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Abstract

Multi-lingual phenomena as code-switching disturb widely used language inter-
pretation tools, while the demand for such tools is rising due to the expanding
worldwide popularity of online applications. This study explores code-switching
between the lexically strong related languages Dutch and English in Twitter
messages. Contrary to similar studies on code-switching, the focus is centred on
the occurrence of English words in everyday Dutch, instead of a specific bilin-
gual community. This research covers five main stages. First, a new Twitter
corpus is collected of which a subset is manually annotated. Second, linguistic
analysis of Dutch-English code-switching is performed. Third, several models
are explored to perform a language identification task at word level. Fourth,
several models are explored to perform automatic prediction of code-switching
at word level. Finally, the best models for both tasks are combined and tested.
Results show that multi-language data remain a challenge for computational
approaches.
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Chapter 1

Introduction

1.1 Motivation

Imagine the following: You are writing an informal message on your smartphone
or tablet to a close friend. The message is in your mother tongue; the same
holds for your friend. Within the sentence you are concocting, you decide to
switch over to a second language, say English, mastered by the both of you; just
because English seems to catch the intended meaning better in this particular
case. But now, assuming you make use of automatic correction as provided by
the used program, the English word is automatically changed into a word in
the main language, a word most similar to the English original. Frustrated,
you correct the word back to English or even disable the automatic correction
function altogether.

This frustration, often recognized by users of social media, is the main in-
stigator of this study. How can it be that in the “smartphone era” mixing two
languages in one sentence poses such a problem? Why does a program not auto-
matically recognize the language switch? The described inconvenience appears
to be the result of a much larger language problem. Let us specify the issue by
looking at the background more closely.

The phenomenon of mixed language within the same text or conversation
is known as code-switching1 and sometimes abbreviated here as CS. In the late
70s code-switching was picked up to study by a large group of sociolinguists,
for example pioneers as Lipski (1978) or Poplack (1980); and more recently
Romaine (1995), Myers-Scotton (1997) and Broersma (2009). Based on their
findings we can now discern three kinds of CS: firstly, a language switch may
occur between sentences at an inter-sentential level (Example 1a); secondly, a
language switch may be encountered within a sentence at an intra-sentential
level (Example 1b); and finally, a switch may take place within a word at the
level of morphemes (Example 1c).

1Several terms are used such as code-mixing, language-mixing or language-switching; there
is no consensus on the terminology.
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(1) a. Yessssss, eindelijk de #seizoensfinale van #Familie! Let’s kill June
@name1 @name2
Yessssss, finally the #seasonfinale of #Family! Let’s kill June @name1
@name2

b. @name1 beschouwend en in the line of fire?
@name1 considered and in the line of fire?

c. Er wordt weer lustig er op los geframed door de NOS over #brexit.
Again at the NOS they are freely framing about #brexit.

Although CS in general is quite simple to describe, studying it is actually rather
complicated. We should realize that in theory every language could be mixed
with every other language. Therefore, in order to study the matter, scientists
pick out one or a few language combinations. This study will focus on the
combination of English and Dutch.

Recently the topic is also studied by computational linguists (e.g. Solorio
& Liu (2008), Das & Gambäck (2015) and Papalexakis et al. (2014)), for code-
switching poses to be problematic for natural language processing (NLP). The
reason for this is that many language processing tools assume a monolingual
input text. Without proper language identification and prediction these lan-
guage technologies will not perform well or even fail (Nguyen et al., 2015). CS
therefore disturbs widely used language processing techniques such as sentence
parsing, machine translation, automatic speech recognition and so on. With the
expanding presence of digital possibilities this problem becomes more pressing.

Recognition and prediction of CS is closely intertwined with language iden-
tification. Without identification of the used language(s) it is impossible to
recognize the occurrence of code-switches. To this date, document size matters
when language identification is concerned. Automatic language recognition on
a document scale is quite reliable and the same holds for longer sentences (i.e.
>16 words). Grefenstette (1995) showed that a close to perfect accuracy can be
reached in the classification of news articles with a simple model either based
on most common words or trigrams in a language. But, language identification
on a smaller scale still poses a challenge, especially the classification at the level
of individual words.

Code-switching is typically found in informal conversation (Broersma, 2009),
such as on social media. But, language use at social media is noisy; additives
such as emoticons, abbreviations, exclamations, clerical errors etc. add to the
complexity of the data. As a result, messages on social media are known to
pose extra complexity to automatic interpretation. Though, with the increas-
ing worldwide popularity of social media applications, the demand for better
interpretation tools is rising.

1.2 Goals

The main goal of this thesis is to analyse, identify and predict CSs from and to
English in everyday Dutch as used on social media. I will analyse Dutch-English
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CSs as they appear in everyday Dutch language, on Twitter. My hypothesis
is that Dutch-English code-switches occur on a regular basis within ordinary
Dutch. However, the percentage of words involved may be low.

In addition to this hypothesis, I have five aims to accomplish my final goal.
First, I want to collect a Twitter corpus, to study Dutch-English CS in every-
day Dutch. Second, I want to analyse the encountered CSs. Third, I want
to automate language identification of English in a predominantly Dutch cor-
pus. Fourth, I want to automate CS prediction of English-Dutch CSs in a
predominantly Dutch corpus. Finally, I want to combine automatic language
identification with CS prediction, in order to automate CS prediction from start
to end.

1.3 Related work

1.3.1 Linguistics on CS

In an early study Lipski (1978) studied the occurrence of CS in a bilingual
English-Spanish corpus. He found that the swapping between languages seems
to be restricted by the syntactical structures of languages involved. He hy-
pothesised that prior to a switch the involved languages may contain divergent
elements, but should be syntactically identical after a switch. However, not all
encountered code-switches follow this constraint perfectly: post-switch sections
of the sentence may not be fully congruent in the concerned languages. Never-
theless, Lipsky shows that incompatible syntactic structures are usually rejected
as nonsense when presented to native speakers in an experimental setting.

The support of CS constraints is shared with other researchers. For exam-
ple, Joshi (1982), who developed a formal framework in order to model code-
switches. His paper shows that a large number of the constraints can be derived
from one general constraint concerned with non-switchability of closed class
items. In short, closed classes are grammatical word classes with a limited
amount of members; new items are added seldom. In both English and Dutch
closed classes include pronouns, determiners, conjunctions, preposition and aux-
iliary verbs. In contrast, there are open classes, which are mostly large in size
and usually allow the addition of new items; think of nouns, verbs minus auxil-
iary verbs, adjectives, adverbs and interjections. According to Joshi, closed class
items are generally not switched between languages, only items that belong to
open classes.

In this study it is similarly assumed that code-switching is subject to con-
straints. Nevertheless, there are researchers who reject this idea, such as Thoma-
son (2001). She claims that in theory, given the appropriate social conditions,
no linguistic constraints exist and any linguistic feature can be transferred to
any language.

Poplack (1980) is another proponent of the existence of constraints on code-
switching. She concluded, after studying an English-Spanish dataset collected
from a bilingual community, that a code-switch happens when the grammati-
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cal structures of the first and second language overlap. Or, as she would call
it, when the equivalence constraint is respected. She suggests that the equiva-
lence constraint may be used to measure the degree of bilingual ability. First,
she discerns two extremes: on the one hand ‘risky’ complex intra-sentential
code-switches or Intimate CS, on the other hand less complex code-switches,
characterized by relatively many tag2 and single noun switches plus many inter-
sentential switches, or Emblematic CS. Poplack’s results indicate that non-fluent
bilinguals do not violate the equivalence constraint by use of ungrammatical
combinations, as might be expected. Instead, they make sure to avoid tricky
intimate switch points. On the other hand, fluent bilingual speakers do use inti-
mate code-switches. Moreover, the fact that even non-fluent bilingual speakers
do not violate the equivalence constraints, strengthens the theory that such
constraints do exist.

1.3.2 Research on Dutch CS

There are several studies about CS in which Dutch plays a role (Broersma
(2009), Nguyen & Doğruöz (2013), Papalexakis et al. (2014), Yılmaz et al.
(2016)). One of these, by Broersma (2009), is particularly interesting; not only
because the study is specified at Dutch-English code-switching, but also because
it tries to explain the mechanism behind unconscious code-switching. She finds
that in natural speech of a Dutch-English bilingual, CSs occur more frequently
when adjoined to a trigger word. In this setting, trigger words are cognates,
i.e. members of a pair of words that have a common etymological origin. Ex-
amples of trigger pairs are: ik - I, hij - he, was - was, goed - good and denk -
think. Since English and Dutch are both West Germanic languages, they are
lexically strongly related and therefore share many trigger words. To overcome
the difficulty of identifying the triggers, a total of six human judges manually
annotated the corpus. The data not only shows that trigger words correlate
with code-switching, but also that CS occurs more often between strongly re-
lated languages as Dutch and English compared to less related languages as
Moroccan Arabic and Dutch.

1.3.3 Automatic language identification

The majority of tools currently developed in NLP are directed at monolingual
texts. Automatic identification of language is usually the first step to deal
with multiple languages in a system (Nguyen et al., 2015). Early studies on
language identification were foremost directed at the recognition of a language
on document level (Baldwin & Lui, 2010). By now, a number of more fine-
grained approaches have been studied, at both sentence (Elfardy & Diab, 2013)
and word level (Nguyen & Doğruöz, 2013; Das & Gambäck, 2015).

2By a tag Poplack means a filler or a tag question. A filler is a signal word indicating the
utterer may pause but does not finish her turn yet, for example “I mean” or “you know”. A
tag question is an interrogative fragment such as “right?” or “isn’t it?”.
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Nguyen & Doğruöz (2013) focus on automatic language identification on
word level in Turkish-Dutch bilingual online communication. They take lan-
guage identification as a classification task with the labels Dutch and Turkish.
As baseline Nguyen & Doğruöz use an off-the-shelf tool meant for language iden-
tification on document level. For their main approach they use (combinations
of) language models and dictionaries to tag word language. Later they improve
their strategy by inclusion of context features based on the surrounding tokens,
by use of logistic regression, and conditional random fields (CRF). For evalua-
tion they look at performance of language identification on both word level and
post level. Their results show that the off-the-shelf baseline does not perform
well. Their best model, the CRF, makes use of a language model combined with
context features.

Das & Gambäck (2015) study the characteristics of code-mixing in social
media (Facebook). They present a system to automatically detect language
boundaries in mixed English-Bengali and English-Hindi messages. Their main
focus is on intra-sentential word level language identification. They use Support
Vector Machines (SVM) to classify the words. As baseline they used a simple
dictionary-based method. Performance of the best SVM system reached F1-
scores of 75-80%.

1.3.4 Predicting code-switches

A further step in dealing with multiple languages in NLP is automatic prediction
of CSs in a text. CS forecasting builds on automatic language recognition.
Without such identification, it is not possible to train features to predict CSs
on a larger data. Where automatic language identification predicts the language
of an utterance, predicting code-switches involves forecasting the language of a
word to come without having access to that word.

In (2008) Solorio & Liu were the first to predict code-switches at word level.
They used a small English-Spanish bilingual spoken corpus that they transcribed
and annotated. Their prediction of potential CS points in a sentence is based
on both syntactic and lexical features. Two learning algorithms, i.e. Naive
Bayes (NB) and Value Feature Interval (VFI), are tested using two criteria: 1)
the combination of precision, recall and F1-score; 2) manually rated naturalness
of generated switches. Used features involve previous token, language id and
various Part-of-Speech (PoS) tags for the previous word and the position of a
previous word within a phrase (e.g. verb phrase). NB outperforms VFI in most
of the tested feature configurations. The highest F1-score of NB was 28%, VFI
24%; still far from what is required in a real-life setting. Also, when naturalness
of generated CS sentences was tested (scale 1-5), NB (3.33) scored higher than
VFI (2.50) (VFI scores even lower than random).

Papalexakis et al. (2014) predict code-switches in a large dataset (4.5 mil-
lion posts) collected from an online Turkish-Dutch discussion forum. Their goal
is to automatically predict CSs within a post at word level. Besides expected
features based on language identification tags, they also involve features cov-
ering emoticons and multi-word expressions. They use a system for automatic
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language identification at word level created in a previous study (Nguyen &
Doğruöz (2013)) discussed above. Their best F1-score is 78%, using only three
language identification features.

Difference in performance between Solorio & Liu and Papalexakis et al.
has two main reasons. First, Papalexakis et al. base their CS predictions on
language identification, which assumes to have information about the whole
message, while Solorio & Liu does not. This choice is made by Solorio & Liu
to account for a real-time structure throughout the process. As a downside,
performance of CS prediction is expected to be lower. Second, contrary to
Solorio & Liu, Papalexakis et al. use a sampled set for testing and training in
order to overcome the challenges of an imbalanced data set; which is likely to
have a positive influence on the outcomes.

1.4 Contributions and overview

In this thesis I will study Dutch-English code-switches as they appear in Dutch
social media. I do not use material from a specific bilingual community, but
analyse the use of English within ordinary Dutch messages as found on Twitter
(Dutch is taken to be the dominant language). To my knowledge this is the
first study on Dutch-English CS within an environment that is not explicitly
bilingual. This study contributes to the investigation if code-switching in the
following ways:

• A large corpus of roughly 95,000 Dutch tweets was collected on Twitter
and made freely available.3 This includes a section of 1,300 tweets, which
were manually annotated on word level (Chapter 2). In addition to
the manually annotated corpus, a set of annotation guidelines is provided
(Appendix A). Furthermore, a simple command-line annotation tool
was developed. This tool is also made available,4 together with a user
manual (Appendix B).

• Dutch-English code-switches, as they appear in the annotated corpus, were
analysed. The focus of analysis lies on two kinds of code-switching: intra-
sentential code-switches and morphological code-switches. This analysis
provides information for model development (Chapter 3).

• Several supervised machine learning models, were developed for the
task of CS prediction on word level in a real-time setting. For the
execution of this task, a total of 10 features was analysed and ranked.
Training of the features was based on the manually annotated set (Chapter
4).

• Several models, both probabilistic and non-probabilistic, were developed
for the task of language identification on word level in a real-time

3http://illc.uva.nl/∼raquel/data/CS prediction.zip
4http://illc.uva.nl/∼raquel/data/CS prediction.zip
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environment. For the execution of this task, a total of 30 features was
analysed and ranked (Chapter 5).

