′); such a strategy can and will be presented as a map χ : GΠ → G.

A match ρ = (pi)i<κ is guided by a Π-strategy χ if χ(p0p1 . . . pn−1) = pn for all n < κ
such that p0 . . . pn−1 ∈ PMΠ (that is, pn−1 ∈ GΠ). A Π-strategy χ is legitimate in G@p if the
moves that it prescribes to χ-guided partial matches in PMΠ@p are always admissible to Π,
and winning for Π in G@p if in addition all χ-guided full matches starting at p are won by Π.

A position p is a winning position for player Π ∈ {∃, ∀} if Π has a winning strategy in the
game G@p; the set of these positions is denoted as WinΠ. The game G = (G∃, G∀, E,W ) is
determined if every position is winning for either ∃ or ∀. �

When defining a strategy χ for one of the players in a board game, we can and in practice
will confine ourselves to defining χ for partial matches that are themselves guided by χ.

The following fact, independently due to Emerson & Jutla [20] and Mostowski [44], will
be quite useful to us.

Fact 2.9 (Positional Determinacy) Let G = (G∃, G∀, E,W ) be a graph game. If W is
given by a parity condition, then G is determined, and both players have positional winning
strategies.

14



3 The modal µ-calculus

Although we assume the reader is familiar with the syntax and semantics of the modal µ-
calculus, here we provide a quick recapitulation of the main notions that play a role in this
paper. More detail on the formalism can be found in [27, 69].

3.1 Syntax

Throughout this paper we fix an (unnamed) infinite set of propositional variables.

Definition 3.1 The language µML of the modal µ-calculus is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 3ϕ | µx.ϕ,

where p and x are propositional variables, and the formation of the formula µx.ϕ is subject
to the constraint that the variable x is positive in ϕ, i.e., all occurrences of x in ϕ are in the
scope of an even number of negations. Elements of µML will be called modal fixpoint formulas,
µ-formulas, or simply formulas.

The collection of subformulas of a formula is defined as usual, as are the sets of, respec-
tively, its free and bound variables. We let µML(X) denote the set of µ-formulas of which all
free variables belong to the set X. �

Remark 3.2 In order to focus completely on the hard and intricate parts of the completeness
proof, we restrict attention to monomodal logic here, that is, we consider the version of modal
logic with one single primitive modality 3. The completeness proof for the polymodal µ-
calculus, where one has a family {〈d〉 | d ∈ D} of modal diamonds, can be obtained by a
straightforward adaptation of the monomodal case, and follows from our more general result
in [21]. �

As a convention, the free variables of a formula ϕ are denoted by the symbols p, q, r, . . .,
and referred to as proposition letters, while we use the symbols x, y, z, . . . for the bound
variables of a formula. Throughout the paper we will use standard abbreviations, including
the symbols >, ⊥, ∧, →, 2,

∧
, and

∨
(where the latter two symbols are used to denote

arbitrary but finite conjunctions and disjunctions, respectively).

Definition 3.3 Let ϕ and {ψz | z ∈ Z} be modal fixpoint formulas, where Z is a set of
variables that are of free in ϕ. Then we let

ϕ[ψz/z | z ∈ Z]

denote the formula obtained from ϕ by simultaneously substituting each formula ψz for z in
ϕ (with the usual understanding that no free variable in any of the ψz will get bound by doing
so). In case Z is a singleton z, we will simply write ϕ[ψz/z], or ϕ[ψ] if z is clear from context.
If Z = Y1 ] Y2, it will occasionally be convenient to write ϕ[ψz/z | z ∈ Y1, ψz/z | z ∈ Y2]
instead of ϕ[ψz/z | z ∈ Z]. �
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Fact 3.4 Let {ψy | y ∈ Y} and {χz | z ∈ Z} be sets of formulas that are indexed by two
disjoint sets of variables Y and Z. Then for every formula ϕ we have

(1) ϕ[ψy/y | y ∈ Y][χz/z | z ∈ Z] = ϕ
[
ψy[χz/z | z ∈ Z]/y | y ∈ Y, χz/z | z ∈ Z

]
(2) ϕ[ψy/y | y ∈ Y][χz/z | z ∈ Z] = ϕ

[
ψy/y | y ∈ Y, χz/z | z ∈ Z

]
, provided no z ∈ Z occurs

freely in any ψy.

We will sometimes make the assumption (but always explicitly) that our formulas are in
negation normal form.

Definition 3.5 A formula of the modal µ-calculus is in negation normal form if it belongs
to the language given by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | µx.ϕ | νx.ϕ,

where p and x are propositional variables, and the formation of the formulas µx.ϕ and νx.ϕ
is subject to the constraint that the variable x is positive in ϕ, i.e., no occurrence of x in ϕ
is in the scope of a negation.

We use the symbol η to range over µ and ν. �

3.2 Structures

Definition 3.6 Given a set S, an A-marking on S is a map m : S → PA; an A-valuation
on S is a map V : A → PS. Any valuation V : A → PS gives rise to its transpose marking
V † : S → PA defined by V †(s) := {a ∈ A | s ∈ V (a)}, and dually each marking gives rise to
a valuation in the same manner. �

Since markings and valuations are interchangeable notions, we will often switch from one
perspective to the other, based on what is more convenient in context.

Definition 3.7 A Kripke structure over a set X of proposition letters is a triple S = (S,R, V )
such that S is a set of objects called points, R ⊆ S × S is a binary relation called the
accessibility relation, and V is an X-valuation on S.

Given a Kripke structure S = (S,R, V ), a propositional variable x and a subset U of S,
we define V [x 7→ U ] as the X ∪ {x}-valuation given by

V [x 7→ U ](p) :=

{
V (p) if p 6= x
U otherwise,

and we let S[x 7→ U ] denote the structure (S,R, V [x 7→ U ]). �

Remark 3.8 Occasionally it will be convenient to take a coalgebraic perspective on Kripke
structures. With X denoting a set of proposition letters, for a given set S we define

KXS := PX× PS,

that is, KXS denotes the set of pairs (Y, U) with Y ⊆ X and U ⊆ S. In practice we will usually
write K rather than KX, assuming that the set X of proposition letters is clear from context.
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A Kripke structure S = (S,R, V ) over the set X can then be represented as a map σS :
S → KS given by

σS(s) := (V †(s), R[s]).

This map σS will be called the (coalgebraic) unfolding map of S.
The operation K is in fact a functor on the category of sets with functions, and while

we do not focus on this, in order to have compact notation it will be useful to borrow the
following bit of category theory. Note that any map f : S → S′ gives rise to a map Kf from
KS to KS′, defined by

Kf : (Y, U) 7→ (Y, f [U ]).

The only fact about this map that we shall need is that it satisfies the composition law,
stating that

K(g ◦ f) = Kg ◦ Kf.
for any pair of composeable maps g, f . �

3.3 Semantics

Definition 3.9 By induction on the complexity of modal fixpoint formulas, we define a
meaning function [[·]], which assigns to a formula ϕ ∈ µML its meaning [[ϕ]]S ⊆ S in any Kripke
structure S = (S,R, V ). The clauses of this definition are standard:

[[p]]S := V (p)

[[¬ϕ]]S := S \ [[ϕ]]S

[[ϕ ∨ ψ]]S := [[ϕ]]S ∪ [[ψ]]S

[[3ϕ]]S := {s ∈ S | R[s] ∩ [[ϕ]]S 6= ∅}
[[µx.ϕ]]S :=

⋂
{U ∈ PS | [[ϕ]]S[x 7→U ] ⊆ U}.

If a point s ∈ S belongs to the set [[ϕ]]S, we write S, s  ϕ, and say that ϕ is true at s or holds
at s, or that s satisfies ϕ. �

Definition 3.10 A modal fixpoint formula ϕ is valid, notation: |= ϕ, if [[ϕ]]S = S for any
structure S = (S,R, V ), and satisfiable if [[ϕ]]S 6= ∅ for some structure S. Two formulas ϕ
and ψ are equivalent, notation: ϕ ≡ ψ, if [[ϕ]]S = [[ψ]]S for any structure S. �

3.4 The cover modality

As mentioned in the introduction, the cover modality ∇, which was independently introduced
in coalgebraic logic [43] and in automata theory [30], plays a prominent role in our proof,
just as in Walukiewicz’. It is a slightly non-standard connective that takes a finite set Φ of
formulas as its argument.

Definition 3.11 Given a finite set Φ, we let ∇Φ abbreviate the formula

∇Φ :=
∧

3Φ ∧2
∨

Φ,

where 3Φ denotes the set {3ϕ | ϕ ∈ Φ}. �
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Remark 3.12 Observe that the semantics of the cover modality can be expressed in terms
of the Egli-Milner lifting of the satisfaction relation :

S, s  ∇Φ iff R[s] P Φ.

In words, ∇Φ holds at s iff every successor of s satisfies some formula in Φ and every formula
in Φ holds in some successor of s. From this observation it is easy to derive that, conversely,
the standard modal operators can be expressed in terms of the cover modality:

3ϕ ≡ ∇{ϕ,>}
2ϕ ≡ ∇{ϕ} ∨ ∇∅,

where we note that ∇∅ holds at a point s iff s is a ‘blind’ world, that is, R[s] = ∅. �

3.5 Axiomatics

As mentioned in the introduction, Kozen’s axiomatization for the modal µ-calculus is obtained
by adding the (pre-)fixpoint axiom and rule to the basic modal logic K. For completeness’
sake we give the definition of Kozen’s system here, taking a standard 3-based axiomatization
for K [6, Remark 4.7].

Definition 3.13 The axioms of the basic modal logic K are the following:

(C) a complete set of axioms for classical propositional logic;

(NA) axioms stating that 3 is normal (¬3⊥) and additive (3(p ∨ q)↔ 3p ∨3q),

while its derivation rules are

(MP) modus ponens: from ϕ and ϕ→ ψ, derive ψ;

(Mon) a monotonicity rule: from ϕ→ ψ derive 3ϕ→ 3ψ;

(US) uniform substitution: from ϕ derive ϕ[σ], for any substitution σ.

Kozen’s deductive system Kµ is obtained by this by adding the following axiom schema and
rule to those of K:

(Aµ) all prefixpoint axioms of the form ϕ[µx.ϕ/x]→ µx.ϕ;

(Rµ) Park’s prefixpoint rule: from ϕ[γ/x]→ γ derive µx.ϕ→ γ.

A derivation in Kµ is a finite list of µML-formulas, such that each formula on the list is either
an axiom of Kµ or obtained from earlier formulas by applying one of the derivation rules of
Kµ. �

Definition 3.14 A µ-formula ϕ is derivable or provable, notation: `K ϕ, if there is a Kµ-
derivation leading up to ϕ. Given two formulas ϕ and ψ, we say that ϕ provably implies ψ,
notation: ϕ ≤K ψ, if the formula ϕ → ψ is derivable. The formulas ϕ and ψ are provably
equivalent, notation: ϕ ≡K ψ, if ϕ ≤K ψ and ψ ≤K ϕ. A formula is consistent if its negation
is not provable. �

Without proof we mention the following facts on our proof system.
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Fact 3.15 Let ϕ be a modal µ-formula, and let Φ,Ψ be sets of modal µ-formulas. Then

(1) ∇Φ ∧∇Ψ ≡K
∨
{∇{ϕ ∧ ψ | ϕRψ} | R ⊆ Φ×Ψ and (Φ,Ψ) ∈ PR};

(2) ∇{ϕ0 ∨ ϕ1 | ϕ ∈ Φ} ≡K
∨{
∇{ϕi | (ϕ, i) ∈ Z} | Z ⊆ Φ× {0, 1},DomZ = Φ

}
;

(3) µx.µy.ϕ ≡K µy.µx.ϕ;
(4) ϕ ≡K ϕ′ for some effectively obtainable formula ϕ′ in negation normal form;
(5) ϕ ≤K ψ only if ηx.ϕ ≤K ηx.ψ;
(6) ¬ηx.ϕ ≡K λx.¬ϕ[¬x/x], where {η, λ} = {µ, ν}.
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4 Modal automata and their one-step logic

As mentioned in the introduction, one of the main goals of the present paper is to further
strengthen the role of automata theory in the completeness proof for the modal µ-calculus.
While Walukiewicz’s proof works directly with what we will call disjunctive automata, we
will work with the wider class of modal automata [74] that we will introduce in this section.

A further goal in this section is to define a translation transforming a formula of the
µ-calculus into an equivalent modal parity automata. Of course, there are already a few
different methods available for this transformation. Janin & Walukiewicz [30] first construct
a tableau for the formula, which is then transformed into an automaton in which the states are
certain distinguished nodes of the tableau. This method already produces a non-deterministic
automaton (what we will call a “disjunctive” automaton), and so is not suited for our purposes
since we want to work with the wider class of alternating modal automata introduced by
Wilke [74]. It seems that the standard approach to this (see for instance [27], following
Wilke), is to transform a µML-formula ϕ into an automaton in one go, by taking the states of
the automaton to be syntactic items related to ϕ (such as its subformulas or bound variables),
and then (possibly) perform some postprocessing in order to get the device into the right
shape. Our preferred method here will be to define the translation by induction on the
complexity of formulas, making use of certain effective closure conditions on the class of
modal automata. In fact, most (but not all) of the operations on automata that we will use
to take care of the inductive step of the translation, are the ones used by Wilke in order to
prove the correctness of his translation.

Before turning to the introduction of the modal automata themselves, we first define
and discuss the one-step logic that determines the shape of their transition function. As
mentioned in the introduction, the notion of a “one-step logic” stems from the literature
on coalgebra [12], where it is used to obtain a modular approach to defining and studying
logics for specifying the behaviour of a wide variety of coalgebras, or state-based evolving
systems. The idea behind this logic is that it provides the syntax and semantics to extract
information about the one-step behaviour of such a system, that is, the properties of one
single unfolding of a state in the system. One-step logic thus comes with the notion of one-
step syntax (a language consisting of one-step formulas), one-step semantics, and (possibly)
one-step derivation systems and one-step model theory. This perspective is very compatible
with the theory of automata operating on infinite objects, and Fontaine, Leal & Venema [22]
introduced a notion of coalgebra automata of which the transition function maps states of
the automaton to one-step formulas.

4.1 One-step logic

Modal automata are based on the modal one-step language. This language consists of modal
formulas of rank 1, built up from proposition letters (which must appear unguarded) and
variables (which must appear guarded). In practice, the variables of a one-step formula will
always be states of some automaton.

Definition 4.1 Given a set P , we define the set Latt(P ) of lattice terms over P through the
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following grammar:

π ::= ⊥ | > | p | π ∧ π | π ∨ π,

where p ∈ P . Given two sets X and A, we define the set 1ML(X, A) of modal one-step formulas
over A with respect to X inductively by

α ::= ⊥ | > | p | ¬p | 3π | 2π | α ∧ α | α ∨ α,

with p ∈ X and π ∈ Latt(A). �

Observe that the set of modal one-step formulas over A with respect to X corresponds to
the set of lattice terms over the set {p,¬p | p ∈ X} ∪ {3π,2π | π ∈ Latt(P )}. Note too that
elements from the two parameter sets, X and A, are treated quite differently in the syntax of
one-step formulas: all occurrences of elements of X, corresponding to the proposition letters,
must be unguarded, whereas the elements of A, corresponding to bound variables of a formula
and to states of our modal automata, may only occur in the scope of exactly one modality.

Modal one-step formulas will serve to provide the type of the transition map of a modal
automaton, which will map states of the automaton to modal one-step formulas over the set
of states. Intuitively, in a succesful “run” of a modal automaton on a Kripke structure, given
that some state s in a Kripke structure is visited by some state a of the automaton, the run
should provide a “local valuation” of the states of the automaton over the set of successors of
s, in such a way that the formula assigned to the state a becomes true. So a run of a modal
automaton proceeds step-by-step, at each moment considering a local window into the Kripke
structure as seen from the particular state s that is currently being visited. In order to make
these intuitions precise, we need a semantics for modal one-step formulas. This is given by
one-step models.

Definition 4.2 Fix sets X and A. A one-step frame is a pair (Y, S) where S is any set, and
Y ⊆ X. A one-step model is a triple (Y, S,m) such that (Y, S) is a one-step frame and m is an
A-marking on S. �

Observe that with this definition, the coalgebraic representation of a Kripke structure
(S,R, V ) can now be seen as a function σS mapping any state s ∈ S to a one-step frame of
which the carrier is a subset of S.

We now turn to the semantics based on one-step models:

Definition 4.3 The one-step satisfaction relation 1 between one-step models and one-step
formulas is defined as follows. Fix a one-step model (Y, S,m). First, we define the value [[π]]
of a lattice formula π over A by induction, setting [[a]] = {s ∈ S | a ∈ m(s)} for a ∈ A, and
treating conjunctions and disjunctions in the obvious manner.

Now we define the one-step satisfaction relation by giving the usual clauses for conjunction
and disjunction, and the following clauses for the literals and modal operators:

- (Y, S,m) 1 2π iff [[π]] = S,

- (Y, S,m) 1 3π iff [[π]] 6= ∅,
- (Y, S,m) 1 p iff p ∈ Y,
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- (Y, S,m) 1 ¬p iff p /∈ Y.
Two one-step formulas α and α′ are (one-step) equivalent, notation: α ≡1 α

′, if they are
satisfied by the same one-step models. �

Examples of one-step equivalent pairs of formulas include the familiar axioms of modal
logic, such as 2(a ∧ b) ≡1 2a ∧ 2b, but also formulas involving the nabla modality, such as

∇B ∧∇B′ ≡1

∨
{∇{b ∧ b′ | bRb′} | R ⊆ B ×B′ and (B,B′) ∈ PR} (cf. Fact 3.15(1)).

One particular kind of one-step models will be of special interest to us.

Definition 4.4 Given a set A, we define the canonical A-marking on PA as the map IA :
B 7→ B (that is, the identity map on PA). More generally, for any subset B of PA, we consider
the marking IA �B : B → PX.

For any one-step formula α ∈ 1ML(X, A) and any element Γ ∈ KPA, say Γ = (Y,B), we
abbreviate (Γ, IA �B ) 1 α as Γ 1

I α, and we denote [[α]]1 := {Γ ∈ KPA | Γ 1
I α}. �

The main result about the modal one-step language that we shall need later is the following
one-step version of the usual bisimulation invariance result for modal logic, i.e. all one-step
formulas are invariant for bisimulations between one-step models in a precise sense. Observe
that the definition below makes use of the (Egli-Milner) relation lifting of Definition 2.3.

Definition 4.5 Let (Y, S,m) and (Y′, S′,m′) be one-step models with respect to A and X.
We say that these models are one-step bisimilar if they satisfy the following conditions:

(atomic) Y = Y′;
(forth) for all s ∈ S, there is s′ ∈ S′ with m(s) = m′(s′);
(back) for all s′ ∈ S′, there is s ∈ S with m(s) = m′(s′).

We write (Y, S,m)↔1 (Y′, S′,m′) to say that (Y, S,m) and (Y′, S′,m′) are one-step bisimilar.
�

We can now state the one-step bisimulation invariance theorem:

Proposition 4.6 (One-step Bisimulation Invariance) Let (Y, S,m) and (Y′, S′,m′) be
any two one-step models with respect A and X. If (Y, S,m) ↔1 (Y′, S′,m′), then both one-
step models satisfy the same formulas in 1ML(X, A).

We consider a useful instance of the one-step bisimulation invariance theorem: pick any
set W , let Γ = (Y, S) be any one-step frame in KW , and let f : W → W ′. Then any A-
marking m on f [S] gives rise to the marking m ◦ f on S, and clearly the one-step models
(Γ,m ◦ f) and (Kf(Γ),m) are one-step bisimilar:

(Γ,m ◦ f)↔1 (Kf(Γ),m).

So by one-step bisimulation invariance, these two one-step models satisfy precisely the same
one-step formulas: (Γ,m ◦ f) 1 α iff (Kf(Γ),m) 1 α for all α ∈ 1ML(X, A). This particular
instance of the principle of one-step bisimulation invariance will play an important role in
some of our main proofs.
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We also remark on a variant of the one-step bisimulation invariance theorem that we will
make use of later. It can be thought of as a combination of one-step bisimulation invariance
and a monotonicity property of one-step formulas, which we obtain since all variables in A
appear positively in any one-step formula in 1ML(X, A).

Definition 4.7 Let (Y, S,m) and (Y′, S′,m′) be one-step models with respect to A and X.
We say that (Y′, S′,m′) one-step simulates (Y, S,m), notation: (Y, S,m)→1 (Y′, S′,m′), if

(atomic) Y = Y′;

(forth) for all s ∈ S, there is s′ ∈ S′ with m(s) ⊆ m′(s′);
(back) for all s′ ∈ S′, there is s ∈ S with m(s) ⊆ m′(s′). �

Proposition 4.8 (Preservation) Let (Y, S,m) and (Y′, S′,m′) be any two one-step models
with respect A and X. If (Y, S,m) →1 (Y′, S′,m′), then any formula in 1ML(X, A) that is
satisfied by (Y, S,m) is also satisfied by (Y′, S′,m′).

Finally, we introduce the key property of the one-step logic for the purposes of our com-
pleteness proof: the one-step logic already enjoys a sort of completeness property with respect
to the Kozen proof system, which we will lift to a completeness result for the full mu-calculus.
This is the one-step completeness theorem, stated below.

Theorem 4.9 (One-step completeness) Let α ∈ 1ML(X, A) be a one-step formula, and let
σ : A → µML(X) be a substitution such that the formula α[σ] is consistent. Then there is
a one-step model (Y, S,m) such that (Y, S,m) 1 α and for all s ∈ S, the set of formulas
{σ(a) | a ∈ m(s)} is consistent.

Proof. We begin by rewriting the one-step formula α as a disjunction of conjunctions of the
shape:

γ ∧ ♥1π1 ∧ ... ∧ ♥nπn

where γ is a conjunction of literals over X, each ♥-operator is a modality ♥i ∈ {3,2}, and
each πi is a lattice formula over A. Using the equivalences in Remark 3.12, we can rewrite α
into a disjunction of formulas of the form

γ ∧∇Π1 ∧ ... ∧∇Πn,

where each Πi is a finite set of lattice formulas over A. Now apply Fact 3.15(1) repeatedly,
and then distribute the conjunct γ over disjunctions, to obtain a disjunction of formulas of
the shape γ ∧∇Π where Π is a finite set of lattice formulas over A.

Focusing on a disjunct of the shape γ ∧ ∇Π, we may assume that each member of Π is
in disjunctive normal form. Now we can apply Fact 3.15(2) repeatedly to each member of Π
(and again, distribute the conjunct γ over disjunctions) to pull the disjunctions outside the
scope of the modalities. In the end we obtain a formula β ≡K α in a certain normal form,
viz., β is a disjunction of formulas of the form

γ ∧∇{
∧
B1, ...,

∧
Bk},
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where γ is a conjunction of literals over X and B1, ..., Bk are subsets of A. We thus find
that α[σ] ≡K β[σ], so β[σ] is consistent, which by propositional logic means that at least one
disjunct

γ ∧∇{
∧
σ[B1], ...,

∧
σ[Bk]}

is consistent. We construct a one-step model Y, S,m by setting S = {B1, ..., Bk}, m is the
identity map on S, and Y is the set of proposition letters p in X that appear as a conjunct in
γ. It is easy to see that

Y, S,m 1 γ ∧∇{
∧
B1, ...,

∧
Bk}

and it follows that Y, S,m 1 α. It remains only to check that each conjunction
∧
σ[Bi] is

consistent - but were it not, the formula 3
∧
σ[Bi] would be inconsistent by the normality

axiom for the diamond, and we reach a contradiction since 3
∧
σ[Bi] is a conjunct of the

consistent formula γ ∧∇{
∧
σ[B1], ...,

∧
σ[Bk]}. qed

4.2 Modal automata

We now formally introduce modal automata.

Definition 4.10 Fix a set of proposition letters X. A modal X-automaton A is a quadruple
(A,Θ,Ω, aI) where A is a finite set of states, aI is the start state, Ω : A → ω is the priority
map, while the transition map

Θ : A→ 1ML(X, A)

maps states to one-step formulas. �

Some basic concepts concerning modal automata are introduced in the following defini-
tions:

Definition 4.11 The (directed) graph of A is the structure (G,EA), where aEAb if a occurs
in Θ(b), and we let �A denote the transitive closure of EA. If a�A b we say that a is active
in b. We write a ./A b if a�A b and b�A a.

A cluster of A is a cell of the equivalence relation generated by ./A (i.e., the smallest
equivalence relation on A containing ./A); a cluster C is degenerate if it is of the form C = {a}
with a 6./A a. The unique cluster to which a state a ∈ A belongs is denoted as Ca. �

Definition 4.12 Fix a modal X-automaton A = (A,Θ,Ω, aI). The size of A is defined as the
cardinality of its carrier A.

With b ∈ A, let A〈b〉 denote the variant of A that takes b as its starting state, i.e.,
A〈b〉 = (A,Θ,Ω, b).

We write a <A b if Ω(a) < Ω(b), and a vA b if Ω(a) ≤ Ω(b). When clear from context we
sometimes write < and v instead, dropping the explicit reference to A.

Given a state a of A, we call a a µ-state, writing ηa = µ, if Ω(a) is odd, and a ν-state,
writing ηa = ν, if Ω(a) is even. We call ηa the type of a and denote the sets of µ- and ν-states
as Aµ and Aν , respectively.

We say that A is positive in a proposition letter p ∈ X if each occurrence of p in each
formula Θ(a) is positive. �
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Modal automata run on Kripke structures, and acceptance is defined in terms of a two-
player game, the acceptance game. The two players have opposing goals: one player ∃ (or
“Eloise”) wants to defend the claim that A accepts S, and the opposing Player ∀ (“Abelard”)
wants to establish the opposite. The game connects the one-step logic to Kripke structures,
and the main thing to notice is that for any Kripke structure S = (S,R, V ) over X, any given
state s ∈ S gives rise to a one-step frame (V †(s), R[s]) consisting of the variables in X that
are true at s, together with the set of R-successors of s.

Definition 4.13 Let A = (A,Θ,Ω, aI) be any modal X-automaton, and let S = (S,R, V ) be
any Kripke structure. The acceptance game A(A, S) for A with respect to S is defined as in
the following table:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : R[s]→ PA | (V †(s), R[s],m) 1 Θ(a)}
m ∀ {(b, t) | b ∈ m(t)}

Winning conditions are the usual ones for parity games. That is, the loser of a finite match
is the player who got stuck. An infinite match (a1, s1)m1(a2, s2)m2(a3, s3)m3 . . . induces a
stream a1a2a3 . . . over the alphabet A, and we declare the winner of this match to be ∃ if the
highest priority state that appears infinitely often in the word a1a2a3 . . . has an even priority,
and ∀ is the winner otherwise.

We say that A accepts the pointed structure (S, s) if (aI , s) is a winning position in the
acceptance game A(A, S), and write S, s  A to denote that A accepts (S, s). We define
[[A]]S := {s ∈ S | S, s  A}, and we define L(A) (the “language recognized by A”) to be the
class of pointed Kripke structures accepted by A. �

Definition 4.14 Let A = (A,Θ,Ω, aI) and A′ = (A′,Θ′,Ω′, a′I) be two modal automata. We
say that A (semantically) implies A′, notation: A ≤ A′, if L(A) ⊆ L(A′), and that A and A′
are equivalent, notation: A ≡ A′, if they recognize the same language, i.e., if L(A) = L(A′).
�

In the sequel we will need the following strong version of equivalence between automata.

Definition 4.15 Two modal automata A = (A,Θ,Ω, aI) and A′ = (A′,Θ′,Ω′, a′I) are one-
step equivalent, notation: A ≡1 A′, if A = A′, Ω = Ω′, aI = a′I , and Θ(a) ≡1 Θ(a) for all
a ∈ A. �

It is obvious that one-step equivalence implies equivalence.

4.3 Operations on modal automata

We now introduce the logical operations on modal automata that will enable us to translate
formulas to modal automata, and later to connect proof theoretic concepts with automata
theory. Most of these operations, like the Boolean and modal ones, and substitution, are
standard [46, 74]. Our definitions of least and greatest fixpoints of modal automata, are new
as far as we know.
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Conjunction and disjunction

Suppose we are given modal automata A = (A,ΘA,ΩA, aI) and B = (B,ΘB,ΩB, bI). We
define the automaton A ∧ B = (C,ΘC ,ΩC , aC) as follows:

- aC is some arbitrarily chosen object, and C is defined to be A ]B ] {aC}.
- ΘC(aC) := ΘA(aI) ∧ ΘB(bI) and ΩC(aC) := k + 1 where k is the maximum priority of

A,B.
- For a ∈ A, ΘC(a) := ΘA(a) and ΩC(a) := ΩA(a).
- For b ∈ B, ΘC(a) := ΘB(b) and ΩC(b) := ΩB(b).

Disjunction is handled in precisely the same manner, setting ΘC(aC) := ΘA(aI) ∨ ΘB(bI)
instead.

Negation

Negation corresponds to complementation on the side of automata, and for this we need the
concept of the boolean dual α∂ of a one-step formula α:

Definition 4.16 First, we define the (boolean) dual of a lattice term over A, by setting:

a∂ := a
(π ∧ π′)∂ := π∂ ∨ π′∂
(π ∨ π′)∂ := π∂ ∧ π′∂

With this definition in place, by putting

p∂ := ¬p (2π)∂ := 3π∂ (α ∧ β)∂ := α∂ ∨ β∂
(¬p)∂ := p (3π)∂ := 2π∂ (α ∨ β)∂ := α∂ ∧ β∂

we inductively define the (boolean) dual of one-step formulas. �

Observe that in this definition we see another clear example of the different role of the
proposition letters and the automaton states in one-step formulas.

Given a modal automaton A = (A,Θ,Ω, aI) we define the automaton ¬A := (A,Θ′,Ω′, aI)
by setting, for each a ∈ A:

- Θ′(a) := Θ(a)∂

- Ω′(a) := Ω(a) + 1.

Modal operators

Given a modal automaton A = (A,Θ,Ω, aI), pick an arbitray object c, and define 3A =
(A′,Θ′,Ω′a′I) by setting:

- A′ := A ] {c},
- a′I := c,
- Θ′(a) := Θ(a) for a ∈ A, and Θ′(c) := 3aI ,
- Ω′(a) := Ω(a) for a ∈ A, and Ω′(c) := k + 1 where k is the maximum priority of A.

The definition of 2A is similar, the only difference being that now we set Θ′(c) := 2aI .
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Substitution

Let A = (A,Θ, aI ,Ω) and B = (B,Λ,Ψ, bI) be modal automata, and assume that A is
positive in x. We define the modal automaton A[B/x] as the structure (D,Θ′,Ω′, dI), where
D := A ]B, Θ′ is given by

Θ′(d) :=

{
Θ(d)[Λ(bI)/x] if d ∈ A
Λ(d) if d ∈ B.

The priority map Ω′ could have been defined as Ω ] Ψ, but we find it convenient for later
proofs to define Ω′ instead so that all states in A get higher priority than all states in B. So
let n be the least even number greater than any priority in B. Then we set Ω′(b) = Ψ(b) for
b ∈ B, and Ω′(a) = Ω(a) + n for a ∈ A. (Clearly this will preserve the priority order among
states in A and will not change the parities.) Finally, set dI = aI .

Fixpoint operators

We now turn to the definition of fixpoint operators on automata. For at least two reasons
this is the most difficult case to handle. First, recall that in the one-step language associated
with a modal automaton, the proposition letters (corresponding to the free variables of a
formula) are treated rather differently from the states of the automaton (which correspond to
the bound variables of a formula). We have good reasons to do so, but when constructing the
automaton ηx.A from an automaton A there is a price to pay for this, related to the different
status of the variable x in the two automata: while x is a free proposition letter in A, and
so appears only in unguarded positions in the one-step formulas, it is treated as a state of
µx.A and must therefore appear only guarded in µx.A. For this reason it will be necessary to
pre-process the automaton A putting it in a shape Ax in which x is, in some sense, guarded.

Second, we have to be careful about how we go about this “pre-processing” of A. The
reason for this will become clearer once we consider the satisfiability game for modal automata
in Section 5. The game is played between Eloise, who wants to show that the automaton
accepts some model, and Abelard, who wants to show that the automaton does not accept
any model. It is important to realize that the roles of Eloise and Abelard are not treated
symmetrically here, for the following reason: a match of the satisfiability game can be viewed
as a collection of “virtual matches” of the acceptance game played at once. We shall see
that the combinatorial difficulties involved in the completeness proof all stem from a common
source: choices made by Abelard will generally cause the number of virtual matches we
need to consider to multiply, making the combinatorics of the game harder. For this reason,
we want to take Eloise’s side as much as possible, and restrict the power of Abelard. In
particular, since Abelard is in charge of conjunctions, we need to carefully control the shape
of conjunctions that we introduce when we pre-process the automaton A into Ax.

Let us now turn to the construction of the auxiliary structure Ax, for which we shall
require the following observation.

