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Abstract

In this thesis we investigate to what extent the Kan-Quillen model structure on simplicial sets
can be transferred along the left adjoint of the free-forgetful adjunction with semisimplicial
sets. We establish the novel result that, while the full model structure cannot be transferred, the
underlying right semimodel structure can. Using earlier results we show that the adjunction
becomes an equivalence between right semimodel structures, and that the fibrant objects and
fibrations between fibrant objects are characterised by having the right lifting property against
the semisimplicial horn inclusions. We show by a counterexample that this is not the case
for all fibrations, for not every morphism that maps to a simplicial anodyne extension is a
semisimplicial anodyne extension. Finally, we show that the strong anodyne extensions of
simplicial and semisimplicial sets do coincide.
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Introduction

In [EZ50], S. Eilenberg and J.A. Zilber first introduced simplicial sets, then called complete
semisimplicial complexes. Meant as an addition to the already familiar simplicial complexes,
they are abstractions of topological spaces that serve as technical tools for the calculation of
certain topological properties.

Most of the applications of simplicial sets lie within the field of homotopy theory, which is
concerned with the study of continuous deformations of continuous maps. In the language of
category theory (also co-invented by Eilenberg), [Qui67] provides an axiomatic framework for
studying homotopy theory, distinguishing three fundamental classes of morphisms: cofibra-
tions, fibrations and weak equivalences. Categories that satisfy the given axioms are called
(Quillen) model categories. Among the three key examples given by Quillen are the category
of topological spaces and the category of simplicial sets. In fact, he showed that, as model
categories, these two are equivalent under the relevant notion of equivalence.

In recent years this abstract homotopy theory has attracted the attention of logicians. In-
terpreting types as spaces, notably identity types as path spaces, a connection can be made
between the formal language of intensional type theory, and homotopical structures, like Quil-
len model structures. The project of investigating this connection is referred to as homotopy
type theory and is a very active field of research at the moment. Unsurprisingly, the first cat-
egory found to be a suitable model for the specific type theory studied in this regard, is the
category of simplicial sets (see [KL12]).

A downside of the model of homotopy type theory in simplicial sets (and also of the Quillen
model structure on simplicial sets) is that its standard existence proof is non-constructive. This
fact is proven in [BC15] and has the consequence that there is no universal method for con-
structing this model internally to some other model of type theory, for type theory is generally
constructive.

The key fact preventing this existence proof to be constructive, is that simplicial sets come
with certain maps called degeneracy maps. An element of a simplicial set is called degenerate
whenever it lies in the image of a degeneracy map. However, constructively it is not always
decidable whether a given element is degenerate, a fact that is needed in the proof.

This brings us to the subject of this thesis. The weaker notion of semisimplicial sets (in
[EZ50]: semisimplicial complexes) refers to objects like simplicial sets, but without degeneracy
maps. Investigating the homotopical properties of these weaker objects might eventually lead
to the construction of a model of homotopy type theory that can be performed within type
theory itself. We will investigate the possibility of imposing a Quillen model structure on



semisimplicial sets using classical methods, leaving the further requirements for a model of
homotopy type theory and the generalisation to a constructive metatheory for future work. It
should be noted there is another important difficulty with internalising homotopy type theory.
Namely, even if semisimplicial sets could provide a model of type theory constructively, it is
still far from trivial to construct semisimplicial sets within homotopy type theory. Work on
this topic has been done by for instance [ACK16].

There are many ways in which a category can be equipped with a model structure and
therefore we must make one further restriction to the scope of our question. There is a free-
forgetful adjunction between simplicial and semisimplicial sets of which the left adjoint pre-
serves the abstracted topological space. We will concentrate on a model structure that is left-
induced by this adjunction, meaning that certain Quillen model-theoretic properties will be
preserved and reflected by the ‘free’ functor from semisimplicial into simplicial sets.

Our main result will be that, within the bounds of left-induced structures, there is no model
structure on semisimplicial sets, but there is something slightly weaker, a right semimodel struc-
ture.

We assume that the reader is familiar with the basic notions of category theory, including
functors, natural transformations, (co)limits and adjoints, as well as some standard construc-
tions, such as the (co)monad of an adjunction and the colimit-diagonal adjunction. Beyond
this only some very elementary knowledge of algebraic topology is assumed, in particular the
notion of contractible spaces and some of their properties.

Structure and original contributions

• In Chapter 1 we introduce semisimplicial sets and show how they relate to their simpli-
cial counterparts. Most of the results in this chapter appear already in [RS71], but are
here presented from a more modern categorical point of view. A particular observation
that, to our knowledge, is an addition to the existing literature is that the free-forgetful
adjunction is both monadic and comonadic.

• Chapter 2 introduces the necessary abstract homotopy theory. We prove some standard
results on model categories and extend them to right semimodel categories. The stand-
ard reference for semimodel categories is the thesis [Spi]. While there are some dis-
cussions of this kind of structure in the literature, it has been studied considerably less
than standard model structures. Simple, but to our knowledge novel, are the sufficient
conditions for two interacting weak factorisation systems to induce a right semimodel
structure, and the characterisation of the weak equivalences of such structures in terms
of the other constituent morphisms.

The rest of the Chapter covers standard Quillen model-theoretic techniques that will be
needed in Chapter 3, including the small object argument, some results on locally finitely
presentable categories and the Leibniz adjunction. Particularly interesting is a relatively
recent conceptual proof from [RR15] that in suitable model categories weak equivalences
are closed under directed colimits.

• Chapter 3 begins with a proof that there is no model structure on semisimplicial sets
of the kind we are looking for. We then adapt several construction methods for model



structure on simplicial sets (mainly from [JT08]) to the semisimplicial case, recording
the ones that work in the general Theorem 3.3.1. This new theorem gives a range of
structures on 𝑠𝑠𝑆𝑒𝑡 that are almost left-induced right semimodel structures. Combined
with a powerful result from [MR14] concerning left-induced weak factorisation systems,
our theorem can be used to establish the desired right semimodel structure, which is the
main result of this thesis.

We then use a result from [KS17] to show that this structure is equivalent to the right
semimodel structure on semisimplicial sets and a result from [Sat18] to prove a recog-
nition lemma for a certain class of its morphisms. We demonstrate with an example
from [Mos15] that, in the category of semisimplicial sets, the class of simplicial anodyne
extensions is strictly larger than the class of semisimplicial anodyne extensions. It follows
that the semisimplicial structure considered in [Sat18] (which can also be obtained using
Theorem 3.3.1) is not a right semimodel structure. Finally, we prove the novel result
that the smaller classes of strong semisimplicial anodyne extensions and strong simplicial
anodyne extensions, in contrast, do coincide.

During thewriting of this thesis two preprints on the same topic, [Hen18] and [Sat18], appeared
on the arXiv. The only part of this thesis for which either of the two preprints is consulted,
is the part in Chapter 3 in which a result from [Sat18] is explicitly used to derive a property
of the right semimodel structure. Though the rest of this thesis is written independently from
them, the results from the two preprints combined subsume almost every novel contribution
in Chapter 1 and Chapter 3, with as notable exception the conclusion that the right semimodel
structure exists.



Notations and conventions

In this thesis we use the following notation. In any category:

• 0 is the initial object and ∗𝐴 ∶ 0 → 𝐴 is the unique morphism from 0 to 𝐴;
• 1 is the terminal object and !𝐵 ∶ 𝐵 → 1 is the unique morphism from 𝐵 to 1.

In the context of model structures, we shall often use the following decorated arrows.

Morphism Fibration Cofibration
Morphism → −−↠ �−→
Trivial triv−−↠ triv�−→
Weak equivalence −−→∼ −−↠∼ �−→∼
Trivial and weak equivalence triv−−↠∼ triv�−→∼



Chapter 1

Semisimplicial sets

In this chapter we introduce the main objects of study of this thesis, semisimplicial sets. These
objects once arose from the study of topological spaces by considering them as the result of
gluing together several 𝑛-dimensional generalisations of triangles, called 𝑛-simplices. Though
not all topological spaces admit such a triangulation, the study of those that do is simplified by
the nice combinatorial properties that simplices possess.

Conceptually, and, as can be seen in [EZ50], also historically, semisimplicial sets form the
middle link of a three-part sequence of developments:

Simplicial complexes → Semisimplicial sets → Simplicial sets.

For the purpose of completeness, we begin this chapter in Section 1.1 by introducing the objects
that form the leftmost link.

In Section 1.2, we generalize to semisimplicial sets. We will see that semisimplicial sets can
not only be studied geometrically, as topological spaces, or combinatorially, as a collection of
simplices, but also categorically, for the category of semisimplicial sets conveniently arises as
a presheaf category. This last point of view will be the dominant one for the rest of this thesis.

In Section 1.2.2 we use categorical methods to show how to construct the topological space
corresponding to some semisimplicial set. The categorical product of semisimplicial sets unfor-
tunately does not respect this geometric realisation, which is why, in Section 1.2.3, we introduce
an operation, called the geometric product, that does. We show that under this product opera-
tion semisimplicial sets form a symmetric closed monoidal category.

Finally, in Section 1.3, we generalize further to simplicial sets and show how they relate to
their ‘semi’-counterparts. Simplicial sets have some additional desirable properties, which has
made them more popular tools for several applications, and therefore also more well-studied.
In Chapter 3 we will use known results stemming from this line of research to derive some
(Quillen) model-theoretic results for semisimplicial sets.

1.1 The combinatorial study of geometry

The purpose of this section is to provide the reader with some background knowledge that will
make it easier to intuitively follow the reasoning throughout the rest of this thesis. Everything
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in this section is standard, but we roughly follow [Fri12].
We begin by defining the building blocks of any triangulation of a topological space, the

𝑛-dimensional simplices. First let us consider them as concrete spaces living in the category
Top of topological spaces and continuous functions between them.

Definition 1.1.1. The standard geometric 𝑛-simplex Δ𝑛 is the object of Top given by

Δ𝑛 = {(𝑡0, … , 𝑡𝑛)} ∈ ℝ𝑛+1 ∣
𝑛
∑
𝑖=0

𝑡𝑖 = 1, 𝑡𝑖 ≥ 0},

endowed with de subspace topology. ■

Figure 1.1: The standard geometric 0-, 1-, 2- and 3-simplices.

In Figure 1.1 the standard simplices in the first four dimensions are depicted. Note that sim-
plices are solid objects and not merely boundaries. Consequently, every 𝑛-simplex is homeo-
morphic to the 𝑛-ball.

A standard geometric simplex is the convex hull of the points corresponding to the 𝑛-
dimensional unit vectors. In general, we define:

Definition 1.1.2. A geometric 𝑛-simplex 𝐶 is a topological space that can be written as

𝐶 = {(𝑡0𝑢0, … , 𝑡𝑛𝑢𝑛)} ∈ ℝ𝑛+1 ∣
𝑛
∑
𝑖=0

𝑡𝑖 = 1, 𝑡𝑖 ≥ 0}

with 𝑢0, … , 𝑢0 affinely independent. ■

Again, another way to describe a geometric simplex 𝐶 is as the convex set spanned by the
points 𝑢0, … , 𝑢𝑛. We call the simplex that is the convex spanned by a subset 𝑢𝑖0 , … 𝑢𝑖𝑘 of these
points a face of 𝐶 . In particular, the empty set is a face of every simplex.

Note, and this can be seen as the first step in our sequence of abstractions, that the only
relevant information determining a simplex is the set of its vertices. This means that we may
refer to the simplex spanned by the points 𝑣0, … , 𝑣𝑛 simply as the set {𝑣0, … , 𝑣𝑛}.
Example 1.1.3. If 𝑥 = {𝑣0, … , 𝑣𝑛} is an 𝑛-simplex, then its (𝑛−1)-dimensional faces are precisely
the (𝑛 − 1)-simplices that are determined by all but one of its vertices. We write

{𝑣0, … , 𝑣𝑘 , … , 𝑣𝑛}
for the simplex determined by all but the 𝑘-th vertex and call it the 𝑘-th face of 𝑥 . ▲
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The following standard topological definition encapsulates those spaces that can be ob-
tained by taking a set of simplices and gluing them together along their faces.

Definition 1.1.4. A geometric simplicial complex 𝑋 is a set of geometric simplices such that

1. Every face of a simplex of 𝑋 is in 𝑋 ;
2. For any two simplices 𝑥, 𝑦 ∈ 𝑋 , their intersection is a face of both 𝑥 and 𝑦 . ■

Example 1.1.5. Every simplex {𝑣0, … , 𝑣𝑛} gives rise to a simplicial complex, consisting of itself
and its faces. ▲

We now have everything we need to abstract away from the realm of topological spaces.
Note that the data determining a simplicial complex 𝑋 may be organised by, for each 𝑛 ∈ ℕ,
letting 𝑋𝑛 be the set of all 𝑛-simplices of 𝑋 . Then, by the fact that 𝑋 is a simplicial complex,
each face of an 𝑛-simplex {𝑣0, … , 𝑣𝑛} ∈ 𝑋𝑛 occurs in some 𝑋𝑚 for 𝑚 ≤ 𝑛. For instance, we have
𝑣𝑖 ∈ 𝑋0 for every 𝑖 ∈ [0, 𝑛].
Definition 1.1.6. An abstract simplicial complex is a graded set (𝑋𝑛)𝑛∈ℕ such that every 𝑋𝑘
consists of subsets 𝑥 ⊆ 𝑋0 with |𝑥 | = 𝑘 + 1, and such that for every non-empty 𝑥′ ⊆ 𝑥 with
|𝑥′| = 𝑗 + 1, we have 𝑥′ ∈ 𝑋𝑗 . ■

It is easy to see that every geometric simplicial complex naturally corresponds to an abstract
simplicial complex. There is then a canonical way to recover a geometric simplicial complex
(up to homeomorphism) from the corresponding abstract simplicial complex. Note also: the
one (−1)-simplex, the empty set, is only implicitly part of every abstract simplicial complex.

In case the set 𝑋0 is totally ordered, every 𝑘-simplex of an abstract simplicial complex 𝑋𝑘
can be uniquely written as a tuple [𝑣𝑖0 , … , 𝑣𝑖𝑘 ] with 𝑣𝑖0 < … < 𝑣𝑖𝑘 . We call this an ordered
simplicial complex.

Example 1.1.7. Any partially ordered set 𝑃 can be made into an ordered simplicial complex
𝐶(𝑃) set by setting

𝐶(𝑃)𝑘 = {[𝛼(0), … , 𝛼(𝑘)] ∣ 𝛼 ∶ [𝑘] → 𝑃 is injective and order-preserving}.
The simplicial complex 𝐶(𝑃) is called the nerve of 𝑃 .

In particular, every finite ordinal [𝑛] gives rise to an ordered simplicial complex of which
the 𝑘-simplices are the tuples

[𝛼(0), … , 𝛼(𝑘)]
given by some injective order-preserving map 𝛼 ∶ [𝑘] → [𝑛]. This ordered simplicial complex,
which we call the standard abstract 𝑛-simplex, consists of precisely one 𝑛-simplex, together
with all of its faces. ▲
Definition 1.1.8 (Face maps). Let 𝑋 be an ordered simplicial complex. Then for every 𝑛 and 𝑘
there is a map 𝑑𝑘 ∶ 𝑋𝑛+1 → 𝑋𝑛 given by

𝑑𝑘([𝑣𝑖0 , … , 𝑣𝑖𝑛 ]) ↦ [𝑣𝑖0 , … , 𝑣𝑖𝑘 , … , 𝑣𝑖𝑛 ].
■
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Lemma 1.1.9. Of every ordered simplicial complex 𝑋 , the face maps satisfy the relation

𝑑 𝑖𝑑 𝑗 = 𝑑 𝑗−1𝑑 𝑖 if 𝑖 < 𝑗.
Proof. For any 𝑘-simplex [𝑣𝑖0 , … , 𝑣𝑖𝑘 ], we have

𝑑 𝑖𝑑 𝑗[𝑣𝑖0 , … , 𝑣𝑖𝑘 ] = 𝑑 𝑖[𝑣𝑖0 , … , 𝑣𝑖𝑗 , … , 𝑣𝑖𝑛 ]
= [𝑣𝑖0 , … , 𝑣𝑖𝑖 … , 𝑣𝑖𝑗 , … , 𝑣𝑖𝑛 ]
= 𝑑 𝑗−1[𝑣𝑖0 , … , 𝑣𝑖𝑖 , … , 𝑣𝑖𝑛 ] = 𝑑 𝑗−1𝑑 𝑖[𝑣𝑖0 , … , 𝑣𝑖𝑛 ],

as required.

1.2 Semisimplicial sets

Semisimplicial sets are simply a generalisation of the ordered simplicial complexes defined in
Section 1.1.

Definition 1.2.1. A semisimplicial set 𝑋 is an ℕ-graded set 𝑋 = (𝑋𝑛)𝑛∈ℕ, together with for
every 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑛 a map 𝑑 𝑖 ∶ 𝑋𝑛+1 → 𝑋𝑛 such that

𝑑 𝑖𝑑 𝑗 = 𝑑 𝑗−1𝑑 𝑖 if 𝑖 < 𝑗. ■

The 𝑑 𝑖 are again called facemaps and can be intuitively thought of as sending an 𝑛-dimensional
simplex to its 𝑖-th (𝑛 − 1)-dimensional face.

It follows from Lemma 1.1.9 that the ordered simplicial complexes are semisimplicial sets.
It is, however, not the case that all semisimplicial sets are also simplicial complexes, for we no
longer require the faces of a given simplex to be distinct. Consider, for instance, the semisim-
plicial set 𝐴, given by:

𝐴0 = {𝑎} 𝑑0𝐼 = 𝑑1𝐼 = 𝑎
𝐴1 = {𝐼 }

•

Figure 1.2: The semisimplicial set 𝐴.

This semisimplicial set may be pictured as a line of which the endpoints are glued together and
is not a simplicial complex. Another property of simplicial complexes that fails for semisimpli-
cial sets is that in the former a given simplex is uniquely determined by its vertices. In contrast,
two distinct simplices of a semisimplicial set may have precisely the same faces.

There is a natural definition of morphisms between semisimplicial sets:

Definition 1.2.2. Let 𝑋 and 𝑌 be semisimplicial sets. A semisimpicial morphism 𝑓 ∶ 𝑋 → 𝑌 is
a graded morphism that commutes with the face maps, i.e. such that

𝑑𝑘𝑓𝑛+1(𝑥) = 𝑓𝑛(𝑑𝑘𝑥),
for all 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛 + 1. ■
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1.2.1 The presheaf category ssSet

We are now ready to take a more categorical approach. The maps 𝑑𝑘 ∶ 𝐶[𝑛]𝑛 → 𝐶[𝑛]𝑛−1, from
the top-dimensional simplex of 𝐶[𝑛] to its 𝑛 − 1 dimensional faces, are dual to the injective
order-preserving maps 𝜖𝑘 ∶ [𝑛 − 1] → [𝑛] skipping the 𝑘-th element. This gives rise to a
directed graph

[0] [1] ⋯
𝜖1
𝜖0 (1.1)

Note that the 𝜖𝑘 verify a relation dual to the 𝑑𝑘 , namely

𝜖𝑗𝜖 𝑖 = 𝜖 𝑖𝜖𝑗−1 if 𝑖 < 𝑗. (1.2)

Now let Δ𝑖 be the category of nonempty finite ordinals [𝑛] = {0, 1, … , 𝑛} and injective order-
preserving functions between them.

Lemma 1.2.3. The category Δ𝑖 is freely generated by the graph (1.1) subject to the relation (1.2).

Proof. We claim that every morphism 𝜖 ∶ [𝑛] → [𝑚] in Δ𝑖 admits a unique decomposition

𝜖 = 𝜖 𝑖𝑘 𝜖 𝑖𝑘−1 ⋯𝜖 𝑖1 (1.3)

such that 𝑘 = 𝑚 − 𝑛 and 𝑚 ≥ 𝑖𝑘 > … > 𝑖1 ≥ 0. Indeed, a straightforward inductive argument
shows that each 𝑖𝑘 must be the 𝑘-th highest number skipped by 𝜖, which suffices.

Now let Δ′𝑖 be the freely generated category in question. Because the relation (1.2) is veri-
fied in Δ𝑖, the unique canonical mapping Δ′𝑖 → Δ𝑖 that is the identity both on objects and
on morphisms, is a functor. It is clearly bijective on objects and, by the above, surjective on
morphisms. We will show that it is also injective on morphisms, after which we are done. To
this end, suppose that two arrows 𝑢, 𝑣 of Δ′𝑖 get sent to the same morphism of Δ𝑖. Repeatedly
using the relation (1.2), we can rewrite (not necessarily uniquely) both 𝑢 and 𝑣 into the form
(1.3). But then, by the uniqueness of the decomposition in Δ𝑖, these decompositions must be
the same in Δ′𝑖 and thus 𝑢 = 𝑣 .

Let ssSet denote the category of semisimplicial sets and semisimplicial morphisms between
them.

Lemma 1.2.4. The presheaf category [Δ𝑜𝑝
𝑖 , Set] is isomorphic to ssSet.

Proof. Consider the assignment [Δ𝑜𝑝
𝑖 , Set] → ssSet, sending a presheaf 𝑃 to the simplicial set

𝑋 𝑃 with 𝑋 𝑃𝑛 = 𝑃([𝑛]) and face maps 𝑃(𝜖𝑘) ∶ 𝑋 𝑃𝑛+1 → 𝑋 𝑃𝑛 . For 𝑖 < 𝑗, we have

𝑃(𝜖 𝑖)𝑃(𝜖𝑗) = 𝑃(𝜖𝑗𝜖 𝑖) = 𝑃(𝜖 𝑖𝜖𝑗−1) = 𝑃(𝜖𝑗−1)𝑃(𝜖 𝑖),

as required. This assignment extends to arrows in the obvious way and is clearly functorial.
The described functor is easily seen to be injective on objects. To see that it is also surject-

ive, we define, for a given 𝑋 in ssSet, the corresponding presheaf 𝑃𝑋 as follows. Of course we
set 𝑃𝑋 ([𝑛]) = 𝑋𝑛 and 𝑃𝑋 (𝜖𝑘)(𝑥) = 𝑑𝑘𝑥 . By Lemma 1.2.3, this uniquely extends to a definition
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of 𝑃𝑋 on all arrows in Δ𝑖. Finally, it defines a functor because, by the dual to Lemma 1.2.3, each
sequence of 𝑑𝑘′𝑠 admits a unique dual decomposition. It is easily verified that 𝑋 (𝑃𝑋 ) = 𝑋 .

The last thing to show is that the described functor is bijective on morphisms. This is once
more a direct consequence of Lemma 1.2.3.

In this thesis we shall take both points of view on the category ssSet, depending on which
is more convenient in the given context. As seen in Example 1.1.7, every standard abstract
𝑛-simplex lives in the category of semisimplicial sets as the ordered simplicial complex 𝐶[𝑛].
We shall denote it by Δ𝑖[𝑛]. Another way to describe Δ𝑖[𝑛] is as the representable functor
Δ𝑖[𝑛] = HomΔ𝑖(−, [𝑛]). In fact, the representable presheaves of ssSet are precisely the standard
simplices. Because of this, we will write Δ𝑖 ∶ Δ𝑖 → ssSet for the Yoneda embedding into the
category of semisimplicial sets.

By the Yoneda lemma, the set 𝑋𝑛 of 𝑛-simplices of a semisimplicial set 𝑋 corresponds to the
set of morphisms 𝑥 ∶ Δ𝑖[𝑛] → 𝑋 . If, for a map 𝛼 ∶ [𝑚] → [𝑛] in Δ𝑖 such that 𝑋(𝛼)(𝑥) = 𝑦 , we
view the simplex 𝑦 ∶ Δ𝑖[𝑚] → 𝑋 as a morphism, then, by naturality, we have 𝑦 = 𝑥Δ𝑖(𝛼). We
frequently omit the Δ𝑖 and write 𝑦 = 𝑥𝛼 . For 𝜖 𝑖 ∶ [𝑛] → [𝑛 + 1] the function that skips the 𝑖-th
element, we will often write 𝜖 𝑖 where we actually mean its image under Δ𝑖, i.e. the morphism
Δ𝑖𝜖 𝑖 ∶ Δ𝑖[𝑛] → Δ𝑖[𝑛 + 1].

The following fact is easy to take for granted, but does not hold in every functor category.
It does hold in every presheaf category.

Lemma 1.2.5. A semisimplicial morphism is monic if and only if it is monic in every dimension.

Proof. The implication from right-to-left is immediate. The converse is easy, using the notation
we have just fixed. Let 𝑓 ∶ 𝑋 → 𝑌 be a monic semisimplicial morphisms and 𝑥, 𝑥′ ∈ 𝑋𝑛 such
that 𝑓𝑛(𝑥) = 𝑓𝑛(𝑥′). Then, by the Yoneda lemma, 𝑓 𝑥 = 𝑓 𝑥′ and thus 𝑥 = 𝑥′.

We end this section with two standard results that hold for any presheaf category. While
these results are very elementary category theory, we believe that their important role in the
theory of semisimplicial sets makes it beneficial to write out the proofs for this specific case.

We begin by defining what is generally called the category of elements.

