
LEARNING TO DECIDE A FORMAL LANGUAGE: A

RECURRENT NEURAL NETWORK APPROACH

MSc Thesis (Afstudeerscriptie)

written by

Krsto Proroković

(born March 12, 1993 in Kotor, Montenegro)

under the supervision of Dr Germán Kruszewski and Dr Elia Bruni, and

submitted to the Board of Examiners in partial fulfillment of the requirements for the

degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

August 29th, 2018 Dr Floris Roelofsen

Dr Tom Lentz

Dr Miguel Rios Gaona

Dr Elia Bruni

Dieuwke Hupkes MSc

Abstract

We use recurrent neural networks (RNNs) for deciding locally k-testable languages. We

show that, when used for deciding languages, RNNs fail to generalise to unseen examples.

However, using attention greatly improves the generalisation. We then implement a

differentiable version of the scanner used for deciding locally k-testable languages. We

show that RNNs are able to store the k-factors in its memory but not arrange then as a

look-up table which is necessary for deciding languages specified by multiple k-factors.

Acknowledgents

I would like to thank my supervisors Germán, Elia and Dieuwke (whose name sadly

does not appear on the title page due to formal constraints) for all the guidance during

the development of this thesis and for caring not only about my work, but also about

my wellbeing and future.

I also thank my fellow Master of Logic colleagues for all the collaboration during my

two years spent in Amsterdam.

I am grateful to Floris Roelofsen, Tom Lentz and Miguel Rios Gaona for finding time

to read this thesis.

Lastly, I thank my family for their constant support.

1

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Organisation of the Thesis . 4

2 Related Work 5

3 Background 6

3.1 Locally k-testable languages . 6

3.2 Recurrent Neural Networks . 8

3.2.1 Vanilla Recurrent Neural Networks 8

3.2.2 Backpropagation Through Time and Vanishing Gradient 11

3.2.3 Long-Short Term Memory Networks 12

3.2.4 Gated Recurrent Units . 13

3.2.5 One-hot and Dense Encodings 14

3.2.6 Encoder-Decoder Sequence-to-Sequence Models 15

3.2.7 Attention Mechanism . 15

3.2.8 Layer Normalisation . 16

4 Experiments and Results 17

4.1 Data . 17

4.2 Methods . 18

4.3 RNN Decider . 18

4.4 Adding Attention . 21

4.5 Decider as Scanner . 23

4.5.1 Last Hidden State of Encoder as Look-Up Table 24

4.5.2 Can RNNs Store k-Factors? . 26

4.5.3 Using Positional Encodings . 28

4.5.4 Supervising LSTM Gates . 29

5 Conclusion and Future Work 32

5.1 Register RNNs . 32

2

Bibliography 33

3

Chapter 1

Introduction

1.1 Motivation

Learning the meaning of formal instructions from data is one of the fascinating aspects

of human intelligence. For example, having seen the execution of several simple computer

programs, humans can infer the semantics behind the if-then-else clause or for-loop. On

the other hand, current state of the art machine learning methods would not be able to

do so without extremely huge amount of data.

In this thesis we study a closely related problem - learning to decide a formal language

from data. To see how these two are connected, think of regular expressions. One cannot

decide whether a string belongs to the regular language specified by a certain regular

expression, without understanding the meaning of regular language constructs such as

conjunction or Kleene star. Therefore, solving the second problem would bring us a step

closer to teaching machines to execute our instructions.

1.2 Organisation of the Thesis

In Chapter 2 we give an overview of the related work. In Chapter 3 we provide the

background necessary to understand the experiments in Chapter 4. In Chapter 4 we will

use recurrent neural networks for learning to decide a simple class of formal languages. In

Chapter 5 we will summarise the results obtained in Chapter 4 and provide some future

directions. We expect the reader to be familiar with linear algebra and formal language

theory and to have seen some multivariable calculus. Many figures are intentionally

hand-drawn using author’s favourite uni-ball Signo 207 pen.

4

Chapter 2

Related Work

Learning to decide a formal language can be seen as an example of learning an algo-

rithm from input/output examples. There are several approaches to this problem. One

would be to induce a discrete program from finite set of instructions. Inductive logic

programming [20] requires domain specific knowledge about the programming languages

and hand-crafted heuristics to speed up the underlying combinatorial search. Levin [16]

devised an asymptotically optimal method for inverting functions on given output, albeit

with a large constant factor. Hutter [11] reduced the constant factor to less than 5 at the

expense of introducing a large additive constant. These methods are not incremental

and do not make use of machine learning. Schmidhuber [25] extended the principles

of Levin’s and Hutter’s method and developed an asymptotically optimal, incremental

method that learns from experience. However, the constants involved in the method are

still large which limits its practical use.

The approach that we will take over here is based on training differentiable neural

networks. To the best of our knowledge no one used neural networks for deciding a whole

class of formal languages, rather a single language from positive and negative examples.

Mozer and Das [19] used neural networks with external stack memory to parse simple

context-free languages such as anbn and parenthesis balancing from both positive and

negative examples. Wiles and Elman [30] used neural networks to learn sequences of the

form anbn and generalise on a limited range of n. Joulin and Mikolov [14] used recurrent

neural networks augmented with a trainable memory to predict the next symbol of the

element of context-free language. Lastly, Zaremba and Sutskever [31] used recurrent

neural networks for learning to execute simple Python programs.