Proposition 4.17 For every modal X-automaton A positive in x ∈ X, and any state a ∈ A,
there are formulas θa0 and θa1 in which x does not appear, such that

Θ(a) ≡K (x ∧ θa0) ∨ θa1
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Proof. First rewrite Θ(a) as a disjunction

(x ∧ ψ0) ∨ ... ∨ (x ∧ ψn) ∨ ψ′0 ∨ ... ∨ ψ′m

where each ψi and each ψ′j is a conjunction consisting of literals distinct from x and formulas
of the form 2π,3π. This is then equivalent to

(x ∧ (ψ0 ∨ ... ∨ ψn)) ∨ (ψ′0 ∨ ... ∨ ψ′m)

and so we are done. qed

Convention 4.18 Relying on the previous observation, we fix from now on for every au-
tomaton A and a ∈ A, one-step formulas θa0 , θ

a
1 such that Θ(a) ≡K (x ∧ θa0) ∨ θa1 .

The construction of Ax is based on the following four ideas. First, since we do not
formally allow proposition letters to appear guarded in the one-step formulas in the image of
the transition map of an automaton, we introduce a new state x that we use to represent the
variable x, in the sense that we put Θx(x) := x. Second, we will “split” each state a into two
states a0 and a1, taking care of the θa0- and the θa1-part of Θ(a), respectively. Thus we define
Ax := (A × {0, 1}) ∪ {x}. Third, after this “change of base” of the automaton, we need to
ensure that the transition map Θx has the right co-domain (Ax). We can take care of this
by substituting, in every one-step formula α ∈ 1ML(X, A), each occurrence of a state a by the
formula (x ∧ a0) ∨ a1. We shall denote the resulting substitution as κ : A → Ax. Fourth,
while we are mostly interested in the underlying automaton structure (AX ,Θx,Ωx) of Ax, we
do need to assign it an initial state. Our choice of (aI)1 is guided by the role of Ax in the
proof of our main Lemma, Theorem 6.

Definition 4.19 Let A be any modal X-automaton which is positive in x ∈ X, and assume
without loss of generality that the smallest priority in the image of Ω is greater than 0
(otherwise just start by raising all priorities in A by 2). Pick a new state x /∈ A. Then we
define the X-automaton Ax = (Ax,Θx,Ωx, axI ) as follows:

- Ax := (A× {0, 1}) ∪ {x}. We write (a, i) as ai, for i ∈ {0, 1}.
- Θx(a0) := θa0 [κ] and Θx(a1) := θa1 [κ],

- Θx(x) := x,

- axI := (aI)1,

- Ωx(ai) := Ω(a) and Ωx(x) := 0.

Here, κ is defined to be the substitution a 7→ (x ∧ a0) ∨ a1. �

Note that the substitution κ involved in this construction does introduce new conjunctions,
but in a very controlled manner: the only new conjunctions are of the form x ∧ a0 for a ∈ A,
i.e., we don’t introduce any conjunctions between states ai, for a ∈ A. This would not be
the case if we worked for example with the dual substitution κ∂ : a 7→ (x ∨ a0) ∧ a1. So the
pre-processing of A into Ax has indeed been set up in such a way that conjunctions are of a
restricted shape, and this is crucial.
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Remark 4.20 The automaton Ax is not equivalent to A, in the sense that it does not ac-
cept the same pointed Kripke structures as A does. On the other hand, it does contain all
information that A does, and vice versa. The precise connection between A and Ax can
best be expressed using the translation map that we will define in section 8. Running ahead
of this, assume that we have defined, for each modal automaton A = (A,Θ,Ω, aI) a map
trA : A → µML assigning to each state a ∈ A an equivalent µ-calculus formula trA(a) in the
sense that A〈a〉 ≡ trA(a) for each state a.

Phrased in terms of this translation map, the relation between A and Ax is given by the
equivalences

trA(a) ≡ (x ∧ trAx(a0)) ∨ trAx(a1)

and
trAx(ai) ≡ θai [trA(b)/b | b ∈ A]

which hold for all a ∈ A and i ∈ {0, 1}. �

We now turn to the definition of the automata µx.A and νx.A; both constructs are
variations of the auxiliary structure Ax. The key to understanding the definitions, and to
proving correctness of the construction is the following proposition. We shall make use of it
later on, when we consider the converse translation from automata to formulas. Since there
we will be concerned with provable equivalence, we formulate the next two propositions using
the relation ≡K rather than the semantic equivalence relation ≡. Note that the semantic
versions of the statements follow by the soundness of the axiom system.

Proposition 4.21 Let ϕ0, ϕ1 be any formulas in which the variable x appears positively.
Then:

µx.(x ∧ ϕ0) ∨ ϕ1 ≡K µx.ϕ1

and
νx.(x ∧ ϕ0) ∨ ϕ1 ≡K νx.ϕ0 ∨ ϕ1

Proof. We consider the case for µ first. One direction of the equivalence is immediate, since
we have ϕ1 ≤K (x ∧ ϕ0) ∨ ϕ1. For the converse, we show that µx.ϕ1 is a pre-fixpoint for the
formula (x ∧ ϕ0) ∨ ϕ1. To see this, we have:

((x ∧ ϕ0) ∨ ϕ1)[µx.ϕ1/x] ≡K ((µx.ϕ1) ∧ ϕ0[µx.ϕ1/x]) ∨ ϕ1[µx.ϕ1/x]
≡K ((µx.ϕ1) ∧ ϕ0[µx.ϕ1/x]) ∨ µx.ϕ1

≡K µx.ϕ1

For the ν-case, again one direction is immediate since we have (x∧ϕ0)∨ϕ1 ≤K ϕ0 ∨ϕ1. For
the other direction we need to show that νx.ϕ0 ∨ ϕ1 is a post-fixpoint for (x ∧ ϕ0) ∨ ϕ1. We
reason as follows:

νx.ϕ0 ∨ ϕ1 ≡K (νx.ϕ0 ∨ ϕ1) ∧ (νx.ϕ0 ∨ ϕ1)
≡K (νx.ϕ0 ∨ ϕ1) ∧ (ϕ0[νx.ϕ0 ∨ ϕ1/x] ∨ ϕ1[νx.ϕ0 ∨ ϕ1/x])
≤K

(
(νx.ϕ0 ∨ ϕ1) ∧ ϕ0[νx.ϕ0 ∨ ϕ1/x]

)
∨ ϕ1[νx.ϕ0 ∨ ϕ1/x]

= ((x ∧ ϕ0) ∨ ϕ1)[νx.ϕ0 ∨ ϕ1/x]

and the proof is finished. qed
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We are now ready to define fixpoint operations on automata in which the proposition
letter x appears positively:

Definition 4.22 Let A be any modal X-automaton which is positive in x ∈ X. The X \ {x}-
automaton µx.A = (A′,Θ′,Ω′, a′I) is defined by setting:

- A′ := Ax

- Θ′(ai) := Θx(ai) for a ∈ A
- Θ′(x) := θaI1 [κ]
- a′I := x
- Ω′(ai) := Ωx(ai) and Ωx(x) := 2 · max(Ωx[Ax]) + 1.

Similarly, the X \ {x}-automaton νx.A = (A′,Θ′,Ω′, a′I) is defined as follows:
- A′ := Ax

- Θ′(ai) := Θx(ai) for a ∈ A
- Θ′(x) := θaI0 [κ] ∨ θaI1 [κ]
- a′I := x
- Ω′(ai) := Ωx(ai) and Ωx(x) := 2 · max(Ωx[Ax]) + 2. �

Remark 4.23 We finish this subsection with noting that all the constructions defined above
are semantically correct, in the sense that L(A∧B) = L(A)∩L(B), etc. We leave the formal
proofs of these statements, which follow from our later results, as exercises to the reader. �

4.4 Translating formulas to automata

We finish this section on modal automata by providing a translation associating an equivalent
modal parity automaton with every µ-calculus formula. As mentioned in the introduction to
this section, our definition will proceed by induction on the complexity of formulas, applying
the operations that we just defined to handle the inductive cases of this definition.

Definition 4.24 By induction on the complexity of a modal µ-formula ϕ we define a modal
automaton Aϕ.

First of all, we need to consider atomic formulas: given any propositional variable p, we
take some arbitrary object a distinct from p to be the one and only state of Ap, and define
Θp(a) = p, and Ωp(a) = 0.

With this in place, we can complete the translation as follows:

A¬ϕ := ¬Aϕ
Aϕ∨ψ := Aϕ ∨ Aψ
A3ϕ := 3Aϕ
Aµx.ϕ := µx.Aϕ,

i.e., by applying the operations we have defined above to handle the various connectives of
the µ-calculus. �

We finish by stating the semantic correctness of this definition. Since this proposition
is not needed in the sequel, we leave the details of its proof, which proceeds by a routine
induction on the complexity of formulas, as an exercise to the reader.
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Proposition 4.25 Let ϕ be a formula of the modal µ-calculus. Then

ϕ ≡ Aϕ. (1)
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5 Games for automata

5.1 Introduction

In this section we introduce two of our main tools, viz., the satisfiability game S(A) related to
a modal automaton A, and the consequence game C(A,B) related to two automata A and B.
Before we turn to the technicalities of the definitions we start with an intuitive explanation
of the satisfiability game.

The satisfiability game S(A), introduced in [22] in the more general setting of the coalge-
braic µ-calculus, can be seen as a streamlined, game-theoretic analog for automata to what
tableaux are for formulas. To understand the game, which is played by two players, ∀ and
∃, it helps to think of ∃ as aiming to construct a (tree) structure for the automaton A — in
fact, we will provide close connections between ∃’s winning strategies in S(A) and models of
A in the proof of Proposition 5.10. The role of ∀ in S(A) is rather different: he acts as a path
finder in the (partial) structure constructed by ∃, his task being to challenge ∃ to construct
ever more detail of the structure. What distinguishes the satisfiability game from tableaux is
that, because of the uniform internal structure of modal automata as compared to formulas,
the interaction between the two players can be shaped in a highly regulated pattern. The sat-
isfiability game does not have separate rules dealing with specific connectives; in particular,
all rules/moves dealing with Boolean connectives have been encapsulated in the streamlined
interaction between ∃ and ∀.

For two reasons, it is also useful to relate the satisfiability game S(A) to the acceptance
games associated with A. First, similar to the acceptance games for A, the satisfiability
game proceeds in rounds: one round of S(A) consists of first ∃ constructing (or aiming to
construct) one more level of the tree structure for A, and then ∀ picking one of the newly
created nodes for further inspection. Second, and more in particular, every match of S(A)
can be seen as a bundle of matches of the acceptance game played on exactly the structure
that ∃ is constructing.

In somewhat more detail, positions of the satisfiability game S(A) will represent macro-
states of A, that is, subsets of the state space A. Intuitively, a partial S(A)-match Σ ending
in a position p corresponds to a node tΣ in the Kripke structure T that ∃ is constructing, and
if p represents the macro-state B, this indicates that the subtree starting at tΣ needs to be
accepted by the automaton A〈b〉 for each b ∈ B.

Concretely, what ∃ has to come up with in such a partial match Σ is (1) a one-step
frame (Y,W ) that will be the local continuation of the tree structure T (in the sense that
the coalgebraic unfolding at tΣ can be defined as σT(tΣ) := (Y,W )), together with (2) a local
move ma at position (tΣ, a) in the acceptance game A(A,T) for each of the states a ∈ B,
comprising a family of markings ma : W → PA such that (Y,W,ma) 1 Θ(a) for each a ∈ B.1

It is then up to ∀ to pick an element w of W , after which the satisfiability game is continued
at a position representing the macro-state

⋃
{ma(w) | a ∈ B}.

Crucial in our definition of the satisfiability game is the particular nature of the carrier
sets W of the one-step frames that ∃ can pick: We will restrict ∃’s moves to one-step frames

1Note that she does not need one single marking m taking care of all the states a ∈ B at once, in the sense
that (Y,W,m) 1 ∧

{Θ(a) | a ∈ B}.
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of the form (Y,R) where R ⊆ A] is a collection of binary relations on A. One advantage of
this approach is that the family of markings on R (needed as the second ingredient of ∃’s
move) is naturally induced by the first ingredient: the local strategy associated with a state
a can simply be defined as the natural a-marking

na : R 7→ R[a],

mapping an arbitrary element R ∈ R to the set of its a-successors. In other words, pairs of
the form Γ = (Y,R) provide both a one-step frame and a family of markings on this very
same frame. For any R ∈ R, the intuitive understanding of (a, b) ∈ R is that b holds at R
‘because of’ a.

Thus our set-up will be as follows. Binary relations over A, i.e., elements of the set A],
will provide the basic positions of S(A). The macro-state represented by a basic position
R ∈ A] is simply given as the range RanR ⊆ A of R. The basic positions are the ones where
∃ has to move, and her set of admissible moves at position R will consist of those elements
Γ = (Y,R) ∈ KA] = PX × PA] that provide legitimate moves in all associated acceptance
games, in the sense that (Y,R, na) 1 Θ(a) for all a ∈ RanR. Positions of the form (Y,R)
are for ∀, and his set of admissible move is simply given by R itself, that is, the moves
available to him are provided by the binary relations in R.2 A round of the satisfiability
game thus starts at a basic position R ∈ A], and consists of ∃ choosing a suitable one-step
model Γ = (Y,R) ∈ KA], followed by ∀ picking a next basic position Q ∈ R.

A second advantage of our approach using binary relations shows up when, finally, we
consider the winning condition of the satisfiability game. Clearly, the sequence of basic
positions of an infinite S(A)-match Σ provides an A]-stream, that is, a stream of binary
relations over A. As we mentioned before, the idea is that Σ corresponds to a bundle of
matches of the acceptance game relating A to the tree structure ∃ has been constructing.
The requirement that ∃ needs to win all of these matches can be nicely expressed in terms of
the collection of traces over the A]-stream associated with Σ.

5.2 Traces

We first need some notation and terminology concerning streams of binary relations and the
traces they carry. Coming back to the title of our paper, this is where the combinatorics of
our proof will be located.

Definition 5.1 Fix a set A. We let A] denote the set of binary relations over A, that is,
A] := P(A×A).

Given a finite word Σ = R1R2R3 . . . Rk over the set A], a trace through Σ is a finite
A-word α = a0a1a2 . . . ak such that aiRi+1ai+1 for all i < k. A trace through a A]-stream
Σ = R1R2R3 . . . is an A-stream α = a0a1a2 . . ., such that aiRi+1ai+1 for all i < ω). In both
cases we denote the set of traces through Σ as TrΣ.

Given a stream Σ = R1R2R3 . . . over A] we denote by Σ|k the word R1 . . . Rk, and for
a trace τ = a0a1a2 . . . on Σ we denote by τ |k the restricted trace a0 . . . ak on Σ|k. We use
similar notation for restrictions of words over A] of length ≥ k. �

2For technical reasons, the actual definition of ∀’s moves in S(A) is a slight modification of this, see
Remark 5.7.
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It is often convenient to think of the set of finite traces providing a graph structure.
Formally we define the trace graph of an A]-stream as follows. Observe that the infinite
Σ-traces are in 1-1 correspondences with the maximal infinite paths through this graph.

Definition 5.2 Given an A]-stream Σ = (Rn)n≥1, we define the trace graph GΣ as the
directed graph with vertices ω ×A and edges EG := {((i, a), (j, b)) | j = i+ 1 and Riab}. �

Definition 5.3 Fix a finite set A and a priority map Ω : A → ω. We let NBT Ω denote
the set of A]-streams that contain no bad trace, that is, no trace τ = a0a1 . . . such that
max(Ω[Inf (τ)]), the highest priority occurring infinitely often on τ , is odd. �

It is not difficult to show that NBT Ω is an ω-regular subset of (A])ω.

Proposition 5.4 Given a finite set A and a priority map Ω : A→ ω, there is a parity stream
automaton recognizing the set NBT Ω, seen as a stream language over A].

Proof. It is easy to construct a nondeterministic parity stream automaton A recognizing
the complement of NBT Ω, that is, the set of A]-streams that do contain a bad trace. The
Proposition is then immediate by the fact that the collection of ω-regular language is closed
under taking complementation. qed

5.3 The satisfiability game

We are now ready for the formal definition of the satisfiability game. First of all we consider
the one-step models based on the set A] of binary relations over A.

Definition 5.5 Given a set A, the natural a-marking on the set A] is defined as the map
na : A] → PA given by

na : R 7→ R[a].

Its transpose, i.e., the corresponding natural a-valuation Ua : A→ PA] is given by

Ua : b 7→ {R ∈ A] | (a, b) ∈ R}.

Any object Γ = (Y,R) ∈ KA] can be seen as a one-step model, by restricting the valuation
na to the domain R ⊆ A]. For a one-step formula α ∈ 1ML(X, A), we write Γ 1

a α to denote
that A], na,Γ 1 α, and we define [[α]]1a := {Γ ∈ KA] | Γ 1

a α}.
Given an object Γ ∈ KA], we let YΓ and RΓ denote the unique objects such that Γ =

(YΓ,RΓ). �

Clearly then, we may indeed think of Γ ∈ KA] as a family of one-step models on the same
one-step frame.

Definition 5.6 Let A = (A,Θ,Ω, aI) be a modal automaton. Then the satisfiability game
S(A) is the graph game of which the moves are given by Table 1. Positions of the form R ∈ A]
are called basic.

The winner of an infinite match of the satisfiability game is given by the induced stream
Σ = R0R1 . . . ∈ (A])ω of basic positions. This winner is ∃ if Σ belongs to the set NBT Ω, that
is, if Σ contains no bad traces, and it is ∀ otherwise. A winning strategy of ∀ in S(A) may
be called a refutation of A. �
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Position Player Admissible moves

R ∈ A] ∃
⋂
a∈RanR[[Θ(a)]]1a

(Y,R) ∈ KA] ∀ {Q ∈ A] | Q ⊆ R for some R ∈ R}

Table 1: Admissible moves in the satisfiability game S(A)

Remark 5.7 An alternative and perhaps more natural version of S(A) would restrict the
moves available to ∀ at position (Y,R) ∈ KA] to the actual elements of R, instead of allowing
subsets of elements of R. It is not so difficult to prove, however, that this version of the game
is in fact equivalent to S(A) itself. Roughly, the reason for this is that in S(A) it never will be
to ∀’s advantage at a position (Y,R) ∈ KA] to pick a strict subset Q of some relation Q′ ∈ R:
the bigger the relations that he picks, the more opportunities he has to obtain a bad trace.

Our motivation for taking S(A) as the standard version of our satisfiability game is simply
that in some cases S(A) is technically more convenient to work with than its apparently
simpler variant. �

Remark 5.8 It may be useful to cover three special cases of ∃’s move at a position R ∈ A].
First, suppose that R = ∅, that is, R is the empty relation. In this case we have that⋂

a∈RanR[[Θ(a)]]1a = KA], so that ∃ could pick any pair of the form (Y,R) where R = ∅ and
win (as we will see right now).

Second, consider the situation where ∃ picks a pair (Y,R) where R = ∅. This is the
one-step version of a ‘blind world’ (a state in a Kripke that has no successors) and thus such
a move is required in case one of the one-step formulas contains or implies the formula 2⊥.
Observe that any position of the form (Y,∅) is winning for ∃ since in the next move it forces
∀ to pick an element from the empty set.

Finally, the situation where ∅ ∈ R, that is, where R contains the empty set, is different
again. In this case, the empty relation would be available as a move to ∀, and as a next basic
position after R, no trace would be continued. But as we have just seen, should ∀ indeed pick
the empty relation, then he would loose at the very next step of the match. �

Convention 5.9 Let A = (A,Θ,Ω, aI) be a modal automaton. Since we will only consider
matches of the satisfiability game S(A) that take the singleton {(aI , aI)} as their starting
position, we will often be sloppy and blur the difference between S(A) and the initialized
game S(A)@{(aI , aI)}.

The following proposition expresses the adequacy of the satisfiability game. Although this
proposition is not needed for proving the main result of this paper, we sketch its proof since
this may be useful to obtain further intuitions on the satisfiability game. It is here that we
see the tight connection between ∃’s winning strategies in the satisfiability game, and models
for the automaton.

Proposition 5.10 (Adequacy) Let A = (A,Θ,Ω, aI) be a modal automaton A. Then ∃ has
a winning strategy in S(A) iff the language recognized by A is non-empty.
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Proof. For the direction from left to right, assume that ∃ has a winning strategy χ in
the satisfiability game S(A) starting at position RI := {(aI , aI)}. Given the nature of the
winning condition of S(A), it is obvious that without loss of generality we may take χ(Σ) to
only depend on the subsequence of basic positions of the partial match Σ ∈ PM∃@RI .

We will now show that basically, χ itself can be seen as a Kripke structure. Define
PMχ

∃@RI as the set of partial χ-guided S(A)-matches starting at RI and ending in a position
for ∃, and let S be the set of basic reducts of these matches, i.e.,

S := {R0R1 . . . Rk | R0Γ1R1 . . .ΓkRk ∈ PMχ
∃@RI}.

∃’s strategy can then be seen as a map χ : S → KA] and so it naturally induces a map
σχ : S → KS given by

σχ(Σ) :=
(
Yχ(Σ), {Σ ·Q | Q ∈ Rχ(Σ)}

)
,

where the notations Yχ(Σ) and Rχ(Σ) are as introduced at the end of Definition 5.5. But then
the pair (S, σχ) is (the coalgebraic representation of) a Kripke structure Sχ. We leave it as an
exercise for the reader to check, finally, that A accepts the pointed Kripke structure (S, RI).

For the opposite direction, from right to left, assume that A accepts the pointed Kripke
structure (S, s1), where S = (S,R, V ). Since the acceptance game is a parity game, by
positional determinacy (Fact 2.9) we may assume that ∃ has a positional winning strategy
m starting at (aI , s1) (or at any winning position, for that matter). This strategy assigns
to each pair (a, s) ∈ Win∃ an A-marking ma,s on R[s] such that the induced one-step model
satisfies (V †(s), R[s],ma,s) 1 Θ(a) (*).

We will now use this positional strategy m to define a strategy χ for ∃ in S(A)@RI ,
where RI := {(aI , aI)}. We will define χ by induction on the length of a partial χ-guided
match Σ = R0 . . . Rk, where R0 = RI . By a simultaneous induction, with any such match
we will associate a path s0 . . . sk through S such that every trace aIaIa1 . . . ak on R0 . . . Rk
corresponds to an m-guided match (aI , s0)(a1, s1) . . . (ak, sk) of the acceptance game. Clearly,
if we can maintain this condition indefinitely, ∃ will be the winner of the resulting infinite
match, by our assumption that her strategy m is winning in A(A,S)@(aI , s0). Hence, all we
need to show is that ∃ can maintain the inductive condition one round.

To see how to do this, consider a partial χ-guided match Σ = R0 . . . Rk, where R0 = RI .
By the inductive hypothesis it follows that all states a ∈ RanRk are such that (a, sk) ∈
Win∃(A(A,S)). In particular, ∃’s winning strategy m provides a marking ma,sk : R[sk]→ PA
(recall that R denotes the accessibility relation of the Kripke structure S). Given any successor
t ∈ R[sk], set Qt := {(a, b) | b ∈ ma,sk(t)}, and let

χ(Σ) :=
(
(V †(sk), {Qt | t ∈ R[sk]}

)
be the definition of ∃’s strategy χ. Observe that each move Q ∈ A] of ∀ in response to the
position χ(Σ) is by definition of the form Qt for some successor t of sk. We then set sk+1 to
be any such t, and leave the routine verification that the partial match Σ · χ(Σ) ·Q and the
S-path s0 . . . sksk+1 satisfy the condition (*) as an exercise to the reader. qed
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Remark 5.11 In general S(A) is not a parity game, but we saw in Proposition 5.4 that
the winning condition NBT Ω is an ω-regular subset of (A])ω. It follows from a result by
Büchi & Landweber [10] that we may assume that winning strategies in S(A) only use finite
memory. This observation can be used to prove the finite model property of modal automata,
and hence, of the modal µ-calculus, cf. [22] for a proof in the more general setting of the
coalgebraic µ-calculus. �

In the sequel it will often be convenient to make some simplifying assumptions on the
moves picked by ∃. Most of these assumptions can be justified by the observation that it is
in ∃’s interest to keep the set of traces in an S(A)-match as small as possible. One way to
formulate this more precisely is the following.

Proposition 5.12 Let A = (A,Θ,Ω, aI) be a modal automaton, and let N ⊆ A] be some
set of relations. Assume that for every basic position R ∈ A] of the satisfiability game, and
every legitimate move (Y,R) of ∃ there is a legitimate move (Y,R′) such that R′ ⊆ N and

R′
−→
P⊆ R. Then for any winning position in S(A) ∃ has a winning strategy that restricts her

moves to pairs (Y,R) with R ⊆ N .

Proof. Assume that ∃ has a winning strategy Γ in the game S(A) initialized at position R0.
We need to provide her with a winning N -strategy, that is, a strategy Γ′ that always selects
moves (Y,R) with R ⊆ N .

We will define this strategy Γ′ by induction on the length of partial S(A)-matches. Si-
multaneously, for any such match

Σ = R0Γ0R1Γ1 . . . Rk

which is Γ′-guided, we will define a parallel match

Σ∗ = R0Γ∗0R1Γ∗1 . . . Rk

which is guided by ∃’s winning strategy Γ. If we can maintain such a shadow match infinitely
long, it is routine to prove that Γ′ is winning for ∃.

For the case where k = 0 there is nothing to prove, so assume inductively that there are
matches Σ and Σ∗ as above. Observe that since the last positions of Σ and Σ∗ are identical,
the set of ∃’s legitimate moves in Σ and Σ∗ are the same. Let (Y,R) be the move prescribed
by ∃’s winning strategy Γ in the partial match Σ∗, then by assumption there is a legitimate

move (Y,R′) such that R′ ⊆ N and R′
−→
P⊆ R. Then we let

Γ′Σ := (Y,R′)

be ∃’s move in Σ. This defines the strategy Γ′.
To finish the inductive step, consider an arbitrary continuation of the match Σ · (Y,R′),

say, where ∀ plays some relation Q. By definition, Q is a subset of some Q′ ∈ R′, while by

R′
−→
P⊆ R we find some Q′′ ∈ R such that Q′ ⊆ Q′′. But then it follows from Q ⊆ Q′′ that Q

is also a legitimate move for ∀ in Σ∗ · (Y,R). In other words, the two k + 1-length matches
Σ · (Y,R′) ·Q and Σ∗ · (Y,R) ·Q satisfy the required conditions. qed
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Remark 5.13 As a consequence of Proposition 5.12, we can always make some minimality
assumptions on ∃’s strategy in the satisfiability game. In particular, suppose that ∃, at some
position R ∈ A] in a match of S(A), picks a move Γ = (Y,R). Then without loss of generality
we can assume that:

(1) Dom(Q) ⊆ Ran(R), for all Q ∈ R.

(2) b occurs in Θ(a), for all Q ∈ R and (a, b) ∈ Q.

We leave it for the reader to verify this claim. �

Of course, we will need to connect the satisfiability game to Kozen’s proof system for the
µ-calculus to be able to make use of it in the completeness proof. Recall from our discussion
surrounding Theorem 2 in the introduction to this paper that in our completeness proof we
will apply proof-theoretic notions, and in particular that of consistency, to automata (for the
details, see section 8). Ideally then, we would want that whenever an automaton is consistent,
we can find a winning strategy for ∃ in the associated satisfiability game. This will indeed
follow from the completeness theorem, together with the adequacy of the satisfiability game,
but it is very hard to verify directly. In Section 9 we will establish the result for a special
class of automata, called semi-disjunctive automata, that will be introduced in Section 6.

But we can already say something about the connection between the satisfiability game
and provability: the following corollary of Theorem 4.9 connects the one-step completeness
theorem to the satisfiability game.

Corollary 5.14 Let A = (A,Θ,Ω, aI) be a modal automaton, let R ∈ A] be a position in
S(A) and let {σb | b ∈ RanR} be a family of substitutions such that the formula∧

b∈RanR
Θ(b)[σb]

is consistent. Then ∃ has an admissible move (Y,R) such that for all Q ∈ R the formula∧
(b,d)∈Q

σb(d)

is consistent.

Proof. We will derive this from Theorem 4.9. The idea is to consider pairs (b, d) ∈ A×A as
one-step variables, so that we may combine the family of substitutions {σb | b ∈ RanR} into
one single substitition over A×A.

In detail, let λb : A → A × A denote the substitution λb : d 7→ (b, d) that “tags” an
arbitrary variable d with the state b, and let σ : A × A → µML(X) be the substitution given
by putting

σ(b, d) := σb(d),

then clearly we have that

σb = σ ◦ λb
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for all b. Hence we may read the assumption as making a statement about the formula∧
{Θ(b)[λb] | b ∈ RanR} ∈ 1ML(X, A×A) and the substitution σ, namely, that the formula(∧

{Θ(b)[λb] | b ∈ RanR}
)
[σ]

is consistent. It then follows from Theorem 4.9 that there is a one-step model (Y, S,m) such
that (Y, S,m) 1

∧
{Θ(b)[λb] | b ∈ RanR}, and for all s ∈ S the formula

∧
{σ(b, d) | (b, d) ∈

m(s)} is consistent.
Note that m : S → A]. It is then straightforward to verify that the move (Y,m[S]) satisfies

the required properties. qed

As a special case of this result, consider the situation where the substitutions σb are all the
same, given by σb(a) = trA(a) for each b, a ∈ A, where trA : A→ µML denotes the map trans-
lating states in A to their corresponding equivalent µML-formulas. Then Corollary 5.14 can be
used to build a surviving strategy for ∃ in the satisfiability game for a consistent automaton
— in fact, all she has to do is to maintain the consistency of the formula

∧
b∈RanR trA(b).

But more importantly, Corollary 5.14 will be a key ingredient in our later of a winning
strategy in the satisfiability game for a consistent semi-disjunctive automaton, and will allow
us to maintain consistency of formulas recording some information about the traces of partial
matches of the satisfiability game.

5.4 The consequence game

The consequence game for A and A′, C(A,A′), is a graph game for two players, that we will
simply call I and II. For convenience we will think of player I as being female, and player II as
being male. One may think of the game being about player II trying to show that automaton
A implies A′ by establishing some kind of a simulation relation between the automata A and
A′. Taking a more proof-theoretic perspective: with respect to a basic position in C(A,A′) of
the form (R,R′) ∈ A] ×A′], player II tries to show that ‘R implies R′’, in the sense that the
conjunction of RanR implies the conjunction3 of RanR′. Here we take the ‘conjunction of R’
to be the conjunction of the set of automata {A〈b〉 | b ∈ RanR}.

The consequence game is tightly linked to the satisfiability games of the two associated
automata: C(A,A′) also proceeds in rounds and these can be associated with rounds of the
satisfiability games S(A) and S(A′). In words, one round of C(A,A′) consists of four moves.
At the start of the round, at basic position (R,R′), player I picks a local model Γ ∈ A] for
R, as if she was player ∃ in S(A). Second, player II then responds with some suitably related
one-step model for R′, inducing a move in the game S(A′). Concretely, for a one-step model
Γ = (Y,R), player II provides a one-step model Γ′ = (Y,R′) and a binary relation Z ⊆ A]×A′]

such that (R,R′) ∈ PZ. Player I then finishes the round by picking a pair (Q,Q′) from Z as
the next basic position.

The tight link with the satisfiability games extends to the winning conditions of C(A,A′),
which can be defined in terms of the winning conditions of S(A) and S(A′), since any infinite
match of C(A,A′) naturally induces infinite matches of the latter two games.

3This interpretation should be explicitly contrasted to the standard approach in proof theory regarding
sequents, where Γ ⇒ ∆ is interpreted as stating that the conjunction of Γ implies the disjunction of ∆.
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Position Player Admissible moves

(R,R′) ∈ A] ×A′] I
⋂
a∈RanR[[Θ(a)]]1a × {R′}

(Γ, R′) ∈ KA] ×A′] II {Γ} ×
⋂
a′∈RanR′ [[Θ

′(a′)]]1a′

(Γ,Γ′) ∈ KA] × KA′] II {Z ⊆ A] ×A′] | (Γ,Γ′) ∈ KZ}
Z ⊆ A] ×A′] I Z

Table 2: Admissible moves in the consequence game C(A,A′)

Remark 5.15 In fact, the consequence game can be seen as a kind of communication or
implication game between the satisfiability games of the two automata involved. As such,
the construction of C(A,A′) from S(A) and S(A′) is vaguely reminiscent of the operation
〈−,−〉 on games, defined by Santocanale [60], where Santocanale’s construction in its turn
is the result of enriching fixpoint theory with ideas from the game semantics of linear logic
(see, e.g., Blass [7] or Joyal [33]). Note however that the actual moves of our game crucially
involve modal one-step logic, in a way that makes C(A,A′) rather different from the game
〈S(A),S(A′)〉 one would obtain by applying Santocanale’s construction. �

Definition 5.16 Let A = (A,Θ,Ω, aI) and A′ = (A′,Θ′,Ω′, a′I) be modal automata. Then
the rules of the consequence game C(A,A′) are given by Table 2. Positions of the form
(R,R′) ∈ A] × A′] are called basic. Here, given Γ = (Y,R) ∈ KA] and Γ′ = (Y′,R′) ∈ KA′],
we shall write (Γ,Γ′) ∈ KZ to say that (R,R′) ∈ PZ and Y = Y′.

