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Summary  Taking a broad historical line, we discuss major aspects of 

rationality that can be analyzed in a logical and computational perspective. Topics 

include classical notions from the foundations of computability, insights from the 

development of computer science and AI, and the richer picture of rationality 

emerging in current logical studies of agency. We also discuss two challenges. 

Distributed computing and evolutionary games replace 'high rationality' by 'low 

rationality' in behavior, machine learning defies classical views of representation 

and inference. Both trigger new logical themes in the study of rationality. 

 

1. Introduction 

Rational behavior is a rich phenomenon, not captured in a single formula, but 

mapped out in this entire Handbook. Let us take the common sense view. We all 

believe, or try to believe, that our behavior is driven by reasons and reasoning, and 

that we are susceptible to reason, changing our minds when confronted with new 

facts or considerations. This is how we see ourselves, how we justify our actions to 
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others, and how academic organizations present themselves to a general public. 

Further important aspects of rationality, such as preferences and goals, will only be 

touched upon lightly in this chapter. 

Since Antiquity, reasoning has been at the heart of logic. In fact, logic is often 

seen as rationality in its purest, perhaps its most intimidating, form. We will chart 

this match, without claiming logic is all there is to rationality.  

Example: Valid and invalid consequence. Classical logic tells us things like this: 

an inference ¬B from A → B and ¬A is invalid (B might hold for other reasons 

than A) — but the inference from A → B and ¬B to ¬A is valid, and in fact the 

engine of refutation. Valid inferences put together form complex proofs that can 

yield surprising new insights. Over time, studying all this has produced a rich 

semantic and syntactic discipline of logical systems.                    ┤ 

Before we start, here is a distinction. Logical proof can be seen as a practical 

engine of rational behavior, and different logical systems can model rational 

reasoning practices. But there is also a theoretical foundational use of logic, as a 

study of the structure of rationality: its laws, and its limitations. In this second sense, 

logical analysis can target any practice that rational agents engage in: not just 
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reasoning, but also observing, taking decisions, or debating. Both uses, practical 

and theoretical, will occur in what follows. 

But here is a further step. Logical systems for analyzing reasoning are cultural 

artefacts that interact with human practices. In particular, they feed into 

computational devices. For instance, the valid inference from A → B and ¬B to ¬A 

is also a basic law of binary arithmetic, at work in one's computer. This association 

has proved fruitful in the foundations of mathematics, and practically, it has 

triggered the development of computers, information technology, and artificial 

intelligence that are transforming our world. Some even fear that our logical tools 

have started overtaking us. 

A full picture of reasoning requires that ``us''. Many themes in this chapter 

connect naturally to empirical cognitive psychology. This interface is beyond our 

scope, and we refer the reader to the empirical entries in this Handbook. Instead, 

we proceed to the logico-computational perspective on rationality. 

2. Mini-history of reasoning and computation 

To understand the links between logic and rationality, a historical perspective is 

helpful, cf. Kneale and Kneale (1962). Over time, many forms of reasoning were 

captured in logical systems by philosophers, mathematicians, and others: a process 
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that is still continuing. Once discovered, these systems became intellectual tools 

that enhance rational thinking. Then, in the early modern age, Lull and Leibniz 

realized that reasoning is close to computation. From there runs a straight road to 

the logic machines of Babbage and Lovelace, and onward to modern computers and 

AI systems. On the way, the notion of computation acquired sharper contours. A 

computing device need not be tied to one specific task, it can be programmable, the 

way a loom can weave different textiles depending on its book. Thus, computing 

means finding algorithms performing tasks, and since algorithms work on code, it 

also means finding data structures that represent information in appropriate ways. 

All this is similar to the reality of logic itself. Textbooks say that logic is the 

study of inference or reasoning, but much more is involved. Reasoning presupposes 

a vehicle, often a language, representing the notions one reasons with. Thus, as 

noted in the perceptive essay Beth (1971), logic has always been about a tandem of 

proof and definition, or if you wish, proof theory and model theory. And, Beth 

added as a crucial third historical constant of logical thought the notion of algorithm, 

which combines the former two. 