5

Chapter 3

Background

In this chapter we provide background material needed for understanding and repro-

ducing results from Chapter 4. In first part we introduce locally k-testable languages - a

simple class of languages that we will be dealing with later. In second part we introduce

recurrent neural networks - statistical models for processing sequential data.

3.1 Locally k-testable languages

We start by providing several definitions from formal language theory. An alphabet

A is a finite set of symbols. A string is a finite sequence of symbols drawn from the

alphabet. A language is a set of strings over an alphabet. The number of symbols in a

string is called the length of the string. Strings of length k are also called k-factors. A

strictly k-local or SLk definition is a set of k-factors. A string satisfies an SLk definition

if and only if every k-factor that occurs in the string is an element of that definition.

The class of languages defined using SLk definitions is called strictly k-local.

An algorithm decides a language if, given a string, outputs whether the string belongs

to the language. A strictly k-local language can be decided using a scanner that contains

a look-up table of k-factors: scanner walks through the string and checks whether every

k-factor that occurs in the string occurs in the look-up table. Therefore, look-up table

in this case corresponds to SLk definition.

6

Figure 3.1: Scanner for strictly k-local language has a sliding window of size k that slices

across the string and picks k-factors. Then, it checks whether each of these k-factors is

included in a look-up table. Figure taken from [12].

We can see k-factors as atomic properties of strings: a string satisfies a k-factor if

and only if that factor occurs somewhere in the string. Then, we can build descriptions

as propositional formulas over these atoms. We will call these formulas k-expressions.

A k-expression defines the set of all strings that satisfy it. A language that is defined in

this way is called a locally k-testable (LTk) language. For example, k-expression

ϕ(q1, q2, . . . , qF) = ¬q1 ∧ ¬q2 ∧ . . . ∧ qF (3.1)

defines all strings that do not contain any of q1, q2, . . . , qF .

A scanner for an LTk language contains a table in which it records, for every k-

factor over the alphabet, whether or not that k-factor has occurred somewhere in the

string. It then feeds this information into a Boolean network which implements some

k-expression. When the end of the string is reached, the automaton accepts or rejects

the string depending on the output of the network.

7

Figure 3.2: An LTk automata tracks which k-factors occurred in a string and then passes

this information to a Boolean network. The automata accepts a string if the output of

the network is positive. Figure taken from [12]

3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) [23] are parametric models of computation for

processing sequences loosely inspired by biological neural networks. They found appli-

cations in handwriting recognition [7], speech recognition [24], machine translation [18],

etc. In this section we provide an introduction to RNNs including For a more detailed

treatment we point the reader to [6].

3.2.1 Vanilla Recurrent Neural Networks

We start with a simple vanilla RNN model. We will denote the input sequence by

x(1),x(2), . . . ,x(T) where x(t) ∈ Rdx for every t = 1, 2, . . . , T . The output of RNN will

be another sequence y(1),y(2), . . . ,y(T) where y(t) is a probability distribution on dy

outcomes for t = 1, 2, . . . , T .

A vanilla RNN with hidden state dimension dh is given with the following parameters:

• Input to hidden connection weights Wx ∈ Rdh×dx

• Hidden to hidden connection weights Wh ∈ Rdh×dh

• Bias term bh ∈ Rdh

• Activation function φ : R→ R

• Hidden to output connection weights Wy ∈ Rdy×dh

8

• Bias term by ∈ Rdy

• Initial hidden state h(0) ∈ Rdh (usually set to zero vector)

Connection weights model the strength of synapses and activation function models

neuronal firing [17]. Most commonly used activation functions are sigmoid σ(x) =

1/(1+exp(−x)), hyperbolic tangent tanh(x) = (exp(x)− exp(−x))/(exp(x)+ exp(−x))
and rectified linear unit ReLU(x) = max{0, x}.

(a) σ(x) = 1
1+exp(−x)

(b) tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

(c) ReLU(x) = max{0, x}

Figure 3.3: Most commonly used activation functions.

The computation is performed in the following way: for t = 1, 2, . . . , T

h(t) = φ
(
Wx x(t) + Wh h(t−1) + bh

)
(3.2)

y(t) = softmax
(
Wy h(t) + by

)
(3.3)

9

where φ(z)i = φ(zi) and softmax(z)i = exp(zi)/
∑

j exp(zj).

Figure 3.4: Computation graph of vanilla RNN. Bias terms and activations are omitted

for simplicity.

Equation 3.2 describes what is called an RNN cell. Note that components of softmax

sum up to one, so we can interpret it as a probability distribution. Here we will be

mostly interested in sequence classification and thus we will only care about y(T).

Example Consider a vanilla RNN given with the following parameters

Wx =

[
3 −1 0

0 0 2

]
Wh =

[
1 0

0 1

]
bh =

[
0

0

]
Wy =

[
1 0

0 1

]
by =

[
0

0

]

and φ(z) = z. It is easy to see that y(T)
1 < y

(T)
2 if and only if

∑
t(3x

(t)
1 −x

(t)
2) <

∑
t 2x

(t)
3 .

Note that in this case h(t) accumulates the results of the computation on the input en-

countered so far.

While the previous example displays a rather simple function, vanilla RNNs are uni-

versal in the sense that any function computable by a Turing machine can be computed

by such a network [26].