Definition 1.2.6. For𝑋 a semisimplicial set, its category of simplices (denotedΔ𝑖𝑋 ) is the comma
category (Δ𝑖 ↓ 𝑋). ■

Example 1.2.7. The category of simplices Δ𝑖𝐴 of the semisimplicial set described above has
two object, 𝐼 and 𝑎, and may be pictured as follows:

𝑎 𝐼𝑖𝑑[0]
𝜖0

𝜖1
𝑖𝑑[1] ▲

Proposition 1.2.8. For any semisimplicial set 𝑋 ,

lim−−→𝑥∶Δ𝑖[𝑛]→𝑋
in Δ𝑖𝑋

Δ𝑖[𝑛] ≅ 𝑋 .
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Proof. It immediately follows from the Yoneda lemma that 𝑋 forms a cocone to the colimit.
Now suppose that we are given another cocone

(𝑌 , {Δ𝑖[𝑛]
𝜑𝑥−−→ 𝑌}𝑥∶Δ𝑖[𝑛]→𝑋

in Δ𝑖𝑋
).

Then a mediating morphism 𝑓 ∶ 𝑋 → 𝑌 must be such that for each 𝑥 ∶ Δ𝑖[𝑛] → 𝑋 , it holds
that 𝑓 𝑥 = 𝜑𝑥 , which, by naturality, is equivalent to 𝑓𝑛(𝑥) = 𝜑𝑥 . It suffices to show that this 𝑓
commutes with the face maps, which is demonstrated by the following chain of equalities:

𝑑𝑘𝑓𝑛+1(𝑥) = 𝑑𝑘𝜑𝑥 = 𝜑𝑥 𝜖𝑘 = 𝜑𝑥𝜖𝑘 = 𝜑𝑑𝑘𝑥 = 𝑓𝑛(𝑑𝑘𝑥),
in which the third equality holds due to the fact that 𝑌 forms a cocone and the others by the
Yoneda lemma.

Proposition 1.2.9. Let ℰ be a cocomplete category and 𝑓 ∶ Δ𝑖 → ℰ a functor. Then there is a
unique left adjoint 𝑓! ∶ ssSet → ℰ such that the following diagram commutes:

ssSet ℰ

Δ𝑖

𝑓!

Δ𝑖 𝑓

Proof. Since 𝑓! must make the above diagram commute and be cocontinuous, we must set:

𝑓!(𝑋) ∶= lim−−→𝑥∶Δ𝑖[𝑛]→𝑋
in Δ𝑖𝑋

𝑓 ([𝑛]),

where an arrow 𝑋 → 𝑌 is sent to the unique arrow out of the limit. We denote the aimed-for
right adjoint by 𝑓 ∗. Because we want HomssSet(Δ𝑖[𝑛], 𝑓 ∗(𝐸)) ≅ Homℰ (𝑓 ([𝑛]), 𝐸), we must set:

𝑓 ∗(𝐸)𝑛 ∶= Homℰ (𝑓 ([𝑛]), 𝐸).
On arrows 𝑓 ∗ is defined by postcomposition. It follows that we have the following chain of
natural isomorphisms:

Homℰ (𝑓!(𝑋), 𝐸) ≅ Homℰ ( lim−−→Δ𝑖[𝑛]→𝑋
𝑓 [𝑛], 𝐸) (Definition of 𝑓!)

≅ lim←−−Δ𝑖[𝑛]→𝑋
Homℰ (𝑓 [𝑛], 𝐸) (Hom(−, −) preserves limits)

≅ lim←−−Δ𝑖[𝑛]→𝑋
𝑓 ∗(𝐸)𝑛 (Definition of 𝑓 ∗)

≅ lim←−−Δ𝑖[𝑛]→𝑋
HomssSet(Δ𝑖[𝑛], 𝑓 ∗(𝐸)) (Yoneda Lemma)

≅ HomssSet( lim−−→Δ𝑖[𝑛]→𝑋
Δ𝑖[𝑛], 𝑓 ∗(𝐸)) (Hom(−, −) preserves limits)

≅ HomssSet(𝑋 , 𝑓 ∗(𝐸)), (Proposition 1.2.8)

as desired.
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The morphism 𝑓! is called the left Kan extension of 𝑓 (along Δ𝑖).
An important consequence of the previous proposition is that if one wants to define a

functor ssSet → ℰ from semisimplicial sets to some cocomplete category, it suffices to define
it on just the standard simplices. The following section gives an example of such a construction.

1.2.2 Geometric realisation

Just like the abstract simplicial complexes, a semisimplicial set can be seen as a recipe to build
a corresponding topological space by gluing together its constituent simplices. To make that
precise, we use the functor 𝑟 from Δ𝑖 to Top that sends the finite ordinal [𝑛] to the standard
geometric 𝑛-simplex. On arrows, 𝑟 is defined by

𝑟(𝛼 ∶ [𝑛] → [𝑚])(𝑡0, … , 𝑡𝑛) = (𝑠0, … , 𝑠𝑚),
where 𝑠𝑖 = ∑𝑗∈𝛼−1(𝑖) 𝑡𝑗 .
Proposition 1.2.10. This describes a covariant functor 𝑟 ∶ Δ𝑖 → Top.

Proof. First note that for 𝛼 ∶ [𝑛] → [𝑚], the function 𝑟(𝛼) indeed maps into Δ𝑚. After all, for
�⃗� ∈ Δ𝑛 and 𝑠 = 𝑟(𝛼)(�⃗�), we have

𝑚
∑
𝑖=0

𝑠𝑖 =
𝑚
∑
𝑖=0

∑
𝑗∈𝛼−1(𝑖)

𝑡𝑗 =
𝑚
∑
𝑗=0

𝑡𝑗 = 1,

which means that 𝑠 ∈ Δ𝑚. To show continuity, let 𝜖 > 0 and 𝑥 ∈ Δ𝑛. We abbreviate

t = (𝑡0 − 𝑥0)2 + … + (𝑡𝑚 − 𝑥𝑚)2,
and

s = ( ∑
𝑗∈𝛼−1(0)

𝑡𝑗 − ∑
𝑗∈𝛼−1(0)

𝑥𝑗)
2
+ … + ( ∑

𝑗∈𝛼−1(𝑚)
𝑡𝑗 − ∑

𝑗∈𝛼−1(𝑚)
𝑥𝑗)

2
.

Then for every 𝑖 ∈ [0, 𝑛], we have t ≥ (𝑡𝑖 − 𝑥𝑖)2 and thus √t ≥ 𝑡𝑖 − 𝑥𝑖. But then
s < (𝑚 + 1)((𝑛 + 1)√t)2 = (𝑚 + 1)(𝑛 + 1)2t.

So let 𝛿 = 𝜖
(𝑚+1)(𝑛+1) and suppose √t = 𝑑(�⃗� , 𝑥) < 𝛿 . We find

𝑑(𝑟(𝛼)(�⃗�), 𝑟(𝛼)(𝑥)) = √s
< √(𝑚 + 1)(𝑛 + 1)2t
< (𝑚 + 1)(𝑛 + 1)√t < (𝑚 + 1)(𝑛 + 1)𝛿 = 𝜖.

Thus indeed, 𝑟(𝛼) is a morphism in Top. Moreover, 𝑟 clearly preserves identity morphisms. To
see that it also preserves composition, let 𝛼 ∶ [𝑛] → [𝑚] and 𝛽 ∶ [𝑚] → [𝑘] be morphisms in
Δ𝑖. We write

(𝑠0, … , 𝑠𝑚) = 𝑟(𝛼)(𝑡0, … , 𝑡𝑛) and
(𝑢0, … , 𝑢𝑘) = 𝑟(𝛽)(𝑠0, … , 𝑠𝑚).
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Then for every 𝑙 ∈ [0, 𝑘], we have
𝑢𝑙 = ∑

𝑗∈𝛽−1(𝑙)
𝑠𝑗 = ∑

𝑗∈𝛽−1(𝑙)
∑

𝑖∈𝛼−1(𝑗)
𝑡𝑖 = ∑

𝑖∈(𝛽∘𝛼)−1(𝑙)
𝑡𝑖,

as required.

As a corollary, we have by Proposition 1.2.9,

Corollary 1.2.11. There are unique adjoint functors | ⋅ | ⊣ Top such that the diagram

ssSet Top

Δ𝑖

| ⋅ |
𝑆

Δ𝑖 𝑟

commutes.

For 𝑋 a semisimplicial set, the topological space |𝑋 | is called the geometric realisation of 𝑋 .

1.2.3 Geometric product and exponential

Being a presheaf category, ssSet of course has products. However, those products do not behave
as we would like. For instance, for any semisimplicial set 𝑌 , the semisimplicial set Δ𝑖[0]×𝑌 has
no higher-dimensional simplices than points, while geometric intuition tells us that for any
space its product with a point should be the space itself. For this reason we introduce the
notion of the geometric product of two semisimplicial sets. It already appears in [RS71, Section
3] and a very concrete formulation can be found in [Sch13].

We define the geometric product−⊗− ∶ ssSet×ssSet in amore abstract way, againmaking
use of Proposition 1.2.9. First, let 𝑁𝑖 ∶ Pos𝑖 → ssSet be the functor from the category of posets
and injective monotone maps between them, given by

(𝑁𝑖(𝑃))𝑛 ≅ HomPos𝑖([𝑛], 𝑃).
Note that this is precisely the nerve functor of Example 1.1.7.

For each [𝑛] in Δ𝑖[𝑛], we take the left Kan extension

ssSet ssSet

Δ𝑖

Δ𝑖[𝑛]⊗ −

Δ𝑖 𝑁𝑖([𝑛]×−)

In the above diagram the symbol × denotes the categorical product in Pos. We get a functor
Δ𝑖[𝑛]⊗ − ∶ ssSet → ssSet for every [𝑛] in Δ𝑖[𝑛]. Next, we take another left Kan extension

ssSet ssSet

Δ𝑖

−⊗ 𝑋

Δ𝑖
Δ𝑖 ⊗ 𝑋
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which gives us for each semisimplicial set 𝑋 a functor −⊗ 𝑋 ∶ ssSet → ssSet. To make⊗
functorial in the second argument, we put 𝑌 ⊗ 𝑓 ∶= lim−−→Δ𝑖[𝑛]→𝑌 (Δ𝑖[𝑛]⊗ 𝑓 ).

The geometric product inherits its symmetry from the categorical product of posets. In-
deed, there is a chain of isomorphisms

𝑋 ⊗ 𝑌 ≅ lim−−→Δ𝑖[𝑛]→𝑋
(Δ𝑖[𝑛]⊗ 𝑌 ) ≅ lim−−→Δ𝑖[𝑛]→𝑋

lim−−→Δ𝑖[𝑚]→𝑌
𝑁𝑖([𝑛]×[𝑚])

≅ lim−−→Δ𝑖[𝑚]→𝑌
lim−−→Δ𝑖[𝑛]→𝑋

𝑁𝑖([𝑚]×[𝑛]) ≅ lim−−→Δ𝑖[𝑚]→𝑌
Δ𝑖[𝑛]⊗ 𝑋 ≅ 𝑌 ⊗ 𝑋,

where the second to last isomorphism exists due to the fact that colimits commute with colimits
(see e.g. [Rie17, Theorem 3.8.1]) and that the categorical product is symmetric in 𝑃𝑜𝑠.

Moreover, we have Δ𝑖[0]⊗ 𝑋 ≅ lim−−→Δ𝑖[𝑛]→𝑋 𝑁𝑖([0]×[𝑛]) ≅ 𝑋 , which is conform the geo-

metric intuition as formulated in the introduction of this section. By construction, the functor
−⊗𝑋 has a right adjoint [𝑋 , −] ∶ ssSet → ssSet, which we will call the geometric exponential.
We have established (modulo some additional verification left to the reader):

Theorem 1.2.12. The triple (ssSet,⊗, Δ𝑖[0]) is a symmetric closed monoidal category.

1.3 Simplicial sets

In this section we introduce simplicial sets and investigate their relation to semisimplicial sets.
Along the way we will see how the former can also be seen as a generalisation of the latter.

Let Δ be the category of finite ordinals and all monotone functions between them.

Definition 1.3.1. The presheaf category [Δ𝑜𝑝 , Set] is called the category of simplicial sets and
is denoted sSet. ■

We adopt notational conventions analogous to the ones we have for semisimplicial sets.
For instance, we let Δ ∶ Δ → sSet be the Yoneda functor and we write 𝑥𝛼 for the 𝑛-simplex

Δ[𝑛] Δ𝛼−−→ Δ[𝑚] 𝑥−→ 𝑋

of a simplicial set 𝑋 .

Lemma 1.3.2. Every morphism 𝛼 of Δ can be uniquely factored 𝛼 = 𝜖𝜂 as surjection followed by
an injection.

Proof. Let 𝑞 = |im 𝛼| be the cardinality of the image of the function 𝛼 . Then there are obvious
surjective 𝜂 and injective 𝜖 forming a commutative diagram

[𝑚] [𝑞] [𝑛].𝜂

𝛼

𝜖
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Namely, 𝜂 is the ‘flattening’ or ‘surjectification’ of 𝛼 in the sense that it increments in the same
way as 𝛼 , yet leaves no gaps, so that it becomes a function onto [𝑞]. The injective function 𝜖
reverses this flattening.

For uniqueness, suppose we have another factorisation 𝛼 = 𝜖′𝜂′, then for 𝜖′ ∶ [𝑞′] → [𝑛],
we have

|im 𝜖′| = |im 𝜖′𝜂′| = |im 𝛼|,
where the first equality holds due to the fact that 𝜂′ is surjective. It follows from the injectivity
and order-preservingness of 𝜖′ that [𝑞′] = [𝑞] and 𝜖′ = 𝜖. Finally, because 𝜖 is mono, we have
that 𝜂′ = 𝜂.
Definition 1.3.3. An 𝑛-simplex 𝑥 of a simplicial set 𝑋 is called degenerate whenever there is a
surjection 𝜂 ∶ [𝑛] → [𝑚] with 𝑚 < 𝑛 and an 𝑚-simplex 𝑦 of 𝑋 such that 𝑥 = 𝑦𝜂. ■

Remark 1.3.4. Like semisimplicial sets, a simplicial set 𝑋 can also be described more combin-
atorially as a graded set equipped with face maps and additional degeneracy maps, the latter
corresponding to 𝑋(𝜂𝑘) ∶ 𝑋𝑛 → 𝑋𝑛+1 where 𝜂𝑘 ∶ [𝑛 + 1] → [𝑛] is the unique surjective order-
preserving morphism covering 𝑘 twice. The face and degeneracy maps are required to satisfy
certain relations extending (1.2). ▲
Lemma 1.3.5 (Eilenberg-Zilber). Let 𝑋 be a simplicial set. Then every 𝑛-simplex 𝑥 of 𝑋 can be
uniquely written as 𝑥 = 𝑦𝜂, with 𝜂 a surjection and 𝑦 non-degenerate.

Proof. We start with existence. If 𝑥 is non-degenerate, then we can take 𝜂 = 𝑖𝑑[𝑛]. Otherwise,
we have 𝑥 = 𝑥0𝜂0 for some lower-dimensional simplex 𝑥0 and surjection 𝜂0. We ask the same
for 𝑥0: if it is non-degenarate, we are done, and otherwise we have 𝑥 = 𝑥0𝜂0 = 𝑥1𝜂1𝜂0. We
continue this process until we reach a non-degenerate simplex, which we at some point will,
since all 0-simplices are non-degenerate.

For uniqueness, suppose that 𝑦𝜂 = 𝑥 = 𝑦′𝜂′. Let 𝜖 and 𝜖′ be sections of 𝜂 and 𝜂′, respect-
ively. We have

𝑦 = 𝑦𝜂𝜖 = 𝑥𝜖 = 𝑦′𝜂′𝜖 and, symmetrically 𝑦′ = 𝑦′𝜂′𝜖′ = 𝑥𝜖′ = 𝑦𝜂𝜖′.

By Lemma 1.3.2, there are

𝑦 = 𝑦′𝜂′𝜖 = 𝑦′𝜎𝜏 and 𝑦′ = 𝑦𝜂𝜖′ = 𝑦𝜎 ′𝜏 ′,

with 𝜎, 𝜎 ′ injective and 𝜏 , 𝜏 ′ surjective. By the non-degeneracy of 𝑦 and 𝑦′, we have that
𝜏 = 𝜏 ′ = 𝑖𝑑 . Thus, we also find that 𝑦 = 𝑦′𝜎 = 𝑦𝜎 ′𝜎 and so 𝜎 = 𝜎 ′ = 𝑖𝑑 . It follows that 𝜖′ is
a section of 𝜂 and 𝜖 is a section of 𝜂′ and, for those were chosen arbitrarily, that 𝜂 and 𝜂′ have
precisely the same sections, which means that 𝜂 = 𝜂′.

As a result a simplicial morphism 𝑓 ∶ 𝑋 → 𝑌 is determined by what it does on the non-
degenerate simplices. Indeed, if 𝑥 = 𝑦𝜂 with 𝑦 non-degenerate, then it follows from naturality
that 𝑓 (𝑥) = 𝑓 (𝑦𝜂) = 𝑓 (𝑦)𝜂.
Lemma 1.3.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a simplicial morphism. Then:
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• 𝑓 takes degenerates to degenerates.
• If 𝑓 is a monomorphism, then 𝑓 takes non-degenerates to non-degenerates.

Proof. The first part is simply by the fact that 𝑓 is a natural transformation:

𝑓 (𝑥) = 𝑓 (𝑥0𝜂) = 𝑓 (𝑥0)𝜂.

For the second part, suppose that 𝑓 is mono and 𝑥 a non-degenerate simplex of 𝑋 . Let 𝜂 be a
surjective morphism such that 𝑓 (𝑥) = 𝑦0𝜂 for some simplex 𝑦0 of 𝑌 and pick any right inverse
𝜖 of 𝜂. Then it holds that:

𝑓 (𝑥𝜖𝜂) = 𝑓 (𝑥)𝜖𝜂 = 𝑦0𝜂𝜖𝜂 = 𝑦0𝜂.
It follows that 𝑥𝜖𝜂 = 𝑥 and thus, by the non-degeneracy of 𝑥 , that 𝜖 = 𝜂 = 𝑖𝑑 .
Definition 1.3.7. For 𝑋 a simplicial set, its category of simplices (denoted Δ𝑋 ) is the comma
category (Δ ↓ 𝑋). ■

Entirely analogous to the semisimplicial case, we have the following two propositions.

Proposition 1.3.8. For any simplicial set 𝑋 ,

lim−−→𝑥∶Δ[𝑛]→𝑋
in Δ𝑋

Δ[𝑛] ≅ 𝑋 .

Proposition 1.3.9. Let ℰ be a cocomplete category and 𝑓 ∶ Δ → ℰ a functor. Then there is a
unique left adjoint 𝑓! ∶ sSet → ℰ such that the following diagram commutes:

sSet ℰ

Δ

𝑓!

Δ 𝑓

Let 𝑖 ∶ Δ𝑖 ↪ Δ be the inclusion functor. We call the induced precomposition functor
𝑖∗ ∶ sSet → ssSet the forgetful functor. It sends a simplicial set 𝑋 to the semisimplicial set with
the same underlying set and face maps, ‘forgetting’ how it acts on the non-injective maps of
Δ. The following is again an instance of a basic result of category theory.

Proposition 1.3.10. The functor 𝑖∗ ∶ sSet → ssSet has both adjoints

𝑖! ⊣ 𝑖∗ ⊣ 𝑖∗.

Proof. First take the left Kan extension

ssSet sSet

Δ𝑖

𝑖!

Δ𝑖 Δ ∘ 𝑖
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to obtain a left adjoint 𝑖! ∶ ssSet → sSet. We claim that its right adjoint is 𝑖∗. Indeed, for
𝑋 a semisimplicial set and 𝑌 a simplicial set, we have 𝑌𝑛 = 𝑌(𝑖[𝑛]) = (𝑖∗𝑌 )𝑛 which gives the
following chain of natural isomorphisms:

lim←−−Δ𝑖[𝑛]→𝑋
HomsSet(Δ[𝑛], 𝑌 ) ≅ lim←−−Δ𝑖[𝑛]→𝑋

𝑌 (𝑖[𝑛]) ≅ lim←−−Δ𝑖[𝑛]→𝑋
HomssSet(Δ𝑖[𝑛], 𝑖∗𝑌 ).

It follows that HomsSet(𝑖!𝑋, 𝑌 ) ≅ HomssSet(𝑋 , 𝑖∗𝑌 ). Next we take a left Kan extension in sSet:

sSet ssSet

Δ

(𝑖∗ ∘ Δ)!

Δ
𝑖∗ ∘ Δ

We claim that (𝑖∗ ∘ Δ)! = 𝑖∗. Indeed, for any simplicial set 𝑋 , we have

(𝑖∗ ∘ Δ)!(𝑋)𝑚 = lim−−→Δ𝑋
(𝑖∗Δ[𝑛])𝑚 ≅ lim−−→Δ𝑋

((𝑖∗Δ[𝑛])𝑚) ≅ lim−−→Δ𝑋
(Δ[𝑛]𝑚) ≅ 𝑋𝑚.

Thus 𝑖∗ has a right adjoint 𝑖∗.
Example 1.3.11.

• For every representable Δ𝑖[𝑛], we have 𝑖!Δ𝑖[𝑛] = Δ[𝑛].
• The right adjoint 𝑖∗ ∶ ssSet → sSet sends any finite semisimplicial set to the empty set
(the initial object of ssSet). ▲

Example 1.3.12 (The simplicial set 𝑖!𝑋 ). It will be useful to have a more concrete description of
simplicial set 𝑖!𝑋 , for some semisimplicial set 𝑋 . Roughly, 𝑖!𝑋 is the simplicial set 𝑋 ∗ generated
by ‘freely adding degeneracies’ to 𝑋 . This can be made precise as follows:

𝑋 ∗𝑛 = {(𝑥, 𝜂) ∣ 𝑥 ∈ 𝑋𝑘 , 𝜂 ∶ [𝑛] → [𝑘] surjective},
with (𝑥, 𝜂)𝛼 = (𝑥𝜖0, 𝜂0), where 𝜂𝛼 = 𝜖0𝜂0 is the unique factorisation from Lemma 1.3.2. Note
that 𝑋0 = 𝑋 ∗0 and 𝑋𝑛 ⊆ 𝑋 ∗𝑛 for every 𝑛 > 0.

To see that indeed
𝑋 ∗ ≅ lim−−→𝑥∶Δ𝑖[𝑛]→𝑋

in Δ𝑖𝑋

Δ[𝑛],

define the components 𝜑𝑥 ∶ Δ[𝑛] → 𝑋 , to be the morphisms determined by mapping 𝑖𝑑[𝑛] to
(𝑥, 𝑖𝑑[𝑛]). This is a cocone to the limits diagram, because for 𝜖 ∶ 𝑦 → 𝑥 in Δ𝑖𝑋 , we have

𝜑𝑥 𝜖(𝑖𝑑[𝑚]) = 𝜑𝑥 (𝜖) = (𝑥, 𝑖𝑑[𝑛])𝜖 = (𝑥𝜖, 𝑖𝑑[𝑚]) = (𝑦, 𝑖𝑑[𝑚]) = 𝜑𝑦(𝑖𝑑[𝑚]),

as required. Now let (𝐶, Δ[𝑛] 𝜓𝑥−−→ 𝑋) be another cocone to the same diagram. Then there is a
unique cocone morphism 𝑋 ∗ → 𝐶 , sending each (𝑥, 𝑖𝑑[𝑛]) to 𝜓𝑥 (𝑖𝑑[𝑛]).

Observe that the non-degenerate simplices of 𝑖!𝑋 are precisely the (𝑥, 𝑖𝑑), or, equivalently,
the simplices of the form 𝑖!𝑥 ∶ Δ[𝑛] → 𝑖!𝑋 , for some 𝑥 ∶ Δ𝑖[𝑛] → 𝑋 . The morphism 𝑖!𝑓 ∶
𝑖!𝑋 → 𝑖!𝑌 is determined by sending (𝑥, 𝑖𝑑) to (𝑓 𝑥, 𝑖𝑑). ▲
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Lemma 1.3.13. The functor 𝑖! reflects isomorphisms.

Proof. Suppose that 𝑖!𝑓 ∶ 𝑖!𝑋 → 𝑖!𝑌 has a two-sided inverse 𝑔 in sSet. Then 𝑔 is a monomorph-
ism and thus, by Lemma 1.3.6, it sends non-degenerates to non-degenerates. Therefore, for
each simplex 𝑦 of the semisimplicial set 𝑌 , we have 𝑔(𝑦, 𝑖𝑑) = (𝑥, 𝑖𝑑) for some 𝑥 in 𝑋 . Letting
𝑔′(𝑦) = 𝑥 defines a semisimplicial morphism 𝑔′ ∶ 𝑌 → 𝑋 such that 𝑖!𝑔′ = 𝑔. It follows that 𝑔′
is the two-sided inverse of 𝑓 .

It is also straightforward to show:

Lemma 1.3.14. The functor 𝑖! preserves and reflects monomorphisms.

Both the functors 𝑖! and 𝑖∗ are faithful and injective on objects, and can thus be see as
embedding semisimplicial sets in simplicial sets and vice-versa. A disadvantage of the embed-
ding 𝑖∗ is that it does not respect geometric realisation. For instance, the geometric realisation
|𝑖∗Δ[0]| of the simplicial point gives the strange object that is an infinite-dimensional simplex
of which each side is glued to the others.