The history of computing is remarkable in that major principles were 

discovered before practical success, unlike in many other fields. Gödel (1931) 
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analyzed the limits of what logical proof systems can achieve, finding that systems 

whose expressive power suffices for encoding basic arithmetic are either 

inconsistent or incomplete: unable to prove all intuitive mathematical truths about 

their domain. Gödel's proof involved a deep analysis of computable (`recursive') 

functions, and subsequently, Turing (1936) defined machines that can compute all 

recursive functions. There is even a universal Turing machine that, given any 

program code and input, computes the effects of running that program on that input. 

In this setting, Church (1936) showed that standard reasoning systems such as first-

order logic, though axiomatizable, are undecidable: no computing method can 

decide, for arbitrary first-order consequence problems, whether they are valid. Thus, 

a major trade-off came into view: increased expressivity of a language and 

complexity of its decision problem for validity are at odds. 

This history highlights several points that seem crucial to understanding the 

nature and scope of rationality even today. The first is a practical issue of modus 

operandi. If rationality has a computational engine, how should we understand its 

tandem of reasoning, information, and concept formation? The second point is 

theoretical. Are there principled limitations to logical rationality: say, are natural 

tasks beyond the scope of rational inquiry? Gödel's theorems keep generating 
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discussion, Wang (1996), and a common moral is that there is more to rational 

thinking than what is captured in logical systems. Even so, whenever this “more” 

is explained systematically, the limitation theorems apply again. Finally, results on 

what proof systems and computing devices cannot do were in fact immensely 

helpful in the further development of systems of inference and computation that 

can do a lot. Likewise, the modern `challenges to rationality' discussed in this 

chapter may actually yield new insights into what rationality can achieve. Having 

said that, much current literature in AI or cognitive psychology is of the `can do' 

type: one seldom reads about exciting discoveries of deep new limitations. 

The foundational era of Gödel and Turing showed what is provable or 

computable in principle. While this high abstraction level remains a valid 

perspective on rationality, subsequent history tells us many further things. 

3. Computer science and artificial intelligence 

Computer science. The development of computing in the 20th century has 

generated major practical achievements, but also an ever-growing insight into fine-

structure. There are different models for computation, from Turing machines to 

many other devices, and crucially, these models come in hierarchies. Some tasks 

are solved by simple finite automata, other require memory management to varying 
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degrees. Likewise, there is a wide diversity of, poorer or richer, languages for 

specifying data structures and writing programs, Harel (1987). Next, significantly, 

around 1980, computing architecture moved away from single Turing machines to 

distributed networks, the reality of computing today Andrews (2000). These 

developments have given rise to new fields such as automata theory, Chakraborty 

et al. (2011), complexity theory, Papadimitriou (1994), and process algebra, 

Bergstra et al. (2001), that chart the varieties of computation in different ways, 

many of them connected to logic. This process is still ongoing, and the foundations 

of computation remain under debate. For instance, there is no consensus on a 

definitive notion of algorithm, a more intensional notion than an extensional input-

output record of Turing machines, Haugeland (1997), Bonizzoni et al. (2013). 

Computation today is rather a way of producing behavior. 

All this comes with notions and insights that are relevant to rationality. The 

fine-structure of computation gives a precise sense to the earlier double-edged 

modus operandi: reasoning engine and representational apparatus. And the variety 

in real computation suggests that `boundedness' of resources and powers is the 

norm in rational performance, not one idealized super-device. Matching this 

practical concern is a fundamental issue. In the complexity theory of space and time 
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resources needed for computational tasks, we are really talking about the 

information in the world and how to process it. But this forces us to think what is 

the information available to rational agents, Adriaans and van Benthem (2008). And 

there is yet more to be learnt from the world of computing. If we think of the 

behavior of rational agents as performing many tasks at once, just as networks of 

computers do, then there is a fundamental issue of architecture. How do the 

different components of the overall system pass information and cooperate,  

Gabbay (1998)? 