We can also stack several RNN cells in order to exploit compositionality and obtain

more powerful RNNs. Such RNNs are called multilayer or deep RNNs. The computation

performed by an L-layer vanilla RNN is given with

h
(t)
1 = φ

(
W0,1 x(t) + W1,1 h

(t−1)
1 + b1

)
h
(t)
2 = φ

(
W1,2 h

(t)
1 + W2,2 h

(t−1)
2 + b2

)
...

h
(t)
L = φ

(
WL−1,L h

(t)
L + WL,L h

(t−1)
L + bL

)
y(t) = softmax

(
Wy h

(t)
L + by

)

10

...

. . .

Figure 3.5: Computation graph of L-layer vanilla RNN.

Observe that we will need L initial states h
(0)
1 ,h

(0)
2 , . . . ,h

(0)
L .

3.2.2 Backpropagation Through Time and Vanishing Gradient

In practice we need to estimate the parameters of RNN from the data. The way

this is done is by minimising the average of a certain loss function which measures how

far are the outputs of the network from the actual data. Suppose that we are given a

11

dataset D = {(x1,y1), (x2,y2), . . . , (xn,yn)}. The network is trained by minimising

L(θ;D) =
1

n

∑
(x,y)∈D

`(y, ŷ) (3.4)

where θ are parameters of the network and ŷ is the output of the network on input x.

The loss function that we will use here is the cross entropy loss given by

`(y, ŷ) = −
∑
i

yi log ŷi . (3.5)

We train the network using mini-batch gradient descent. Dataset is split into B parts

D1,D2, . . . ,DB called batches. Parameters are updated in the following way: for b =

1, 2, . . . , B

θ ← θ − η∇L(θ;Db) (3.6)

η is a hyperparameter called learning rate. It needs to be small enough to ensure that

training converges to a local minima, yet large enough so that the training is not too slow.

Similarly, batch size needs to be small enough so that parameters are updated frequently,

yet large enough so that the training is not too slow. More sophisticated update rules

than 3.6 that automatically adapt η have been developed [4][15], but we will not go into

them here. To calculate the gradient of a sequence model Backpropagation Through

Time algorithm [29] is used.

Unfortunately, for vanilla RNNs this algorithm is not directly applicable. The reason

is that is that the gradient of the loss function may vanish or explode over many time

steps. This problem has been studied independently by separate researchers [9][2]. For

survey see [21].

The problem of exploding gradient can be solved by gradient clipping: if the norm

of the gradient exceeds a certain threshold, then normalise it and multiply it by that

threshold. However, the vanishing gradient remains a problem for vanilla RNNs which

makes their optimisation difficult in practice.

3.2.3 Long-Short Term Memory Networks

One way to deal with vanishing gradient is to use gated RNNs whose connection

weights may change at each time step. Multiplicative gates allow RNNs to control the

way information is stored and retrieved. Thus, they are able to create paths through

time that have derivatives that neither vanish nor explode. Gates in RNNs can be seen

as differentiable version of logic gates in digital circuits.

Long short term memory (LSTM) networks [10] use additional memory cell c(t) apart

from h(t). Here we will be using standard LSTM architecture introduced in [5] which

uses three gates: input gate i(t), forget gate f (t) and output gate o(t). Its cell is described

12

by the following set of equations

i(t) = σ
(
Wxi x(t) + Whi h(t−1) + bi

)
(3.7)

f (t) = σ
(
Wxf x(t) + Whf h(t−1) + bf

)
(3.8)

o(t) = σ
(
Wxo x(t) + Who h(t−1) + bo

)
(3.9)

c̃(t) = tanh
(
Wxc x(t) + Whc h(t−1) + bc

)
(3.10)

c(t) = f (t) � c(t−1) + i(t) � c̃(t) (3.11)

h(t) = o(t) � tanh
(
c(t)
)

(3.12)

where � is component-wise or Hadamard product.

Figure 3.6: LSTM cell. Figure taken from [8].

Just like vanilla RNN cells, LSTM cells can be stacked in order to obtain more

powerful multilayer LSTM networks.

3.2.4 Gated Recurrent Units

Another gated recurrent architecture frequently used in practice are Gated Recurrent

Units (GRU) [3]. Unlike LSTM, GRU gets rid of memory cell c(t) by combining input

and forget gates into a single one. The GRU cell is described by the following set of

13

equations

r(t) = σ
(
Wxr x(t) + Whr h(t−1) + br

)
(3.13)

z(t) = σ
(
Wxz x(t) + Whz h(t−1) + bz

)
(3.14)

n(t) = tanh
(
Wxn x(t) + r(t) �

(
Whn h(t−1)

)
+ bn

)
(3.15)

h(t) =
(
1− z(t)

)
� n(t) + z(t) � h(t−1) (3.16)

where 1 is the all-ones vector (1, 1, . . . , 1)T .

Figure 3.7: GRU cell. Figure taken from Wikipedia.

Again, GRU cells can be stacked, yielding multilayer GRU networks.

3.2.5 One-hot and Dense Encodings

Note that RNNs work exclusively with numerical data, i.e. real numbers. Suppose

that we are given an alphabet A = {a1, a2, . . . ak}. One way to encode it would be to

represent each ai as the integer value i. However, this is not a good encoding as the

network would need to learn that there is no ordering between alphabet elements. A

better way to encode the alphabet that avoids this problem is to assign a one-hot vector

to every element of the alphabet, i.e.

a1 7→

1

0
...