• The model performing best on CS prediction was combined with the
model performing best on language identification. This combination en-
ables to fully automate the total process of CS prediction from start to
end (Chapter 5).
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Chapter 2

Corpus development

2.1 Introduction

The goal of this thesis is to analyse, identify and predict CSs from and to English
in everyday Dutch as used on social media. For these purposes a data set of
Twitter messages is collected. Of this set a subset is manually annotated for
analysis (Chapter 3) and to serve as gold standard for model development and
testing (Chapters 4 and 5).

In Section 2, I explicate the data collection with detailed information on how
the corpus was gathered and which information was filtered out. Moreover, I
provide some basic statistics. Section 3 is about the annotated corpus. It shows
the used annotation scheme, the statistics derived from the annotation process
and information about inter-annotator agreement. Also there are some final
remarks on how the collected data sets are used.

2.2 Data collection

I used the TwitterSearch data collecting toolkit provided by Koepp (2016). The
library is available at Github1 and makes use of the Twitter Search API.

Twitter messages were collected by search for Dutch tweets worldwide. These
were all automatically tagged ‘nl’ by the Twitter search API. Automatic lan-
guage identification by Twitter is crude in the sense that a message is identified
with one language only. A tweet tagged as ‘nl’ contains a majority of Dutch
words, or more specifically, has Dutch as its predominant language. As a result,
tweets identified as Dutch may additionally contain words of other languages,
such as English. Language mixing within tweets can only be identified with
the development of a more fine-grained language identification tagger. A down-
side of collecting ‘nl’ messages only is that we potentially miss tweets tagged as
‘en’ (for English) that may include language mixing with Dutch; which ideally

1https://github.com/ckoepp/TwitterSearch/
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should also be part of our dataset.2

Location was not taken as a mandatory condition since nowadays most users
disable the function to provide information concerning their whereabouts (ana-
lysis of the data showed only 5% of the users do provide such information, so it
would have taken much longer to collect a comparable sized corpus).

2.2.1 Collection

I collected the Twitter Corpus between June 28th and July 4th 2016 at several
moments during the week. One (or more) keywords have to be provided in order
to extract tweets: I decided to use one keyword per trial. All keywords are
used frequently in Dutch. To my knowledge there is no frequency list available
containing Dutch words most used on social media. Therefore, I chose keywords
based on word frequency as announced by Genootschap OnzeTaal.3 To confirm
the selected keyword is indeed used often on social media, I decided it should
yield a minimum of 2000 tweets over two trials.

The top 15 frequency list as provided by Genootschap OnzeTaal originally
consists of the words ja, dat, de, en, uh, ik, een, is, die, van, ‘t, maar, in, niet
and je. For practical purposes the original list was slightly adjusted in order
to form a selection suitable for searching. Firstly, since uh has many different
spellings (e.g. eh, uhhh, uhm, etc.) I decided to leave it out. Secondly, I changed
’t as originally in the list to het, since more often used within Twitter messages.
Thirdly, the word dat was omitted, because it did not yield the threshold of
2000 tweets. The final list of keywords can be found in Table 2.1, which also
includes the amount of yielded tweets per word.

2.2.2 Filtering

Retweets are filtered out. However, this is not enough to remove all duplicate
tweets. The main instigator of double tweets is the option for a user to create
an automated message on sites as YouTube or Facebook. For example, one can
share the liking of a video on YouTube through Twitter; this results in tweeting
a standard sentence of the form ”STANDARD SENTENCE: URL and VIDEO TITLE”:

(1) Ik vind een @YouTube-video leuk: https://t.co/xxx Horrific Horses falls
#1.
I like this @YouTube-video: https://t.co/xxx Horrific Horses falls #1.

Several variants of similar messages are in use. Since these standard sentences do
not exemplify the personal language use of the user, these tweets were removed.
Another reason is the use of multiple accounts posting the same message at

2Although it is unclear how Twitter actually performs automatic language identifi-
cation, they did post an insightful article online on forming their gold standard at
https://blog.twitter.com/2015/evaluating-language-identification-performance

3https://onzetaal.nl/taaladvies/advies/woordfrequentie
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Keyword English Tweets
een a, an 18302
ja yes 16757
ik I 12814
de the 9566
die that 9312
het the 8533
je you 8350
en and 4516
van of 4184
niet not 3057
in in 2865
is is 2736
maar but 2571

Table 2.1: Amount of tweets collected per keyword

once or one user tweeting the same text combined with different URLs. In these
cases only the first occurrence is stored.

2.2.3 Statistics

The original unprocessed corpus consists of 100,000 tweets. After removing
all duplicates, 95,126 tweets remain; from now on I will call this the Twitter
Corpus. In Table 2.2 we can find some basic statistic information about this
Twitter Corpus. First we notice that tweets are short, restricted by Twitter to
a maximum of 140 characters; this results in an average length of roughly 14.5
tokens per tweet. Secondly, as expected, a part of the users posted more than
one tweet in the time frame of tweet collection; therefore the number of users is
lower than the volume of tweets.

TC Corpus Tokens Tokens p. tweet Users Tweets

Total 1374094 14.45 46090 95126

Table 2.2: Basic statistics Twitter Corpus

2.3 Annotated corpus

2.3.1 Annotation scheme

From the Twitter corpus a total of 1,300 tweets, a hundred per keyword, were
extracted for manual annotation. This data set is called the Annotated Cor-

14



pus (AC). Every token (total 19,464) was assigned one of six different labels:
Dutch, English, Mixed, Social Media Term, Other and Unclear. In the next
paragraphs, every class is described shortly accompanied by one example (the
label concerned is printed boldface). The exact rules for classification can be
found in Appendix A.

Dutch (NL) All Dutch words, the majority, are tagged Dutch (NL); accord-
ing to the digital word list provided by OpenTaal.4 Special attention is given to
formerly English words incorporated in Dutch. For example, the words ‘chick’,
‘shoppen’, ‘happy’ and ‘pack’ are all labelled Dutch.

(2) Ik ben wakker en ik leef nog
I’m awake and still alive

English (EN) English words are labelled English (EN) in accordance to the
Hunspell dictionary.5

(3) ...die ijslandrs gooiden letterlijk met die bal egt im cryin......
...those icelandics literally threw that ball really im cryin......

Words that are both English and Dutch (e.g. ‘man’ or ‘is’), are labelled accord-
ing to their corresponding context language. If the context does not provide
enough information, the annotator decides which label has to be chosen.

Dutch-English mixed word (MIX) The label of a Dutch-English mixed
word encompasses a very specific group of words, namely a word containing
a code-switch at the level of morphemes. These words do not occur in either
English or Dutch dictionary.

(4) @name1 ja dat is zo kapot irritant, moet je de game weer restarten
enzo
@name1 that’s so incredibly irritating, restart the game again

Social media term (SMT) Under the label of Social Media terms or SMTs
ranges a collection of words involving URLs, @names, #hashtags, emoticons
(e.g. # #, :s), emoji’s (e.g. ,),6 words and abbreviations specifically used on
social media (e.g. LOL, tbh, tweet) and onomatopoeia (e.g. hahaaaaa, pfff).

(5) @name1 lol ja. en zijn paard hoe heet ie weer.
@name1 lol yes. and his horse what’s its name.

Other language (OTH) Words of any other language, besides Dutch or
English, are labelled as Other (OTH).

4See http://www.opentaal.org/
5http://wordlist.aspell.net/dicts/
6An emoticon exist of punctuation, e.g. :-) an emoji is an actual picture, e.g. ,.
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(6) Strijdlied du jour: Aan de strijders:...
Battle song du jour: To all warriors:...

Unclear (UNC) Any word that does not seem to fall under any of the men-
tioned categories is labelled Unclear. In general this means that the word does
not seem to be a term (often) used on social media and meaning and/or language
is not clear.

(7) ...Net voor de start heeft Lotto-name1 nog eens de v... ...
...Just before start Lotto-name1 has again v.. ...

2.3.2 Basic statistics

The Annotated Corpus (AC) with a total of a 1,300 tweets consists of 19,464
tokens. In Table 2.3 we can see the distribution of labels (NL, EN, MIX, SMT,
OTH and UNC as mentioned in the previous section) over the sets of tokens. We
see that the absolute majority of 85.8% is labelled Dutch. The second largest
group with a percentage of 11.5%, is annotated with the SMT label. Third
runner up is the English tagged token, with 1.4%. The other labels MIX, OTH
and UNC, all make up for less than 1 percent of the tokens.

AC Total
NL 16699 (85.8%)
EN 280 (1.4%)
MIX 9 (< 0.1%)
SMT 2246 (11.5%)
OTH 131 (0.7%)
UNC 99 (0.5%)
Total 19464 (100%)

Table 2.3: Annotated Corpus: Tokens per label.

In Table 2.4 we can find the distribution of labels over tweets. Note that this
time the given percentages do not add up to 100, since a twitter message might
contain several labels. Again, we can see that at large the labels NL, SMT and
EN appear the most. Roughly 99% of the tweets contains NL tokens and about
86% an SMT label. The third runner up, the English tokens, cover 8.5% of the
Twitter messages.

The main focus in this thesis is on the occurrence of English words in Dutch
Twitter messages. Based on the results in Table 2.4, we might say that the
ratio of English to Dutch tokens, namely 280 (i.e. 1.4%) compared to a 16,699
(85.8%) respectively, is relatively low. On the other hand, in Table 2.4 we see
that the percentage of tweets containing English words is notably larger, i.e.
8.5% in the total set of 1,300 tweets. Therefore we can conclude that while the
ratio of English words within Dutch language as used on Twitter, is quite low
(namely only 1.4%), the set of affected tweets is considerable (namely 8.5%).
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AC Total
NL 1285 (98.8%)
EN 110 (8.5%)
MIX 9 (0.7%)
SMT 1123 (86.4%)
OTH 21 (1.6%)
UNC 71 (5.5%)
Total 1300

Table 2.4: Annotated Corpus: Tweets per label

2.3.3 Inter-annotator agreement

Both annotators are Dutch natives and fluent in English. The first annotator
annotated 1,300 tweets (i.e. the Annotated Corpus), the second annotated the
first 100 tweets containing 1666 tokens. Calculation of inter-annotator agree-
ment yielded a Cohen’s kappa of 0.94. The corresponding confusion matrix is
given in Table 2.5; here we can see that there is some small disagreement in
labelling EN, NL and SMT, also we see quite some disagreement in the classi-
fication of Dutch and social media terms.

NL EN MIX SMT OTH UNC Total
NL 1447 1 0 3 0 0 1451
EN 1 17 0 0 0 0 18

MIX 0 0 0 0 0 0 0
SMT 14 1 0 179 0 0 194
OTH 0 0 0 0 0 0 0
UNC 1 0 0 0 0 2 3
Total 1463 19 0 182 0 2 1666

Table 2.5: Confusion matrix of inter-annotated data

The disagreements in which an English label is involved can all be found in one
tweet. This tweet is shown in (8), where (a) is the first annotator and (b) the
second. For clarity all English labels are printed bold:

(8) a. 〈SMT〉 @name1 Sup 〈/SMT〉 〈NL〉 man, ik ben hier voor de Trilogy
〈/NL〉 〈EN〉 RC. 〈/EN〉 〈NL〉 ik ga voor 〈/NL〉 〈EN〉 player 〈/EN〉
〈NL〉 en 〈/NL〉 〈EN〉 content creator. 〈/EN〉 〈NL〉 hoe zit het met
de 〈/NL〉 〈EN〉 conten creator part? 〈/EN〉

b. 〈SMT〉 @name1 〈/SMT〉 〈EN〉 Sup man, 〈/EN〉 〈NL〉 ik ben hier
voor de Trilogy RC. ik ga voor 〈/NL〉 〈EN〉 player 〈/EN〉 〈NL〉
en 〈/NL〉 〈EN〉 content creator. 〈/EN〉 〈NL〉 hoe zit het met de
〈/NL〉 〈EN〉 conten creator part? 〈/EN〉
@name1 Sup man, I’m here for the Trilogy RC. I’ll go for player
and content creator. what’s up with the conten creator part?

17



We can see that in (8a) “Sup” is classified SMT and “man” Dutch, while in (8b)
“Sup man” is labelled English as a whole. So, in the first case “Sup” is taken to
be an abbreviation for “What’s up” used at social media and “man” interpreted
as being Dutch. The second annotator took both “Sup” and “man” to be
English. “Sup” does occur in the English dictionary, but as a verb meaning ‘to
drink or eat’; “man” can be either Dutch or English bearing a similar meaning.
So, in this combination I the classification according to the first annotator is
preferred.

Another difference that can be found is that in (8a) “RC” is classified as
English, but in (8b) as Dutch. “RC” can be found in the English dictionary,
but then it means ‘Roman Catholic’; it is not feasible that this should be the
intended meaning, though it is not totally clear what the intended meaning
exactly is. The interpretation of (8b) should therefore be preferred, in that case
it is taken to be a name, as part of “Trilogy RC”, and in that sense neglected.

Both examples show one of the major problems that will arise when language
identification is automated, all words “sup”, “man”, “Trilogy” and “RC” exist
in the English dictionary, but should not always be classified as such.

As we can see in the Confusion Matrix (Table 2.5), there exists quite some
disagreement about whether a token should be labelled as social media term
or as Dutch. Some are clearly mistakes, for example (everything with an SMT
label is printed bold):

(9) a. 〈SMT〉 @name1 〈/SMT〉 〈NL〉 en waar zei ik dat jatten wel ok is?
〈/NL〉 〈SMT〉 @name2 @name3 @name4 @name5 @name6
〈/SMT〉

b. 〈NL〉 @name1 〈/NL〉 〈NL〉 en waar zei ik dat jatten wel ok is? 〈/NL〉
〈SMT〉 @name2 @name3 @name4 @name5 @name6 〈/SMT〉
@name1 and where did I say that it is ok to snitch? @name2
@name3 @name4 @name5 @name6

In (9b) “@name1” is separately labelled with NL, but it should have been SMT
because it starts with “@”.

Most other disagreements are about the classification of exclamations, as we
can see for example in (10):

(10) a. 〈NL〉 Dat ik terug moet werken. 〈/NL〉 〈SMT〉 Nah! 〈/SMT〉
b. 〈NL〉 Dat ik terug moet werken. Nah! 〈/NL〉

That I have to go back to work. Nah!

Since “Nah” does not exist in the Dutch dictionary, it should be labelled SMT,
hence (10a) is the better choice.