In contrast, the functor 𝑖! does preserve geometric realisation. Indeed, the function 𝑟 from
Section 1.2.2 can easily be extended to 𝑟Δ ∶ Δ → Top. Consequently, the Corollary 1.2.11 can
be replicated to obtain a commutative diagram

sSet Top

Δ

| ⋅ |Δ
𝑆Δ

Δ 𝑟Δ

Since both | ⋅ |Δ and 𝑖! are left adjoints, their composition | ⋅ |Δ ∘ 𝑖! is as well. By the uniqueness
of | ⋅ |, it follows that | ⋅ | ≅ | ⋅ |Δ ∘ 𝑖!.

One way to further describe how the category of semisimplicial sets fits inside category
of simplicial sets is by considering the comonad (𝐺, 𝜖, 𝛿) induced by the adjunction 𝑖! ⊣ 𝑖∗.
That is, the endofunctor 𝐺 is given by 𝑖!𝑖∗, the counit 𝜖 is the counit of the adjunction, and the
comultiplication 𝛿 is 𝑖!𝜂𝑖∗ ∶ 𝐺 → 𝐺2, where 𝜂 is the unit of the adjunction.

By standard abstract arguments, there is a functor 𝐹 ∶ ssSet → CoAlg𝐺 into the category
of coalgebras over 𝐺, defined by mapping a semisimplicial set 𝑋 to (𝑖!𝑋, 𝑖!𝜂𝑋 ). A well-known
theorem (or its dual) by Beck implies that if the source category of a left adjoint has equalisers,
the left adjoint preserves them and moreover reflects isomorphisms, then such a functor 𝐹 is
an equivalence of categories (and the adjunction is called comonadic). In light of Lemma 1.3.13,
it remains in our case only to show that 𝑖! preserves equalisers.

Proposition 1.3.15. The adjunction 𝑖! ⊣ 𝑖∗ is comonadic.

Proof. Let

𝐸 𝑋 𝑌
𝑓
𝑔
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be an equaliser in ssSet. For each 𝑛, we have 𝐸𝑛 = {𝑥 ∈ 𝑋𝑛 ∣ 𝑓𝑛(𝑥) = 𝑔𝑛(𝑥)}. It follows that:

(𝑖!𝐸)𝑛 = {(𝑥, 𝜂) ∣ 𝑥 ∈ 𝐸𝑘 , 𝜂 ∶ [𝑛] → [𝑘] surjective}
= {(𝑥, 𝜂) ∣ 𝑥 ∈ 𝑋𝑘 , 𝑓𝑘(𝑥) = 𝑔𝑘(𝑥), 𝜂 ∶ [𝑛] → [𝑘] surjective}
= {(𝑥, 𝜂) ∈ 𝑖!𝑋𝑛 ∣ (𝑖!𝑓 )𝑛(𝑥, 𝜂) = (𝑖!𝑔)𝑛(𝑥, 𝜂)},

and thus 𝑖!𝐸 is the equaliser of (𝑖!𝑓 , 𝑖!𝑔). Since, by Lemma 1.3.13, 𝑖! reflects isomorphisms, the
result follows from Beck’s comonadicity theorem.

Now that we have established that ssSet ≃ CoAlg𝐺 , it is worthwhile to take a closer look
at the coalgebras over 𝐺. First note that the unit and counit of 𝑖! ⊣ 𝑖∗ are given by

𝜂 ∶ 1ssSet ⇒ 𝑖∗𝑖! 𝜖 ∶ 𝑖!𝑖∗ ⇒ 1sSet
𝜂𝑋 ∶ 𝑋 → 𝑖∗𝑖!𝑋 𝜖𝑌 ∶ 𝑖!𝑖∗𝑌 → 𝑌

∶ 𝑥 ↦ (𝑥, 𝑖𝑑) ∶ (𝑦, 𝜂) ↦ 𝑦𝜂

A 𝐺-coalgebra (𝑋 , 𝜉 ) consists of a simplicial set 𝑋 together with a morphism 𝜉 ∶ 𝑋 → 𝑖!𝑖∗𝑋
such that

𝑋 𝑖!𝑖∗𝑋

𝑋

𝜉

𝜖𝑋 and

𝑋 𝑖!𝑖∗𝑋

𝑖!𝑖∗𝑋 𝑖!𝑖∗𝑖!𝑖∗𝑋
𝜉

𝜉

𝑖!𝑖∗𝜉

𝑖!𝜂𝑖∗𝑋

(1.4)

commute.
It turns out that if a simplicial set 𝑋 admits a 𝐺-coalgebra structure, then it does so in a

unique way.

Proposition 1.3.16. A simplicial set 𝑋 admits a 𝐺-coalgebra structure if and only if there is a
simplicial morphism 𝑋 → 𝑖!𝑖∗𝑋 mapping each non-degenerate 𝑥 ↦ (𝑥, 𝑖𝑑).
Proof. ⇒. Let (𝑋 , 𝜉 ) be a G-coalgebra. For 𝑥 non-degenerate, the only preimage of 𝑥 under 𝜖𝑋
is (𝑥, 𝑖𝑑). By the commutativity of the first diagram of (1.3.23), we must have 𝜉 ∶ 𝑥 ↦ (𝑥, 𝑖𝑑).

⇐. Suppose there is such simplicial morphism 𝜉 . We claim that (𝑋 , 𝜉 ) is a 𝐺-coalgebra.
Clearly the first diagram of (1.3.23) commutes. For non-degenerate 𝑥 , we have,

(𝑖!𝜂𝑖∗𝑋 ∘ 𝜉 )(𝑥) = 𝑖!𝜂𝑖∗𝑋 (𝑥, 𝑖𝑑) (𝑖!𝑖∗𝜉 ∘ 𝜉 )(𝑥) = 𝑖!𝑖∗𝜉 (𝑥, 𝑖𝑑)
= (𝜂𝑖∗𝑋 (𝑥), 𝑖𝑑) = (𝑖∗𝜉 (𝑥), 𝑖𝑑)
= ((𝑥, 𝑖𝑑), 𝑖𝑑) = ((𝑥, 𝑖𝑑), 𝑖𝑑),

which means that also the second diagram commutes.

We now have two characterisations of simplicial sets that are also semisimplicial sets.
Namely, as those simplicial sets that lie in the image of 𝑖! and as those for which there is a
canonical morphism 𝑋 → 𝑖!𝑖∗𝑋 (i.e. those which admit a 𝐺-coalgebra structure). We consider
one more characterisation due to [RS71].
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Definition 1.3.17 ([RS71, p. 323]). A simplicial set 𝑋 is said to have a non-degenerate core if
every face of a non-degenerate simplex of 𝑋 is again non-degenerate. ■

Proposition 1.3.18. An object lies in the image of 𝑖! precisely when it has a non-degenerate core.

Proof. If 𝑋 does not have a non-degenerate core, then there are non-degenerate simplices 𝑥, 𝑦
and (respectively) injective and surjective functions 𝜖 ≠ 𝑖𝑑 and 𝜂 ≠ 𝑖𝑑 such that 𝑥𝜂 = 𝑦𝜖. But if
(𝑋 , 𝜉 ) were a 𝐺-coalgebra, then, by Proposition 1.3.16, we would have

𝜉 (𝑥𝜂) = 𝜉 (𝑥)𝜂 = (𝑥, 𝑖𝑑)𝜂 = (𝑥, 𝜂);
𝜉 (𝑦𝜖) = 𝜉 (𝑦)𝜖 = (𝑦, 𝑖𝑑)𝜖 = (𝑦𝜖, 𝑖𝑑),

a contradiction.
For the converse, note that if 𝑋 has a non-degenerate core, then the assignment of a non-

degenerate 𝑥 to (𝑥, 𝑖𝑑) is not conflicting and determines a simplicial morphism.

Proposition 1.3.19. A simplicial morphism 𝑖!𝑋 → 𝑖!𝑌 is in the image of 𝑖! if and only if it maps
non-degenerates to non-degenerates.

Proof. According to the coalgebraic perspective 𝑓 ∶ 𝑖!𝑋 → 𝑖!𝑌 is a semisimplicial morphism
precisely when the diagram

𝑖!𝑋 𝑖!𝑖∗𝑖!𝑋

𝑖!𝑌 𝑖!𝑖∗𝑖!𝑌

𝑖!𝜂𝑋

𝑓 𝑖!𝑖∗𝑓

𝑖!𝜂𝑌
commutes. A simple calculation yields that this is the case if and only if each non-degenerate
(𝑥, 𝑖𝑑) in 𝑖!𝑋 gets sent to (𝑦, 𝜂) such that

((𝑦, 𝜂), 𝑖𝑑) = 𝑖!𝑖∗𝑓 ∘ 𝑖!𝜂𝑋 (𝑥, 𝑖𝑑) = (𝑖!𝜂𝑌 ∘ 𝑓 )(𝑥, 𝑖𝑑) = ((𝑦, 𝑖𝑑), 𝜂),
i.e. such that 𝜂 = 𝑖𝑑 , as required.

We again consider a nerve functor, this time from Cat → sSet. Unlike Pos𝑖, which is the
codomain of the nerve functor 𝑁𝑖, the category Cat is cocomplete. As a consequence it arises
as a right adjoint. Indeed, the inclusion functor Δ → Cat from the posets of Δ considered as
categories, into the category of small categories, yields a left Kan extension with right adjoint
𝑁 ∶ Cat → sSet, such that

(𝑁C)𝑛 ≅ HomCat([𝑛],C).
In particular, for a poset 𝑃 considered a category, (𝑁𝑃)𝑛 consists of the order preserving func-
tions from [𝑛] to 𝑃 . Since any such function 𝑥 ∶ [𝑛] → 𝑃 in 𝑃𝑜𝑠 may be factored

[𝑛] 𝜂−→ im 𝑥 𝜖−→ 𝑃
as a surjection followed by an injection, the non-degenerate simplices of 𝑁𝑃 are precisely the
injective functions. It follows that 𝑖!𝑁𝑖𝑃 ≅ 𝑁𝑃 . With this, we can finally show:
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Theorem 1.3.20. For any two semisimplicial sets 𝑋 and 𝑌 it holds that

𝑖!(𝑋 ⊗ 𝑌 ) ≅ 𝑖!𝑋×𝑖!𝑌 .
Proof. Since right adjoints preserve limits, we have 𝑁([𝑛]×[𝑚]) ≅ Δ[𝑛]×Δ[𝑚] for any pair
[𝑛], [𝑚] of objects of Δ. Thus, we have the following chain of isomorphisms:

𝑖!(𝑋 ⊗ 𝑌 ) ≅ 𝑖!( lim−−→Δ𝑖[𝑛]→𝑋
lim−−→Δ𝑖[𝑚]→𝑌

𝑁𝑖([𝑛]×[𝑚]))
≅ lim−−→Δ𝑖[𝑛]→𝑋

lim−−→Δ𝑖[𝑚]→𝑌
𝑁([𝑛]×[𝑚])

≅ lim−−→Δ𝑖[𝑛]→𝑋
lim−−→Δ𝑖[𝑚]→𝑌

Δ[𝑛]×Δ[𝑛] ≅ 𝑋×𝑌 ,

as required.

In particular, for any two semisimplicial sets 𝑋 and 𝑌 , it holds that 𝑖!𝑋×𝑖!𝑌 has a non-
degenerate core. Thus, in light of Corollary 1.3.18, we could have also defined the geometric
product as the preimage of 𝑖!𝑋×𝑖!𝑌 under 𝑖!, which is how it is done in [RS71]. Note that this
also means that we have proven that the category CoAlg𝐺 has products.

We obtain following corollary, and at the same time justification for the name of the geo-
metric product.

Corollary 1.3.21. For any two semisimplicial sets 𝑋 and 𝑌 , it holds that:1

|𝑋 ⊗ 𝑌 | ≅ |𝑋 |×|𝑌 |.
Proof. It is well-known that |𝑋×𝑌 |Δ = |𝑋 |Δ×|𝑌 |Δ (see e.g. Proposition 2.4 of[GJ99]). We find

|𝑋 ⊗ 𝑌 | ≅ |𝑖!(𝑋 ⊗ 𝑌 )|Δ
≅ |𝑖!𝑋×𝑖!𝑌 |Δ
≅ |𝑖!𝑋|Δ×|𝑖!𝑌 |Δ ≅ |𝑋 |×|𝑌 |,

as desired.

The following is a standard result on the simplicial nerve functor that will be useful in
Chapter 3.

Proposition 1.3.22. If 𝜂 ∶ 𝐹 ⇒ 𝐺 is a natural transformation between functors 𝐹 , 𝐺 ∶ C → D,
then

|𝑁 (𝜂)|Δ ∶ |𝑁 (𝐹)|Δ → |𝑁(𝐺)|Δ
is a homotopy |𝑁 (𝐹)|Δ ∼ |𝑁 (𝐺)|Δ in Top.

1This result actually only holds when geometric realisation is considered as a functor into a more convenient
category of topological spaces, such as the category of compact Hausdorff spaces. These details falls beyond the
scope of this thesis but can be found in for instance [GJ99, p. 9]
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Proof. Let I be the category induced by the poset [1]. It is straightforward to check that the
natural transformation 𝜂 is equivalently a functor

𝜂 ∶ C × I → C

such that the restriction to 𝐶 × {0} is 𝐹 and the restriction to 𝐶 × {1} is 𝐺. But then, because
𝑁 preserves limits, we have 𝑁(𝜂) ∶ 𝑁 (C) × Δ𝑖[1] → 𝑁(D). This already what is called a
homotopy in sSet (see Section 3.3.2), but under geometric realisation it becomes

|𝑁 (𝜂)|Δ ∶ |𝑁 (C)|Δ × 𝐼 → |𝑁 (D)|Δ,

which is a homotopy in Top.

We end this section with a remark about the monadicity of 𝑖! ⊣ 𝑖∗.
Remark 1.3.23. It is easy to see that 𝑖! ⊣ 𝑖∗ is also monadic. By the dual of the theorem that
is used in the proof of Proposition 1.3.15, it suffices to show that 𝑖∗ reflects isomorphisms and
preserves coequalisers. The latter follows directly from the fact that, by Proposition 1.3.10,
the functor 𝑖∗ is a left adjoint. To see that 𝑖∗ reflects isomorphisms, note that, because any
𝑖∗𝑓 ∶ 𝑖∗𝑋 → 𝑖∗𝑌 preserves the underlying sets, we only have to show that an inverse 𝑔 is a
simplicial morphism. We make use of the fact that every isomorphism in a functor category is
a pointwise isomorphism, and thus both 𝑓 and 𝑔 are bijections on each level. For 𝛼 a morphism
of Δ and 𝑦 some 𝑛-simplex of 𝑌 , let 𝑥 be the unique 𝑛-simplex of 𝑋 such that 𝑓𝑛(𝑥) = 𝑦 . Then
𝑓𝑛(𝑥𝛼) = 𝑓𝑛(𝑥)𝛼 = 𝑦𝛼 and therefore,

𝑔𝑛(𝑦𝛼) = 𝑥𝛼 = 𝑔𝑛(𝑦)𝛼,

as required.
It follows by Beck’s monadicity theorem that sSet is equivalent to the category of algebras

over the monad induced by the adjunction 𝑖! ⊣ 𝑖∗. That is, a semisimplicial set 𝑋 admits a
system of degeneracies precisely when there is a morphism 𝜆 ∶ 𝑖∗𝑖!𝑋 → 𝑋 such that

𝑋 𝑖∗𝑖!𝑋

𝑋

𝜂𝑋

𝜆 and

𝑖∗𝑖!𝑖∗𝑖!𝑋 𝑖∗𝑖!𝑋

𝑖∗𝑖! 𝑋
𝑖∗𝑖!𝜆

𝑖∗𝜖𝑖!𝑋

𝜆

𝜆

commute. ▲



Chapter 2

(Semi)model categories

This chapter introduces the abstract homotopy theory that will be used in this thesis. In par-
ticular, we define the notion of a model structure, introduced by Quillen in [Qui67]. A model
structure imposed on a category gives one a general setting inwhich to study homotopy theory,
with as archetypical example the model structure on the category of topological spaces.

The first two sections build up to this original definition, and further provide amore concise
definition in terms of two interacting weak factorisation systems. This last definition is very
common in the more recent literature.

In Section 2.3, we introduce the weaker notion of a right semimodel structure. This weaken-
ing first appeared in [Spi], but is therein noted to be inspired by a notion that already appeared
in [Hov98]. We will show that, given slightly more data, a right semimodel structure also
admits a description in terms of weak factorisation systems.

The rest of this chapter is devoted to developing some general methods for constructing
model structures. Wewill focus on the class of locally finitely presentable categories, introduced
in Section 2.4. These categories, among which are all presheaf categories, admit two import-
ant construction methods. First, there is a useful theorem for constructing weak factorisation
systems for a given set generating set, which is the subject of Section 2.5. Second, we will
state in Section 2.6 a theorem that for such categories allows weak factorisation systems to be
transferred along a left adjoint. This inspired [Hes+17] to define the notion of a left-induced
model structure, which we adapt to include right semimodel structures.

In the final section we introduce the categorical operations of the Leibniz product and
Leibniz exponential. When dealing with a monoidal category, which, as we have seen in
Chapter 1, the semisimplicial sets are, the Leibniz operations can serve as tools for constructing
(semi)model structures.

Throughout the chapter we assume to be working with a complete, cocomplete and locally
small category C, unless indicated otherwise.

2.1 Lifting problems

Central in (abstract) homotopy theory is the characterization of maps by their lifting properties.
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Definition 2.1.1. Let 𝑓 , 𝑔 be two morphisms. We say that 𝑓 has the left lifting property with
respect to 𝑔 or, equivalently, that 𝑔 has the right lifting property with respect to 𝑓 if for every
commutative square of the form

⋅ ⋅

⋅ ⋅
𝑓 𝑔 there is a dotted arrow such that

⋅ ⋅

⋅ ⋅
𝑓 𝑔 commutes.

We call that arrow the square’s diagonal filler. ■

To ease the writing (and reading) about these lifting properties, we will use the following
notation. If 𝑓 has the left lifting property with respect to 𝑔, we write 𝑓 � 𝑔. Similarly, given
two classes of morphisms F and G, we will take F�G to mean that every map in F has the left
lifting property with respect to any map in G. Finally, with �F (F�) we denote the class of all
morphisms 𝑓 such that {𝑓 } � F (F � {𝑓 }).
Definition 2.1.2. For 𝛼 an ordinal, an 𝛼-sequence inC is a functor𝐴 ∶ 𝛼 → C from 𝛼 (considered
as a category) into C, i.e. a sequence

𝐴0 → 𝐴1 → … → 𝐴𝛽 → … (𝛽 < 𝛼)

such that moreover, for every limit ordinal 𝜆 < 𝛼 , the canonical morphism,

lim−−→𝛽<𝛾
𝐴𝛽 → 𝐴𝛾

is an isomorphism. ■

Definition 2.1.3. The composition of an 𝛼-sequence 𝐴 ∶ 𝛼 → C is the canonical morphism

𝐴0 → 𝐴𝛼 ∶= lim−−→𝛽<𝛼
𝐴𝛽 . ■

A morphism is said to be an 𝛼-composition if it can be written as the composition of an 𝛼-
sequence. If it is an 𝛼-composition for some (possibly finite) ordinal 𝛼 , then it is more generally
called a transfinite composition.

Definition 2.1.4. Let𝑀 be a class of morphisms of C. An 𝛼-sequence 𝐴 ∶ 𝛼 → C such that for
every successor ordinal 𝛽 + 1 < 𝛼 , the morphism 𝐴𝛽 → 𝐴𝛽+1 is in𝑀 is called an 𝛼-sequence of
morphisms in 𝑀 . Its composition is an 𝛼-composition of morphisms in 𝑀 and morphisms that
arise in this way are called transfinite compositions of morphisms in 𝑀 . ■

Definition 2.1.5. A class A of morphisms is said to be saturated if it contains all isomorphisms
and is closed under pushouts, arbitrary coproducts, transfinite composition and retracts. ■

Proposition 2.1.6. Any class L that can be written as L = �R for some class R, is saturated.



Chapter 2: (Semi)model categories 29

Proof. Because these arguments are quite routine, we will prove only closure under pushouts.
Let L = �R and suppose that we have the following lifting problem between the pushout of a
morphism in L, and any morphism of R.

⋅ ⋅ ⋅

⋅ ⋅ ⋅
∈ L ∈ R⌜

The indicated diagonal filler is part of a cone for the pushout diagram, and the unique corres-
ponding arrow from the initial cone is the desired diagonal filler. It follows that the pushout is
in R� = L, as required.

Remark 2.1.7. There is, of course, a dual version of the previous proposition for classes that
can be written R = L�. In particular, it holds that the right class of R is closed under both
pullbacks and retracts. ▲
Lemma 2.1.8. Let 𝐹 ∶ C −→←− D ∶ 𝐺 be an adjunction and let 𝑓 , 𝑔 be morphisms of C and D,
respectively. Then

𝐹𝑓 � 𝑔 ⇔ 𝑓 � 𝐺𝑔.
Proof. By naturality, the adjunction 𝜙 ∶ HomD(𝐹𝐴, 𝐵) ≅ HomC(𝐴, 𝐺𝐵) gives rise to an ad-
junction Hom𝔻→(𝐹𝑓 , 𝑔) ≅ Homℂ→(𝑓 , 𝐺𝑔) on the corresponding arrow categories. Thus, any
lifting problem of the form

⋅ ⋅

⋅ ⋅

𝑎

𝐹𝑓 𝑔

𝑏

𝑢 corresponds uniquely to one of the form
⋅ ⋅

⋅ ⋅

𝜙(𝑎)

𝑓 𝐺𝑔

𝜙(𝑏)

𝜙(𝑢)

as required.

2.2 Model structures

We are now ready give the original definition of a model structure.

Definition 2.2.1 (Model structure). A model structure on a category C consists of a triple
(Fib,Cof,Weq) of classes of morphisms of C such that:

(MS1) All of Fib,Cof and Weq are closed under retracts;
(MS2) 2-out-of-3: if any two of the three morphisms 𝑓 , 𝑔, 𝑔𝑓 are in Weq, then so is the

third;
(MS3) Cof ∩Weq � Fib and Cof � Fib ∩Weq;
(MS4) Every morphism 𝑓 of C admits a factorisation 𝑓 = 𝑝𝑖 in two ways: 𝑖 ∈ Cof∩Weq and

𝑝 ∈ Fib, or 𝑖 ∈ Cof and 𝑝 ∈ Fib ∩Weq. ■

The maps of Cof, Fib and Weq are called cofibrations, fibrations and weak equivalences,
respectively. A category endowed with a model structure is called a model category. The fol-
lowing examples will all feature at some point in this thesis.
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Example 2.2.2.

1. Every complete and cocomplete category admits a trivial model structure in which all
morphisms are both cofibrations and fibrations, and the isomorphisms are the weak equi-
valences.

2. There is a standard model structure sSet𝑄 on the category sSet of simplicial sets. The
cofibrations are the monomorphisms and the weak equivalences are the geometric homo-
topy equivalences: those 𝑓 of which the geometric realisation |𝑓 |Δ is a weak homotopy
equivalence in Top. By Remark 2.2.5 this description uniquely determines the model
structure.

3. For C a model category, and D a small category, the projective model structure on the
functor category [D,C], if it exists, is determined by letting a natural transformation be
a weak equivalence if it is a componentwise weak equivalence, and a fibration if it is a
componentwise fibration. We will later give a sufficient condition on C and D for the
projective model structure to exist. ▲

An alternative and more economical definition of a model structure can be given in terms
of weak factorisation systems.

Definition 2.2.3. A weak factorisation system on a category C consists of a pair (L,R) of classes
of morphisms of C such that:

1. Every morphism 𝑓 may be factored as 𝑓 = 𝑝𝑖 with 𝑖 ∈ L and 𝑝 ∈ R;
2. L = �R and R = L�. ■

We will prove that a model structure can equivalently be defined as follows.

Proposition 2.2.4. Let (Cof, TrivFib) and (TrivCof, Fib) be two weak factorisation systems on C
such that TrivCof ⊆ Cof and TrivFib ⊆ Fib, and letWeq be a class of morphisms satisfying 2-out-
of-3. Then these classes define a model structure on C if and only if the following four inclusions
hold:

(A1) TrivCof ⊆ Cof ∩Weq (B1) TrivFib ⊆ Fib ∩Weq

(A2) Cof ∩Weq ⊆ TrivCof (B2) Fib ∩Weq ⊆ TrivFib

Remark 2.2.5. Several elements of the previous definition are determined by the other parts
of the definition. By the four inclusions, this is obviously the case for the classes TrivCof and
TrivFib. Moreover, given the classes of cofibrations (fibrations) and weak equivalences, the
remaining class of fibrations (cofibrations) is uniquely determined.

A slightly less evident redundancy that is important to note is that of the content of Weq.
Indeed, given all other conditions (including 2-out-of-3), it is easy to verify that the elements
ofWeq are determined to be precisely the class of morphisms that may be factored ⋅ triv�−→ ⋅ triv−−↠ ⋅
as a trivial cofibration followed by a trivial fibration. ▲

The following is a standard lemma.



Chapter 2: (Semi)model categories 31

Lemma 2.2.6. Suppose that L and R are two classes of morphisms such that
1. Any morphism 𝑓 may be factored as 𝑓 = 𝑝𝑖 with 𝑖 ∈ L and 𝑝 ∈ R;
2. L � R.

Then (L,R) is a weak factorisation system if and only if L and R are closed under retracts.