0

 a2 7→

0

1
...

0

 . . . ak 7→

0

0
...

1

One problem with this encoding is that k may be huge while one-hot vectors remain

sparse. For example, in natural language processing k would be the number of words

which is usually several tens of thousands. This problem is solved by using embedding

layer which learns to map alphabet elements to dense, low-dimensional encodings.

In what follow by encoding of the string we will mean encodings of its symbols

concatenated into a single vector.

14

3.2.6 Encoder-Decoder Sequence-to-Sequence Models

So far we only considered architectures that map an input sequence to an output

sequence of the same length. However, for tasks like machine translation or ques-

tion answering this is not appropriate. This issue is solved by using a sequence to

sequence models [27] consisting of two RNNs called encoder and decoder. An encoder

processes the input sequence x(1),x(2), . . . ,x(Tx) and outputs the context vector c (usu-

ally the final hidden state h(Tx)). A decoder is conditioned on the context vector,

might take additional input (say, x(1),x(2), . . . ,x(Tx) again) and outputs the sequence

y(1),y(2), . . . ,y(Ty).

F needer

~ ? ••• ...,

Decoder

' > • • . .,.,

Figure 3.8: Encoder-decoder sequence-to-sequence architecture.

3.2.7 Attention Mechanism

When processing the input, RNNs store all the memory in the hidden state. However,

it may be hard to compress a potentially long input in a single context vector. This

could definitely be an issue for sequence to sequence models introduced above. Attention

mechanism allows us to obtain a distribution a on part of the input provided so far and

focus on certain parts of it in a way we humans do. Here we will assume that decoder

takes an input x(1),x(2), . . . ,x(T) and we will be using the following attention model:

a(t) = softmax
(
Wa

[
x(t);h(t−1)

])
(3.17)

c(t) =
∑
s

a(t)s h̄(s) (3.18)

h(t) = ReLU
(
Wb

[
x(t);h(t−1)

])
(3.19)

where h̄(s) is encoder hidden state and h(t) is decoder hidden state.

15

3.2.8 Layer Normalisation

Training recurrent neural networks can be computationally expensive. Layer normal-

isation [1] reduces the training time by normalising the activities of neurons in a layer.

It also helps stabilising the hidden state dynamics of RNNs and might improve their

generalisation.

Layer normalisation is defined as a function LN : Rd → Rd with two vectors of

parameters (inferred from data), gain α and bias β, in the following way:

LN(z;α,β) =
z−m

s
�α+ β (3.20)

where m = 1
d

∑
i zi, m = (m,m, . . . ,m)T and s =

√
1
d

∑
i(zi −m)2.

Applying layer normalisation to LSTMs replaces equations 3.7, 3.8, 3.9 and 3.12 with

equations 3.21, 3.22, 3.23 and 3.24, respectively.

i(t) = σ
(
LN

(
Wxi x(t);αxi,βxi

)
+ LN

(
Whi h(t−1);αhi,βhi

)
+ bi

)
(3.21)

f (t) = σ
(
LN

(
Wxf x(t);αxf,βxf

)
+ LN

(
Whf h(t−1);αhf,βhf

)
+ bf

)
(3.22)

o(t) = σ
(
LN

(
Wxo x(t);αxo,βxo

)
+ LN

(
Who h(t−1);αho,βho

)
+ bo

)
(3.23)

h(t) = o(t) � tanh
(
LN

(
c(t);αh,βh

))
(3.24)

Similarly, applying layer normalisation to GRUs replaces equations 3.13, 3.14 and 3.15

with equations 3.25, 3.26 and 3.27, respectively.

r(t) = σ
(
LN

(
Wxr x(t);αxr,βxr

)
+ LN

(
Whr h(t−1);αhr,βhr

)
+ br

)
(3.25)

z(t) = σ
(
LN

(
Wxz x(t);αxz,βxz

)
+ LN

(
Whz h(t−1);αhz,βhz

)
+ bz

)
(3.26)

n(t) = tanh
(
LN

(
Wxn x(t);αxn,βxn

)
+ r(t) � LN

(
Whn h(t−1);αhn,βhn

)
+ bn

)
(3.27)

16

Chapter 4

Experiments and Results

In this chapter we use RNNs for deciding a particular class of LTk languages. In

first section we describe the data that we will be working with. Then we define an

architecture that we will be using throughout the chapter. We start by showing how

RNNs fail to generalise and then experiment with a differentiable version of scanner from

Chapter 3. All experiments will be carried out using PyTorch neural network library

[22].

4.1 Data

We will be using two datasets called Factor1 and Factor5. Factor1 contains

4 positive and 4 negative examples of length 18 from each of 216 locally 3-testable

languages specified by one 3-factor. The dataset is split into a train subset containing

180 languages with corresponding positive and negative examples and a test subset

containing 36 languages with corresponding positive and negative examples. Factor5

contains 4 positive and 4 negative examples of length 18 from each of 5000 locally 3-

testable languages specified by five 3-factors. The dataset is split into a train subset

containing 4000 languages with corresponding positive and negative examples and a test

subset containing 1000 languages with corresponding positive and negative examples.

In both cases, not a single 3-factor that occurs in the train subset set occurs in the

test subset. This ensures that models which achieve high accuracy on the test set will

capture the semantics behind 3-factors.