For the winning conditions of this game, consider an infinite match Σ of C(A,A′), and let
(Rn, R

′
n)n<ω be the induced stream of basic positions in Σ. Then player I is the winner of Σ

if (Rn)n<ω ∈ NBT Ω but (R′n)n<ω 6∈ NBT Ω′ ; that is, if there is a bad trace on the A′-side but
not on the A-side. If the position

(
{(aI , aI)}, {(a′I , a′I)}

)
is a winning position for player II in

C(A,A′), we say that A′ is a game consequence of A, notation: A |=G A′ . �

A particularly simple type of strategy for Player II in the consequence game, that we will
make use of a number of times, is what we call a functional strategy, in which the response
chosen by Player II at each position (Γ, R′), where Γ = (Y,R), consists of some Γ′ ∈ KA′] and
a map F : R → A′] such that Γ′ = KF (Γ). Since Γ′ is determined completely by the map
F , we will usually omit the move Γ′ in the specification of a functional strategy for Player II,
and simply give the map F . To check legitimacy of such a move F at a position (Γ, R′), we
need to verify that KF (Γ) ∈

⋂
a′∈RanR′ [[Θ

′(a′)]]1a′ .
Similar to the satisfiability game, we will often want to make some simplifying assumptions

on the moves picked by player I. These are justified by the following analog of Proposition 5.12.

Proposition 5.17 Let A = (A,ΘA,ΩA, aI) and B = (B,ΘB,ΩB, bI) be modal automata, and
let N ⊆ A] be some set of relations. Assume that for every basic position (Q,R) ∈ A] × B]

of the consequence game, and for every legitimate move (Y,Q′) for player I at this position,
she has a legitimate move (Y,Q) such that Q ⊆ N and Q P⊆ Q′. Then for any winning
position in C(A,B) player I has a winning strategy that restricts her moves to pairs (Y,Q)
with Q ⊆ N .
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Proof. We write Q0 := {(aI , aI)}, R0 := {(bI , bI)}, and abbreviate C := C(A,B)@(Q0, R0).
Let f be a winning strategy for player I in C. In the same game we will provide I with a
winning strategy f , that restricts her moves to pairs (Y,Q) with Q ⊆ N . This strategy f will
be defined by induction on the length of a partial f -guided match, while by a simultaneous
induction we will (†) associate with each f -guided match Σ = (Qn, Rn)n≤k an f -guided
shadow match Σ′ = (Q′n, Rn)n≤k such that Qn ⊆ Q′n for all n ≤ k.

Clearly this holds at the start of every C-match if we take Q′0 := Q0. For the inductive step
of the definition, fix a partial f -guided match Σ = (Qn, Rn)n≤k, and let Σ′ = (Q′n, Rn)n≤k be
the inductively given shadow match. In order to provide player I with a move Γ in Σ, first
consider the move Γ′ = (Y,Q′) ∈ KA] provided by f in the shadow match Σ′. By assumption
there is a pair Γ = (Y,Q) ∈ KA] which is a legitimate move at position (Q′k, Rk) and such
that Q ⊆ N and Q P⊆ Q′. Since Qk ⊆ Q′k it is easy to see that this move Γ′ is also legitimate
at the last position (Qk, Rk) of Σ. Hence we may take this Γ′ to be the move suggested by
the strategy f .

Continuing the inductive definition, suppose that player II’s answers to I’s move Γ are,
successively, ∆ = (Y,R), with R ∈ B], and Z ⊆ A] × B]. Now consider the relation
Z ′ ⊆ A] ×B] defined by Z ′ := ⊇;Z. We claim that

∆ and Z ′ are legitimate moves for II at position (Γ′, R) (2)

and
for all (Q′, R) ∈ Z ′ there is a (Q,R) ∈ Z such that Q ⊆ Q′. (3)

For a proof of (2), observe that the legitimacy of ∆ is obvious, while that of Z ′ follows from
the fact that (Q′,R) ∈ P⊇;PZ = P(⊇;Z) = PZ ′. The claim (3) is immediate from the
definitions.

Based on the statements (2) and (3), we can finish our inductive definition: in the match
Σ · (Γ, Rk) · (Γ,∆) ·Z we let the strategy f pick a pair (Q,R) ∈ Z as given by (3). Clearly this
is a legitimate move for player I. Finally, where Σ · (Q,R) is the continuation of Σ in terms
of basic positions, the associated continuation of the shadow match is Σ′ · (Q′, R), and so it
is obvious that player I has been able to maintain the constraint (†).

It should be clear that the thus defined strategy f always picks legitimate moves of the
right type. It remains to check that it is a winning strategy in C.

It is straightforward to verify that player I will never get stuck in an f -guided match, so
we confine our attention to infinite matches. Let Σ = (Qn, Rn)n<ω be an infinite f -guided
match, then clearly there is an infinite f -guided shadow match Σ′ = (Q′n, Rn)n<ω such that
Qn ⊆ Q′n for all n < ω. By assumption that f is a winning strategy in C, the match Σ′ is
a win for player I. That is, all traces through (Q′n)n<ω are good, while there is a bad trace
through (Rn)n<ω. Obviously then, all traces through (Qn)n<ω are good, and so the existence
of a bad trace through (Rn)n<ω means that Σ as well is a win for player I. qed

The following proposition can be seen as stating a soundness result for the consequence
game.

Proposition 5.18 For any two modal automata A and A′ it holds that

A |=G A′ implies A |= A′. (4)
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Proof. Fix a pointed Kripke model (S, sI) with S = (S,R, V ), a winning strategy χ for ∃
in the acceptance game for A with respect to S at the start position (aI , sI), and a winning
strategy f for Player II in C(A,A′). For simplicity we assume without loss of generality that
the strategy χ is positional (recalling that A(A, S) is a parity game). Our goal is to provide a
winning strategy χ′ for ∃ in the acceptance game for game A′ at the start position (a′I , sI). By
induction on the length of a χ′-guided match with basic positions (a′I , sI), (a

′
1, s1)...(a′n, sn),

we shall define an f -guided shadow match (RI , R
′
I)(R1, R

′
1)...(Rn, R

′
n) such that the following

conditions hold:
(1) aIa1...an is a trace through RIR1...Rn iff (aI , sI)(a1, s1)...(an, sn) is a χ-guided match;
furthermore, each b ∈ Ran(Rn) is the last element of some trace on RIR1...Rn.
(2) a′Ia

′
1...a

′
n is a trace through R′IR

′
1...R

′
n.

Furthermore, we shall associate these shadow matches in a uniform manner, so that the
shadow match of an initial segment of a partial match Σ is an initial segment of the shadow
match associated with Σ. First, note that this means that ∃ wins all χ′-guided infinite matches:
if (a′I , sI)(a

′
1, s1)(a′2, s2)... is a loss for ∃ then a′Ia

′
1a
′
2... is a bad trace through R′IR

′
1R
′
2... in the

shadow match (RI , R
′
I)(R1, R

′
1)(R2, R

′
2)... by condition (1). Since this match was f -guided

and f is a winning strategy, this means that there must be some bad trace aIa1a2... through
RIR1R2..., and by condition (2) we get that (aI , sI)(a1, s1)(a2, s2)... is an infinite χ-guided
match, which furthermore is a loss for ∃. This is a contradiction since χ was a winning
strategy by assumption.

We now show how ∃ can respond to any move by ∀ while maintaining the induction
hypothesis. Suppose we are given a χ′-guided partial match Σ consisting of positions (a′I , sI),
(a′1, s1), ..., (a′n, sn) with a shadow match (RI , R

′
I)(R1, R

′
1)...(Rn, R

′
n) satisfying the conditions

(1) and (2). For each a ∈ RanRn, by (1) there is a χ-guided partial match with last position
(a, sn). So we see that the move χ(a, sn) : S → P(A) prescribed by the winning strategy χ is

legitimate for each such a. Define the map H : S
◦→ A] by

H(v) := {(a, b) | a ∈ RanRn & b ∈ χ(a, sn)(v)}.

Then it follows by the one-step bisimulation invariance theorem (Proposition 4.6) that the pair
KH(V †(sn), R[sn]) = (V †(sn), H[R[sn]]) is a legitimate move for Player I in the consequence
game at the position (Rn, R

′
n). So the winning strategy f provides some R ∈ PA′] and a

binary relation Z ⊆ A]×A′] such that (H[R[sn]],R) ∈ PZ and such that, for all a′ ∈ RanR′n:

V †(sn),R,ma′ 1 Θ′(a′),

where ma′ is the natural marking at a′. We get (R[sn],R) ∈ P(H;Z), so it follows by
Proposition 4.8 (applied to the converse of the relation H;Z) that V †(sn), R[sn], h 1 Θ(a′),
where the marking h is defined by:

h(v) =
⋃
{ma′(Q) | (H(v), Q) ∈ Z}.

So we set χ′(Σ) = h, and this is a legitimate move. Furthermore, if b′ ∈ h(v), then there is
some Q with (a′, b′) ∈ Q and (H(v), Q) ∈ Z, and we can continue the shadow match with the
pair (H(v), Q). Then the extended shadow match

(RI , R
′
I)(R1, R

′
1)...(Rn, R

′
n)(H(v), Q)
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satisfies both conditions (1) and (2), so the proof is finished. qed

It should be stressed that the converse direction of Proposition 5.18 does not hold in
general. If A′ is a game consequence of A, the existence of a winning strategy for player II
in the consequence game indicates a close structural relation between A and A′, far tighter
than what is required for A being merely a semantic consequence of A′. Below we will see an
example of two automata such that A |= A′ but A 6|=G A′, but first we give an example of two
automata that do satisfy the game consequence relation. Note that this example is closely
linked to the fixpoint rule of Kozen’s axiom system.

Proposition 5.19 For all modal automata A that are positive in x, we have Ax[µx.A/x] |=G

µx.A.

Proof. Recall that the automaton µx.A has the same carrier as the automaton Ax, and
that the automaton Ax[µx.A/x] is built from µx.A together with one disjoint copy of Ax, so
Ax[µx.A/x] will contain for each state a in µx.A an extra state a′ corresponding to a belonging
to the disjoint copy of Ax. With this in mind, we define a map f from states of Ax[µx.A/x]
to states of µx.A by mapping a′ to a, and a to itself, for each state a in µx.A. This map
induces a map F from relations over the states of Ax[µx.A/x] to relations over the states of
µx.A by the assignment:

F : R 7→ {(f(a), f(b)) | (a, b) ∈ R}.

We also have a map F0 defined by:

F0 : R 7→ {(x, f(b)) | ((aI)′1, b) ∈ R}.

Thus we get a (functional) strategy for Player II in the game C(Ax[µx.A/x], µx.A) defined by
choosing the map F0�R in response to the first move (Y,R) made by Player I, and choosing
the map F �R as a response to every other move (Y,R) made by Player I. It can be checked
that this is a winning strategy for Player II. qed

Note that this proposition is stated in terms of the guardified automaton Ax rather than
A. It is not too hard to convince oneself that the automata A[µx.A] and Ax[µx.A] are
semantically equivalent, but the consequence game is a stronger concept and in general it
is somewhat surprisingly not true that A[µx.A/x] |=G µx.A. For a simple counterexample,
consider the following:

Example 5.20 Let p, q, x be any three propositional variables and let A = (A,Θ,Ω, aI)
where A = {a, b}, aI = a and Θ(a) = 3b, Θ(b) = (x ∧ p) ∨ q. Hence, we will have θb0 = p
and θb1 = q, and we can take θa0 = ⊥ and θa1 = Θ(a). (The priority map Ω is irrelevant to the
example and hence not specified.) We shall show that A[µx.A] 6 |=Gµx.A.

Note that µx.A will have five states x, a0, a1, b0, b1 and A[µx.A/x] will have the two ad-
ditional states a and b. For convenience we list the transition maps of the automata A, Ax,
µx.A and A[µx.A] in Table 3; the last row of the table provides the starting states of the
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State A(Θ) Ax(Θx) µx.A(Θ′) A[µx.A](Θ′′)

a 3b − − 3b
b (x ∧ p) ∨ q − −

(
3((x ∧ b0) ∨ b1) ∧ p) ∨ q

)
a0 − ⊥ ⊥ ⊥
a1 − 3((x ∧ b0) ∨ b1) 3((x ∧ b0) ∨ b1) 3((x ∧ b0) ∨ b1)
b0 − p p p
b1 − q q q
x − x 3((x ∧ b0) ∨ b1) 3((x ∧ b0) ∨ b1)

St.st. a a1 x a

Table 3: The transition map and starting states of the automata A, Ax, µx.A and A[µx.A]

respective automata. We let Θ′ denote the transition map of µx.A and Θ′′ the transition map
of A[µx.A/x].

To prove that that A[µx.A] 6 |=Gµx.A we supply Player I with a winning strategy in the
consequence game C(A[µx.A], µx.A).

In fact we shall show that Player I can win this game in just a few moves. Since the free
variables of the two automata A[µx.A/x] and µx.A are p and q, she first needs to pick an
element of the set

P({p, q})× P({x, a0, a1, b0, b1, a, b}]).

We let the first move of Player I be the pair (∅, {{(a, b)}}), which satisfies the formula Θ′′(a) =
3b as required (recall that a is the starting state of A[µx.A]).

Now Player II has to come up with a family of relations R and a binary relation Z such
that (∅,R) satisfies the formula 3((x ∧ b0) ∨ b1), since x is the start state of µx.A, and such
that ({{(a, b)}},R) ∈ PZ. To satisfy the mentioned formula, there must be a relation Q ∈ R
such that {(a, b)}ZQ and either (i) (x, b0), (x, x) ∈ Q or (ii) (x, b1) ∈ Q.

In either case, Player I first picks the pair ({(a, b)}, Q) belonging to Z as his next move.
To see that from this position she can win the game, we make a case distinction, as to the
nature of the earlier move by Player II.

If (i) we have (x, b0), (x, x) ∈ Q then we let Player I choose the pair ({q}, ∅) which is a
legal move since it satisfies the disjunct q of Θ′′(b). Since p /∈ {q} there is no family R′ that
Player II can respond with such that ({q}),R′) satisfies the formula Θ′(b0), which is just p.
Hence Player II is stuck and Player I wins the game.

On the other hand, if (ii) (x, b1) ∈ Q then we can let Player I choose the pair ({p}, {(b, b1)})
since it satisfies the disjunct Θ′(x) ∧ p of Θ′′(b), where we recall that Θ′(x) was the formula
3((x∧ b0)∨ b1). But now, since q /∈ {p}, there is no family R′ that Player II can choose such
that ({p},R′) satisfies the formula Θ′(b1), which is just q. So again Player II is stuck, and
Player I wins. �

Intuitively, what is driving the previous example is that the construction Ax splits states
of A into disjunctions, which gives Player I some extra power in the game C(A[µx.A], µx.A)
since she can choose which disjunct of a one-step formula to make true on the left-hand side
of the game, while the choice may be already made for Player II on the right-hand side. This
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illustrates our earlier point that A |=G A′ indicates a rather tight structural relation between
the two automata.

To finish off this section, we mention two basic facts about the consequence game, stating
that the game consequence relation is reflexive and transitive.

Proposition 5.21 Let A, A′ and A′′ be modal automata.
(1) A |=G A;
(2) if A |=G A′ and A′ |=G A′′ then A |=G A′′.

Proof. Clearly, the proof of the first item is trivial. Concerning the transitivity of |=G, it is a
routine exercise to verify that player II can compose any two winning strategies in the games
C(A,A′) and C(A′,A′′), respectively, to obtain a winning strategy in the game C(A,A′′). qed
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6 Taming the traces - one step at a time

We have seen that the winner of an infinite match of the satisfiability game for a modal
automaton A is determined by checking whether the induced A]-stream of relations over
A contains any bad traces. Hence, the problem of determining membership of the no-bad-
trace language NBTA ⊆ (A])ω will be of central importance to us. In Proposition 5.4 we
already saw that NBTA is an ω-regular language, but to find an actual stream automaton
recognizing this language is a nontrivial task, involving complex operations such as the Safra
construction. Put in different terms: the combinatorics of the trace graph of a stream over
the alphabet A], as defined in Section 5, is rather intricate. For this reason, we shall be
interested in special classes of modal automata for which the trace graphs of matches in the
satisfiability game have significantly simpler structure. As we said in the introduction, this can
be achieved by imposing certain restrictions on the one-step formulas of the automata. In this
section we make this precise, thus bringing together the two different aspects of Walukiewicz’s
completeness proof that we aim to distinguish in our analysis, the combinatorics of traces on
the one hand and the one-step dynamics of automata on the other.

We shall start by isolating, for a fixed automaton A, certain subsets of the alphabet A]

(that is, certain kinds of binary relations over A), such that the trace graphs of streams over
these restricted alphabets are in a precise sense simpler than in the general case. We then
proceed to introduce the corresponding restrictions on the one-step formulas that produce
modal automata for which infinite matches of the satisfiability game can indeed be assumed
without loss of generality to produce streams over those restricted classes of relations in A].

6.1 Functional, clusterwise functional and thin relations

The simplest class of relations that we shall consider are the functional ones:

Definition 6.1 Let R ∈ A] be a relation over some set A. We call R functional if each a ∈ A
has at most one R-successor. This element, if it exists, is denoted as a+

R, or as a+ in case R
is clear from context. The set of functional relations in A] will be denoted by A]f . �

The trace combinatorics of streams of functional relations is trivial, as described by the
following proposition. Although the result is obvious, we state it explicitly for emphasis:

Proposition 6.2 Fix a modal automaton A and let R1R2R3 . . . be any stream over A]f .
Then for each a ∈ Dom(R1) there is at most one infinite trace on this stream beginning with
a, and if each Ri is total then the correspondence is one-to-one.

In particular, there are at most |A| many infinite traces on any stream on A]f . This is the
best possible scenario one could hope for: it is easy to check whether there is any bad trace
on such a stream, since there is in total only a bounded number of traces to consider.

A wider class of relations that maintains some of this simplicity is the following:

Definition 6.3 Given a fixed modal automaton A, a relation R ∈ A] is said to be clusterwise
functional if:
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(1) for all a, b ∈ A with aRb, we have b� a;

(2) for all a ∈ A, there is at most one b ∈ Ca such that aRb.

The set of clusterwise functional relations in A] will be denoted by A]cf . �

Generally, a stream over the alphabet A]cf will have infinitely many traces. However, the
trace combinatorics of streams over A]cf is still much simpler than the general case, in a sense
made precise by the following proposition. We recall that two streams σ, τ over any alphabet
are said to be eventually equal if there is a k ∈ ω such that σ(j) = τ(j) for all j ≥ k.

Proposition 6.4 Given a modal automaton A, let Σ = R1R2R3 . . . be any stream over A]cf .
Then there exists a collection F of at most |A| many infinite traces over Σ = R1R2R3 . . .,
such that every infinite trace on this stream is eventually equal to some trace in F .

Proof. By the first condition on clusterwise functionality, every infinite trace τ through Σ
eventually ends up in a cluster C, in the sense that ∃n.∀k ≥ n.τ(k) ∈ C. It thus suffices to
prove that the relation of eventual equality, taken over the set of traces that eventually end
up in an arbitrary but fixed cluster C, is an equivalence relation of index at most |C|.

Suppose for contradiction that this is not the case, i.e., there are traces {τi | 0 ≤ i ≤ |C|},
all ending up in C, and such that τi and τj are eventually equal only if i = j. Then we can
find an n ∈ ω such that for all k ≥ n each τi(k) belongs to C. By the pigeon hole principle
then there must be distinct indices i and j such that τi(n) = τj(n). But by clusterwise
functionality this implies that τi(k) = τj(k) for all k ≥ n, so that τi and τj are eventually
equal after all. qed

In particular this means that we only have to examine the |A| many traces in F to decide
whether there is a bad trace on R0R1R2 . . ., since two eventually equal traces are clearly
either both bad or both not bad.

Cluster-wise functional relations are almost the key concept that we need, but it turns
out that we are going to require a little bit of extra generality. While the infinite traces of a
stream over A]cf are essentially finite in the sense of Proposition 6.4, we shall finally consider
a wider class of relations for which the corresponding streams have the property that there
are essentially only finitely many bad traces.

Definition 6.5 Fix a modal automaton A. A state c belonging to some cluster C of A is
called a safe state of C if Ω(c) is even, and no µ-state in C has a higher priority than c. A
subset B ⊆ A is C-safe if there is at most one state in B ∩ C that is not safe in C.

Given a state a ∈ A, we call a relation R ∈ A] thin with respect to A and a, or A-thin
with respect to a, if:

(1) for all b ∈ A with aRb, we have b� a;

(2) R[a] ⊆ A is Ca-safe.

We call R A-thin if it is A-thin with respect to all a ∈ A. We denote the collection of thin
relations in A] by A]thin . �

For streams over the set of A-thin relations, we have the following result:
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Proposition 6.6 Given a modal automaton A, let (Ri)i≥1 be a stream over A]thin . Then
there exists a collection F of at most |A| many infinite traces over (Ri)i≥1, such that any
given bad trace over (Ri)i≥1 is eventually equal to some trace in F .

Proof. We prove this proposition by a similar argument as used for Proposition 6.4, the
differences being that we restrict attention to bad traces, and, in the reductio argument, let
n ∈ ω satisfy the additional requirement that for all k ≥ n, and all i, τi(k) is not a safe state
in C. qed

Again, this combinatorial property greatly simplifies the problem of checking whether
there is some bad trace on R0R1R2 . . ., since we only have to check whether the bounded
collection F contains a bad trace. In order to exploit this nice property of thin relations, we
will introduce a second version of the satisfiability game:

Definition 6.7 Given a modal automaton A, the thin satisfiability game for A, denoted
Sthin(A), is defined as the satisfiability game S(A) except that the moves of ∀ are constrained
so that ∀ may only choose A-thin relations. That is, R is a legitimate move for ∀ at some
position in Sthin(A) iff R is a legitimate move at the same position in S(A), and R ∈ A]thin .
A winning strategy for ∀ in Sthin(A) will be called a thin refutation of A. �

In general, the game Sthin(A) is not equivalent to S(A) in the sense that there is always
a winning strategy for the same player in both games: since the moves of ∀ are restriced in
Sthin(A), it may be that ∃ has a winning strategy in Sthin(A) but not in S(A). In the following
subsection, we shall arrive at a class of modal automata for which the equivalence does hold.

6.2 Disjunctive and semi-disjunctive automata

The first class of automata that we introduce is well known from the literature: disjunctive
automata were introduced under the name of µ-automata in [31]. The definition of disjunctive
automata is based on the cover modality introduced in Definition 3.11. Recall that for a set
of formulas Ψ, the formula ∇Ψ is given as ∇Ψ := 2

∨
Ψ ∧

∧
3Ψ.

Definition 6.8 Let X be a given set of proposition letters and A any finite set. We first
define the language LitC(X) to be generated by π in the grammar:

π ::= > | p | ¬p | π ∧ π

where p ∈ X. We now define the set of disjunctive formulas in 1ML(X, A), which we denote by
1MLd(X, A), as follows:

α ::= ⊥ | α ∨ α | π ∧∇B

where π ∈ LitC(X) and B ⊆ A. �

Definition 6.9 A modal X-automaton A is said to be disjunctive if the range of the transition
map Θ is contained in 1MLd(X, A). �
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Remark 6.10 Since the cover modality ∇ plays a key role in the semantics of disjunctive
formulas, we recall its meaning in the specific setting of the satisfiability game. Given a subset
B ⊆ A and a pair Γ = (Y,R) ∈ KA], observe that

(Y,R) 1
a ∇B iff B ⊆

⋃
{R[a] | R ∈ R} and R[a] ∩B 6= ∅ for all R ∈ R. (5)

This boils down to

(Y,R) 1
a ∇∅ iff R = ∅ (6)

in the specific case where B = ∅. �

We note that our definition does not admit the formula> as a disjunctive one-step formula.
This is in no way a restriction on the expressive power of disjunctive automata, for the
following reason: given a disjunctive automaton A = (A,Θ,Ω, aI), we call a state a ∈ A a
true state if Θ(a) = ∇∅ ∨ ∇{a} and Ω(a) = 0. It is easy to verify that in this case, the
automaton A〈a〉 accepts all pointed Kripke structures, so that we may think of the one-step
formula Θ(a) as internally representing the formula >.

The basic observation about disjunctive one-step formulas is given by Proposition 6.11
below.

Proposition 6.11 Let α ∈ 1MLd(X, A) and (Y,R) ∈ KA] be such that (Y,R) 1
a α. Then

there is some R′ ∈ PA] such that R′
−→
P⊆ R, (Y,R′) 1

a α and |R[a]| = 1 for all R ∈ R.

Proof. Since every α ∈ 1MLd(X, A) is a finite disjunction of formulas of the form π ∧ ∇B, it
suffices to prove the claim for α a one-step formula of the form ∇B, with B ⊆ A. Roughly,
the idea of the proof is to ‘split’ the elements of R if needed.

For more details, assume that (Y,R) 1
a ∇B, and distinguish cases. If B = ∅ the claim

holds trivially since by (6) we find R = ∅ and so we may take R′ := R.

Hence we may focus on the case where B 6= ∅. First of all it follows from (5) that
R 6= ∅ and that R[a] ∩ B 6= ∅ for all R ∈ R. Second, we ensure that R[a] ⊆ B for all
R ∈ R. If this would not be the case, by (5) we may replace every R ∈ R with the relation

Ra,B := R\{(a, b) | b ∈ R[a]\B}. The resulting set R′′ := {Ra,B | R ∈ R} satisfies R′′
−→
P⊆ R

and (Y,R′′) 1
a ∇B.

Finally, define Q := {R ∈ R′′ | R[a] > 1} as the set of relations for which R[a] is too big,
and for each R ∈ Q, and each b ∈ R[a], define

Rb := R \ {(a, b′) | b′ 6= b},

so that R =
⋃
{Rb | b ∈ R[a]}, while Rb[a] is a singleton for each b ∈ R[a]. Then put

R′ := (R \Q) ∪
⋃
{Rb | R ∈ Q, b ∈ R[a]},

that is, we ‘split’ every R ∈ Q. Using (5) it is then a matter of routine to verify that R′
meets the required conditions. qed
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We will state a number of results along the lines of Proposition 6.11, and the proofs of
these results will be omitted since they all follow essentially the same line of reasoning as
the previous one. The first of these generalizes Proposition 6.11 from looking at only single
disjunctive formulas to considering the entire range of the transition map of a disjunctive
automaton:

Proposition 6.12 Let A = (A, aI ,Θ,Ω) be a disjunctive automaton, and let R ∈ A] be a
basic position of the satisfiability game. Then for every legitimate move (Y,R) of ∃ at R there

is a legitimate move (Y,R′) such that R′
−→
P⊆ R and R′ ⊆ A]f .

From this it follows by Proposition 5.12 that we may always assume without loss of
generality that ∃ restricts her moves to pairs (Y,R) where R ⊆ A]f , so that the stream over
A] consisting of the basic positions of an infinite match in the satisfiability game consists only
of functional relations.

It is possible to define a more general class of modal automata that would aptly be
called “clusterwise disjunctive automata”, for which a similar result could be proved with
“clusterwise functional relations” in place of “functional relations”. These automata will not
play any essential role in the completeness proof however, so we proceed directly to introduce
the natural class of automata for which matches in the satisfiability game produce streams over
A]thin . Unlike disjunctive automata, these automata do not already feature in the literature.
We call them semi-disjunctive automata, and their transition function is clearly linked to the
notion of thinness.

Definition 6.13 Let A be a modal automaton an let C be a cluster of A. A C-safe conjunc-
tion is a formula of the form

∧
B, where B is C-safe. The grammar

α ::= > | π ∧∇{
∧
B | B ∈ B} | α ∨ α,

where π ∈ LitC(X) and B is a collection of C-safe sets, defines the set 1MLC(X, A) of C-safe
one-step formulas.

A modal automaton A = (A,Θ,Ω, aI) is said to be semi-disjunctive if Θ(a) is a Ca-safe
formula for all a ∈ A (where we recall that Ca denotes the cluster of a). �

Put informally: a C-safe one-step formula is a disjunctive formula over the set of C-safe
conjunctions, and a semi-disjunctive automaton is one in which the one-step formula assigned
to each state is safe with respect to the cluster of that state. Semi-disjunctive automata are
to modal automata what the weakly aconjunctive formulas introduced by Walukiewicz in [73]
are to formulas of the µ-calculus. These were in turn introduced as a generalized variant of
the aconjunctive formulas for which Kozen proved his partial completeness result in [36].

The definition of semi-disjunctive automata is tailored towards the following proposition,
the proof of which is similar to that of Proposition 6.12.

Proposition 6.14 Let A = (A, aI ,Θ,Ω) be a semi-disjunctive automaton, and let R ∈ A] be
a basic position of the satisfiability game. Then for every legitimate move (Y,R) of ∃ at R,

there is a legitimate move (Y,R′) such that R′
−→
P⊆ R and R′ ⊆ A]thin .
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This means that, by appealing to Proposition 5.12, we can assume without loss of gener-
ality that in the satisfiability game of a semi-disjunctive automaton, ∃ always plays a strategy
such that all the infinite matches guided by this strategy induce streams over A] consisting
entirely of thin relations.

We can make this point a bit more formal by considering the thin satisfiability game of
Definition 6.7. We now obtain the following result, as an immediate consequence of Proposi-
tions 6.14 and 5.12:

Corollary 6.15 Let A = (A, aI ,Θ,Ω) be a semi-disjunctive automaton. Then each player
Π ∈ {∃, ∀} has a winning strategy in Sthin(A) iff she/he has one in S(A). Hence, A is either
satisfiable or admits a thin refutation.

Proof. It is clear that any winning strategy for ∃ in S(A) is still a winning strategy in
Sthin(A). Conversely, suppose ∃ has a winning strategy χ in Sthin(A). By Proposition 6.14
and Proposition 5.12 (or, to be more precise, the version of the latter Proposition formulated
for the thin satisfiability game) we may without loss of generality assume that χ only picks
moves (Y,R) such that R is a collection of thin relations. But then it is easy to see that this
strategy χ is winning for ∃ in S(A) as well. First, χ is obviously legitimate; to prove that it
is winning the key observation is that at any position of the form (Y,R) with R ⊆ A]thin , ∀’s
moves in S(A) and Sthin(A) are exactly the same.

This shows the equivalence of the two games for ∃. The equivalence for ∀ now follows by
determinacy. qed

We note the following closure properties for disjunctive and semi-disjunctive automata.
Here we say that an automaton is (semi-)disjunctive modulo one-step equivalence if it is
one-step equivalent to a (semi-)disjunctive automaton.

Proposition 6.16 Let A and B be two modal automata.
(1) If A is disjunctive, then it is also semi-disjunctive.
(2) If A and B are disjunctive, then so is A ∨ B,
(3) If A and B are semi-disjunctive, then so is A ∨ B.
(4) If A and B are semi-disjunctive, then so is A ∧ B, modulo one-step equivalence.
(5) If A and B are semi-disjunctive, then so is A[B/x], modulo one-step equivalence.
(6) If A is disjunctive and positive in x, then Ax and νx.A are semi-disjunctive, modulo

one-step equivalence.

Proof. The first three statements are immediate consequences of the definitions. We skip
the proof of the fourth statement: it is similar to but simpler than that of (5), since in the
case of A ∧ B there is only one state, where we have to replace a conjunction of ∇-formulas
by a disjunction of appropriate ∇-formulas, viz., the initial one.

For the fifth item, first observe that the states from B cause no problem whatsoever: for
b ∈ B we have ΘA[B/x](b) = ΘB(b), so the one-step formulas assigned to any b ∈ B are b-safe
since B is semi-disjunctive. For a state a from A, using the (Boolean) distributive law we can
rewrite every formula ΘA[B/x](a) as a one-step equivalent finite disjunction of formulas of the
form

π ∧∇{
∧
A | A ∈ A} ∧ ∇{

∧
B | B ∈ B}, (7)
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where π ∈ LitC(X), A is a collection of a-safe subsets of A, and B is a family of subsets B.
We use the distributive law for the cover modality (Fact 3.15(1)) to observe that any

conjunction of the shape ∇{
∧
A | A ∈ A}∧∇{

∧
B | B ∈ B} can be rewritten as an equivalent

disjunction of formulas of the shape

∇{
∧

(A ∪B) | A ∈ A, B ∈ B}.

Since each set A ∪ B with A ∈ A, B ∈ B is still a-safe in A[B/x] (observe that no cluster in
A[B/x] contains states from both A and B), it is now a simple exercise to show that each
formula ΘA[B/x](a) can be rewritten into a one-step equivalent a-safe formula.