Proof. The implication from right to left follows from Proposition 2.1.6 and its dual. For the
implication in the other direction, note that it follows from the second hypothesis that L ⊆ �R.
In order to show the reverse inclusion, let 𝑓 ∈ �R. Factoring 𝑓 = 𝑝𝑖 with 𝑖 ∈ L and 𝑝 ∈ R, we
get a commutative square and thus a diagonal filler

⋅ ⋅

⋅ ⋅

𝑖

𝑓 𝑝𝑢

which gives rise to a commutative diagram

⋅ ⋅ ⋅

⋅ ⋅ ⋅
𝑓 𝑖 𝑓

𝑢 𝑝

that shows that 𝑓 is a retract of 𝑖 and therefore that 𝑓 ∈ L. Dually, one may show R = L�.

Example 2.2.7 (Weak factorisation system onΔ). We claim that (Sur, Inj) is a weak factorisation
system on Δ, where Sur is the class of surjective, and Inj the class of injective morphisms of Δ.

Factorisation is precisely Lemma 1.3.2. For the lifting property, observe that every com-
mutative square

[𝑛] [𝑘]

[𝑚] [𝑙]
𝛼 ∈ Sur

𝛽

∈ Inj

admits a lifting 𝛽𝛾 , where 𝛾 is any section of 𝛼 . Again we can even show uniqueness, using the
injectivity of the right map. Since epi’s and mono’s are closed under retracts, this, by Lemma
2.2.6, defines a weak factorisation system. ▲
Proof of Proposition 2.2.4. ⇒. The inclusions (A1,2) and (B1,2) are obtained by applying Lemma
2.2.6 twice.
⇐. First note that, by Lemma 2.2.6, both the classes Fib and Cof are closed under retracts.
Therefore, the only thing left to show is that the class Weq is as well. For this we use an
argument from [Rie] that is due to André Joyal.

Suppose we are given a map 𝑤 inWeq together with a retract 𝑓 , witnessed by the following
diagram.

⋅ ⋅ ⋅

⋅ ⋅ ⋅
𝑓 𝑤 𝑓 (2.1)



Section 2.2: Model structures 32

We first show that 𝑓 is in Weq whenever 𝑓 is in Fib, saving the general case for later. Factor
𝑤 = 𝑣𝑢 with 𝑢 in TrivCof and 𝑣 in Fib. Since TrivCof = Cof∩Weq, we have, by 2-out-of-3, that
𝑣 is in Fib ∩Weq. This gives us arrows 𝑠 and 𝑡 as in the diagram

⋅ ⋅ ⋅
⋅

⋅ ⋅ ⋅
𝑓

𝑠0

𝑠 𝑢
𝑓

𝑣

𝑡 (2.2)

where 𝑠 is simply 𝑢𝑠0 and 𝑡 is a diagonal filler of the square formed by 𝑢 ∈ TrivCof and 𝑓 ∈ Fib.
The triangles at the top of the diagram commute and thus 𝑡𝑠 is the identity. It follows that 𝑓 is
a retract of 𝑣 and therefore, by Lemma 2.2.6, that 𝑓 is a weak equivalence.

We return to a diagram of the form 2.1 again, but this time 𝑓 may be any morphism. First
factor 𝑓 = ℎ𝑔 with 𝑔 ∈ TrivCof and ℎ ∈ Fib and take the pushout as in the following diagram.

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝑔 𝑐
𝑤

𝑟0
𝑔

ℎ
𝑥
⌜

ℎ
𝑏

Note that, since 𝑔 ∈ TrivCof, it follows from Proposition 2.1.6 that 𝑐 is as well. We indicate two
other cones of this pushout diagram, namely the one formed by 𝑤 and 𝑏ℎ, and the one formed
by 𝑔𝑟0 and the identity. Using the universal property, we obtain

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝑔 𝑐 𝑤
𝑟0

𝑔

ℎ
𝑥
⌜

𝑦
𝑑 ℎ

𝑏

wherein 𝑑𝑐 = 𝑤 and 𝑦𝑥 = 𝑖𝑑 . The former equality implies, by 2-out-of-3, that 𝑑 ∈ Weq and the
latter that ℎ is a retract of 𝑑 . Since ℎ ∈ Fib, we can use the above argument to conclude and
ℎ ∈ Weq. Finally, it follows from 2-out-of-3 that 𝑓 = 𝑔ℎ ∈ Weq, as required.

Definition 2.2.8. An object 𝑋 of a model category is called fibrant if the unique morphism
!𝑋 ∶ 𝑋 → 1 into the terminal object is a fibration. Dually, an object is cofibrant if ∗𝑋 ∶ 0 → 𝑋
is a cofibration. ■

Example 2.2.9. Because everymonomorphism in sSet𝑄 is a cofibration, every object is cofibrant.
▲

Many basic facts of algebraic topology can be proven in the general setting of a Quillen
model structure. For instance the following fact, that we state without proof.
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Lemma 2.2.10 ([JT08, A.6.2.]). In any model category, the pushout of a weak equivalence between
cofibrant objects, along a cofibration, is again a weak equivalence.

This is a generalisation of the standard fact that, in Top (strictly: in a more convenient
category of topological spaces), the pushout of a homotopy equivalence along a cofibration is
again a homotopy equivalence. From Lemma 2.2.10 we can deduce a general property of model
structures that will be useful in Chapter 3.

Proposition 2.2.11. In anymodel category, finite coproducts of weak equivalences between cofibrant
objects are again weak equivalences.

Proof. Since, by 2-out-of-3, weak equivalences are closed under composition, it suffices to show
that for 𝑤 ∶ 𝐴 → 𝐴′ a weak equivalence between cofibrant objects and 𝐵 cofibrant, the morph-
ism 𝑤 + 1𝐵 ∶ 𝐴 + 𝐵 → 𝐴′ + 𝐵 is a weak equivalence between cofibrant objects. First note that
the square

𝐴 𝐴 + 𝐵

𝐴′ 𝐴′ + 𝐵
𝑤 𝑤′ + 𝑖𝑑𝐵⌜

is a pushout square, and thus by Lemma 2.2.10, if the inclusion 𝐴 → 𝐴+𝐵 is a cofibration, then
𝑤′ + 𝑖𝑑𝐵 is a weak equivalence. But, like any coproduct, 𝐴 + 𝐵 may be written as the pushout

0 𝐴

𝐵 𝐴 + 𝐵
⌜

from which it indeed follows, by Proposition 2.1.6, that 𝐴 → 𝐴 + 𝐵 is a cofibration. Finally,
both 𝐴 + 𝐵 and 𝐴′ + 𝐵 are cofibrant, because by the same proposition cofibrations are closed
under coproducts.

We end this section by giving the standard notion for comparing model structures. Just like
in the setting of general categories, there is a notion of equivalence which is a strengthening
of the notion of adjunction.

Definition 2.2.12. Let 𝐹 ∶ C −→←− D ∶ 𝐺 be an adjunction between model categories. We say
that:

• 𝐹 is a Quillen adjunction if 𝐹 preserves cofibrations and trivial cofibrations;
• 𝐹 is a Quillen equivalence if it is a Quillen adjunction such that for every cofibrant object
𝐶 of C and every fibrant object 𝐷 of D:

𝑓 ∶ 𝐹𝐶 → 𝐷 is a weak equivalence if and only if its adjunct 𝑓 ∶ 𝐶 → 𝐺𝐷 is.

The (left) right adjoint in a Quillen adjunction is called a (left) right Quillen functor. ■

Example 2.2.13. The geometric realisation of simplicial sets is by construction part of an ad-
junction | ⋅ |Δ ⊣ 𝑆Δ. A standard fact of abstract homotopy theory is that this adjunction is a
Quillen equivalence between sSet𝑄 and the standard model structure on Top. ▲
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2.3 Semimodel structures

A weakening of the notion of a model structure is given in [Spi]. These categories, which we
will call semimodel categories, appear in two dual variations, but in each case conditions 3 and
4 of Proposition 2.2.1 are loosened for a certain class of maps. For instance, in a left semimodel
category, fibrations are only required to have the right lifting property with respect to the
morphisms 𝑖 ∶ 𝐴 → 𝐵 of Cof∩Weq such that the domain 𝐴 is cofibrant. The first factorisation
condition, into a morphism of Cof∩Weq followed by one of Fib, is likewise only demanded for
morphismswith cofibrant domain. We are interested in the dual, the right semimodel structure.

Let us fix some notation: given a class of morphisms F, we write F• for the class of morph-
isms 𝑓 of F with fibrant codomain, i.e. the 𝑓 ∶ 𝐴 → 𝐵 such that !𝐵 ∈ Fib.

Definition 2.3.1. A right semimodel structure on a category C consists of a triple of classes of
morphisms (Fib,Cof,Weq) of C such that

1. All of Fib,Cof andWeq are closed under retracts;
2. The classWeq satisfies 2-out-of-3;
3. Cof ∩Weq � Fib and Cof � Fib• ∩Weq•;
4. Every morphism 𝑓 admits a factorisation 𝑓 = 𝑝𝑖 , where 𝑖 ∈ Cof ∩ Weq and 𝑝 ∈ Fib.

Furthermore, if 𝑓 has fibrant codomain, it may also be factored as 𝑓 = 𝑝𝑖 with 𝑖 ∈ Cof
and 𝑝 ∈ Fib• ∩Weq•. ■

A category endowed with a right semimodel structure is called a right semimodel category.
Note that in a right semimodel category, any morphism !𝑋 ∶ 𝑋 → 1 may be factored 𝑋 triv�−→
𝑋 −−↠ 1, in which case 𝑋 is fibrant. We call such 𝑋 , which is a fibrant object connected to 𝑋
by a trivial cofibration, a fibrant replacement of 𝑋 .

The following is a slightly stronger formulation of this definition in terms of weak factor-
isation systems. Observe that it is a weakening of the conditions of Proposition 2.2.4 in that
the inclusions (B1) and (B2) are replaced by (B1’) and (B2’), which concern only the morphisms
with fibrant codomain.

Proposition 2.3.2. Let (Cof, TrivFib) and (TrivCof, Fib) be two weak factorisation systems on C
such that TrivCof ⊆ Cof and TrivFib ⊆ Fib, and let Weq be a class of morphisms satisfying
2-out-of-3. If the following inclusions hold:

(A1) TrivCof ⊆ Cof ∩Weq (B1’) TrivFib• ⊆ Fib• ∩Weq•
(A2) Cof ∩Weq ⊆ TrivCof (B2’) Fib• ∩Weq• ⊆ TrivFib•

Then these classes impose a right semimodel structure on C.

Proof. This again boils down to showing that Weq is closed under retracts. The crux of the
matter is whether the argument in the proof of Proposition 2.2.4 still works. To see that it does,
note that nowhere in the proof the weak factorisation system (Cof, Fib ∩Weq) is used.

In Remark 2.2.5 it is noted that in a regular model structure the class of weak equivalences
is determined by the other classes. We will show that this is also the case for right semimodel
structures. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of a category endowed with such structure. Taking
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two fibrant replacements 𝑋 and 𝑌 gives a dotted diagonal filler 𝑓 as in the following commut-
ative square:

𝑋 𝑋

𝑌 𝑌
𝑓

triv

𝑓
triv

(2.3)

Proposition 2.3.3. In a right semimodel structure the class Weq of weak equivalences contains
precisely the morphisms 𝑓 such that any diagonal filler 𝑓 in a square of the form (2.3) admits a
factorisation into a trivial cofibration followed by a trivial fibration.

Proof. ⇒. Let 𝑓 ∶ 𝑋 −−→∼ 𝑌 . Then for any 𝑓 as in (2.3), we find, by applying 2-out-of-3 twice,

that 𝑓 is a weak equivalence. Factoring

𝑓 ∶ 𝑋 �−→ 𝐸 triv−−↠ 𝑌 ,
we have 𝐸 triv−−↠ 𝑌 ∈ TrivFib• and thus 𝐸 triv−−↠∼ 𝑌 . It follows by 2-out-of-3 that 𝑋 �−→∼ 𝐸 and thus

𝑋 triv�−→∼ 𝐸, as required.
⇐. For the converse, we first obtain a square of the form (2.3) by taking fibrant replacements

and a diagonal filler. The resulting 𝑓 can be factored as a trivial cofibration followed by a trivial
fibration, with the latter in TrivFib•. It follows from applying 2-out-of-3 several times, that
𝑓 ∈ Weq.

Remark 2.3.4. Since every model structure is trivially a right semimodel structure, it holds in
that setting that the class of morphisms defined above is the same as the class of morphisms
that can be factored as a trivial cofibration followed by a trivial fibration. In contrast, in the
setting of a right semimodel structure it is unclear to the author how these classes relate. ▲

We define the notions of Quillen adjunction and Quillen equivalence between right se-
mimodel structures in precisely the same way as in Definition 2.2.12.

2.4 Locally finitely presentable categories

For the following sections we will restrict our attention to locally finitely presentable categor-
ies. These are essentially categorical generalisations of algebraic lattices, in the sense that
every object of such a category can be generated from objects satisfying a certain compactness
property. We shall use a category (𝐿, ≤) induced from a complete lattice as running example.
Moreover, we will see that the category 𝑆𝑒𝑡 is locally finitely presentable, for every set can be
written as the union of its finite subsets. Another important class of examples is given by the
presheaf categories, which of course includes both ssSet and sSet. In sections 2.5 and 2.6 we
will show that these categories admit some useful methods for constructing model structures.
The treatment in this section is based on [AR94, Chapter 1].

Recall the following definition.
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Definition 2.4.1. A poset (𝐼 , ≤) is called directed if every finite subset of 𝐼 has an upper bound.
A diagram whose index category is induced from a directed poset is a directed diagram. The
colimit of such diagram is called a directed colimit. ■

A directed diagram 𝐷 ∶ (𝐼 , ≤) → (𝐿, ≤) is an order-preserving map between posets. Its
(directed) colimit is the join ⋁{𝐷(𝑖) ∣ 𝑖 ∈ 𝐼 }.
Definition 2.4.2. An object 𝑋 is called finitely presentable whenever Hom(𝑋 , −) preserves dir-
ected colimits. That is, if for every directed diagram 𝐷 ∶ (𝐼 , ≤) → C, the canonical morphism:

lim−−→𝑖∈𝐼
HomC(𝑋 , 𝐷𝑖) −→≅ HomC(𝑋 , lim−−→𝑖∈𝐼

𝐷𝑖).

is an isomorphism. ■

We leave it to the reader to compute that an object 𝑎 ∈ 𝐿 is finitely presentable in the
category (𝐿, ≤), whenever for each directed subset 𝐼 ⊆ 𝐿,

there is an 𝑖 ∈ 𝐼 such that 𝑎 ≤ 𝑖 ⇔ 𝑎 ≤ ⋁𝐼 .
That is, whenever 𝑎 is what in domain theory is called a compact (or finite) element of the
lattice 𝐿. For general categories Definition 2.4.2 may be written out as follows.

Lemma 2.4.3. An object 𝑋 is finitely presentable iff for every directed diagram 𝐷 ∶ (𝐼 , ≤) → C
and initial cocone (𝑌 , (𝑐𝑖)𝑖∈𝐼 ) to 𝐷 it holds that:

1. Every morphism 𝑓 ∶ 𝑋 → 𝑌 factors through some 𝐷𝑖. That is, there is an 𝑖 ∈ 𝐼 and an arrow
𝑔 ∶ 𝑋 → 𝐷𝑖 such that the diagram

𝑋 𝑌

𝐷𝑖

𝑓

𝑔 𝑐𝑖

commutes.

2. This morphism is essentially unique, in the sense that for all 𝑖 ∈ 𝐼 ,
𝑓 = 𝑐𝑖𝑔′ = 𝑐𝑖𝑔″ implies that 𝐷(𝑖 ≤ 𝑗)𝑔′ = 𝐷(𝑖 ≤ 𝑗)𝑔″ for some 𝑗 ≥ 𝑖.

Proof. By definition, an object 𝑋 is finitely presentable whenever we have the isomorphism

𝑢 ∶ lim−−→𝑖∈𝐼
HomC(𝑋 , 𝐷𝑖) ≅ HomC(𝑋 , 𝑌 ).

A basic fact about colimits is that the former expression can be computed in terms of a cop-
roduct and coequaliser, as in:

∐
𝑖≤𝑗

HomC(𝑋 , 𝐷𝑖) ∐
𝑖
HomC(𝑋 , 𝐷𝑖) lim−−→𝑖

HomC(𝑋 , 𝐷𝑖).
𝜙

𝜓
𝑒
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where 𝜙(𝑓 ) = 𝑓 and 𝜓(𝑓 ) = 𝐷(𝑖 ≤ 𝑗)𝑓 . In other words,

lim−−→𝑖
Hom(𝑋 , 𝐷𝑖) = ∐

𝑖
HomC(𝑋 , 𝐷𝑖)/ ∼,

where ∼ is the equivalence relation generated by 𝑓 ∼ 𝐷(𝑖 ≤ 𝑗)𝑓 for all 𝑖 ≤ 𝑗 in 𝐼 .
Writing [𝑔] for the ∼-equivalence class of 𝑔, it follows that 𝑢 is surjective if and only if for

every 𝑓 ∶ 𝑋 → 𝑌 , there is a 𝑔 ∶ 𝑋 → 𝐷𝑖 such that 𝑢([𝑔]) = 𝑓 . Since 𝑢 is a cocone morphism, we
have 𝑢𝑒𝑝𝑖 = 𝑐𝑖, where 𝑝𝑖 is the 𝑖-th projection into the coproduct. That means that 𝑢([𝑔]) = 𝑐𝑖𝑔,
which give us precisely condition 1.

We claim that the injectivity of 𝑢 is equivalent to condition 2. The implication from left to
right is easy: we have 𝑐𝑖𝑔′ = 𝑐𝑖𝑔″ precisely when 𝑢([𝑔′]) = 𝑢([𝑔″]) and

There is a 𝑗 ≥ 𝑖 such that 𝐷(𝑖 ≤ 𝑗)𝑔′ = 𝐷(𝑖 ≤ 𝑗)𝑔″ if and only if [𝑔′] = [𝑔″],

as required. For the other direction, suppose that 𝑢([𝑔′]) = 𝑢([𝑔″]) for some 𝑔′ ∶ 𝑋 → 𝐷𝑘 and
𝑔″ ∶ 𝑋 → 𝐷𝑙 . Because 𝐷 is directed, we may assume that 𝑘 = 𝑙, after which it follows from
condition 2 that there is an 𝑟 ≥ 𝑘 such that 𝐷(𝑘 ≤ 𝑟)𝑔′ = 𝐷(𝑘 ≤ 𝑟)𝑔″.

Example 2.4.4 (Finitely presentable objects).

• An object in the category 𝑆𝑒𝑡 is finitely presentable if and only if it is finite. Indeed, given
a finite set 𝑋 = {𝑥0, … , 𝑥𝑛} and a function 𝑓 ∶ 𝑋 → 𝑌 into an initial cocone (𝑌 , (𝑐𝑖)𝑖∈𝐼 ) to
a directed 𝐷 ∶ (𝐼 , ≤) → 𝑆𝑒𝑡 , there are representatives 𝑑0 ∈ 𝐷𝑖0 , … , 𝑑𝑛 ∈ 𝐷𝑖𝑛 such that

𝑓 (𝑥0) = [𝑑0], … , 𝑓 (𝑥𝑛) = [𝑑𝑛].

Let 𝑟 ≥ 𝑖0, … , 𝑖𝑛 and define 𝑔 ∶ 𝑋 → 𝐷𝑟 by 𝑔(𝑥𝑘) = 𝐷(𝑖𝑘 ≤ 𝑟)(𝑑𝑘). Then we have for
every 𝑥𝑘 that 𝑐𝑟𝑔(𝑥𝑘) = 𝑐𝑘(𝑑𝑘) = [𝑑𝑘] = 𝑓 (𝑥𝑘), as required. Similarly, if 𝑓 = 𝑐𝑟𝑔′ = 𝑐𝑟𝑔″,
then there is 𝑞 such that

𝐷(𝑟 ≤ 𝑞)(𝑔′(𝑥0)) = 𝐷(𝑟 ≤ 𝑞)(𝑔″(𝑥0)), … , 𝐷(𝑟 ≤ 𝑞)(𝑔′(𝑥𝑛)) = 𝐷(𝑟 ≤ 𝑞)(𝑔″(𝑥𝑛)),

and so 𝐷(𝑟 ≤ 𝑞)𝑔′ = 𝐷(𝑟 ≤ 𝑞)𝑔″. For the converse, we use the fact that every set is
the directed colimit of its finite subsets ordered by inclusion. If 𝑋 is finitely presentable,
then the function 1𝑋 ∶ 𝑋 → lim−−→𝑋𝑖 may be factored though a finite set 𝑋𝑖 ⊆ 𝑋 and thus
𝑋 is a finite set.

• In the presheaf category Ĉ, it holds, by the Yoneda lemma, that for object 𝐶 of C,

lim−−→𝑖
Homℂ̂(𝑦𝐶, 𝐷𝑖) ≅ lim−−→𝑖

𝐷𝑖(𝐶) ≅ (lim−−→𝑖
𝐷𝑖)(𝐶) ≅ HomĈ(𝑦𝐶, lim−−→𝑖

𝐷𝑖),

where the second isomorphism holds due to the fact that colimits of presheaves are com-
puted pointwise. It follows that every representable presheaf 𝑦𝐶 is a finitely present-
able. ▲
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Definition 2.4.5. A category C is called locally finitely presentable if it is cocomplete and there
is a set of finitely presentable objects of C such that every object is a directed colimit of objects
from that set. ■

Thus (𝐿, ≤) is locally finitely presentable whenever every 𝑎 ∈ 𝐿 is the join of a directed
subset of compact elements of 𝐿. But this equivalent to having for each 𝑎 ∈ 𝐿,

𝑎 = ⋁{𝑏 ∈ 𝐿 ∣ 𝑏 ≤ 𝑎, and 𝑏 is compact},

which in domain theory means precisely that the lattice (𝐿, ≤) is algebraic.
Example 2.4.6 (Locally finitely presentable categories).

• 𝑆𝑒𝑡 is locally finitely presentable, since every set can be written as a directed colimit of
finite sets, and the finite sets form a (countable) set.

• The presheaf category Ĉ over a small category is locally finitely presentable. By Ex-
ample 2.4.4, the set of representables consists of finitely presentable objects and, by the
proposition below, so does its closure under finite colimits, let us call that set 𝑆. We claim
that every presheaf 𝑃 can be written as a directed colimit of objects in 𝑆. By the general
version of Proposition 1.2.8, every presheaf can be written as a colimit of representables,
i.e. as a coequaliser of coproducts of representables:

∐𝑙∈𝐿 𝐴𝑙 ∐𝑚∈𝑀 𝐵𝑚 𝑃

We can again make use of the fact that every set can be written as a colimit of its finite
subsets, to write the above as:

lim−−→𝑆∈𝒫fin(𝐿)∐𝑠∈𝑆 𝐴𝑠 lim−−→𝑇∈𝒫fin(𝑀)∐𝑡∈𝑇 𝐵𝑡 𝑃

Since colimits commute with colimits, this can be written

lim−−→(𝑆,𝑇 ) ∈ 𝒫fin(𝐿)×𝒫fin(𝑀)
(∐𝑠∈𝑆 𝐴𝑠 ∐𝑡∈𝑇 𝐵𝑡 𝑃𝑆,𝑇 )

as a directed colimit of objects in 𝑆. ▲
Proposition 2.4.7. Any finite colimit of finitely presentable objects is finitely presentable.

Proof. Let 𝐹 ∶ F → C be a finite diagram with colimiting cocone (𝐾, (𝑘𝑛)𝑛∈F) such that every
𝐹𝑛 is a finitely presentable object of C. We will show that, for every given directed diagram
𝐷 ∶ (𝐼 , ≤) → C with colimiting cocone (𝑌 , (𝑐𝑖)𝑖∈𝐼 ), the colimit 𝐾 satisfies conditions 1 and 2 of
Lemma 2.4.3.

For the first condition, suppose we have a morphism 𝑓 ∶ 𝐾 → 𝑌 . We will construct a
factorisation 𝑔 ∶ 𝐾 → 𝐷𝑖 such that for every 𝑛 ∈ F, it holds that 𝑓 𝑘𝑛 = 𝑐𝑖𝑔𝑘𝑛. It then follows
from the fact that 𝐾 is a colimit that 𝑓 = 𝑐𝑖𝑔.
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Because the 𝐹𝑛 are finitely presentable, we have for each 𝑛 that 𝑓 𝑘𝑛 factors through 𝑐𝑖𝑛 for
some 𝑖𝑛 ∈ 𝐼 . Let 𝑗 be an upper bound of the (finitely many) 𝑖𝑛. Then for every 𝑛 ∈ F, there is a
𝑔𝑛 such that 𝑓 𝑘𝑛 = 𝑐𝑗𝑔𝑛.

