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1	 	Introduction		

The	pleasantly	erudite	and	still	highly	readable	paper	Beth	1963	saw	logic	as	consisting	of	
three	basic	strands,	historically	entangled	and	complementary:	linguistic	definability	(se-
mantics,	if	you	will),	proof,	and	algorithm	(Beth’s	tag	for	the	broad	theme	of	computation).	
With	this	perspective	in	mind,	in	this	light	survey	paper,	I	weave	a	story	connecting	some	
basic	notions	and	 issues	demonstrating	 the	broad	scope	of	semantic	 themes	 in	 logic.	My	
starting	 point	will	 be	 invariance	 as	 studied	 in	model	 theory,	 but	 gradually,	 other	major	
themes	come	in,	such	as	consequence	relations,	preservation	theorems,	and	the	semantic	
role	of	games	and	agency.	There	will	be	no	new	technical	results,	and	just	a	minimum	of	
formal	details:	these	can	be	found	in	the	given	references.	My	emphasis	is	rather	on	a	story	
line	connecting	broad	 integrating	 themes	 in	 logic,	hopefully	along	a	path	 that	 the	reader	
finds	unusual,	with	occasionally	different	vistas	from	what	one	sees	in	standard	texts.		
	
2	 Semantic	invariance	and	definability		

A	common	view,	 reflecting	 the	 standard	 textbook	order	of	presentation,	 is	 that	 a	 logical	
language	is	uninterpreted	syntax	that	stands	in	need	of	a	semantic	interpretation	in	order	
to	allow	meaningful	assertions.	 In	 that	 sense,	 syntax	 is	prior	 to	semantics.	But	historical	
reality	may	well	have	been	the	other	way	around.	What	came	first	in	evolution	was	mea-
ningful	 communication	 and	description	of	 reality,	 and	human	 languages	 evolved	 to	pro-
vide	a	vehicle	for	this.	And	logical	languages	arose	out	of	reflection	on	human	language,		
	
2.1		 Invariants,	languages,	and	logics		
	
The	world-to-language	 perspective	may	 be	 traced	 back	 to	 the	 influential	 view	 of	 Helm-
holtz	1878.	Reality	has	structure	in	stable	patterns,	and	these	patterns	reveal	themselves	
to	 the	human	observer	as	 invariants	under	 suitable	 transformations.	 For	 instance,	Helm-
holtz	thought	that	the	basic	geometric	notions	we	employ	in	daily	life	and	in	mathematics,	
reveal	themselves	as	invariants	for	the	natural	transformations	in	visual	perspective	that	
correspond	 to	ubiquitous	human	movements,	 namely	 those	of	walking	 in	 a	 straight	 line	
and	 turning	around.	Taken	 to	mathematics	 (moving	 from	observer	movements	 to	 trans-
lations	and	rotations	of	space	in	geometry,	or	more	abstract	transformations	in	algebra),	
this	 is	 reflected	 in	 Klein’s	 “Erlanger	 Program”:	 any	 mathematical	 theory	 needs	 to	 start	
from	structures	plus	transformations	setting	its	‘invariance	level’.		
	
The	step	to	the	emergence	of	 language	 is	then	this:	 invariant	structure	is	important,	so	a	
language	 will	 emerge	 to	 define	 and	 communicate	 information	 about	 this	 structure.	 A	
perceptive	early	exposition	of	this	theme	is	in	Weyl	1963,	who	observes	that	mathematical	
languages	 define	 invariants	 for	 associated	 sets	 of	 transformations	 over	 the	 relevant	
structures,	while	 he	 also	 draws	 attention	 to	what	 he	 sees	 as	 the	much	 harder	 converse	
question	whether,	 given	 those	 transformations,	 the	 language	 is	 rich	enough	 to	define	all	
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invariants.	By	now,	invariance	thinking	has	penetrated	everywhere,	from	physics	to	com-
puter	science,	ecology,	psychology	(Suppes	2002)	and	philosophy	(Barwise	&	Perry	1983).		
	
Alternatives	There	are	also	other	views	of	how	language	may	have	arisen,	more	in	terms	
of	human	abilities	to	pick	up	information	from	the	world,	or	in	terms	of	the	basic	process	
structure	of	acts	of	communication.	We	will	encounter	such	views	later	on	in	this	paper.	
	
Invariance	in	 logic	 Invariance	has	been	 implicit	 in	 logic	 for	a	 long	time,	with	 invariance	
for	 isomorphisms	 acting	 as	 a	 general	 constraint	 on	 properly	 logical	 notions	 (Mostowski	
1957,	Lindström	1966).	It	became	more	of	a	conscious	philosophical	concern	only	as	late	
as	the	1980s,	when	Tarski	1983	and	others	independently	started	emphasizing	the	gene-
ral	power	of	this	idea.	Some	logicians	and	philosophers	even	think	that	invariance,	suita-
bly	conceived,	is	all	there	is	to	‘logical	constants’	(Sher	1991).	It	is	not	my	aim	here	to	tell	
the	 story	 of	 this	 foundational	 debate.	 Van	 Benthem	 2001	 has	 extensive	 discussion	 of	
strengths	 and	 weaknesses	 of	 invariance	 as	 a	 criterion	 for	 logicality,	 a	 wide	 array	 of	
relevant	 literature	 references,	 and	 a	 brief	 survey	 of	 alternative	 approaches	 to	 logicality.	
Instead,	I	start	by	pointing	out	some	technical	features	of	the	connection	between	logical	
languages	and	invariance,	broadening	the	canvas	to	include	other	themes	as	we	go	along.	
	
Permutation	invariance	Much	of	the	philosophical	and	linguistic	literature	chooses	for	its	
transformations	permutations	π	of	some	fixed	domain	D	of	objects.	For	instance,	the	iden-
tity	 relation	 x	 =	 y	 is	 invariant	 for	 such	 transformations,	 since	 it	 holds	 iff	 π(x)	 =	 π(y).	
Together	with	non-identity,	the	universal	relation	and	the	empty	relation,	we	get	the	only	
four	 permutation-invariant	 relations	 between	 objects.	 In	 other	 linguistic	 categories,	 say,	
the	quantifier	“some”	is	permutation-invariant,	since	some(A)	holds	for	some	set	of	objects	
A	(that	is,	A	is	non-empty)	iff	some(π[A])	holds	for	any	permutation	image	π[A]	of	the	set	A.	
Essentially,	the	only	thing	that	matters	here	is	the	cardinality	of	the	set	A,	and	this	is	also	
true	for	many	other	quantifiers,	such	as	“all”,	“one”,	or	“most”:	after	all,	these	are	expres-
sion	of	‘quantity’	only.	We	will	return	to	the	behavior	of	quantifiers	in	a	moment.	
	
Permutation	 invariants	 occur	 in	many	different	 kinds	of	 expression	 in	natural	 language,	
where	we	can	match	 linguistic	categories	with	a	simple	type	system	in	Montague’s	style,	
with	base	domains	of	objects	and	truth	values,	and	operations	of	product	and	implication.	
Laüchli	1970	proved	the	still	intriguing	result	that	the	types	constructed	in	this	way	whose	
domains	always	contain	permutation-invariant	objects	are	exactly	those	that	correspond,	
when	 read	 as	 formulas	 in	 a	 propositional	 language	with	 conjunction	 and	 implication,	 to	
validities	of	 intuitionistic	 logic.	For	a	 systematic	discussion	of	permutation	 invariance	 in	
finite	type	theory,	we	refer	to	van	Benthem	1989,	a	contribution	to	a	seminal	issue	of	the	
Notre	Dame	Journal	of	Formal	Logic	that	collected	many	approaches	to	the	nature	of	logical	
constants	co-existing	at	the	time:	semantic,	but	also	proof-theoretic.	1	
	
Isomorphisms	and	automorphisms	 A	more	 general	 view,	 in	 line	with	 the	history	 cited	
earlier,	is	that	of	notions	invariant	between	any	two	structures.	Permutation	invariance	is	
a	special	case	of	invariance	for	bijections	between	structures:	these	preserve	only	identity	
and	non-identity	of	objects,	thus	measuring	cardinality.	But	there	are	other	crucial	connec-
tions	between	structures,	 such	as	 isomorphisms	 (‘automorphisms’,	when	 inside	 the	same	

                                                
1	Further	results,	including	connections	to	notions	of	invariance	appropriate	to	the	lambda	calculus	
due	to	Statman	1982	and	Plotkin	1980,	can	be	found	in	van	Benthem	1991.	
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structure),	 bijections	 that	 also	 preserve	 all	 relevant	 atomic	 predicates	 and	 operations.	 2	
This	cross-model	perspective	on	 invariance	and	definability	 is	standard	in	model	theory,	
and	it	is	how	we	will	mostly	phrase	things	henceforth.		
	
We	 now	 continue	 with	 the	 general	 theme	 of	 isomorphism	 invariance	 in	 logic,	 which	 is	
often	seen	as	a	condition	for	a	language	and	semantics	to	count	as	logical	in	the	first	place.	
For	a	start,	the	basic	system	of	first-order	logic	satisfies	the	following	invariance	property:		
	
Fact	 If	F	is	an	isomorphism	from	a	model	M	to	model	N,	then,	for	any	first-order	formu-	
	 la	ϕ	and	assignment	of	objects	d	to	the	free	variables	x	of	ϕ,	M,	d	|=	ϕ	iff	N,	F(d)	|=	ϕ.	
	