Concerning item (6), assume that the automaton A is disjunctive. We need to consider
the precise shape of the automata Ax and ηx.A. It is not hard to see that the formulas
θai from Convention 4.18 themselves are disjunctive. The problem is that when we define
the transition maps for the automata Ax and νx.A, the substitution κ : a 7→ (x ∧ a0) ∨ a1

introduces conjunctions in the scope of modalities. We claim, however, that

if α ∈ 1MLd(X, A), then α[κ] is equivalent to a Ca-safe formula, for any a ∈ A. (8)

Clearly we may restrict our attention to formulas α of the form ∇B with B ⊆ A. The key to
proving (8) is the following one-step equivalence:

∇{γ0 ∨ γ1 | γ ∈ Γ} ≡1

∨{
∇{γi | (γ, i) ∈ Z} | Z ⊆ Γ× {0, 1},DomZ = Γ

}
. (9)

It follows from (9) that any formula of the form ∇B[κ] is one-step equivalent to a disjunction
of formulas ∇Π, where Π ⊆ {x ∧ b0, b1 | b ∈ B}. Thus it remains to prove that formulas of
the form x∧ b0 are Ca-safe, for any a ∈ A. In the case of Ax this follows from the fact that x
forms a degenerate cluster on its own, so that x 6= b0 implies that x and b0 belong to different
clusters. In the case of νx.A the state x is by construction the maximal even element of its
cluster, so that again the set {x, b0} is Ca-safe for any a ∈ A. qed

Note that µx.A is not generally semi-disjunctive, even if A is disjunctive.

6.3 A key lemma

We now come to one of the key lemmas of the paper, phrased as Theorem 3 in the introduction.
The role of this lemma in the overall completeness proof is to establish a link between the
two games that we have introduced for modal automata in the previous section.

Theorem 3 Let A and D be respectively a semi-disjunctive and an arbitrary modal au-
tomaton, and assume that A |=G D. Then the automaton A ∧ ¬D has a thin refutation.

This result is analogous to the result labelled as Lemma 36 in Walukiewicz’ paper, but
differs in two ways. First, it is formulated in automata-theoretic terms. But also, it is more
general: the result in Walukiewicz’ paper is stated for a weakly aconjunctive formula and a
disjunctive formula, and so one should expect our result to be stated analogously for a semi-
disjunctive automaton A and a disjunctive automaton D. It turns out that disjunctiveness

52



of D is not needed; in fact this assumption doesn’t even simplify the proof, so although the
more restricted version of the result would have sufficed for the completeness proof we have
preferred to state it for an arbitrary automaton D.

We recall that the transition map of the automaton ¬D is defined by taking boolean
duals of the formulas assigned by the transition map of D, and the priority map is defined by
simply raising all priorities by 1. We shall need the following fact on boolean duals, which is
a straightforward consequence of the definitions:

Proposition 6.17 Let S be any set, α any one-step formula in 1ML(X, A) and let m,m′ :
S → P(A) be markings such that (Y, S,m) 1 α and (Y, S,m′) 1 α∂. Then for some a ∈ A
and some s ∈ S we have a ∈ m(s) ∩m′(s).

Proof of Theorem 3. To fix notation, let A = (A,ΘA,ΩA, aI), D = (D,ΘD,ΩD, dI) and let
B denote the automaton A∧¬D. We write B = (B,ΘB,ΩB, bI) and recall thatB = A]D]{bI}.

Assume that player II has a winning strategy χ in the consequence game C(A,D) starting
at position

(
{(aI , aI)}, {(dI , dI)}

)
. Our aim is to provide a thin refutation for the automaton

B, that is, a winning strategy for player ∀ in the thin satisfiability game for the automaton
A ∧ ¬D.

We shall make use of the following claim, which is based on Proposition 5.17 and another
variation of Proposition 6.11. Call a relation R ⊆ B] A-thin if the relation ResA(R) is thin
with respect to A.

Claim 1 Without loss of generality we may assume that in any match of Sthin(A ∧ ¬D), ∃
only picks moves (Y,R) such that each R ∈ R is A-thin.

We will now define a strategy σ for ∀ in S(B), inductively making sure that the following
two conditions are maintained, for any σ-guided partial match Σ = R0 . . . Rn:

(†) Rn is thin, and for n ≥ 1 satisfies |Ran(Rn) ∩D| = 1;

(‡) There is a χ-guided shadow C(A,D)-match of the form (S0, S
′
0)(S1, S

′
1)...(Sn, S

′
n), where

(a) S0 = {(aI , aI)} and S′0 = {(dI , dI)};
(b) S1 = {(aI , a) ∈ A×A | (bI , a) ∈ R1} and {(dI , d) ∈ D ×D | (bI , d) ∈ R1} ⊆ S′1;

(c) for each i > 1 we have Ri ∩ (A× A) = Si and Ri ∩ (D ×D) is a singleton {(d, d′)}
with d ∈ Ran(Ri−1) ∩D and (d, d′) ∈ S′i.

For n = 0 by definition we have R0 = {bI , bI}, S0 = {(aI , aI)} and S′0 = {(dI , dI)}, so
that the conditions (†) and (‡) hold. We leave it for the reader to verify that the case where
n = 1 can be seen as a notational variant of the general case, and focus on showing how ∀
can extend the match R0 . . . Rn to R0 . . . RnRn+1 and maintain the above two conditions in
the case that n > 1.

Suppose that the inductive hypothesis has been maintained for the partial match Σ consist-
ing, for some n > 1, of the positionsR0R1 . . . Rn, with shadow match (S0, S

′
0)(S1, S

′
1) . . . (Sn, S

′
n).

Let Γ = (Y,R) ∈ KB] be an arbitrary move chosen by ∃ at Σ. Recall that by Claim 1 we
may assume that each member of the family R is thin relative to A. We have:

(Γ, nb) 
1 ΘB(b) for all b ∈ RanRn, (10)
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where we recall that nb : R → PB denotes the natural b-marking on R, mapping R to R[b].
In particular, we obtain that

(Γ, nd) 
1 ΘD(d)∂ , (11)

where d is the unique element of Ran(Rn) ∩D.
Recall that ResA : B] → A] is the map sending a relation R to R ∩ (A × A), so that

(KResA)Γ is the pair (Y, {R ∩ (A × A) | R ∈ R}). We write {R ∩ (A × A) | R ∈ R} = RA
for short, so that (KResA)Γ = (Y,RA). By the one-step bisimulation invariance theorem, we
may infer from (10) that

((KResA)Γ, na) 
1 ΘA(a), for all a ∈ RanSn, (12)

so that (KResA)Γ is an admissible move for player I in the consequence game at position
(Sn, S

′
n). Thus we find an element Γ′ = (Y,R′) ∈ KXD

] such that Γ′ ∈
⋂
b∈RanS′n [[ΘD(b)]]1b ,

and a relation Z ⊆ R×R′ with RA(PZ)R′, dictated by Player II’s winning strategy χ in the
consequence game. By our inductive assumptions on S′n we get in particular that

(Γ′, nd) 
1 ΘD(d). (13)

We shall prove the following claim:

Claim 2 There is some S ∈ R, some S′ ∈ R′ and some c ∈ D with (ResAS, S
′) ∈ Z and

(d, c) ∈ S′ ∩ ResDS.

Proof of Claim First, we define the marking m : R → P(D) by setting:

m(S) =
⋃
{S′[d] | (ResAS, S′) ∈ Z}.

We first claim that:
(Γ,m) 1

d ΘD(d). (14)

Since we know that (Γ′, nd) 1 ΘD(d), by Proposition 4.8 it suffices to prove that the one-step
model (Γ,m) one-step simulates (Γ′, nd). The atomic condition holds obviously. To establish
the (back) condition, if S ∈ R then ResAS ∈ RA, so there is some S′ ∈ R′ with (S, S′) ∈ Z,
and it immediately follows by definition of m that nd(S

′) ⊆ m(S). Conversely, for the (forth)
condition, take an arbitrary relation S′ ∈ R′. Then there is some Q ∈ RA with (Q,S′) ∈ Z,
and Q must equal ResAS for some S ∈ R. Again, it immediately follows from the definition
of m that nd(S

′) ⊆ m(S) as required.
By Proposition 6.17 it follows from (11) and (14) that there is some c ∈ D and some S ∈ R

such that c ∈ nd(S)∩m(S). Then by the definitions we find that, respectively, (d, c) ∈ ResDS
and (d, c) ∈ S′ for some S′ with (ResAS, S

′) ∈ Z as required. J

With this claim in place, we define the next move for ∀ prescribed by the strategy σ to be
the relation Rn+1 := ResAS ∪ {(d, c)}, where S ∈ R and c ∈ D are as described in the claim,
so that (d, c) ∈ S′ ∩ ResDS for some S′ with (ResAS, S

′) ∈ Z. Note that this is a legitimate
move in response to (Y,R) since Rn+1 ⊆ S ∈ R. The shadow match is then extended by the
pair (Sn+1, S

′
n+1) := (ResAS, S

′) so that condition (‡c) of the induction hypothesis holds as an
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immediate consequence of the claim. For condition (†), it is obvious that |Ran(Rn) ∩D| = 1;
thinness of the relation Rn+1 follows from the assumption that S ∈ R was thin relative to A.

To show that the thus defined strategy σ is winning for ∀, first observe that he never
gets stuck, so that we may focus on infinite matches. It suffices to prove that every infinite
σ-guided match contains a bad trace, so consider an arbitrary such match Σ = (Ri)i≥0.

Clearly we may assume that all initial parts of Σ, corresponding to the partial matches
(Ri)0≤i≤n, satisfy the conditions (†) and (‡). From this it follows that Σ itself has an infinite
χ-guided shadow match (Si, S

′
i)i≥0 satisfying the condition (‡a-c). In addition, it follows from

(†) that Σ will contain a unique trace in D, which by (‡) will also be a trace on the right side
of the shadow match in the consequence game. That is, the match R0R1Rn . . . contains a
unique trace of the form bId1d2d3 . . . with each di in D, and this is a trace through the stream
S′0S

′
1S
′
2 . . . as well. If this trace is bad, then we are done. If not, then given the priorities

assigned to states in ¬D it must be bad as a trace in D since parities are swapped in ¬D.
Hence there must be a bad trace bIa1a2a3 . . . on the left side S0S1S2 . . . of the shadow match
in the consequence game, since this shadow match was guided by the winning strategy χ of
Player II. But then this trace bIa1a2a3 . . . is also a bad trace in the match R0R1R2 . . . of the
satisfiability game. Summarizing, we see that either the unique trace through D in Σ is bad
or there is some bad trace through A in Σ. In either case, Σ is a loss for ∃ as required. qed
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7 A strong simulation theorem

In this section we present a construction that turns an arbitrary, i.e., alternating, modal
automaton A into an equivalent disjunctive, i.e., nondeterministic, modal automaton sim(A).
In other words, we are concerned with the simulation theorem for modal automata here. In
the setting of finite tree automata, the concept of alternation was introduced by Muller &
Schupp [46]; they also mention the simulation problem and hint at a solution, but do not
provide details. Emerson & Jutla [20] showed that the simulation problem for alternating
tree automata becomes somewhat easier if acceptance is given by a parity condition (in fact,
a concept introduced in this paper, independently from [44]). A fairly general construction,
for tree automata with various acceptance conditions, was given by Muller & Schupp [47].
All of the work mentioned above dealt with automata operating on trees of a fixed, finite
branching degree, which is slightly different from our setting of Kripke structures, where in
particular the successors of a state form a (completely unstructured) set. As mentioned, the
µ-automata introduced in this setting by Janin & Walukiewicz [30] are nondeterministic, and
although the authors do not define alternating automata explicitly, their construction can be
seen as a simulation theorem.

Our definition of the simulation of a modal automaton more or less follows the approach
of Arnold & Niwiński [1]. However, we shall present a strengthened version of this simulation
theorem: rather than merely showing A and sim(A) to be semantically equivalent, we shall
prove stronger claims involving the consequence game. In one direction, we have A |=G sim(A),
from which it follows that sim(A) accepts every model accepted by A. In the other direction,
we have not only that sim(A) |=G A, but in fact given any modal automaton B which is
positive in the proposition letter x, we have:

B[sim(A)/x] |=G B[A/x].

This is tightly connected to one of the key lemmas in Walukiewicz’ completeness proof (la-
belled “Lemma 39” in [73]), and can be seen as an automata-theoretic counterpart of this
result.

We shall begin by providing an explicit definition of the transformation sim(·) from modal
automata to disjunctive modal automata.

Definition 7.1 Fix a modal X-automaton A = (A,Θ,Ω, aI). Given a subset Y of X, let Ŷ

denote the formula: ∧
{p | p ∈ Y} ∧

∧
{¬p | p /∈ Y}.

The pre-simulation of A is defined to be the structure pre(A) = (A],Θ′,NBT Ω, a
′
I) where

A] := P(A×A) as always, a′I := {(aI , aI)},

Θ′(R) =
∨
{Ŷ ∧∇R | (Y,R) ∈

⋂
b∈RanR

[[Θ(b)]]1b},

and NBT Ω is the set of streams over A] that do not contain any bad traces.
Since the acceptance condition NBT Ω is an ω-regular language with alphabet A] as we

noted in Section 5, we may pick some deterministic parity automaton Z = (Z, ζ,Ω′, zI) that
recognizes NBT Ω. Finally we define sim(A) to be the structure (D,Θ′′,Ω′′, dI) where:
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- D = A] × Z,
- dI = (a′I , zI),
- Θ′′(R, z) = Θ′(R)[(Q, ζ(R, z)/Q | Q ∈ A]] and
- Ω′′(R, z) = Ω′(z).

We shall let GA : D → A] denote the map that is defined to be the projection map sending a
pair (R, z) in the product A] × Z to its left component R. �

The main result of this section is the following result, which we already mentioned in the
introduction as one of the key lemmas in our completeness proof.

Theorem 4 The map sim(·) assigns to each modal automaton A a disjunctive modal automa-
ton sim(A) such that

(1) A |=G sim(A) and sim(A) |=G A;
(2) B[sim(A)/p] |=G B[A/p], for any modal automaton B which is positive in p.

Observe that the semantic equivalence of an automaton and its simulation follows from
the first part of this theorem, together with Proposition 5.18.

To get a hint of the proof of Theorem 4(1), one should observe that the game trees of
S(A) and S(sim(A)) are structurally very similar. In fact, it is clear that the simulation
construction is very tightly related to the satisfiability game: the states of the pre-simulation
of A just are the basic positions of the satisfiability game for A, and the acceptance condition
for the pre-simulation of A is exactly the winning condition in S(A).

Proof of Theorem 4(1). To show that A |=G sim(A) is easy: fix the stream automaton Z
that recognizes NBT Ω. Then every finite word R0 . . . Rk over A] determines an associated
state of Z by simply running Z on the word R0 . . . Rk; so for R0 the associated state is zI ,
for R0R1 the associated state is ζ(R0, zI) etc. Since every k-length partial match Σ of the
consequence game C(A, sim(A)) determines a word R0 . . . Rk over A] in the obvious way, we
can associate a state zΣ of Z with each such partial match. If Player I continues the match
Σ consisting of basic positions (R0, R

′
0) . . . (Rk, R

′
k) by choosing the move (Y,R) ∈ KA], then

we let Player II respond with the map F : R → (A] ×Z)] that is defined by mapping R ∈ R
to the singleton {((Rk, zΣ), (R, ζ(Rk, zΣ))}. It can be checked that this defines a functional
winning strategy for Player II, and we leave the details to the reader.

The direction sim(A) |=G A of clause (1), which can be seen as a simple special case of
clause (2), will follow from the Propositions 7.3 and 7.5. qed

The difficult part of Theorem 4 is to prove clause (2), and this will be the focus of the
rest of this section. It will be convenient to state more abstractly what the crucial properties
are of the automaton sim(A) that we have associated with an arbitrary automaton A:

Definition 7.2 Let A and D be an arbitrary and a disjunctive modal automaton, respectively.
We say that D is a disjunctive companion of A if there is a map G : D → A] satisfying the
following conditions:

(DC1) G(dI) = {(aI , aI)}
(DC2) Let δ = (Y, E) ∈ KD be such that (Y, E, sing) 1 ΘD(d), where sing is the singleton

map given by e 7→ {e}. Then (KG)δ ∈ KA] satisfies (KG)δ 1
a ΘA(a) for all a ∈ Ran(Gd).

(DC3) If G(di)i∈ω ∈ (A])ω contains a bad A-trace, then (di)i∈ω is itself a bad D-trace. �
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The map G in this definition is intended as a witness of a tight structural relationship
between the automaton D and the satisfiability game for A. In particular the map G captures
the intuition that every state of a disjunctive companion represents a macro-state of A (i.e.
a position of the satisfiability game), plus possibly some extra information. In the concrete
case of the automaton sim(A), this “extra information” is a state of the stream automaton
that detects bad traces. Informally one can think of a state d ∈ D as a conjunction of the
states in RanG(d), or differently put: for each for a ∈ RanG(d), think of a as being “implied
by” d.

Each of the clauses of this definition can thus be given an informal explanation that is con-
sistent with this idea. The first clause (DC1) simply expresses that the start state of D is a rep-
resentation of the start position of the satisfiability game S(A). The second clause (DC2) cap-
tures the idea that any state a ∈ RanG(d) is “entailed” by d in the following sense. Given an
object δ = (Y, {d1, . . . , dk}) ∈ KD, we can see δ as a one-step model over D by taking the sin-
gleton map sing : D → PD (restricted to the set E = {d1, . . . , dk}) as a D-marking. Similarly,
applying the map KG to δ, we obtain the object (KG)δ = (Y, {Gd1, . . . , Gdk}) ∈ KA] which, as
we have seen, may be taken as an A-indexed family of one-step models (Y, {Gd1, . . . , Gdk}, na)
over A. Now the condition (DC3) requires that if (Y, {d1, . . . , dk}, sing) satisfies the one-
step formula ΘD(d), then the one-step model (Y, {Gd1, . . . , Gdk}, na) satisfies ΘA(a), for each
a ∈ Ran(Gd). Finally, the clause (DC3) makes sure that if (di)i∈ω is a “good” D-stream, in
the sense that it satisfies the acceptance condition of D, then the A]-stream (Gdi)i∈ω satisfies
the NBTA-condition, that is, each of its traces satisfies the acceptance condition of A, and
thus provides a win for ∃ in the satisfiability game.

Proposition 7.3 The simulation map sim(·) assigns a disjunctive companion to any modal
automaton.

Proof. It is fairly straightforward to check that the projection map GA : D → A] specified in
Definition 7.1, which simply forgets the states of the stream automaton used in the product
construction, has all the properties required to witness that sim(A) is a disjunctive companion
of A. qed

The main technical result of this section is the following:

Proposition 7.4 Let A and B be arbitrary modal automata, let D be a disjunctive companion
of A, and assume that B is positive in p. Then

B[D/p] |=G B[A/p].

To warm up, we first prove a simplified version of the Proposition (which immediately
yields the statement sim(A) |=G A in Theorem 4(1)).

Proposition 7.5 Let D be a disjunctive companion of the modal automaton A. Then

D |=G A.
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Proof. Since D is disjunctive, by the Propositions 6.12 and 5.12 we may assume without
loss of generality that player I only picks moves Γ = (Y,R) such that all relations in R are
functional. As a result, all basic positions that we encounter will be of the form (R,R′) where
R consists of a single pair (d, d+

R).
The functional strategy that we will give to Player II will be completely determined by the

map G. More specifically, suppose that at a position ({(e, d)}, R), player I plays (Y,R}; by
our assumption, every relation Q ∈ R is of the form Q = {(d, d+

Q)}. Now Player II’s strategy
χ is given by the assignment

χ : {(d, d+
Q)} 7→ G(d+

Q).

It is a routine verification that by condition (DC2) this strategy is legimate.
From the legitimacy of χ it follows that II cannot loose any χ-guided finite match. To

show that χ is winning for II, consider an infinite χ-guided match Σ = (Rn, R
′
n)n∈ω. It

follows from our assumptions on player I’s strategy that R0R1 . . . carries only a single trace,
say, d0d1 . . ., and by our definition of player II’s strategy we then have that Ri = Gdi for all
i. From this it is immediate by the trace reflection clause (DC3) that Σ is a win for player
II, as required. qed

Remark 7.6 In the light of the proof of Proposition 7.5, we now see that the map G wit-
nessing that D is a disjunctive companion of A can be seen as encoding a particularly simple
winning strategy for Player II in the consequence game C(D,A). The trick of proving Proposi-
tion 7.4 is to turn this winning strategy encoded by G into a new winning strategy for Player
II in C(B[D/p],B[A/p]).

Before turning to Proposition 7.4 itself, let us first see why its proof is not so straight-
forward as one might expect on the basis of that of Proposition 7.5. To see where the
difficulties lie, consider an arbitrary infinite match Σ = (Rn, R

′
n)n∈ω of the consequence game

for B[D/p] and B[A/p]. Given the shape of these two automata, we may assume that traces
on Σl := R0R1 . . . consist of either a B-trace or a finite B-trace followed by an infinite D-trace,
and that, similarly, traces on Σr := R′0R

′
1 . . . consist of either a B-trace or a finite B-trace

followed by an A-trace. Our purpose will be to associate with each Σr-trace

τ = b0b1 . . . bnan+1an+2an+3 . . . ,

a Σl-trace
τl = b0b1 . . . bndn+1dn+2dn+3 . . . ,

such that we can use the trace reflection clause of Definition 7.2 on the D- and A-tail of τ
and τl, respectively. For this purpose we will define, for each partial match leading to final
position (Rn, R

′
n), a map gn : RanAR

′
n → RanDRn. Intuitively, for a ∈ A, gn(a) represents a

state d ∈ D that ‘implies’ a. Ideally, we would like to show that the τ -tail (ai)i>n is in fact
a trace on the A]-stream (G(giai))i>n, while (giai)i>n is a tail of a Σl-trace, so that (DC3)
applies indeed.

Unfortunately, this is too good to be true, due to complications that are caused by A-
traces merging : the point is that trace jumps may occur, that is, situations where for some
pair (a, a′) ∈ R′j+1 it does not hold that (gja, gj+1a

′) ∈ Rj+1. Our solution to this prob-
lem will be to ensure that every Σr-trace can suffer only finitely many trace jumps. Thus,
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what we can show is that any A-trace (ai)i>n has a tail akak+1ak+2 · · · which is a trace on
G(gkak)G(gk+1ak+1)G(gk+2ak+2) · · · This suffices to prove that if there is a bad trace on Σr,
then there is also a bad trace on Σl, so that player II indeed wins the match Σ.

The tool that we employ to guarantee this consists of a total order on the collection of
those Σl-traces that arrive to the D-part of the automaton B[D/p]. The definition of this
order crucially involves the disjunctivity of D. �

In the proof of Proposition 7.4, the following technical definition and proposition will be
useful.

Definition 7.7 With Γ,Γ′ ∈ KA], a, a′ ∈ A, and B ⊆ A, we write Γ →B
a,a′ Γ′ to abbreviate

that (Γ,m)→1 (Γ′,m′) where m : R 7→ R[a]∩B and m′ : R 7→ R[a′]∩B. Similarly, we write
Γ↔B

a,a′ Γ′ as an abbreviation for (Γ,m)↔1 (Γ′,m′). �

Proposition 7.8 Let Γ,Γ′ ∈ KA]. (1) If Γ →B
a,a′ Γ′ then for all β ∈ 1ML(X, B) we have

Γ 1
a β implies Γ′ 1

a′ β.

(2) If Γ ↔B
a,a′ Γ′ then for all β ∈ 1ML(X, B) we have

Γ 1
a β iff Γ′ 1

a′ β.

Proof. Immediate from the one-step preservation and bisimulation invariance theorems
(Propositions 4.8 and 4.6, respectively) — or by a direct inductive proof. qed

We are now ready to prove Proposition 7.4.

Proof of Proposition 7.4. Starting with notation, let A = (A,ΘA,ΩA, aI), B = (B,ΘB,ΩB, bI)
and D = (D,ΘD,ΩD, dI), and let G : D → A] be the map witnessing that D is a disjunctive
companion of A. We recall our notation RanA, ResA and d+

Q from Definition 2.2.
Our goal is to provide player II with a functional winning strategy χ in the consequence

game C between B[D/p] and B[A/p]. It will be convenient to make some simplifying assump-
tions on player I’s moves in this game.

Claim 1 Without loss of generality we may assume that in any partial match Σ ending with
(R,R′), player I always picks an element Γ = (Y,R) such that
(Ass1) Dom(Q) ⊆ Ran(R) for all Q ∈ R;
(Ass2) Q ∩ (D ×B) = ∅, for all Q ∈ R;
(Ass3) |Q[d] ∩D| = 1 for all d ∈ D and all Q ∈ R;
(Ass4) for all b ∈ RanR ∩ B, either Q[b] ∩ D = ∅ for all Q ∈ R, or |Q[b] ∩ D| = 1 for all
Q ∈ R.

Proof of Claim We shall use Proposition 5.17. We focus on the most difficult clause, (Ass4),
and leave the rest to the reader. Consider b ∈ RanR∩B and suppose that Γ = (Y,R) ∈ K(B∪
D) is a legitimate move for Player I, which we may assume already satisfies (Ass2). We recall
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that ΘBD(b) = ΘB(b)[ΘD(dI)/p]. If Γ /∈ [[Θ(dI)]]
1
b then we set R′ = {Q \ ({b} ×D) | Q ∈ R}.

If Γ ∈ [[Θ(dI)]]
1
b , then pick some disjunct Ŷ∧∇Cb of ΘD(dI) such that (B ∪D)],Γ 1

b Ŷ∧∇Cb.
If Cb = ∅ then we must have R = ∅ and set Rb = R = ∅. Otherwise, if Cb 6= ∅, set

Rb = {(Q \ ({b} ×D)) ∪ {(b, d)} | Q ∈ R and (b, d) ∈ Q ∩ (B × Cb)}

In each of these cases, we can verify that either Q[b]∩D is empty for all Q ∈ Rb or Q[b]∩D is

a singleton for all Q ∈ Rb, Rb
−→
P⊆ R, and (B ∪D)], (Y,Rb) 1

b ΘBD(b). The key observation
is that if (Y,R) satisfies ΘD(dI), then so does (Y,Rb), and this is proved by simply verifying
that the required back-and-forth properties hold for Cb and Rb. By repeating the procedure

for all b ∈ RanR ∩B, we will finally find some R′
−→
P⊆ R with the required properties. J

To appreciate the above claim, consider an arbitrary partial match

Σ = (R0, R
′
0), . . . , (Rk, R

′
k),

with R0 = R′0 = {(bI , bI)}. It follows by Claim 1 that we may assume each element c ∈ RanRk
to lie on some trace through R0, . . . , Rk, and that every trace through R0, . . . , Rk is either
a B-trace, or else it consists of an initial, non-empty B-trace, followed by a non-empty D-
trace. By the second and third assumption of the claim, traces are D-functional, that is, if
d ∈ RanRn for some n < k, then d has exactly one Rn+1-successor, that we will denote as
d+. As a consequence, every trace τ on R0, . . . , Rn ending at d has exactly one continuation
through Rn+1, . . . , Rk. (This does not imply that all matches and traces are infinite.) The
use of (Ass4) will be rather technical, uniformizing the transition of traces from the B-part
to the D-part of the automaton B[D/p].

A key role in our proof is played by a Σ-induced total order on RanDRk that we will
introduce now. Intuitively, we say, for d, d′ ∈ RanDRk, that d is Σ-older than d′ if d lies on a
trace τ that entered D at an earlier stage than any trace arriving at d′.

For a formal definition of this ordering, we need to assume some arbitrary but fixed total
order on D, given by an injective map mb : D → ω; we call mb(d) the birth minute of d. The
reason is that there may be “ties”, i.e situations where the longest D-trace leading to two
different states in D are of the same length. Following the analogy: we can have cases where
two states have the same “birth date”, and we then refer to the birth minute to decide which
is the oldest.

Given a state d ∈ RanDRk, by Claim 1(1) there is a trace τ through R0, . . . , Rk such that
τ(k) = d. By Claim 1(2), all such traces start in B and at some moment j move to the
D-part of the automaton. We let tbΣ(d) be the smallest pair of natural numbers (j, l) in the
lexicographic order on ω × ω such that there is some e ∈ RanDRj with mb(e) = l and such
that the unique trace on Rj . . . Rk beginning with e ends with d (this trace is unique because
of trace functionality in D). The pair tbΣ(d) = (j, l) is called the time of birth of d relative
to the match Σ; we simply write tb(d) if Σ is clear from context.

Note that tbΣ is always an injective map. To see this, suppose that tbΣ(d) = tbΣ(d′) =
(j, l). Then there are e, e′ ∈ RanDRj such that the unique trace on Rj , . . . , Rk beginning
with e ends with d, and the unique trace beginning with e′ ends with d′, and such that
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mb(e) = mb(e′) = l. By injectivity of mb, we get e = e′, and so we get d = d′ by uniqueness
of traces in the D-part of R0, . . . , Rk.

Finally, we define a strict total ordering on RanDRk relative to Σ by saying that d is
Σ-older than d′ if tb(d) is smaller than tb(d′) (in the lexicographic order). We leave it for the
reader to verify that, for d ∈ RanRn with n < k, it holds that tb(d+) ≤ tb(d).

We now turn to the definition of player II’s winning strategy χ. By a simultaneous
induction on the length of a partial χ-match

Σ = (R0, R
′
0), . . . , (Rn, R

′
n),

with R0 = R′0 = {(bI , bI)}, we will define maps

Fn : (B ∪D)] → (B ∪A)]

and
gn : RanAR

′
n → RanDRn.

We let the F -maps determine player II’s strategy in the following sense. Suppose that in the
mentioned partial match Σ, player I legitimately picks an element Γ = (Y,R) ∈ K(B ∪D)].
Then player II’s response will be the map Fn+1 �R , that is, the map Fn+1, restricted to the
set R ⊆ (B ∪D)].
Inductively we will ensure that the following conditions are maintained:

(*) FnRn = R′n,
(†0) R′n = ResBR

′
n ∪ (R′n ∩ (B ×A)) ∪ ResAR

′
n,

(†1) ResBR
′
n = ResBRn,

(†2) R′n ∩ (B ×A) ⊆
⋃
d∈D{(b, a) | (b, d) ∈ Rn ∩ (B ×D) & (aI , a) ∈ G(d)}

(†3) ResAR
′
n ⊆

⋃
{G(d) | d ∈ RanDRn},

(‡) a ∈ RanG(gna), for all a ∈ RanARn.

For some explanation and motivation of these conditions, observe that (*) indicates that
Σ itself is indeed χ-guided. For condition (†), first observe that while by Claim 1, all B[D/p]-
traces consist of an initial B-part followed by an D-tail, condition (†0) states that similarly, all
B[A/p]-traces consist of an initial B-part followed by an A-tail. Condition (†1) then states that
the B-part on the left and right side of a C(B[D/p],B[A/p]-match is the same, and condition
(†3) states that every pair (a, b) ∈ ResARanR

′
n is ‘covered’ or ‘implied’ by some d ∈ RanDRn.

Finally, (‡) states that, for every a ∈ RanR′n, the map gn picks a specific element d ∈ RanDRn
such that a ∈ Ran(Gd). As we will see in Claim 4 below, it will be this condition, together
with the condition on the reflection of traces in Definition 7.2 and the actual definition of the
maps gn, that is pivotal in proving that player II wins all infinite matches.

Setting up the induction, observe that R0 = R′0 = {(bI , bI)}. Defining F0 as the map
R 7→ ResBR and g0 as the empty map, we can easily check that (*), (†) and (‡) hold.

In the inductive case we will define the maps Fn+1 and gn+1 for a partial match Σ as above.
For the definition of Fn+1 : (B ∪D)] → (B ∪A)], first observe that that by (†0) we are only
interested in relations R ∈ (B ∪D)] that are of the form R = ResBR∪(R∩(B×D))∪ResDR.
We will define Fn+1 by treating these three parts of R separately, using, respectively, the
identity map on B] and two auxiliary maps that we define now.
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For the D-part of R, we define an auxiliary map Hn+1 : D ×D → A]:

Hn+1(d, d′) := G(d′) ∩ (g−1
n (d)×A),

that is, Hn+1(d, d′) consists of those pairs (a, a′) ∈ G(d′) for which gn(a) = d. For the
B ×D-part of R, we need a second auxiliary map L : B ×D → P(B ×A), given by

L(b, d) := {(b, a) ∈ B ×A | (aI , a) ∈ G(d)}.

Now we define Fn+1 : (B ∪D)] → (B ∪A)] as follows:

Fn+1(R) := ResBR

∪
⋃
{L(b, d) | (b, d) ∈ R ∩ (B ×D)}

∪
⋃
{Hn+1(d, d+) | (d, d+) ∈ ResDR}.

That is, we define Fn+1(R) as the union of three disjoint parts: a B ×B-part, a B ×A-part
and an A×A-part.