A typical line in a Factor5 dataset looks like one of the following two.

abc#acd#bae#dfb#ecf abaddfecbcffaebcad 1

abc#acd#bae#dfb#ecf abaddfecbcacdebcad 0

17

The first part represents an SLk definition specified by five 3-factors “abc”, “acd”, “bae”,

“dfb” and “ecf”. The second part represents an input string (of length 18) and the third

part whether the input string belongs to the language specified by the first part. For

example, in the first line above string “abaddfecbcffaebcad” belongs to the language,

while in the second line string “abaddfecbcacdebcad” does not belong to the language

because it contains “acd” as a substring. This corresponds to the k-expression specified

by equation 3.1.

4.2 Methods

Similarly to sequence to sequence models (see 3.2.6) we will be using two statistical

models called encoder and decider. An encoder takes SLk definition as input and outputs

the context vector c which acts as a vector description of language. A decider takes the

context vector from encoder and string as input and outputs the probability that the

string belongs to the language encoded in that context vector.

Encoder Dectder

Figure 4.1: Encoder-decider architecture.

In the following, encoder will always be an RNN. The model of the decider will vary

across experiments. Both encoder and decider are trained by minimising the mean

cross entropy between the actual value of the string belonging to language (0 or 1) and

predicted probability that the input string belongs to the language. For optimisation

we will be using Adam optimisation algorithm [15].

4.3 RNN Decider

In this section both encoder and decider will be RNNs with the same number of layers

and hidden units per layer. We will be using LSTMs and GRUs with 1 or 2 layers and

20, 50 or 100 hidden units per layer. Embeddings of size 10 are trained jointly with the

model. For each choice of hyperparameters we perform 10 different runs with 50 epochs

18

each. The maximal test accuracy over all runs and epochs on Factor1 and Factor5

are reported in tables 4.1 and 4.2.

RNN Number of layers Number of hidden units Test accuracy

LSTM 1 20 58.68%

LSTM 1 50 59.72%

LSTM 1 100 57.99%

LSTM 2 20 58.68%

LSTM 2 50 57.99%

LSTM 2 100 55.9%

GRU 1 20 60.42%

GRU 1 50 58.33%

GRU 1 100 61.46%

GRU 2 20 61.81%

GRU 2 50 59.03%

GRU 2 100 62.5%

Table 4.1: Results on Factor1

Figure 4.2: The evoultion of train and test accuracy of model for which the maximum is

achieved (two layer GRU with 100 hidden units). Applying layer normalisation to this

model did not improve the value reported in the table above.

19

RNN Number of layers Number of hidden units Test accuracy

LSTM 1 20 52.51%

LSTM 1 50 52.6%

LSTM 1 100 51.59%

LSTM 2 20 52.48%

LSTM 2 50 52.52%

LSTM 2 100 52.14%

GRU 1 20 53.35%

GRU 1 50 54.35%

GRU 1 100 52.41%

GRU 2 20 53.42%

GRU 2 50 52.48%

GRU 2 100 54.01%

Table 4.2: Results on Factor5

Figure 4.3: The evoultion of train and test accuracy of model for which the maximum

is achieved (single layer GRU with 100 hidden units). Applying layer normalisation to

this model did not improve the value reported in the table above.

We see that RNNs fail to generalise to unseen languages.

20

4.4 Adding Attention

Now we add the attention as described in 3.2.7 to the models studied in the previous

section. Again, the maximal test accuracy over all the runs and epochs is taken. The

results are displayed in Table 4.3 and Table 4.4.

RNN Number of layers Number of hidden units Test accuracy

LSTM 1 20 58.33%

LSTM 1 50 58.68%

LSTM 1 100 56.6%

LSTM 2 20 56.34%

LSTM 2 50 59.03%

LSTM 2 100 58.33%

GRU 1 20 67.01%

GRU 1 50 64.24%

GRU 1 100 59.72%

GRU 2 20 62.5%

GRU 2 50 59.72%

GRU 2 100 61.11%

Table 4.3: Results on Factor1

21

Figure 4.4: The evoultion of train and test accuracy of model for which the maximum

is achieved (single layer GRU with 20 hidden units). Applying layer normalisation to

this model did not improve the value reported in the table above.

RNN Number of layers Number of hidden units Test accuracy

LSTM 1 20 80.86%

LSTM 1 50 80.23%

LSTM 1 100 72.56%

LSTM 2 20 65.33%

LSTM 2 50 65.26%

LSTM 2 100 64.96%

GRU 1 20 81.33%

GRU 1 50 78.97%

GRU 1 100 79.75%

GRU 2 20 73.56%

GRU 2 50 67.26%

GRU 2 100 66.29%

Table 4.4: Results on Factor5

22

Figure 4.5: The evoultion of train and test accuracy of model for which the maximum

is achieved (single layer GRU with 20 hidden units). Applying layer normalisation to

this model did not improve the value reported in the table above.

We see that using attention greatly improves generalisation of RNNs. However, the

performance is still far away from perfect, i.e. test accuracy of 100%. Therefore, RNNs

fail to capture the semantics behind k-factors.

4.5 Decider as Scanner

In this section we provide some useful bias to the model by constraining the decider

to a differentiable version of a scanner that contains a look-up table. Note that such a

structure is sufficient for deciding languages that we will be working with.