Many	basic	 results	 about	definability	 in	 first-order	 logic	 involve	 invariances	of	 this	 sort.	
For	instance,	Beth’s	Definability	Theorem	can	be	viewed	in	this	light	–	but	for	present	pur-
poses,	we	rather	state	Svenonius’	Theorem,	in	a	version	proved	in	van	Benthem	1982.	The	
following	result	gives	a	precise	sense,	in	first-order	logic,	to	a	pervasive	invariance-related	
intuition	that	being	able	to	fix	denotations	up	to	isomorphism	leads	to	definability.	
	
Theorem				A	predicate	P	is	fixed	up	to	isomorphism	by	theory	T(P,	Q),	meaning	that,	in	
	 all	models	for	T(P,	Q),	any	Q-automorphism	is	automatically	a	P-automorphism,		

	 iff		P	is	explicitly	definable	in	T	up	to	finite	disjunction:	∨i∀x(Px	↔	δ	i(Q,	x))		
	 is	a	semantic	consequence	of	T	for	some	finite	set	of	formulas	δ	i(Q,	x).	
	
We	have	concentrated	on	first-order	logic	here,	since	it	is	still	the	hothouse	for	developing	
logical	ideas,	but	isomorphism	invariance	is	so	widespread	in	logic	that	it	is	a	defining	cha-
racteristic	of	logical	systems	in	Abstract	Model	Theory	(Barwise	&	Feferman,	eds.,	1985).	
	
2.2	 Combining	invariance	and	inference		
	
Isomorphism	invariance	is	a	somewhat	abstract	criterion,	but	it	often	acquires	more	bite	
when	combined	with	other	logical	phenomena.			As	a	simple	example	in	a	linguistic	setting,	
let	 us	 go	 back	 to	 bijection	 invariance,	 considering	 binary	 quantifiers	 with	 their	 usual	
pattern	of	occurrence	in	natural	language,	the	type		
	
	 Q	A	B						 	 standing	for	binary	relations	between	sets	of	objects.	
	
This	 realm	was	 studied	 in	 van	 Benthem	 1984,	 restricting	 attention	 to	 finite	 domains	 of	
objects.	On	any	given	domain	of	size	n,	isomorphism	invariance	tells	us	that	the	denotation	
of	the	quantifier	is	fixed	by	the	set	of	4-tuples	(n1,	n2,	n3,	n4)	with	n1	+	n2	+	n3	+	n4	=	n,	where	
the	four	numbers	refer	to	the	cardinalities	of	the	zones	A∩B,	A∩–B,	B∩–A,	–B∩–A.	3		
	
Next,	we	combine	this	with	one	more	widely	accepted	semantic	restriction,	satisfied	by	all	
the	usual	quantifiers	studied	in	logic	and	linguistics:	
	
	 Conservativity	 	 Q	A	B	iff	Q	A	(B∩A)	
	
Conservativity	 makes	 the	 A-domain	 of	 a	 quantifier	 paramount,	 as	 setting	 the	 scene	 of	
objects	that	the	statement	is	about.	This	further	restriction	leads	to	a	view	of	permutation-

                                                
2	Eventually,	not	even	the	functional	character	of	bijections	or	isomorphisms	is	important,	it	is	well-
known	that	any	suitably	defined	similarity	relation	between	models	can	induce	invariance.	
3	This	reduces	the	size	of	the	set	of	all	generalized	quantifiers	on	n	objects	by	an	exponential.	
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invariant	 quantifiers	 as	 sets	 of	 pairs	 of	 numbers	 (adding	up	 to	 the	 size	 of	A),	 visualized	
geometrically	as	a	set	of	points	(|A∩B|,	|A–B|)	in	the	so-called	‘Tree	of	Numbers’	
	
	 	 	 	 	 (0,	0)	

	 	 	 	 (1,	0)		 	 (0,	1)	

	 	 											(2,	0)	 	 (1,	1)	 	 (0,	2)	
	 	 	 	 	 				…	
	
Now	conservativity	may	be	viewed	as	a	basic	Boolean	property	of	quantifiers,	and	what	it	
shows	is	how	quantifiers	display	basic	inferential	behavior	from	the	start.	More	generally,	
most	quantifiers	in	a	daily	use	satisfy	Boolean	inference	properties	such	as	the	following:	
	
	 Monotonicity	 	 Q	AB,	B	⊆	B’		imply	Q	AB’	
	
This	property	may	be	called	 ‘upward	right’	 in	a	natural	sense.	Thus,	 there	are	 four	basic	
monotonicity	properties	 in	 all:	 right	 or	 left,	 upward	or	downward.	Typical	 examples	 for	
each	 occur	 in	 the	 Square	 of	 Opposition:	 “all”,	 “some”,	 “no”,	 “not	 all”.	 These	 are	 ‘doubly	
monotone’	in	the	sense	of	supporting	monotonicity	inferences	in	both	arguments,	a	typical	
property	of	many	logical	constants	that	one	can	view	as	their	being	inference-rich.	
	
In	 the	 Tree	 of	 Numbers,	monotonicity	 properties	 acquire	 a	 direct	 geometrical	meaning.	
For	instance,	upward	right	monotonicity	means	that	on	horizontal	rows	in	the	tree,	once	a	
position	is	accepted,	so		is	everything	to	its	right,	while	upward	left	monotonicity	says	that	
once	a	point	is	accepted,	so	is	the	whole	downward	subtree	generated	from	it.		
	
Now	we	can	classify	all	possible	quantifiers	that	are	permutation-invariant,	conservative,	
and	that	support	a	rich	set	of	inferences.	Here	is	one	sample	result:	
	
Theorem	All	doubly	monotone	isomorphism	invariant	quantifiers	are	first-order	definable.	
	
These	first-order	quantifiers	exhibit	a	geometrical	pattern	of	finite	unions	of	convex	sets,	
as	can	be	seen	from	the	above	facts,	which	typically	differs	from	the	tree	pattern	for	“most	
AB”	(|A∩B|	>	|A–B|)	whose	boundary	follows	a	zigzag	line	through	the	middle	of	the	tree.	
	
The	 original	motivation	 for	 results	 like	 this	 in	 the	 1980s	was	 an	 investigation	 to	which	
extent	natural	 language	manages	to	define	all	 ‘natural’	and	 ‘useful’	counting	expressions.	
Part	of	this	utility	is	richness	in	available	inferences,	where	monotonicity	represents	a	sort	
of	stability:	the	quantifier	still	holds	when	we	encounter	changes	in	one	or	both	of	its	set	
arguments.	This	highlights	the	widespread	entanglement	of	invariance	with	inference,	an	
important	theme	to	which	we	shall	return	several	times	in	what	follows.		
	
2.3	 Potential	isomorphism		
	
However,	 isomorphism	 is	not	 the	only	game	 in	 town,	and	 there	are	alternatives,	even	 in	
the	 heartland	 of	 logic.	 First-order	 logic	 is	 also	 invariant	 for	 a	 much	 less-demanding	
invariance	called	potential	isomorphism.	This	is	a	family	F	of	finite	partial	isomorphisms	F	
between	two	models	satisfying	the	Back	and	Forth	properties,	saying	that	given	any	object	
a	 in	 one	 of	 the	models,	 there	 is	 an	 object	 b	 in	 the	 other	model	 such	 that	 the	 extended	
function	F	∪	 {(a,	b)}	 also	belong	 to	 the	 family	F.	 Isomorphisms	 induce	potential	 isomor-
phisms	 by	 taking	 all	 their	 finite	 submaps,	 but	 the	 converse	 does	 not	 hold.	 To	 show	 the	
attraction	 of	 this	 notion	 we	 cite	 one	 result	 from	 van	 Benthem	 &	 Bonnay	 2008.	 These	
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authors	 identify	 the	 abstract	 form	 of	 the	 Back	 and	 Forth	 properties	 as	 a	 natural	 dia-
grammatic	form	of	‘commutation	of	an	invariance	relation	with	object	expansion’.	
	
Theorem				Potential	isomorphism	is	the	smallest	relation	between	models		
	 that	commutes	with	object	expansions.	
	
They	then	prove	a	very	general	result,	whose	technical	details	do	not	matter	here,	that	for	
any	binary	relation	E	 and	equivalence	relation	S	over	some	class	of	objects,	S	 commutes	
with	E	iff	the	inverse	E–1	preserves	S-invariance.	As	a	consequence,	potential	isomorphism	
is	 the	 smallest	 similarity	 relation	S	 between	models	 that	 respects	 truth	 values	 of	 atoms	
while	 object	projection	 is	S-invariant.	 This	 analysis	 applies	 to	modal	 logic	 and	bisimula-
tion,	a	topic	introduced	below,	where	these	abstract	formulations	become	more	concrete.	
	
However,	 the	 fit	 is	 still	 not	 precise:	 invariance	 for	 potential	 isomorphism	 also	 holds	 for	
several	 strong	 extensions	 of	 the	 first-order	 language.	 It	 only	 becomes	 a	 precise	 match	

when	we	move	 to	 infinitary	 first-order	 logic	L∞ω,	which	 allows	 conjunctions	 and	disjunc-
tions	over	arbitrary	sets	of	formulas.	Then	we	can	show	the	following	equivalence:	4	
	
Theorem		Two	models	have	a	potential	isomorphism	between	them		
	 iff	they	satisfy	the	same	sentences	of	L∞ω.		
For	more	on	the	conceptual	importance	of	L∞ω	and	potential	isomorphism,	cf.	the	earlier-
mentioned	Barwise	&	Feferman,	eds.,	1985,	van	Benthem	&	Bonnay	2008.	
	