For the definition of gn+1, let (Rn+1, R
′
n+1) be an arbitrary next basic position following

the partial match Σ. Note that we may assume that Rn+1 satisfies the assumptions formulated
in Claim 1, and that we have R′n+1 = Fn+1(Rn+1) by the fact that player II’s strategy is given
by the map Fn+1. Given a ∈ RanAR

′
n+1, distinguish cases:

Case 1 If a has no R′n+1-predecessor in A, then by definition of Fn+1 and L, the set of states
d ∈ D for which there is a b ∈ B with (b, d) ∈ Rn+1 and (aI , a) ∈ G(d) is non-empty.
We define gn+1a to be the oldest element of this set, that is, in this case, the element
with the earliest birth minute.

Case 2 If a does have an R′n+1-predecessor in A, that is, the set {b ∈ A | (b, a) ∈ R′n+1}
is non-empty, then we can define gn+1a to be the oldest element (with respect to the
match Σ · (Rn+1, R

′
n+1)) of the set {(gnb)+ | (b, a) ∈ R′n+1} ⊆ D.

To gain some intuitions concerning this definition, observe that in the first case, we cannot
define gn+1a inductively on the basis of the map gn applied to an R′n+1-predecessor of a: we
have to start from scratch. This case only applies, however, in a situation where a does have
an R′n+1-successor b ∈ B such that in Rn+1, this same b has a Rn+1-successor d ∈ D such
that (aI , a) ∈ Gd. In this case we simply define gn+1a := d, and if there are more such pairs
(b, d), then for gn+1a we may pick any of these d’s, for instance the one with the earliest birth
minute.

We now turn to the second clause of the definition of gn+1 — here lies, in fact, the heart
of the proof of Proposition 7.4. Consider a situation where a0 and a1, both in A, are the two
Rn+1-predecessors of a ∈ A. Both gna0 and gna1 are states in D, and therefore they have
unique Rn+1-successors in D, denoted by (gna0)+ and (gna1)+, respectively. We want to
define gn+1a as either (gna0)+ or (gna1)+, but then we are facing a choice between these two
states of D in case they are distinct. It is here that our match-dependent ordering of states in
D comes in: we will define gn+1a as the oldest element of the two, relative to the (extended)
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match Σ · (Rn+1, R
′
n+1). Suppose (without loss of generality) it holds that (gna0)+ is older

than (gna1)+, so that we put gn+1a := (gna0)+. In this case we say that the trace through
gna0 is continued, while there is also a trace jump witnessed by the fact that (a1, a) ∈ Rn+1

but (gna1, gn+1a) 6∈ R′n+1 (see Figure 1, where the dashed lines represent the g-maps, and the
partial trace of white points on the right is not mapped to a partial trace on the left, due to
a trace jump).

Rn

Rn+1

Rn+2

R′n

R′n+1

R′n+2

Figure 1: A trace merge results in a trace jump.

Claim 2 By playing according to the strategy χ, player II indeed maintains the conditions
(*), (†) and (‡).

Proof of Claim Let Σ be a partial χ-match satisfying the conditions (*), (†) and (‡), and let
(Rn+1, R

′
n+1) ∈ Gr(Fn+1) be any possible next position. It suffices to show that (Rn+1, R

′
n+1)

also satisfies (*), (†) and (‡).
The conditions (*), (†0), (†1) and (†2) are direct consequences of the definition of Fn+1,

while (†3) is immediate by the fact that

(b, a) ∈ Fn+1Rn+1 ⇐⇒ (b, a) ∈ G((gnb)
+). (15)

for all b, a ∈ A. To prove (15), consider the following chain of equivalences, which hold for all
b, a ∈ A:

(b, a) ∈ Fn+1Rn+1 ⇐⇒ (b, a) ∈ Hn+1(d, d+), some (d, d+) ∈ ResDRn (Def. Fn+1)

⇐⇒ (b, a) ∈ G(d+), some (d, d+) ∈ ResDRn with d = gnb (Def. Hn+1)

⇐⇒ (b, a) ∈ G((gnb)
+). (obvious)

Finally, for condition (‡), let a ∈ RanAR
′
n+1 be arbitrary. If a has an R′n+1-predecessor

in A, then we are in case 2 of the definition of gn+1a, where gn+1a is of the form (gnb)
+ for
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some b with (b, a) ∈ ResAR
′
n+1. But then (b, a) ∈ G((gnb)

+) by (15), so that indeed we find
a ∈ RanG(gn+1a). If, on the other hand, a has no Rn+1-predecessor in A, then we are in case
1 of the definition of gn+1a. In this case, gn+1a is an element of a set, each of whose elements
d satisfies a ∈ RanG(d); so we certainly have a ∈ RanG(gn+1a). J

Claim 3 The moves for player II prescribed by the strategy χ are legitimate.

Proof of Claim Let ΘBD and ΘBA denote the transition maps of the automata B[D/p]
and B[A/p], respectively. Consider a partial match Σ ending with the position (Rn, R

′
n)

and a subsequent move Γ = (Y,R) ∈ K(B ∪D)] by player I such that Γ 1
e ΘBD(e) for all

e ∈ RanRn. We need to show that

(KFn+1)Γ 1
c ΘBA(c) (16)

for an arbitrary element c ∈ RanR′n. Since c ∈ B ∪ A by definition of B[A/p], one of the
following two cases applies.

Case 1 c ∈ A. Then by (‡) we find c ∈ Ran(Gd), where d := gnc belongs to RanDRn. Let
the map succd : R → D be given by succd(Q) := d+

Q — this is well-defined by (Ass4) in
Claim 1. We will apply the second clause of Definition 7.2 with δ = (Ksuccd)Γ.

As an immediate consequence of the assumption that Γ is a legitimate move of player
I and the fact that ΘBD(d) = ΘD(d), we find

Γ 1
d ΘD(d). (17)

From this and the fact that ΘD(d) is a one-step formula in D, it easily follows that

(Ksing)(Ksuccd)Γ 
1
I ΘD(d). (18)

Now we can use the assumption that (D, d) is a disjunctive companion of (A, a), obtain-
ing from clause (DC2) that

(KG)(Ksuccd)Γ 
1
c ΘA(c). (19)

By functoriality of K and the fact that ΘA(c) = ΘBA(c), this is equivalent to

(K(G ◦ succd))Γ 1
c ΘBA(c). (20)

We now claim that

for all Q ∈ R, a ∈ A : (c, a) ∈ (G ◦ succd)(Q) =⇒ (c, a) ∈ Fn+1Q. (21)

For a proof of (21), assume that (c, a) ∈ (G ◦ succd)(Q) = G(d+
Q). Then (c, a) belongs

to Hn+1(d, d+
Q) by definition of Hn+1, and to Fn+1Q by definition of Fn+1.

It easily follows from (21) and the observations that (with Γ = Y,R)) we have K(G ◦
succd)Γ = (Y, {(G ◦ succd)(Q) | Q ∈ R}) and (KFn+1)Γ = (Y, {Fn+1(Q) | Q ∈ R}), that

K(G ◦ succd)Γ→A
c,c (KFn+1)Γ. (22)

But from this Proposition 7.8 yields (16), as required.
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Case 2 c ∈ B. Note that in this case we have ΘBA(c) = ΘB(c)[ΘA(aI)/p] and ΘBD(c) =
ΘB(c)[ΘD(dI)/p]. Thus by assumption, we know that Γ 1

c ΘB(c)[ΘD(dI)/p], while we
need to establish that (KFn+1)Γ 1

c ΘB(c)[ΘA(aI)/p]. To achieve this it clearly suffices
to show that

Γ 1
c α[ΘD(dI)/p] implies (KFn+1)Γ 1

c α[ΘA(aI)/p] (23)

for all α ∈ 1ML(X, B). We will prove (23) by induction on the one-step formula α, taken
as a lattice term over the set {p} ∪ 1ML(X \ {p}, B)). This perspective allows us to
distinguish the following two cases in the induction base.

Base Case a: α = p. Here we find α[ΘD(dI)/p] = ΘD(dI) and α[ΘA(aI)/p] = ΘA(aI).

We first prove that
|Q[c] ∩D| = 1, for all Q ∈ R. (24)

To see this, note that from Γ 1
c ΘD(dI) it follows by the shape of disjunctive

one-step formulas that either Γ 1
c ∇∅ or Γ 1

c ∇E for some non-empty E ⊆ D.
In the first case we find by (6) in Remark 6.10 that R = ∅, which clearly satisfies
(24). In the second case we obtain by (5) in the same Remark that Q[c] ∩D 6= ∅
for some Q ∈ R, so that (24) follows by (Ass4) in Claim 1.

But by (24) we may assume the existence of a map succc : R → D such that
Q[c] = {succc(Q)} for all Q ∈ R. (This covers the case where R = ∅.) It
easily follows from Γ 1

c ΘD(dI) that (Ksing)(Ksuccc)Γ 1
I ΘD(dI). Hence, by

Definition 7.2 and functoriality of K we obtain

K(G ◦ succc)Γ 1
aI

ΘA(aI). (25)

We leave it for the reader to verify that the definition of the maps L and Fn+1

implies
(aI , a) ∈ G(d) & (c, d) ∈ Q =⇒ (c, a) ∈ L(c, d) ⊆ Fn+1(Q),

and hence, similar to the situation in case 1 above, is tailored towards establishing

K(G ◦ succc)Γ→A
aI ,c

(KFn+1)Γ. (26)

But from (25) and (26) it is immediate by Proposition 7.8 that

(KFn+1)Γ 1
c ΘA(aI), (27)

as required.

Base Case b: α ∈ 1ML(X \ {p}, B), that is, α is a p-free one-step formula over B. This
case is in fact easy, first of all because α[ΘD(dI)/p] = α[ΘA(aI)/p] = α. Further-
more, by (†1) Γ and (KFn+1)Γ coincide as one-step models over B. Formally:

Γ 1
c α ⇐⇒ (KResB)Γ 1

c α (Proposition 7.8)

⇐⇒ (K(ResB ◦ Fn+1))Γ 1
c α (†1)

⇐⇒ (KResB)(KFn+1)Γ 1
c α (functoriality of K)

⇐⇒ (KFn+1)Γ 1
c α (Proposition 7.8)
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Here we leave it for the reader to verify that Γ↔B
cc (KResB)Γ and (KResB)(KFn+1)Γ↔B

cc

(KFn+1)Γ, in the two respective steps where we apply Proposition 7.8.

Inductive case The inductive case in the proof of (23) is trivial.

This finishes the proof of Claim 3. J

Claim 4 Suppose Σ is an infinite χ-guided match with basic positions

(R0, R
′
0)(R1, R

′
1)(R2, R

′
2) . . .

such that the stream R′0R
′
1R
′
2 . . . contains a bad trace. Then there is a bad trace on R0R1R2 . . .

as well.

Proof of Claim Fix a χ-guided match Σ = (Ri, R
′
i)i≥0 and a bad trace τ on (R′i)i≥0, as

above. We will show that there is a bad trace on the stream (Ri)i≥0 as well.
There are two possibilities for τ . In case τ stays entirely in B, then by (†1), τ is also a

trace on R0R1R2 . . ., and so we are done. Hence we may focus on the second case, where
from some finite stage onwards, τ stays entirely in A. So suppose τ is an infinite trace of the
form

τ = b0b1 . . . bnan+1an+2an+3 . . . ,

where the bj are all in B, and the ai are all in A. Our key claim is the following:

there exists an index k > n such that gj+1aj+1 = (gjaj)
+ for all j ≥ k. (28)

In order to prove (28), recall that a trace jump occurs at the index j > n if we have gj+1aj+1 6=
(gjaj)

+. We want to show that there can only be finitely many j at which a trace jump occurs.
If no trace jump occurs at j, then we have

tb(gjaj) ≥ tb((gjaj)
+) = tb(gj+1aj+1).

Hence, it suffices to prove that if a trace jump occurs at j then tb(gj+1aj+1) is strictly
smaller than tb(gjaj) in the lexicographic order. It then follows that the stream

tb(gkak), tb(gk+1ak+1), tb(gk+2ak+2), . . .

is a stream of pairs of natural numbers that never increases, and strictly decreases at each j
at which a trace jump occurs. By well-foundedness of the lexicographic order on ω × ω this
can therefore only happen finitely many times, as required.

So we are left with the task of proving that tb is strictly decreasing at each index j for
which a trace jump occurs. To see that this is indeed so, suppose that gj+1aj+1 6= (gjaj)

+.
Recall that we defined gj+1aj+1 to be the oldest element of the set

{(gjc)+ | (c, aj+1) ∈ R′j+1}.

But since (aj , aj+1) ∈ R′j+1, it follows that gj+1aj+1 must be older than (gjaj)
+, with respect

to the age relation induced by the match (R0, R
′
0), . . . , (Rj+1, R

′
j+1), and so tb(gj+1aj+1) must
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be strictly smaller than tb((gjaj)
+) ≤ tb(gjaj), as required. This completes the proof of (28).

Let us finally see how (28) entails Claim 4. Suppose there exists an index k as in (28),
and consider gkak ∈ RanDRk. Pick an arbitrary initial trace b0 . . . bndn+1 . . . dk of R0 . . . Rk
leading up to gkak = dk (as mentioned already after Claim 1, the existence of such a trace
follows from our assumptions on player I’s strategy). Then the stream

b0, . . . , dk−1, gkak, gk+1ak+1, gk+2ak+2, . . .

is a trace of R0R1R2 . . . by the property of the index k described in (28). Furthermore, it
follows that akak+1ak+2 . . . is a trace of the stream

G(gkak), G(gk+1ak+1), G(gk+2ak+2), . . .

To see why, consider the pair (aj , aj+1) where j ≥ k. Then (aj , aj+1) ∈ R′j+1 = Fk(Rj+1), so
there is some (d, d′) ∈ Rj+1 with (aj , aj+1) ∈ Hj+1(d, d′). Hence d = gjaj and (aj , aj+1) ∈
G(d′).

But d′ = d+ by functionality of traces on D (which follows from the third assump-
tion in Claim 1), and so we find d′ = d+ = (gjaj)

+ = gj+1aj+1. From this we get
(aj , aj+1) ∈ G(gj+1aj+1) as required. Note too that akak+1ak+2 . . . has the same tail as
τ , and hence it is a bad trace too. It now follows from the trace reflection clause of Defini-
tion 7.2 that gkak, gk+1ak+1, gk+2ak+2, . . . is itself a bad trace, and so we have found a bad
trace on R0R1R2 . . . as required. J

Finally, the proof of the Proposition is immediate by the last two claims: it follows from
Claim 3 that player II never gets stuck, so that we need not worry about finite matches. But
Claim 4 states that II wins all infinite matches of C(B[D/p],B[A/p]) as well. qed
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8 From automata to formulas

In section 4.3 we defined an inductive translation from formulas to modal automata, based
on operations on automata corresponding to Boolean connectives, modalities and fixpoint
operators. In this section we provide a translation tr in the opposite direction, that is, from
automata to formulas, and we establish some properties of this translation. Our definition
of the translation map is based on a more or less standard [27] induction on the complexity
of the automaton. Of course, the translation will map an automaton A to a semantically
equivalent formula, in the sense that tr(A) is true in precisely those pointed models accepted
by A. The interested reader can verify this using routine arguments, and we will leave out
the proof since the result will actually not play a role in the main completeness proof.

The key property of the translation that we are after is something else, namely the fol-
lowing statement that we already mentioned in the introduction to the paper as one of our
main lemmas:

Theorem 2 For every formula ϕ ∈ µML, we have ϕ ≡K tr(Aϕ).

The proof of this proposition will proceed by induction on the complexity of formulas. As
a central auxiliary result (Proposition 8.15 below) we will show that the translation commutes
with the logical operations on automata and formulas, and with the operation of substitution.

The point is that, allowing us to apply proof-theoretic notions such as derivability or
consistency to automata, it is Theorem 2 that opens the door to proof theory for automata.

Definition 8.1 A modal automaton A will be called consistent if the formula tr(A) is con-
sistent. Given two modal automata A and B, we say that A provably implies B, notation:
A ≤K B, if tr(A) ≤K tr(B), and that A and B are provably equivalent if tr(A) ≡K tr(B).
We will use similar notation and terminology relating formulas and automata, for instance
we will say that ϕ provably implies A and write ϕ ≤K A if ϕ ≤K tr(A), etc. �

In order to provide the translation tr(A) of an automaton A, we first define a map trA
assigning a formula to each state of A. The formula tr(A) is then obtained by applying the
map trA to the initial state of A. Three minor modifications of our earlier definitions will
turn out to be convenient for a smooth inductive proof.

First, it will be convenient to generalize the definition of a modal automaton to the extent
that we allow guarded occurrences of proposition letters in the range of the transition map.

Definition 8.2 A generalized modal automaton is a structure A = (A,Θ,Ω, aI) where A, Ω
and aI are as in the definition of standard modal automata, and the transition map Θ is of
type Θ : A→ 1ML(X, A ∪ X). �

The notion of acceptance for generalized automata is a straightforward generalization of
the one for standard modal automata. For completeness we provide a definition here — one
that stays close to our approach in terms of one-step models is the following.

Definition 8.3 A generalized one-step model is a structure (Y, S,m) such that S is some set,
Y : S ] {?} → PX is a X-marking on the set S ] {?} and m is an A-marking on the set S. The
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one-step satisfaction relation 1 for generalized one-step formulas in 1ML(X, A ∪ X) is defined
in the most obvious way: we treat a generalized one-step model (Y, S,m) as if it were the
standard one-step model (Y(?), S, Y�S ∪m) over (X, X ∪A).

Then given a generalized modal automaton A and Kripke model S = (S,R, V ), the rules
of the acceptance game A(A,S) for A with respect to S can be defined using the following
table:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : R[s]→ PA | (V † �{s}∪R[s] , R[s],m) 1 Θ(a)}
m ∀ {(b, t) | b ∈ m(t)}

The winning conditions and the notion of acceptance are as in the acceptance game for
standard modal automata. �

Remark 8.4 This generalization of modal automata is for technical convenience only. Simi-
lar to the approach taken in Definition 4.19, given a generalized automaton A = (A,Θ,Ω, aI)
we may define the structure As = (As,Θs,Ωs, aI), by putting As := A ∪ {a | a ∈ A},
Θs(a) := Θ(a)[b/b | b ∈ A], Θs(a) := a, Ωs(a) := Ω(a), and Ωs(a) := 0. It is easy to see that
As is always a standard modal automaton, equivalent to A. We do not pursue this approach
here, since it would lead to some technical complications that obscure the important issues.
�

Second, it will make sense to define the mentioned translation map trA for ‘uninitialized’
automata, i.e., structures (A,Θ,Ω) that could be called (generalised) automata if they did
not lack an initial state.

Definition 8.5 An automaton structure is a triple A = (A,Θ,Ω) such that A is a finite,
non-empty set endowed with a transition map Θ : A→ 1ML(X, A ∪ X) and a priority function
Ω : A→ ω.

The underlying automaton structure of a (generalized) modal automaton A = (A,Θ,Ω, aI)
is given as the triple A := (A,Θ,Ω). Conversely, given an automaton structure A = (A,Θ,Ω)
and a state a in A, we let A〈a〉 denote the initialized automaton (A,Θ,Ω, a). �

Many concepts that we defined for automata in fact apply to automaton structures in the
most obvious way, and we will use this observation without further notice.

Finally, the restriction that we announced is that for our definition of the translation map
trA we will first confine our attention to so-called linear automaton structures.

Definition 8.6 An automaton structure A = (A,Θ,Ω) will be called linear if the relation
<A is a strict linear order satisfying (�A \�A) ⊆ <A.

Given two automaton structures A = (A,Θ,Ω) and A′ = (A,Θ,Ω′), we say that A′ is a
refinement of A if

(1) the partial order vA is clusterwise contained in vA′ , i.e., a ./ b and a vA b imply
a vA′ b; and

(2) Ω′(a′) has the same parity as Ω(a), for all a ∈ A.
A linear refinement is called a linearization. �
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In words: linear automata structures have an injective priority map Ω, and satisfy the
condition that if one state a is active in another state b, but not vice versa, then a < b. In
other words, the priority of states goes down if a match of the acceptance game passes from
one cluster to the next. Our focus on linear automaton structures is justified by the following
proposition.

Proposition 8.7 Every automaton structure A has a linearization Al such that, for all a ∈ A
(1) A〈a〉 |=G Al〈a〉 and Al〈a〉 |=G A〈a〉;
(2) each player Π ∈ {∃, ∀} has a winning strategy in S(A〈a〉) (resp. Sthin(A〈a〉)) iff she/he

has a winning strategy in S(Al〈a〉) (resp. Sthin(Al〈a〉)).

Proof. One may easily obtain a linearization Al of A, so it suffices to prove that the statements
in (1) and (2) hold for an arbitrary refinement A′ of A and an arbitrary state a in A. To
prove (1), it is straightforward to verify that the identity map on A] provides a winning
strategy for player I in both C(A〈a〉,A′〈a〉) and C(A′〈a〉,A〈a〉). And to prove (2), it is equally
straightforward to verify that a winning strategy for ∃ in the (thin) satisfiability game for
A〈a〉 is also a winning strategy for her in the (thin) satisfiability game for A′〈a〉, and vice
versa. Part (2) then easily follows by the determinacy of the (thin) satisfiability game. qed

The advantage of working with linear automaton structures is that we may define the
translation map by a simple induction on the size of the structure.

Definition 8.8 By induction on the size of a linear modal X-automaton structure A we define
a map trA : A → µML(X). Recall that our notation for formula substitution has been given
in Definition 3.3.

In the base case of the induction we are dealing with an automaton structrue A based on
a single state a. Then we define

trA(a) := ηaa.Θ(a),

where ηa ∈ {µ, ν} denotes the type of a.
In the inductive case, where |A| > 1, by injectivity of Ω there is a unique state m ∈ A that

reaches the maximal priority, that is, with Ω(m) = max Ω[A]. Let η = ηm be the fixpoint
type of m. Define A− to be the X ∪ {m}-automaton structure (A−,Θ−,Ω−) with

A− := A \ {m}
Θ− := Θ�A−

Ω− := Ω�A− .

Clearly we have |A−| < |A|, so that inductively we may assume a map trA− : A− →
µML(X ∪ {m}). (Our motivation for introducing generalized modal automata stems from
the observation that Θ−(a) generally will have guarded occurrences of m, which in A− is no
longer a state of the automaton but a proposition letter.)

The map trA is now defined in two steps. First we define trA(m) as follows:

trA(m) := ηm.Θ(m)[trA−(a)/a | a ∈ A−].
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Second, by putting
trA(a) := trA−(a)[trA(m)/m]

we define trA(a) for each a 6= m. �

Remark 8.9 An alternative approach would be to define the translation by induction on the
index of an automaton, i.e., the size of the range of the priority map. In this approach, one
would not have a unique maximal state, but a set of maximal states {m1, ...,mn}, and the
automaton structure A− would remove all the maximal states. We would then get a set of
“equations” mi := Θ(mi)[trA−(b) | b <A mi], which is solved by a formula of the vectorial
µ-calculus [1], and this formula can then be translated into the one-dimensional µ-calculus
using the Bekič principle for simultaneous fixpoints. �

We now turn to the translation map for arbitrary automaton structures. By standard
order theory every automaton structure has at least one linearization. Furthermore, by the
following result the translation maps of different linearizations of the same structure are
provably equivalent.

Proposition 8.10 Let A′ = (A,Θ,Ω′) and A′′ = (A,Θ,Ω′′) be two linearizations of the
automaton structure A = (A,Θ,Ω). Then

trA′(a) ≡K trA′′(a)

for all a ∈ A.

Proof. The proof of this proposition is conceptually straightforward, boiling down to the
observation in Fact 3.15 that µxµy.ϕ(x, y) ≡K µyµx.ϕ(x, y), for any formula ϕ(x, y). We
leave the technical details to the reader. qed

Proposition 8.10 ensures that modulo provable equivalence the following definition of
tr(A) for an arbitrary automaton A does not depend on the particular choice of a linearization
for the underlying automaton structure of A.

Definition 8.11 With each automaton structure A = (A,Θ,Ω) we associate an arbitrary
but fixed linearization Al of A (with the understanding that Al = A in case A itself is linear).
We then define trA := trAl .

Finally, given an arbitrary modal automaton A = (A,Θ,Ω, aI), we let

tr(A) := trA(aI)

define the translation of the automaton A itself. �

The following lemma gives two useful representations of the translation map trA associ-
ated with an automaton structure A. The point of the second result is that it displays each
formula trA(a) as a fixpoint formula; this characterization will be of crucial importance in
the next section. For its formulation we need to consider restrictions of linear automaton
structures, and it is for this definition that we needed to introduce the notion of an automa-
ton structure: initialized automata will not necessarily be closed under this operation, but
automata structures are.
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Definition 8.12 Let A = (A,Θ,Ω) be a linear automaton structure, and let a ∈ A. The
a-restriction of A is the automaton structure A↓a := (B,Θ �B ,Ω �B ) of which the carrier is
given as B := {b ∈ A | b v a}. �

Proposition 8.13 Let A be any automaton structure and let a ∈ A. Then:

trA(a) ≡K Θ(a)[trA(b)/b | b ∈ A]. (29)

If A is linear, we have in addition

trA(a) ≡K ηaa.Θ(a)[tr(A↓a)−(b)/b | b < a][trA(b)/b | a < b] (30)

Before moving on to prove this proposition, we quickly note that for a linear automaton
structure A, a is the maximal priority state of A ↓ a, so that we find

trA↓a(a) = ηaa.Θ(a)[tr(A↓a)−(b)/b | b < a]

by definition of tr(A↓a)− . Hence, we may read (30) as stating that

trA(a) ≡K trA↓a(a)[trA(b)/b | a < b],

which may be of help to understand this characterization.

Proof. For the first part of the proposition, we reason by induction on the size of A. By
Proposition 8.10 we may without loss of generality assume that A is linear. The case for
automaton structures of size 1 is simple, so we focus on the case of a structure A with
|A| > 1. Let m be the (by linearity unique) state that reaches the maximal priority of A, that
is, Ω(m) = max Ω[A]. For this state m we obtain:

trA(m) = ηmm.Θ(m)[trA−(b)/b | b < m] (Definition trA)

≡K Θ(m)[trA−(b)/b | b < m][trA(m)/m] (fixpoint unfolding)

= Θ(m)[trA−(b)[trA(m)/m]/b | b < m, trA(m)/m] (Fact 3.4)

= Θ(m)[trA(b)/b | b < m, trA(m)/m] (Definition trA)

= Θ(m)[trA(a)/a | a ∈ A] (obvious)

For a 6= m, we have:

trA(a) = trA−(a)[trA(m)/m] (Definition trA)

≡K Θ(a)[trA−(b)/b | b < m][trA(m)/m] (inductive hypothesis)

= Θ(a)[trA−(b)[trA(m)/m]/b | b < m, trA(m)/m] (Fact 3.4)

= Θ(a)[trA(b)/b | b < m, trA(m)/m] (Definition trA)

= Θ(a)[trA(b)/b | b ∈ A] (obvious)

The second part of the proposition is also proved by induction on the size of the automaton
structure, and again we only consider the inductive case of the argument. Supposing that the
result holds for automaton structures smaller than A, we prove the result for A.
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For the unique state m of maximal priority, the result is immediate from the definition
since in this case A↓m = A.

For a non-maximal state a, assuming that the induction hypothesis holds for states b with
b < a, we get:

trA(a)

≡K trA−(a)[trA(m)/m] (Definition trA)

= ηaa.Θ
−(a)[tr(A−↓a(b)/b | b < a][trA−(b)/b | a < b < m][trA(m)/m] (inductive hyp.)

= ηaa.Θ
−(a)[tr(A↓a)−(b)/b | b < a][trA−(b)/b | a < b < m][trA(m)/m] ((A↓a)− = A−↓a)

= ηaa.Θ(a)[tr(A↓a)−(b)/b | b < a][trA−(b)/b | a < b < m][trA(m)/m] (Θ(a) = Θ−(a))

= ηaa.Θ(a)[tr(A↓a)−(b)/b | b < a][trA(b)/b | a < b] (Fact 3.4, Def. trA)

as required. qed

The translation map interacts well with the operation on automata that we defined in
section 4.3. As an auxiliary result we need the following observation, the proof of which we
defer to the appendix.

Proposition 8.14 Let A be a modal automaton with x free and positive. Then we have:

tr(A) ≡K (x ∧ trAx((aI)0) ∨ trAx((aI)1) (31)

tr(µx.A) ≡K µx.trAx((aI)1) (32)

tr(νx.A) ≡K νx.(trAx((aI)0) ∨ trAx((aI)1)). (33)

Note that we can alternatively write Proposition 8.14((32)) as:

tr(µx.A) ≡K µx.tr(Ax)

since we chose (aI)1 as the start state of Ax. As mentioned, the central result of this section
is the following.

Proposition 8.15 The following claims hold, for all modal automata A,B:
(1) tr(A ∧ B) ≡K tr(A) ∧ tr(B) and tr(A ∨ B) ≡K tr(A) ∨ tr(B);
(2) tr(¬A) ≡K ¬tr(A);
(3) tr(3A) ≡K 3tr(A) and tr(2A) ≡K 2tr(A);
(4) if A is positive in p then tr(ηp.A) ≡K ηp.tr(A) for η ∈ {µ, ν};
(5) if A is positive in p then tr(A[B/p]) ≡K tr(A)[tr(B)/p].

Proof. A full proof can be found in the appendix. We include only the proof for Clause (4)
here, for which we will use Proposition 8.14. We first consider the case where η = µ. We
have:

tr(µx.A) ≡K µx.trAx((aI)1) (Proposition 8.14(32))

= µx.(x ∧ trAx((aI)0)) ∨ trAx((aI)1) (Proposition 4.21)

≡K µx.tr(A) (Proposition 8.14(31))
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Next, for the case of η = ν, we have:

tr(νx.A) ≡K νx.(trAx((aI)0) ∨ trAx((aI)1) (Proposition 8.14(33))

= νx.((x ∧ trAx((aI)0)) ∨ trAx((aI)1) (Proposition 4.21)

≡K νx.tr(A) (Proposition 8.14(31))

and the proof is done. qed

From this result, Theorem 2 follows easily.

Proof of Theorem 2. By induction on the complexity of a formula. For atomic formulas
the result is easily checked, and for the inductive clauses we use the properties established in
Proposition 8.15. For example, for a fixpoint formula µx.ϕ(x), we have Aµx.ϕ(x) = µx.Aϕ(x)

by definition, and we get

tr(Aµx.ϕ(x)) = tr(µx.Aϕ(x)) ≡K µx.tr(Aϕ(x)) ≡K µx.ϕ(x).

The other cases are similar. qed

We finish this section with a proposition, stating that one-step equivalent automata are
in fact provably equivalent. The proof of this result, which we leave as an exercise to the
reader, is conceptually simple, based on the facts that Kozen’s axiomatization of the modal
µ-calculus is an extension of the basic modal logic K, from which it follows that equivalent
one-step formulas, seen as formulas of basic modal logic, are in fact provably equivalent.

Proposition 8.16 Let A and B be two modal automata. If A ≡1 B then A ≡K B.

This proposition will be used in the completeness proof, when we need to show that the
closure properties mentioned in Proposition 6.16 in fact hold modulo provable equivalence.
For instance, it follows from clause (4) of the mentioned proposition that the conjunction of
two semi-disjunctive automata is provably equivalent to a semi-disjunctive automaton.
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9 Kozen’s Lemma

The aim of this section is to show that if the formula associated with a modal automaton is
consistent, then ∃ has a winning strategy in the thin satisfiability game associated with the
automaton. This result was formulated in the introduction of this paper as one of the main
lemmas underlying our completeness proof.

Theorem 5 ∃ has a winning strategy in the thin satisfiability game for any consistent modal
automaton A.

We will informally refer to this observation as “Kozen’s Lemma”, since it is an automata-
theoretic version of Kozen’s partial completeness result for the aconjunctive fragment of the
modal µ-calculus [36]. An analogous lemma also features prominently in Walukiewcz’ com-
pleteness proof [73, Theorem 31]. Observe that, in line with Kozen’s approach, as an immedi-
ate consequence of our Proposition and Corollary 6.15, we also obtain a partial completeness
result, stating that every consistent semi-disjunctive automaton is satisfiable.

For the proof of Theorem 5, throughout this section we fix a modal automaton A =
(A,Θ,Ω, aI).

9.1 Intuitions

Before we turn to the technical details, we first provide some intuitions underlying our proof
of Theorem 5. Assume that our automaton A is consistent. Our goal will be to define a
winning strategy for ∃ in the thin satisfiability game for A. We may and will assume that ∃
ensures that at every position R ∈ A], every next position Q ∈ A] satisfies DomQ ⊆ RanR.

First of all, it is immediate by the definitions (Definition 8.1 and 8.11) and the Proposi-
tions 8.7 and 8.10 that without loss of generality we may assume A to be linear. That means
that the relation < = <A linearly orders the states of A, and in addition satisfies that a < b
if a�A b but not b�A a (that is, if a is active in b but not vice versa).

