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TRUTH	MAKER	SEMANTICS	AND	MODAL	INFORMATION	LOGIC	

	
Draft,	Johan	van	Benthem,	autumn	2017	

	
This	is	a	short	note	written	after	attending	a	spring	seminar	taught	by	Kit	Fine	at	Stanford,	
looking	at	 some	of	 the	material	presented	 there	 from	the	standpoint	of	a	modal	 logician.	
There	are	no	extensive	references	yet,	Fine’s	relevant	work	can	be	found	on	his	webpage.	

	
1	 A	brief	survey	of	truth	making	

Models	M	 are	 tuples	 (S,	 ≤,	 V)	with	 objects	 s	 in	S	 viewed	 as	 parts	 of	 the	world	 or	
‘states’	of	a	more	abstract	sort.	Of	particular	interest	is	the	relation	of	supremum	s	=	
sup(t,	u)	(lowest	upper	bound)	which	can	be	interpreted	as	saying	that	the	object	s	
is	a	‘sum’	or	‘merge’	of	the	objects	t	and	u.	It	is	assumed	in	Fine’s	semantics	that	all	
suprema	exist,	something	that	is	related	to	the	introduction	of	‘impossible	worlds’.		
	
The	simplest	relevant	language	is	a	propositional	logic	with	connectives	¬,	∧,	∨.	For	
atomic	 p,	 the	 valuation	V(p)	 records	which	 states	 in	 S	 make	 p	 true	 (call	 this	 set	
V+(p))	or	false	(V-(p)).	This	can	be	subject	to	constraints:	for	instance,	that	no	state	
makes	 a	proposition	both	 true	and	 false	 –	 though	we	 can	also	 leave	 things	open,	
with	all	four	possible	combinations.	The	truth	definition	now	works	as	follows:	
	
	 M,	s	|=	p	 iff	 s	∈	V+(p)	
	 M,	s	=|	p	 iff	 s	∈	V-(p)	
	 M,	s	|=	¬ϕ	 iff	 M,	s	=|	ϕ	
	 M,	s	=|	¬ϕ	 iff	 M,	s	|=	ϕ	
	 M,	s	|=	ϕ	∧ψ	 iff	 there	exist	t,	u	with	s	=	sup(t,	u),		M,	t	|=	ϕ	and	M,	u	|=	ψ	
	 M,	s	=|	ϕ	∧ψ	 iff	 M,	s	=|	ϕ	or	M,	s	=|	ψ	
	 M,	s	|=	ϕ	∨	ψ	 iff	 M,	s	|=	ϕ	or	M,	s	|=	ψ	
	 M,	s	=|	ϕ	∨	ψ	 iff	 there	exist	t,	u	with	s	=	sup(t,	u),		M,	t	=|	ϕ	and	M,	u	=|	ψ	
	
With	 this	 in	 place,	 one	 can	 define	 various	 notions	 of	 truth	 and	 false	making.	 For	
instance,	exact	truth	making	of	a	formula	ϕ	by	a	state	s	means	that	no	proper	part	
or	proper	extension	of	s	along	the	ordering	≤	makes	ϕ	true.	But	there	are	also	other	
versions	of	truth	making	where	a	state	has	to	contain	an	exact	truth	maker,	or	can	
be	extended	 to	one,	 and	so	on.	Using	 these	notions,	once	can	 then	define	various	
notions	of	consequence	from	premises	ϕ 	to	conclusion	ψ.	Here	are	a	few	samples:	
	
•	 Each	truth	maker	of	all	premises	is	a	truth	maker	for	the	conclusion,	
•	 Each	state	that	is	a	merge	of	states	making	the	premises	true	(one		
	 for	each	premise)	is	a	truth	maker	for	the	conclusion,	
•	 Each	truth	maker	of	the	premises	can	be	extended	to	one	for	the	conclusion,	
•	 Each	truth	maker	of	all	premises	is	a	truth	maker	for	the	conclusion,	and	
		 each	false	maker	for	the	conclusion	is	a	false	maker	for	at	least	one	premise.	
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These	 different	 notions	 support	 different	 valid	 consequences	 as	 is	 easy	 to	 see.	
Many	of	them	can	be	reduced	to	the	first-mentioned	one	using	obvious	definitions.	
	