2.4	 Fixed-point	logic	and	computation	
	
Another	crucial	extension	of	first-order	logic,	incomparable	in	that	it	can	define	well-foun-
dedness	 of	 binary	 orders	 (something	 that	 L∞ω.	 cannot),	 is	 first-order	 fixed-point	 logic	
LFP(FO),	having	operators	for	defining	smallest	fixed	points	for	formulas		
	
	 µP,	x•	ϕ(P,	Q,	x)		 where	P	occurs	only	positively	in	ϕ,	
	
In	any	model	M,	µP,	x•	ϕ(P,	Q,	x)	defines	the	smallest	predicate	P	of	an	arity	indicated	by	
the	tuple	of	variables	x,	 such	that	 the	equivalence	Pd	↔	ϕ(P,	Q,	d)	holds	 for	all	 tuples	of	
objects	 d	 in	M.	 Such	 smallest	 predicates	 exist	 by	 the	 Tarski-Knaster	 theorem	 on	 fixed-
points	 for	 monotonic	 maps	 on	 complete	 partial	 orders,	 cf.	 Ebbinghaus	 &	 Flum	 2005.	
Likewise,	this	logic	has	definitions	νP,	x•	ϕ(P,	Q,	x)	for	greatest	fixed-points.		
	
This	system	is	a	natural	extension	of	first-order	logic,	with	still	countable	syntax,	that	can	
encode	the	fundamental	theory	of	induction	and	recursion,	the	staples	of	computation.	For	
instance,	 LFP(FO)	 can	 define	 transitive	 closure	 and	 other	 natural	 notions	 going	 beyond	
first-order	 logic,	 such	 as	 the	 mentioned	 well-foundedness	 of	 orderings,	 that	 supports	
reasoning	 by	 induction.	 It	 can	 also	 define	 semantics	 for	 programming	 and	 computation,	
where	it	provides	an	interesting	abstraction	from	Recursion	Theory.	Crucially,	fixed-point	
logic	makes	no	assumptions	about	 the	data	one	computes	over,	disentangling	 the	mix	of	
recursion	and	coding	 in	natural	numbers	 that	 is	characteristic	of	 the	 latter	 field.	Thus,	 it	
represents	a	major	further	motive	across	logic	that	ties	in	with	our	earlier	concerns.	
	

                                                
4 The	 proof	 uses	 some	 basic	 model-theoretic	 definability	 techniques	 such	 as	 ‘Scott	 sentences’	
describing	types	of	objects	occurring	in	models	up	to	any	given	ordinal	depth	of	recursion.	
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One	might	 zoom	 in	 even	more	 closely	 on	 fixed-point	 logic	 by	 tightening	 invariance	 for	
potential	isomorphism.	But	one	can	also	see	this	as	a	point	where	additional	notions	come	
into	their	own.	As	mentioned,	induction	and	recursion	are	basic	structures	of	computation,	
the	third	ingredient	in	Beth’s	historical	view	of	logic	that	we	started	with,	and	fixed-point	
formulas	 may	 be	 seen	 as	 recipes	 for	 computational	 algorithms.	 Perhaps,	 then,	 what	 is	
characteristic	of	systems	like	LFP(FO)	is	the	interplay	of	two	factors:	semantic	invariance,	
and	algorithmic	structure	–		a	subject	that	comes	with	intuitions	of	its	own.	5	
	
2.5	 Discussion	
	
More	permissive	views	of	 logicality	 In	 the	above	setting,	we	 thought	of	 the	 logical	con-
stants	as	invariants	for	bijections:	rough	isomorphisms	respecting	only	identity	of	objects.	
However,	 invariance	 for	L-isomorphisms	 suggests	 a	more	 liberal	 view	 that	 is	 not	 ‘all	 or	
nothing’.	We	allow	the	atomic	predicates	in	the	language	L	as	parameters	(invariant	by	de-
finition),	and	we	ask	which	complex	predicates	are	 then	also	 invariant,	or	perhaps	more	
pointedly,	which	constructions	(sometimes	called	‘logical	glue’)	maintain	invariance.	Now	
even	in	the	realm	of	logical	expressions,	some	parameters	in	L	may	have	a	special	status.		
	
Consider	‘mass	quantifiers’	in	natural	language,	such	as	“all	the	wine”,	“some	wine”,	“most	
wine”.	Now	 there	 is	no	discrete	base	domain,	we	are	 rather	 in	 a	mereological	 setting	of	
continuous	objects	(say,	bits	of	water)	ordered	by	inclusion.	In	this	case,	the	definition	of	
the	 quantifiers	 may	 refer	 essentially	 to	 this	 inclusion	 structure,	 not	 just	 to	 identity	 of	
objects.	Thus,	mass	quantifiers	fail	the	above	test	of	invariance	under	bijections.	But	they	
are	still	natural,	they	support	Boolean	inferences	just	like	the	standard	‘count	quantifiers’	
(Peters	 &	 Westerståhl	 2006),	 and	 they	 are	 invariant	 under	 inclusion	 isomorphisms.	 In	
other	words,	the	appropriate	invariance	level	for	even	logical	expressions	may	differ.	6	
	
Whence	 the	 base	 structures?	 The	 case	 of	mass	 versus	 count	 quantification	 also	 shows	
how	invariance	analysis	depends	on	a	prior	choice	of	structures	to	work	on,	a	choice	that	
involves	other	considerations.	 In	particular,	working	 in	standard	mode	 in	a	set-theoretic	
universe	suggests	an	underlying	base	domain	of	primitive	objects	out	of	which	everything	
is	constructed	‘upward’	by	set-forming	operations.	Mereology,	on	the	other	hand,	suggests	
a	 very	 different	 view:	 a	 universe	 where	 we	 can	 only	 analyze	 things	 ‘downward’	 into	
smaller	 components,	 without	 a	 guarantee	 that	 we	will	 hit	 smallest	 objects.	 Building	 up	
versus	analyzing	represent	very	different	views	of	what	logical	semantics	is	about,	and	the	
choice	between	these	two	perspectives	is	not	made	for	us	by	invariance	thinking.		
	
Still,	 an	 irreducible	 role	 for	one’s	 conceptual	 choice	of	base	objects	and	 their	patterns	 is	
not	a	problem	for	a	story	of	the	sort	we	are	telling:	it	rather	makes	our	discussion	all	the	
more	semantic	in	the	general	sense	of	that	word	in	logic.	
	
Function	words	 in	natural	 language	 The	 general	 picture	 emerging	here	 fits	 the	 actual	
functioning	of	natural	language.	The	choice	between	logical	words	and	others	is	not	all-or-
nothing.	 In	 addition	 to	 logical	 expressions	 like	 Booleans	 and	 quantifiers,	 there	 are	 also	

                                                
5	The	lack	of	a	purely	semantic	fit	also	shows	in	the	lack	of	an	abstract	model-theoretic	Lindström	
Theorem	characterizing	LFP(FO),	cf.	Van	Benthem,	ten	Cate	&	Väänänen	2009.	
6	A	similar	point	holds	for	logical	operators	in	intuitionistic,	rather	than	classical	logic	on	models	of	
information	 stages	 ordered	 by	 inclusion.	 Permutation	 invariance	 is	 not	 the	 right	 notion	 there,	
invariance	for	inclusion-isomorphisms	is	(or	even	stronger	criteria	to	be	discussed	below).	
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many	‘function	words’	with	a	somewhat	logic-like	behavior,	such	as	modals	(“can”,	“may”,	
“must”),	 prepositions	 (“in”,	 “out””,	 “of”,	 “with”,	 “to”),	 or	 other	 abstract	 functional	 items	
such	 as	 comparatives	 or	 indexicals.	 These	 expressions	 are	 not	 completely	 free	 in	 their	
interpretation,	like	nouns	or	verbs,	since	they	contain	information	about	the	specific	way	
in	which	we	use	language	to	structure	and	convey	information.	In	line	with	this	functional	
role,	functional	linguistic	expressions	come	with	their	own	inferential	behavior,	and	their	
own	 notions	 of	 invariance	 referring	 to	 semantic	 structure	 that	 is	 appropriate	 to	 them.	
Thus,	 from	 an	 invariance	 perspective,	 logicality,	 both	 in	 mathematical	 and	 ordinary	
linguistic	settings,	is	a	widespread	phenomenon	that	can	come	in	degrees,	or	levels.	
	
2.6	 Conclusion		
	
Invariance	 under	 structure	 transformations	 is	 a	 pervasive	 aspect	 of	 semantical	 analysis	
for	 logical	 languages,	 and	 it	 supports	 sophisticated	 notions	 and	 technical	 results	 in	 the	
field.	Also,	it	naturally	leads	us	to	acknowledge	a	wide	variety	of	‘logicality’	across	natural	
language,	 depending	 on	 the	 invariance	 level,	making	 the	 standard	 logical	 constants	 less	
isolated.	Finally,	and	quite	significantly,	invariance	is	naturally	entangled	with	other	basic	
logical	notions.	One	of	these,	as	we	saw	in	the	pilot	case	of	monotonicity,	is	inference	and	
proof.	A	second	entangled	notion	is	computation,	the	third	strand	in	Beth’s	view	of	 logic,	
which	emerged	when	we	looked	at	fixed-point	logics	for	induction	and	recursion.		
	
Syntax	What	is	interesting	to	the	latter	points	is	this.	Both	proof	and	computation	depend	
crucially	on	syntax,	as	the	code	we	are	working	with.	Thus,	while	invariance	might	suggest	
a	 priority	 for	 structure	 over	 syntax,	 once	 the	 language	 is	 there,	 other	 logical	 intuitions	
become	 naturally	 available,	 and	 can	 operate	 freely,	 sometimes	 even	without	 immediate	
semantic	counterparts.	This	entanglement	of	themes	will	return	in	the	sections	to	follow.	
	