∃’s winning strategy will be based on ensuring that a certain formula remains consistent
throughout the match of the thin satisfiability game. This formula, which she will dynamically
associate with the position under scrutiny, will encode certain information on the history of
the match played so far. More in detail, given a partial match Σ, with current position
R = last(Σ) ∈ A], ∃ associates with every state a ∈ RanR a ‘private’ formula trΣ(a) that
tightens the ‘public’ formula trA(a) in the sense that trΣ(a) ≤K trA(a). ∃’s strategy will
then be geared towards keeping the formula

ψΣ :=
∧
{trΣ(a) | a ∈ Ran(lastΣ)}

consistent throughout the match. As in Kozen’s approach, the key tool guaranteeing this
strategy to be winning, is the context rule that we formulate as the following proposition.
The proof of the proposition, which appears as Proposition 5.7(vi) in [36], will be given in
the Appendix.

Proposition 9.1 Suppose that γ ∧ µx.ϕ is consistent. Then so is γ ∧ ϕ[µx.¬γ ∧ ϕ/x].
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To see how this context rule can be used in ∃’s strategy in Sthin(A), consider a partial match
Σ with R = last(Σ) and inductively assume that the mentioned formula ψΣ is consistent.
Suppose that τ is some trace on Σ, leading up to some µ-state a ∈ RanR, so that it is one of
∃’s tasks to avoid a being unfolded infinitely often on any continuation of τ . The idea is now
to think of the states in RanR \ {a} as providing the current context of a, and to ensure that
there is no trace continuation from a leading to a future occurrence of a in the same context.
If we can subsequently do this for all possible contexts of a (of which there are only finitely
many because A itself is finite), it follows that on any trace continuation from a, the state a
will appear only finitely often.

To implement this idea, we encode the context of a as the formula

γ = γΣ :=
∧
{trΣ(b) | b ∈ Ran(lastΣ), b 6= a},

and at the same time ensure that the formula trΣ(a) is a least fixpoint formula, that is, of the
form µa.ϕ (cf. (30) in Proposition 8.13). It then follows by the context rule of Proposition 9.1
that not only the formula γ ∧ µa.ϕ is consistent, but also its tightening, γ ∧ ϕ[µa.¬γ ∧ ϕ/a].
Suppose now that ∃ tags the pair (τ, a) with the formula ¬γ, in such a way that, should a be
visited again, in a partial match Σ′ extending Σ with last(Σ′) = last(Σ) = R, by a Σ′-trace
τ ′ that is a continuation of τ , then ∃ can guarantee that trΣ′(a) ≤K ¬γ. Hence, if in such a
situation we would have that trΣ′(b) = trΣ(b) for all b ∈ RanR \ {a}, we would find that

ψΣ′ =
∧
{trΣ′(a) | a ∈ Ran(lastΣ′)}

= trΣ′(a) ∧
∧
{trΣ(b) | b ∈ Ran(lastΣ), b 6= a}

≤K ¬γ ∧ γ
≤K ⊥.

In this way ∃ can guarantee that, provided she maintains the consistency of the formula ψΣ,
in fact such a situation cannot occur; in other words, if on any trace from a in the current
position she would encounter the state a again, it will be in a different context indeed.

In our automata-theoretic approach, the idea of tightening a formula can be realized neatly
and simply by decorating the automaton A.

Definition 9.2 A decoration of a linear modal X-automaton A = (A,Θ,Ω, aI) is a map
δ : A→ µML(X). Given such a decoration, by putting

trδA(a) := ηaa.δ(a) ∧Θ(a)[tr(A↓a)−(b)/b | b < a][trδA(b)/b | a < b] (34)

we define the tightening map trδA : A→ µML(X) associated with δ. �

To obtain an understanding of this definition, it makes sense to compare it to the charac-
terization of the translation map trA in (30):

trA(a) ≡K ηaa.Θ(a)[tr(A↓a)−(b)/b | b < a][trA(b)/b | a < b],

and to note that the map trδA is defined by a downward induction on the priority of states
in A. The definition of trδA and its comparison with (30) also reveal that in case δ(a) = >
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we are dealing with a vacuous tightening. As we will see, ν-states will always be vacuously
tightened, in the sense that we have δ(a) = > whenever a ∈ Aν .

For future reference we gather some simple facts on decorations in the following Propo-
sition; the routine proofs are omitted. Here we extend the order ≤K on µML to µML-valued
maps (such as decorations), in the obvious, pointwise, manner.

Proposition 9.3 Let δ, δ′ be decorations of the linear modal automaton A. Then we have

(1) trδA ≤K trA;

(2) trδA ≤K δ;

(3) if δ ≤K δ′ then trδA ≤K trδ
′

A .

A key feature of our approach is that in a partial match Σ of the thin satisfiability game,
we associate a decoration δρ with each trace ρ on Σ. Since traces encode part of the history
of the match Σ, this enables us to dynamically update the decoration by tightening it with
relevant information about contexts. The ‘private’ formula trΣ(a) that, as mentioned earlier
on, we want to associate with a state a in the range of the relation last(Σ), can now be defined
by means of the decoration that we associate with a selected trace on Σ, the so-called most
significant trace for a, notation: mstΣ(a). The map mstΣ, associating a trace on Σ with each
state in Ran(last(Σ)), is another dynamically defined entity maintained by ∃.

What complicates the proof is that ∃ has to make sure that all traces associated with
an infinite match are good (in the sense that the highest parity occurring infinitely often
is even); thus, she needs to maintain a (separate) decoration for each trace. But since the
context of one state a is encoded by the formulas associated with other states, it is nontrivial
to guarantee that the formula

∧
{trΣ(b) | b ∈ Ran(lastΣ), b 6= a}, representing the context of a

state a ∈ Ran(lastΣ) in one partial match Σ, still represents the same context in an extension
Σ′ of Σ with Ran(lastΣ′) = Ran(last(Σ)). In order to let the number of context formulas not
grow too large, we will not only update decorations by tightening them with negated context
formulas, another operation that we will perform on decorations is a (partial) reset, i.e., we
may set some of the values of the updated decoration to >.

The exact definitions of the decoration associated with a trace on a partial match Σ will
depend on a dynamically maintained linear order <Σ of all pairs consisting of a Σ-trace ρ
and a state a of A, the so-called priority list. (In fact the only traces that are relevant to
us are the selected ones of the form mstΣ(a) for some state a belonging to the range of the
last relational position of Σ, but our definitions are somewhat simpler if we take all traces
into account.) Basically then, the updating of decorations proceeds as follows. Given an
continuation Σ · Q of a partial match Σ of Sthin(A) of length k, and a trace ρ · a on Σ · Q
continuing the Σ-trace ρ, inductively we assume that the decoration δρ has been given; the
decoration δρ·a(b) is defined as an update of δρ. The value δρ·a(b) of a state b of the automaton
under the updated decoration is determined by the value of δρ(b), but also by the priority of
the pair (ρ · a, b) relative to the ordering <Σ·Q. In particular, δρ·a(b) could be the tightening
of δρ with the negation of the current context formula, in case (ρ, b) was the most significant
item of the priority list <Σ. We also make the following adjustment: the decoration δρ·a(b)
is reset to > if the pair (ρ · a, b) has a low priority, while δρ·a(b) will keep the value of δρ(b)
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if (ρ, b) has a high priority. As a rule of thumb, it is the most significant item that separates
the items of high and low priority, respectively.

Before we turn to the technical details of the data structure that ∃ will maintain through-
out the play of any match of the thin satisfiability game, let us briefly comment on the role of
thinness in the definition of ∃’s strategy. Similar to the proof of Proposition 6.6, the relative
simplicity of the trace graph of any infinite Sthin(A)-match enables ∃ to exercise a fairly tight
control over the family of priority lists that we may associate with the initial, finite parts of
Σ. Furthermore, we will also keep track of a most significant trace associated with each state
in the range of the last relation of a partial match, and the thinness constraint will allow us
to focus on a small number of infinite traces on any infinite match, with the property that
each initial segment of each trace in this small collection is the most significant trace of its
last element. The thinness constraint will be crucial here, since it guarantees that we can
always find a bad trace in this small set of “continuous” traces, given that we can find a bad
trace at all. In other words, we can safely focus on continuous traces without running the
risk of not detecting the existence of a bad trace even if there is one.

Convention 9.4 Throughout this section we will restrict our attention to matches of the
thin satisfiability game of the form Σ = (Ri)i<κ where DomRi+1 ⊆ RanRi for all i. Recall
that by Remark 5.13 ∃ always has a strategy that guarantees this.

9.2 Trace combinatorics

9.2.1 Finite traces

In order to assign the right decoration to each relevant trace on a partial match of Sthin(A),
player ∃ dynamically maintains an intricate data structure, associating with each partial
match Σ the following entities:

- a set VΣ ⊆ TrΣ of selected traces on Σ;

- a most significant trace map mstΣ : Ran(lastΣ)→ VΣ;

- a total relevance order ≺Σ on the set TrΣ;

- a total priority order <Σ on the set TrΣ ×A.

Doing so, we will ensure that the following conditions are met throughout:

(Shuffle-merge Condition:) for every pair of states a, b ∈ A and any trace τ on Σ, we have

(τ, a) <Σ (τ, b) iff a < b.

(Compatibility Condition:) mstΣ : Ran(lastΣ)→ VΣ is a bijection, with mst−1 = last and, for
all τ ∈ TrΣ:

τ �Σ mstΣ(last(τ)).

Here are some first intuitions concerning this structure. To start with, the set VΣ is a
collection of selected Σ-traces. This set is in 1-1 correspondence with the collections of states
in the range of the relation last(Σ), with the map mstΣ : Ran(lastΣ) → VΣ selecting a most
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significant trace mstΣ(a) ∈ TrΣ for each state a. The compatibility condition on the map mstΣ
ensures that for each a ∈ Ran(lastΣ) there is a unique trace τ ∈ VΣ such that a = last(τ),
viz., the trace τ = mstΣ(a).

The family of relevance relations ≺Σ is used to guide the definition of the map mst: in
cases where there are several candidates to pick the most significant trace associated with
some state a, we may always choose the most relevant one, that is, the highest one according
to the relevance order ≺Σ. This explains the second part of the compatibility condition,
stating that among all traces ending in some state a, the most significant trace of a is indeed
the most relevant.

Finally, the main tool in the dynamic assignment of decorations to traces is the order <Σ

on trace-state pairs, which can be thought of as arranging these pairs in a priority list for
each partial match Σ. We make sure that this ranking is compatible with the priority <A
induced by Ω, as expressed by the shuffle merge condition. We think of this list as a vertical
ordering, with higher ranking items in the top and lower ranking items in the bottom.

Remark 9.5 Before moving on we note that we could have restricted the definition of ≺Σ

to the set VΣ of selected Σ-traces, and the definition of <Σ to the set VΣ × A of so-called
Σ-items, respectively, since these are the only objects that we are interested in. We chose to
consider the full set of traces instead because this makes the definitions somewhat simpler. �

Before we can give the definitions of the actual structures (VΣ,mstΣ,≺Σ, <Σ), we need a
few auxiliary notions.

Definition 9.6 Given a trace τ on a partial Sthin(A)-match Σ, let Cτ := Clast(τ) denote the
(final) cluster of τ .

Now let Σ · Q be a continuation of Σ with the thin relation Q, and suppose that Σ is of
length k. Recall that if ρ is a trace on Σ ·Q then ρ|k denotes the initial Σ-part of ρ, so that
ρ = ρ|k · last(ρ) = ρ|k · ρ(k + 1). We say that a trace ρ on Σ ·Q stays in the same cluster if
Cρ = Cρ|k , that ρ enters a new cluster if, on the contrary, its last state ρ(k + 1) belongs to
a different cluster than the last state ρ(k) of ρ|k, and that ρ is refreshed if it either enters a
new cluster or last(ρ) is a safe state in its cluster.

Given a trace ρ, we define the last refreshment date of ρ, denoted lrd(ρ), to be the smallest
natural number k such that either k = 0, or else k > 0 and ρ|k is refreshed while ρ|j is refreshed
for no later j > k. �

Note that if lrd(ρ) > 0 then the trace ρ|lrd(ρ) is indeed refreshed. On the other hand, if
lrd(ρ) = 0 then ρ is the unique trace that has never been refreshed, that is, ρ|k is not refreshed
for any k. From this it is easily seen that if lrd(σ) = lrd(σ′) for distinct traces σ, σ′, then this
common last refreshment date must be bigger than 0.

We can now define the data structure associated with a partial match Σ, starting with
the relevance order ≺Σ.
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Definition 9.7 Let Σ be a partial match of the thin satisfiability game for A. We define the
relation ≺Σ ⊆ TrΣ × TrΣ by the following case distinction.

σ ≺Σ σ′ iff


either lrd(σ) > lrd(σ′)
or lrd(σ) = lrd(σ′) and σ|k ≺Σ|k σ

′|k
or lrd(σ) = lrd(σ′) and σ|k = σ′|k and σ(k + 1) < σ′(k + 1),

where in the last two cases we let k be such that k + 1 = lrd(σ) = lrd(σ′). �

The choice to rely on the priority order < to arbitrate between σ and σ′ in the last case
in this definition is not essential, any linear ordering of the states in A would have done just
as well. But since we have assumed that A is linear, it seems natural to use the one linear
order of A that we already have in place.

We are now ready to define, for each partial match Σ, the collection VΣ of selected traces
and the map mst associated with Σ. In the latter definition we use the fact that the relation
≺Σ is a strict total order, see Proposition 9.10(1).

Definition 9.8 For any given partial match Σ and a ∈ Ran(lastΣ), set mstΣ(a) to be the
greatest trace σ with last(σ) = a according to the relevance order ≺Σ, which clearly exists
since the collection TrΣ is always finite and ≺Σ is a strict total order. With this definition in
place, we simply set

VΣ := {mstΣ(b) | b ∈ Ran(lastΣ)}

to be the range of the map mstΣ. �

Finishing the definition of the data structure associated with a partial match Σ, we have
now arrived at the most fundamental relation, viz., the priority order <Σ; its definition is
given by induction on the length of the partial match Σ.

Definition 9.9 For Σ being the unique initial match consisting of the single position R =
{(aI , aI)}, there is only a single trace τ to consider, so the order <Σ is simply set to agree
with the order < over A. In other words, set (τ, a) <Σ (τ, b) iff a < b.

Now suppose that <Σ has been defined for some match Σ of length k, and let Q ⊆ A×A
be a thin relation. We define <Σ·Q in a series of two steps.

(Step 1) First we define a new order <0
Σ on the set TrΣ·Q × A. Basically, <0

Σ·Q is a natural
“continuation” of the order <Σ, with the proviso that refreshed traces will be moved to
the bottom of the list. Formally, we put:

(a) (σ, b) <0
Σ·Q (σ′, b′),

in case σ is refreshed and σ′ is not;

(b) (σ, b) <0
Σ·Q (σ′, b′) iff either (σ|k, b) <Σ (σ′|k, b′) or σ|k = σ′|k and last(σ) < last(σ′),

in case σ 6= σ′ and σ and σ′ are either both refreshed or both not refreshed.

(c) (σ, b) <0
Σ·Q (σ, b′) iff b < b′.
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(Step 2) Second, we move all erasable (σ, b) ∈ TrΣ·Q × A to the bottom of the list, where a
pair (σ, b) is erasable if either b < last(σ), or b = last(σ) ∈ Aν . More precisely, we define
the order <Σ·Q by setting:

(a) (σ, b) <Σ·Q (σ′, b′),
in case (σ, b) is erasable and (σ′, b′) is not;

(b) (σ, b) <Σ·Q (σ′, b′) iff (σ, b) <0
Σ·Q (σ′, b′),

in case (σ, b) and (σ′, b′) are either both erasable or both not erasable.

�

It is not very hard to verify that with these conditions, for each partial match Σ, the data
structure (VΣ,mstΣ,≺Σ, <Σ) is well defined and satisfies the required conditions.

Proposition 9.10 The following hold for any partial match Σ = (Ri)i≤k of Sthin(A):

(1) the relation ≺Σ is a strict total order on TrΣ;

(2) the map mstΣ is a bijection from RanRk to VΣ satisfying the compatibility condition;

(3) the relation <Σ is a strict total order on TrΣ×A satisfying the shuffle merge condition.

Proof. For part (1), the only non-trivial clause to prove is totality, and for this one proceeds
by induction on the length of the match Σ. The case for the unique match consisting of the
relation {(aI , aI)} is trivial, so we focus on the induction step: let Σ be a match of a given
length for which the induction hypothesis holds for all shorter matches, and let σ, τ be traces
on Σ. Suppose that we have neither σ ≺Σ τ nor τ ≺Σ σ. If lrd(σ) = lrd(τ) = 0 then we must
have τ = σ, and the only other possibility is that lrd(σ) = lrd(τ) = k + 1 for some k ∈ ω.
So we must have neither τ |k ≺Σ|k σ|k nor σ|k ≺Σ|k τ |k. By the induction hypothesis we have
τ |k = σ|k, and we now see that we can have neither σ(k+1) < τ(k+1) nor τ(k+1) < σ(k+1).
By linearity of A we get σ(k + 1) = τ(k + 1), and since neither τ |j nor σ|j are refreshed for
any j > k + 1 it now follows by thinness of all relations in Σ that σ = τ .

For part (2), the compatibility condition holds since by definition the most significant
trace of last(τ) is maximal among the traces ending with last(τ), hence τ �Σ mstΣ(last(τ)).
Also note that the map mstΣ is surjective by definition of VΣ, and injective for the trivial
reason that two distinct states cannot both be the last element of the same trace.

Finally, part (3) can be proved by a straightforward induction on the length of Σ. qed

Next we establish some basic properties of the relevance order and most significant trace.

Proposition 9.11 Let Σ be any partial match of the thin satisfiability game, Q any thin
relation and σ, τ any two traces on Σ with the same last element a. If σ ≺Σ τ and b is any
state with (a, b) ∈ Q, then σ · b ≺Σ·Q τ · b.

Proof. Since the last two elements ab of the traces σ · b and τ · b are the same, these traces
are either both refreshed or both not refreshed. In the former case, the last refreshment date
of both σ · b and τ · b is k + 1, where k is the length of the match Σ. Furthermore, we have
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(σ · b)|k = σ and (τ · b)|k = τ , so since σ ≺Σ τ we get σ · b ≺Σ·Q τ · b from the definition of the
relevance order.

In the latter case, we distinguish cases:

(Case 1:) lrd(τ) < lrd(σ). Then since the traces σ · b and τ · b are both not refreshed we
have lrd(τ · b) = lrd(τ) < lrd(σ) = lrd(σ · b), and thus we get σ · b ≺Σ·Q τ · b as required.

(Case 2:) lrd(τ) = lrd(σ) = k+ 1 for some k ∈ ω, and either σ|k ≺Σ|k τ |k or σ|k = τ |k and
σ(k + 1) < τ(k + 1). (We cannot have lrd(τ) = lrd(σ) = 0 since it would follow that τ = σ.)
In both these cases it follows that σ · b ≺Σ·Q τ · b, since lrd(τ · b) = lrd(τ) = lrd(σ) = lrd(σ · b),
τ · b|k = τ |k and σ · b|k = σ|k, τ · b(k+1) = τ(k+1) and σ · b(k+1) = σ(k+1). This concludes
the proof. qed

The following almost immediate consequence of the previous proposition expresses a down-
ward coherence property of selected traces and the map mst.

Proposition 9.12 Let Σ be any partial match of the thin satisfiability game. Then for any
selected trace τ ∈ VΣ and any k smaller than the length of Σ, the trace τ |k is a selected trace
of Σ|k, and in particular, it holds that mst(last(τ |k)) = τ |k.

Proof. Suppose for a contradiction that there is some trace σ on Σ|k with last(σ) = last(τ |k)
and τ |k ≺Σ|k σ. It follows from Proposition 9.11 that τ |k · τ(k + 1) ≺Σ|k+1

σ · τ(k + 1), and
since these traces also have the same last elements we can repeat the same argument for these
two traces to find that τ |k · τ(k + 1) · τ(k + 2) ≺Σ|k+2

σ · τ(k + 1) · τ(k + 2)... Continuing in
this way we find that τ ≺Σ σ · ρ, where ρ is the segment of τ starting with τ(k+ 1). But this
contradicts our assumption that τ is the most significant trace of its last element, so we are
done. qed

The corresponding upward coherence condition does not hold: due to the occurrence of
trace merging it is not always the case that σ ·a ∈ VΣ·Q whenever σ ∈ VΣ and (last(σ), a) ∈ Q.
In case we have σ · a 6= mstΣ·Q(a) (and thus σ · a 6∈ VΣ·Q), we say that a trace jump occurs.

9.2.2 Infinite traces

The data structure (VΣ,mstΣ,≺Σ, <Σ) and the procedure for updating it provides a combi-
natorial device that allows us to exercise some control over the collection of bad traces on
an infinite match in the thin satisfiability game. To see how this works, we turn to infinite
matches, but first we adopt a notational convention.

Convention 9.13 Let Σ be a (full or partial) match of the thin satisfiability game for A.
When no confusion is likely to arise, we will frequently use simplified notation, writing Vk
rather than VΣ|k , mstk rather than mstΣ|k , etc.

Definition 9.14 Let Σ be an infinite match of Sthin(A). We let VΣ denote the set of contin-
uous traces on Σ, that is, infinite traces τ such that τ |k ∈ Vk for all k ∈ ω. �
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Continuous traces have various nice properties; in particular, any continuous τ satisfies
τ |k = mstk(τ(k)) and thus τ |k · τ(k + 1) = mstk+1(τ |k+1), for all k ∈ ω. That is, continuous
traces have no trace jumps — the property explaining the name. What make the continuous
traces also nice to work with is the fact that there are only finitely many of them.

Proposition 9.15 For any infinite match Σ of the thin satisfiability game for A the set VΣ

of continuous traces over Σ satisfies |VΣ| ≤ |A|.

Proof. Suppose for contradiction that the set VΣ would contain n+1 distinct traces σ0, . . . σn,
where n := |A| is the number of states of A. Let k ∈ ω be such that all σi|k for 0 ≤ i ≤ n are
distinct.

Observe that the set {last(σi|k) | 0 ≤ i ≤ n} is a subset of Ran(lastΣ|k) ⊆ A, and so there
must be indices i 6= j such that last(σi|k) = last(σj |k). But then it follows by the compatibility
condition that σi|k = mstk(last(σi|k)) = mstk(last(σj |k)) = σj |k, which provides the desired
contradiction. qed

For the above-mentioned reasons it will be convenient for us to restrict attention to contin-
uous traces as much as possible, and here the following observation (Proposition 9.17), stating
that every (infinite) bad trace is eventually equal to a continuous trace, will be immensely
useful. The key property of bad traces that allow us to prove this is the following.

Proposition 9.16 Let Σ be an infinite match of the thin satisfiability game and let τ be a
bad trace on Σ. Then there are at most finitely many k ∈ ω such that τ |k is refreshed.

Proof. There are two ways that a trace may be refreshed: by entering into a new cluster,
or by visiting a safe state of some cluster. The first of these cases can generally only occur
finitely many times on any infinite trace, and on a bad trace it is clear that the second case
can also only occur finitely many times. qed

Recall that two A-streams σ and τ are eventually equal, notation: σ =∞ τ , if there is a
k ∈ ω such that σ(j) = τ(j) for all j ≥ k. In particular, if two traces are eventually equal,
then they will be either both good or both bad. The next proposition ensures that if an
infinite Sthin(A)-match carries a bad trace, then it also carries a bad trace that is in addition
continuous.

Proposition 9.17 Let Σ be an infinite match of the thin satisfiability game for A. Then for
every bad trace τ ∈ TrΣ there is a continuous trace τ̂ that is eventually equal to τ and, hence,
bad as well.

Proof. Fix a bad trace τ . Say that k + 1 ∈ ω is a discontinuous point of τ if the stages
k, k + 1 constitute a trace jump with respect to the most significant traces associated with
the corresponding entries of τ , that is, if mst(τ(k)) · τ(k + 1) 6= mst(τ(k + 1)).

It suffices to prove that the bad trace τ has only finitely many discontinuous points.

Claim 1 If τ has only finitely many discontinuous points, then there is a continuous trace
τ̂ =∞ τ .
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Proof of Claim Let k ∈ ω be such that no j ≥ k is a discontinuous point of τ , let σ be the
part of τ following τ(k), and let ρ = mstk(τ(k)). Then

τ̂ := ρ · σ

is a continuous trace that is eventually equal to τ . Since it is obvious that τ̂ is eventually
equal to τ , it suffices to show that

τ̂ |j = mst(τ̂(j)) (35)

for all j ∈ ω. First, by a simple induction we prove (35) for j ≥ k. For j = k we have
mstk(τ(k)) = τ̂ |k by definition, and assuming that the induction hypothesis holds for j we
have:

τ̂ |j+1 = τ̂ |j · τ̂(j + 1) (obvious)
= mstj(τ̂(j)) · τ̂(j + 1) (induction hypothesis)
= mstj(τ(j)) · τ(j + 1) (definition τ̂)
= mstj+1(τ(j + 1)) (j + 1 not discontinuous)
= mstj+1(τ̂(j + 1)) (definition τ̂)

Second, for j < k we have τ̂ |j = (τ̂ |k)|j = ρ|j , where ρ = mstj(τ(k)), and so by Proposi-
tion 9.12 we obtain from ρ ∈ Vk that τ̂ |j ∈ Vj , meaning that τ̂ |j = mstj(τ̂(j)) as required.
J

We now turn to prove the main claim, that there are only finitely many discontinuous
points for τ . Since τ is a bad trace it is only refreshed finitely many times by Proposition
9.16, so pick k0 ∈ ω for which τ |j is not refreshed for any j ≥ k0. For our first step of the
proof, we define a function f : ω → ω by setting

f(i) := lrd(msti(τ(i))).

Claim 2 The function f is antitone above k0, that is: n ≤ m implies f(m) ≤ f(n) whenever
n,m ≥ k0.

Proof of Claim It suffices to prove that f(n+1) ≤ f(n) for all n ≥ k0. So pick n ≥ k0. We
know that τ |n+1 is not refreshed, and it clearly follows that the trace mstn(τ(n)) · τ(n+ 1) is
not refreshed either since it has the same last and next-to-last entries as τ |n+1. This means
that:

lrd
(
mstn(τ(n)) · τ(n+ 1)

)
= lrd

(
mstn(τ(n))

)
= f(n).

Hence, if f(n) < f(n+ 1), then we get

lrd
(
mstn(τ(n)) · τ(n+ 1)

)
< lrd

(
mstn+1(τ(n+ 1))

)
,

and it immediately follows that

mstn+1(τ(n+ 1)) ≺Σ|n+1
mstn(τ(n)) · τ(n+ 1).

But this directly contradicts the compatibility condition for the most significant trace. J
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From Claim 2 it follows that there is a k1 ≥ k0 such that f(k1) = f(j) for all j ≥ k1. We
assume that f(k1) > 0 since the other case is easier, and we let q denote the predecessor of
f(k1) so that f(k1) = q + 1. We define a new function g : ω → Trq ×A, setting:

g(n) :=
(
mstn(τ(n))|q , mstn(τ(n))(q + 1)

)
for n > k1 – we can set g(n) to be any fixed arbitrary pair for n ≤ k1. Note that k1 ≥ q + 1,
since the function f clearly satisfies f(m) ≤ m for all m ∈ ω. Intuitively, the value g(n)
of the map g at n records two pieces of information about the trace mstn(τ(n)) that will
determine its place in the relevance order among traces in Trn: the place of the restricted
trace mstn(τ(n))|q in the relevance order at that stage, which is the last stage before the last
refreshment date of mstn(τ(n)), and the state visited by mstn(τ(n)) at its last refreshment
date. Since we already know what the last refreshment date of mstn(τ(n)) is (namely q + 1),
these two pieces of information indeed suffice to determine the place of mstn(τ(n)) in the
relevance order.

We order the elements of Trq × A lexicographically with respect to the relevance order
and the priority order. More precisely put, we define the strict total order ≺q|< on Trq × A
by setting (σ, b) ≺q|< (σ′, b′) iff σ ≺q σ′ or σ = σ′ and b < b′.

Claim 3 For all n > k1, we have g(n) ≺q|< g(n + 1) or g(n) = g(n + 1). Furthermore, if
n+ 1 is a discontinuous point, then in fact g(n) ≺q|< g(n+ 1).

Proof of Claim It suffices to prove the second part of the claim, since if n + 1 is not a
discontinuous point then mstn+1(τ(n+1)) = mstn(τ(n)) ·τ(n+1), and if n > k1 ≥ q it follows
that (

mstn+1(τ(n+ 1))
)
|q =

(
mstn(τ(n))

)
|q

and (
mstn+1(τ(n+ 1))

)
(q + 1) =

(
mstn(τ(n))

)
(q + 1)

and hence g(n) = g(n+ 1).

So let n be a discontinuous point. Then by the compatibility condition for most significant
traces we have:

mstn(τ(n)) · τ(n+ 1) ≺n+1 mstn+1(τ(n+ 1)). (36)

But the trace mstn(τ(n)) · τ(n+ 1) is not refreshed since τ |n+1 is not refreshed, so

lrd
(
mstn(τ(n)) · τ(n+ 1)

)
= f(n) = q + 1,

and since f(n+ 1) = q+ 1 we have lrd
(
mstn+1(τ(n+ 1))

)
= q+ 1 by definition of the map f .

Hence from the definition of the relevance order there are two possibilities for (36). Either
we have (

mstn(τ(n)) · τ(n+ 1)
)
|q ≺q

(
mstn+1(τ(n+ 1))

)
|q,

or else
(
mstn(τ(n)) · τ(n+ 1)

)
|q =

(
mstn+1(τ(n+ 1))

)
|q and:(

mstn(τ(n)) · τ(n+ 1)
)
(q + 1) <

(
mstn+1(τ(n+ 1))

)
(q + 1).
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But since n > q we have:(
mstn(τ(n)) · τ(n+ 1)

)
|q =

(
mstn(τ(n))

)
|q

and (
mstn(τ(n)) · τ(n+ 1)

)
(q + 1) =

(
mstn(τ(n))

)
(q + 1)

and so in each of the two cases we get g(n) ≺q|< g(n+ 1) as required. J

It now follows that there can be only finitely many discontinuous points of τ above k1,
simply because the set Trq×A is finite and hence the map g can only strictly increase finitely
many times with respect to the strict total order ≺q|<, as it is never decreasing with respect
to this order.

From this and Claim 1 the Proposition is immediate. qed

Motivated by Proposition 9.17 we will from now on focus on continuous traces and on
selected items.

Definition 9.18 Let Σ be a partial match; a Σ-item is defined as a pair (τ, a) ∈ TrΣ × A
that is selected in the sense that τ ∈ VΣ. A Σ-item is called in focus if τ = mstΣ(a), a µ-item
if Ω(a) is odd, and a ν-item otherwise. The most significant item (MSI) of Σ, denoted msiΣ,
is defined to be the highest ranking Σ-item (τ, a) in the priority order <Σ which is in focus
at Σ. �

Note that the MSI of Σ must be of the form (mstΣ(a), a) for some a ∈ Ran(last(Σ)).

Definition 9.19 Let Σ be an infinite match of the thin satisfiability game for A. A Σ-item
is nothing but a pair consisting of an infinite continuous trace on Σ, together with a state of
A; the notions of µ-item and ν-item apply as before.

We say that such a Σ-item (τ, a) stabilizes at the index k ∈ ω if there is a finite set
SΣ = {(σ1, d1), . . . , (σm, dm)} of Σ-items such that, for all j ≥ k:

(1) the MSI of Σ|j is equal to or smaller than (τ |j , a) in the priority order <Σ|j ;

(2) the Σ|j-items above (τ |j , a) are precisely (σ1|j , d1), ..., (σm|j , dm) (in some fixed order).
�

The framework of orderings <Σ associated with partial matches Σ is designed to make
the following proposition true.

Proposition 9.20 Let Σ be an infinite match of the thin satisfiability game for A. If Σ has
a bad trace, then there is a continuous bad trace τ on Σ, such that, with a ∈ A denoting the
highest priority state appearing infinitely often on τ , the following hold:

(1) the pair (τ, a) stabilizes at some k < ω;

(2) (τ |k, a) is the MSI of Σ|k, for infinitely many k < ω.
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Proof. Fix a Sthin -match Σ, and recall that for j ∈ ω we will abbreviate VΣ|j as Vj , etc. Let
F denote the set of all pairs (ρ, b) ∈ VΣ ×Aµ such that ρ ∈ VΣ is a continuous bad trace and
b ∈ Aµ is the highest priority state visited infinitely many times on ρ. If Σ has a bad trace
then F is non-empty by Proposition 9.17, and by Proposition 9.15 F is finite.

We first show that the priority ordering among members of F will eventually stabilize, in
the following sense.