First	observations.	This	framework	uses	well-known	notions.	The	above	models	are	
partial	orders,	and	in	case	we	want	all	suprema	to	exist,	they	are	complete	partial	
orders	(cpo’s).	The	latter	structures	have	been	studied	extensively,	for	instance,	in	
Scott’s	domain	semantics	for	information	and	computation	in	the	1970s.	As	for	the	
semantics,	 the	 tandem	of	 truth	making	and	 false	making	also	occurs	 in	Veltman’s	
data	semantics	from	the	early	1980s,	and	in	fact,	it	has	long	been	known	that	this	is	
equivalent	to	using	a	three-	or	four-valued	logic.	The	above	proliferation	of	notions	
of	 valid	 consequence	 is	 well-known	 from	 the	 area	 of	 partial	 logic	 (cf.	 Stephen	
Blamey’s	survey	chapter	in	the	1985	“Handbook	of	Philosophical	Logic”).	
	
2	 Modal	information	logic	

A	more	 concrete	 and	 fruitful	 comparison	 along	 the	 preceding	 lines	 can	 be	made	
with	the	modal	logic	of	information	proposed	in	van	Benthem	1988,	1996,	2017A.	
This	system	had	an	entirely	different	motivation,	viz.	developing	an	abstract	theory	
of	information	states,	but	it	shows	striking	analogies	with	truth	maker	semantics.		
	
Models	 and	 language	 of	MIL	We	work	with	partial	 orders	 viewed	 as	universes	 of	
information	states.	The	standard	universal	modality	talks	about	upward	structure	
from	a	given	point,	which	we	highlight	 for	present	purposes	 in	 the	notation	 [↑]ϕ.	
The	downward	direction	makes	sense	in	discussing	weaker	information,	and	so	we	
add	a	converse	modality	[↓]ϕ.	The	resulting	system	is	temporal	S4.		
	
But	there	is	more.	Where	suprema	exist	in	the	partial	order	the	logic	encodes	their	
behavior	–	and	likewise	for	informational	infima,	using	two	binary	modalities:	
	

M,	s	|=	<sup>ϕψ				iff			there	exist	t,	u	with	s	=	sup(t,	u),	M,	t	|=	ϕ		and	M,	u	|=	ψ		
M,	s	|=	<inf>ϕψ					iff				there	exist	t,	u	with	s	=	inf(t,	u),	M,	t	|=	ϕ		and	M,	u	|=	ψ						

	
These	are	truly	new	operators.	
	
Fact	 <sup>pq	is	not	definable	in	the	temporal	modal	language.	
	
With	the	following	two	models,	the	dotted	lines	are	a	bisimulation	for	the	temporal	
language,	but	<sup>pq	holds	only	in	the	top	node	on	the	left,	not	that	on	the	right.	
	
	

	 	 		 	

	 		
	
Further	model	theory	of	the	system	can	be	developed	as	for	standard	modal	logic,	
including	a	more	discerning	notion	of	bisimulation	that	respects	sups	and	infs.	

p p 
q q 
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Valid	laws	of	information	Here	are	a	few	validities	of	the	modal	logic	of	information:	
	
•	 <↑>ϕ	↔	<inf>ϕT,	 	 					<↓>ϕ	↔	<sup>ϕT	
•	 	<sup>ϕψ	and	<inf>ϕψ	distribute	over	disjunction,	in	both	arguments.		
•	 <sup>ϕψ	→	<sup>ψϕ,					 						ϕ	→	<sup>ϕϕ,		and	likewise	for	<inf>	
•	 <sup>ϕψ	→	(<↓>ϕ	∧	<↓>ψ),						<inf>ϕψ	→	(<↑>ϕ	∧	<↑>ψ)		
	
However,	one	prima	facie	attractive	principle	that	fails	in	general	is	associativity:	
	

<sup><sup>ϕψα	→		<sup>ϕ<sup>ψα	
	
plus	its	right-to-left	converse.	The	reason	is	that	we	do	not	demand	existence	of	all	
suprema	in	our	partial	orders,	and	such	failures	readily	yield	counterexamples.		
	
Remark	More	 abstractly,	we	 can	 interpret	<sup>	 as	 a	 standard	 existential	 binary	
modality	interpreted	via	a	ternary	accessibility	relation	C:	
	

M,	s	|=	<sup>ϕψ				iff				there	exist	t,	u	such	that	Cstu,	M,	t	|=	ϕ		and	M,	u	|=	ψ						
	
Modal	frame	correspondence	methods	then	apply	to	the	combined	modal	logic	of	C	
and	≤.	In	particular,	imposing	an	associativity	axiom	matches	first-order	associati-
vity	conditions	on	partial	orders	that	can	be	computed	by	standard	algorithms:	
	
	 ∀yzuv	((Sxyz	∧	Syuv)	→	∃w	(Sxuw	∧	Swvz))	
	
Question					Are	there	interesting	general	axioms	that	link	<inf>ϕψ	to	<sup>ϕψ?		
	