Artificial intelligence. Moving closer to humans, computer science flows over 

seamlessly into AI. From the start, computers have been seen as a powerful model 

for human intelligence. In an interesting departure from the detailed internal 

analysis of computing by Turing machines, the famous Turing Test approaches 

intelligence in the tradition of measuring theoretical notions by external observable 

behavior, Turing (1950). It proposes that a computer achieves intelligence if an 

observer using natural language cannot tell that computer apart from a human by 

asking questions and engaging in conversation. Over the years, computers started 

to pass variants of the Turing Test, or other types of intelligent behavior. Actually, 

none of these are usually considered conclusive, as the criteria are a moving target, 
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van Harmelen et al. (2008). Passing the test is dismissed as not a display of `real 

intelligence’, and then the demands are shifted a little further. But behavioral tests 

are crucial to judging human rationality as well. We seldom look inside people’s 

heads to monitor their considerations, but observe their words and actions. 

A final intriguing feature of the Turing Test is its hybrid scenario where 

different types of agents, humans and machines, interact, presaging the reality of 

human-machine interactions in modern society. This scenario goes beyond classical 

emulation or competition concerns. How can societies of mixed agents, with 

different strengths and weaknesses, interact successfully, Wooldridge (2009)? The 

resulting diversity in agency is only beginning to be acknowledged more widely. 

Most paradigms in logic or philosophy assume that agents have similar abilities for 

reasoning, observing and communicating, though their information and preferences 

may differ. Such uniformity assumptions underlie generic notions like ‘humans’ or 

‘rational actors’, and they may even seem to embody moral imperatives, like 

treating everyone equally qua rights and duties. If one accepts diversity, however, 

notions and theories concerning rationality must be rethought. 

The above trends in AI and computer science considerably extend the logical 

agenda for studying rationality. A major view of computation from the 1980s 
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onward is that of behavior by agents, van Benthem (2018a), studied by merging 

ideas from computational and philosophical logic, Gabbay and Guenthner (1983-), 

Gabbay, et al. (1993). After explaining what is involved in such agency in Section 

4, concrete examples will be given in Sections 5 and 6, showing logic at work in 

this modern setting. However, the logic-oriented agency approach has not gone 

unchallenged. In Section 7, we will discuss the `high' versus `low' rationality 

competition in understanding social agency, and in Section 8 the rise of non-

representational machine learning techniques. Both come with a greater emphasis 

on probability, the other main formal paradigm for studies of rationality. We will 

end with an assessment of the current landscape of logico-computational 

approaches to rationality. 

4. From machines to rich rational agents 

A conceptual catalogue. Let us first think of what agents can do in general. Human 

agents have a much wider range of rational activities than just reasoning from given 

data, that is, elucidating what was already implicitly there. A rich dynamic 

information flow guides action. Agents constantly pick up new information from 

their environment by means of observation and communication, and they search 

their memory for information, too. Rationality is about picking up relevant 
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information from whatever source is available, as much as reasoning, and that both 

in daily life and in Science. 

However, even rich processing of correct information is just one dimension. 

Information can be less or more reliable, and agents do not just accumulate 

knowledge, but also form beliefs that can be shown wrong by new information. 

Thus, robustly rational agents are not those who are always correct, but those who 

learn from errors and have a talent for correcting themselves, Popper (1963), Kelly 

(1996). Many facets of belief revision and learning are dealt with in Chapters 5.2-

5.4 of this Handbook. Logic is a major supplier of models here, van Benthem and 

Smets (2015).  

And rational agency does not stop here. Truly rational agents maintain a 

harmony between their information and beliefs with, on a par, their preferences, 

goals, or intentions. One can discuss which harmony is essential, whether 

maximizing expected utility (see Chapter 8.2 of this Handbook) or some other 

option: logic cannot, and should not, decide. Real agents may differ widely in their 

distance from classical decision-theoretic views (cf. Chapter 8.3 of this Handbook), 

but the crucial point of rationality remains maintaining a workable balance between 

information, goals and actions. 
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Summing up, a rational agent can gather information in a variety of ways, 

integrating observation, inference, and communication, van Benthem (2011). In 

this process, the agent can form a rich variety of attitudes, from knowledge and 

belief to rejection or doubt. Also, the agent can function in environments where 

beliefs turn out wrong, and learns from errors. And all this maintains a purpose, a 

balance between the agents’ goals and its information or actions. And finally, even 

this is not yet a full picture. Rational agents display their skills in social interaction, 

a topic that will return. 