Now let 𝛼 ∶ 𝑛 → 𝑚 be some arrow in F. We have 𝑘𝑛 = 𝑘𝑚𝐹𝛼 , which gives us the following
two factorisations of 𝑓 𝑘𝑛:

(1) 𝑓 𝑘𝑛 = 𝑐𝑗𝑔𝑛, and (2) 𝑓 𝑘𝑛 = 𝑓 𝑘𝑚𝐹𝛼 = 𝑐𝑗𝑔𝑚𝐹𝛼.
It follows that, because 𝐹𝑛 is finitely presentable, there is some 𝑗𝛿 ≥ 𝑗 in 𝐼 such that

𝐷(𝑗 ≤ 𝑗𝛿 )𝑔𝑛 = 𝐷(𝑗 ≤ 𝑗𝛿 )𝑔𝑚𝐹𝛼.
Since F has finitely many morphisms, there is an upper bound 𝑙 of the 𝑗𝛿 and it can be

easily verified that (𝐷𝑙 , (𝐷(𝑗 ≤ 𝑙)𝑔𝑛)𝑛∈F) forms a cocone to 𝐹 . Thus, there is a cocone morphism
𝑔 ∶ 𝐾 → 𝐷𝑙 , from which we find that for every 𝑛 ∈ F,

𝑓 𝑘𝑛 = 𝑐𝑗𝑔𝑛 = 𝑐𝑙𝐷(𝑗 ≤ 𝑙)𝑔𝑛 = 𝑐𝑙𝑔𝑘𝑛,
as desired.

For the second condition, note that whenever 𝑓 = 𝑐𝑖𝑔′ = 𝑐𝑖𝑔″, we have for every 𝑛 ∈ F,

𝑓 𝑘𝑛 = 𝑐𝑖𝑔′𝑘𝑛 = 𝑐𝑖𝑔″𝑘𝑛.
By the fact that 𝐹𝑛 is finitely presentable, it follows that there is a 𝑖𝑛 ≥ 𝑖 such that

𝐷(𝑖 ≤ 𝑖𝑛)𝑔′𝑘𝑛 = 𝐷(𝑖 ≤ 𝑖𝑛)𝑔″𝑘𝑛.
Let 𝑗 be an upper bound of all of the 𝑖𝑛. Then 𝐷(𝑖 ≤ 𝑗)𝑔′𝑘𝑛 = 𝐷(𝑖 ≤ 𝑗)𝑔″𝑘𝑛 for every 𝑛,

which, by the fact that 𝐾 is a colimit, means that 𝐷(𝑖 ≤ 𝑗)𝑔′ = 𝐷(𝑖 ≤ 𝑗)𝑔″.

2.5 Quillen’s small object argument

In this section we prove a useful theorem that allows us to generate a weak factorisation system
from any suitable set of morphisms. Since its introduction by Quillen, this argument has been
much studied, leading to many different generalisations. A particularly strong generalisation
is in [Gar09]. Below, however, we proof a relatively weak version that is still sufficient for our
purpose.

Definition 2.5.1. For 𝐼 a set of morphisms, we say that a weak factorisation system (L,R) is
cofibrantly generated by 𝐼 if R = 𝐼�. ■
Theorem 2.5.2 (Quillen’s small object argument). Let 𝐼 be a set of morphisms with finitely
presentable domains. Then any morphism 𝑓 ∶ 𝑋 → 𝑌 may be factored as

𝑋 𝐸

𝑌

𝑖

𝑓
𝑝

with 𝑝 ∈ 𝐼� and 𝑖 ∈ �(𝐼�). It follows that 𝐼 cofibrantly generates a weak factorisation system.
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Proof. By induction, we will define an 𝜔-sequence 𝑋 ∶ 𝜔 → C,

𝑋 = 𝑋0
𝑖1−→ 𝑋1

𝑖2−→ 𝑋2
𝑖3−→ …

such that 𝑖𝑘 ∈ �(𝐼�) for each 𝑘, together with morphisms 𝑓𝑘 ∶ 𝑋𝑘 → 𝑌 such that it holds that
𝑓𝑘+1 ∘ 𝑖𝑘+1 = 𝑓𝑘 . It will then follow that 𝑌 is a cocone to 𝑋 . For 𝐸 = lim−−→𝑋 , the morphism
𝑖 ∶ 𝑋 → 𝐸 will be the 𝜔-composition of the chain and we will take 𝑝 ∶ 𝐸 → 𝑌 to be the unique
morphism determined by the colimits universal property. It follows by Proposition 2.1.6 that

𝑖 ∈ �(𝐼�).
We let 𝑓0 = 𝑓 . Having defined the 𝑖𝑘 up to 𝑘 = 𝑛, we define 𝑖𝑛+1 by first considering the set

𝐿𝑛 of all commutative diagrams of the form

𝐴 𝑋𝑛

𝐵 𝑌
∈ 𝐼 𝑓𝑛 and then taking the coproduct over 𝐿𝑛 to get a diagram

∐𝐿𝑛 𝐴 𝑋

∐𝐿𝑛 𝐵 𝑌
𝑓𝑛

Then 𝑖𝑛+1 is the pushout
∐𝐿𝑛 𝐴 𝑋𝑛

∐𝐿𝑛 𝐵 𝑋𝑛+1

𝑌

𝑖𝑛+1 𝑓𝑛⌜

𝑓𝑛+1

and 𝑓𝑛+1 is the induced morphism. Note that 𝑖𝑛+1 is a pushout of a coproduct of morphisms in

𝐼 and thus, again by Proposition 2.1.6, we have 𝑖 ∈ �(𝐼�).
It remains to show that 𝑝 ∈ 𝐼�. To that end, observe that in any lifting problem

𝐴 𝐸

𝐵 𝑌

ℎ

∈ 𝐼 𝑝 the morphism ℎ admits a factorisation
𝐴 𝑋𝑚 𝐸

𝐵 𝑌

ℎ̃

∈ 𝐼

𝑔𝑚

𝑓 𝑚 𝑝

Indeed, because𝐴 is finitely presentable, and the fact that the ordinal𝜔 considered as a category
is directed, this is given by Lemma 2.4.3. But the square in the second diagram is in 𝐿𝑚, so there
is a pushout square

𝐴 𝑋𝑚

𝐵 𝑋𝑚+1

𝑌

ℎ̃

𝑖𝑚 𝑓𝑚⌜

𝑓𝑚+1
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This means that we have a commutative diagram

𝐴 𝑋𝑚+1

𝐵 𝑌

𝑖𝑚 ℎ̃

𝑓 𝑚+1 and thus have a lifting
𝐴 𝐸

𝐵 𝑌

ℎ

𝑝

as required.

As a corollary we find that the left class of a weak factorisation system that is cofibrantly
generated by such 𝐼 admits some convenient characterisations.

Corollary 2.5.3. If 𝐼 is a set of morphisms with finitely presentable domains, then the following
four classes of morphisms are the same:
(1) The saturated class generated by 𝐼 , i.e. the least saturated class containing 𝐼 ;
(2) The class

�(𝐼�);
(3) The retracts of 𝜔-compositions of pushouts of coproducts of morphisms in 𝐼 ;
(4) The retracts of transfinite compositions of pushouts of morphisms in 𝐼 .

Proof. The inclusion (1) ⊆ (2) is Proposition 2.1.6. For (2) ⊆ (3), let 𝑓 ∈ �(𝐼�) and factor 𝑓 = 𝑝𝑖
using the method in the above proof. By construction, the morphism 𝑖 is an 𝜔-composition of
pushouts of coproducts of 𝐼 , and by the lifting

⋅ ⋅

⋅ ⋅

𝑖

𝑓 𝑝

we find that 𝑓 is a retract of 𝑖. To establish (3) ⊆ (4) it suffices to show that any pushout
of coproducts of morphisms in 𝐼 can be written as a transfinite composition of pushouts of
morphisms in 𝐼 . To that end, suppose that for each 𝑙 ∈ 𝐿 we have a morphism 𝑖𝑙 ∶ 𝐴𝑙 → 𝐵𝑙 in 𝐼
and a pushout

∐𝑙∈𝐿 𝐴𝑙 𝑋

∐𝑙∈𝐿 𝐵𝑙 𝑌
∐𝑙∈𝐿 𝑖𝑙 𝑓

⌜

We claim that 𝑓 can be written as a transfinite composition of pushouts of morphisms in 𝐼 .
Indeed, by the axiom of choice we may assume that 𝐿 is an ordinal and construct the following
𝐿-sequence 𝐶 ∶ 𝐿 → C by transfinite induction. Set 𝐶0 = ∐𝑙∈𝐿 𝐴𝑙 , and for each successor
ordinal 𝛽 + 1 ∈ 𝐿, let 𝐶𝛽 → 𝐶𝛽+1 be the following pushout:

𝐴𝛽 𝐶𝛽

𝐵𝛽 𝐶𝛽+1
⌜
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At limit stages, we set 𝐶𝜆 = lim−−→𝛽<𝜆 𝐶𝛽 . Then the composition 𝐶0 → 𝐶𝐿 of 𝐶 is isomorphic to

∐𝑙∈𝐿 𝑓𝑙 and it is a transfinite composition of pushouts of morphisms in 𝐼 , as desired. We finish
the proof by noting that the inclusion (4) ⊆ (1) holds by definition.

For 𝐼 a set of morphisms with finitely presentable domains, the class of morphisms de-
scribed in the above corollary will be denoted cof(𝐼 ).
Remark 2.5.4. One of themanyways inwhich the small object argument can be strengthened is
that it can be used to show that in a locally finitely presentable category any set 𝐼 of morphisms
cofibrantly generates aweak factorisation system, even though of course not every object needs
to be finitely presentable. The idea is to show that, since every object is a directed colimit of a
finitely presentable object, there is some cardinal 𝜅 such that every morphism of 𝐼 has a domain
which is a 𝜅-small (i.e. of a diagram of size less than 𝜅) directed colimit of finitely presentable
objects. One can then show that every domain𝑋 is 𝜅-presentable, whichmeans that Hom(𝑋 , −)
preserves 𝜅-directed colimits, i.e. colimits of posets in which every set of cardinality less than 𝜅
has an upper bound. Finally, a transfinite version of the above argument can be used to obtain
the desired result.

This stronger version of the small object argument is, however, not needed for any of the
constructions in this thesis and we will not give it any more treatment than we already have
in this remark. ▲

The following easy but important fact follows immediately from characterisation (4) of
Corollary 2.5.3.

Lemma 2.5.5. Let 𝐴 be a set of arrows of C with finitely presentable domains and 𝐹 ∶ C → D be
a functor that preserves colimits and finitely presentable objects. Then

𝐹(𝐼 ) = {𝐹𝑓 ∶ 𝐹𝑋 → 𝐹𝑌 ∣ 𝑓 ∶ 𝑋 → 𝑌 ∈ 𝐴}

is a set of morphisms of D with finitely presentable domains, and 𝐹(cof(𝐼 )) ⊆ cof(𝐹 (𝐼 )).
Definition 2.5.6. Amodel structure (Cof, Fib,Weq) is said to be cofibrantly generated whenever
there are two sets of morphisms 𝐼 , 𝐽 such that 𝐼 cofibrantly generates the weak factorisation
system (Cof, TrivFib) and 𝐽 the system (TrivCof, Fib). Then 𝐼 (resp. 𝐽 ) is called the set of
generating (trivial) cofibrations. ■

Example 2.5.7. The model structure sSet𝑄 is cofibrantly generated by the so-called boundary
inclusions and horn inclusions, which will be defined in Chapter 3. ▲

The following proposition is stated without proof.

Proposition 2.5.8 ([Lur09, Prop. A.2.8.2]). If C is a category equipped with a cofibrantly gener-
ated model structure and D a small category, then the projective model category exists on [D,C].

The following is a nice conceptual proof of a proposition that will come in handy later in
this thesis.
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Proposition 2.5.9 ([RR15, Prop. 4.1]). Let C be a cofibrantly generated model category such
that the class of cofibrations is cofibrantly generated by a set 𝐼 of morphisms between finitely
presentable objects. Then the weak equivalences are closed under directed colimits.

Proof. Let D → C be a directed diagram. By Proposition 2.5.8, the projective model structure
exists on [D,C] and we claim that the adjunction

lim−−→ ⊣ Δ
between the colimit functor [D,C] → C and the diagonal functor is a Quillen adjunction.
Indeed, by definition Δ preserves fibrations and trivial fibrations and thus, by Lemma 2.1.8, the
left adjoint lim−−→ preserves cofibrations and trivial cofibrations. Wemust show that lim−−→ preserves
weak equivalences. To that end, take a weak equivalence in [D,C] and factor it (using Remark
2.2.5) into a trivial cofibration followed by a trivial fibration:

⋅ triv�−→ ⋅ triv−−↠ ⋅
Then, by the above, lim−−→ preserves the first factor, and we claim that it also preserves trivial
fibrations. Indeed, because the morphisms in 𝐼 are between finitely presentable objects, any
lifting problem

⋅ lim−−→𝑋𝑑

⋅ lim−−→𝑌𝑑
∈ 𝐼 lim−−→𝑓𝑑 may be factored

⋅ 𝑋𝑑 lim−−→𝑋𝑑

⋅ 𝑌𝑑 lim−−→𝑌𝑑
∈ 𝐼 𝑓𝑑 lim−−→𝑓𝑑 for some 𝑑 ∈ D.

Note that we use the fact that 𝐷 is directed to find a common index 𝑑 . It follows that the
colimit is in 𝐼�, i.e. a trivial fibration. To obtain the result, we again use the fact that the weak
equivalences in a model category are precisely the morphisms that admit a factorisation into
a trivial cofibration followed by a trivial fibration.

2.6 Left-induced right semimodel structures

Another way to obtain a model structure on a category C, is by starting with a model structure
on another category, connected to C by a pair of adjoint functors, and transferring it along
one of the adjoints. In this section we will focus on transferring a model structure along a left
adjoint, to obtain a right semimodel structure.

The following is another important lemma for locally finitely presentable categories, the
proof of which falls beyond the scope of this thesis.

Lemma 2.6.1. Let 𝐹 ∶ C → D be a colimit preserving functor between locally finitely presentable
categories and suppose that (L,R) is a cofibrantly generated weak factorisation system onD. Then

(𝐹−1(L), 𝐹−1(L)�)
is a weak factorisation system on C, cofibrantly generated by

{𝑓 ∶ 𝐴 → 𝐵 ∣ 𝐹𝑓 ∈ L and 𝐴, 𝐵 are finitely presentable}.
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Proof. This is a special case of [MR14, Theorem 3.2].

In [Hes+17] the above lemma is used to prove a recognition theorem for left-induced model
structures. We will not need this theorem, because in Chapter 3 we will establish a right se-
mimodel structure directly. However, it is useful to state the following ‘right-semi’-analogue
of their definition of a left-induced model structure.

Definition 2.6.2 (cf. [Hes+17, 2.1.3]). Let (Cof, Fib,Weq) be a model structure on a category
C and suppose we are given an adjunction 𝐿 ∶ D −→←− C ∶ 𝑅. Then, if it exists, the left-induced
right semimodel structure on D is given by the weak factorisation systems

(𝐿−1(Cof), 𝐿−1(Cof)�) and (𝐿−1(TrivCof), 𝐿−1(TrivCof)�),
together with the class 𝐿−1(Weq) of weak equivalences. ■

2.7 Leibniz product and exponential

This final section is concerned with one more tool for constructing model structures, now
under the assumption that our category C is equipped with a tensor product ⊗ and a unit
object ⊤ such that (C,⊗, ⊤) is a symmetric closed monoidal category. Examples of course
include every Cartesian closed category with the standard categorical product, but also ssSet
with the geometric product. We denote the internal hom by [−, −] ∶ Cop×C → C.

Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝑋 → 𝑌 be morphisms. Note that for every object 𝐶 , the square

Hom(𝐶⊗ 𝐵, 𝑋) Hom(𝐶⊗ 𝐴, 𝑋)

Hom(𝐶⊗ 𝐵, 𝑌 ) Hom(𝐶⊗ 𝐴, 𝑌 )

Hom(𝐶⊗ 𝐵, 𝑔)

Hom(𝐶⊗ 𝑓 , 𝑋)

Hom(𝐶⊗ 𝐴, 𝑔)

Hom(𝐶⊗ 𝑓 , 𝑌 )

commutes. By naturality of the tensor-internal hom adjunction, this square is isomorphic to
the exponential transpose

Hom(𝐶, [𝐵, 𝑋]) Hom(𝐶, [𝐴, 𝑋])

Hom(𝐶, [𝐵, 𝑌 ]) Hom(𝐶, [𝐴, 𝑌 ])
Hom(𝐶, [𝐵, 𝑔])

Hom(𝐶, [𝑓 , 𝑋 ])

Hom(𝐶, [𝐴, 𝑔])

Hom(𝐶, [𝑓 , 𝑌 ])

The special case where 𝐶 = [𝐵, 𝑋], and the naturality of −⊗ − show respectively that

[𝐵, 𝑋] [𝐴, 𝑋]

[𝐵, 𝑌 ] [𝐴, 𝑌 ]
[𝐵, 𝑔]

[𝑓 , 𝑋 ]

[𝐴, 𝑔]

[𝑓 , 𝑌 ]

and
𝐴⊗ 𝑋 𝐴⊗ 𝑌

𝐵⊗ 𝑋 𝐵⊗ 𝑌
𝑓 ⊗ 𝑋

𝐴⊗ 𝑔

𝑓 ⊗ 𝑌

𝐵⊗ 𝑔

commute.



Chapter 2: (Semi)model categories 45

Definition 2.7.1. Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝑋 → 𝑌 . We define:

• The Leibniz product 𝑓 ⊗̂ 𝑔 ∶ 𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋 → 𝐵⊗ 𝑌 is the unique map

𝐴⊗ 𝑋 𝐴⊗ 𝑌

𝐵⊗ 𝑋 𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋

𝐵⊗ 𝑌

𝐴⊗ 𝑔

𝑓 ⊗ 𝑋 𝑓 ⊗ 𝑌

𝐵⊗ 𝑔

⌜

𝑓 ⊗̂ 𝑔

• The Leibniz exponential 𝑓 ̂exp 𝑔 ∶ [𝐵, 𝑋] → [𝐴, 𝑋]×[𝐴,𝑌 ][𝐵, 𝑌 ] is the unique map

[𝐵, 𝑋]

[𝐴, 𝑋]×[𝐴,𝑌 ][𝐵, 𝑌 ] [𝐴, 𝑋]

[𝐵, 𝑌 ] [𝐴, 𝑌 ]

[𝑓 , 𝑋 ]

[𝐵, 𝑔]

𝑓 ̂exp 𝑔

⌟
[𝐴, 𝑔]

[𝑓 , 𝑌 ]
■

These morphisms are related in the following way.

Theorem 2.7.2. The operations ⊗̂ and ̂exp define bifunctors on the arrow category C→ and give
rise to an adjunction

HomC→(𝑓 ⊗̂ 𝑔, ℎ) ≅ HomC→(𝑓 , 𝑔 ̂exp ℎ).

Proof. Let us begin by showing the bifunctoriality of ⊗̂. It suffices to show that for each
morphism 𝑔, we have a functor − ⊗̂ 𝑔 ∶ C→ → C→, because it follows from the symmetry of
both the pushout and⊗ that − ⊗̂ 𝑔 ≅ 𝑔 ⊗̂ −. On arrows, we define

− ⊗̂ 𝑔 ∶
𝐴 𝐴′

𝐵 𝐵′

𝑎

𝑓 𝑓 ′

𝑏

⟼
𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋 𝐴′⊗ 𝑌 +𝐴′⊗𝑋 𝐵′⊗ 𝑋

𝐵⊗ 𝑌 𝐵′⊗ 𝑌

�̃�

𝑓 ⊗̂ 𝑔 𝑓 ′ ⊗̂ 𝑔

�̃�
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Here �̃� = 𝑏⊗ 𝑌 and �̃� is the unique map indicated in the following diagram

𝐴⊗ 𝑋 𝐴⊗ 𝑌

𝐵⊗ 𝑋 𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋

𝐴′⊗ 𝑋 𝐴′⊗ 𝑌

𝐵′⊗ 𝑋 𝐴′⊗ 𝑌 +𝐴′⊗𝑋 𝐵′⊗ 𝑋

𝐵′⊗ 𝑌

𝐴⊗ 𝑔

𝑓 ⊗ 𝑋 𝑎⊗ 𝑌

𝑏⊗ 𝑋

�̃� 𝐴′ ⊗ 𝑔

𝑓 ′ ⊗ 𝑋 𝑝0 𝑓 ′ ⊗ 𝑌

𝑝1

𝐵′ ⊗ 𝑔
𝑓 ′ ⊗̂ 𝑔

which exists because

𝑝0(𝑎⊗ 𝑌 )(𝐴⊗ 𝑔) = 𝑝0(𝐴′⊗ 𝑔)(𝑎⊗ 𝑋) (Naturality of −⊗ −)
= 𝑝1(𝑓 ′⊗ 𝑋)(𝑎⊗ 𝑋) = 𝑝1(𝑏⊗ 𝑋)(𝑓 ⊗ 𝑋). (Pushout square; 𝑓 ′𝑎 = 𝑏𝑓 )

By uniqueness the resulting square is an arrow inC→. We leave the verification of functoriality
to the reader. Very similar arguments can be used to show that − ̂exp 𝑔 and 𝑓 ̂exp− are contra-
and covariant functors, respectively.

For the adjunction, suppose we are given an element

𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋 𝑍

𝐵⊗ 𝑌 𝑊

𝑐

𝑓 ⊗̂ 𝑔 ℎ

𝑑

of HomC→(𝑓 ⊗̂ 𝑔, ℎ). First note that we have, by the universal mapping property, that the
morphism 𝑐 ∶ 𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋 → 𝑍 corresponds uniquely to a commutative square

𝐴⊗ 𝑋 𝐴⊗ 𝑌
(1)

𝐵⊗ 𝑋 𝑍
𝑓 ⊗ 𝑋

𝐴⊗ 𝑔

𝑧0

𝑧1

which gives
𝐴⊗ 𝑌 𝑍

(2)
𝐵⊗ 𝑌 𝑊

𝑓 ⊗ 𝑌

𝑧0

ℎ

𝑑

and
𝐵⊗ 𝑋 𝑍

(3)
𝐵⊗ 𝑌 𝑊

𝐵⊗ 𝑔

𝑧1

ℎ

𝑑

These three commuting squares have corresponding adjoint transposes

𝐴 [𝑌 , 𝑍]
(1′)

𝐵 [𝑋 , 𝑍]
𝑓

𝑧0

[𝑔, 𝑍]

𝑧1

and
𝐴 [𝑌 , 𝑍]

(2′)
𝐵 [𝑌 ,𝑊 ]

𝑓

𝑧0

[𝑌 , ℎ]

𝑑

and
𝐵 [𝑋 , 𝑍]

(3′)
[𝑌 , 𝑊 ] [𝑋 ,𝑊 ]
𝑑

𝑧1

[𝑋 , ℎ]

[𝑔,𝑊 ]
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Now by (3’) there is a unique map �̃� ∶ 𝐵 → [𝑋 , 𝑍]×[𝑋 ,𝑊 ][𝑌 , 𝑊 ] and (1’) and (2’) imply, by the
universal mapping property, that the square

𝐴 [𝑌 , 𝑍]

𝐵 [𝑋 , 𝑍]×[𝑋 ,𝑊 ][𝑌 , 𝑊 ]

𝑧0

𝑓 𝑔 ̂exp ℎ

𝑏1

commutes, as required. To see that the function described above is not only injective but also
surjective, note that any square of the above form determines corresponding squares of the
forms (3’), (2’) and, most importantly, (1’). The verification of naturality is left to the reader.

The following standard definition describes model categories which are monoidal in a com-
patible way. We extend it to include right semimodel structures.

Definition 2.7.3. A (right semi)model model structure on a closed monoidal category (C,⊗, ⊤)
is monoidal if:

1. It satisfies the Leibniz axiom: for any two cofibrations 𝑓 , 𝑔, the Leibniz product 𝑓 ⊗̂ 𝑔 is
a cofibration, which is trivial if either 𝑓 or 𝑔 is.

2. For every factorisation of the uniquemorphism from the initial object into the unit object

0 → 𝐶 → ⊤,

with 𝐶 cofibrant and 𝐶 → ⊤ a weak equivalence, the induced morphism

𝐶⊗ 𝑋 → ⊤⊗ 𝑋 −→≅ 𝑋,

is a weak equivalence. ■

It turns out that if every object is cofibrant, then the second condition of Definition 2.7.3
follows from the first.

Proposition 2.7.4. Let (M,⊗, ⊤) be a closed monoidal category equipped with a right semimodel
structure such that every object is cofibrant. Then this structure is monoidal if it satisfies the
Leibniz axiom.

Proof. Because M is a closed monoidal category, we have for every two objects 𝐴, 𝐵,

HomM(0⊗ 𝐴, 𝐵) ≅ HomM(0, [𝐵, 𝐴]).

It follows that 𝐴⊗ 0 ≅ 0. Thus, for 𝑋 cofibrant and 𝑖 ∶ 𝐴 → 𝐵 a cofibration, the Leibniz
product 𝑖 ⊗̂ ∗𝑋 may be identified with 𝑖 ⊗ 𝑋 . By the Leibniz axiom, the functor − ⊗ 𝑋
preserves (trivial) cofibrations. In particular, it sends trivial cofibrations between cofibrant
objects to weak equivalences, which by Ken Brown’s Lemma ([JT08, Lem. 2.3.1.]) means that it
sends weak equivalences between cofibrant objects to weak equivalences. Therefore, if 𝐶 → ⊤
is a weak equivalence, then so is 𝐶⊗ 𝑋 → ⊤⊗ 𝑋 , which suffices.
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Example 2.7.5. Again sSet𝑄 provides an example: it is known to be a monoidal model category
with respect to the monoidal structure (sSet,×, Δ[0]), where× is the categorical product. Since
every object in sSet𝑄 is cofibrant, this already follows from the fact that it satisfies the Leibniz
axiom. ▲

We close this chapter by stating a useful lemma that is satisfied by model structures that
verify the Leibniz axiom.