2.3.4 Corpus usage

Note that in the remaining of this thesis only the annotated corpus is used.
Though, since the entire Twitter corpus may be useful to other researchers, it
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is made freely available.7

2.4 Conclusion

A Twitter Corpus composed of Dutch messages was collected (roughly 95,000
tweets). A subset of 1,300 tweets, called the Annotated Corpus, was manually
annotated. Six language labels were used per word: Dutch, English, mixed,
social media term, other and unclear. Of all 19,464 tokens the majority was
Dutch (85.8%), followed by social media terms (11.5%) and English (1.4%). Of
all 1,300 tweets, 98.8% contain Dutch tokens, 86.4% social media terms and
8.5% English tokens. Therefore, I conclude that the ratio of English words
used in Dutch Twitter messages is quite low (1.4%), but the number of tweets
containing English words is considerable (8.5%).

Reliability of annotation was measured by inter-annotator agreement. Both
annotators are Dutch natives and fluent in English. One person annotated
the total Annotated Corpus, the other a 100. Calculation of inter-annotator
agreement yielded a Cohen’s kappa of 0.94, which indicates annotation to be
highly reliable.

7http://illc.uva.nl/∼raquel/data/CS prediction.zip
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Chapter 3

Analysis of code-switches

3.1 Introduction

A first step towards predicting switches from and to English within Dutch tweets
is to analyse the nature of its occurrences. There are some studies that ana-
lyse Dutch code-switches, take for example Broersma (2009), Papalexakis et al.
(2014) or Yılmaz et al. (2016). However, these studies focus solely on bilinguals,
while I do not use a specific bilingual sample. Characteristics of this specific
problem are not yet described. Analysis might not only expose the issue at
hand, but also provide insights that help to automate both CS prediction and
language identification.

The Annotated Corpus was used to analyse Dutch-English code-switching.
Before going further it is important to remember the great imbalance between
Dutch and English tokens in the data set. Of the 19,464 tokens 1.4% is labelled
EN and 0.05% as MIX, while the NL annotated tokens have a share of 85.8%
(see Section 2.3.2). Dutch clearly is the most prevalent language; it demarcates
the constraints for code-switching. Therefore Dutch is taken to be the dominant
language.

Although a total of six labels is used in the manual annotation task, in this
Chapter, I will only be concerned with English tokens (labels EN and MIX) and
Dutch tokens (label NL). The other labels (SMT, OTH and UNC) are taken to
be neutral and not mentioned here.

The following Section 2 is reserved for the explanation of code-switches in
general. Also, a description of the particular switches analysed in this study
(intra-sentential and intra-morpheme CS) is given. The third Section zooms
in on intra-sentential code-switching and the fourth on intra-morpheme code-
switching. Section 5 describes the distribution of Part-of-Speech tags over the
encountered switches. The Chapter ends with a short conclusion.
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3.2 Code-switches explained

Code-switching can be defined as the use of two or more languages by one
speaker within a single conversation in which the other participant (one or more)
has comparable understanding of the used languages. In Twitter messages,
information is mostly directed at a group of persons who are free to join. It
is assumed that the person using a code-switch expects its (main) audience to
understand the foreign word(s).

Code-switches can be subdivided into three topics: inter-sentential ; intra-
sentential and intra-morpheme switches. First, the switch point of inter-sentential
code-switches lies between two sentences, for example:

(1) Yessssss, eindelijk de #seizoensfinale van #Familie! Let’s kill June
@name1 @name2
Yessssss, finally the #seasonfinale of #Family! Let’s kill June @name1
@name2

Second, intra-sentential switches take place within a sentence. A sentence can
contain more than one switch point as we encounter in (2):

(2) Basic kan dus heel stylish zijn.
So basic can be very stylish.

Finally, there exist language switches at the level of morphemes, i.e. within a
single token, called intra-morpheme language switches:

(3) Er wordt weer lustig er op los geframed door de NOS over #brexit.
Again at the NOS they are freely framing about #brexit.

In this study only the last two forms of switching are thoroughly investigated;
this has mainly a practical reason, since the notion of inter-sentential switching
is not apparent within separate tweets. Although, a tweet may contain more
than one sentence, the majority does not (or not clearly, because of noisy punc-
tuation). Accordingly, it is assumed that most inter-sentential switches are not
in the corpus, since these will be labelled as English by the Twitter API and
therefore excluded when collected. As a result of this choice, a small minority
(i.e. 8 cases) of clearly recognizable inter-sentential switches is incorporated in
the set of intra-sentential switches.

Due to the noisy data, as expected from Twitter messages, English words
within quotation marks are not excluded as code-switch. The informal setting
leads to non-standard use of quotation marks and other punctuation symbols.
As such it is untrustworthy to use these as a clear sign for literal word repro-
duction disconnected from personal word selection.

Sometimes a difference is made between borrowing and code-switching. Al-
though various definitions are known, according to Romaine (1995), the concept
of borrowing stands for a word from another language that is often taken up
and is partially or totally naturalized. Such a division, between borrowing and
CS will not be made here. The main reason is that it is extremely difficult to

21



decide on what grounds a word is partially incorporated, let alone deciding what
“often” exactly stands for. Therefore a word is taken to be naturalized when it
appears in the Dutch dictionary; if not it is a code-switch.

3.3 Analysis: intra-sentential code-switching

In the annotated set a total of 110 tweets contain one or more intra-sentential
code-switches. The total of segments, i.e. sequences of one or more English
words, is 136, which in turn are comprised of 280 words.

About 26% of the CS segments have a length of three or more words. This
group is on the one hand characterized with multi-word expressions such as
idioms, tags and collocations as is shown in examples (4), (5) and (6). On the
other hand, these segments correspond to names, e.g. a film title (7) or the
name of a computer game (8). Often these segments are not totally integrated
with the rest of the message, especially the multi-word expressions; in 77%1 of
the cases they appear at the borders, begin or end, of the tweet.

(4) @name1 oh echt super lief liggen ze samen, en je neefje is groot aan het
worden :-) god bless him
@name1 oh really it’s so sweet how they lay together, and your nephew
is growing up :-) god bless him

(5) We will be back .... maar dan liever 2017 dan 2018
We will be back .... better 2017 than 2018

(6) @name1 slapende mensen zijn altijd zo mooi, volledig ontspannen is echt
natuurlijke schoonheid at it’s finest
@name1 people are so beautiful when asleep, totally relaxed is natural
beauty at it’s finest

(7) Jawel * De 430 premirekaartjes The Boys Are Back In Town @name1
zijn al uitverkocht https://t.co/xxx https://t.co/xxx
Oh yes * The 430 premiere tickets The Boys Are Back In Town @name1
are already sold out https://t.co/xxx https://t.co/xxx

(8) Om 18:00 ga ik live CS:GO spelen en de nieuwe game ”Dead by Day-
light” spelen! Mis het niet !
At 18:00 I will play CS:GO the new game ”Dead by Daylight”! Don’t
miss it !

The group of English segments of length 2 cover 21%, but the largest group
of 53% consists of just one word. This last group is generally more embedded
within the message, compared to the segments of length 3. The integration of
words does not only appear at a semantic level, but also at a syntactic level. The
latter meaning that the English words are inserted into the Dutch framework.
Several examples of this phenomena are shown in sentences (9), (10) and (11).

1This number is based on start and end point of the text segment that exemplifies either
English or Dutch, meaning social media terms are taken to be neutral, i.e. neglected.
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Still, not all single word code-switches are totally integrated, some appear as
discourse markers as in example (12).

(9) @name1 verpest m’n momentje van funny zijn niet
@name1 don’t spoil my moment of being funny

(10) @name1 Goede muziek is goede muziek. Of de serieuze ’kenner’ het
dismissed als fout of gewoontjes: swah.
@name1 Good music is good music. Even if the serious ’expert’ dis-
misses it as wrong or bland: swah.

(11) Basic kan dus heel stylish zijn.
So basic can be very stylish.

(12) Damn! Ik heb een identiteitscrisis.
Damn! I have an identity crisis.

Returning to the segments containing two words; these seem to fall a bit in
the middle. Part can be characterized as fully embedded (as in (13) and (14)),
while another part shows more similarity with the more separated multi-word
expressions (15).

(13) Ik zie mijn best friend voor de eerste keer deze zomer al 8 uren lang
niet en ik mis die fucking hard
For the first time this summer I have to do without my best friend for
8 hours now and I miss him fucking hard

(14) @name1 @name2 @name3 Ik ben geen wetenschapper maar gut feeling
zegt dat 100’den km2 met rust laten heel goed gaat blijken
@name1 @name2 @name3 I’m not a scientist but gut feeling says that
leaving alone more than 100 km2 will show to be good

(15) @name1 zoektocht it is
@name1 quest it is

3.4 Analysis: intra-morpheme code-switching

Words labelled as MIX embody the intra-morpheme switches. These appear
rarely, only 9 times in this data set, and mostly alone. Just once MIX is ac-
companied by an EN label, though not as a direct neighbour. This might be
explained by the fact that a mixed word is a CS in itself. And, according to
Poplack (1980), a quite complicated one. Therefore, an intra-morpheme CS im-
mediately followed by another CS is maybe too complex to apply. Nevertheless,
as mixed words are rarely encountered in the data set, it might just be a matter
of corpus size.

The mixed words are in majority verbs that show a clear pattern. All are
English stems either combined with the Dutch past participle marker ‘ge-’ or
the infinitive marker ‘-en’. The result is a Dutch verb conjugation of an English
verb as shown in (16) and (17). This forces the English word into the Dutch
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grammar structure. Also there are two English-Dutch noun combinations, such
as in example (18).

(16) @name1 ja dat is zo kapot irritant, moet je de game weer restarten
enzo
@name1 yes that is terribly irritating, do you have to restart your game
and stuff

(17) @name1 Ik heb mijn tegenstander vv’s gestuurd, niet geaccept. Kan
je misschien ook vertellen wie moet hosten?
@name1 I sent vv’s to my opponent, not accepted. Can you tell me who
will be hosting?

(18) Nog 2 dagen en dan ben ik eindelijk weer even van mn avonddienst-
streak af. En 2 dagen vrij. Hallelujah.
Only 2 days and I am finally releaved from my night shift streak. And
2 days off. Hallelujah.

Except for one, none of the mixed words appear at either start or end of the
tweet.

3.5 Analysis: Part-of-Speech tags

In Table 3.1 an overview of PoS tag distribution over the classes EN and MIX is
displayed. All words were manually tagged by one annotator. Nouns represent
the largest group in the English class (38.6%). The second and third largest are
adjectives (15.4%) and verbs (14.3%). In case of the mixed word class, verbs
show to be prevalent (66.7%) followed by nouns with (22.2%).

The outcomes seem to support the theory displayed by Joshi (1982). Al-
though closed class members are switched, i.e. pronouns, determiners, con-
junctions, prepositions and auxiliary verbs, all of them are part of a verb or
noun phrase, none appear on their own. English words that do occur alone are
all members of open classes (nouns, verbs, adjectives, adverbs); without any
exceptions.

I do not know whether the users are fluent bilinguals or not, and if so,
which ones. Still, it might be interesting to see if the data implies one of
the two. After studying a group of Spanish-English bilinguals, Poplack (1980)
finds support for her hypothesis that the kind of code-switches say something
about their bilingual fluency. She states that fluent bilinguals often use intimate
code-switches, i.e. complex intra-sentential language switches. On the other
hand non-fluent bilinguals make use of the relatively easier emblematic code-
switches, i.e. single noun switches combined with inter-sentential switches. As
the definition of these terms is not totally clear, here emblematic CS is defined
as the set of single noun switches and switches that are not embedded into the
Dutch sentence structure. Intimate CS is the set of intra-morpheme switches
and embedded switches that are not single nouns.

As we have seen in Section 3.3, many of the multi-word and some single-word
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Grammar rule EN MIX EN+MIX
Noun 108 (38.6%) 2 (22.2%) 110 (38.1%)
Adjective 43 (15.4%) 0 (0.0%) 43 (14.9%)
Verb 40 (14.3%) 6 (66.7%) 46 (15.9%)
Determiner 27 (9.6%) 0 (0.0%) 27 (9.3%)
Adverb 24 (8.6%) 0 (0.0%) 24 (8.3%)
Preposition 17 (6.1%) 0 (0.0%) 17 (5.9%)
Abbreviation 9 (3.2%) 0 (0.0%) 9 (3.1%)
Other 5 (1.8%) 0 (0.0%) 5 (1.7%)
Unclear 4 (1.4%) 1 (11.1%) 5 (1.7%)
Digit/punc. 3 (1.1%) 0 (0.0%) 3 (1.0%)
TOTAL 280 (100%) 9 (100%) 289 (100%)

Table 3.1: PoS-tags English and mixed words; percentages between brackets.

code-switches are not embedded, I count 61 of those. Moreover, nouns represent
the largest group in the English labelled class; of those 49 occur alone. On the
other hand, as we have seen in the previous section, intra-morpheme switches
occur rarely, just 9 times. The amount of embedded switches that are not
single nouns is not very high either; I only count 26 of them. Now, if we take all
these numbers together, the number of emblematic CS is 110 (76%) occurrences
compared to 35 (24%) of intimate CS. As this data set does not involve inter-
sentential CS, the share of emblematic switches might be even higher. It is not
a surprise that the encountered code-switches are mostly emblematic, because
the collected data does not belong to a group with specific bilingual abilities,
but to a broad group of random Twitter users.

These numbers might give a first indication about the bilingual language
level of average Dutch Twitter users. Clearly, further research is needed to
define more precisely what intimate vs emblematic CSs correspond to in Twitter
data.

3.6 Conclusion

Three levels of CS are discerned: inter-sentential CS; intra-sentential CS and
intra-morpheme CS. Here I focus on the last two forms. In the Annotated
Corpus 136 intra-sentential code-switches are found. About 26% have the length
of 3 or more words. Most of these are multi-word expressions or named entities.
Often these CSs are not fully integrated in the Dutch main sentence structure,
which is supported by the fact that 77% appears either at the start or the end
of the message.

The largest group CSs (53%) consists of a single English word. On average
this group is more embedded within the Dutch semantic and syntactic frame-
work. Segments containing 2 words cover 21%; these seem to be somewhere
between characteristics of length 1 and length 3+.

The group of intra-morphemes is extremely small with only 9 occurrences.
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Most (67%) are verbs, showing a clear pattern: an English stem combined with
a Dutch verb conjugation morpheme. Literally forcing the English segment into
the Dutch grammar pattern. Also there are two English-Dutch noun combina-
tions.