Suppose that we are given a k-locally testable language specified by F k-factors. The

scanner takes a context vector c and splits it into F parts of equal size c1, c2, . . . , cF .

Then it takes the encodings of k-factors from the input string and uses dot product to

check if there is a match between one of them and one of c1, c2, . . . , cF . The maximum

over all dot products is taken, fed to a linear layer and the result is passed to sigmoid

activation. Last three steps corresponds to Boolean network implementing k-expression

specified by 3.1.

The algorithm below formally describes such a scanner.

23

Algorithm: Scanner
Input: context vector c, string x of length n

1 Split context vector c into F parts of equal size c1, c2, . . . , cF .

2 for i = 1 to n− k + 1 do

3 Take encodings of xi, xi+1, . . . , xi+k−1 and concatenate them. Let x̄i be the

resulting vector.

4 mij ← 〈x̄i, cj〉

5 end

6 m← maxi,j mij

7 return σ(am+ b)

Parameters a and b are inferred from the data.

To verify that the proposed model works correctly, we hardcode the construction of a

look-up table. We do this by taking the encodings of 3-factors and concatenating them

to obtain the context vector c that we pass to the scanner. For an example, see Figure

4.6. On both Factor1 and Factor5 we obtain the test accuracy of 100%.

Figure 4.6: Hardcoding look-up table construction. Here by abc we mean the encoding

of 3-factor “abc” (i.e. encodings of “a”, “b” and “c” concatenated in a single vector). Look-

up table is constructed by concatenating the encodings of 3-factors which in this case

correspond to c1, c2, . . . , c5. If the dimension of symbol encoding is equal to d, then the

dimension of whole look-up table is equal to 15d (five strings with three symbols each).

Therefore, the learning task reduces to learning to construct a look-up table from

SLk definition.

4.5.1 Last Hidden State of Encoder as Look-Up Table

Here we will use only the last hidden state of the RNN encoder as the context vector.

This tests whether an RNN can arrange the copies of k-factors in its memory.

24

We will use LSTM with hidden size equal to 3d times the number of 3-factors (i.e. 3d

for Factor1 and 15d for Factor5), where d is the embedding dimension. On Factor1

we train the model for 100 epochs. We find out that the test accuracy highly depends

on initial values of parameters. To study this, we perform 100 runs for every embedding

dimension d ∈ {5, 10, 20} and learning rate η ∈ {0.01, 0.001}. We take values of d and

η for which the test accuracy is the highest on average across all 100 runs; in this case

d = 10 and η = 0.01. We only consider 52 runs for which the training accuracy was at

least 95% and plot the distribution of the corresponding test accuracy. The results are

displayed in Figure 4.7.

Figure 4.7: Test accuracy distribution of 52 runs that achieved at least 95% on the

training subset of Factor1. We observe a bell shaped histogram centered around 83%.

As we find that test accuracy distribution differs only slightly between different values

of d and η, we take the same values that we used on Factor1 (i.e. d = 10 and η = 0.01)

and use them on Factor5. We perform 50 runs with 200 epochs each. We only consider

17 runs for which the training accuracy was at least 95% and plot the distribution of

the corresponding test accuracy. Unfortunately, none of these runs generalises to unseen

languages. The results are displayed in Figure 4.8.

25

Figure 4.8: Test accuracy distribution of 17 runs that achieved at least 95% on the

training subset of Factor5. No model generalises to unseen languages.

4.5.2 Can RNNs Store k-Factors?

Here we show that RNN is able to learn to store sufficiently similar copies of k-factors

in its memory. We do this in the following way: we feed the encodings of symbols in SLk

definition to the RNN. We concatenate the hidden states corresponding to processing

the symbols of 3-factors (ignoring hidden states corresponding to “#”) and obtain the

context vector which we pass to the scanner. For an example, see Figure 4.9.

26

G

@

®

®

0)

(')

Figure 4.9: The encodings of symbols of 3-factors are processed by an RNN and the

corresponding hidden states are concatenated to construct a context vector c. If the

model recognises 3-factors correctly, then c will be a perfect look-up table.

We use LSTM with hidden size equal to the embedding dimension d. On Factor1 we

train the model for 100 epochs. Again, the test accuracy highly depends on initial values

of parameters. We perform 100 runs for every embedding dimension d ∈ {5, 10, 20} and
learning rate η ∈ {0.01, 0.001}. We take values of d and η for which the test accuracy is

the highest on average across all 100 runs; in this case d = 10 and η = 0.01. Out of 100

runs, 50 of them achieved 100% accuracy on both training and test subset. The other

50 achieved less than 75% accuracy on the training subset, so we will not consider them.

For Factor5 we take the same values of d and η (i.e. d = 10 and η = 0.01)

and perform 50 runs with 200 epochs each. Out of 50 runs, 21 of them achieved 100%

accuracy on both training and test subset. The other 29 achieved less than 65% accuracy

on the training subset, so we will not consider them.

We see that models that achieve 100% accuracy on training set necessarily generalise

to unseen languages. We conclude that LSTMs are capable of storing k-factors in their

memory.

27

4.5.3 Using Positional Encodings

One of the problems of approach used in 4.5.1 is that the whole hidden state is reserved

for storing the encodings of 3-factors. In that way RNN does not know how to store

the information at each time step. For example, if RNN stores the information from

processing the first symbol in first d hidden units, then it should store the information

from processing the second symbol in second d hidden units, and so on. Therefore, the

information about the position of symbol in a definition would be useful for RNN.