Lemma 2.7.6 ([JT08, Thm. 3.2.1]). Let (Cof, TrivFib) and (TrivCof, Fib) be two weak factorisation
systems on a monoidal category (C,⊗, ⊤) satisfying the Leibniz axiom. Then, for 𝑘 a cofibration
and 𝑝 a fibration, their Leibniz exponent 𝑘 ̂exp 𝑝 is a fibration, which is trivial if either 𝑘 or 𝑝 is.

Proof. Let 𝑖 ∶ 𝐴 → 𝐵 be a cofibration and consider the lifting problem

𝐴 [𝑍, 𝐸]

𝐵 [𝑌 , 𝐸] ×[𝑌 ,𝑋 ] [𝑍 , 𝑋]
𝑖 𝑘 ̂exp 𝑝

By Theorem 2.7.2, this square is equivalent to the adjoint transpose

𝐵⊗ 𝑌 +𝐴⊗𝑌 𝑋 ⊗ 𝑍 𝐸

𝐵⊗ 𝑍 𝑋
𝑖 ⊗̂ 𝑘 𝑝

But by the Leibniz axiom, the left arrow is a trivial cofibration whenever 𝑖 or 𝑘 is, which gives
us our result.

As a corollary, we have:

Corollary 2.7.7. Under the hypotheses of the previous lemma, if 𝑝 ∶ 𝐸 → 𝑋 is a fibration, then
so is [𝑍 , 𝑝] ∶ [𝑍 , 𝐸] → [𝑍 , 𝑋]. In particular, if 𝑋 is fibrant, then so is [𝑍 , 𝑋].
Proof. Note that [𝑍 , 𝑝] = ∗𝑍 ̂exp 𝑝.



Chapter 3

Left-induced model structures on
semisimplicial sets

In this chapter we investigate the possibility of imposing a (weakened) left-induced model
structure on ssSet. Constructing model structure step-by-step gives intermediate points where
classes of morphisms which are supposed to become equal, are not yet shown to be. For in-
stance, we may find ourselves in a situation where we have specified the classes of cofibrations,
weak equivalences, and trivial cofibrations, but have not yet shown that the morphisms which
are both cofibrations and weak equivalences, are trivial cofibrations. Moreover, in a right
semimodel structure, fibrations which are weak equivalences need not even be trivial. To dis-
tinguish between these classes, we introduce the following terminology: (co)fibrations which
are also weak equivalences are called acyclic (co)fibrations.

In Section 3.1 we prove some negative results, showing among other things that there is
no model structure in which the weak equivalences are precisely the geometric homotopy
equivalences.

The rest of the chapter is devoted to showing that there is such a right semimodel structure.
We begin in Section 3.2 by showing that the weak factorisation system (Cof, TrivFib) transfers
to semisimplicial sets without difficulty. Choosing between possible classes of trivial cofibra-
tions is harder, and in Section 3.3 we postpone that choice by first proving a general theorem
that takes a suitable class of trivial cofibrations as argument. Given such a class, the theorem
imposes a structure on ssSet that is almost a right semimodel structure, with the only thing left
to show that every acyclic cofibration is trivial, instead of just those with fibrant codomain.

In Section 3.4 this theorem is applied to obtain a right semimodel structure ssSet𝑄 . This
structure will be shown to be left induced in the sense of Definition 2.6.2.

In Section 3.5 a couple of further properties of ssSet𝑄 are proved. Specifically, that it is
Quillen equivalent to the right semimodel structure underlying sSet𝑄 , that its fibrant objects
and fibrations between fibrant objects are characterized by liftings against semisimplicial horn
inclusions and that it has strictly more trivial cofibrations than the saturated class generated
by the semisimplicial horn inclusions.
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3.1 Negative results for a left-induced model structure

In this section we show that it is impossible to construct a left-induced model structure on
semisimplicial sets. We will even see that there is no model structures in which only the weak
equivalences are left-induced, in the sense that they are precisely the weak equivalences under
the left adjoint 𝑖!.

It is relatively easy to show that there is no model structure in which both the weak equi-
valences and the cofibrations are preserved by 𝑖!.
Proposition 3.1.1. There is no model structure on ssSet in which the cofibrations are monomorph-
isms and the weak equivalences are geometric homotopy equivalences.

Proof. Suppose there is, then the morphism Δ𝑖[0] + Δ𝑖[0] → Δ𝑖[0] that sends two points to the
same point admits a factorisation

Δ𝑖[0] + Δ𝑖[0] �−→ 𝐸 −−→∼ Δ𝑖[0]

as a cofibration followed by a weak equivalence. It follows that 𝐸 contains only 0-simplices and
thus that its geometric realisation is a discrete space. However, the weak equivalence implies
that the geometric realisation of 𝐸 is contractible, i.e. 𝐸 is a single point, which contradicts the
monicity of the cofibration.

The proof of the following proposition is based on the MathOverflow answer [May].

Proposition 3.1.2. There is no model structure on ssSet in which the weak equivalences are pre-
cisely the geometric homotopy equivalences.

Proof. Suppose there is such model structure. We claim that every trivial fibration 𝑝 ∶ 𝐸 triv−−↠ 𝑋
is an isomorphism. To show this, we will prove by induction on 𝑛 that every 𝑝𝑛 ∶ 𝐸𝑛 → 𝑋𝑛 is a
bijection. Suppose it holds for all 𝑘 < 𝑛 and let 𝑥 ∶ Δ𝑖[𝑛] → 𝑋 be an 𝑛-simplex of 𝑋 . Consider
the pullback

𝑥∗𝐸 𝐸

Δ𝑖[𝑛] 𝑋
𝑥∗𝑝

⌟
𝑝

𝑥

By preservation under pullback (given by the dual of Lemma 2.1.6), we have that 𝑥∗𝑝 is a trivial
fibration. Thus 𝑥∗𝑝 is a weak equivalence and its geometric realisation

|𝑥∗𝑝| ∶ |𝑥∗𝐸| → Δ𝑛

is a homotopy equivalence. By the induction hypothesis we have for each 𝑚 < 𝑛 that 𝑝𝑚, and
thus (𝑥∗𝑝)𝑚, is an isomorphism. We separate two cases:

• (𝑥∗𝐸)𝑛 is empty. Then 𝑥∗𝐸 is isomorphic to 𝛿Δ𝑖[𝑛], which means its geometric realisation
is an 𝑛 − 2-sphere, hence not contractible.
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• (𝑥∗𝐸)𝑛 has more than one element. Then |𝑥∗𝐸| is a collection of 𝑛 − 1-spheres with
common boundaries, which is also not contractible.

However, the geometric realisation of Δ𝑖[𝑛] is contractible, for it is an 𝑛 − 1-ball. It follows that
(𝑥∗𝐸)𝑛 has precisely one element, and thus 𝑥∗𝐸 ≅ Δ𝑖[𝑛]. This gives us a unique 𝑒 ∶ Δ𝑖[𝑛] → 𝐸
such that 𝑝𝑒 = 𝑥 , as desired.

We finish the argument by noting that, since every trivial fibration is an isomorphism, all
maps are cofibrations. This would mean that the class of geometric homotopy equivalences
is precisely the class of trivial cofibrations, and therefore closed under pushouts. Though, as
implied by Lemma 2.2.10, this is true for pushouts along cofibrations, it is not true in general.
Take for instance the following counterexample. Let 𝐴 be the semisimplicial set from Section
1.2, i.e. 𝐴 has precisely one 0-simplex and one 1-simplex. Moreover, let 𝐷 be the extension of
𝐴 that further contains precisely one 2-simplex. Consider the pushout

Δ𝑖[1] 𝐴

𝐷 𝐷⌜
(3.1)

Note that all maps in (3.1) are uniquely determined. Under geometric realisation, the morphism
Δ𝑖[1] → 𝐷 is a continuous map between contractible spaces, and therefore a homotopy equi-
valence. In contrast, the geometric realisation of 𝐴 is a circle, which is not contractible.

Remark 3.1.3. Of course above propositions still leave room for a model structure in which
the weak equivalences are a subset of the geometric homotopy equivalences. But for any such
model structure, the argument in the proof of Proposition 3.1.2 can still be used to show that
every trivial fibration is an isomorphism and, therefore, that every morphism is a cofibration.
Such a model structure would be highly degenerated and not interesting. ▲

3.2 Semisimplicial cofibrations and trivial fibrations

In this section we will fix the weak factorisation system of cofibrations and trivial fibrations
that will be used in the rest of this chapter.

Definition 3.2.1. For every 𝑛 ≥ 0, we define the following semisimplicial subsets of Δ𝑖[𝑛].
• The boundary 𝛿Δ𝑖[𝑛] of Δ𝑖[𝑛] is obtained by removing the top face of Δ𝑖[𝑛], i.e.

(𝛿Δ𝑖[𝑛])𝑚 = {Δ𝑖[𝑛]𝑚 if 𝑚 < 𝑛;
∅ otherwise.

• For 0 ≤ 𝑘 ≤ 𝑛, the 𝑘-th horn Λ𝑘[𝑛] of Δ𝑖[𝑛] is the union of all but the 𝑘-th face of Δ𝑖[𝑛]:

(Λ𝑘𝑖 [𝑛])𝑚 =
⎧⎪
⎨⎪
⎩

Δ𝑖[𝑛]𝑚 if 𝑚 < 𝑛 − 1;
⋃{𝜖 𝑖 ∣ 𝑖 ≠ 𝑘} if 𝑚 = 𝑛 − 1;
∅ otherwise. ■
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The following two classes of semisimplicial morphisms are called the semisimplicial bound-
ary inclusions and semisimplicial horn inclusions:

I = {𝑖𝑛 ∶ 𝛿Δ𝑖[𝑛] ↪ Δ𝑖[𝑛] ∣ 𝑛 ≥ 0};
J = {𝑗𝑘𝑛 ∶ Λ𝑘𝑖 [𝑛] ↪ Δ𝑖[𝑛] ∣ 𝑛 ≥ 0, 0 ≤ 𝑘 ≤ 𝑛}.

Note that the morphisms in both I and J are between objects that have only finitely many sim-
plices. The category of simplices of such an object is finite, and thus the object can be written
as a finite colimit of representables, which means, by Lemma 2.4.7, that it is finitely present-
able. We use the small object argument on the set I to obtain a to obtain a weak factorisation
system (Cof, TrivFib) of cofibrations and trivial fibrations.

We will give a characterisation of Cof later in this section, but first let us say something
about the sets I and J under the functor 𝑖!. The functor 𝑖! sends the semisimplicial bound-
ary and horn inclusions to the simplicial morphisms that are standardly called the simplicial
boundary and horn inclusions. By the definition of 𝑖!, it is easy to see that these morphisms are
also between finitely presentable objects and, as mentioned in Example 2.5.7, they cofibrantly
generate two weak factorisations systems (CofΔ, TrivFibΔ) and (TrivCofΔ, FibΔ) that determine
the model structure sSet𝑄 . Note that it follows that sSet𝑄 verifies the hypotheses of Proposi-
tion 2.5.9.

The proof of the following proposition is based on an argument in [JT08, p. 38] for simpli-
cial sets.

Proposition 3.2.2. The class Cof of cofibrations is precisely the class of monomorphisms.

Proof. In this proof we will use the functors tr𝑛 ∶ ssSet → ssSet. For each 𝑛 ≥ −1, it is given
by

tr𝑛(𝑋)𝑚 = {𝑋𝑚 if 𝑚 ≤ 𝑛;
∅ otherwise.

Let 𝑚 ∶ 𝐴 → 𝑋 be an arbitrary monomorphism and assume without loss of generality that 𝑚
is an inclusion. Let 𝑥 be an 𝑛-simplex of 𝑋 − 𝐴, then the square

𝛿Δ𝑖[𝑛] tr𝑛−1(𝑋) ∪ 𝐴

Δ𝑖[𝑛] tr𝑛(𝑋) ∪ 𝐴𝑥

commutes. Summing over all 𝑛-simplices in 𝑋 − 𝐴 yields the square

∐𝑥∈(𝑋−𝐴)𝑛 𝛿Δ𝑖[𝑛] tr𝑛−1(𝑋) ∪ 𝐴

∐𝑥∈(𝑋−𝐴)𝑛 Δ𝑖[𝑛] tr𝑛(𝑋) ∪ 𝐴𝑥

(3.2)

of which the left side is of course in Cof. We will show, by considering each dimension 𝑚,
that the above square is a pushout square. For 𝑚 < 𝑛, both the left and the right sides are
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isomorphisms and a simple diagram chase shows that (tr𝑛(𝑋) ∪ 𝐴)𝑚 is indeed a pushout. At
the level 𝑚 = 𝑛, we are looking for a pushout from the initial object, i.e. a coproduct. And
indeed,

∐
𝑥∈(𝑋−𝐴)𝑛

(Δ𝑖[𝑛])𝑛 +(tr𝑛−1(𝑋)𝑛 ∪𝐴𝑛) ≅ ∐
𝑥∈(𝑋−𝐴)𝑛

{∗}+𝐴𝑛 ≅ (𝑋 −𝐴)𝑛 +𝐴𝑛 ≅ 𝑋𝑛 ≅ (tr𝑛(𝑋))𝑛 ∪𝐴𝑛.

Finally, at the level 𝑚 > 𝑛 the objects on the left are both initial, and the objects on the right
are equal, which also gives us a pushout square.

It follows that the 𝜔-composition of the right side of 3.2 for all 𝑛 ≥ 0, i.e.
𝐴 ≅ tr−1(𝑋) ∪ 𝐴 → lim−−→𝑛≥−1

tr𝑛(𝑋) ∪ 𝐴 ≅ 𝑋

is in Cof. The result follows from Corollary 2.5.3 and the fact that saturation preserves mono-
morphisms.

By Lemma 1.3.14, we have:

Corollary 3.2.3. The functor 𝑖! ∶ ssSet → sSet𝑄 preserves and reflects cofibrations.

It follows that (Cof, TrivFib) is what in [Hes+17] is called the left-induced weak factorisa-
tion system of (CofΔ, TrivFibΔ).

3.3 A structure generating theorem

In this section we prove a general theorem that, for a given candidate weak factorisation sys-
tem of trivial cofibrations and fibrations, provides a structure on ssSet that is almost a right
semimodel structure. The proof relies on some subtheorems, most of which are inspired by
the treatment in [JT08] of simplicial sets. If some result can directly be copied over to the
semisimplicial case, we will refer to the corresponding statement in [JT08] (but for the sake
of completeness we will still include the proof). If the semisimplicial case requires a different
approach, then that will also be made explicit.

Consider the set
I⊗ ∶= {𝜖𝑘 ⊗̂ 𝑖𝑛 ∣ 𝑘 ∈ {0, 1}, 𝑖𝑛 ∈ I},

where
𝜖𝑘 ⊗̂ 𝑖𝑛 ∶ Δ𝑖[0]⊗ Δ𝑖[𝑛] +Δ𝑖[0]⊗𝛿Δ𝑖[𝑛] Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛] → Δ𝑖[1]⊗ Δ𝑖[𝑛]

is the Leibniz product of the endpoint inclusion 𝜖𝑘 and the boundary inclusion 𝑖𝑛. This section
is devoted to proving the following theorem.

Theorem 3.3.1. Let (TrivCof, Fib) be a weak factorisation system on ssSet that satisfies the Leib-
niz axiom with respect to (Cof, TrivFib) and such that I⊗ ⊆ TrivCof ⊆ 𝑖−1! (TrivCofΔ), then the
class Weq as defined in Proposition 2.3.3 satisfies 2-out-of-3, and we have

(A1) TrivCof ⊆ Cof ∩Weq (B1’) TrivFib• ⊆ Fib• ∩Weq•
(A2’) Cof• ∩Weq• ⊆ TrivCof• (B2’) Fib• ∩Weq• ⊆ TrivFib•

Moreover, the weak equivalences are preserved by 𝑖!.
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Note that then the only thing still needed for the two weak factorisation systems to define
a right semimodel structure, is that the inclusion (A2’) should hold not only for the acyclic
cofibrations with fibrant codomain, but for all acyclic cofibrations, i.e. it should become inclu-
sion (A2) of Proposition 2.3.2.

For the remainder of this section, let (TrivCof, Fib) be a weak factorisation system of trivial
cofibrations and fibrations as in the hypothesis of Theorem 3.3.1.

The following lemma strengthens the lower bound on the class of trivial cofibrations to
include the Leibniz product of the endpoint inclusions with any monomorphism.

Lemma 3.3.2 ([JT08, Thm. 3.2.3]). If 𝑖 is a cofibration, then 𝜖𝑘 ⊗̂ 𝑖 is a trivial cofibration.
Proof. Let 𝑝 ∶ 𝐸 → 𝑋 be a fibration. We wish to show that every square of the form

(Δ𝑖[0]⊗ 𝐵) +Δ𝑖[0]⊗𝐴 (Δ𝑖[1]⊗ 𝐴) 𝐸

Δ𝑖[1]⊗ 𝐵 𝑋
𝜖𝑘 ⊗̂ 𝑚 𝑝 (3.3)

with 𝑖 ∶ 𝐴 → 𝐵 a monomorphism, has a diagonal filler. By adjointess, this is the same as
solving the lifting problem

𝐴 [Δ𝑖[1], 𝐸]

𝐵 [Δ𝑖[0], 𝐸] ×[Δ𝑖[0],𝑋 ] [Δ𝑖[1], 𝑋 ]
𝑖 𝜖𝑘 ̂exp 𝑝 (3.4)

First suppose that 𝑖 is of the form 𝑖𝑛, i.e. a boundary inclusion. Then, since I⊗ ⊆ TrivCof, the
square (3.3) has a lifting and, by adjointness, so does (3.4). Having the left lifting property is
preserved under saturation and thus, by Proposition 3.2.2, it follows that the square (3.4) has
a lifting for every monomorphism. Again by adjointness, the same holds for square (3.3), as
required.

3.3.1 Connectedness

We will now start to develop the homotopy theory of semisimplicial sets relative to the given
weak factorisation system. In analogy with the topological spaces, a connected object will be
one in which the set of connected components is the terminal object. We write {∗} for the
semisimplicial set Δ𝑖[0], which may be though of as a point, and 𝐼 for the the semisimplicial
set Δ𝑖[1], which one should think of as a line segment.

Definition 3.3.3. The set 𝜋0(𝑋) of connected components of a semisimplicial set 𝑋 is the fol-
lowing coequaliser in 𝑆𝑒𝑡

𝑋1 𝑋0 𝜋0(𝑋).
𝑑1
𝑑0 𝑞

If 𝜋0(𝑋) = 1, we say that 𝑋 is connected. ■
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Ideally, we would like 𝜋0(𝑋) to be the quotient of the class of arrows {∗} → 𝑋 by the
relation “there is a path from 𝑥 to 𝑦”, or more formally: there is a morphism 𝑝 ∶ 𝐼 → 𝑋 such
that 𝑝𝜖1 = 𝑥 and 𝑝𝜖0 = 𝑦 . However, if 𝑞(𝑥) = 𝑞(𝑦) then we merely know that there is a
sequence of paths

𝑥 → 𝑢0 ← 𝑢1… → 𝑢𝑛 ← 𝑦.
The following proposition shows that, if 𝑋 is fibrant, the relation “there is a path from 𝑥 to
𝑦” becomes an equivalence relation, and consequently 𝑞(𝑥) = 𝑞(𝑦) implies that there is a path
𝑥 → 𝑦 .

The proof is based on [JT08, p. 44], but requires a different treatment for two reasons. First,
we obtain diagonal fillers by the lifting property against the set I⊗, instead of the boundary
inclusions. Secondly, reflexivity is trivial in the simplicial case, since for every 0-simplex 𝑥 , the
degenerate 1-simplex 𝑥𝜂 is a path 𝑥 ∼ 𝑥 .
Proposition 3.3.4. If 𝑋 is fibrant, then the relation 𝑥 ∼ 𝑦 on the arrows {∗} → 𝑋 , given by

𝑥 ∼ 𝑦 iff there is a 𝑝 ∶ 𝐼 → 𝑋 such that 𝑝𝜖1 = 𝑥 and 𝑝𝜖0 = 𝑦,
is an equivalence relation.

Proof. We write 𝑝 ∶ 𝑥 ∼ 𝑦 for a map 𝑝 ∶ 𝐼 → 𝑋 such that 𝑝𝜖1 = 𝑥 and 𝑝𝜖0 = 𝑦 , and verify
the conditions one-by-one.

Transitivity. Suppose that 𝑝 ∶ 𝑥 ∼ 𝑦 and 𝑞 ∶ 𝑦 ∼ 𝑧. We take the filler

({∗}⊗ 𝐼 ) +{∗}⊗{∗} (𝐼 ⊗ {∗}) 𝑋

𝐼 ⊗ 𝐼

[𝑝, 𝑞]

𝜖1 ⊗̂ 𝜖0 𝑓

Geometrically, this filling can be pictured as

(0,0)
x

(0,1)
y

(1,1)
z

↪
(0,0)

x

(0,1)
y

(1,0)

(1,1)
z

Let 𝛼 ∶ [1] → [1] × [1] be the morphism in 𝑃𝑜𝑠𝑖 that sends 0 to (0, 0) and 1 to (1, 1). Then
we have 𝑓 𝑁𝑖(𝛼)𝜖1 = 𝑝𝜖1 = 𝑥 and 𝑓 𝑁𝑖(𝛼)𝜖0 = 𝑞𝜖0 = 𝑧, and thus 𝑓 𝑁𝑖(𝛼) ∶ 𝑥 ∼ 𝑧, as required.

Reflexivity. Let 𝑥 ∶ {∗} → 𝑋 be a 0-simplex of 𝑋 . Note that 𝑖0 ∶ 0 → {∗} is the unique
morphism from the initial object into {∗}. Since 𝑋 is fibrant, we have a diagonal filler

{∗} 𝑋

𝐼

𝑥

𝜖0 ⊗̂ 𝑖0 𝑝
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such that 𝑝 ∶ 𝑦 ∼ 𝑥 . By the same argument, there is a point 𝑧 with a path 𝑞 ∶ 𝑧 ∼ 𝑦 and, by
transitivity, a path 𝑟 ∶ 𝑧 ∼ 𝑥 .
Now consider the monomorphism [𝜖0, 𝜖1] ∶ {∗} + {∗} → 𝐼 and the Leibniz product

𝜖1 ⊗̂ [𝜖1, 𝜖0] ∶ ({∗}⊗ 𝐼 ) +{∗}⊗({∗}+{∗}) (𝐼 ⊗ ({∗} + {∗})) → 𝐼 ⊗ 𝐼 .

Take the diagonal filler

({∗}⊗ 𝐼 ) +{∗}⊗({∗}+{∗}) (𝐼 ⊗ ({∗} + {∗})) 𝑋

𝐼 ⊗ 𝐼

[𝑞, [𝑟 , 𝑝]]

𝜖1 ⊗̂ [𝜖1, 𝜖0]

which we again picture geometrically:

(0,0)
z

(0,1)
y

(1,0)
x

(1,1)
x

↪
(0,0)

z

(0,1)
y

(1,0)
x

(1,1)
x

This gives us a path 𝑠 ∶ 𝑥 ∼ 𝑥 .
Symmetry. Finally, suppose that 𝑝 ∶ 𝑥 ∼ 𝑦 . By reflexivity, there is a path 𝑖𝑑𝑥 ∶ 𝑥 ∼ 𝑥 . A path

𝑝−1 ∶ 𝑦 ∼ 𝑥 can be obtained from the diagonal filler indicated in the following diagram.

({∗}⊗ 𝐼 ) +{∗}⊗({∗}+{∗}) (𝐼 ⊗ ({∗} + {∗})) 𝑋

𝐼 ⊗ 𝐼

[𝑖𝑑𝑥 , [𝑝, 𝑖𝑑𝑥 ]]

𝜖1 ⊗̂ [𝜖1, 𝜖0] 𝑞

3.3.2 Homotopy

In this section we further develop the homotopy theory of the given structure on ssSet.

Definition 3.3.5. Let 𝑓 , 𝑔 ∶ 𝑋 → 𝑌 be semisimplicial maps. Then ℎ ∶ 𝑋⊗ 𝐼 → 𝑌 is a homotopy
from 𝑓 to 𝑔 if the following diagram commutes.

𝑋 𝑋 ⊗ 𝐼 𝑋

𝑌
𝑓

𝑋 ⊗ 𝜖1

ℎ

𝑋 ⊗ 𝜖0

𝑔

We say that 𝑓 and 𝑔 are homotopic and write ℎ ∶ 𝑓 ∼ 𝑔. ■
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Given a homotopy ℎ ∶ 𝑋 ⊗ 𝐼 → 𝑌 , we write ℎ𝑘 for the restriction ℎ(𝑋 ⊗ 𝜖𝑘) ∶ 𝑋 → 𝑌 for
𝑘 ∈ {0, 1}.
Proposition 3.3.6 ([JT08, p. 45]). On the class of morphisms 𝑓 ∶ 𝑋 → 𝐾 with fibrant codomain,
homotopy is an equivalence relation.