Most words used for CS are nouns, followed by verbs and adjectives. Other
PoS tags, such as determiners, pronouns and prepositions, do occur in noun or
verb phrases, but never on their own. This result supports Joshi’s (1982) theory
that code-switches are constrained; only open class members can be used.

The data might imply the average Twitter user to be a non-fluent bilingual.
The majority of the CSs (76%) are emblematic code-switches Poplack (1980),
which are relatively easy to apply. As this data set does not involve inter-
sentential CSs, the share of emblematic switches might be even higher. Also, a
better definition is needed of what intimate vs emblematic CSs correspond to
in Twitter data. Therefore, further research is necessary.
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Chapter 4

Automatic CS prediction

4.1 Introduction

One of the main goals of this thesis is to automatically predict code-switches
(CS), at word level to and from English within Dutch Twitter messages. A
better grasp of the mechanism behind code-switching can improve automatic
multi-language processing. Currently, a shift in language is (often) not recog-
nized, which leads to bad performance or even failing of widely used language
technologies such as sentence parsing and machine translation.

In order to find the best performing model, I chose to start with an ideal
situation in which all words are manually labelled according to the six cate-
gories described in Section 2.3.1. Clearly, this is not a realistic setting, since
in a totally automated process, language identification at word level is also au-
tomated. Therefore, the next Chapter 5 is dedicated to the task of language
identification and to the combination of both automated language identification
and automated code-switch prediction.

This Chapter starts with a short description of the task at hand, followed by
an explanation and evaluation of used features. Third, three prediction models
are described and tested, namely a Multinomial Naive Bayes model, a Support
Vector Machine and a Decision Tree model. Fourth, some extra attention is
given to performance evaluation of the models. Finally an overview of the
results and their evaluation is given in the last section.

4.2 Code-switch prediction task

The task of a CS prediction model is to predict whether a code-switch will take
place between the current and next token. So, following Solorio & Liu (2008),
every word boundary is taken to be a potential point of language change. As
this research is specifically set to language switches between English and Dutch
in both directions, I only take into account these two languages.
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In this context a Dutch word has label NL and an English word label EN
or MIX (more information about the meaning of language labels can be found
at Section 3.2.1). Additionally, there is a group of neutral tokens, i.e. tokens
without bearing any English or Dutch implication, which are either classified
SMT, UNC or OTH, or solely consist of digits or punctuation signs.

In (1) there are some schematic examples shown: the * indicates a switch
point, NL embodies a Dutch word, EN an English word and X a neutral token.
Suppose for example that a message starts with an English word, followed by
two neutral tokens, and ends with a sequence of Dutch words. In that case one
switch is counted and is placed just in front of the Dutch word, since the neutral
ones are overlooked (see (1a)). When a tweet contains one or more sequenced
English words, surrounded by Dutch (and/or neutral tokens), two transitions
are counted (see examples (1b) and (1c)).

(1) a. EN X X * NL NL NL NL NL.
b. NL NL NL * EN * NL X X X.
c. X X NL NL * EN EN EN * NL NL NL.

Example (1a) has 7 potential switch points of which 1 is an actual switch; (1b)
has 7 potential points with 2 actual switches; and (1c) counts 9 potential points
of which 2 are actual switches. If there are n tokens there are n − 1 potential
switch points. The task is to recognize the actual switch-points between the
potential ones.

Note that MIX embodies a word containing an English-Dutch code-switch
at intra-token level. Consequently, to place switch points at word boundaries
bends the truth. However, because the group of MIX labelled words is extremely
small (0.1% on the word total) and language switches do take place to and from
English within the indicated points, this error is overlooked.

As this task involves prediction, training is exclusively based on information
available prior of the token to be predicted. The program is not allowed to take
into account any information about the next token or everything that might
follow. Such a restriction influences model choice, since all models that take
into account information beyond this threshold, e.g. Conditional Random Field
models, are prohibited. These measures are taken to provide the means of a
tool that can be used in real time applications.

4.2.1 Challenge

Distribution of the positive and negative classes is quite uneven, due to the
fact that an everyday Dutch Twitter data set was chosen, the set is dominated
by Dutch. Of all potential switch points, only 1.3% is an actual switch point
(positive class). The imbalanced class distribution complicates the classification
task.
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4.3 Feature selection

A total of 10 features are evaluated, of which 6 are selected. All considered
features are found in Table 4.1.

4.3.1 Feature description

All evaluated features use information about n that refers to the word previous
to the potential switch point to classify. In other words, n is the last token that
decides the current language. Language can only be decided by a word tagged
with EN, MIX or NL; other labels are neutral.

Index The first feature calculates the position of n relative to the start of
the considered tweet. In case n does not exist, i.e. all preceding words are
neutral, the value is set to -1. Such a situation may arise for example, when
all preceding tokens are classified as SMT. The position of n might provide
additional information about the likelihood of an upcoming language shift.

Language id Whether a token n is English or Dutch is checked in features
#2 to #4. This information is based on manual language identification. If n
is English (i.e. classified as EN or MIX), it will get value 1, when Dutch the
value is 0 and in case n does not exist the value is -1. The same holds for its
preceding tokens (up to two). When there exists no n, n − 1 or n − 2 due to
tweet length the value is also set to -1. Information about the (amount of)
preceding language tags seems of great value: most of the English words, 53%,
occur alone; 21% consists of a group sized 2 and 13% of size 3.

Length Features #5 to #7 measure the length of n, n − 1 and n − 2 in
characters. In case there exists no n, n − 1 or n − 2 the value of this token is
-1. The length might provide information about the PoS tag of the token, for
example a determiner is on average shorter in length compared to a noun or
adjective.

CS count The amount of code-switches up to n is calculated in features #8,
#9 and #10. Feature #8 particularly counts the switches from Dutch to En-
glish; feature #9, the specific switches from English to Dutch are calculated; and
feature #10 the total switches. These features seem to be quite informative for
the CS prediction task. For example, if there has been just one switch counted,
e.g. from NL to EN, it is not possible to have another switch in the same direc-
tion. On the other hand it is quite likely to have a switch from EN back to NL,
since Dutch is the dominant language. Now, in this new situation, in which two
switches are counted (NL to EN and EN to NL), it is not that likely to have
another switch within the current message. In the total set of tweets containing
English words, 84.9% contains just one occurrence of adjoined English words.

29



# Feature description F-score P-value Rank
1 Position of n from start of tweet 2.501e+00 1.138e-001 8
2 Language id of n 4.497e+02 1.508e-098 3
3 Language id of n− 1 2.060e+01 5.683e-006 6
4 Language id of n− 2 1.633e+00 2.014e-001 9
5 Length in characters of n 2.095e+01 4.752e-006 5
6 Length in characters of n− 1 4.587e+00 3.223e-002 7
7 Length in characters of n− 2 3.425e–01 5.584e-001 10
8 Count of NL→EN switches before n 1.496e+03 5.060e-314 1
9 Count of EN→NL switches before n 1.963e+02 2.359e-044 4
10 Count of total switches before n 7.552e+02 8.714e-163 2

Table 4.1: Feature numbers and descriptions, univariate score, p-value and rank
per feature; boldface rankings p < 0.00001

4.3.2 Feature analysis

Univariate statistical tests are performed to analyse the predictive strength of
every feature. Per feature the ANOVA (analysis of variance) F1-score is de-
termined, dependent on the provided data and a null hypothesis. This score is
similar to a t-test, but generalized to apply to more than two groups. Statisti-
cally significant results justify the rejection of a null hypothesis. In the setting
of this research, the null hypothesis is that none of the features have any influ-
ence on learning the CS prediction task. Rejecting the null hypothesis therefore,
means that different features have their own effect on training, i.e. predictive
power, that is not given by chance. Based on both the F1-score and p-values,
the list of features is ranked. All information is found in Table 4.1.

Here, the significance level is set at p < 0.01. The features that do not have
enough significant predictive power are the position of n (#1), the language tag
of n− 2 (#4) and the length of both n− 1 and n− 2 (#6, #7). These features,
of which most capture a more distant context, are excluded for model testing.

The features that are most predictive represent the code-switches encoun-
tered hitherto (#8, #9, #10), the language id of both n and n − 1 (#2, #3)
and the length of n (#5). These features all significantly contribute to the pre-
diction of code-switching, not only do they respect the p = 0.01 threshold, for
all holds that p < 0.00001 (in Table 4.1 their rankings are printed boldface).
Therefore all of these features are used for training and testing the machine
learning models.

4.4 Models

Three supervised learning models are tested: a Multinomial Naive Bayes clas-
sifier, Multiclass Support Vector Machine and a Decision Tree classifier.
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4.4.1 Multinomial Naive Bayes (MNB) model

A Multinomial Naive Bayes (MNB) model is an implementation of a naive
bayes algorithm specified to handle multinomial distributed data. This is a
classic naive bayes variant often used for classification of texts. The Naive
Bayes model is available at scikit-learn.1

4.4.2 Decision Tree classifier model

The aim of a Decision Tree classifier is to predict a class based on simple decision
rules inferred and learned from the data features. Class labels are represented
by the leaves; specific feature combinations that indicate a certain class are
represented by the branches. The algorithm to decide the best branch split is
based on a Gini impurity measure. With Gini impurity one can calculate the
chance that an item randomly gets an incorrect label according to the label
distribution of the set. This information is used as a baseline to measure the
quality of a split. The decision tree model is available at scikit-learn.2

4.4.3 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a linear multi-class classification model
trained on 1-slack soft-margin formulation. The model is thereby capable to
handle data that is in fact not perfectly linearly separable. The best linear
division is decided by calculating the smallest difference between a maximal and
minimal margin. The introduction of slack variables, one for every example,
allow a data point to be inside the margin or even on the wrong side of the
decision boundary; though these are seen as margin errors and penalized as
such. Both model and learner are presented by the Pystruct library.3

4.5 Evaluation of performance

As mentioned in Section 4.2.1, we are dealing with a highly imbalanced dataset.
Consequently, a model that does not predict any switch points yields an accu-
racy of around 98%. Clearly, accuracy does not provide the needed insightful
information. Therefore, the focus lies on precision, recall and F1-score of the
predicted switch points. Precision is the proportion of truly predicted posi-
tives amidst the total set of predicted positives; in other words, the amount of
relevant items within the set of predicted items. In this context, precision is
the percentage of predicted code-switches that are true among the total set of
predicted code-switches (both true and false).

Recall indicates the proportion of truly predicted positives among the total
number of true positives; or the percentage of selected relevant items within
the total set of relevant items. To calculate recall, the set of positives that are

1http://scikit-learn.org/0.17/index.html
2http://scikit-learn.org/0.17/index.html
3https://pystruct.github.io/index.html
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truly classified is divided by the sum of truly classified positives plus the group
of items that should have been classified as positive. Within the perspective
of this thesis, recall means the portion predicted code-switches that are true
among the total set of true code-switches including the ones that should have
been recognized.

The F1-score is the harmonic mean of precision and recall. Compared to
the commonly used arithmetic mean, the harmonic mean reduces the weight of
large extreme numbers and induces the weight of small extremes. This statistical
measure is often used in computer science as indication of the performance of
classification algorithms. For F1-score, precision and recall the like, it holds
that 0 is the worst value while 1 is the best.

4.6 Results

For model development 10% of the annotated corpus was set aside; training and
testing was performed in a 5-fold cross-validation setting using the other 90%
of the corpus. Labels were divided evenly over the five folds to deal better with
the skewed label distribution. Model performance is measured with precision,
recall and F1-score on the automatically selected switch points, as described in
the previous section. The results can be found in Table 4.2.

As a baseline system I trained the models on the second feature only; this
feature indicates whether the language of n is English, Dutch or neutral. The
language tag of the last non-neutral word decides the language setting in which
prediction has to be performed. There are two reasons to choose this particular
feature; first, there cannot be a prediction of a language switch if the current
language is unknown. Second, if n is neutral there cannot be a language shift.
Hence, intuitively this knowledge seems to play a key role in code-switch pre-
diction.

As we can see in Table 4.2, the Decision Tree model scores best on the
level of code-switch prediction for the baseline model with precision 7.9%, recall
10.4% and F1-score 9%. Both MNB and SVM do not predict any code-switches.
Differences in results between Decision Tree and both MNB and SVM are not
significant though, probably due to a standard deviation of 16% (precision),
21% (recall) and 18% (F1-score).

Next to the baseline, several feature combinations were used for training
the models; I only show the two most informative settings containing the best
results: first, a framework using the top 3 best scoring features; second, a context
in which all features are used.

First, in the top 3 setting, the three highest ranked features are used (see
Table 4.1). In order of predictive strength, these are numbers #8, #10 and
#2 or the amount of NL to EN switches before n, the total count of switches
before n and the language id of n respectively. Second, learners of the models
are trained with all selected features, i.e. #2, #3, #5, #8, #9, #10 with a
significance of p < 0.01. Both MNB and SVM models perform better the more
features are added for training, while the Decision Tree model performs best
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when trained on the top 3. None of the intermediate settings (not shown here)
returned better outcomes. In case of the Decision Tree model, training on the
top 4 features produced the exact same results using the top 3.

Taking a closer look at Table 4.2, we see that the Decision Tree model yields
the best results of all in the top 3 feature setting; with 43.9% on precision,
50.7% on recall and 46.3% on F1-score (correspondingly, standard deviations
are 12.4%, 2.7% and 5.5%). These results not only significantly improve the
Decision Tree baseline (paired t-test p < 0.05), but also shows significant im-
provement compared to the outcomes of the best Naive Bayes classifier (paired
t-test p < 0.01) and best SVM classifier (paired t-test p < 0.05).

In comparison, the best Naive Bayes classifier of Solorio & Liu (2008) obtains
27% F1-score, with 18% precision and 59% recall. They used a Naive Bayes
model trained on lexical and syntactic features to identify English-Spanish code-
switching points. Similarly to the approach in this Chapter, Solorio & Liu use
a manually annotated data set for language identification.

MNB Decision Tree SVM
p r f1 p r f1 p r f1

Base(#2) .000 .000 .000 .079 .104 .090 .000 .000 .000
Top3(#2,8,10) .152 .074 .096 .439 .507 .463 .000 .000 .000
All(#2,3,5,8-10) .188 .102 .124 .425 .415 .416 .134 .008 .016

Table 4.2: Results of precision recall and f1-score of code-switch prediction for
the Multinomial Naive Bayes (MNB) model, the Decision Tree model and the
Support Vector Machine model. The best results are shown in boldface.