3	 Plurality	of	zoom	levels		
	
3.1	 Plurality	and	zoom	
	
Plurality	While	invariance	has	been	proposed	as	a	unique	underpinning	for	a	core	of	logic,	
scientific	 practice	 seems	 very	 different.	When	 analyzing	 reality,	many	different	 levels	 of	
structure	can	play	a	role.	Consider	mathematics:	it	has	a	wide	array	of	legitimate	theories	
of	 space,	 ranging	 from	 affine	 and	metric	 geometry	 to	 topology.	 These	 different	 theories	
represent	different	‘zoom	levels’	for	looking	at	reality.	Each	of	these	levels	comes	with	its	
own	logical	 language:	richer	if	 the	structural	similarity	relation	is	more	detailed	(making	
invariance	under	this	relation	less	demanding),	poorer	if	the	similarity	relation	is	coarser.	
	
Looking	down,	or	up	This	observation	fits	with	a	fact	about	logical	analysis.	Many	people	
see	the	task	of	logic	as	providing	ever	more	detail,	formalizing	each	small	step	in	reasoning	
and	 each	 feature	 of	 structure.	 The	 paradigm	 for	 this	 would	 be	 total	 formalization	 of	
informal	mathematics	into	machine-checkable	languages,	with	nothing	taken	for	granted.	
Steps	of	reasoning	at	this	most	detailed	ground	level	can	be	considered	a	true	base	logic.		
	
But	proofs	in	this	style	may	be	as	unreadable	as	machine	code,	and	an	equally	legitimate	
form	 of	 logical	 analysis	 does	 the	 precise	 opposite.	 One	 looks	 at	 a	 reasoning	 practice,	
abstracts	away	from	details,	and	looks	for	global	patterns	representing	some	high	level	of	
reasoning	that	may	even	bring	to	 light	patterns	undiscovered	so	 far.	For	a	sample	of	 the	
contrast,	compare	the	extremely	detailed	first-order	language	of	Tarski’s	‘elementary	geo-
metry’	with	the	highly	general	modal	logic	of	the	interior	operation	in	topology	(van	Bent-
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hem	&	Bezhanishvili	 2008).	We	will	 discuss	 two	ways	 in	which	 this	plurality	may	arise,	
and	point	at	some	open	problems	that	emerge	when	we	look	at	this	generally.	
	
3.2	 Logics	for	graphs		
	
Let	us	fix	one	particular	similarity	type,	annotated	directed	graphs	(W,	R,	P)	with	a	set	of	
points	W,	 a	binary	 relation	R,	 and	a	bunch	of	unary	predicates	P	 of	points.	 If	we	choose	
isomorphism	as	our	 invariance,	 then	 languages	appropriate	 to	studying	graphs	are	 first-
order	 logic	 and	 its	 extensions	 –	 or	 even	 second-order	 logics	 –	 and	 these	 systems	 are	
indeed	 a	 good	 fit	with	much	 reasoning	 found	 in	Graph	Theory.	However,	 there	 are	 also	
other	natural	ways	of	looking	at	graphs,	where	we	identify	more	structure.	
	
One	 such	 invariance	 is	bisimulation,	where	we	 are	 only	 interested	 in	 local	 properties	 of	
points	as	well	as	the	structure	of	accessibility	at	each	point,	i.e.,	its	arrows	to	other	points.	7	
A	bisimulation	E	between	two	annotated	graphs	M,	N	 is	a	binary	relation	between	points	
in	M	and	N	matching	only	points	with	the	same	local	properties	from	P,	and	satisfying	the	
following	Back	and	Forth	properties:	(a)	if	s	E	t,	and	s	R	s’	in	M,	then	there	exists	a	point	t’	
with	t	R	t’	in	N	such	that	s’	E	t’,	(b)	the	same	clause	in	the	direction	from	N	to	M.		
	

	

It	 is	easy	 to	 find	non-isomorphic	bisimilar	graphs,	and	 indeed,	bisimulation	 is	a	 rougher	
invariance	level,	proposed	independently	in	modal	logic,	set	theory,	and	computer	science.	
Finding	natural	structural	similarity	relations	is	often	a	matter	of	having	some	intuition	in	
mind	–	and	for	bisimulation,	a	powerful	intuition	is	one	of	equivalence	of	processes,	where	
we	see	points	in	graphs	as	states	of	a	process,	and	arrows	as	possible	state	transitions.	
	
The	modal	landscape	The	language	that	fits	bisimulation	is	modal	logic,	and	a	rich	theory	
has	sprung	up	at	this	level	that	we	cannot	survey	here:	cf.	Blackburn,	de	Rijke	&	Venema	
2002,	van	Benthem	2010	on	 the	mathematics	of	modal	 logic.	Our	main	point	 is	 just	 that	
modal	logic	is	a	good	illustration	of	how	invariance	thinking	ties	up	with	language	design.		
	
For	a	 start,	 there	 is	a	 translation	 from	the	modal	 language	 into	 first-order	 logic,	 sending	
universal	modalities	£p	to	guarded	quantifier	formulas	∀y	(Rxy	→	Py),	and	existential	♢p	
to	∃y	(Rxy	∧	Py).	So,	we	can	view	the	logic	of	a	coarser	level	as	a	fragment	of	the	logic	of	a	
richer	level	in	a	precise	manner.	Moreover,	there	is	a	certain	dynamics	of	design.	By	now,	
there	is	a	whole	landscape	of	languages	in	between	modal	logic	and	first-order	logic,	that	
can	 be	 viewed	 as	 arising	 in	 two	 ways.	 Either	 we	 extend	 the	 syntax	 of	 modal	 logic	 by	
certain	‘hybrid’	expressive	devices	available	in	first-order	logic,	or	we	devise	new	notions	
of	simulation	in	between	bisimulation	and	isomorphism,	and	create	matching	languages.	
                                                
7	Notice	how	points	 in	graphs	derive	 their	 identity	 from	two	sources:	 their	 local	properties,	plus:	
their	connections	with	other	points.	This	recursive	nature,	which	can	be	made	precise	in	terms	of	
our	 earlier	 fixed-point	 logics,	 provides	 a	much	more	 sophisticated	 view	 of	 these	 structures	 than	
what	might	be	suggested	by	standard	discussions	of	‘possible	worlds’	as	isolated	entities.	
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Zoom	levels	This	setting	also	explains	why	working	at	different	zoom	levels	can	be	useful.	
The	first-order	 language,	 though	richer	than	modal	 logic,	and	natural	 in	 its	own	way,	co-
mes	 at	 a	 cost.	 Its	 theory	 is	 undecidable	 by	Church’s	Theorem	–	 and	 at	 a	more	domestic	
level,	 its	syntax	is	more	complicated.	Modal	 logic	has	a	variable-free	notation	that	makes	
checking	for	truth	provably	easier,	and	allows	for	perspicuous	notation	of	basic	proof	pat-
terns	without	variable	management.	This	demonstrates	a	much	more	general	point	that	is	
often	under-appreciated.	In	logic,	as	in	acting,	saying	less	is	sometimes	saying	more.	
	
Zooming	 out:	 from	 actions	 to	 powers	 Invariance	 thinking	 also	 suggests	 coarser	 levels	
with	weaker	logics	than	the	basic	modal	one.	Here	is	an	illustration	about	games,	viewed	
as	processes	of	interactive	computation	(van	Benthem	2014	has	details).	Consider	a	finite	
extensive	 game	 tree	 with	 transitions	 as	 moves,	 while	 local	 properties	 of	 nodes	 record	
turns	for	players	and	pay-offs	at	end	nodes.	Now	we	may	want	to	abstract	away	from	local	
moves,	as	often	done	in	Game	Theory,	being	interested	only	in	players’	powers	for	control-
ling	 the	 outcomes	 of	 the	 game.	 Then	we	 can	 identify	 even	 different-looking	 game	 trees	
where	players	have	the	same	powers	using	a	natural	notion	of	‘power	bisimulation’.		
	
For	a	concrete	illustration	of	the	power	perspective,	consider	the	following	two	games:	
	
	 	 														A	 	 		 	 E	

	 	 1											 												E		 															A																										A	
	
	 	 	 					
	 	 	 						2									3	 									1	 						2	 							1	 				3	 	 	
	
In	the	game	to	the	left,	player	E	has	two	strategies,	going	Left	and	Right.	If	she	plays	Left,	
then	she	forces	the	game	to	end	in	the	set	{1,	2},	where	the	outcome	1	must	be	 included	
since	 player	A	 might	 have	 chosen	 Left	 at	 the	 start.	 This	 set	 {1,	 2}	 is	 called	 a	 power	 for	
player	E.	Likewise,	if	E	plays	her	strategy	Right,	she	exercises	the	power	{1,	3}.	Now	these	
powers	are	exactly	the	same	in	the	game	to	the	right,	even	though	E’s	moves	are	different	
there.	An	analogous,	slightly	more	complex,	argument	shows	that	powers	for	player	A	are	
the	same	in	both	games	–	bearing	in	mind	that	A	has	4	strategies	in	the	game	to	the	right.									
	