Proof. By adjunction, a homotopy ℎ ∶ 𝑋 ⊗ 𝐼 → 𝐾 is equivalent to a path ℎ ∶ 𝐼 → [𝑋 , 𝐾]. The
result follows from the fact that, by Corollary 2.7.7, the object [𝑋 , 𝐾] is fibrant and thus, by
Proposition 3.3.4, path-connectedness on [𝑋 , 𝐾] is an equivalence relation.

Definition 3.3.7. A morphism 𝑓 ∶ 𝑋 → 𝑌 is called a homotopy equivalence if there is a map
𝑔 ∶ 𝑌 → 𝑋 together with homotopies ℎ ∶ 𝑋 ⊗ 𝐼 → 𝑋 and ℎ′ ∶ 𝑌 ⊗ 𝐼 → 𝑌 such that
ℎ ∶ 𝑔𝑓 ∼ 𝑖𝑑𝑋 and ℎ′ ∶ 𝑓 𝑔 ∼ 𝑖𝑑𝑌 . ■

The following lemma records some properties of homotopy (equivalence) on morphisms
between fibrant objects that will be useful later on.

Lemma 3.3.8. For morphisms between fibrant objects:
(i) Homotopy is stable under composition.
(ii) Homotopy equivalence is stable under homotopy.
(iii) Homotopy equivalences are closed under composition.

Proof. (i) Let 𝑓 , 𝑔 ∶ 𝑋 → 𝑌 and 𝑝, 𝑞 ∶ 𝑌 → 𝑍 . Given ℎ ∶ 𝑓 ∼ 𝑔 and 𝑘 ∶ 𝑝 ∼ 𝑞, we have
𝑝ℎ ∶ 𝑝𝑓 ∼ 𝑝𝑔 and (by naturality) also 𝑘(𝐼 ⊗ 𝑔) ∶ 𝑝𝑔 ∼ 𝑞𝑔. Transitivity gives 𝑝𝑓 ∼ 𝑞𝑔.

(ii) Let 𝑓 be a homotopy equivalence with homotopy inverse 𝑓 −1, and let 𝑔 ∼ 𝑓 . By part
(i), we have 𝑔𝑓 −1 ∼ 𝑓 𝑓 −1 ∼ 𝑖𝑑 and dually for 𝑓 −1𝑔.

(iii). Let 𝑓 and 𝑔 be homotopy equivalences with homotopy inverses 𝑓 −1 and 𝑔−1. Then,
using part (i) and the fact that homotopy is an equivalence relation, we find

𝑓 −1𝑔−1𝑔𝑓 ∼ 𝑓 −1𝑓 ∼ 𝑖𝑑.
It can be dually shown that 𝑔𝑓 𝑓 −1𝑔−1 ∼ 𝑖𝑑 .

In sSet the above homotopic notions are defined in the same way, but with Δ[0] and Δ[1]
instead of Δ𝑖[0] and Δ𝑖[1] as {∗} and 𝐼 , and with the categorical product instead of⊗. It can
be easily seen that, since 𝑖! preserves all three, homotopies and homotopy equivalences are
preserved by 𝑖!.
Definition 3.3.9. A homotopy equivalence 𝑓 is called a strong if there are homotopies ℎ and ℎ′
witnessing that 𝑓 is a homotopy equivalence such that the diagram

𝑋 ⊗ 𝐼 𝑌 ⊗ 𝐼

𝑋 𝑌

𝑓 ⊗ 𝐼

ℎ ℎ′

𝑓

commutes. ■
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The proof of the next proposition is based on the proofs of propositions 3.2.5 and 3.2.6
of [JT08], but with some required adaptations because, unlike in the simplicial case, we do not
have projections 𝐾 ⊗ 𝐼 → 𝐾 and 𝐾 ⊗ 𝐼 → 𝐼 .
Proposition 3.3.10. For 𝑝 a fibration with fibrant codomain, the following are equivalent:

(i) 𝑝 is a homotopy equivalence;
(ii) 𝑝 is a strong homotopy equivalence;
(iii) 𝑝 is a trivial fibration.

Proof. Let 𝑝 ∶ 𝐸 → 𝐾 be a fibration with a fibrant codomain. (i) ⇒ (ii). Let 𝑠 ∶ 𝐾 → 𝐸,
ℎ ∶ 𝑠𝑝 ∼ 𝑖𝑑𝐸 and ℎ′ ∶ 𝑝𝑠 ∼ 𝑖𝑑𝐾 be the data that witness that 𝑝 is a homotopy equivalence. Then
the filler of the diagram

𝐾 ⊗ {∗} 𝐸

𝐾 ⊗ 𝐼 𝐾
∗𝐾 ⊗̂ 𝜖1

𝑠

𝑝𝑡

ℎ′

is such that 𝑝𝑡0 = ℎ′0 = 𝑖𝑑𝐾 and 𝑡1 = 𝑠. By Lemma 3.3.8, we have 𝑡0𝑝 ∼ 𝑡1𝑝 ∼ 𝑠𝑝 ∼ 𝑖𝑑𝐸 , witnessed
by, say 𝑘 ∶ 𝑡0𝑝 ∼ 𝑖𝑑𝐸 . Furthermore, by reflexivity, there is a homotopy 𝑘′ ∶ 𝑝𝑡0 ∼ 𝑖𝑑𝐾 and so
the fact that 𝑝 is a homotopy equivalence is additionally witnessed by the section 𝑡0 and the
homotopies 𝑘, 𝑘′. Wewill show that there is a 𝑘∗ ∶ 𝑡0𝑝 ∼ 𝑖𝑑𝐸 giving the required commutativity.

Let 𝛼 ∶ 𝐼 ⊗ 𝐼 → [𝐸, 𝐾] be the diagonal filler

({∗}⊗ 𝐼 ) +{∗}⊗({∗}+{∗}) (𝐼 ⊗ ({∗} + {∗})) [𝐸, 𝐾]

𝐼 ⊗ 𝐼

[𝑘′(𝑝⊗ 𝐼 ), [𝑝𝑘, 𝑝𝑘]]

𝜖0 ⊗̂ [𝜖1, 𝜖0] 𝛼

Then the diagram

({∗}⊗ 𝐼 ) +{∗}⊗({∗}+{∗}) (𝐼 ⊗ ({∗} + {∗})) [𝐸, 𝐸]

𝐼 ⊗ 𝐼 [𝐸, 𝐾]

[[𝐸, 𝑡0]𝛼(𝜖1 ⊗ 𝐼 ), [𝑡0𝑝𝑘, 𝑘]]

𝜖1 ⊗̂ [𝜖1, 𝜖0] [𝐸, 𝑝]𝛽

𝛼

commutes. Let 𝛽 ∶ 𝐼⊗𝐼 → 𝐸𝐸 be the induced filler and consider the homotopy 𝑘∗ = 𝛽(𝜖0⊗ 𝐼 ).
We have 𝑘∗1 = (𝑡0𝑝𝑘)0 = 𝑡0𝑝𝑡0𝑝 = 𝑡0𝑝 and 𝑘∗0 = 𝑘0 = 𝑖𝑑𝐸 , as well as 𝑝𝑘∗ = 𝑘′(𝐼⊗𝑝), as required.

(ii) ⇒ (iii). Let ℎ ∶ 𝑠𝑝 ∼ 𝑖𝑑𝐸 and ℎ′ ∶ 𝑝𝑠 ∼ 𝑖𝑑𝐾 be the homotopies that witness that 𝑝 is a
strong homotopy equivalence. Suppose then that we are given a lifting problem

𝐴 𝐸

𝐵 𝐾
𝑖

𝑎

𝑝

𝑏
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with 𝑖 ∶ 𝐴 → 𝐵 a cofibration. It follows that both the squares

𝐴⊗ 𝐼 𝐸

𝐵⊗ 𝐼 𝐾
𝑖⊗ 𝐼

ℎ(𝑎⊗ 𝐼 )

𝑝

ℎ′(𝑏⊗ 𝐼 )

and
𝐵⊗ {∗} 𝐸

𝐵⊗ 𝐼 𝐾
𝐵⊗ 𝜖1

𝑠𝑏

𝑝

ℎ′(𝑏⊗ 𝐼 )

commute. Combining the two squares, we get a commuting square

(𝐴⊗ 𝐼 ) +𝐴⊗{∗} (𝐵⊗ {∗}) 𝐸

𝐵⊗ 𝐼 𝐾 ,
𝑖 ⊗̂ 𝜖1 𝑝

ℎ

ℎ′(𝑏⊗ 𝐼 )

which has a lifting ℎ ∶ 𝐵⊗ 𝐼 → 𝐸 such that 𝑝ℎ = ℎ′(𝑏⊗ 𝐼 ) and ℎ(𝑖⊗ 𝐼 ) = ℎ(𝑎⊗ 𝐼 ). But then
𝑝ℎ0 = 𝑏 and ℎ0𝑖 = 𝑎, which means that ℎ1 provides the desired lifting.

(iii)⇒ (i). Suppose that 𝑝 is trivial. Then it has a section 𝑠 ∶ 𝐾 → 𝐸 obtained as the diagonal
filler

0 𝐸

𝐾 𝐾
𝑝𝑠

Let ℎ ∶ 𝑝𝑠 ∼ 𝑖𝑑𝐾 , a suitable homotopy ℎ′ ∶ 𝑠𝑝 ∼ 𝑖𝑑𝐸 arises as the diagonal filler

(𝐸⊗ {∗}) + (𝐸⊗ {∗}) 𝐸

𝐸⊗ 𝐼 𝐾

[𝑠𝑝, 𝑖𝑑𝐸]

[𝜖1, 𝜖0] 𝑝

ℎ(𝑝⊗ 𝐼 )

ℎ′

Proposition 3.3.11 ([JT08, Prop. 3.2.3]). A trivial cofibration between fibrant objects is a strong
homotopy equivalence.

Proof. Let 𝑖 ∶ 𝐴 → 𝐵 be a trivial cofibration between fibrant objects. We obtain a retract 𝑟 of 𝑖
as diagonal filler in the following diagram

𝐴 𝐴

𝐵
𝑖 𝑟

Let ℎ ∶ 𝑟𝑖 ∼ 𝑟𝑖, then a homotopy 𝑖𝑟 ∼ 𝑖𝑑𝐵 is obtained as the indicated filler

(𝐴⊗ 𝐼 ) +𝐴⊗({∗}+{∗}) (𝐵⊗ ({∗} + {∗})) 𝐵

𝐵⊗ 𝐼
𝑖 ⊗̂ [𝜖1, 𝜖0]

[𝑖ℎ, [𝑖𝑟 , 𝑖𝑑𝐵]]
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3.3.3 Weak equivalences

In this section we will use the following often-used (e.g. on p. 59 of [JT08]) characterisation
for the class of weak equivalences.

Proposition 3.3.12. A map 𝑓 is a weak equivalence if and only if for any two trivial cofibrations
𝑥 and 𝑦 with fibrant codomains, any filler 𝑓 of the diagram

𝑋 𝑋

𝑌 𝑌
𝑓

𝑥

𝑓

𝑦

(3.5)

is a homotopy equivalence.

Proof. ⇒. It suffices to show that, of a morphism between fibrant objects, a factorisation

𝑋 triv�−→ 𝐸 triv−−↠ 𝑌 (3.6)

into a trivial cofibration followed by a trivial fibration, is a homotopy equivalence. To see that
it is, note that, since 𝑌 is fibrant, we have that 𝐸 is as well. Thus, by propositions 3.3.10 and
3.3.11, both morphisms in (3.6) are homotopy equivalences. The result follows from Lemma
3.3.8.

⇐. Given a square of the form (3.5), we must show that 𝑓 can be factored as a trivial
cofibration followed by a trivial fibration. To this end, factor 𝑓 using the weak factorisation
system (TrivCof, Fib) to obtain a diagram

𝑋 𝑋 𝐸

𝑌 𝑌
𝑓

𝑥

𝑓

𝑖

𝑝

𝑦

Because 𝑖 is a trivial cofibration, the composition 𝑖𝑥 is as well. Thus, by the hypothesis, 𝑝 is a
homotopy equivalence between fibrant objects, which means that, by Proposition 3.3.10, it is
a trivial fibration, as required.

Note that it follows immediately that a weak equivalence between fibrant objects is a ho-
motopy equivalence: simply let 𝑥 and 𝑦 be 𝑖𝑑𝑋 and 𝑖𝑑𝑌 , respectively. We have the following
useful lemma about diagrams of this form.

Lemma 3.3.13. Any two diagonal fillers 𝑓 0, 𝑓 1 in a square of the form (3.5) are homotopic.

Proof. Let ℎ ∶ 𝑦𝑓 ∼ 𝑦𝑓 . The required homotopy is obtained as the following diagonal filler.

(𝑋 ⊗ 𝐼 ) +𝑋⊗({∗}+{∗}) (𝑋 ⊗ ({∗} + {∗})) 𝑌

𝑋 ⊗ 𝐼

[ℎ, [𝑓 0, 𝑓 1]]

𝑥 ⊗̂ [𝜖1, 𝜖0] 𝑘



Chapter 3: Left-induced model structures on semisimplicial sets 61

By part (ii) of Lemma 3.3.8, this means that to show that a map is a weak equivalence, it
suffices to check the property for a single diagonal filler per square. The following proposition
implies that it even suffices to verify a single such square.

Proposition 3.3.14. In the following diagram with 𝑋, 𝑋 , 𝑌 , 𝑌 all fibrant replacements,

𝑋 𝑋 𝑋

𝑌 𝑌 𝑌
𝑓 𝑓 𝑓

the filler 𝑓 is a homotopy equivalence whenever 𝑓 is.

Proof. We have the following two diagonal fillers:

𝑋 𝑋

𝑋
𝑢

and
𝑋 𝑋

𝑋
𝑢−1

which induce squares
𝑋 𝑋

𝑋 𝑋

𝑢−1𝑢 𝑖𝑑 and
𝑋 𝑋

𝑋 𝑋

𝑢𝑢−1 𝑖𝑑

By Lemma 3.3.13, the morphisms 𝑢, 𝑢−1 form a homotopy equivalence. Using the samemethod,
we can find 𝑣 ∶ 𝑌 → 𝑌 and a homotopy inverse 𝑣−1 ∶ 𝑌 → 𝑌 . It follows that the square

𝑋 𝑋

𝑌 𝑌
𝑣𝑓 𝑢−1

commutes and thus, again by Lemma 3.3.13, we have 𝑓 ∼ 𝑣𝑓 𝑢−1. We claim that 𝑢𝑓 −1𝑣−1 is a
homotopy inverse of 𝑓 , where 𝑓 −1 is the homotopy inverse of 𝑓 . Indeed, using Lemma 3.3.8,

𝑢𝑓 −1𝑣−1𝑓 ∼ 𝑢𝑓 −1𝑣−1𝑣𝑓 𝑢−1 ∼ 𝑖𝑑𝑋 , and

𝑓 𝑢𝑓 −1𝑣−1 ∼ 𝑣𝑓 𝑢−1𝑢𝑓 −1𝑣−1 ∼ 𝑖𝑑𝑌 ,

as required.

Proposition 3.3.15. The weak equivalences satisfy 2-out-of-3.

Proof. 𝑔𝑓 , 𝑓 w.e⇒ 𝑔 w.e. Suppose we are given a diagram of the form

𝑌 𝑌

𝑍 𝑍

𝑦

𝑔 𝑔

𝑧
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By factoring 𝑋 triv�−→ 𝑋 −−↠ 1, we can extend the above diagram as follows

𝑋 𝑋

𝑌 𝑌

𝑍 𝑍

𝑓

𝑥

𝑓
𝑦

𝑔 𝑔

𝑧

Now by the hypothesis, there are morphisms 𝑢 ∶ 𝑍 → 𝑋 and 𝑣 ∶ 𝑌 → 𝑋 such that

𝑢𝑔𝑓 ∼ 𝑖𝑑𝑋 and 𝑣𝑓 ∼ 𝑖𝑑𝑋, and

𝑔𝑓 𝑢 ∼ 𝑖𝑑𝑍 and 𝑓 𝑣 ∼ 𝑖𝑑𝑌 .

Thus we have 𝑔𝑓 𝑢 ∼ 𝑖𝑑𝑍 and, using Lemma 3.3.8,

𝑓 𝑢𝑔 ∼ 𝑓 𝑢𝑔𝑓 𝑣 ∼ 𝑓 𝑣 ∼ 𝑖𝑑𝑦 ,

as desired.
We finish with 𝑓 w.e., 𝑔 w.e. ⇒ 𝑔𝑓 w.e., since the other case is dual to the previous one.

Given a square

𝑋 𝑋

𝑌

𝑍 𝑍

𝑥

𝑓

𝑔𝑓
𝑔

𝑧

we take a fibrant replacement of 𝑌 to get

𝑋 𝑋

𝑌 𝑌

𝑍 𝑍

𝑥

𝑓
𝑓

𝑔𝑓

𝑔

𝑦

𝑔

𝑧

and by Lemma 3.3.8 𝑔𝑓 is a homotopy equivalence. The result follows from Lemma 3.3.13.

Lemma 3.3.16. Any homotopy equivalence 𝑓 ∶ 𝑋 → 𝑌 is a weak equivalence.

Proof. Suppose we are given 𝑔 ∶ 𝑌 → 𝑋 such ℎ ∶ 𝑔𝑓 ∼ 𝑖𝑑𝑋 and ℎ′ ∶ 𝑓 𝑔 ∼ 𝑖𝑑𝑌 , together with a
square of the form of 3.5. This gives us another filler as indicated in the diagram below.

𝑋 𝑋

𝑌 𝑌
𝑓

𝑥

𝑓

𝑦

𝑔 𝑔
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We claim that this filler 𝑔 is a homotopy inverse of 𝑓 . Indeed, we obtain 𝑘 ∶ 𝑔𝑓 ∼ 𝑖𝑑𝑋 from

(𝑋 ⊗ 𝐼 ) +𝑋⊗({∗}+{∗}) (𝑋 ⊗ ({∗} + {∗})) 𝑋

𝑋 ⊗ 𝐼

[𝑥ℎ, [𝑔𝑓 , 𝑖𝑑𝑋 ]]

𝑥 ⊗̂ [𝜖1, 𝜖0] 𝑘

and 𝑘′ ∶ 𝑓 𝑔 ∼ 𝑖𝑑𝑌 can be found analogously.

3.3.4 Proving the theorem

The proof of the following proposition is a standard trick.

Proposition 3.3.17. Every trivial cofibration is acyclic.

Proof. Let 𝐴 triv�−→ 𝐵 be a trivial cofibration and take a fibrant replacement 𝐴 of 𝐴. Then of the
resulting two morphisms take the pushout 𝐵′. Finally take a fibrant replacement 𝐵 of 𝐵′, to get
the following diagram.

𝐴 𝐴

𝐵 𝐵′ 𝐵
⌜

Since trivial cofibrations are preserved under pushout and composition, the morphism 𝐴 →
𝐵 is a trivial cofibration between fibrant objects and thus, by Proposition 3.3.11 a homotopy
equivalence.

The next proposition follows readily from the results obtained so far.

Proposition 3.3.18. A fibration with fibrant codomain is trivial if and only if it is acyclic.

Proof. Let 𝑝 be a fibration.
⇒. If 𝑝 is trivial, then, by Proposition 3.3.10, 𝑝 is a homotopy equivalence, which, by Lemma

3.3.16, means that 𝑝 is a weak equivalence.
⇐. As noted above, a weak equivalence 𝑝 between fibrant objects is a homotopy equival-

ence. If 𝑝 further is a fibration, then we find, again by Proposition 3.3.10, that 𝑝 is a trivial
fibration.

The proof of the following proposition is a standard retract argument.

Proposition 3.3.19. Every acyclic cofibration with fibrant codomain is trivial.

Proof. Given such acyclic cofibration 𝐴 �−→∼ 𝐾 , factor into 𝐴 triv�−→ 𝐸 −−↠ 𝐾 to get a diagram

𝐴 𝐸

𝐾 𝐾
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The right side is a weak equivalence by 2-out-of-3. Thus, by Proposition 3.3.18, it is a a trivial
fibration and we have a diagonal filler as indicated in the diagram. It follows that 𝐴 → 𝐾 is a
retract of a trivial cofibration and therefore a trivial cofibration itself.

Proposition 3.3.20. Weak equivalences are preserved by 𝑖!.
Proof. Let 𝑓 be a weak equivalence in the structure on ssSet. Taking fibrant replacements, we
obtain a square

𝐴 𝐴

𝐵 𝐵
𝑓 𝑓

in which the arrow on the right is a homotopy equivalence. Applying 𝑖! and taking fibrant
replacements in in sSet, we obtain a diagram

𝑖!𝐴 𝑖!𝐴 𝐴∗

𝑖!𝐵 𝑖!𝐵 𝐵∗
𝑖!𝑓 𝑖!𝑓 𝑓 ∗

The horizontal arrows are trivial cofibrations because, by the assumption that (TrivCof, Fib)
satisfies the hypothesis of Theorem 3.3.1, they are preserved by 𝑖!. Since 𝑖! also preserves ho-
motopy equivalences, we have that 𝑖!𝑓 is a homotopy equivalence. As noted before, it is proved
in [Joy08] that the weak equivalences in sSet𝑄 can be characterised as in Proposition 3.3.12. It
follows that 𝑖!𝑓 is a weak equivalence and by 2-out-of-3, so is 𝑓 ∗. But then 𝑓 ∗ a weak equi-
valence between fibrant objects, i.e. a homotopy equivalence. It follows that 𝑖!𝑓 is a weak
equivalence, as desired.

Proof of Theorem 3.3.1. 2-out-of-3 follows from propositions 3.3.12 and 3.3.15. The four inclu-
sions are proved in Proposition 3.3.17 (A1), Proposition 3.3.19 (A2’), and Proposition 3.3.18 (B1’
and B2’). Finally, Proposition 3.3.20 proves the preservation requirement.

3.4 Applying Theorem 3.3.1

3.4.1 Three saturated classes of morphisms

In this section we compare three classes of morphisms that may be used as trivial cofibrations
in an application of Theorem 3.3.1. Let (TrivCof0, Fib0) be the weak factorisation system gen-
erated by I⊗, which clearly is a set of morphisms with finitely presentable domains, and let
(TrivCof1, Fib1) be generated by the semisimplicial horn inclusions.

The following well-known lemma for simplicial sets adapts to semisimplicial sets without
problems.

Lemma 3.4.1 ([JT08, Thm. 3.2.3]). I⊗ ⊆ TrivCof1.



Chapter 3: Left-induced model structures on semisimplicial sets 65

Proof. We begin with the case 𝑘 = 1. That is, we will show that every morphisms of the form

𝜖1 ⊗̂ 𝑖𝑛 ∶ (Δ𝑖[0]⊗ Δ𝑖[𝑛]) +Δ𝑖[0]⊗𝛿Δ𝑖[𝑛] (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛]) → Δ𝑖[1]⊗ Δ𝑖[𝑛]
is in TrivCof1. We will do so by showing that 𝜖1 ⊗̂ 𝑖𝑛 can be written as a composition of
inclusions obtained as certain pushouts of the horn inclusion Λ𝑘𝑖 [𝑛 + 1] → Δ𝑖[𝑛 + 1]. We have
seen that Δ𝑖[1]⊗ Δ𝑖[𝑛] ≅ 𝑁𝑖([1] × [𝑛]), which means that its 𝑛 + 1-simplices can be described
by monotone injections 𝜎𝑗 ∶ [𝑛 + 1] → [1] × [𝑛] of the form

(0, 0) → (0, 1) → ⋯ → (0, 𝑗) → (1, 𝑗) → ⋯ → (1, 𝑛),
for 0 ≤ 𝑗 ≤ 𝑛. Note that 𝜎0𝜖0 ∶ [𝑛] → {1} × [𝑛], so 𝜎0𝜖0 ∈ Δ𝑖[0]⊗ Δ𝑖[𝑛]. Moreover, it holds for
𝑟 ≥ 2 that the simplex 𝜎0𝜖𝑟 ∶ [𝑛] → [1] × [𝑛] (which skips the (𝑟 − 1)-th element of [𝑛]) is in
Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛]. Indeed, we have

Δ𝑖[1]⊗ Δ𝑖[𝑛] ≅ lim−−→𝜖∶Δ𝑖[𝑚]→Δ𝑖[𝑛]
in Δ𝑖↓Δ𝑖[𝑛]

𝑁𝑖([1] × [𝑚])

and Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛] is the colimit of the restriction of this diagram to Δ𝑖 ↓ 𝛿Δ𝑖[𝑛]. It follows that
(𝑖𝑑[𝑛], 𝜎0𝜖𝑟 ) ∼ (𝜖𝑟−1, 𝜏 ) ∈ (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛])𝑛

where 𝜏 ∶ (0, 0) → (1, 0) → ⋯ → (1, 𝑛 − 1).
Thus, we have the pushout diagram

Λ1𝑖 [𝑛 + 1] (Δ𝑖[0]⊗ Δ𝑖[𝑛]) +Δ𝑖[0]⊗𝛿Δ𝑖[𝑛] (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛])

Δ𝑖[𝑛 + 1] (Δ𝑖[1]⊗ Δ𝑖[𝑛])0

⟨𝜎0𝜖0, −, 𝜎0𝜖2, … , 𝜎0𝜖𝑛+1⟩

𝜎0

where (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛])0 is the smallest subcomplex of Δ𝑖[1]⊗ Δ𝑖[𝑛] that contains both the
image of 𝜖1 ⊗̂ 𝑖𝑛 and the 𝑛+1-simplex 𝜎0, together with its faces. Next we consider the simplex
𝜎1. We have that 𝜎1𝜖1 = 𝜎0𝜖0 ∈ (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛])0 and, by the same reasoning as above, it
holds for every 𝑟 ≠ 1, 2 that 𝜎1𝜖𝑟 ∈ Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛]. Thus, letting (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛])1 be the least
subcomplex of (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛])0 containing 𝜎1, the following is a pushout square:

Λ2𝑖 [𝑛 + 1] (Δ𝑖[1]⊗ Δ𝑖[𝑛])0

Δ𝑖[𝑛 + 1] (Δ𝑖[1]⊗ Δ𝑖[𝑛])1

⟨𝜎1𝜖0, 𝜎1𝜖1, −, 𝜎1𝜖3, … , 𝜎1𝜖𝑛+1⟩

𝜎1
Repeating this process until we reach 𝜎𝑛, we get a chain

(Δ𝑖[0]⊗ Δ𝑖[𝑛]) +Δ𝑖[0]⊗𝛿Δ𝑖[𝑛] (Δ𝑖[1]⊗ 𝛿Δ𝑖[𝑛]) → (Δ𝑖[1]⊗ Δ𝑖[𝑛])0
→ (Δ𝑖[1]⊗ Δ𝑖[𝑛])1
→ ⋯
→ (Δ𝑖[1]⊗ Δ𝑖[𝑛])𝑛 = Δ𝑖[1]⊗ Δ𝑖[𝑛],
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as required. When 𝑘 = 0, the same proof can be performed backwards, starting with 𝜎𝑛.