Fact	 The	modal	logic	of	information	structures	is	recursively	axiomatizable.	
	
This	is	since	the	modal	truth	conditions	translate	into	the	first-order	logic	of	partial	
orders.	However,	the	less	obvious	and	more	interesting	issue	is	the	following:	
	
Open	problem				Is	the	modal	logic	of	information	decidable?		
	
Our	dropping	of	associativity	seems	essential	to	a	positive	answer	here,	since	basic	
modal	 logics	with	associative	binary	modalities	are	known	to	encode	undecidable	
word	 problems.	 Thus,	 the	 use	 of	 cpo’s	 in	 Section	 1,	 which	 seem	 just	 a	 nice	 and	
harmless	device	for	smoothening	our	models,	may	actually	endanger	decidability.	
	
Modal	logic	of	information	seems	a	natural	base	logic	of	information	structures,	and	
in	 fact	MLI	was	 proposed	 at	 the	 time	 as	 an	 analysis	 of	 common	 patterns	 behind	
modal	logic,	belief	revision,	resource-sensitive	logics,	and	the	like.	But	alternatively,	
one	can	view	it	 is	as	 just	an	obvious	technical	expressive	completion	of	S4	whose	
omission	in	the	 literature	seems	surprising	(if	we	want	 logics	over	partial	orders,	
why	not	take	on	board	some	further	natural	structure	found	in	partial	orders).	 In	
that	 sense,	 finding	 out	 the	 properties	 of	MLI	 is	 urgent	 just	 “because	 it’s	 there”	 –							
as	Mallory	famously	said	when	asked	why	he	wanted	to	climb	Mount	Everest.	
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3	 Translating	truth	maker	logic	into	modal	information	logic	

There	 is	 more	 here	 than	 just	 analogy.	 We	 now	 provide	 a	 complete	 and	 faithful	
translation	 from	the	 truth	maker	 logic	of	Section	1	 into	 the	MLI	of	Section	2.	Our	
translation	will	use	technical	ideas	that	have	been	around	since	at	least	the	1980s	
(cf.	van	Benthem	1986)	,	but	that	may	not	be	as	well-known	as	they	should	be.	
	
Two-component	translation	Take	new	proposition	letters	p+	and	p-	for	each	atomic	
proposition	letter	p.	For	each	propositional	formula	ϕ,	we	now	recursively	extend	
this	as	follows,	closely	following	the	truth	definition	in	Section	1:	
	
	 (¬ϕ)+	=	(ϕ)-	 	 	 	 (¬ϕ)-	=	(ϕ)+	
	 (ϕ	∧ψ)+	=	<sup>(ϕ)+(ψ)+	 	 (ϕ	∧ψ)-	=	(ϕ)-∨	(ψ)-	
	 (ϕ	∨	ψ)+	=	(ϕ)+∨	(ψ)+		 	 (ϕ∨ψ)-	=	<sup>(ϕ)-(ψ)-	
	
Theorem				ϕ1,	...,	ϕn	|=	ψ		is	valid	in	truth	maker	semantics		
	 iff		(ϕ1)+,	...,	(ϕn	|)+	|=	(ψ)+		in	modal	information	logic.	
	
The	reason	is	that	each	model	M	for	our	modal	language	can	be	transformed	in	an	
obvious	way	into	a	truth	maker	model	Tr(M)	such	that	
	
	 Tr(M),	s	|=	ϕ				iff				M,	s	|=	(ϕ)+	 	 	
	 Tr(M),	s	=|	ϕ				iff				M,	s	|=	(ϕ)-	
	
This	 translation	can	be	enhanced	using	further	vocabulary	 in	our	modal	 language	
that	is	needed	when	we	give	a	standard	modal	analysis	of	further	notions	in	truth	
maker	logic	(a	priori,	these	further	notions	need	not	have	been	modal,	but	perhaps	
surprisingly,	 they	 all	 are).	 For	 instance,	 using	 the	 strict	 versions	 [↑s],	 [↓s]	 of	 our	
order	modalities,	referring	to	the	strict	variant	x	<	y	:=	x	≤	y	&	¬	y	≤	x)	of	the	partial	
order,	whose	complete	theory	is	easy	to	add	in	a	standard	modal	style,	
	
	 strict	truth	making	can	be	defined	as	 [↓s]¬ϕ	∧	ϕ	∧	[↑s]¬ϕ	
	 partial	truth	making	as	 	 	 <↑>ϕ	
	 loose	truth	making	as	 	 	 <↓>ϕ	
	
As	we	said	earlier,	further	varieties	of	consequence	are	also	easily	definable.		
	