As mentioned at the start of this Chapter, one should keep in mind that the
presented results are idealized in the sense that feature extraction of the CS
prediction learner is based on a manually annotated data set. At the end of
Chapter 5, the best code-switch prediction model (i.e. the Decision Tree model),
will be combined with a data set in which the language is indeed automatically
identified.

4.7 Conclusion

The binary classification task is set to predicting whether a CS takes place
between the current and next token; this without information about the next
token or what might follow. Three supervised learning models were tested on
this task: a Multinomial Naive Bayes (MNB) model, a Decision Tree model and
a Support Vector Machine (SVM). All models were trained in a 5-fold cross
validation setting.

Six features were used for training. These features were selected based on
their ANOVA F1-score during development. Models are evaluated by calculating
precision, recall and F1-score of the positive class. As baseline the models were
tested on one feature (indicating the language of n). Best performance results
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are yielded by the Decision Tree model; with 43.9% on precision, 50.7% on recall
and 46.3% on F1-score. These results significantly improve performance of the
baseline and of both the best MNB and best SVM classifiers.

However, we should note that the CS prediction task was performed in an
idealized setting, because the features were trained on manually tagged tokens.
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Chapter 5

Automatic Language
Identification

5.1 Introduction

The aim of the previous chapter was to automate code-switch prediction. The
task of prediction was performed in an idealized situation, namely: features
were trained on words with manually predetermined language tags. In order
to fully automate code-switch prediction it is necessary to automate language
identification.

Improvement of automatic language identification can also be beneficial for
natural language processing in general. Inter-sentential language shifts are often
not recognized, impairing performance of traditional techniques such as PoS
tagging or spell checking.

In Section 2, I explain the task of language identification in more detail,
followed by the challenges it involves. The third section is set apart for model
description; besides a baseline model, one non-probabilistic rule-based and three
machine learning models are considered. Affixed to the paragraph dedicated to
the machine learning models, there is a section about feature selection. In this
part all features are explained and evaluated. Fourth, there is a section on
evaluation of performance. Fifth, performance results are given of the language
identification models and in Section 6 these results are discussed. In Section 7,
the best CS prediction model is combined with the best language identification
model. Finally, the chapter is completed with a short conclusion.

5.2 Language identification task

Language identification at word level can be approached as a task of classifica-
tion. Separate tokens are sorted individually into one of the designated classes.
The task in itself does not require an online approach; it is perfectly fine to as-

35



sume access to the whole document. However, it should be stressed that in this
particular real-time context (i.e. in combination with the online CS prediction
task), any knowledge surpassing the current token is prohibited.

For the language identification task the same set of classes is used as for the
manual annotation task; tokens are similarly divided into the following 6 classes
(A clear description of class labels and the manual identification task can be
found in Section 2.3.1 and Appendix A):

1. Dutch tokens are labelled as NL (85.8%)

2. English tokens are labelled as EN (1.4%)

3. Tokens that are partly Dutch and partly English, i.e. mixed tokens, are
labelled as MIX (<0.1%)

4. Tokens that are identified as Social Media Terms are labelled as SMT
(11.5%)

5. Tokens of another language (either German, French or South-African) are
labelled as OTH (0.7%)

6. Unclear tokens that do not seem to fall into any of the other classes are
labelled as UNC (0.5%)

The aim of this specific language identification task is to mimic the manual
annotation of the data set as close as possible. The set of labels is therefore
exactly the same.

5.2.1 Challenges

In the listing of classes above, percentages per class of the total Annotated
Corpus are shown. Note that distribution of classes is rather uneven, due to the
fact that everyday Dutch Twitter data was chosen (e.g. instead of a bilingual
set), the set is dominated by Dutch. The imbalanced partition of the classes
complicates the classification task.

Another difficulty concerning the task at hand is lexical overlap among Dutch
and English dictionaries. Dictionary lookup is the main approach in this study
to discern between English and Dutch (exactly how this was done is explained in
Section 5.3.2). I calculated the dictionary overlap existing between the English
and Dutch labelled words. This is an often used technique to illustrate this
challenge.

Of all words labelled NL, 48% appear in both Dutch1 and English2 dictio-
naries. For the EN annotated words this was 42%. For comparison, in Nguyen
& Doğruöz (2013) the encountered overlap between Turkish-Dutch words was
24.6% for the combined labels. The high percentage in overlap between Dutch

1http://www.opentaal.org/bestanden.html
2http://wordlist.aspell.net/dicts/
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and English can be explained by the fact that these languages are closely related
and therefore share many same and similar words (Broersma, 2009).

The encountered group of words appearing in both dictionaries is varied.
First there are cognates, sharing the same form and meaning, such as ‘in’,
‘festival’ or ‘is’. Also there are words formerly borrowed from English, but
now incorporated; think of ‘mountainbike’ or ‘business’. Moreover, there is a
group of words that share the same spelling but have a different meaning and a
different pronunciation; such as ‘ten’, ‘die’, ‘door’ or ‘van’.

5.3 Models

In total five models are evaluated in this Chapter. The first is a baseline
model that uses an off-the-shelf language identification tool. The second is
a non-probabilistic rule-based algorithm developed for this specific task. The
remaining models are all supervised machine learners: a Support Vector Ma-
chine (SVM) model, a Decision Tree model and a Chained Conditional Random
Field (CRF) model. Development of the models is based on a development set,
which is 10% of the annotated corpus. The remaining 90% was set aside for
testing and training in a 5-fold cross validation setting.

5.3.1 SMT identification tool

All models, including the baseline, use a tool specifically developed for this
study to automatically recognize social media terms or SMTs (see Section 2.3.1
for an exact definition). For every token it is decided whether it is probably an
SMT and, if not, identification of the remaining language labels is performed. To
make sure most of the SMTs are actually recognized, tokens are not preprocessed
beforehand, e.g. removal of punctuation, but along the way correspondingly to
the specific purpose. In order to identify most SMTs, for every token it is
checked whether it starts with @, & or #; whether it is a URL; whether it is
an emoticon; whether it is an emoji;3 or whether it appears as a member of the
provided SMT word list.4 In Figure 5.1 a simplified version of the algorithm is
provided.

5.3.2 Dictionary lookup

Furthermore, all of the evaluated models, except the baseline, make use of digi-
tal word lists, here often called dictionaries. These dictionaries function as lan-
guage reference. First a Dutch dictionary is used based on a word list provided
by OpenTaal5 in combination with a Dutch names list provided by Meertens
Institute.6 English words were looked up in a list based on the Hunspell dictio-

3An emoticon exist of punctuation, e.g. :-) an emoji is an actual picture, e.g. ,.
4This list is given in Appendix C
5http://www.opentaal.org/bestanden.html
6http://www.meertens.knaw.nl/
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for i in tokens do
if i starts with @, & or # then

i← SMT

else if i == URL then

i← SMT

else if i == emoticon then

i← SMT

else if i == emoji then

i← SMT

else if i in SMT list then

i← SMT

else

i← function.find other label(i)
end if

end for

Figure 5.1: Pseudo code SMT identification tool.

nary.7 In theory the label OTH (other) embodies all other languages. Clearly, it
is impossible to run a program with dictionaries for all other languages. There-
fore, I selected the three main languages next to English: German, French and
South-African.8 The choice is based on manual analysis of the OTH labelled
words of the development set. Since all tokens that belong to another language
are annotated as OTH, no exact numbers are available.

All dictionary entries are lowered (i.e. capitals are replaced with lowercase)
and in case the dictionary item contained a space the entry was split in two
(since I only look at one space separated token at a time). To limit running
time, all dictionaries are stored as a trie.9

On average, the dictionaries are composed of words in their basic form.
Meaning that, when searched, other forms such as verb conjugations or plurals
are not found, since there is no exact match. Especially concerning the two
main languages English and Dutch focussed on in this thesis, this encountered
weakness proves to be problematic. Often a stemmer, such as the well known
NLTK Snowball Stemmer,10 is used in order to find the base form of a word.
Unfortunately, performance of stemmers for Dutch is low. To make sure most
word forms are indeed found; I use the pattern library for both languages.11

The pattern library provides a variety of high quality functions that turn given
words into a different form according to the corresponding grammar rules of the

7http://wordlist.aspell.net/dicts/
8The dictionaries of South-African, German and French are found on

http://www.winedt.org/dict.html
9A trie or digital tree is an efficient search tree suited for dictionary data structures. For

this study the marisa-trie library was used: https://pypi.python.org/pypi/marisa-trie
10http://www.nltk.org/api/nltk.stem.html
11http://www.clips.ua.ac.be/pages/pattern-nl and http://www.clips.ua.ac.be/pages/pattern-

en
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chosen language. Think for example of the singularization or plurarization of a
word.

Singularized noun and lemmatized verb forms are added for both Dutch and
English dictionary lookup. For example, noun singularization turns the plural
noun nijlpaarden (hippopotamuses) into the singular nijlpaard (hippopotamus);
the first plural form is not in the Dutch dictionary, while the singular form is.
The same holds for verb lemmatization which provides us with the infinitive
form of a conjugated verb; e.g. danste (danced) does not exist in the Dutch
dictionary, but dansen (to dance) does.

Furthermore, two extra forms are added for Dutch lookup only: first a pred-
icative form and second a combination of a predicative and lemmatized form.
Firstly, in Dutch adjectives followed by a noun are inflected with an -e suffix,
for example gele (yellow) in een gele jas (a yellow coat) is only recognized if
transformed to the predicative geel (yellow). Secondly, words of the form zin-
gende (singing) as in de zingende tijger (the singing tiger) are only properly
recognized as zingen (to sing) when first the predicative word form is taken and
then the lemmatized form.12

5.3.3 Baseline

As baseline model, I use the off-the-shelf language identification tool Langid.py13.
This program is pre-trained over 97 languages, including English and Dutch.
The program was presented with a single word input. In case of inconclusive
language identification, the token is labelled as Dutch. Note that langid.py was
developed to identify a language at document level instead of word level. For
this reason, expectations on performance are low.

5.3.4 Rule-based dictionary lookup (RBDL)

The rule-based dictionary lookup (RBDL) model is a non-probabilistic algo-
rithm, manually developed for the specific language task at hand. As the name
already indicates, the model tests whether (the base form of) a token occurs in
one of the provided dictionaries. With the pattern library14 singularized, lem-
matized and predicative word forms are added for dictionary lookup purposes.
Moreover, extra rules are added to identify mixed words (MIX), compound
words (both EN and NL) and most common exclamations (SMT). In Figure
5.2, the simplified pseudo code of the algorithm is shown.

Rule hierarchy plays an important role in this particular algorithm. The
chosen order is the result of trial and error, therefore by no means do I want
to claim this hierarchy the best, only the best I could find. There are 9 main
rules, so in theory there are 9! = 362, 880 possibilities. As far as I know there

12The singularized form is zingende (singing), the lemmatized form zingennen (not proper
Dutch) and the predicative form is zingend (singing); none are in the Dutch dictionary

13https://github.com/saffsd/langid.py
14http://www.clips.ua.ac.be/pages/pattern-nl and http://www.clips.ua.ac.be/pages/pattern-

en
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for i in tokens do

if i != SMT then

if i == digit or i == punctuation then

i← NL

else if i in NL dict then

i← NL

else if singularized(i) in NL dict or lemmatized(i) in

NL dict or predicative(i) in NL dict then

i← NL

else if i in EN dict then

i← EN

else if singularized(i) in EN dict or lemmatized(i) in

EN dict then

i← EN

else if lemmatized(predicative(i)) in NL dict or i ==

NL NL compound then

i← NL

else if i == exclamation then

i← SMT

else if i in DE dict or i in FR dict or i in AF dict then

i← OTH

else if i == EN NL compound then

i← MIX

else

i← NL

end if

end if

end for

Figure 5.2: Pseudo code dictionary lookup tool.

is no scientific way to find the optimal order of rules. It should be clear that
this realization adds to the motivation to evaluate machine learning models, as
described in the next Section.

5.3.5 Machine learning models

The models under attention in this Section are all three supervised Machine
Learning (ML) models, equipped for classification problems; these are a Support
Vector Machine (SVM), a Decision Tree and a Chained Conditional Random
Field (CRF). Performance of both the Decision Tree model and the SVM was
also tested in the code-switch prediction task in the previous chapter. These
models are likewise suited for online word identification.

The CRF model cannot be used for real-time language identification, because
it uses context information of a total Twitter message. Therefore it is not
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applicable in combination with the code-switch prediction task. On the other
hand, results are of great interest, since not all language identification tasks
expect an on-the-go approach. For example, think of the Twitter language
identification API.

Before describing the ML models, I will first elaborate on the features used
in all of these models.

5.3.6 Feature selection

In total 30 features are tested, which all have significant predictive power (p <
0.001). The considered features are found in Table 5.1. Note that these features
are used only for the machine learning models, but not for the baseline and
rule-based model as described in the previous Sections 5.3.3 and 5.3.4.

Feature description

All evaluated features use information about either i, i− 1 or i− 2; i refers to
the current token to classify.

Length The first feature counts the total amount of characters in i. That is,
the number of alphabetical signs; numbers, punctuation and emoticons are not
counted. The length might provide information about the class of the token.
For example, very long tokens may indicate it to be a URL or exclamation;
which both should be classified as SMT. Tokens with length 0, on the other
hand, might indicate the token to be a number (most of these get labelled NL),
punctuation (NL or SMT) or an emoticon (SMT); which narrows the set of
options from 6 classes down to 1 or 2.

Vowel-consonant ratio Feature #2 calculates the vowel-consonant ratio of
a word on a scale of 0 to 10 by total vowels / total characters ∗10. Since all
non-alphabetic characters, such as punctuation, are removed, it is assumed that
the remainder consists of consonants. In other words, if this feature has value 0,
the token consists of consonants only; when the value is 10 it consists of vowels
only; in case the word is formed by three vowels plus three consonants, the value
is 5.

One of the main reasons to include this feature is that it might indicate if the
token is a social media term in the form of an exclamation or onomatopoeia.
Either high (above 7.5) or low (under 2.5) values can be a signal, since on
average words will have a ratio in the middle. For example the exclamation
NOOOOOOOO! (value = 8.9) or the onomatopoeia mmm (value = 0).