Naturally,	there	exists	a	language	matching	this	invariance,	less	expressive	than	the	modal	
logic	of	game	trees.	To	be	aligned	with	the	power	structure,	it	has	‘forcing	modalities’	{i}ϕ	
saying	that	player	i	has	a	strategy	for	playing	the	game	such	that,	with	any	counterplay	by	
the	other	players,	only	end	nodes	result	 that	 satisfy	ϕ.	 	The	 logical	 theory	of	 forcing	has	
many	similarities	with	modal	logic	–	be	it	that	{i}ϕ	only	has	upward	monotonicity	£ϕ	→	
£(ϕ	∨	ψ)	as	a	base	 law	 (plus	 laws	 linking	powers	of	different	players).	The	aggregation	
law	(£ϕ	∧	£ψ)	→	£(ϕ	∧	ψ)	of	basic	modal	logic	is	invalid	for	powers,	as	is	easy	to	see.	8		
	

                                                
8	 This	 reflects	 the	 fact	 that	 powers	 suggest	 a	 transition	 from	 graph	 models	 to	 ‘neighborhood	
models’	 for	 modal	 logic,	 relating	 points	 to	 sets	 of	 end	 points	 reachable	 from	 them.	 We	 do	 not	
elaborate	 this	point	here	 (but	 cf.	 van	Benthem	2014),	 as	 it	might	 confuse	 the	 reader	with	neigh-
borhood	models	as	a	richer,	rather	than	a	poorer,	level	beyond	modal	logic	to	be	introduced	below.	
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The	search	 for	natural	 invariances	and	 logical	 languages	 that	 fit	 games	 is	 still	ongoing.	 9	
We	have	mentioned	this	illustration	to	show	how	invariance	thinking	is	a	live	topic	today,	
while	also,	games	will	make	a	brief	appearance	in	this	paper	later	on.	
	
3.3	 Interlevel	connections	
	
Translation	While	we	are	advocating	variety	of	simulations	and	matching	languages,	logic	
abhors	 chaos.	 To	 keep	 things	 in	 hand,	 one	 must	 study	 connections	 between	 levels.	 We	
already	 mentioned	 the	 existence	 of	 translations	 between	 languages,	 and	 modal	 logic	
provides	 examples	 of	 how	 these	 can	 be	 related	 to	 invariances.	 For	 instance,	 the	Modal	
Invariance	Theorem	(van	Benthem	1977)	says	the	following:	
	
	 Any	first-order	formula	ϕ	in	the	signature	(R,	P)	is	equivalent	to	the		
	 translation	of	a	modal	formula	iff	ϕ	is	invariant	for	bisimulations.		
	
Many	such	characterization	theorems	exist	for	modal	logics	in	a	broad	sense,	but	there	are	
also	other	ways	in	which	we	can	relate	different	levels	and	their	languages,	for	instance,	by	
mapping	similarity	relations	directly.	A	good	setting	for	this	is	Category	Theory,	and	much	
work	has	been	done	for	modal	languages	in	co-algebra	(Venema	2012).		
	
Digression:	weaker	or	stronger?	We	have	suggested	 that	 invariance	 themes	are	rewar-
ding,	we	did	not	offer	a	final	theory.	For	instance,	we	pointed	out	how	logical	languages	at	
different	 invariance	 levels	 can	 be	 related.	 But	we	 have	 not	 offered	 a	 definitive	 view	 on	
precisely	how.	One	of	the	vexing	(but	also	intriguing	and	wonderful)	things	about	logic	is	
that	one	 can	 look	at	 the	 same	situation	 in	different	ways	 in	 tandem.	For	 instance,	 is	 the	
modal	 language	really	more	specialized	and	weaker	 than	that	of	 first-order	 logic,	or	 is	 it	
more	general?	The	latter	view	is	developed	in	generalized	modal	semantics	for	first-order	
logic	 (Andréka,	 van	Benthem	&	Németi	 1998),	 and	 the	 strong	 analogies	 between	modal	
logic	and	first-order	 logic	are	analyzed	further	at	an	abstract	 level,	via	a	correspondence	
between	potential	isomorphism	and	bisimulation,	in	van	Benthem	&	Bonnay	2008.	10	
	
3.4	 Neighborhood	structures	
	
Generalizing	 a	 similarity	 type	Now	 consider	 an	 issue	 discussed	 earlier.	 Searching	 for	
new	invariances	may	also	make	us	change	the	similarity	type	of	the	models	we	work	with.	
For	example,	let’s	generalize	annotated	graphs	to	neighborhood	models	(W,	N,	P)	with	N	s	X	
a	relation	between	points	s	in	W	and	sets	of	points	X	(cf.	the	textbook	Pacuit	2017).	11		
	
Neighborhoods,	evidence	and	plausibility	For	a	concrete	case,	consider	the	treatment	in	
van	Benthem	&	Pacuit	2011	of	agents’	 evidence	 for	 their	beliefs.	 Starting	at	 the	ordered		
graph	 level,	 belief	 is	 a	 modality	 using	 a	 reflexive	 transitive	 plausibility	 ordering	 ≤	 of	
worlds	(points	in	a	graph),	with	Bϕ	saying	that	ϕ	is	true	in	all	the	most	plausible	worlds	–	

while	conditional	belief	Bψϕ	refers	to	truth	in	the	most	plausible	ψ–worlds.	Indeed,	plausi-
bility	models	support	a	standard	modal	language	with	even	further	doxastic	notions.	
	

                                                
9	For	a	new	‘instantial	bisimulation’,	in	between	modal	and	power	bisimulation,	that	fits	with	game-
theoretic	equilibria	involving	all	players,	see	van	Benthem,	Bezhanishvili	&	Enqvist	2016.	
10	Generalized	semantics	(cf.	Andréka,	van	Benthem,	Bezhanishvili	&	Németi	2014)	is	related	to	our	
themes	here.	But	we	still	do	not	see	exactly	how	things	fit,	and	therefore	omit	further	discussion.	
11 This	move	is	natural,	since	neighborhood	models	are	close	to	parametrized	‘hypergraphs’. 
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Now,	what	if	we	add	semantic	structure	explaining	how	the	plausibility	order	came	about?	
We	can	do	this	by	giving	models	a	 family	E	of	subsets	encoding	the	evidence	received	at	
the	current	stage.	And	we	stipulate	that	s	≤	t	iff	for	each	set	E	in	E,	if	s	∈	E,	then	t	∈	E.	Thus,	
each	evidence	model	M	 induces	a	plausibility	graph	ord(M).	A	natural	language	matching	
this	richer	level	of	structure	contains	not	just	analogues	for	the	modalities	at	the	derived	
plausibility	 level,	but	also	new	operators,	such	as	£ϕ	saying	there	exists	an	evidence	set	
‘supporting’	ϕ	 in	the	sense	that	each	point	s	∈	E	makes	ϕ	true.	 In	 fact,	several	 languages	
make	sense	here,	depending	on	which	similarity	relation,	less	or	more	strict,	one	imposes	
on	evidence	structures	(cf.	van	Benthem,	Bezhanishvili,	Enqvist	&	Yu	2016).	Now,	compa-
rison	between	 levels	 is	not	as	direct	as	before:	we	have	not	 just	different	 invariances	on	
the	same	structures,	but	maps	transforming	structures	at	one	level	into	those	at	another.		
	
We	 will	 not	 pursue	 details	 of	 this	 ongoing	 work,	 but	 summarize	 the	 point	 we	 want	 to	
make.	Generalization	of	similarity	types	is	another	active	force	in	semantics,	going	beyond	
invariance	inside	one	type.	Having	said	this,	type	change	will	be	a	side	theme	in	this	paper.	
	
3.5	 Conclusion		
	
Discovering	natural	zoom	levels	in	semantics	is	an	ongoing	process.	We	gave	illustrations	
from	 the	 realm	 of	modal	 logic,	 driven	 by	 interests	 in	 spatial	 logics,	 process	 theories,	 or	
varieties	of	 information.	We	 showed	 that	 this	 variety	 is	not	 just	 a	 free-for-all.	 There	 are	
connections	between	different	zoom	levels	and	their	invariances	–	though	open	problems	
abound,	and	maintaining	the	unity	of	logic	lies	in	getting	clear	on	these.	
	
4	 Preservation,	generalized	consequence,	and	model	change	

4.1	 Semantic	consequence		
	
Logical	semantics,	with	its	emphasis	on	meaning	and	truth	also	offers	an	account	of	valid	
consequence.	 The	 standard	 semantic	 notion	 of	 consequence	 says	 that	 Σ	 |=	 ϕ	 iff	 for	 all	
models	making	all	formulas	in	Σ	true,	ϕ	is	also	true	–	where	logical	systems	may	still	differ	
in	what	they	consider	the	relevant	models.	In	this	format,	the	notion	of	consequence	gets	
defined	 in	 terms	of	 truth	 in	a	model,	which	can	 then	be	analyzed	 in	a	recursive	manner.	
This	is	not	an	arbitrary	choice	since	it	matches	with	other	perspectives.	Well-known	com-
pleteness	theorems	say	that,	for	many	logical	systems,	there	is	an	extensional	equivalence	
(qua	 admissible	 transitions	 from	 sets	 of	 formulas	 to	 formulas)	 between	 semantic	
consequence	 and	 syntactic	 notions	 of	 derivability	 defined	 in	 some	 appropriate	manner,	
perhaps	even	according	to	independent	proof-theoretic	intuitions.		
	
Of	course,	consequence	is	not	yet	the	same	as	actual	inference	and	reasoning,	but	at	least,	
it	 adds	 a	 new	 perspective	 that	 tends	 in	 this	 direction	 –	 in	 line	with	what	 we	 observed	
earlier	about	the	tandem	of	invariance	and	inference	for	quantifiers.	
	
4.2	 Interpolation	and	invariance		
	
Consequence	 mixes	 well	 with	 our	 earlier	 topic	 of	 invariance.	 We	 give	 one	 illustration.	
Consider	Craig’s	Interpolation	Theorem	for	first-order	logic.	
	
Theorem		For	all	first-order	formulas	ϕ,	ψ	with	ϕ	|=	ψ,	there	exists	a	formula	α	whose		
	 non-logical	vocabulary	is	contained	in	that	both	ϕ	and	ψ	such	that	ϕ	|=	α	|=	ψ.	
	