Claim 1 For any pair (ρ, b), (ρ′, b′) of items in F there is a k < ω such that for all j ≥ k:

(ρ|j , b) <j (ρ′|j , b′) iff (ρ|k, b) <k (ρ′|k, b′). (37)

Proof of Claim Fix two Σ-items (ρ, b), (ρ′, b′) in F . If ρ = ρ′, then by the shuffle merge
condition (37) holds in fact for all j ∈ ω, so we may focus on the case where ρ and ρ′ are
distinct traces. Let k0 ∈ ω be such that ρ|k0 6= ρ′|k0 .

Now suppose that for some stage k ≥ k0 we have

(ρ|k+1, b) <k+1 (ρ′|k+1, b
′) but (ρ|k, b) >k (ρ′|k, b′). (38)

It follows from the construction of <k+1 out of <k that there are only two possibilities for
this swap to happen: (i) if the items were swapped in step 1, then ρ|k+1 must be refreshed,
(ii) if the swap took place in step 2, then we must have b < ρ(k), since (ρk+1, b) is a µ-item.

It is not hard to see, however, that each of the two mentioned possibilities can only occur
for finitely many k ≥ k0. In the case of (i), note that ρ, just like any trace, can enter a new
cluster only finitely often, and that ρ(k) can be a safe state of its cluster for finitely many
k only – otherwise ρ would not be a bad trace. Similarly, situation (ii) can apply to finitely
many k only, since b is by assumption the greatest priority state that ρ visits infinitely often.

Hence there are only finitely many indices k satisfying (38). From this the claim is
immediate. J

On the basis of Claim 1 we can and will speak unambiguously of “the priority ordering over
F relative to Σ”, and this order is a strict total order just like the priority orders associated
with partial matches. Hence, by finiteness of F ⊆ VΣ × A it is immediate that F must have
a greatest element (τ, a) under the priority order <Σ.

We now consider the elements above the item (τ, a) in the priority orders.

Claim 2 There is an index k and a finite set SΣ of Σ-items such that for every j ≥ k, every
element above (τ |j , a) in the priority list <j is of the form (σ|j , d) for some pair (σ, d) ∈ SΣ.

Proof of Claim Let k0 be a point at which the trace τ has stopped visiting states with
higher priority than a, and has arrived in its final cluster at least one stage ago. Then from
this moment on τ is not refreshed and (τ, a) is not erasable. That is, there is no j ≥ k0 such
that the trace τ |j is refreshed or the item (τ |j , a) is erasable; the latter holds because ρ(j) v a
and a is a µ-state.

For each j ≥ k0, let Sj ⊆ Vj×A be the set of Σ|j-items (σ, d) of higher priority than (τ |j , a)
in the order <j . We first show that every element of Sj+1 is of the form (σ · b, d) for some
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(σ, d) ∈ Sj . To see this, let (σ, d) be an arbitrary element of Sj+1. Since the item (τ |j+1, a)
is not erasable, we can only have (τ |j+1, a) <j+1 (σ, d) if already (τ |j+1, a) <0

j+1 (σ, d). And
since τ |j+1 is not refreshed, this can only be the case if already (τ |j , a) <j (σ|j , d). So the item
(σ, d) is of the form (σ|j · last(σ), d) with (τ |j , a) <Σ|j (σ|j , d). Furthermore by Proposition
9.12 we have that σ|j = mst(σ(j+1))|j = mst(σ(j)) ∈ Vj and we get (σ|j , d) ∈ Sj as required.

At the same time, each Σ|j-item (σ, d) ∈ Sj has at most one Σj+1-continuation of the
form (σ · b, d) ∈ Sj+1. To see this, suppose that σ as a trace has two Σj+1-continuations σ · b0
and σ · b1; it then suffices to show that at least one item (σ · bi, d) does not belong to Sj+1.
But it follows by thinness of the relation Q (defined by Σ|j+1 = Σ|j ·Q), that one of the two
states, say, bi, must be a safe state of its cluster. Then the Σ|j+1-trace σ · bi is refreshed, so
that in step 1 of the update procedure we make sure that (σ · bi, d) <0

j+1 (τ, a). Subsequently,
step 2 will not swap these two items since (τ, a) is not erasable. This means that we obtain
(σ · bi, d) <j+1 (τ |j+1, a) as well. In other words, we find (σ · bi, d) 6∈ Sj+1, as required.

From these two observations it follows by some basic combinatorics that there is a k1 ∈ ω,
and a finite set SΣ of Σ-items, such that for every j ≥ k1, the set of Σ|j-items in Vj × A of
higher priority than (τ |j , a) is given as Sj = {(σ|j , d) | (σ, d) ∈ SΣ} indeed. J

Our next claim states that the priority ordering on the set SΣ eventually stabilizes.

Claim 3 For any pair (σ, d), (σ′, d′) of items in SΣ there is a k ∈ ω such that for all j ≥ k:

(σ|j , d) <j (σ′|j , d′) iff (σ|k, d) <k (σ′|k, d′). (39)

Proof of Claim This claim can be proved by an argument similar to the proof of Claim 1,
using the observation that no two items among {(σ|j+1, d) | (σ, d) ∈ SΣ} for j ≥ k can have
been swapped at stage j + 1. To see why, it suffices to observe that any such swap would
place one of the mentioned items not only below the other one, but also below the greatest
element (τ, a) of F , since the trace τ is not refreshed, and the item (τ, a) not erasable. J

On the basis of Claim 3 we can extend the order <Σ to include the members of SΣ as
well. Thus <Σ is now an order defined over the set F ∪ SΣ. Our final claim about the set SΣ

is the following.

Claim 4 There is some k ∈ ω such that no item (σ, b) ∈ SΣ is in focus for any j ≥ k.

Proof of Claim Suppose that, on the contrary, some item in SΣ is in focus for infinitely
many j. To derive a contradiction from this, we let (σ, d) be the highest priority item with
this property among SΣ in the ordering <Σ - such an item clearly exists since SΣ is finite.
We make a case distinction as to the nature of the state d.

In case d is a µ-state, it follows by the shuffle-merge condition that d must be the highest
priority state such that (σ|j , d) is in focus for infinitely many j. But this means that (σ, d) is
a member of F , and thus contradicts our choice of (τ, a) as the highest priority member of F .

On the other hand, (σ, d) cannot be a ν-item either, since then each time it is in focus,
Step 2 of the update procedure of the priority order would apply to it, placing (σ, d) below
the item (τ, a). J

It follows that (τ, a) is the MSI each of the infinitely many times that it is in focus after
the point k given by Claim 2, and so the proof is done. qed
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9.3 Decorations

Our aim is now to define, by induction on the length of a partial match Σ, for every trace ρ
on Σ two decorations δρ, δ

+
ρ : A→ µML. For the definition of the tightened decoration δ+

ρ we
need to introduce some notation.

Definition 9.21 Assume that decorations δρ, δ
+
ρ have been defined. We define the formulas

tr
ρ
A(a) and tr

ρ+
A (a) for a ∈ A simply by:

tr
ρ
Σ(a) := tr

δρ
A (a)

tr
ρ+
Σ (a) := tr

δ+
ρ

A (a)

In addition, the following abbreviations will help to avoid notational clutter:

trbΣ(a) := tr
mstΣ(b)
Σ (a) trΣ(a) := traΣ(a)

trbΣ(a)+ := tr
mstΣ(b)+
Σ (a) tr+

Σ(a) := traΣ(a)+

The context formula for a finite partial match Σ is defined to be the formula

γ(Σ) :=
∧
{trΣ(b) | b ∈ Ran(last(Σ)) and b 6= a},

where a is the unique state such that for some trace τ , the pair (τ, a) is the MSI of Σ. �

We are now ready for the inductive definition of the decorations δρ and δ+
ρ , where ρ is a

trace on a partial match Σ. Recall that msiΣ is the highest priority Σ-item in focus.

Definition 9.22 For the unique trace ρ on the initial match consisting only of the relation
{(aI , aI)} we define δρ(b) = > for all b ∈ A. This ensures that tr

ρ
Σ(a) ≡K trA(a) for all

a ∈ A.
Inductively, suppose that decorations δρ and δ+

ρ have been defined for all traces on the
partial match Σ′. Let Σ = Σ′ · Q be a continuation of Σ′, and let ρ = σ · a be an arbitrary
trace on Σ.

δρ(b) :=


> if Ω(b) is even
> if b < last(ρ)
> if (ρ, b) <Σ msiΣ
δ+
σ (b) if msiΣ ≤Σ (ρ, b).

In all cases, setting

δ+
ρ (b) :=

{
δρ(b) ∧ ¬γ(Σ) if (ρ, b) = msiΣ and b ∈ Aµ
δρ(b) otherwise.

defines the decoration δ+
ρ in terms of δρ. �

The decoration δ+
ρ is defined as the tightening of δρ, according to a simple principle: we

just tighten the formula associated with the MSI at Σ by the negation of the context formula
(only if the MSI is a µ-item), and leave everything else the same. When we then define the
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updated decoration with respect to any Σ-continuation σ · a of a Σ′-trace σ, the decoration
δ+
σ is our starting point. A naive approach would be to set δσ·a(b) := δ+

σ (b) for each b and
each trace σ ·a. Instead, we need to reset the formulas associated with certain items to >. In
particular we do this for those Σ′ ·Q-items that end up below the new MSI of the extended
match Σ′ ·Q, and those items (σ ·a, b) such that Ω(b) has a lower priority than last(σ ·a) = a.

The following proposition is in some sense the heart of our proof of Kozen’s Lemma, since
it is here that the context rule of Proposition 9.1 is actually used.

Proposition 9.23 Let Σ be a partial match in the (thin) satisfiability game for A such that
the formula ∧

b∈Ran(last(Σ))

trΣ(b)

is consistent. Then so is ∧
b∈Ran(last(Σ))

Θ(b)[trbΣ(d)+/d | d ∈ A].

Proof. We only treat the case where msiΣ is of the form (τ, a) for a a µ-state, since the other
case is easier. We can write the first conjunction as:

γ(Σ) ∧ µa.θ,

where θ is an abbreviation for the formula:

δτ (a) ∧Θ(a)[tr(A↓a)−(b)/b | b < a][trτΣ(b)/b | a < b].

By Proposition 9.1 we get that the following conjunction is consistent:

γ(Σ) ∧ θ[µa.¬γ(Σ) ∧ θ/a].

It remains to prove the following two claims.

Claim 1 All b 6= a in the range of last(Σ) satisfy

trΣ(b) ≤ Θ(b)[trbΣ(d)+/d | d ∈ A].

Claim 2 For a ∈ Ran(last(Σ)) we have

θ[µa.¬γ(Σ) ∧ θ/a] ≤K Θ(a)[trτΣ(d)+/d | d ∈ A].

The proof of both claims will be given in the appendix. qed
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9.4 The proof of Kozen’s Lemma

We are now ready for the proof of Theorem 5. As a first step, from Proposition 9.23 we shall
derive the following proposition, which states that ∃ has a surviving strategy which maintains
the consistency of the formula

∧
b∈Ran(last(Σ)) trΣ(b).

Proposition 9.24 Let Σ be a partial match of length k in the (thin) satisfiability game for
A such that the formula ∧

b∈Ran(last(Σ))

trΣ(b)

is consistent. Then ∃ has a legitimate move (Y,R) such that, for all Q ∈ R, the formula∧
b∈Ran(Q)

trΣ·Q(b)

is consistent.

Proof. It follows by Proposition 9.23 that the formula∧
b∈Ran(last(Σ))

Θ(b)[trbΣ(d)+/d | d ∈ A]

is consistent. By Corollary 5.14 we now find an admissible move (Y,R) for ∃ such that, for
all Q ∈ R, the formula

(∗)
∧

(b,d)∈Q

trbΣ(d)+

is consistent, so it suffices to show that this implies the required conjunction
∧
b∈Ran(Q) trΣ·Q(b).

For this, it suffices to show for all d ∈ Ran(Q) that the formula trΣ·Q(d) is implied by some
conjunct of (∗).

So let d ∈ Ran(Q). Then by Proposition 9.12 the trace mstΣ·Q(d) is of the form mstΣ(d′) ·d
for some d′ with (d′, d) ∈ Q. So we either have δmstΣ·Q(d) = δ+

mstΣ(d′) or δmstΣ·Q(d) = >. In

both cases we have trd
′

Σ (d)+ ≤K trΣ·Q(d), and so we are done. qed

We are now ready for the proof of Theorem 5 itself.

Proof of Theorem 5. We shall define the winning strategy χ for ∃, and simultaneously
maintain the induction hypothesis that for every partial χ-guided match Σ, the formula∧

{trΣ(a) | a ∈ Ran(last(Σ))}

is consistent.
It is clear from Proposition 9.24 that ∃ has a strategy χ guaranteeing that she never

gets stuck and that the induction hypothesis remains true for all χ-guided partial matches. It
remains to show that this strategy is actually winning, i.e., that ∃ wins every infinite χ-guided
match. So suppose for a contradiction that Σ is an infinite χ-guided match containing a bad
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trace. By Proposition 9.20, there is a continuous bad trace τ on Σ such that, with a denoting
the the highest priority state appearing infinitely often on τ , (τ, a) stabilizes at some k < ω,
and (τ |j , a) is the MSI of Σ|j for infinitely many j ∈ ω. Let SΣ ⊆ VΣ ×A be the finite set of
Σ-items such that for all j ≥ k, the set of Σj-items in VΣ|j × A that are above (τ |j , a) is of
the form {(σ|j , d) | (σ, d) ∈ SΣ}.

Let j < j′ be the first two indices above k for which the following hold:
(1) Ran(last(Σ|j)) = Ran(last(Σ|j′));
(2) (τ |j , a) = msiΣ|j and (τ |j′ , a) = msiΣ|j′ ;

(3) σ(j) = σ(j′), for all σ such that (σ, d) ∈ SΣ for some d ∈ A.
Clearly such indices must exist by the pigeon-hole principle, since (τ |l, a) is the MSI for
infinitely many l < ω, while for each m < ω we have that Ran(last(Σ|m)) is an element of the
finite set PA, and for m ≥ k each of the finitely many objects σ(k) for (σ, d) ∈ SΣ belongs to
the finite set A.

Since (τ, a) stabilizes at k, we obtain the following claim which intuitively states that the
context formulas, as expressed by the decoration values for items of higher priority than (τ, a),
get frozen.

Claim 1 For any Σ-item (σ, d) ∈ SΣ and any l ≥ j we have

δσ|l(d) = δσ|j (d).

Proof of Claim This claim can be established by a straightforward inductive proof, where
the inductive step is taken care of by showing that

δσ|n+1
(d) = δσ|n(d) (40)

for all n ≥ j. But since we both have msiΣ|n ≤Σ|n (τ |n, a) <Σ|n (σ|n, d) and msin+1 ≤n+1

(τ |n+1, a) <n+1 (σ|n+1, d), this is an immediate consequence of the definition of δτ |n+1
from

δτ |n . J

On the basis of this we can prove the following key claim.

Claim 2 For any b ∈ Ran(last(Σ|j)), we have

trΣ|j′ (b) ≤K trΣ|j (b).

The key observation underlying the proof of Claim 2 is that Σ-items (σ, d) above (τ, a) in
the respective priority orderings of Σl, j ≤ l ≤ j′, stabilize, implying that δσ|l(d) = δσ|j (d),
while items (ρ, b) below (τ, a) are reset at stages where (τ, a) provides the MSI, so that in
particular at stage j we find δσ|j (d) = >. Technical details are given below.

Proof of Claim Abbreviate B := Ran(last(Σ|j)) = Ran(last(Σ|j′)). Our proof of Claim 2 is
based on the following observation.

δbj′(d) ≤K δbj(d) for all (b, d) ∈ B ×A, (41)

where in order to avoid notational clutter, we abbreviate δbj := δmstj(b), δ
b
j′ := δmstj′ (b)

, mstj :=

mstΣ|j , and mstj′ := mstΣ|j′ . In order to prove (41), make a case distinction.
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(case 1) If d < b then (41) is immediate since δbj(d) = >.

(case 2) If b v d and (mstj(b), d) <Σj (τ, a) then (41) is immediate as well since δbj(d) = >.

(case 3) If b v d and (τ, a) <Σj (mstj(b), d) then mstj(b) is of the form σ|j for some σ ∈ VΣ

with (σ, d) ∈ SΣ. We claim that this very same Σ-trace σ also provides the most
significant trace for b at stage j′, that is:

mstj′(b) = σ|j′ . (42)

To see this, first observe that last(σ|j′) = b, since last(σ|j′) = σ(j′) by immediate
unravelling of the definitions, σ(j′) = σ(j) by our earlier assumption on k, and σ(j) = b
by the fact that σ(j) = last(σ|j) = last(mstj(b)) = b. But from last(σ|j′) = b and the
fact that σ is a continuous trace, we immediately obtain (42).

Finally we derive (41) as follows:

δbj′(d) = δσ|j′ (d) (immediate by (42))

= δσ|j (d) (Claim 1)

= δbj(d) (σ|j = mstj(b))

(case 4) If b v d and (mstj(b), d) = (τ, a) then what we need to show is that δτ |j′ (a) ≤K
δτ |j (a). But in fact, we can prove that

δτ |l(a) ≤K δτ |j (a) for all l ≥ j, (43)

by a straightforward inductive proof, where the inductive step is taken care of by showing
that

δτ |n+1
(a) ≤K δτ |n for all n ≥ j. (44)

But this is not difficult to see, since msiΣn ≤ (τ, a), for all n ≥ j.

Finally, Claim 2 follows immediately from (41) by Proposition 9.3(3). J

The remaining part of the proof is the argument that we already sketched when we gave
the intuitions underlying the proof of Kozen’s Lemma. Recall that γ(Σ|j) is the context
formula at stage j, that is

γ(Σ|j) =
∧
{trΣ|j (b) | b ∈ Ran(last(Σ|j)), b 6= a}.

Since Ran(last(Σ|j)) = Ran(last(Σ|j′)), Claim 2 gives:∧
b∈Ran(last(Σ|j′ ))\{a}

trΣ|j′ (b) ≤K γ(Σ|j), (45)

On the other hand we claim that

trΣ|j′ (a) ≤K ¬γ(Σ|j). (46)
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To see this, observe that since (τ |j , a) = msiΣ|j and since msiΣ|j′′ is never of higher priority

than (τ |j′′ , a) for j ≤ j′′, it follows that

δτ |j′ (a) ≤K δ+
τ |j (a) ≤K ¬γ(Σ|j).

But trΣ|j′ is the tightened translation induced by δτ |j′ and so by Proposition 9.3(2) we obtain

trΣ|j′ (a) ≤K δτ |j′ (a).

From this (46) is immediate.
Finally then, since a ∈ Ran(last(Σ|j′)) we get from (45) and (46) that∧

b∈Ran(last(Σ|j′ ))

trΣ|j′ (b) ≤K γ(Σ|j) ∧ ¬γ(Σ|j) ≤K ⊥,

directly contradicting the fact that the formula
∧
b∈Ran(last(Σ|j′ ))

trΣ|j′ (b) is consistent. This

finishes the proof of Theorem 5. qed
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10 Completeness for the modal µ-calculus

With all the pieces in place, we are ready for the main result of the paper: we shall show that
every formula of the modal µ-calculus provably implies the translation of some semantically
equivalent disjunctive automaton. From this result the completeness of Kozen’s proof system
for the modal µ-calculus follows almost immediately.

We have already come half way towards this result in Theorem 2: using arbitrary modal
automata rather than disjunctive automata, we were able to prove, using comparatively el-
ementary techniques, that every formula of the µ-calculus is provably equivalent to (the
translation of) a modal automaton, i.e., ϕ ≡K Aϕ for each formula ϕ. (Observe that here,
and in the sequel, we will use the notation of Definition 8.1.) We now want to apply the
automata-theoretic machinery that we developed in previous sections, to strengthen this re-
sult, showing that for any formula ϕ there is an equivalent disjunctive automaton Dϕ such
that ϕ ≤K Dϕ. The following proposition shows that whenever ϕ is the translation of a
semi-disjunctive automaton this result can be proved.

Proposition 10.1 Let A be any semi-disjunctive modal automaton. Then A ≤K sim(A).

Proof. It is clear from Theorem 4 that there is a winning strategy for Player II in the
consequence game C(A, sim(A)). Since A is semi-disjunctive it follows by Theorem 3 that ∀
has a winning strategy in the thin satisfiability game for A ∧ ¬sim(A). By Kozen’s Lemma
(Theorem 5) it follows that the automaton A ∧ ¬sim(A) is inconsistent. From this and the
clauses 1 and 2 of Proposition 8.15, it is immediate that A ≤K sim(A). qed

We are now ready for the statement and proof of our main result.

Theorem 6 For every formula ϕ ∈ µML there is a semantically equivalent disjunctive au-
tomaton D such that ϕ ≤K D.

Proof. By Fact 3.15 any modal fixpoint formula is provably equivalent to a formula in
negation normal form. Hence without loss of generality we may prove the theorem for formulas
in this shape, and proceed by an induction on the complexity of such formulas. That is, the
base cases of the induction are the literals, and we need to consider induction steps for
conjunctions, disjunctions, both modal operators and both fixpoint operators.

The base case for literals follows immediately since it is easy to see that the modal au-
tomaton Aϕ corresponding to a literal ϕ is already disjunctive. Disjunctions are easy since
the operation ∨ on automata preserves the property of being disjunctive. For conjunctions:
given formulas ϕ,ϕ′ we have semantically equivalent disjunctive automata D,D′ such that
ϕ ≤K D and ϕ′ ≤K D′. By the first clause of Proposition 8.15 we get ϕ ∧ ϕ′ ≤K D ∧ D′.
But by the Propositions 6.16(4) and 8.16 the automaton D ∧ D′ is semi-disjunctive modulo
provable equivalence, and we can apply Proposition 10.1 to obtain the desired conclusion.
The cases for the modalities are easy since boxes and diamonds as operations on automata
preserve the property of being disjunctive.

For the greatest fixpoint operator, consider the formula ϕ = νx.α(x), and assume induc-
tively that there is a disjunctive automaton A for α such that α ≡ A and α ≤K A. It follows
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by Proposition 8.15(4) that ϕ = νx.α ≤K νx.A, and since νx.A is semidisjunctive modulo
provable equivalence by the Propositions 6.16(6) and 8.16, by Proposition 10.1 we are done.

Finally, we cover the crucial case for ϕ = µx.α(x). By the induction hypothesis there is a
semantically equivalent disjunctive automaton A for α such that α ≤K A. Let D := sim(µx.A).
This automaton is clearly semantically equivalent to ϕ. We want to show that

µx.A ≤K D, (47)

from which the result follows since ϕ = µx.α ≤K µx.A by Proposition 8.15(4) and the
induction hypothesis.

In order to prove (47) we will work with the automaton Ax. First observe that

Ax[D/x] |=G Ax[µx.A/x],

by Theorem 4, and that
Ax[µx.A/x] |=G µx.A

by Proposition 5.19. But since

µx.A |=G sim(µx.A) = D

by Theorem 4 again, we find by transitivity of the game consequence relation (Proposi-
tion 5.21) that

Ax[D/x] |=G D.
By the Propositions 6.16(5) and 8.16 the automaton Ax[D/x] is semi-disjunctive modulo
provable equivalence, and so by Theorem 3 the automaton Ax[D/x]∧¬D has a thin refutation,
whence by Kozen’s Lemma (Theorem 5) and Proposition 8.15 this automaton is inconsistent.
In other words, we have

Ax[D/x] ≤K D.
Then by Proposition 8.15(5) we obtain that

tr(Ax[tr(D)/x]) ≤K tr(D),

so that one application of the fixpoint rule yields

µx.tr(Ax) ≤K D.

By (32) in Proposition 8.14 this suffices to prove (47). qed

Finally we see how Theorem 6 implies completeness.

Theorem 10.2 (Completeness) Every consistent formula ϕ ∈ µML is satisfiable.

Proof. Given a consistent formula ϕ, by Theorem 6 there exists a semantically equivalent
disjunctive automaton D such that ϕ ≤K D. Clearly then, D is consistent too, whence by
Theorem 5, ∃ has a winning strategy in the thin satisfiability game for D. But D is disjunctive
and hence semi-disjunctive, and so by Proposition 6.15 ∃ also has a winning strategy in
S(D). It then follows by the adequacy of the satisfiability game (Proposition 5.10) that D is
satisfiable, and so ϕ, being semantically equivalent to D, is satisfiable as well. qed
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[64] L. Schröder and D. Pattinson. Pspace bounds for rank-1 modal logics. ACM Transactions on
Computational Logic (TOCL), 10(2):13, 2009.

[65] L. Schröder and D. Pattinson. Rank-1 modal logics are coalgebraic. Journal of Logic and Com-
putation, 20(5):1113–1147, 2010.

[66] E. Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of Amsterdam, 1993.

[67] K. Tamura. A small model theorem for the hybrid µ-calculus. Journal of Logic and Computation,
page exs052, 2013.

[68] M.Y. Vardi. Reasoning about the past with two-way automata. In International Colloquium on
Automata, Languages, and Programming, pages 628–641. Springer, 1998.

[69] Yde Venema. Lectures on the modal µ-calculus. Lecture Notes, ILLC, University of Amsterdam,
2012.

[70] A. Visser. Uniform interpolation and layered bisimulation. In Gödel ’96, (Brno), volume 6 of
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A Proof details of section 8

A.1 Vectorial notation

In this appendix we will have use of the vectorial notation for fixpoints. For simplicity we
shall only use it for binary vectors, which is all we need. Given variables x0, x1 and formulas
ϕ0 and ϕ1 in which these variables may occur, we let the expression:

η

(
x0

x1

)
.

(
ϕ0

ϕ1

)
abbreviate the pair of formulas 〈ηx0.ϕ0[ηx1.ϕ1/x1], ηx1.ϕ1[ηx0.ϕ0/x0]〉. It is a standard
fact [1], known as the Bekič principle, that this pair of formulas defines a multi-variate fix-
point of the formulas ϕ0, ϕ1, but the details of this will not concern us here. We shall think
of pairs of formulas as column vectors, so that we may write:

η

(
x0

x1

)
.

(
ϕ0

ϕ1

)
=

(
ηx0.ϕ0[ηx1.ϕ1/x1]
ηx1.ϕ1[ηx0.ϕ0/x0]

)
.

Generally, given vectors 〈ϕ0, ϕ1〉 and 〈ψ0, ψ1〉 of formulas, we write(
ϕ0

ϕ1

)
≤K

(
ψ0

ψ1

)
to say that ϕ0 ≤K ψ0 and ϕ1 ≤K ψ1. Similarly we write(

ϕ0

ϕ1

)
≡K

(
ψ0

ψ1

)
to say that ϕ0 ≡K ψ0 and ϕ1 ≡K ψ1.

In what follows, we need to extend the definition of A− to automaton structures that are
not necessarily linear. Given such a structure A = (A,Θ,Ω) we let A− denote the automaton
structure (A−,Θ−,Ω−) where A− = A \M is obtained from A by removing the set M of
states in A with maximal priority, and Θ−,Ω− are the restrictions of the maps Θ,Ω to the
set A−.

We shall have use of the observation below.

Proposition A.1 Let A be any modal automaton with exactly two maximal states m0,m1,
of the same priority. Then:(

trA(m0)
trA(m1)

)
≡K η

(
m0

m1

)
.

(
Θ(m0)[trA−(b)/b | b ∈ A−]
Θ(m1)[trA−(b)/b | b ∈ A−]

)
where η is µ or ν depending on the parity of m0,m1.

Proof. Just recall that trA is defined with reference to some arbitrarily chosen linearization
of A, and the result is unique up to provable equivalence. So by picking a linearization Al

102



such that m1 <Al m0 (and noting that (Al)−− is a linearization of A−) we get:

trA(m0)
≡K ηm0.Θ(m0)[tr(Al)−(b) | b <Al m0] (Def. trA)

= ηm0.Θ(m0)[tr(Al)−(m1)/m1, tr(Al)−(b)/b | b <A m1] (obvious)

= ηm0.Θ(m0)[tr(Al)−(m1)/m1, tr(Al)−−(b)[tr(Al)−(m1)/m1]/b | b <A m1]

(Def. tr(Al)−(b) for b < m1)

= ηm0.Θ(m0)[tr(Al)−−(b)/b | b <A m1][tr(Al)−(m1)/m1] (Fact 3.4)

≡K ηm0.Θ(m0)[trA−(b)/b | b ∈ A−][tr(Al)−(m1)/m1] (above remark)

= ηm0.Θ(m0)[trA−(b)/b | b ∈ A−][ηm1.Θ(m1)[tr(Al)−−(d)/d | d <A m1]/m1]

(Def. tr(Al)−(m1))

= ηm0.Θ(m0)[trA−(b)/b | b ∈ A−][ηm1.Θ(m1)[trA−(d)/d | d ∈ A−/m1]

as required. The case for trA(m1) is similar, picking a linearization with m0 <Al m1. qed

The next observation we shall require for the vectorial notation is the following vectorial
formulation of the induction rule. Here, and in what follows, we take a substitution applied
to a vector to produce as a result the vector obtained by applying the substitution to each
entry.

Proposition A.2 For all formulas ϕ0, ϕ1 and all formulas ψ0, ψ1 with no free occurrences
of variables x0, x1, we have:(

ϕ0

ϕ1

)
[ψi/xi] ≤K

(
ψ0

ψ1

)
implies µ

(
x0

x1

)
.

(
ϕ0

ϕ1

)
≤K

(
ψ0

ψ1

)
.

Dually, we have:(
ψ0

ψ1

)
≤K

(
ϕ0

ϕ1

)
[ψi/xi] implies

(
ψ0

ψ1

)
≤K ν

(
x0

x1

)
.

(
ϕ0

ϕ1

)
.

Proof. We only show the case for the least fixpoint, since the case for greatest fixpoints
is dual. Suppose that ϕ0[ψi/xi] ≤K ψ0 and ϕ1[ψi/xi] ≤K ψ1. We need to show that
µx0.ϕ0[µx1.ϕ1/x1] ≤K ψ0 and µx1.ϕ1[µx0.ϕ0/x0] ≤K ψ1. We only prove the first item since
the second is similar.

From ϕ1[ψi/xi] ≤K ψ1 we get µx1.ϕ1[ψ0/x0] ≤K ψ1 by the induction rule, since ϕ1[ψi/xi] =
ϕ1[ψ0/x0][ψ1/x1] (which holds because x1 is not free in ψ0). So we get:

ϕ0[µx1.ϕ1/x1][ψ0/x0] = ϕ0

[
ψ0/x0, µx1.ϕ1[ψ0/x0]/x1

]
(Fact 3.4)

≤K ϕ0[ψ0/x0, ψ1/x1] (monotonicity)
≤K ψ0 (assumption)

Hence by the induction rule we get:

µx0.ϕ0[µx1.ϕ1/x1] ≤K ψ0

as required. qed
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We will also need the following:

Proposition A.3 Let A be any modal automaton with exactly two maximal states m0,m1,
of the same priority. Then for all a ∈ A, a /∈ {m1,m2}, we have:

trA(a) ≡K trA−(a)[trA(m0)/m0, trA(m1/m1)]

Proof. Let Al be an arbitrarily chosen linearization of A with m0 <Al m1. First note that
we have:

trAl(m0) ≡K trAl−(m0)[trAl(m1)/m1] (48)

by definition of the translation map trAl , since m1 is the maximal state. Now pick a /∈
{m0,m1}. Since Al−− is a linearization of A−, by Proposition 8.10 we get that:

trA−(a) ≡K trAl−−(a) (49)

Hence, we get:

trA−(a)[trA(m0)/m0, trA(m1/m1)]
≡K trAl−−(a)[trA(m0)/m0, trA(m1/m1)] (49)
≡K trAl−−(a)[trAl(m0)/m0, trAl(m1/m1)] (Proposition 8.10)
≡K trAl−−(a)

[
trAl−(m0)[trAl(m1)/m1]/m0, trAl(m1/m1)

]
(48)

≡K trAl−−(a)[trAl−(m0)][trAl(m1/m1)] (Fact 3.4)
≡K trAl−(a)[trAl(m1/m1)] (definition trAl−)
≡K trAl(a) (definition trAl)
≡K trA(a) (Proposition 8.10)

qed

A.2 Proofs of results in section 8

By Proposition 8.10 we may assume without loss of generality that A is a linear automaton.
We shall establish the following proposition, from which Proposition 8.14 (31) immediately

follows. Note that the equivalences in this proposition, characterizing the relation between
the automata A and Ax, were already given in Remark 4.20. Recall that κ denotes the
substitution defined by b 7→ (x ∧ b0) ∨ b1.

Proposition A.4 For a linear modal automaton A it holds that:

trA(a) ≡K (x ∧ trAx(a0)) ∨ trAx(a1) (50)

and
trAx(ai) ≡K θai [trA(b)/b | b ∈ A] (51)

for all a ∈ A and i ∈ {0, 1}.