SMT label The boolean feature #3, tests whether i should be labelled SMT
(value 1) or not (value 0). The setup of this feature is completely in line with
the workings of the SMT identification tool as described in 5.3.1. Clearly, this
feature is extremely important in deciding whether a token is a social media
term.
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Dictionary lookup Language classification is concerned in features #4 to
#8. If the token does not already have an SMT label nor is a digit nor comprised
of punctuation only, it is tested whether it occurs in any of the dictionaries. Per
feature one language is checked, these are English (EN), Dutch (NL), German
(DE), French (FR) and South-African (AF). Implementation is in line with the
dictionary lookup tool in 5.3.2. The produced values are boolean; the value is
1 if the word occurs in the dictionary, otherwise 0. In features #9 and #10 the
same for English and Dutch dictionaries is performed for i− 1; in #11 and #12
for i−2. Dictionary lookup is of great importance for the language identification
task, since it provides direct information to which language(s) the token might
belong. Due to word overlap between the various dictionaries value results are
not exclusive.

Extended dictionary lookup for NL an EN The boolean features #13 to
#30 test the occurrence of various word forms in Dutch and English dictionaries.
All forms are checked for i, i−1 and i−2. Again, implementation of the features
is in line with the dictionary lookup tool (Section 5.3.2). Many of the words
are not found if one only uses the dictionary lookup features described in the
paragraph above. The cause lies in the inability to recognize a specific word
form. The additional lookup of specific word forms in both Dutch and English
dictionaries is of great value in the language identification task of separate words.
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# Feature description F-score P-value Rank
1 length of i 1079.357 0.000e-000 6
2 Vowel-consonant ratio of i 211.546 8.897e-220 14
3 i is SMT 20378.817 0.000e-000 1
4 i in NL dictionary 1941.283 0.000e-000 2
5 i in EN dictionary 343.753 0.000e-000 9
6 i in DE dictionary 136.332 2.859e-142 19
7 i in FR dictionary 106.460 4.386e-111 23
8 i in AF dictionary 440.375 0.000e-000 8
9 i− 1 in NL dictionary 1079.848 0.000e-000 5
10 i− 1 in EN dictionary 322.916 0.000e-000 10
11 i− 2 in NL dictionary 783.413 0.000e-000 7
12 i− 2 in EN dictionary 261.660 1.352e-270 13
13 singular form i in NL dictionary 1134.619 0.000e-000 4
14 lemmatized form i in NL dictionary 179.773 3.247e-187 16
15 predicative form i in NL dictionary 1495.804 0.000e-000 3
16 pred-lem combiation form i in NL dictionary 198.814 9.233e-207 15
17 singular form i in EN dictionary 166.213 3.075e-173 18
18 lemmatized form i in EN dictionary 171.110 2.720e-178 17
19 singular form i− 1 in NL dictionary 275.381 2.144e-284 12
20 lemmatized form i− 1 in NL dictionary 53.769 1.353e-055 26
21 predicative form i− 1 in NL dictionary 313.227 3.310e-322 11
22 pred-lem combination form i− 1 in NL dictionary 59.687 7.508e-062 25
23 singular form i− 1 in EN dictionary 110.108 6.636e-115 21
24 lemmatized form i− 1 in EN dictionary 106.327 6.044e-111 24
25 singular form i− 2 in NL dictionary 108.864 1.330e-113 22
26 lemmatized form i− 2 in NL dictionary 24.991 3.457e-025 30
27 predicative form i− 2 in NL dictionary 126.768 2.611e-132 20
28 pred-lem combi form i− 2 in NL dictionary 28.762 3.676e-029 29
29 singular form i− 2 in EN dictionary 49.909 1.635e-051 27
30 lemmatized form i− 2 in EN dictionary 49.257 7.992e-051 28

Table 5.1: Numbers, descriptions, univariate score, p-value and rank per feature
(top 10 in boldface).

Feature analysis

To analyse the predictive strength for every feature, univariate statistical tests
are performed on the development set. Per feature the ANOVA F1-score is
determined similar to the calculation in Section 4.3.2. All information is found
in Table 5.1.

The features have highly significant predictive power with p < 0.001. The
most predictive is feature #3 (whether i is SMT); this probably has to do with
the fact that the SMT test can filter out the majority of SMT tokens. Further-
more, there does not exist any overlap between the SMT class and other classes.
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Due to existing overlap between dictionaries, training features concerned with
dictionary lookup do not give exclusive values. Second, third and fourth best
features are #4, #15 and #13; indicating whether the original form, predicative
form and singular form of i are found in the Dutch dictionary. The high scoring
features next in line are the occurrence in the Dutch dictionary of i − 1 and
i − 2 and the length of i (#9, #11 and #1). Surprisingly, whether i is found
in the South-African dictionary (#8) yields a higher F1-score, compared to its
occurrence in the English dictionary (#5). A likely explanation is that a tweet
containing South-African words is most probably South-African in total. No
mixed Dutch and South-African tweet exists in the Annotated data set. Con-
trary, English most often occurs mixed with Dutch in tweets. Finally, the tenth
best feature for the language identification task is feature #10, indicating if the
original form of i− 1 exists in the English dictionary.

The feature scoring worst is #26, i.e. the lemmatized word form of i− 2 in
the Dutch dictionary. Next in line of relatively bad scoring features are #28-
#30, which all have to do with both Dutch and English dictionary lookup for
various word forms of i− 2. Apparently, this information is of less importance
compared to clues closer to i.

5.3.7 Decision Tree classifier model

The purpose of a Decision Tree classifier is to predict a label based on simple
probabilistic decision rules inferred and learned from the provided data features.
This model is the same as the one described in Chapter 4, Section 4.4.2. The
decision tree model is available at scikit-learn.15

5.3.8 Support Vector Machine (SVM)

A Support Vector Machine (SVM) divides the different classes by use of planes
in a multi-dimensional environment. As the labels do not represent perfectly
separable classes a 1-slack soft-margin formulation is used for learning. This
model is the same as the one decribed in Chapter 4, Section 4.4.3. Both model
and learner are presented by the Pystruct library.16

5.3.9 Conditional Random Field (CRF) chain model

A chain CRF model is one of the most commonly used models for structured
labelling tasks in natural language processing. In this approach each token is
taken to be a node in a chain, connected with its neighbouring tokens through
an edge. It is not needed to specify the direction of the edges as feature input
is assumed to be aligned according to the nodes in the chain. The length of
the chain fluctuates according to the number of tokens in the tweet. Also, it is
assumed that all nodes have the same meaning, in the sense that each node has
the same number of classes which are bearing the same weights.

15http://scikit-learn.org/0.17/index.html
16https://pystruct.github.io/index.html
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The learner is based on a Viterbi algorithm, i.e. an efficient method to find
the max-product in the passage of the nodes in the chain. Both model and
learner are made available at PyStruct.17

5.4 Evaluation of performance

Since the data set is very skewed and a total of 6 classes are used, accuracy
does not provide enough detailed information about model performance. In
case all tokens are labelled as Dutch, the accuracy is 86%. While a program
that identifies tokens as being either Dutch or SMT, has an accuracy of about
95%. This does not only show that the developed tool to recognize SMTs
functions well, but also that a more fine grained method is needed to measure
the classification performance of the less frequent classes. Hence, I concentrate
on precision, recall and F1-score per class.

Since, in this thesis, the main focus lies on the recognition of English words,
most attention goes to the classes EN and MIX. However, as MIX is a partic-
ularly small group (0.05% of all tokens), even compared to the small group of
EN labels (about 1.4% of all tokens), performance on identifying the EN labels
is therefore of highest importance. A similar choice is made for the classes OTH
and UNC; these labels lie somewhat out of the scope, therefore their perfor-
mance results cannot be decisive.

In context of the language identification task, precision stands for the per-
centage of truly predicted language labels of a certain class among the total
collection of predicted language labels of that class. Recall, embodies the per-
centage of truly predicted language labels of a certain class among the total set
of items actually belonging to that class. Similar to Section 4.5, F1-score (the
harmonic mean of precision and recall) is calculated.

5.5 Results: language identification

Training and testing was performed in a 5-fold cross-validation setting using
90% of the annotated corpus (for means of comparison, this approach was also
followed for the baseline and RBDL model; naturally without training part).
The remaining 10% of the corpus was set aside for development. Labels were
divided evenly over the five folds to deal better with the skewed label distri-
bution. Model performance is measured with precision, recall and F1-score on
automatically allocated language labels per class, as described in the previous
section. All results of the baseline model and the Rule Based Dictionary Lookup
(RBDL) model can be found in Table 5.2. A selection of English, mixed and so-
cial media term classes is shown of the three machine learning models (Support
Vector Machine (SVM), Decision Tree and Conditional Random Field (CRF))
in Tables 5.3 to 5.5.

17https://pystruct.github.io/index.html
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As expected, the baseline model, that uses an off-the-shelf language identifi-
cation tool combined with the manually developed SMT recognition tool, only
scores well on NL and SMT classes. All unrecognised words are set to Dutch,
and since this is by far the largest class, this is a smart heuristic approach.18

High scores on SMT classification (i.e. > 91%) show that the SMT identification
tool functions well.

Baseline RBDL
Label p r f1 p r f1
NL .962 .823 .887 .976 .971 .973
EN .033 .116 .052 .326 .465 .382

MIX .000 .000 .000 .142 .500 .218
SMT .945 .917 .931 .937 .939 .938
OTH .004 .076 .008 .080 .105 .091
UNC .000 .000 .000 .000 .000 .000

Table 5.2: Results of language identification by baseline and Rule Based Dic-
tionary Lookup (RBDL) model.

If we look at the second half of Table 5.2, we see that, except for the UNC
class on which all outcomes are 0%, the RBDL model has better F1-scores on
all levels. In case of the classes NL, EN and MIX scores on precision, recall and
F1-score are all significantly better (paired t-test p < 0.05) compared to the
results of baseline model.

In Tables 5.3 to 5.5 we can find the results for the three ML models: Support
Vector Machine (SVM), Decision Tree and Conditional Random Field (CRF).
Of these three models only the first two are bound to the exact constraints, i.e.
have no information about what follows after the current token: needed to func-
tion together with the code-switch prediction model in Chapter 4. The latter
CRF model does in fact have this information and is just added for comparison
purposes.

Tables 5.3 to 5.5 cover the results on the EN, MIX and SMT classes. Per
label three test settings are shown, namely: training on the Top 10 and Top 20
best scoring features, plus training on all features. Evaluation of intermediate
feature sets are not shown here.

Scores on the Dutch label are also not shown, since all ML models yielded
in all test settings between Top 10 and All Features a precision, recall and
F1-score of > 97% and < 99%; of which recall and F1-score are all significant
improvements in the identification of Dutch labels (paired t-test p < 0.05). As
the set of outcomes does not add extra information, these are not displayed in
a separate Table.

In Table 5.3 we can find the results on performance of English word identi-
fication. A first thing to notice is the Decision Tree performs best when trained
on the best 10 features, contrary to SVM and CRF, which both improve the

18Without using this heuristic in the baseline model F1-score for the NL label is 39%.
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more features are added. The chained CRF yields the best F1-score of 33.2%;
not surprising since the CRF model has access to context information prohibited
for SVM and Decision Tree. Although better, the improvement is not significant
compared to the best F1-scores of the other ML models.

As noted, the Decision Tree model performs best when trained on the top
10 features; leading us to the question whether there is even better performance
in case the Decision Tree is trained on either less or more features. Therefore,
some extra tests were carried out. The Decision Tree model achieves the best
overall performance when trained on the 12 best ranked features. Precision,
recall and F1-score are 44.9%, 21.3% and 28.8% respectively. Still this F1-score
does not surpass the best scores of either CRF or SVM.

SVM Decision Tree CRF
EN label p r f1 p r f1 p r f1
Top10 .237 .441 .307 .441 .188 .261 .427 .179 .233
Top20 .262 .441 .327 .313 .225 .257 .357 .297 .306

All features .269 .433 .329 .236 .221 .224 .370 .329 .332

Table 5.3: Results language identification EN tag

Now looking at performance on recognizing the MIX class (Table 5.4); we see
an opposite pattern. Both SVM and CRF do not identify any members of the
MIX class in any of the training settings. While the Decision Tree, trained
on the best 20 features, yields 20% on precision, recall and F1-score the like.
Nonetheless, these results are not significantly better compared to the other ML
models, probably due to a standard deviation of 24% overall.

SVM Decision Tree CRF
MIX label p r f1 p r f1 p r f1

Top10 .000 .000 .000 .000 .000 .000 .000 .000 .000
Top20 .000 .000 .000 .200 .200 .200 .000 .000 .000

All features .000 .000 .000 .150 .200 .167 .000 .000 .000

Table 5.4: Results language identification MIX tag

The ML models show quite some variation in performance when identifica-
tion of the SMT tag is concerned. The CRFs F1-scores are the least compared
to the rest; though, not significantly worse. In fact no significant differences in
F1-scores are found between the best scoring ML models, neither in combina-
tion with the baseline model. This even includes the best results yielded for the
Decision Tree model trained on the best 9 features, in which case F1-score is
93.4%.

As all models have low performance in recognizing labels OTH and UNC
(F1-scores are all below 10%), combined with the fact that performance results
on these classes are not decisive in this specific performance task (see Section
5.4); it was chosen to discard the Tables on OTH and UNC as well.
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SVM Decision Tree CRF
SMT label p r f1 p r f1 p r f1

Top10 .940 .926 .933 .942 .923 .932 .884 .940 .911
Top20 .939 .927 .933 .917 .917 .917 .892 .938 .914

All features .939 .927 .933 .903 .911 .906 .904 .934 .918

Table 5.5: Results language identification SMT tag

5.6 Discussion of results

Taking the ML models aside first, we see that the Decision Tree model seems
quite unstable. In order to identify EN labels it performs best when trained on
the top 12 features; in case of identifying MIX labels, 20 features is optimal;
and when SMTs are concerned, 9 features is best. Despite this imbalance, it
has the best scores on identifying mixed words. Still though (as described above
in Section 5.4), MIX embodies such a small class that good scores on this class
alone are not taken to be decisive in choosing the best model. Inasmuch as the
Decision Tree has the lowest results on identifying EN tags, the Decision Tree
model appears least suited for the task.

Performance of the CRF model is lower than expected. It does have the
best results on identification of English labels, but as it has access to more
information compared to the other ML learners, one might have expected a little
more. As the CRF is excluded beforehand due to its use of context information,
the SVM is the best machine learning option for online language identification
at word level.