 12 

Now,	 intuitively,	 there	 is	 a	 semantic	 surplus	 to	 the	 existence	of	 an	 interpolant	 involving	
only	part	of	the	vocabulary	of	the	antecedent	and	the	consequent	of	an	inference.	What	the	
existence	of	an	α		as	above	guarantees	is	the	following	‘transfer	property’:	
	
	 Let	M	|=	ϕ	and	let	there	be	an	Lϕ∩Lψ–potential	isomorphism		
	 between	M	and	any	other	model	N:	then	N	|=	ψ.	
	
Let	us	say	that,	in	this	case,	‘ϕ	entails	ψ	along	Lϕ∩Lψ–potential	isomorphism’.	The	following	
analysis	comes	from	Barwise	&	van	Benthem	1999.	Here	is	a	new	version	of	the	first-order	
Interpolation	Theorem	highlighting	this	special	behavior:	
	
Theorem			The	following	are	equivalent	for	all	first-order	formulas	ϕ,	ψ:	(a)	there	is			
	 an	L-interpolant	for	ϕ,	ψ,	(b)	‘ϕ	entails	ψ	along	L–potential	isomorphism’.	12	
	
Meta-logic	Here	is	an	interesting	fact.	Standard	Interpolation	fails	 for	natural	extensions	
of	first-order	logic:	in	particular,	for	the	earlier	infinitary	logic	L∞ω.	However,	the	preceding	
invariance	version	of	Interpolation	can	be	shown	to	hold	for	L∞ω.	Thus,	invariance	versions	
of	 well-known	meta-properties,	 equivalent	 to	 them	 in	 the	 case	 of	 first-order	 logic,	 may	
have	better	prospects	of	extending	 to	other	 logics.	This	 illustrates	a	point	 that	 is	seldom	
realized.	What	a	crucial	meta-property	of	a	 logical	system	is	may	depend	on	its	 formula-
tion,	which	can	contain	historical	accidents.	Thus,	 received	views	of	holding	or	 failing	of	
meta-properties	across	systems	in	the	landscape	of	logics	should	be	examined	critically.	13	
	
4.3	 Preservation	and	generalized	consequence	
	
Preservation	theorems	The	same	thinking	extends	to	model-theoretic	preservation	theo-
rems,	 to	some	 the	most	attractive	results	 that	started	Model	Theory	 in	 the	1950s.	A	key	
example	 is	 the	Los–Tarski	Theorem	saying	 that	a	 first-order	 formula	 is	preserved	under	
submodels	iff	it	is	definable	in	a	purely	universal	syntax	starting	from	literals	(atoms	and	
their	 negations)	 using	 only	 conjunction,	 disjunction,	 and	 universal	 quantifiers.	 Another	
such	result	(relevant	to	the	earlier	monotonicity	inferences)	is	Lyndon’s	Theorem:	a	first-
order	 formula	 is	upward	monotonic	 in	 the	predicate	P	 iff	 it	 is	equivalent	 to	a	 formula	 in	
which	P	has	only	positive	syntactic	occurrences.	These	results	embody	the	essence	of	what	
logicians	 like:	 syntactic	 form	 determines	 semantic	 behavior.	 In	 line	 with	 our	 earlier	
discussion	of	invariance,	we	could	also	reverse	this,	and	say	that	useful	semantic	transfer	
behavior	across	models	will	lead	to	the	emergence	of	matching	special	syntax.	14	
	
Entailment	 along	 a	 relation	 From	 our	 current	 perspective,	 preservation	 theorems	 are	
really	about	a	generalized	notion	of	consequence,	allowing	 for	 transfer	 in	 that,	when	the	
premises	hold	 in	one	model,	 the	conclusion	holds	 in	some	other	model.	 Standard	conse-
quence	is	the	special	case	where	we	stay,	a	bit	timidly,	inside	the	same	model.			
	
A	general	way	of	reasoning	about	entailment	along	any	relation	R		is	in	a	modal	format	
	

                                                
12	One	can	also	rework	most	standard	preservation	theorems	in	this	interpolation	style.		
13	This	reanalysis	also	carries	over	to	modal	logic.	For	instance,	a	valid	consequence	between	two	
modal	formulas	ϕ,	ψ	has	a	modal	L-interpolant	iff	ϕ	entails	ψ		along	L-bisimulation.	
14 We	forego	other	features,	such	as	the	fact	that	special	syntax,	say,	universal	or	positive,	may	make	
inferences	 perspicuous,	 and	 sometimes	 even	 recursively	 computable	 from	 mere	 syntax	 (cf.	 van	
Benthem	1986),	in	ways	that	arbitrary	first-order	formulas	do	not. 
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	 ϕ	→	[R]ψ	
	
The	general	properties	of	 this	 style	of	 reasoning	 come	out	 in	a	 calculus	having	different	
relations.	For	instance,	with	;	as	relational	composition,	and	v	as	converse,	we	have:	
	
	 (a)	ϕ	→	[R]ψ	and	ψ	→	[S]α	imply	ϕ	→	[R;	S]α,						

	 (b)	ϕ	→	[R]ψ	implies	¬ψ	→	[R	v]¬ϕ	
	
Van	Benthem	1996,	 1998	 give	 complete	 logics	 for	 the	 ‘universal	Horn	 fragment’	 of	 pro-
positional	 dynamic	 logic	 PDL,	which	 describes	 the	 structural	 properties	 of	 such	 genera-
lized	reasoning	in	their	most	abstract	form.	We	submit	that	real	inference	usually	involves	
jumps	across	situations,	a	theme	already	emphasized	in	Barwise	&	Perry	1983.	
	
4.4	 Excursion:	‘alternative	logics’?		
	
By	making	the	relational	 jumps	 in	 transfer	 inferences	explicit	as	modalities,	our	 implica-
tion	stayed	classical,	 supporting	all	 the	usual	properties	of	 classical	 inclusion,	 except	 for	
Reflexivity	 (since	ϕ	→	 [R]ϕ	 clearly	 fails	 in	 general).	 Still,	 our	 setting	 supports	 variations	
that	break	 laws	of	classical	 consequence.	For	 instance,	new	consequence	notions	arise	 if	
we	 endow	 models	 with	 an	 order	 of	 relevance	 or	 importance.	 If	 we	 then	 say	 that	 a	
conclusion	holds	 if	 it	 is	 true	 in	all	most	 important	models	 for	 the	premises	(so	premises	
can	 influence	 which	 of	 their	 models	 are	 relevant),	 we	 get	 non-classical	 non-monotonic	
logics	of	a	sort	widely	studied	in	the	1980s.	But	again,	classical	logic	lies	close	by.	There	is	
a	clear	analogy	between	this	way	of	thinking	and	the	earlier	plausibility	models	for	belief.	
Instead	of	 insisting	 on	non-monotonic	 consequence	ϕ	⇒	ψ,	we	might	 just	 as	well	 add	 a	
formula		Bϕψ	with	an	explicit	modality	for	belief	to	classical	logic	(van	Benthem	2011).	
	
4.5	 Dynamic	logics	of	model	change		
	
Transfer	or	transformation	of	information	across	models	occurs	more	often	in	the	recent	
literature.	 In	 particular,	 current	 logics	 of	 information	 change	 analyze	 how	 formulas	
expressing	knowledge,	belief,	or	yet	other	attitudes	of	agents	change	as	new	information	
comes	 in.	We	 cannot	 go	 into	 the	motivations	 or	 the	 further	 structure	 of	 such	 ‘dynamic	
epistemic	logics’	here	(see	Baltag	&	Smets	2006,	van	Benthem,	van	Eijck	&	Kooi	2006,	van	
Ditmarsch,	van	der	Hoek	&	Kooi	2007,	van	Benthem	2011).	But	of	relevance	to	us	is	this	
key	technical	feature:	update	with	new	information	is	treated	as	definable	model	change.		
	
In	particular,	 an	event	 !ϕ	 of	 getting	 the	 ‘hard	 information’	 that	proposition	ϕ	 is	 the	 case	
restricts	a	current	model	M	to	a	definable	submodel	M|ϕ.	This	is	a	semantic	‘relativization’	
of	a	model	to	a	definable	subdomain.	If	we	now	try	to	axiomatize	the	corresponding	logic,	
with	explicit	dynamic	modalities	[!ϕ]	for	informational	actions,	and	static	modalities	K	and	
B	 for	agents’	knowledge	and	beliefs,	we	are	no	longer	interested	in	transfer	implications,	
but	in	equivalences	telling	us	how	facts	in	the	updated	model	relate	to	facts	in	the	original	
one.	A	good	example	of	such	an	equivalence	are	these	two	valid	laws:		
	
	 [!ϕ]Kψ	↔	(ϕ	→	[!ϕ]ψ)		

	 [!ϕ]Bψ	↔	(ϕ	→	Bϕ[!ϕ]ψ)	
	
that	 give	 basic	 properties	 of	 semantic	 relativization.	 More	 general	 dynamic	 logics	 of	
update	also	axiomatize	the	behavior	of	operations	that	modify	plausibility	order	(say,	⇑ϕ	
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puts	all	ϕ–points	on	top	of	all	¬ϕ–points	in	the	current	model,	while	retaining	the	old	order	
inside	 these	 zones),	 or	 transform	 models	 in	 yet	 other	 definable	 ways.	 More	 complex	
counterparts	to	the	above	laws	generate	complete	logics	of	such	model	transformations.	
	