Proof. We shall prove the proposition by induction on the size of A. Let m denote the
unique maximal state of A in the order <A, which exists because we assumed A to be linear.
We first compare the structures Ax− and A−x.
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Claim 1

Ax− = A−x[κ(m)/m]

Proof of Claim The claim can be proved by a simple direct verification. Note that when
constructing Ax− we first duplicate the maximal state m to get two maximal states m0,m1

in Ax, which are then both removed in Ax−. When we form A−x[κ(m)/m] we first remove
the maximal state m to get A− in which m now appears as a guarded propositional variable
in some one-step formulas, hence the new states m0,m1 are not created when we construct
A−x, and this is why we have to perform the substitution m 7→ κ(m). J

We now get the following technical claim:

Claim 2 For all a ∈ A−, i = 0, 1 we have

trA−(a)[κ(m)/m] ≡K (x ∧ trAx−(a0)) ∨ trAx−(a1) (52)

and

trAx−(ai) ≡K θai [trA−(a)/a | a ∈ A−][κ(m)/m] (53)

Proof of Claim For (52), note that

trA−(a)[κ(m)/m] ≡K ((x ∧ trA−x(a0) ∨ trA−x(a1))[κ(m)/m]

by the induction hypothesis on (50). Now observe that trA−x(ai)[κ(m)/m] ≡K trAx−(ai) by
Claim 1, and (52) follows.

Furthermore, observe that

trAx−(ai) = trA−x[κ(m)/m](ai) (Claim 1)

≡K trA−x(ai)[κ(m)/m] (obvious)
≡K θai [trA−(b)/b | b ∈ A−][κ(m)/m] (IH on (51))

which proves (53). J

From this claim we get:

Claim 3 (
trAx(m0)
trAx(m1)

)
≡K η

(
m0

m1

)
.

(
θm0
θm1

)
[trA−(a)/a | a ∈ A−][κ(m)/m] (54)

Proof of Claim Note that the maximal states of Ax are precisely the states m0 and m1.
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Hence we obtain:(
trAx(m0)
trAx(m1)

)
≡K η

(
m0

m1

)
.

(
Θx(m0)
Θx(m1)

)
[trAx−(ai)/ai | (a, i) ∈ A− × {0, 1}] (Proposition A.1)

= η

(
m0

m1

)
.

(
θm0 [κ]
θm1 [κ]

)
[trAx−(ai)/ai | (a, i) ∈ A− × {0, 1}] (definition Θx)

= η

(
m0

m1

)
.

(
θm0 [((x ∧ trAx−(a0)) ∨ trAx−(a1)/a | a ∈ A−, κ(m)/m]
θm1 [((x ∧ trAx−(a0)) ∨ trAx−(a1)/a | a ∈ A−, κ(m)/m]

)
(Fact 3.4)

≡K η

(
m0

m1

)
.

(
θm0 [trA−(a)[κ(m)/m]/a | a ∈ A−, κ(m)/m]
θm1 [trA−(a)[κ(m)/m]/a | a ∈ A−, κ(m)/m]

)
(Claim 2(52))

≡K η

(
m0

m1

)
.

(
θm0 [trA−(a)/a | a ∈ A−][κ(m)/m]
θm1 [trA−(a)/a | a ∈ A−][κ(m)/m]

)
(Fact 3.4)

which suffices to prove the claim. J

We now prove (50) and (51) by a case distinction, depending on whether the priority of
m in A is odd or even. Suppose first that it is odd. We start by establishing the left-to-right
inequality of (50):

Claim 4 If m ∈ Aµ then trA(a) ≤K (x ∧ trAx(a0)) ∨ trAx(a1) for all a ∈ A.

Proof of Claim We first consider the case where a = m. Given the definition of trA(m) as

trA(m) = µm.Θ(m)[trA−(a)/a | a ∈ A−],

it suffices to show that the formula ρ := (x ∧ trAx(m0)) ∨ trAx(m1) is a prefixpoint of the
formula θ′ := Θ(m)[trA−(a)/a | a ∈ A−]. This we can prove directly, as we will see now. For
succinctness we abbreviate the substitution [trAx(mi)/mi | i = 0, 1] as τ .

θ′[ρ/m]
= Θ(m)[trA−(a)/a | a ∈ A−][(x ∧ trAx(m0)) ∨ trAx(m1)/m] (definitions θ′, ρ)
= Θ(m)[trA−(a)/a | a ∈ A−][κ(m)/m][τ ] (direct verification)
= Θ(m)[trA−(a)[κ(m)/m]/a | a ∈ A−, κ(m)/m][τ ] (Fact 3.4)
≡K Θ(m)[(x ∧ trAx−(a0)) ∨ trAx−(a1)/a | a ∈ A−, κ(m)/m][τ ] (Claim 2(52))
= Θ(m)[(x ∧ trAx−(a0)[τ ] ∨ trAx−(a1)[τ ]/a | a ∈ A−,

κ(m)[τ ]/m] (Fact 3.4)
= Θ(m)[(x ∧ trAx−(a0)[τ ]) ∨ trAx−(a1)[τ ]/a | a ∈ A−,

(x ∧ trAx(m0)) ∨ trAx(m1)/m] (obvious)
≡K Θ(m)[(x ∧ trAx(a0)) ∨ trAx(a1)/a | a ∈ A] (Proposition A.3)
= Θ(m)[κ][trAx(ai)/ai | ai ∈ Ax] (obvious)
≡K (x ∧Θx(m0)[trAx(ai)/ai | ai ∈ Ax])

∨Θx(m1)[trAx(ai)/ai | ai ∈ Ax] (definitions Θx,Θ(m))
≡K (x ∧ trAx(m0)) ∨ trAx(m1) (Proposition 8.13(29))
= ρ.
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In what follows we shall abbreviate substitutions like [trAx(mi)/mi | i = 0, 1] by [trAx(mi)/mi].
For the case where a 6= m, we reason as follows:

trA(a) = trA−(a)[trA(m)/m] (definition trA)
≤K trA−(a)[((x ∧ trAx(m0)) ∨ trAx(m1))/m] (previous case)
= trA−(a)[κ(m)/m][trAx(mi)/mi] (obvious)
≡K ((x ∧ trAx−(a0)) ∨ trAx−(a1))[trAx(mi)/mi] (Claim 2(52))
≡K (x ∧ trAx−(a0)[trAx(mi)/mi]) ∨ trAx−(a1)[trAx(mi)/mi] (obvious)
≡K (x ∧ trAx(a0)) ∨ trAx(a1) (Proposition A.3)

J

Before turning to the opposite inequality of (50) we prove the left-to-right inequality of (51).

Claim 5 If m ∈ Aµ then trAx(ai) ≤K θai [trA(b)/b | b ∈ A] for all a ∈ A.

Proof of Claim By Claim 3, it suffices to show that

(
θ0[trA(b)/b | b ∈ A]
θ1[trA(b)/b | b ∈ A]

)
is a twodi-

mensional prefixpoint for

(
m0

m1

)
in

(
θm0
θm1

)
[trA−(a)/a | a ∈ A−][κ(m)/m].

This we prove as follows, abbreviating [trA(b)/b | b ∈ A] as σ:(
θm0
θm1

)
[trA−(a)/a | a ∈ A−][κ(m)/m][θi[σ]/mi | i = 0, 1]

=

(
θm0 [trA−(a)/a | a ∈ A−][((x ∧ θm0 [σ]) ∨ θm1 [σ])/m]
θm1 [trA−(a)/a | a ∈ A−][((x ∧ θm0 [σ]) ∨ θm1 [σ])/m]

)
(obvious)

≡K
(
θm0 [trA−(a)/a | a ∈ A−][Θ(m)[σ]/m]
θm1 [trA−(a)/a | a ∈ A−][Θ(m)[σ]/m]

)
(Convention 4.18)

≡K
(
θm0 [trA−(a)/a | a ∈ A−][trA(m)/m]
θm1 [trA−(a)/a | a ∈ A−][trA(m)/m]

)
(Proposition 8.13(29))

≡K
(
θm0 [trA(b)/b | b ∈ A]
θm1 [trA(b)/b | b ∈ A]

)
The last equivalence is just by definition of trA together with Fact 3.4. J

On the basis of this we easily prove the right-to-left inequality of (50).

Claim 6 If m ∈ Aµ then (x ∧ trAx(a0)) ∨ trAx(a1) ≤K trA(a) for all a ∈ A.

Proof of Claim

(x ∧ trAx(a0)) ∨ trAx(a1)
≤K (x ∧ θa0 [trA(b)/b | b ∈ A]) ∨ θa1 [trA(b)/b | b ∈ A] (Claim 5)
≡K Θ(a)[trA(b)/b | b ∈ A] (Convention 4.18)
≡K trA(a) (Proposition 8.13(29))

J
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Our final claim takes care of the right-to-left inequality of (51) (in fact by proving the full
equivalence):

Claim 7 If m ∈ Aµ then θai [trA(b)/b | b ∈ A] ≤K trAx(ai) for all a ∈ A.

Proof of Claim

θai [trA(b)/b | b ∈ A] ≡K θai [(x ∧ trAx(b0)) ∨ trAx(b1)/b | b ∈ A] (50)
≡K θai [κ][trAx(bi)/bi | bi ∈ Ax] (obvious)
≡K Θx(ai)[trAx(bi)/bi | bi ∈ Ax] (definition Θx)
≡K trAx(ai) (Proposition 8.13(29))

J

Now, for the second case, suppose the priority of m in A is even. We start by establishing
the right-to-left inequality of (50):

Claim 8 If m ∈ Aν then (x ∧ trAx(a0)) ∨ trAx(a1) ≤K trA(a) for all a ∈ A.

Proof of Claim We first consider the case where a = m. Given the definition of trA(m) as

trA(m) = νm.Θ(m)[trA−(a)/a | a ∈ A−],

it suffices to show that the formula ρ := (x ∧ trAx(m0)) ∨ trAx(m1) is a postfixpoint of the
formula θ′ := Θ(m)[trA−(a)/a | a ∈ A−]. But, using the same argument as before in Claim 4,
we can prove that θ′[ρ/m] ≡K ρ, so we are done.

For the case where a 6= m, we reason as follows:

trA(a) = trA−(a)[trA(m)/m] (definition trA)
≥K trA−(a)[((x ∧ trAx(m0)) ∨ trAx(m1))/m] (previous case)
= trA−(a)[κ(m)/m][trAx(mi)/mi] (obvious)
≡K ((x ∧ trAx−(a0)) ∨ trAx−(a1))[trAx(mi)/mi] (Claim 2(52))
≡K (x ∧ trAx−(a0)[trAx(mi)/mi]) ∨ trAx−(a1)[trAx(mi)/mi] (obvious)
≡K (x ∧ trAx(a0)) ∨ trAx(a1) (Proposition A.3)

J

Before turning to the opposite inequality of (50) we prove the left-to-right inequality of (51).

Claim 9 If m ∈ Aν then θai [trA(b)/b | b ∈ A] ≤K trAx(ai) for all a ∈ A.

Proof of Claim By Claim 3, it suffices to show that

(
θ0[trA(b)/b | b ∈ A]
θ1[trA(b)/b | b ∈ A]

)
is a twodi-

mensional postfixpoint for

(
m0

m1

)
in

(
θm0
θm1

)
[trA−(a)/a | a ∈ A−][κ(m)/m]. But exactly

the same argument as before establishes that it is actually a fixpoint for this vector of formulas,
and so a postfixpoint. J
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On the basis of this we can prove the left-to-right inequality of (50).

Claim 10 If m ∈ Aν then trA(a) ≤K (x ∧ trAx(a0)) ∨ trAx(a1) for all a ∈ A.

Proof of Claim

(x ∧ trAx(a0)) ∨ trAx(a1)
≥K (x ∧ θa0 [trA(b)/b | b ∈ A]) ∨ θa1 [trA(b)/b | b ∈ A] (Claim 9)
≡K Θ(a)[trA(b)/b | b ∈ A] (Convention 4.18)
≡K trA(a) (Proposition 8.13(29))

J

Finally, we can now prove (51) just as before, and so the proof of Proposition A.4 is done.
This also concludes the proof of Proposition 8.14 (31). qed

Proof of Proposition 8.14 (32). Let η ∈ {µ, ν} and let Axη be defined as Ax except we
give the state x the same priority as in ηx.A. One realizes by comparing ηx.A and Ax that

(ηx.A)− = (Axη)−. (55)

Furthermore, since trAx(x) ≡K x it is easy to check that for each state a 6= x in Ax, we have

tr(Axη)−(a)[x/x] ≡K trAx(a). (56)

Using this we get:

tr(µx.A)
= trµx.A(x) (definition tr(µx.A))
= µx.Θµx.A(x)[tr(µx.A)−(a)/a | a < x] (definition trµx.A))

= µx.θaI1 [κ][tr(µx.A)−(a)/a | a < x] (definition Θµx.A))

= µx.θaI1 [κ][tr(Axη)−(a)/a | a < x] (55)

≡K µx.θaI1 [κ][tr(Axη)−(a)/a | a < x][x/x] (renaming bound variables)

= µx.θaI1 [κ][tr(Axη)−(a)[x/x]/a | a < x, x/x] (Fact 3.4)

≡K µx.θaI1 [κ][trAx(a)/a | a < x, x/x] (56)
≡K µx.θaI1 [κ][trAx(a)/a | a < x, trAx(x)/x] (trAx ≡K x)
≡K µx.Θx((aI)1)[trAx(a)/a | a < x, trAx(x)/x] (definition Θx)
= µx.trAx((aI)1) (Proposition 8.13(29))

as required. qed
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Proof of Proposition 8.14 (33). This is similar to the previous:

tr(νx.A)
= trνx.A(x) (definition tr(νx.A))
= νx.Θνx.A(x)[tr(νx.A)−(a)/a | a < x] (definition trνx.A))

= νx.(θaI0 ∨ θ
aI
1 )[κ][tr(νx.A)−(a)/a | a < x] (definition Θνx.A))

= νx.(θaI0 ∨ θ
aI
1 )[κ][tr(Ax0 )−(a)/a | a < x] (55)

≡K νx.(θaI0 ∨ θ
aI
1 )[κ][tr(Ax0 )−(a)/a | a < x][x/x] (renaming)

= νx.(θaI0 ∨ θ
aI
1 )[κ][tr(Ax0 )−(a)[x/x]/a | a < x, x/x] (Fact 3.4)

≡K νx.(θaI0 ∨ θ
aI
1 )[κ][trAx(a)/a | a < x, x/x] (56)

≡K νx.(θaI0 ∨ θ
aI
1 )[κ][trAx(a)/a | a < x, trAx(x)/x] (trAx(x) ≡K x)

= νx.(θaI0 ∨ θ
aI
1 )[κ][trAx(a)/a | a ∈ Ax] (obvious)

= νx.(θaI0 [κ] ∨ θaI1 [κ])[trAx(a)/a | a ∈ Ax] (obvious)
= νx.(Θx((aI)0) ∨Θx((aI)1))[trAx(a)/a | a ∈ Ax] (definition Θx)
= νx.(Θx((aI)0)[trAx(a)/a | a ∈ Ax]) ∨ (Θx((aI)1))[trAx(a)/a | a ∈ Ax])

(obvious)
= νx.trAx((aI)0) ∨ trAx((aI)1)) (Proposition 8.13(29))

qed

Proof of Proposition 8.15(1). We only consider the case of the conjunction of two au-
tomata, the case of disjunction being completely similar.

Let c be the start state of A ∧ B. Note that c will not appear anywhere in ΘA∧B(c), nor
in any of the formulas trA(d) for d ∈ A or trB(d) for d ∈ B. Also, recall that c is the highest
ranking state in A ∧ B in the order <. So we can calculate:

trA∧B(c)
= ηcc.ΘA∧B(c)[tr(A∧B)−(d)/d | d < c] (definition trA∧B(c))

≡K ΘA∧B(c)[tr(A∧B)−(d)/d | d < c] (vacuous fixpoint)

= ΘA(aI)[tr(A∧B)−(d)/d | d ∈ A] ∧ΘB(bI)[tr(A∧B)−(d)/d | d ∈ B] (definition ΘA∧B)

= ΘA(aI)[trA(d)/d | d ∈ A] ∧ΘB(bI)[trB(d)/d | d ∈ B] (obvious)
≡K trA(aI) ∧ trB(bI) (Proposition 8.13(29))

as required. qed

Proof of Proposition 8.15(2). For this clause we extend the negation operation to gen-
eralized modal X-automata and automaton structures. First we consider the dualization
operator on the one-step formulas of these structures, where proposition letters may have
guarded occurrences. Note that when we form boolean duals of these one-step formulas, such
guarded occurrences of propositional variables will be treated like proposition letters rather
than variables/states.

In more detail, recall that an automaton structure over a set X of proposition letters is
a triple A = (A,Θ,Ω) with Θ : A → 1ML(X, A ∪ X), where we may assume that X and A are
disjoint. The (boolean) dual α∂ of a formula α ∈ 1ML(X, A∪X) is obtained from α by replacing
all occurrences of ∧ with ∨, of 3 with 2, of p ∈ X with ¬p, and vice versa. As an example,

110



with p, q ∈ X and a ∈ A we get (¬p ∨ 3(a ∧ q))∂ = p ∧ 2(a ∨ ¬q). Given a (generalized)
modal X-automaton structrue A, we define ¬A by dualizing all one-step formulas and raising
all priorities by 1.

With this in mind, our purpose is to prove that for every automaton structure A and
every a ∈ A, we have

tr¬A(a) ≡K ¬trA(a). (57)

Clause (2) then follows for the special case where A is a non-generalized automaton, and a is
the initial state of A.

Our proof of (57) proceeds by induction on the size of A, and we only consider the
induction step here. So let A be an automaton structure, and inductively assume that (57)
holds for all automaton structures smaller than A. Let m be the maximum priority state of
A, and note that A− is an automaton structure over X∪{m} if A is an X-automaton structure.
We leave it for the reader to verify that

¬(A−) = (¬A)−[¬m/m], (58)

where the substitution [¬m/m] is needed because in (¬A)− we dualize while m is still a
state/variable (so m∂ = m), while in ¬(A−) we dualize when m is already a proposition letter
(so all occurrences of m will get negated).

Furthermore, to simplify notation we assume that the parity of ΩA(m) is odd - the other
case is handled in a completely symmetric fashion. Finally, since Θ¬A(a) is obtained by
dualizing ΘA(a), it is easy to see that for all a ∈ A we get

Θ¬A(a) ≡K ¬ΘA(a)[¬b/b | b ∈ A]. (59)

We can now calculate:

tr¬A(m)
= νm.Θ¬A(m)[tr(¬A)−(b)/b | b < m] (definition tr¬A)

≡K νm.Θ¬A(m)
[
tr¬(A−)(b)[¬m/m]/b | b < m

]
(58)

≡K νm.Θ¬A(m)
[
¬trA−(b)[¬m/m]/b | b < m

]
(IH)

≡K νm.¬ΘA(m)[¬b/b | b ∈ A]
[
¬trA−(b)[¬m/m]/b | b < m

]
(59)

= νm.¬ΘA(m)
[
¬¬trA−(b)[¬m/m]/b | b < m,¬m/m

]
(Fact 3.4)

≡K νm.¬ΘA(m)
[
trA−(b)[¬m/m]/b | b < m,¬m/m

]
(propositional logic)

≡K ¬µm.ΘA(m)
[
trA−(b)[¬m/m]/b | b < m,¬m/m

]
[¬m/m] (Fact 3.15(6))

= ¬µm.ΘA(m)
[
trA−(b)[¬¬m/m]/b | b < m,¬¬m/m

]
(Fact 3.4)

≡K ¬µm.ΘA(m)
[
trA−(b)/b | b < m

]
(propositional logic)

= ¬trA(m) (definition trA)

Now that the statement has been proved for the maximal element m, we extend it to
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arbitrary a ∈ A as follows:

tr¬A(a)
= tr(¬A)−(a)[tr¬A(m)/m] (definition tr¬A)

≡K tr¬(A−)(a)[¬m/m][tr¬A(m)/m] (58)

≡K ¬trA−(a)[¬m/m][tr¬A(m)/m] (IH)
≡K ¬trA−(a)[¬m/m][¬trA(m)/m] (previous case)
≡K ¬trA−(a)[¬¬trA(m)/m] (Fact 3.4)
≡K ¬trA−(a)[trA(m)/m] (propositional logic)
= ¬trA(a) (definition trA)

This concludes the proof of Clause (2). qed

Proof of Proposition 8.15(3). This case is very similar to the one for the conjunction of
two automata (Proposition 8.15(1)). We only cover the case of the diamond modality.

Let c be the start state of 3A, and observe that (3A)− = A, that c is the maximum
priority state of 3A, that c will not appear anywhere in any of the formulas trA(a) for a ∈ A.
So we can calculate:

tr3A(c)
= ηcc.Θ3A(c)[tr(3A)−(a)/a | a < c] (definition tr3A(c))

= ηcc.3aI [tr(3A)−(a)/a | a < c] (definition Θ3A(c))

= 3aI [tr(3A)−(a)/a | a < c] (vacuous fixpoint)

= 3aI [trA(a)/a | a < c] ((3A)− = A)
= 3trA(aI) (obvious)

as required. qed

Clause (4) was proved in the main text.

Proof of Proposition 8.15(5). Finally, for clause (5), suppose that p is free and positive
in A. We shall first prove that for all such A and all automata B we have

trA[B/p](b) = trB(b) (60)

for all b ∈ B. Recall that no state in A appears in ΘB(b) for any b ∈ B, and furthermore the
states in B have lower priority than the states in A. Also, note that

(A[B/p] ↓ b)− = (B ↓ b)− (61)

since all states in A have higher priority in A[B/p] than all states in B. Using these facts, we
can reason by an inner (downward) induction on the priorities of states in B. Supposing the
inner induction hypothesis holds for all b′ ∈ B with b <B b

′ (in particular this holds vacuously
for b equal to the maximum priority state m), we get:
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trA[B/p](b)

≡K ηbb.ΘB(b)
[
tr(A[B/p]↓b)−(d)/d | d <A[B/p] b][trA[B/p](b

′) | b <A[B/p] b
′] (Proposition 8.13(29))

≡K ηbb.ΘB(b)[tr(B↓b)−(d)/d | d <B b][trA[B/p](b
′) | b <A[B/p] b

′] (61)

≡K ηbb.ΘB(b)[tr(B↓b)−(d)/d | d <B b][trA[B/p](b
′) | b′ ∈ B & b <B b

′] (a ∈ A not in ΘB(b))

≡K ηbb.ΘB(b)[tr(B↓b)−(d)/d | d <B b][trB(b′) | b <B b
′] (IH)

≡K trB(b) (Proposition 8.13(30))

This proves (60), and in particular it shows that trA[B/p](bI) ≡K tr(B).

We shall now prove, by induction on the size of an automaton A, that for all a ∈ A we
have

trA[B/p](a) ≡K trA(a)[tr(B)/p]. (62)

Leaving the case where A has size 1 as an exercise, we focus on the induction step. Given
that the result holds for automata that are smaller than A, we reason as follows. Clearly, we
may assume without loss of generality that the variable p does not occur in the automaton
B. Let Θ′ be the transition map for A[B/p], and let bI be the start state of B. Again, we
reason by an inner (downwards) induction on the priority of the states in A. Supposing that
the result holds for all states a′ with a <A a′, let Aa denote the set of states a′ in A with
a′ < a and let Aa denote the set of states a′ in A with a < a′. Note that we have:

(A[B/p]↓a)− = (A↓a)−[B/p] (63)
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We get:

trA[B/p](a)

≡K ηaa.Θ
′(a)[tr(A[B/p]↓a)−(b)/b | b <A[B/p] a]

[trA[B/p](b)/b | a <A[B/p] b] (Proposition 8.13(29))

≡K ηaa.Θ
′(a)[tr(A[B/p]↓a)−(b)/b | b <A[B/p] a]

[trA(b)[tr(B)/p]/b | a <A[B/p] b] (inner IH)

= ηaa.Θ
′(a)[tr(A↓a)−[B/p](b)/b | b <A[B/p] a]

[trA(b)[tr(B)/p]/b | a <A[B/p] b] (63)

= ηaa.Θ
′(a)[tr(A↓a)−[B/p](b)/b | b ∈ Aa, tr(A↓a)−[B/p](b)/b | b ∈ B]

[trA(b)[tr(B)/p]/b ∈ Aa] (obvious)
≡K ηaa.Θ

′(a)[tr(A↓a)−[B/p](b)/b | b ∈ Aa, trB/b | b ∈ B]

[trA(b)[tr(B)/p]/b ∈ Aa] (60)
≡K ηaa.Θ

′(a)[tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa, trB(b)/b | b ∈ B]

[trA(b)[tr(B)/p]/b ∈ Aa] (outer IH)
= ηaa.ΘA(a)[ΘB(bI)/p]

[tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa, trB(b)/b | b ∈ B]

[trA(b)[tr(B)/p]/b | b ∈ Aa] (definition Θ′)
= ηaa.ΘA(a)

[
ΘB(bI)[tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa, trB(b)/b | b ∈ B]/p,

tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa, trB(b)/b | b ∈ B
]

[trA(b)[tr(B)/p]/b | b ∈ Aa] (Fact 3.4)
= ηaa.ΘA(a)

[
ΘB(bI)[trB(b)/b | b ∈ B]/p,
tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa, trB(b)/b | b ∈ B

]
[trA(b)[tr(B)/p]/b | b ∈ Aa] (b ∈ Aa not in ΘB(bI))

≡K ηaa.ΘA(a)
[
tr(B)/p,
tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa, trB(b)/b | b ∈ B

]
[trA(b)[tr(B)/p]/b | b ∈ Aa] (Proposition 8.13(29))

= ηaa.ΘA(a)
[
tr(B)/p,
tr(A↓a)−(b)[tr(B)/p]/b | b ∈ Aa

]
[trA(b)[tr(B)/p]/b | b ∈ Aa] (b ∈ B not in ΘA(a))

= ηaa.ΘA(a)[tr(A↓a)−(b)/b | b ∈ Aa][tr(B)/p]

[trA(b)[tr(B)/p]/b | b ∈ Aa] (Fact 3.4)
= ηaa.ΘA(a)[tr(A↓a)−(b)/b | b ∈ Aa]

[tr(B)[trA(b)[tr(B)/p]/b | b ∈ Aa]/p,
trA(b)[tr(B)/p]/b | b ∈ Aa] (Fact 3.4)

= ηaa.ΘA(a)[tr(A↓a)−(b)/b | b ∈ Aa]
[tr(B)/p, trA(b)[tr(B)/p]/b | b ∈ Aa] (b ∈ Aa not in tr(B))

= ηaa.ΘA(a)[tr(A↓a)−(b)/b | b ∈ Aa]
[trA(b)/b | b ∈ Aa][tr(B)/p] (Fact 3.4)

≡K trA(a)[tr(B)/p] (Proposition 8.13 (30))

This proves (62). The desired result now follows by putting a = aI , from which we get
tr(A[B/p]) = tr(A)[tr(B)/p]. qed
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B Proof details of section 9

Proof of Proposition 9.1. Contrapositively we will show that

ϕ[µx.δ ∧ ϕ] ≤K δ implies µx.ϕ ≤K δ, (64)

for arbitrary µML-formulas ϕ(x) and δ. The proposition follows from this by taking ¬γ for δ.
In order to prove (64), assume that

ϕ[µx.(δ ∧ ϕ)] ≤K δ. (65)

We claim that the formula δ ∧ µx.(δ ∧ ϕ[δ ∧ x]) is a prefixpoint of ϕ(x):

ϕ
[
δ ∧ µx.(δ ∧ ϕ[δ ∧ x])

]
≤K δ ∧ µx.(δ ∧ ϕ[δ ∧ x]). (66)

To arrive at this, we reason as follows. From the assumption (65) it follows by monotonicity
and classical logic that

ϕ
[
δ ∧ µx.(δ ∧ ϕ[δ ∧ x])

]
≤K δ, (67)

from which we obtain by classical logic that

ϕ
[
δ ∧ µx.(δ ∧ ϕ[δ ∧ x])

]
≤K δ ∧ ϕ

[
δ ∧ µx.(δ ∧ ϕ[δ ∧ x])

]
. (68)

From this, an application of the pre-fixpoint axiom to the formula µx.(δ ∧ ϕ[δ ∧ x])
]

yields

ϕ
[
δ ∧ µx.(δ ∧ ϕ[δ ∧ x])

]
≤K µx.(δ ∧ ϕ[δ ∧ x]), (69)

so that we obtain (66) by (67) and (69).
But from (66), an application of the pre-fixpoint rule shows that

µx.ϕ ≤K δ ∧ µx.(δ ∧ ϕ[δ ∧ x]), (70)

and from this, (64) is immediate. qed

Proof of Proposition 9.23. We supply the proofs of the two claims used in the proposi-
tion.

First, note that for all b 6= a in Ran(last(Σ)), and all d ∈ A, we have δ+
mstΣ(b)(d) = δmstΣ(b)(d)

simply because (mstΣ(b), d) 6= msiΣ). It follows that for all d we have

trbΣ(d) = tr
mstΣ(b)
Σ (d) = tr

mstΣ(b)
A (d)+ = trbΣ(d)+.

So we now want to prove: for all b 6= a in the range of last(Σ), we have

trΣ(b) ≤ Θ(b)[trbΣ(d)/d | d ∈ A].

We can prove this as follows. First, by recalling that

trΣ(b) = ηbb.δmstΣ(b)(b) ∧Θ(b)[tr(A↓b)−(d)/d | d < b][trbΣ(d)/d | b < d]
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according to Definition 9.2 (and the notational conventions we have introduced subsequently),
and by unfolding the fixpoint in the right-hand formula we may prove that

trΣ(b) ≡K δmstΣ(b)(b) ∧Θ(b)[tr(A↓b)−(d)/d | d < b][trbΣ(d)/d | b < d][trΣ(b)/b]

= δmstΣ(b)(b) ∧Θ(b)[tr(A↓b)−(d)/d | d < b][trbΣ(d)/d | b v d]

≤K Θ(b)[tr(A↓b)−(d)/d | d < b][trbΣ(d)/d | b v d]

Here, the equality on the second line uses that trbΣ(b) = trΣ(b), and that no element of A
appears as a free variable in any of the formulas trbΣ(d), so that the two nested substutions
can be viewed as a simultaneous substitution.

The first claim now follows if we can prove that, for every d < b, we have

tr(A↓b)−(d)[trbΣ(d′)/d′ | b v d′] ≡K trbΣ(d).

Abbreviating σ = [trbΣ(d′)/d′ | b v d′], we prove this by downwards induction on the priority
of d < b:

tr(A↓b)−(d)[trbΣ(d′)/d′ | b v d′]
= tr(A↓b)−(d)[σ]

≡K ηdd.Θ(d)[tr(A↓d)−(e)/e | e < d][tr(A↓b)−(e)/e | d < e < b][σ] (Proposition 8.13)

= ηdd.Θ(d)[tr(A↓d)−(e)/e | e < d][tr(A↓b)−(e)[σ]/e | d < e < b, σ] (Fact 3.4(1))

≡K ηdd.Θ(d)[tr(A↓d)−(e)/e | e < d][trbΣ(e)/e/e | d < e < b, σ] (induction hyp.)

= ηdd.Θ(d)[tr(A↓d)−(e)/e | e < d][trbΣ(e)/e | d < e] (obvious)

≡K ηdd.> ∧Θ(d)[tr(A↓d)−(e)/e | e < d][trbΣ(e)/e | d < e] (obvious)

= ηdd.δmstΣ(b)(d) ∧Θ(d)[tr(A↓d)−(e)/e | e < d][trbΣ(e)/e | d < e] (def. δmstΣ(b)(d))

= trbΣ(d)

For the second claim, we first note that for each b with a < b, we have traΣ(b) = trτΣ(b) ≡K
trτΣ(b)+ = traΣ(b)+. This follows by an easy downwards induction on the priority of b since,
for each b with a < b, we have δ+

τ (b) = δτ (b). We now have:

θ ≡K δτ (a) ∧Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b], (71)

so that:

θ[µa.¬γ(Σ) ∧ θ/a]
≤K Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b][µa.¬γ(Σ) ∧ θ/a] (Obvious)

≡K Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b][
µa.¬γ(Σ) ∧ δτ (a) ∧Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b]/a

]
(71)

= Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b][
µa.δ+

τ (a) ∧Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b]/a
]

(Def. δ+
τ (a))

= Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a < b][traΣ(a)+/a] (Def. traΣ(a)+)

= Θ(a)[tr(A↓a)−(b)/b | b < a][traΣ(b)+/b | a v b] (Fact 3.4(2))

where the last step uses the fact that none of the formulas traΣ(b)+ contain any free variables
among A. It now suffices to prove, for all d < a, that

tr(A↓a)−(d)[traΣ(b)+/b | a v b] ≡K traΣ(d)+.
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This is proved by downwards induction on the priority of d < a, using the fact that δτ (d) = >
for all d < a, using precisely the same argument as in the proof of the first claim. qed
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