Now, comparing all models evaluated in this Chapter, we see that the rule-
based RBDL model yields the highest F1-score for classes EN, MIX and SMT
(even significantly better compared to SVM and CRF in identifying MIX (paired
t-test p < 0.05); and compared to CRF in recognizing SMT (paired t-test
p < 0.05)). To put it mildly, this outcome was unexpected. The ML models
were added to improve on the manual non-probabilistic approach, by learning
probabilistic associations between features and classes. The results, however, do
not show improvement in performance. Maybe the RBDL model performs bet-
ter because of the hierarchy of rules, inherent to a non-probabilistic rule-based
approach, which might have a positive value in this specific context. Another
explanation is that, though carefully chosen, the current set of features does not
provide enough information to learn this difficult language identification task
better than a non-probabilistic algorithm.

5.7 Combination of automatic language identi-
fication and CS prediction

In this Section the best language identification model, i.e. the Rule Based
Dictionary Lookup model, is combined with the best code-switch prediction
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model from Chapter 4, i.e. the Decision Tree model. The purpose is to find
the best automated approach to predict code-switches from Dutch to English
and vice versa in a Twitter data set in which Dutch is the dominant language.
Expectations on performance of CS prediction are naturally lower compared to
the idealized setting in Chapter 4, in which features were manually trained on
manually annotated tokens.

5.7.1 Results

In Table 5.6 the results are shown for the Decision Tree model for CS prediction
trained on the data set with automatic language identification. For comparison,
the second half of the Table shows the results of the CS prediction model based
on manual language identification (as found in Section 4.5).

As in Chapter 4, the baseline is the model trained solely on feature 2, i.e.
language identification of n (see Table 4.1). Outcomes on performance for the
Decision Tree based on automatic annotation is 0% for precision, recall and
F1-score. As scores are less compared with the results on performance by the
same model based on manual annotation (although not significant); this is in
line with expectations.

DT + AUT DT + MAN
p r f1 p r f1

Baseline .000 .000 .000 .079 .104 .090
Top3(#2,8,10) .202 .320 .246 .439 .507 .463

Table 5.6: Results of precision, recall and f1-score of code-switch prediction for
the Decision Tree (DT) model based on automatically annotated data (AUT)
and on manually annotated data (MAN).

The same holds for the results of performance when the Decision Tree is trained
on the 3 top ranked features. First, performance is significantly better com-
pared to the baseline for precision, recall and F1-score (paired t-test p < 0.01).
Secondly, as expected the results are significantly less on all levels (paired t-
test p < 0.01) compared to performance outcomes yielded by the same model
trained on manual annotated data.

5.8 Conclusion

Automatic language identification is a typical classification task. Here six labels
were used to discern the classes Dutch, English, mixed, SMT, other and unclear.
Moreover, execution of the task is constrained to passed information in order to
be combined with the real time setting of the CS prediction task.

There are two main challenges for the models to overcome. First, the classi-
fication task is complicated due to the imbalanced partition of classes. Second,
there exists much overlap between the English and Dutch languages. Of all NL
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tagged words 48% appears in both Dutch and English dictionaries; for English
tagged words this is 42%.

In total five models were evaluated. First, a baseline that uses an off-the-shelf
language identification tool. Second, a non-probabilistic rule-based dictionary
lookup (RBSL) model manually developed for the specific language identifica-
tion task. Models three to five are all supervised ML models: a Support Vector
Machine (SVM), a Decision Tree model and a Conditional Random Field (CRF)
model (the latter is only added for comparison purposes as it does not comply
with the language identification constraints).

A total of 30 features were used for training the ML models. All models were
tested in a 5-fold cross validation setting. For performance measures precision,
recall and F1-score were calculated; with a view to recognition of English words,
identification of EN labels is valued the highest.

Quite unexpected, the RBDL model performs best on identifying the EN
class (F1-score: 38.2%, which is significantly better compared to the baseline).
Moreover this model performs better on identification of the MIX class (F1-
score: 21.8%, which is significantly better than the baseline and best SVM and
CRF models).

Although the CRF model has access to context information surpassing the
current token, it does not perform exceptionally better on the task. With 33.2%
F1-score on EN it is slightly better than the SVM (32.9%), but not the RBDL
(38.2%).

Moreover, the SMT identification tool, either in a rule-based or feature-based
setting, performs quite well. Since all models use this tool, all models perform
well on SMT identification. Except for the CRF, best model versions yield an
F1-score > 93%.

Finally, the model performing best on the automatic language identification
task, i.e. the RBDL model, was combined with the model performing best
on the CS prediction task, i.e. the Decision Tree model. Combining the two
provide in an automated approach from start to end. As expected, results on
performance show lower outcomes compared to the Decision Tree trained on
a manually annotated set. Precision, recall and F1-score are 20.1%, 32% and
24.6% respectively; which is significantly less. Clearly, model performance is
not good enough to be applied in a real-life setting.
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Chapter 6

Conclusions

6.1 Introduction

Code-switching, a multi-lingual phenomenon, disturbs extensively used lan-
guage interpretation tools; most are set up for mono-linguistic input exclu-
sively. Whereas the need for automatic language interpretation increases due
to expanding popularity of online applications.

In this study, code-switching was explored between the closely related lan-
guages Dutch and English. Contrary to comparable research on CS, the focus is
on the occurrence of English words within everyday Dutch, instead of a specific
Dutch-English bilingual community.

This research covered five main stages. In the following sections I will con-
sider them one by one. In the final Section future steps are discussed.

6.2 Stage one: Corpus collection

As CS is more likely to appear in an informal environment, such as social me-
dia, a Twitter Corpus composed of roughly 95,000 tweets was collected. The
Annotated Corpus, a subset of 1,300 tweets, was manually annotated. Tokens
were classified with six different labels: Dutch (NL), English (EN), mixed word
(MIX), social media term (SMT), other language (OTH) and unclear (UNC).
Reliability of manual annotation was measured by inter-annotator agreement
over 100 tweets, yielding a Cohen’s kappa of 94%, which indicates annotation
to be highly reliable.

Distribution of the 19,464 labels is uneven; of all tokens the majority is
Dutch with 86.4%, followed by SMTs with 11.5% and English with 1.4%. At
tweet level, 98.8% of the messages contain Dutch tokens, 86.4% contain SMTs
and 8.5% contain English tokens. The data confirms that Dutch is indeed
the dominant language. Furthermore, I conclude that although the ratio of
English words in Dutch tweets is rather low (1.4%), the affected set of tweets is
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considerable (8.5%). This outcome confirms my hypothesis that Dutch-English
code-switches occur on a regular basis within ordinary Dutch.

6.3 Stage two: Analysis

To my knowledge, no analysis exists yet of English-Dutch CS in everyday Dutch.
The executed analysis should therefore be seen as preliminary investigation. The
analysis covers two main forms of code-switching, namely: intra-sentential code-
switches (characterized by a tweet consisting of Dutch and at least one English
word) and morphological code-switches (characterized by a word comprised of
Dutch and English morphemes).

A total of 136 intra-sentential code-switches were found. Around 26% of
these switches has a length of 3 tokens or longer; most are multi-word expressions
and named entities that are not fully integrated within the Dutch sentence
structure. The largest group (53%), consists of a single English word, of which
most are embedded within the Dutch framework. Code-switches of length 2
cover the final 21%. These CSs keep the middle between the characteristics of
the other two groups.

Intra-morpheme CSs occur seldom, just 9 times. Most of these (67%) are
verbs and ensue a distinctive pattern: an English stem combined with a Dutch
verb conjugation morpheme (‘ge-’ or ‘-en’). In this way the English word is
literally forced into the dominating Dutch structure.

Taking both intra-sentential and intra-morpheme CSs together, the data
shows that in general the words used for code-switching are in majority nouns
(38.1%), followed by verbs (15.9%) and adjectives (14.9%); all members of open
class words. Words belonging to closed classes do exist in the data set, but none
occurs alone; closed class members are always part of a noun or verb phrase.
This result endorses Joshi’s 1982 theory that code-switching is limited to open
class items.

The data might imply that the average Dutch Twitter user is a non-fluent
bilingual. Most of the CSs (76%) are emblematic code-switches (Poplack, 1980),
which are relatively easy to apply. The corpus does not involve inter-sentential
CSs, hence the share of emblematic switches might be even higher. Moreover,
further research is needed to define more precisely what intimate vs emblematic
CSs correspond to in Twitter data.

6.4 Stage three: CS prediction

The task of predicting code-switching at word level can be operationalized as
a binary classification task, where each word boundary is classified as either
involving a CS or not. Labels are unevenly distributed, which complicates
classification. Another challenge is posed by the constraint that models are
not allowed to have information about everything that follows on the current
token, in order to preserve a real-time prediction structure. Three supervised
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learning models were tested on this task: a Multinomial Naive Bayes model, a
Decision Tree model and a Support Vector Machine. All models were trained
in a 5-fold cross validation setting.

Ten features were developed, of which six features were selected for training,
based on their ANOVA F -score during development. Models are evaluated by
calculating precision, recall and F1-score of the positive class. As baseline the
models were tested on one feature (indicating the language of n). The model
performing best on the CS prediction task is the Decision Tree model. It yields
43.9% on precision, 50.7% on recall and 46.3% on F1-score. These results are
significantly better compared to the baseline system and to the best NB and
the best SVM classifier.

However, it is important to note that the CS prediction task was performed
in an idealized setting, since the features were trained on manually labelled
tokens.

6.5 Stage four: Language identification

The task of automatic language identification at word level is a typical multi-
class classification task. Six labels, the same as in the manual classification task,
were used to discern the classes. The task involves an extra condition in order
to be combined with the CS prediction task: execution of the task is constrained
to passed information.

There are two main challenges to overcome. First, the classification task is
complicated due to the imbalanced partition of classes. Second, as a result of
being closely related, there exists much overlap between the English and Dutch
languages. Of all NL tagged words 48% appear in both dictionaries; for EN
tagged words this is 42%.

In total five models were tested: a baseline that uses an off-the-shelf language
identification tool; a non-probabilistic rule-based dictionary lookup (RBSL)
model developed for this specific language identification task; and three su-
pervised machine learners: a Support Vector Machine (SVM), a Decision Tree
model and a Conditional Random Field (CRF) (the latter uses information sur-
passing the current token, hence it is only added for comparison purposes). All
models were tested in a 5-fold cross validation setting.

A total of 30 features were used for training the ML models. The majority
of these features is based on a rule-based SMT identification tool (used by
baseline and RBDL) and a rule-based dictionary lookup tool (used by RBDL).
The features are for training the ML models; the tools are developed for the
other two models. Performance was measured with precision, recall and F1-
score; identification of English words is valued the highest in model comparison.

Rather unexpected, the RBDL model has the best performance when iden-
tification of English is concerned (F1-score: 38.2%, which is significantly better
compared to the baseline). Additionally, it has also the best results on iden-
tifying the MIX class (F1-score: 21.8%, which is significantly better than the
baseline and best SVM and CRF models).
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The data also shows that the SMT identification tool, either in a rule-based
or feature-based setting, performs quite well. All models use this tool and all
models perform well on SMT identification. The best model versions, except
the CRF, yield an F1-score > 93%.

6.6 Stage five: Combining tasks

The model performing best on the automatic language identification task (RBDL
model) was conjoined with the model performing best on the CS prediction
task (Decision Tree model). Combining the two offers an automated approach
from start to end. As expected, results on performance show lower outcomes
compared to the CS prediction model trained on a manually annotated set.
Precision, recall and F1-score are 20.1%, 32% and 24.6% respectively; which is
significantly less.

Results are still faraway from what is demanded in a real-life setting. Further
research is needed in order to extend analysis and improve model performance.
In the next section I discuss some possible directions to take from here.

6.7 Future work

In this research only a limited set of models was tested for the challenging tasks
of CS prediction and language identification at word level. A next step is to
investigate performance of alternative models. One model of interest is a neural
network, but as neural networks are greedy for data, either large corpus has to
be manually annotated or automatic language identification on word level has
to be improved first.

In Section 3.5 it was showed that PoS tags might play an important role
in CS. It would be interesting to develop features that contain such informa-
tion, but, to my knowledge, PoS tagging at word level, especially for Dutch, is
currently quite underdeveloped. I expect machine learning models to perform
better on the tasks of CS prediction and language identification, when such in-
formation is indeed provided. Therefore, further research in this area will be
valuable.

The used corpus is not suited to study intra-sentential CS. Without this
information we cannot get the full picture of how the different forms of CS
are distributed. Moreover, these CS forms can provide information with regard
to the level of CS complexity. Following Poplack (1980), the data suggests
that average Dutch Twitter users might be non-fluent bilinguals (Section 3.5).
This implication is of interest, because the data collection was not directed at
a specific bilingual community, but instead on ordinary Dutch language users.
Without more knowledge about the share of intra-sentential code-switches, it is
not possible to provide more conclusive answers about the level of Dutch-English
bilingualism. Therefore, further research, based on an alternative corpus in
which al three forms of CS are represented, is eligible. Also, it is needed to
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better define the meaning of emblematic and intimate code-switching within
Twitter data. Additionally, discerning between intimate CS (complex to apply)
and emblematic CS (relatively easy to apply), is quite difficult. Consequently,
future work should involve at least two annotators for this job, to calculate
inter-annotator agreement.

According to Broersma (2009), closely related languages that share many
trigger words are more likely to induce code-switches than less related languages.
A question that might follow is whether closely related languages also induce
CSs of a higher complexity, while less or unrelated languages in turn lead to
CSs of low complexity. To undertake such research, multiple language sets with
distinctive relation levels have to be compared with each other.
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Appendices

Appendix A

Guidelines manual annotation

The tweets to be annotated have undergone minimal preprocessing. Only dupli-
cates and automatically generated messages were deleted. This to preserve the
raw user input as found on social media and how this is encountered by other
users. The idea is to computationally mimic the human as closely as possible.
Note that further preprocessing is likely in later stages of the process.

The tweets are annotated on word level. Every word is assigned to one of six
different labels: Dutch, English, Mixed, Social Media Term, Other and Unclear.
In the following sections all labels are described in more detail. To save time
in the labelling process, I developed an annotation tool that is freely available.1

The application of this tool is described in the last paragraph of this section.

Label: Social media term (SMT)

Under the label of Social Media terms or SMTs ranges a collection of differing
words involving URLs, @names, #hashtags, emoticons (e.g. # #, :p, n n)
emoji’s (e.g. ,), words and abbreviations specifically used on social media (e.g.
LOL, tbh, tweet) and onomatopoeia (e.g. hahaaaaa, pfff). Next follws a list of
examples to get a better grasp of tokens with an SMT label:

(1) @name1 Ja beste!
@name1 Yes lad!