Technically,	 one	 can	 see	 these	 logical	 systems	 as	 formalizing	 the	 theory	 of	 cross-model	
relations	 matching	 definable	 transformations	 of	 models.	 This	 is	 more	 special	 than	 the	
scenarios	 that	we	 considered	before,	where	 entailment	 could	be	 along	any	 relation,	 say,	
that	of	being	an	arbitrary	submodel,	definable	or	not.	For	definable	transformations,	often	
the	static	base	logic	has	enough	expressive	power	to	supply	all	needed	recursion	laws	of	
the	 above	 sort	 (cf.	 van	Benthem	&	 Ikegami	2008	on	 ‘product	 closure’	 of	 logics).	 Indeed,	
dynamic-epistemic	logics	tend	to	be	decidable	if	their	static	base	logic	is,	whereas	logics	of	
consequence	along	arbitrary	relations	can	be	much	more	complex.	15		
	
Still,	this	simplicity	of	logics	for	definable	model	change	is	fragile.	Löding	&	Rohde	2003,	a	
study	 of	 ‘sabotage	 games’	 where	 one	 player	 can	 delete	 arrows	 from	 a	 graph,	 while	 the	
other	tries	to	reach	some	goal	point	(cf.	van	Benthem	2014),	showed	how	the	modal	logic	
of	removing	arbitrary	links	from	relations	is	undecidable.		Aucher,	van	Benthem	&	Grossi	
2016	show	how	even	simpler	‘stepwise’	versions	of	dynamic-epistemic	logics,	where	just	
some	point	lacking	the	property	ϕ	(or	some	link	failing	to	pass	the	relevant	update	recipe)	
gets	removed,	may	well	become	undecidable	–	even	when	the	base	logic	is	quite	simple.		
	
4.6	 Zoom	levels	and	tracking		
	
Our	general	point	here	 is	 simple,	but	 sweeping.	The	universe	of	models	 for	 semantics	 is	
criss-crossed	by	links	of	various	sorts.	In	inference,	we	are	often	interested	in	what	can	be	
said	about	one	model	in	terms	of	what	we	know	about	another	model	linked	to	it.	And	to	
put	this	in	its	proper	perspective,	logics	of	model	change	and	transfer	seem	an	appropriate	
medium.	Moreover,	 there	are	strong	connections	here	with	our	earlier	 semantic	 themes.	
In	 particular,	 the	 update	 operations	 introduced	 in	 this	 section	 should	 respect	whatever	
invariance	relation	we	have	chosen	for	our	static	models.	But	there	is	more.	Updates	can	
take	 place	 at	 various	 zoom	 levels,	 and	 in	 that	 case,	 there	 is	 a	 significant	 issue	 of	 when	
updates	 at	 a	 coarser	 level	 faithfully	 ‘track’	 updates	 at	 a	 finer	 level.	 For	 more	 on	 this	
connection	between	model	change	and	zoom	levels,	cf.	van	Benthem	2016,	Cinà	2017.		
	
4.7	 Conclusion		
	
We	have	 shown	how	a	 concern	with	 consequence	 is	 a	 natural	 companion	 to	 our	 earlier	
semantic	considerations	of	 invariance	and	definability.	We	also	showed	how	generalized	
notions	 of	 consequence	make	 sense	 then,	 that	merge	with	model-theoretic	 preservation	
results	and	with	model	transformations	as	studied	in	dynamic-epistemic	logics.	16	
	
5	 Games	and	agents		

While	our	topics	so	far	were	well	within	the	realm	of	standard	model	theory	as	description	
of	the	world,	in	this	final	section,	we	explore	a	slightly	more	radical	perspective.	
	

                                                
15	 For	 instance,	 first-order	 logic	with	 an	 added	modality	 over	model	 extensions	 no	 longer	 has	 a	
recursively	axiomatizable	set	of	validities	–	but	a	proof	would	take	us	too	far	for	this	survey	paper.	
16	All	 this	 is	not	to	deny	that	there	are	also	 independent	more	syntactic	proof-theoretic	 intuitions	
concerning	consequence	–	but	these	are	not	the	topic	of	this	paper.	
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5.1	 Logic	games	
	
Model	 comparison	games	Our	 starting	point	 is	 the	 fine-structure	of	 similarity	 relations	
and	invariance.	A	well-known	technique	for	analyzing	this	are	‘model	comparison	games’	
played	between	two	given	models	M	and	N,	due	to	Ehrenfeucht	and	Fraïssé.	Such	games,	
and	in	particular,	their	strategies,	form	a	natural	bridge	between	logical	syntax	and	inva-
riant	 semantic	 structure.	 The	 game	works	 as	 follows.	 A	 player	 S	 (‘Spoiler’)	 who	 claims	
dissimilarity	of	the	models	chooses	one	of	the	models,	and	picks	an	object	d	in	its	domain.	
The	counter-player	D	 (‘Duplicator’)	 then	chooses	an	object	e	 in	the	other	model,	and	the	
pair	 (d,	 e)	 is	 added	 to	 the	 current	 list	 of	 matched	 objects.	 After	 k	 rounds,	 the	 object	
matching	 is	 inspected.	 If	 it	 is	 a	 partial	 isomorphism,	 D	 wins;	 otherwise,	 S	 does.	 For	
concrete	examples	of	this	game	and	its	uses,	we	refer	to	Doets	1996,	van	Benthem	2014.	
	
It	can	be	shown	that	this	game	is	adequate	in	the	following	sense.	
	
Theorem		For	all	models	M,	N,	and	k	∈	N,	the	following	two	assertions	are	equivalent:	
	 (a)	 D	has	a	winning	strategy	in	the	k-round	game,	
	 (b)	 M,	N	agree	on	all	first-order	sentences	up	to	quantifier	depth	k.	
	
In	fact,	the	correlation	with	syntax	is	much	tighter	than	it	might	seem	from	this	version.	
	
Theorem			There	exists	an	explicit	correspondence	between		
	 (a)	winning	strategies	for	S	in	the	k-round	comparison	game	for	M,	N,	
	 (b)	first-order	sentences	ϕ	of	quantifier	depth	k	with	M	|=		ϕ,	not	N	|=		ϕ.	
	
Likewise,	D’s	winning	strategies	can	be	made	more	explicit	in	terms	of	‘towers’	of	partial	
isomorphisms.	 Perhaps	 most	 satisfyingly,	 in	 the	 game	 over	 infinitely	 many	 rounds,	 the	
winning	strategies	for	D	are	the	potential	isomorphisms	between	the	models	(if	any).	
	
Other	logic	games	The	same	sort	of	strategic	analysis	provides	fine-structure	to	other	lo-
gical	notions	such	as	truth,	proof,	or	model	construction	(Väänänen	2011).	All	these	games	
show	 interesting	 connections.	 For	 instance,	 the	 above	match	of	 first-order	 formulas	 and	
strategies	 for	 the	 Spoiler	 S	 can	 be	 reworked	 into	 a	 precise	 correspondence	 of	 modal	
comparison	games	and	evaluation	games	for	first-order	formulas	in	single	models.	
	
5.2	 Introducing	agents		
	
But	to	us,	the	use	of	games	in	logic	signals	something	of	much	greater	import.	Games	are	
played	by	agents,	and	what	really	comes	to	the	fore	here	is	the	role	of	agents	dealing	with	
truth,	 similarity,	 or	 consequence.	 17	 A	 focus	 on	 agents	 emphasizes	what	might	 be	 called	
‘the	other	face	of	logic’:	not	as	description	of	the	world,	in	either	physical	or	mathematical	
structure,	 but	 as	 a	 form	 of	 structured	 activity,	 highlighted	 in	 communication,	 argumen-
tation,	 and	 other	 pervasive	 themes	 in	 the	 history	 of	 logic	 –	 often	 having	 to	 do	with	 the	
information	that	agents	have,	and	with	the	interaction	of	multiple	agents.	
	
Games	are	a	concrete	focus	for	studying	agency,	and	what	makes	them	even	more	attrac-
tive	 is	 that	 they	 are	 also	 a	model	 for	 the	modern	 face	 of	 computation	 (one	 of	 our	 basic	
themes)	as	interactive	agency	between	computers	(and	humans)	in	large	social	networks.	
Indeed,	 van	 Benthem	 2014	 develops	 various	 links	 between	 game	 solution	 procedures,	
game-theoretic	equilibria,	and	the	fixed-point	logics	that	we	discussed	earlier.		
                                                
17	This	agency	theme	also	underlies	the	dynamic-epistemic	logics	in	the	preceding	section.	
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Logical	constants	once	more	This	is	not	just	a	tool,	a	game-theoretic	stance	can	affect	our	
very	understanding	of	logic	itself.	From	a	game-theoretic	perspective,	logical	constants	are	
not	so	much	most	general	invariants	of	reality,	the	line	of	our	earlier	discussion,	but	rather	
the	most	general	 structures	one	can	 find	 in	creating	games.	Conjunction	and	disjunction	
reflect	choices	different	players	can	make	in	games,	negation	correlates	with	role	switch,	
and	quantifiers	 involve	 sequential	 composition	of	 games.	 Even	 further	 logical	 constants,	
beyond	 the	 classical	 repertoire,	 arise	 when	 we	 consider	 further	 natural	 operations	 on	
games	 such	 as	 various	 forms	 of	 parallel	 composition,	 or	 infinite	 iteration.	 We	 merely	
mention	this	more	radical	switch	here,	but	the	consequences	of	such	a	more	radical	shift	
for	semantics	as	traditionally	understood	remain	to	be	fully	investigated.		
	
5.3	 Agent	diversity	
	
Our	last	illustration	of	the	agency	perspective	concerns	what	it	might	do	to	topics	that	we	
discussed	earlier,	and	that	seemed	settled.	For	instance,	consider	the	notion	of	similarity	
between	models	and	invariance.	So	far,	this	was	an	absolute	notion,	with	a	Yes/No	answer	
in	any	given	comparison.	But	once	we	introduce	agents	that	use,	or	inhabit,	these	models,	
similarity	need	not	be	an	objective	given,	but	something	that	depends	on	the	view	and	the	
abilities	of	the	agents	doing	the	comparison.	To	make	this	more	precise,	we	need	to	delve	a	
bit	deeper	into	the	nature	of	agents.	What	becomes	relevant	then	are	two	new	features.		
	