Our	modal	 language	 also	 deals	 straightforwardly	with	 various	 special	 conditions	
that	have	been	considered	 for	denotations	of	propositions	 in	 truth	maker	seman-
tics.	For	instance,	here	are	two	important	cases:	
	
	 closure	under	merges		 imposes	 	 <sup>ϕϕ	→	ϕ			
	 convexity		 	 	 imposes	 	 ϕ	→	[↑](<↑>ϕ→	ϕ)					 	
	
Finally,	various	additional	assumptions	relating	truth	making	and	false	making	can	
be	put	into	our	language	in	the	form	of	requirements	on	the	p+	and	p-	predicates.	 	
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4	 Discussion	

The	preceding	results	are	not	completely	conclusive,	since	models	for	Fine’s	truth	
maker	semantics	have	some	special	features.	We	discuss	a	few	of	these.	
	
Complexity	One	 assumption	 is	 that	 all	 suprema	exist.	One	way	of	 thinking	 about	
this	 requirement	 is	 as	 arising	 from	 a	 harmless	 standard	 completion	 of	 arbitrary	
partial	orders,	say,	by	means	of	Fine’s	algebraic	 ‘quasi-filters’.	And	there	may	also	
be	metaphysical	reasons	for	thinking	that	the	universe	contains	all	recombinations	
of	 parts,	 or	 of	 states.	 (By	 contrast,	 this	 assumption	 is	much	 less	 appealing	when	
thinking	about	states	in	modal	information	logic,	as	incompatibility	is	a	key	notion	
of	interest	there	–	that	we	do	not	want	to	sweep	under	the	rug.)	In	any	case,	as	we	
noted	before,	this	smooth	‘filling	out’	of	the	models	may	come	with	a	price	in	terms	
of	undecidability	of	 the	resulting	 logic.	Moreover,	since	completeness	of	cpo’s	 is	a	
second-order	condition,	even	recursive	axiomatizability	may	not	be	immediate.		
	
Aside	It	was	remarked	at	the	seminar	that	Fine’s	insistence	on	decidability	may	be	a	
red	herring,	since	he	motivates	this	by	means	of	the	logical	omniscience	problem.	
But	 that	 seems	more	of	 an	epistemological	 than	a	metaphysical	 issue,	unless	one	
thinks	 that	 the	 metaphysical	 universe	 should	 be	 especially	 easy	 for	 us	 to	 grasp.	
Moreover,	it	is	well-known	in	logic	that	decreasing	a	set	of	validities	has	no	obvious	
connection	with	lowering	computational	complexity:	things	can	go	either	way.	
	
Maximal	objects	Another	special	assumption	considered	in	some	metaphysics	(as	
reported	by	Fine)	requires	models	 to	have	maximal	states	 in	 the	ordering,	where	
each	proposition	is	either	made	true	or	made	false.	This	amounts	to	another	sort	of	
completion	 for	models,	whose	effects	we	have	not	yet	considered	 in	modal	 infor-
mation	models.	 Incidentally,	a	milder	 intermediate	 form	would	 focus	on	so-called	
`generic	branches’	–	a	notion	familiar	from	set-theoretic	forcing	–	in	a	model,	where	
each	proposition	is	eventually	made	true	or	false	at	some	stage	on	such	a	branch.	
For	further	uses	and	theory	of	generic	branches,	cf.	van	Benthem	2016.	
	
No	battle	of	paradigms	What	does	the	above	translation	achieve?	We	see	its	main	
virtue	 as	 conceptual.	 Truth	maker	 semantics	 is	 entirely	 compatible	with	 classical	
modal	 logic,	 no	 irreducible	hyper-intensionality	 is	 involved.	Both	 the	models	 and	
the	languages	of	truth	maker	semantics	have	clear	analogues	in	well-studied	areas	
of	modal	logic.	So,	this	should	suffice	for	toning	down	some	current	propaganda.	
	