This naturally motivates the use of positional encodings, i.e. instead of feeding the

encoding of the symbol to the RNN, we feed it the encoding of the symbol concatenated

with the encoding of the symbol position in language representation. As in 4.5.2 we

will use LSTM with hidden size equal to 3d times the number of 3-factors (i.e. 3d

for Factor1 and 15d for Factor5), where d is the embedding dimension. We use

additional embedding layer also of size d for encoding positions.

On Factor1 we train the model for 100 epochs. Again, the test accuracy highly

depends on initial values of parameters. We perform 100 runs for every embedding

dimension d ∈ {5, 10, 20} and learning rate η ∈ {0.01, 0.001}. We take values of d and

η for which the test accuracy is the highest on average across all 100 runs; in this case

d = 20 and η = 0.01. We only consider the 54 runs for which the training accuracy was

at least 95% and plot the distribution of corresponding test accuracy. The results are

displayed in Figure 4.10.

Figure 4.10: Test accuracy distribution of 52 runs that achieved at least 95% on the

training subset of Factor1. Many of them generalise to unseen languages.

28

In comparison with 4.5.1we observe improvement in generalisation.

As we find that test accuracy distribution differs only slightly between different values

of d and η, we take the same values that we used on Factor1 (i.e. d = 20 and η = 0.01)

and use them on Factor5. We perform 50 runs with 200 epochs each. We only consider

14 runs for which the training accuracy was at least 95% and plot the distribution of

the corresponding test accuracy. Unfortunately none of the runs generalises to unseen

languages. The results are displayed in Figure 4.11.

Figure 4.11: Test accuracy distribution of 17 runs that achieved at least 95% on the

training subset of Factor5. No model generalises to unseen languages.

4.5.4 Supervising LSTM Gates

Here we force the LSTM with positional encodings to store the information at the

right location by providing supervision on its gate activations at each time step.

In the case of Factor1, we want to store the first symbol in first third of hidden

units, second symbol in the second third of hidden units and third symbol in last third

of hidden units. This is achieved by setting the first third of input gate activations to be

close to 1 and rest close to 0 on the first time step; second third of input gate activations

to be close to 1 and rest close to 0 on the second time step; last third of input gate

activations to be close to 1 and rest close to 0 on the third time step. Also, for forget

gates we want the first third activations to be close to 1 on second time step; first and

second third activations to be close to 1 on third time step (so that it remembers the

first two symbols). The idea is naturally extended for more than one 3-factor. We will

use cross entropy to measure the error in gate activations. The loss associated with

29

the gates will be multiplied by a hyperparameter γ and added to the original loss. On

Factor1 we train the model for 100 epochs. Again, the test accuracy highly depends

on initial values of parameters. We perform 100 runs for every embedding dimension

d ∈ {5, 10, 20}, learning rate η ∈ {0.01, 0.001} and γ ∈ {2, 1, 0.5, 0.1}. We take values of

d, η and γ for which the test accuracy is the highest on average across all 100 runs; in

this case d = 5, η = 0.01 and γ = 0.1. We only consider 51 runs for which the training

accuracy was at least 95% and plot the distribution of the corresponding test accuracy.

The results are displayed in Figure 4.12.

Figure 4.12: Test accuracy distribution of 51 runs that achieved at least 95% on the

training subset of Factor1. Most of them generalise to unseen languages.

Therefore, supervising the gate activations further improves generalisation.

To convince ourselves that the model has learned to use gates in a desired way we

plot the gate activations in Figure 4.13.

30

Figure 4.13: Gate activations on Factor1 dataset. Blue bars denote input gates, red

bars forget gates and purple bars output gates. The uppermost plot corresponds to

t = 1. We see that model learned to store the first symbol in first 5 hidden units.

Second plot corresponds to t = 2. We see that model learned to store the second symbol

in second 5 hidden units, while remembering the first one in first hidden units. Last

plot corresponds to t = 3. We see that model learned to store the thirds symbol in third

5 hidden units while remembering the first two in first 10 hidden units.

As we find that test accuracy distribution differs only slightly between different values

of d, η and γ, we take the same values that we used on Factor1 (i.e. d = 5, η = 0.01

and γ = 0.1) and use them on Factor5. We perform 50 runs with 200 epochs each.

Only 2 out of 50 runs obtain train accuracy higher than 95%. Unfortunately, neither of

them gets beyond 60% accuracy on the test subset.

31

Chapter 5

Conclusion and Future Work

In this chapter we summarise some of the obtained results and propose some future

directions.

In 4.2 we defined an encoder-decider architecture for deciding formal languages. We

used RNNs for both encoder and decider and saw that they fail to generalise to unseen

languages. While adding attention improves the test accuracy, in principle RNNs do

not capture the semantics of k-factors.

Then we implemented a differentiable version of scanner and used it as a decider while

keeping encoder to be an RNN. In that way we reduced the task of deciding a language

to the task of constructing a look-up table. We saw that LSTM is able to store k-factors

in its memory, but has trouble arranging five of them. We used positional encodings and

supervised the gates of the LSTM to aid it in construction of a look-up table. While this

improved the generalisation on Factor1, none of this worked for Factor5 dataset.

Therefore, the problem we considered is far from solved.