Bounded	agents	and	automata	One	issue	is	what	idealized	capacities	we	assign	to	agents	
in	performing	the	tasks	demanded	by	standard	logical	notions.	Clearly,	real	agents	operate	
under	tight	bounds	on	what	they	can	infer,	observe,	or	remember.	Some	awareness	of	this	
theme	 exists	 in	 computational	 logic	 (and	 some	parts	 of	 game	 theory),	where	 agents	 are	
modeled	 by	 automata	 of	 various	 sorts.	 For	 instance,	 in	 ‘pebble	 versions’	 of	 model	
comparison	games,	the	agents	have	finite	memories	given	by	a	fixed	number	of	pebbles	at	
their	disposal	that	they	can	use	to	mark	objects	when	drawing	samples	from	the	models	
and	making	comparisons	as	to	partial	isomorphism.	This	leads	to	even	more	fine	structure	
than	 we	 displayed	 above,	 in	 terms	 of	 winning	 strategies	 matching	 the	 syntax	 of	 finite-
variable	 fragments	of	 first-order	 logic.	Other	uses	of	automata	abound	 (cf.	Graedel,	Tho-
mas	&	Wilke,	eds.,	2002),	but	these	ideas	have	not	percolated	yet	into	core	logic.	
	
From	fragments	to	agents	What	might	agents	do	in	the	heartland	of	logic?	Normally,	we	
think	 in	 terms	of	 logical	 systems,	 i.e.,	 complete	machineries	 for	definition	and	 inference.	
Or,	 if	 we	 think	 of	 users,	 we	 do	 so	 implicitly,	 considering	 low-complexity	 fragments	 of	
complex	systems,	presumably	better	usable	 in	practice	 in	 terms	of	 complexity	of	model-
checking	 or	 inference.	 Well-known	 examples	 of	 decidable	 fragments	 inside	 the	 undeci-
dable	system	of	first-order	logic	are	monadic	predicate	logic,	or	modal	logic.		
	
But	 here	 is	 an	 alternative	 perspective.	 If	 a	 bounded	 agent	 is	 handed	 a	 complex	 logical	
system,	that	agent	will	only	be	able	to	use	part	of	that	system,	or	at	least,	she	will	only	use	
part	 of	 the	 full	 system	 correctly.	 But	 then	 we	 can	 rethink	 what	 are	 usually	 seen	 as	
‘fragments’	of	 complete	 logical	 systems	 in	 terms	of	what	 is	available	 to	agents,	modeled,	
say,	as	automata	with	various	computational	limitations.		One	instance	of	this	type	are	the	
earlier	 pebble	 games:	 the	 usual	 adequacy	 results	 in	 terms	 of	 finite-variable	 fragments	
determine	 for	 which	 parts	 of	 complete	 predicate	 logic	 such	 agents	 can	 perform	 model	
comparisons	correctly.	A	more	proof-theoretic	example	would	be	simple	agents	(say,	finite	
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automata)	 doing	 a	 parity	 count	 to	 determine	 positive	 or	 negative	 occurrence,	 and	 then	
working	correctly	with	the	monotonicity	subcalculus	of	full	predicate	logic.	
	
Invariance	and	agent	types	A	second	way	in	which	agents	enter	semantic	considerations	
goes	to	the	notions	of	structural	similarity	and	invariance	that	were	our	running	threads.	
When	we	ask	whether	 two	given	structures	are	 ‘the	same’,	 there	 is	a	hidden	parameter:	
‘the	 same	 for	whom’?	Agents	with	 restricted	powers	of	 inspection	or	memory	 see	 fewer	
differences	than	idealized	ones.	And	the	same	is	true	for	different	preferences	that	agents	
might	have.	To	make	 this	concrete,	 consider	our	 theme	of	games,	 It	 is	attractive	 to	view	
two	extensive	games	as	equivalent	when	they	have	the	same	Backward	Induction	solution	
(van	 Benthem	 2014).	 But	 then,	 earlier	 judgments	 of	 invariance	 may	 change	 because	
players	can	now	have	different	preferences	in	the	games	under	comparison.		
	
For	instance,	consider	our	earlier	example	of	power-equivalent	games	in	Section	3.2,	but	
now	annotated	with	preferences.	Here	a	node	marked	(1,	0)	indicates	that	player	A	assigns	
utility	1	and	player	E	assigns	0,	and	similarly	for	all	other	end	nodes.	
	
	 	 	 	A	 	 	 	 	 	 E	 	 				

	 		 1,	0	 	 	E	 	 	 											A	 	 	 						A	 	
	 							
	 	 	 0,	3		 								2,	2		 													1,	0	 			0,	3	 											1,	0	 2,2		
	
Backward	Induction	then	proceeds	as	 follows.	 In	 the	game	to	 the	 left,	player	E	would	go	
Left	at	her	turn	since	this	yields	the	best	outcome	for	her	among	her	available	actions:	3	
versus	2.	This	is	indicated	by	the	bold-face	line.	Foreseeing	this,	player	A	gets	1	if	he	moves	
Left,	and	only	0	when	he	moves	Right,	so	he	moves	Left.	Thus	the	game	ends	in	(1,	0).	But	
running	the	same	analysis	in	the	game	to	the	right	yields	the	moves	indicated	by	the	bold-
face	lines	there,	and	the	outcome	is	the	node	labeled	(2,	2).	Thus	earlier	judgments	of	game	
equivalence	change	when	players	with	preferences	reason	in	a	rationality-based	manner.	
	
Now	rationality	is	a	strong	assumption	about	the	type	of	player,	as	choosing	best	actions	
for	oneself	given	one’s	preferences	and	beliefs.	Such	assumptions	are	under	discussion	in	
modern	 game	 theory,	 where	 players	 can	 also	 behave	 quite	 differently,	 making	 ‘agent	
types’	a	parameter	to	be	chosen	explicitly	before	we	can	analyze	a	game–	and	in	the	same	
vein,	 our	discussion	of	 invariance	might	 also	need	an	 additional	parameter	when	 things	
are	viewed	from	an	agent	perspective.	When	are	two	structures	the	same	for	whom?	
	
Diversity	 once	more	But	 here	 is	 one	more	 step.	 The	 usual	 implicit	 assumption	 in	 logic	
seems	 to	be	 that	 agents	are	 the	 same	qua	powers	and	 styles	of	behavior.	This	 is	 true	 in	
logical	games:	although	players	are	allowed	to	have	different	information,	roles	and	pay-
offs,	their	styles	of	observation	and	reasoning	run	in	exactly	the	same	way.	But	in	reality,	
agents	differ	qua	powers	in	all	these	respects	(Liu	2009),	and	normal	scenarios	all	around	
us	pit	very	different	players	against	each	other,	often	even	humans	versus	machines.	We	
can	of	course	leave	this	in	place	as	an	idealization.	But	we	may	be	missing	an	interesting	
object	 of	 logical	 study	 then.	What	 about	 taking	 this	 diversity	 seriously,	 and	 introducing	
more	social	scenarios?	What	are	solutions	to	 logic	games	when	players	are	different,	say	
games	of	model	comparison,	or	games	of	dialogue?	Or	what	happens	 to	 ‘resource	 logics’	
(Restall	 2000)	when	we	 include	 interplay	 of	 agents	with	 different	 reasoning	 resources?	
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Bits	and	pieces	of	this	sort	of	thinking	occur	in	the	literature	(cf.	the	modeling	of	players	
with	different	‘sights’	in	Grossi	&	Turrini	2012),	but	nothing	like	a	theory	exists.	18	19	
	
Relocating	 logic	Does	 logic	disappear	 in	 this	 concert,	 perhaps	 a	 cacophony,	 of	 different	
agent	 voices?	 I	 do	 not	 think	 so.	What	 we	 have	 to	 give	 up	 is	 one	 kind	 of	 unique	 logical	
rationality	 for	 all	 agents.	 But	 the	 role	 of	 logic	 merely	 shifts	 to	 something	 more	 subtle.	
Taking	out	agent	types	as	a	parameter,	much	structure	remains,	and	logic	then	regulates	
the	rational	interaction	of	different	kinds	of	agents.	
	
5.4	 Conclusion		
	
An	agent	perspective	using	games	as	 its	vehicle	 is	a	natural	supplement	 to	our	semantic	
considerations,	bridging	between	structure	and	syntax	in	new	ways.	20	But	if	we	take	this	
viewpoint	 seriously,	 it	may	 also	be	much	more	 radical	 then	 it	 looks	 at	 first	 sight,	 and	 it	
may	start	affecting	our	very	understanding	of	the	basic	logical	notions.	
	
6	 Conclusion		

This	 short	piece	has	 given	a	broad	picture	of	 the	 semantic	 strand	of	 logic,	 following	 the	
main	themes	of	similarity,	invariance,	consequence,	and	a	bit	of	games	and	agency	to	spice	
things	up.	Admittedly,	our	treatment	was	sketchy	–	and	in	particular,	all	that	we	have	said	
about	 games	 and	 agency	was	meant	 as	 an	 appetizer	 only,	 not	 as	 a	 serious	 introduction.	
Even	so,	we	hope	 to	have	given	an	 impression	of	 the	 richness	of	our	 themes,	 and	of	 the	
way	they	integrate	across	logic,	crossing	between	different	systems	and	subfields.	21	
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