But	how	can	this	be?	Many	people	think	that	truth	maker	semantics	extends	clas-
sical	modal	semantics,	since	we	now	have	models	containing	not	 just	 total	states,	
but	also	partial	states.	So	how	can	this	be	translated	back	into	standard	modal	logic,	
and	even	into	a	very	special	modal	logic?	I	believe	that	there	is	a	general	point	here	
about	abstraction,	 that	 is	often	misunderstood.	Modal	 logic	 is	a	mildly	expressive	
and	decidable	language	talking	about	relational	models:	i.e.,	annotated	graphs.	Now	
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philosophers	often	give	 these	models	very	specific	 interpretations:	with	points	as	
complete	‘possible	worlds’.	Any	change	away	from	possible	worlds	then	looks	like	
an	extension:	indeed,	a	conceptual	revolution.	But	in	fact,	modal	logic	applies	to	any	
graph-like	structure,	where	‘points’	can	just	as	well	be	partial	stages,	or	whatever.	
That	 is,	 it	 applies	 to	most	 generalized	 semantics,	 since	 their	models	 have	 points,	
too.	In	fact,	as	in	intuitionistic	or	truth	maker	semantics,	new	models	usually	come	
with	 further	 order	 structure	 between	points,	which	 often	means:	more	 relations,	
and	so	more	modalities	 for	 these,	 satisfying	special	axioms	reflecting	special	pro-
perties	 of	 the	 additional	 relations.	 Thus,	 perhaps	 paradoxically,	most	 generalized	
semantics	I	know	of	are	in	fact	specialized	semantics	from	a	modal	point	of	view.		
	
This	 coexistence	 is	 a	much	more	 productive	 perspective	 than	 the	 competition	 of	
logics	 and	paradigm	 shifts	 touted	 by	 philosophers:	 these	 disregard	mathematical	
reality,	and	failure	to	see	the	connections	may	even	hamper	the	study	of	new	ideas.	
	
Work	remains	to	be	done	Technically	speaking,	the	link	to	modal	logic	may	even	
be	helpful	 in	understanding	the	workings	of	truth	maker	semantics,	as	 in	our	dis-
cussion	of	associativity.	What	our	translation	does	not	yield,	 though,	 is	an	explicit	
axiomatization	 of	 truth	 maker	 consequence.	 This	 requires	 further	 work	 –	 as	 is	
usual	 with	 translations	 between	 logics.	 Also,	 we	 do	 not	 settle	 the	 complexity	 of	
truth	maker	validity,	since	modal	information	logic	might	be	more	complex	than	its	
fragment	consisting	of	our	translations	of	formulas	in	truth	maker	semantics.	
	
Open	problem			Is	there	a	converse	embedding	from	modal	information	logic		
	 into	propositional	truth	maker	logic?		
	
Aside	Our	translation	takes	propositional	truth/false	maker	logic	into	a	very	special	
fragment	of	modal	information	logic,	as	it	only	uses	syntactically	positive	formulas.	
(It	may	be	thought	that	we	will	need	classical	negation	to	separate	p+	from	p-,	using	
something	like	a	universal	modality	U¬(p+	∧	p-),	but	this	can	be	circumvented:	just	
translate	as	in	Section	3,	and	move	U¬(p+	∧	p-)	to	a	positive	disjunct	E(p+	∧	p-)	in	the	
conclusion.)	We	do	not	know	if	this	positive	syntax	is	significant	for	complexity.	
	
Choice	 of	 language	 The	 modal	 translation	 also	 raises	 another	 type	 of	 issue,	
namely,	which	language	is	most	suitable	for	describing	the	original	models	for	truth	
maker	semantics.	After	all,	these	models	are	supposed	to	stand	for	an	independent	
metaphysical	structure	about	which	we	have	 intuitions,	and	whose	 laws	of	reaso-
ning	we	want	to	study.	Then	why	would	it	be	obvious	that	the	standard	language	of	
propositional	logic,	or	predicate	logic,	would	be	the	right	vehicle	for	this?	
	
Implicit	versus	explicit	Studying	 these	 laws	 in	 terms	of	a	 standard	propositional	
language	with	modified	meanings	and	deviant	laws	is	an	‘implicit’	approach,	while	
our	modal	 logic	MLI	 is	an	 ‘explicit’	approach	 in	 the	sense	of	van	Benthem	2017B,	
extending	the	vocabulary	for	state	structure	while	staying	on	a	classical	base	logic.	
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The	 latter	approach	suggests	 further	extensions	of	 the	 truth	maker	 language	 that	
would	reflect	more	possibly	metaphysically	relevant	structure.	One	obvious	source	
for	this	is	the	symmetry	of	partial	orders	in	upward	and	downward	directions,	with	
infima	as	relevant	as	suprema.	This	would	 lead	to	a	 ‘splitting’	of	classical	connec-
tives	in	the	spirit	of	relevant	logic	(or	more	radically,	linear	logic)	where	the	logic	of	
the	richer	vocabulary	may	reveal	much	more	of	the	semantic	structure.	
	
Objects,	predication,	quantification	A	good	test	on	our	analysis	and	conclusions	is	
how	 they	 fare	 on	 truth	maker	 semantics	 for	modal	 logic	 and	 for	 predicate	 logic.			
But,	at	present,	it	is	not	clear	what	a	canonical	proposal	for	the	latter	would	be.	
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