(2) #ikwilvoor1dag Alles hebben wat ik wil.
#iwantforaday To own everything I want.

(3) De vakmannen aan het werk! https://t.co/xxx
The professionals to work! https://t.co/xxx

(4) ...ik mag columns gaan schrijven voor mijnserie.nl...
...I can write columns for myseries.nl...

(5) ...Het geeft me zo veel voldoening! :-)...
...It gives such a feeling of satisfaction! :-)...

1http://illc.uva.nl/∼raquel/data/CS prediction.zip
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(6) @name1 lol ja. en zijn paard hoe heet ie weer.
@name1 lol yes. and his horse what’s its name.

(7) ...ff serieus ben jij dat??...
...wait a minute (abbreviation) seriously is that you??...

(8) ...zal ik zeker doen, jij ook xxx
%92 ...I will, you too xxx

(9) Dat ik terug moet werken. Nah!
That I have to return to work Nah!

(10) ...IK HEB HEM NOG IK GA HEM NU LEKKER OP SMIKKELEN
HAHAHAHAHA...
...I STILL HAVE IT AND I WILL TUCK INTO IT NOW HAHAHA-
HAHA...

Note that once in a while, emoticons stick to a word without separation by a
space. In those specific cases, only the word is concerned, while the emoticon is
passed over.
A list of collected instances is provided with words and abbreviations specifically
used on social media. Unfortunately, we should assume this list is far from
complete. Not only because of rapid changes, but to my knowledge no such
list is available online. Therefore I collected a word-list myself from different
sources, see Appendix C.

Labels: Dutch (NL), English (EN) and Other (OTH)

Numbers and names are handled as embedded within the language it is sur-
rounded with. This means that ‘3’ might get different labels in different mes-
sages. For example in sentence ((11)a) ‘3’ is labelled Dutch, in ((11)b) English
and in ((11)c) Other.

(11) a. Ik zag 3 beren!
b. I saw 3 bears!
c. Vi 3 osos!

Other examples of numbers are ‘5,6’ in (12) and ‘19:30’ in (13):

(12) ...kom ik aan met een 5,6...
...and then me having a 5,6...

(13) LIVESTREAM vanavond om 19.30 uur...
LIVESTREAM tonight at 19.30 hour...

Names should be taken in a broad sense, including names of persons, objects,
events, places etc. For example in sentence (14) ‘Name1’, ‘Name2’, ‘Business
Cup’ and ‘SBS’ are all names embedded in Dutch and therefore in this case
all these names are labelled Dutch. Other examples of names are ‘Microsoft’,
‘Ipad’ and ‘Volvo’. Names that are preceded by # or @ are labelled as Social
media term (see description above).
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(14) ...Name1 vs Name2 op Business Cup: Ik hou het maar op SBS...
...Name1 vs Name2 at Business Cup: I will go for SBS...

It is possible that a number or name occurs at the transition of one language
to another (e.g. I ate 6 stroopwafels / I ate 6 Dutch cookies). In that case the
annotator has to make a choice.
During annotation all punctuation is neglected. In some exceptional cases punc-
tuation is surrounded by spaces, i.e. taken as a separate word; then the punctu-
ation is handled the same way as numbers and names. See (15) and (16) where
“...” and “-” are identified as Dutch respectively, see example (7). It should be
noted that quotation marks are treated similarly, so if a Dutch sentence contains
an English phrase within quotation marks, the tokens are labelled as English
(together with the word they stick to).

(15) ...In juli met een extra Italië-Special ... https://t.co/xxx
...In July with an extra Italy-Special ... https://t.co/xxx

(16) Name1 (51) uit Eindhoven - Een aanwezigheid van iemand...
Name1 (51) from Eindhoven - A presence of someone...

Capitals, or the lack of them, are neglected. The same holds for spelling mis-
takes. Tweets contain many clerical mistakes of which some may be on purpose;
these are not labelled as Unclear, but the language label they were intended to
belong to. So, ‘evht’ in (17) should be spelled ‘echt’ (meaning really), this mis-
take was probably unintended. Contrary, the error in (18) seems to be intended,
the extra letters ‘n’ emphasise the word ‘crashen’ (to crash). Both words are
thus labelled Dutch.

(17) ...tja als t evht zo is van die 18milj...
...well if its (really) the case about this 18mil...

(18) @name1 @name2 @name3 bruiloft crashennnn. Omg....
@name1 @name2 @name3 wedding crashinnnng. Omg....

Swearings are also included, for example the Dutch ’godverdomme’ in (19).

(19) ...godverdomme ik ben zo typisch
...god damn I am such a character

Non-existing or invented, but clearly understandable words or word combina-
tions, solely based on one particular language are also tagged accordingly (see
Mixed word (NL-EN) for invented words combined of English and Dutch ele-
ments). Therefore, ‘mc-donalds-verslaafden’ in (20) is tagged as Dutch as and
‘young-earthers’ as English in (21).

(20) @name1 Ik ben omringd door mc-donalds-verslaafden...
@name1 I’m surrounded by mc-donalds-addicts...

(21) Ik schrik van de hoeveelheid young-earthers in mijn vriendenkring...
I am alarmed by the amount of young-earthers among my friends...
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Note that all exclamations and emotional expressions are SMT.

Dutch (NL) The vast majority of words are labelled as Dutch (NL). When
in doubt, the word is searched in the digital word list provided by OpenTaal2

In particular, originally English words incorporated in Dutch are checked. For
example, the words ‘chick’, ‘chillen’, ‘happy’ and ’pack’ are all labelled Dutch.

English (EN) English words are labelled as English (EN). If it is unclear
whether the encountered word is in fact English, it is looked up in an English
word list, i.e. the Hunspell dictionary.3 Since most of the used English in
tweets is every day language, look-up is not often needed. Some extra examples
of English labels:

(22) ...Had @name1 mooi gelijk. @name2 was not amused ...
...@name1 was right. @name2 was not amused ...

(23) ...Ach ja, let’s go! #rw16
...Oh well, let’s go! #rw16

(24) Misschien kan de NOS een volledig retweet-based model voor publiek
gefinancierde journalistiek ontwikkelen? ...
Maybe the NOS can develop a retweet-based model for publicly financed
journalism?

(25) ...die ijslandrs gooiden letterlijk met die bal egt im cryin......
....those icelandics literally threw that ball im cryin......

(26) ...voor wie daar achter zit ik weet is 1 van me peersandi despiseit
...who is behind this I know is 1 of my peersandi despiseit (peers and I
despise it)

Special attention should be given to words that fall in the category of Social
media terms; many are English based or English abbreviations.

Other language (OTH) Words of any other language, besides Dutch or
English, are labelled as Other (OTH).

(27) Strijdlied du jour: Aan de strijders:...
Battle song of the day: To all warriors:...

(28) ’n Gedeelte van ’n gebou by die Sable Square-winkelsentrum...
part of a building near to the Sable Square shopping mall...

Words from other languages besides Dutch or English appear to be quite rare.

2See http://www.opentaal.org/
3http://wordlist.aspell.net/dicts/
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Label: Mixed word (NL-EN)

The label of a Dutch-English mixed word encompasses a very specific group of
words, namely a word containing a CS at the level of morphemes. These words
do not occur in either English or Dutch dictionary, but their parts do.

(29) @name1 ja dat is zo kapot irritant, moet je de game weer restarten
enzo
@name1 that’s so incredibly irritating, restart the game again

(30) Er wordt weer lustig er op los geframed door de NOS over #brexit...
Again at the NOS they are freely framing about #brexit...

(31) ...Je bent altijd welkom bij een netwerkevent zoals de lunch op dins-
dag.
...You’re always welcome at a network event like the lunch on Tuesday.

To recognize and use mixed words, one needs a good grasp of both Dutch and
English languages.

Label: Unclear

Any word that does not seem to fall under any of the mentioned categories is
labelled Unclear. In general this means that the word does not seem to be a
term (often) used on social media and meaning and/or language is not clear, as
shown in examples (32) to (34).

(32) @name1 ja, katexofficial
@name1 yes, katexofficial

(33) ...Net voor de start heeft Lotto-name1 nog eens de v... ...
...Just before start Lotto-name1 has again v... ...

(34) ...omdat dit mailadres onder een niet actieve klantaccount hangt.*AJ
...because this mailaddress is connected to a inactive user account.*AJ

Appendix B

Guidelines annotation tool

The annotation tool is written in Python 2.7, one has to import termcolor
in order to show the colours used for annotation in the terminal. Make sure
the background colour of the terminal is not set to black, otherwise the index
numbers of the words do not show up, since these numbers are explicitly coloured
black themselves.

The program is run from the command line, as shown in EXAMPLE 1.
Besides the name of the program, one has to provide an input file containing
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line separated tweets or sentences to annotate, e.g. tweets to annot.txt, an
output directory, e.g. data/annot, and the name of the annotator.

#EXAMPLE 1: Run the program

$ python annotation_tool.py tweets_to_annot.txt data/annot

name

When the program starts a simple welcome message is shown (see EXAMPLE
2). The program will either start with the first line to annotate, or, if used
before with the same name and in- and output files, the program starts at the
first new line to annotate. In turn, the program is saved and stopped with
CTRL+C (EXAMPLE 3). If the program is stopped when the annotation of
a line is not fully completed, information concerning this particular line is not
stored. The next time, when the program is started again, annotation will start
at this line.

#EXAMPLE 2: Start of the annotation program annotation_tool.

py

Welcome! Up for some sentence annotation?

Use ctrl+c to abort this programme; all fully annotated

tweets will be saved.

When the programme is launched again with the same arguments

it will automatically start at the next tweet to be

annotated.

Start at line: 222

.

.

.

#EXAMPLE 3: End of the annotation program by use of ctrl+c

.

.

.

KeyboardInterrupt

.

In EXAMPLE 4 the annotation of a line is shown (note that colours are used in
this example that may not show well when printed in black and white). Suppose
we want to annotate a new line. First, the line number is shown, in this case
265. On the next line the text is printed and per token an index is printed
beneath it. Followed by a dictionary {}, which is still empty and the words
Start range:0 and Stop range:....

#EXAMPLE 4: Annotate a tweet

265

@name1 Maar wel met mn ogen dicht ...

0 1 2 3 4 5 6

{}

Start range: 0

Stop range:
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Now annotation can begin. Suppose you want classify the first token as SMT.
To do so one has to fill in 0 as stop range and 4 to select the SMT label (as
shown in EXAMPLE 5). You have just annotated your first token.

Now, everything is printed again, but this time the dictionary is filled with
the known information up to this point. Moreover, the annotated index number
is coloured corresponding to the chosen tag. Also, the new start range is already
calculated (i.e. 1).

To save time, words can be annotated in sequences. In the example the rest
of the tokens is classified as NL. In order to store the information one has to
approve with y. If the annotation is declined, annotation of the same line will
start over again. In this way a mistake can be mended.

#EXAMPLE 5: Annotate a tweet (continuation)

265

@name1 Maar wel met mn ogen dicht ...

0 1 2 3 4 5 6

{}

Start range: 0

Stop range: 0

NL(1)/EN(2)/Mixed -word(NL-EN)(3)/Social Media Term (4)/Other

(5)/Unclear (6): 4

265

{’0-0’: 4}

@name1 Maar wel met mn ogen dicht ...

0 1 2 3 4 5 6

Start range: 1

Stop range: 6

NL(1)/EN(2)/Mixed -word(NL-EN)(3)/Social Media Term (4)/Other

(5)/Unclear (6): 1

265

{’0-0’: 4, ’1-6’: 1}

@name1 Maar wel met mn ogen dicht ...

0 1 2 3 4 5 6

Do you want to save this annotation (Y/N)? y
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Appendix C

SMT list

Collected list of social media terms (SMTs):

&amp;
&gt;
&lt;
&lt;3
API
ava
B2B
B2C
BL
CAN-SPAM
cdc
CMGR
CMS
CPC
CPM
CR
CRM
CSS
CTA
CTR
CX
DM
ESP
FB
FTW
G+
HT
HTML
IG
IO
ISP
KPI
LI
NAW
P2P
PM
PPC
PR

PV
ROI
RSS
RT
RTD
SaaS
SEM
SEO
SERP
SM
SMB
SMM
SMM
SMO
SMP
SoLoMo
SOV
TOS
UGC
UI
URL
UV
UX
WOM
YT
AFAIK
AMA
ASL
b/c
B4
BAE
bc
BFF
BRB
BTAIM
BTW
CC
DAE

DFTBA
DGAF
ELI5
EM
EML
F2F
FaTH
FBF
FBO
ff
FFS
fk
fkn
FOMO
FTFY
FUTAB
FYI
G2G
GG
Gr8
GTG
GTR
gwn
HBD
HMB
HMU
HTH
IANAD
IANAL
ICYMI
IDC
idd
IDK
iig
IKR
ILY
IMHO
IMO

IRL
JK
kga
L8
LMAO
LMK
LMS
LOL
LOLz
MCM
MM
ms
MT
MTFBWY
NM
NSFL
NSFW
NVM
OAN
OC
OMG
OMW
OOTD
ORLY
OTP
POTD
PPL
plz
QOTD
ROFL
ROFLMAO
SFW
SMH
srs
suc6
sws
TBH
TBT

TGIF
Thx
thnx
thanx
TIL
TL;DR
TLDR
TMI
TTYL
TTYN
TTYS
Tx
Txt
vlgs
vdg
w/
WBU
WCW
WDYMBT
WOTD
wtf
xo
YMMV
YOLO
YfkK
YT
Android
api
app
appen
astroturfing
blog
blogpost
copyleft
cloud
crowdfunding
crowdsourcing
CSR
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DDoSsen
Digg
Drupal
dunno
ebook
ebooks
embedding
Facebook
feed
Flickr
geotagging
gig
google
Gov
2.0

GPL
GPS
hashtag
insta
instagram
IOS
ipad
iphone
lagg
lifecasting
livestream
livestreaming
mashup
metadata
microblogging

moblog
MySpace
NGO
nptech
OpenID
permalink
podcast
podsafe
retweet
RSS
RT
screencast
SEO
snapchat
SMS

splogs
streamen
streaming
sub
subs
tag
tags
troll
tweet
tweetup
Twitter
Twitterverse
UGC
unconference
videoblog

virtual
conferencing
webcasting
webinar
WhatsApp
wi-fi
widget
wiki
Wikipedia
word-of-
mouth
WordPress
YouTube
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