5.1 Register RNNs

Here we propose another model that might be useful for our task. Instead of using a

single hidden state, we use a memory consisting of several registers. At each time step,

a model selects one of the registers where to write and then treat it as a hidden state of

an RNN.

However the selection procedure is not differentiable and therefore has to be trained

using techniques like reinforcement learning [28] or Gumbel softmax [13]. Another issue

is, whether this model would be applicable to any other problem than the one we are

considering here.

32

Bibliography

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization”.

In: arXiv preprint arXiv:1607.06450 (2016).

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term depen-

dencies with gradient descent is difficult”. In: IEEE transactions on neural net-

works 5.2 (1994), pp. 157–166.

[3] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder–

Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP). Doha,

Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1724–1734. url:

http://www.aclweb.org/anthology/D14-1179.

[4] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for

online learning and stochastic optimization”. In: Journal of Machine Learning Re-

search 12.Jul (2011), pp. 2121–2159.

[5] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to Forget: Con-

tinual Prediction with LSTM”. In: Neural Computation 12.10 (2000), pp. 2451–

2471.

[6] Alex Graves. “Supervised sequence labelling”. In: Supervised sequence labelling with

recurrent neural networks. Springer, 2012, pp. 5–13.

[7] Alex Graves et al. “A novel connectionist system for unconstrained handwriting

recognition”. In: IEEE transactions on pattern analysis and machine intelligence

31.5 (2009), pp. 855–868.

[8] Klaus Greff et al. “LSTM: A search space odyssey”. In: IEEE transactions on

neural networks and learning systems 28.10 (2017), pp. 2222–2232.

[9] Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. In: Diploma,

Technische Universität München 91.1 (1991).

[10] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Computation 9.8 (1997), pp. 1735–1780.

33

http://www.aclweb.org/anthology/D14-1179

[11] Marcus Hutter. “The fastest and shortest algorithm for all well-defined prob-

lems”. In: International Journal of Foundations of Computer Science 13.03 (2002),

pp. 431–443.

[12] Gerhard Jäger and James Rogers. “Formal language theory: refining the Chom-

sky hierarchy”. In: Philosophical Transactions of the Royal Society of London B:

Biological Sciences 367.1598 (2012), pp. 1956–1970.

[13] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with

gumbel-softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[14] Armand Joulin and Tomas Mikolov. “Inferring algorithmic patterns with stack-

augmented recurrent nets”. In: Advances in neural information processing systems.

2015, pp. 190–198.

[15] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[16] Leonid Anatolevich Levin. “Universal sequential search problems”. In: Problemy

Peredachi Informatsii 9.3 (1973), pp. 115–116.

[17] Rodolfo Llinas. “Neuron”. In: Scholarpedia 3.8 (2008). revision #91570, p. 1490.

doi: 10.4249/scholarpedia.1490.

[18] Minh-Thang Luong et al. “Addressing the rare word problem in neural machine

translation”. In: arXiv preprint arXiv:1410.8206 (2014).

[19] Michael C Mozer and Sreerupa Das. “A connectionist symbol manipulator that

discovers the structure of context-free languages”. In: Advances in neural informa-

tion processing systems. 1993, pp. 863–870.

[20] Stephen Muggleton. “Inductive logic programming”. In: New generation computing

8.4 (1991), pp. 295–318.

[21] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training

recurrent neural networks”. In: International Conference on Machine Learning.

2013, pp. 1310–1318.

[22] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning in-

ternal representations by error propagation. Tech. rep. California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

[24] Haşim Sak, Andrew Senior, and Françoise Beaufays. “Long short-term memory

recurrent neural network architectures for large scale acoustic modeling”. In: Fif-

teenth annual conference of the international speech communication association.

2014.

34

https://doi.org/10.4249/scholarpedia.1490

[25] Jürgen Schmidhuber. “Optimal ordered problem solver”. In: Machine Learning

54.3 (2004), pp. 211–254.

[26] Hava T Siegelmann and Eduardo D Sontag. “Turing computability with neural

nets”. In: Applied Mathematics Letters 4.6 (1991), pp. 77–80.

[27] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning

with neural networks”. In: Advances in neural information processing systems.

2014, pp. 3104–3112.

[28] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.

1998.

[29] Paul J. Werbos. “Backpropagation through time: what it does and how to do it”.

In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[30] Janet Wiles and Jeff Elman. “Learning to count without a counter: A case study

of dynamics and activation landscapes in recurrent networks”. In:

[31] Wojciech Zaremba and Ilya Sutskever. “Learning to execute”. In: arXiv preprint

arXiv:1410.4615 (2014).

35

	Introduction
	Motivation
	Organisation of the Thesis

	Related Work
	Background
	Locally k-testable languages
	Recurrent Neural Networks
	Vanilla Recurrent Neural Networks
	Backpropagation Through Time and Vanishing Gradient
	Long-Short Term Memory Networks
	Gated Recurrent Units
	One-hot and Dense Encodings
	Encoder-Decoder Sequence-to-Sequence Models
	Attention Mechanism
	Layer Normalisation

	Experiments and Results
	Data
	Methods
	RNN Decider
	Adding Attention
	Decider as Scanner
	Last Hidden State of Encoder as Look-Up Table
	Can RNNs Store k-Factors?
	Using Positional Encodings
	Supervising LSTM Gates

	Conclusion and Future Work
	Register RNNs

	Bibliography