It obviously follows that TrivCof0 ⊆ TrivCof1. Furthermore, because 𝑖! sends the semisim-
plicial horn inclusions to the simplicial horn inclusions, it follows from Lemma 2.5.5 that
TrivCof1 ⊆ 𝑖−1! (TrivCofΔ) and thus both TrivCof0 and TrivCof1 lay within the bounds set in the
hypothesis of Theorem 3.3.1. A third class of morphismswithin these bounds is obtained by ap-
plying Lemma 2.6.1 to the weak factorisation system (TrivCofΔ, FibΔ). we obtain a cofibrantly
generated weak factorisation systems on ssSet, say (TrivCofΔ𝑖 , FibΔ𝑖). Note that TrivCof0 is the
minimal, and TrivCofΔ𝑖 the maximal class within the bounds.

Remark 3.4.2. In [JT08, Theorem 3.2.3], it is also proven that, in sSet, it holds that the saturated
class generated by 𝑖!(I⊗) contains TrivCofΔ. It follows that both 𝑖!(I⊗) and the simplicial horn
inclusions have TrivCofΔ as the least saturation. Thus, taking similar constraints on a saturated
class A as in the hypothesis of Theorem 3.3.1, but in sSet, i.e.

𝑖!(I⊗) ⊆ A ⊆ TrivCofΔ,

uniquely determines A. In contrast, with Proposition 3.5.7 we will show that TrivCof1 is strictly
contained in 𝑖−1(TrivCofΔ), showing that in ssSet distinct saturated classes lie between these
constraints. It remains an open question whether, in ssSet, the class I⊗ generates the same
saturated class as the semisimplicial horn inclusions. ▲

3.4.2 The left-induced right semimodel structure ssSet𝑄

In this section we use Theorem 3.3.1 to obtain a right semimodel structure. Before we do that,
let us first show that Theorem 3.3.1 can be used with the minimal class TrivCof0.

Proposition 3.4.3. TrivCof0 satisfies the Leibniz axiom with respect to Cof.

Proof. Let 𝑘 be a trivial cofibration and let D be the class of all cofibrations 𝑚 ∶ 𝐴 → 𝐵 such
that 𝑚 ⊗̂ 𝑘 is a trivial cofibration. It is easily verified that D is saturated and thus it suffices
to show that I⊗ ⊆ D. To that end, let 𝜖𝑘 ⊗̂ 𝑖𝑛 ∈ I⊗. Then, by the associativity of the Leibniz
product, we have

(𝜖𝑘 ⊗̂ 𝑖𝑛) ⊗̂ 𝑘 = 𝜖𝑘 ⊗̂ (𝑖𝑛 ⊗̂ 𝑘) ∈ TrivCof0

and thus, by Lemma 3.3.2, 𝜖𝑘 ⊗̂ 𝑖𝑛 ∈ D, as required. The full result follows from the symmetry
of the Leibniz product.

We invoke Theorem 3.3.1 to obtain a structure on ssSet, say ssSet0, that is almost a right
semimodel structure.

The next application of Theorem 3.3.1 will provide a right semimodel structure, which we
will call ssSet𝑄 .

Proposition 3.4.4. TrivCofΔ𝑖 satisfies the Leibniz axiom with respect to Cof.
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Proof. We use the fact that the statement holds for the standard model structure on the closed
monoidal category (sSet,×, Δ[0]), where × is the categorical product. We write ×̂ for the
corresponding Leibniz product in sSet. The strategy is to show that 𝑖!(𝑗 ⊗̂ 𝑘) = 𝑖!(𝑗) ×̂ 𝑖!(𝑘),
fromwhich the result can be easily seen to follow. Because 𝑖! is a left adjoint, we have a pushout
square

𝑖!𝐴 × 𝑖!𝑋 𝑖!𝐴 × 𝑖!𝑌

𝑖!𝐵 × 𝑖!𝑋 𝑖!(𝐴⊗ 𝑌 +𝐴⊗𝑋 𝐵⊗ 𝑋)

𝑖!𝐴 × 𝑖!𝑘

𝑖!𝑗 × 𝑖!𝑋 𝑖!𝑟0

𝑖!𝑟1

⌜

Now 𝑖!𝐵 × 𝑖!𝑌 forms a cocone to the pushout diagram in the obvious way, and 𝑖!𝑗 ×̂ 𝑖!𝑘 is the
corresponding unique mediating morphism. However, it follows from the functoriality of 𝑖!
that 𝑖!(𝑗 ⊗̂ 𝑘) also fits this role, hence we have found our equality.

Invoking Theorem 3.3.1 gives the structure ssSet𝑄 .

Theorem 3.4.5. ssSet𝑄 is a right semimodel structure.

Proof. We only have to show that every acyclic cofibration is trivial, which follows directly
from the fact that the weak equivalences are preserved by 𝑖!. Indeed, for 𝑓 an acyclic cofibration
of ssSet𝑄 , we have that 𝑖!𝑓 is an acyclic cofibration of the model structure on sSet, and thus a
trivial cofibration. It follows that 𝑓 is a trivial cofibration.

Proposition 3.4.6. The functor 𝑖! ∶ ssSet𝑄 → sSet𝑄 reflects weak equivalences.

Proof. Let 𝑓 be such that its image under 𝑖! is a weak equivalence in sSet. Take fibrant replace-
ments and factor the obtained diagonal filler using (CofΔ𝑖 , TrivFibΔ𝑖). Finally, apply 𝑖! to get a
diagram

𝑖!𝑋 𝑖!𝑋 𝑖!𝐸

𝑖!𝑌 𝑖!𝑌
𝑖!𝑓 𝑖!𝑓

Since 𝑖!𝑓 is a weak equivalence in sSet, we have that 𝑖!𝑓 is as well. But 𝐸 → 𝑌 is a weak
equivalence, as is 𝑖!𝐸 → 𝑖!𝑌 . It follows that 𝑖!𝑋 → 𝑖!𝐸 is an acyclic cofibration, hence trivial,
which means that 𝑋 triv�−→ 𝐸 triv−−↠ 𝑌 is, in fact, a factorisation into a trivial cofibration followed
by a trivial fibration.

Since the left adjoint 𝑖! preserves and reflects cofibrations, trivial cofibrations and weak
equivalences, ssSet𝑄 is a left-induced right semimodel structure.

3.5 Some properties of ssSet𝑄
3.5.1 Quillen equivalence

The following proof is from [KS17, Lemma 6.2], but our formulation is much more explicit.
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Proposition 3.5.1. The counit 𝜖 ∶ 𝑖!𝑖∗ ⇒ 𝑖𝑑 is valued in weak equivalences.

Proof. We will first show that this holds on the standard simplices and thereafter generalize to
arbitrary simplicial sets. We claim that 𝑖!𝑖∗Δ[𝑛] is contractible, from which it directly follows
that 𝜖Δ[𝑛] is a weak equivalence. The 𝑚-simplices of 𝑖!𝑖∗(Δ[𝑛])𝑚 are given by:

(𝑖!𝑖∗Δ[𝑛])𝑚 = {(𝑥, 𝜂) ∣ 𝑥 ∶ [𝑘] → [𝑛], 𝜂 ∶ [𝑚] → [𝑘] surjective}.

A simplex (𝑥, 𝜂) might thus be degenerate in two ways: either by having a surjective part in
𝑥 , or by having a surjective part in 𝜂. Consequently, the simplicial set 𝑖!𝑖∗Δ[𝑛] is precisely the
nerve of the category [𝑛]′, given by the poset [𝑛], regarded as a category, with for each object
𝑎 an idempotent endomorphism 𝑒𝑎 such that for every 0 ≤ 𝑎, 𝑏 ≤ 𝑛

𝑒𝑏(𝑎 ≤ 𝑏) = {𝑎 ≤ 𝑏 if 𝑎 ≠ 𝑏;
𝑒𝑏 if 𝑎 = 𝑏. and, (𝑎 ≤ 𝑏)𝑒𝑎 = {𝑎 ≤ 𝑏 if 𝑎 ≠ 𝑏;

𝑒𝑎 if 𝑎 = 𝑏.

This means that we have |Hom[𝑛]′(𝑎, 𝑎)| = 2 and |Hom[𝑛]′(𝑎, 𝑏)| = 1 for 𝑎 ≠ 𝑏. We claim that
there is a natural transformation 𝛾 ∶ 0 ⇒ 𝑖𝑑[𝑛]′ from the constant functor to the identity functor
on [𝑛]′. Indeed, setting 𝛾0 = 𝑒0, we have that the naturality square

0 0

0 0
0(𝑒0) = 𝑖𝑑0

𝛾0

𝑖𝑑(𝑒0) = 𝑒0

𝛾0

commutes. Because for every 𝑎 ≠ 0, we have |Hom[𝑛]′(0, 𝑎)| = 1, the component 𝛾𝑎 is uniquely
determined and for the same reason every other naturality square commutes.

Under 𝑁 this gives a natural transformation between a constant functor and the identity
functor on 𝑖!𝑖∗Δ[𝑛], which under | ⋅ | lifts to the geometric realisation. By Proposition 1.3.22, this
corresponds to a homotopy between an identity morphism and a constant morphism, which
means that the geometric realisation of 𝑖!𝑖∗Δ[𝑛] is contractible. Finally, we deduce that |𝜖Δ[𝑛]|Δ,
as a map between contractible spaces, is a homotopy equivalence, and thus 𝜖Δ[𝑛] is a weak
equivalence.

The generalisation to arbitrary simplicial sets proceeds in a similar fashion to the proof of
Proposition 3.2.2. Define the functors tr𝑛 ∶ sSet → ssSet in the same way, and let 𝑆𝑘𝑛 = 𝑖!tr𝑛.
The simplicial set 𝑆𝑘𝑛𝑋 is called the n-skeleton of 𝑋 and a simplicial set arising in this way is
called 𝑛-skeletal. We will prove by induction on 𝑛 that 𝜖 is a weak equivalence on all 𝑛-skeletal
simplicial sets. The case 𝑛 = −1 is trivially true because then 𝜖 is an isomorphism. Suppose
the thesis holds for every 𝑘 ≤ 𝑛 and let 𝑒(𝑋)𝑛 denote the set of non-degenerate 𝑛-simplices of
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an 𝑛-skeletal simplicial set 𝑋 . For every 𝑛, there is a cube

⋅ 𝑖!𝑖∗𝑆𝑘𝑛−1

∐𝑒(𝑋)𝑛 𝛿Δ[𝑛] 𝑆𝑘𝑛−1𝑋

⋅ 𝑖!𝑖∗𝑆𝑘𝑛𝑋

∐𝑒(𝑋)𝑛 Δ[𝑛] 𝑆𝑘𝑛𝑋

𝜖 𝜖𝑆𝑘𝑛−1

𝜖𝑆𝑘𝑛𝑋

By an argument similar to the proof of Proposition 3.2.2, the square on the front is a pushout
square and since both 𝑖! and 𝑖∗ preserve colimits, so is the square on the back. The left vertical
arrow on the front is a cofibration, for it is a coproduct of cofibrations, as is the corresponding
morphism on the back. The top arrows from the back to the front are weak equivalences by
the induction hypothesis, and, by the fact that the thesis holds on the standard simplices, the
bottom left arrow is the coproduct of weak equivalences and thus, by Proposition 2.2.11, itself
a weak equivalence. Hence, we may apply the gluing lemma ([JT08, Theorem 2.3.3]) to deduce
that 𝜖 is a weak equivalence on 𝑆𝑘𝑛𝑋 ≅ 𝑋 .

Finally, for 𝑋 a simplicial set with non-degenerate simplices in infinitely many dimensions,
let 𝑃 be the set of simplicial subsets of 𝑋 that are 𝑛-skeletal for some 𝑛. Then in the square

lim−−→𝑋 ′∈𝑃 𝑖!𝑖
∗𝑋 ′ lim−−→𝑋 ′∈𝑃 𝑋

′

𝑖!𝑖∗𝑋 𝑋

lim−−→′𝑋∈𝑃 𝜖𝑋 ′

𝜖𝑋

the arrow on the right is an isomorphism, as is the arrow on the left, again by the fact that 𝑖!
and 𝑖∗ both preserve colimits. The arrow on the top is a directed colimit of weak equivalences,
and thus, by Proposition 2.5.9, itself a weak equivalence. Using 2-out-of-3 we find that 𝜖𝑋 is a
weak equivalence.

Corollary 3.5.2. The unit 𝑖𝑑 ⇒ 𝑖∗𝑖! is valued in weak equivalences.

Proof. By a triangle identity, we have for any semisimplicial set 𝑋 that

𝑖!𝑋 𝑖!𝑖∗𝑖!𝑋 𝑖!𝑋𝑖!𝜂𝑋 𝜖𝑖!𝑋

is a weak equivalence. By the previous proposition and 2-out-of-3, 𝑖!𝜂𝑋 is as well, and the result
follows from the fact that 𝑖! reflects weak equivalences.

Theorem 3.5.3. The pair (𝑖!, 𝑖∗) is a Quillen equivalence between right semimodel structures.
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Proof. Let 𝑓 ∶ 𝑖!𝑋 → 𝑌 be such that its adjunct 𝜙𝑓 ∶ 𝑋 → 𝑖∗𝑌 is a weak equivalence. Then 𝑓
is equal to

𝑖!𝑋 𝑖!𝑖∗𝑌 𝑌 ,𝑖!𝜙𝑓 𝜖𝑋

which is a composition of weak equivalences. Conversely, if 𝑓 is a weak equivalence, then 𝜙𝑓
is equal to

𝑋 𝑖∗𝑖!𝑋 𝑖∗𝑌 .𝜂𝑋 𝑖∗𝑓

By the fact that 𝑖! ∶ ssSet𝑄 → sSet𝑄 preserves and reflects weak equivalences, this is a weak
equivalence if and only if

𝑖!𝑋 𝑖!𝑖∗𝑖!𝑋 𝑖!𝑖∗𝑌𝑖!𝜂𝑋 𝑖!𝑖∗𝑓

is. But, since 𝜖 is valued in weak equivalences and by 2-out-of-3, this is a weak equivalence
precisely when the following composition is:

𝑖!𝑋 𝑖!𝑖∗𝑖!𝑋 𝑖!𝑖∗𝑌 𝑌 .𝑖!𝜂𝑋 𝑖!𝑖∗𝑓 𝜖𝑌

And this composition is just 𝜙−1𝜙𝑓 = 𝑓 and thus a weak equivalence.

3.5.2 Characterisation of the fibrations between fibrant objects

A third way to apply Theorem 3.3.1 is by using the semisimplicial horn inclusions as generating
trivial cofibrations. The following theorem is proved in both [Hen18, p. 74] and [Sat18, Lemma
3.7], with the latter proof following [Joy08, Theorem H0.20].

Proposition 3.5.4. TrivCof1 satisfies the Leibniz axiom with respect to Cof.

Again, applying Theorem 3.3.1 yields a structure on ssSet, say ssSet1, which is almost a
right semimodel structure. It is proved in [Sat18] that ssSet1 has the same weak equivalences
as ssSet𝑄 :

Proposition 3.5.5 ([Sat18, Cor. 3.72]). 𝑖! ∶ ssSet1 → ssSet𝑄 reflects weak equivalences.

This gives a convenient way to recognize the fibrant objects, as well as the fibrations
between fibrant objects in ssSet𝑄 .

Proposition 3.5.6. In ssSet𝑄 :
(i) An object is fibrant if only if it has the right lifting property with respect to the semisimplicial

horn inclusions.
(ii) A morphism between fibrant objects is a fibration if and only if it has the right lifting

property with respect to the semisimplicial horn inclusions.

Proof. Clearly only the implications from right to left are non-trivial. To show that they hold,
first let 𝑋 as in (i). Given a lifting problem

𝐴 𝑋

𝐵
TrivCofΔ𝑖 ∋
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Use the weak factorisation system (TrivCof1, Fib1) to obtain a fibrant replacement 𝐵 of 𝐵. Be-
cause, by Proposition 3.5.5, the functor 𝑖! reflects weak equivalences onto ssSet1, we have that
𝐴 → 𝐵 is a weak equivalence in ssSet1. Thus, 𝐴 → 𝐵 is as well, which means by the inclusion
(A2) of Theorem 3.3.1 that it is trivial. Hence the required lifting exists.

The proof of part (ii) is very similar and is left to the reader.

3.5.3 Simplicial versus semisimplicial anodyne extension

In this final section we take a closer look at the difference between TrivCof1 and TrivCofΔ𝑖 . The
simplicial morphisms in TrivCofΔ are usually called the simplicial anodyne extensions. Note that
by Corollary 2.5.3, these are the retracts of transfinite compositions of pushouts of simplicial
horn inclusions. Analogously, we will call the retracts of transfinite compositions of semisim-
plicial horn inclusions, i.e. TrivCof1, the semisimplicial anodyne extensions.

We have seen that 𝑖! sends semisimplicial anodyne extensions to simplicial anodyne exten-
sions. The following proposition shows that 𝑖! does not reflect anodyne extensions.
Proposition 3.5.7. TrivCof1 ⊊ TrivCofΔ𝑖

Proof. We adapt a counterexample from [Mos15], which is originally used to separate two
classes of simplicial morphisms. First consider the following pushout in ssSet (note that there
is only one choice for the top arrow):

Λ0𝑖 [2] Δ𝑖[1]

Δ𝑖[2] 𝑋𝑥
⌜

The semisimplicial set 𝑋 may be pictured:

𝑎

𝑏

𝑏𝛼

𝛼 𝛽

Now let ℎ ∶ Λ1𝑖 [2] ↪ Δ𝑖[2] and take the pushout

Λ1𝑖 [2] 𝑋

Δ𝑖[2] 𝑌

𝑥ℎ

𝑦
⌜

The resulting 𝑌 may be pictured as follows, where edges with the same label should be glued
together:

𝑎

𝑏

𝑏𝛼

𝛼 𝛽

𝑎

𝑏

𝑏𝛼

𝛾 𝛽 (3.7)
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Now the composition of pushouts Δ𝑖[1] → 𝑌 is in TrivCof1, so its image Δ[1] → 𝑖!𝑌 under 𝑖! is
in TrivCofΔ. This means that it is a geometric homotopy equivalence, and, since the unit line
is contractible, so is the following morphism into the terminal object:

Δ[1] → 𝑖!𝑌 → Δ[0]

It follows from by the 2-out-of-3 property that 𝑖!𝑌 → Δ[0] is a geometric homotopy equivalence
and thus |𝑖!𝑌 |Δ is contractible. Consequently, any map Δ[1] → 𝑖!𝑌 is weak equivalence, and in
particular the morphism corresponding to the non-degenerate 1-simplex 𝛾 is in TrivCofΔ.

Now let us show that the preimage of the above morphism under 𝑖!, i.e. the morphism
Δ𝑖[1] → 𝑌 corresponding to 𝛾 , is not in TrivCof1. Suppose towards a contradiction that it is
and let 𝐴0 → 𝐴𝛼 be a transfinite composition of coproducts of pushouts of semisimplicial horn
inclusions of least length such that

Δ𝑖[1] 𝐴0 Δ𝑖[1]

𝑌 𝐴𝛼 𝑌
(3.8)

is a retract diagram. Since 𝑌 is finite, it holds that 𝛼 is and we may consider the final pushout
of the chain:

Λ𝑘𝑖 [𝑛] 𝐴𝛼−1

Δ𝑖[𝑛] 𝐴𝛼
⌜

(3.9)

The image of 𝑌 in 𝐴𝛼 is of shape (3.7) and is such that every edge is the face of a 2-simplex. It
follows that we must have 𝑛 = 2 in the diagram (3.9), for otherwise Δ𝑖[1] → 𝑌 is a retract of
the shorter composition 𝐴0 → 𝐴𝛼−1. In particular, the semisimplicial set 𝐴𝛼−1 must contain
only one of the 2-simplices in the image of 𝑌 . However, the 2-simplex created by the pushout
(3.9) can be neither of the two 2-simplices in the image of 𝑌 , since it comes with a new edge
and the edges 𝛼, 𝛽, 𝛾 appear already in 𝐴𝛼−1.

Note that it follows that TrivCof1 ⊊ Cof ∩Weq1 and thus ssSet1 is not a right semimodel
structure, for it does not satisfy inclusion (A2). The following terminology is from [Mos15],
but this class is considered often in the literature under different names.

Definition 3.5.8. The strong (semi)simplicial anodyne extensions are the transfinite composi-
tions of pushouts of (semi)simplicial horn inclusions. ■

Proposition 3.5.9. The preimage of the strong simplicial anodyne extensions under 𝑖! is precisely
the class of strong semisimplicial anodyne extensions.

Proof. Let 𝑖!𝑓 ∶ 𝑖!𝐴0 → 𝑖!𝐵 be a strong simplicial anodyne extension. Now suppose, towards a
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contradiction, that somewhere in the chain there is a pushout

Λ𝑘[𝑛] 𝐴𝛽

Δ[𝑛] 𝐴𝛽+1

𝑝

⌜

such that 𝑝 is not in the image of 𝑖!. Then 𝑝 sends a non-degenerate simplex of Λ𝑘[𝑛] to a
degenerate simplex of𝐴𝛽 . Consequently, the image of 𝑖𝑑[𝑛] in𝐴𝛽+1 is a non-degenerate simplex
with a degenerate face. Since there is a monomorphism 𝐴𝛽+1 → 𝑖!𝐵, Lemma 1.3.6 implies that
𝑖!𝐵 too has a non-degenerate simplex with a degenerate face, a contradiction.

Thus, the morphism 𝑖!𝑓 may be written as a chain

𝑖!𝐴0 → 𝑖!𝐴1 → … → 𝑖!𝐴𝛽 → … → lim−−→𝛽<𝛼
𝑖!𝐴𝛽

in which each 𝐴𝛽 → 𝐴𝛽+1 is a pushout of a semisimplicial horn inclusion in ssSet. The result
follows from the fact that 𝑖! preserves colimits.



Conclusion and future work

In this thesis we have studied the homotopy theory of semisimplicial sets, attempting to trans-
fer the standard model structure sSet𝑄 on simplicial sets along the left adjoint 𝑖!. We have
seen that the full model structure cannot be transferred, but we were able to transfer the ‘right
semi’-fragment in such a way that the adjunction becomes a Quillen equivalence between right
semimodel structures. There are some interesting avenues for further research.

• One question is whether ssSet0 is a right semimodel structure. It might be the case that
𝑖! ∶ ssSet0 → sSet𝑄 reflects weak equivalences, from which it would follow that this
question must be answered negatively, like we did with ssSet1. On the other hand, if
ssSet0 turns out to have strictly less weak equivalences, it might just as well be a right
semimodel structure.

• Another pressing question is whether the construction of the right semimodel struc-
ture ssSet𝑄 can also be carried out in a constructive metatheory. Seeing that results in
both [Sat18] and [Hen18] are established in this way, this question hinges on whether
the left-induced weak factorisation system (TrivCofΔ𝑖 , FibΔ𝑖) can still be shown to exist.
One way to do this would be to show that the argument in [MR14] is valid, but perhaps
a weaker argument can be made that is tailored to this specific setting.

• Another line of research would be to investigate whether right semimodel structures in
general, and ssSet𝑄 in particular, can serve as a model for some type theory.

• It is known that the fibrant objects in ssSet1, i.e. those with the right lifting property
with respect to the semisimplicial horn inclusions admit a system of degeneracies (or:
lie in the image of 𝑖∗). This fact is proven using topological arguments in [RS71] and
using combinatorial arguments in [McC13], but it would be nice to have a more abstract
proof using categorical arguments. As is pointed out in [Sat18], for any such fibrant 𝑋 ,
there is, since 𝜂 is valued in weak equivalences, a diagonal filler

𝑋 𝑋

𝑖∗𝑖!𝑋
𝜂𝑋

which only leaves to verify the commutativity of the second diagram of (1.3.23).
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