Multi-agent systems. Bits and pieces of this richer notion of rational agency 

have long been studied by philosophers and logicians, witness the Handbook of 

Philosophical Logic, Gabbay and Guenthner (1983-). In the 1980s, a congenial 

picture of agency emerged in computer science and AI, in the study of multi-agent 

systems Fagin et al. (1995), Shoham and Leyton-Brown (2008), Wooldridge (2010). 

This reflected a shift in thinking about computing, from machines to agents with a 

behavior analyzed in terms of features normally ascribed to humans. This extends 

to autonomous systems. Robots investigate their environment with sensors, decide, 

and act in performing their tasks, Cardon and Itmi (2016). Again, tools from 

philosophical logic make sense, cf. Brafman et al. (1997) on epistemic 
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specifications for real robots, whose sensors have a margin of error. But conversely, 

notions from multi-agent systems can be found in modern epistemology, Arlo-

Costa et al. (2017). For instance, robots acting on evidence of varying quality have 

inspired new models for evidence-based belief, van Benthem and Pacuit (2011). 

Games. There is a natural confluence here with one more discipline. Agents that 

acquire information, choose actions, and pursue goals are like players in games. 

Indeed, computer science has drawn closer to game theory, Nisan et al. (2007), and 

logic, with its connections to games of argumentation (cf. Chapters 5.5, 5.6 of this 

Handbook) and information-seeking, Hintikka (1973), is a natural partner. Indeed, 

epistemic game theory (Chapter 9.2 in this Handbook) can be seen as a venture 

created by these contacts. 

Even with all this, no canonical view has crystallized yet of what a rational 

agent is and does, similar in elegance and fertility to that of a computing machine, 

let alone a `universal rational agent' comparable qua sweep to the universal Turing 

machine. In fact, the earlier recognition of diversity suggests a focus on different 

kinds of rational agents, rather than uniqueness, changing standard assessments of 

performance. Is a rational agent someone who wields vast cognitive powers, or 

someone doing their best with limited powers? Are rational agents those who 
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perform well against other rational agents, or those who cope with a large 

bandwidth of types of agents in their environment? 

5. Logical models of rational agency 

In recent decades, many features of rational agents have been studied by logicians. 

Information update and knowledge change occur in temporal logics of agency, 

Fagin et al. (1995), Belnap et al. (2001), Parikh and Ramanujam (2003). Another 

paradigm is dynamic-epistemic logic, Baltag et al. (1998), van Ditmarsch et al. 

(2007), which models processes whereby agents form and modify representations 

of the information at their disposal. Such updates are not inferences, but they can 

be described just as precisely in logical terms. 

Example: Dynamics of information flow. In a simple two-party dialogue, Agent 

1, who is uncertain about the truth or falsity of p, asks ``p?''. A second agent then 

truthfully and publicly replies ``Yes''. Analyzing the information flow in the 

dialogue, the first agent's question conveys that she doesn't know the answer, but 

also that she thinks the second agent, a fully reliable source, does know. The second 

agent's answer conveys that 1's assumption about 2's knowledge was correct, and 

also, after 2's answer, p is common knowledge in the group of these two agents. ┤ 
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This mixture of knowledge of facts and knowledge about others is typical for 

communication. More complex scenarios, such as the famous Muddy Children 

puzzle, Fagin et al. (1995), illustrate how even truthful public announcements of 

ignorance following consecutive questions can gradually lead agents to knowledge.  

A symbolic language capturing all of this has formulas [!φ]Kψ saying that the 

agent will know ψ after a public event carrying the information that φ is true. A key 

law in this logic of public announcements is the equivalence  

[!φ]Kψ ↔ (φ → K(φ → [!φ]ψ)) 

This relates new knowledge after the event φ happened, to its `pre-encoding' before 

the event: the agent had conditional knowledge that the event !φ would result in the 

truth of ψ. Such logical laws interchange dynamic operators for events and 

epistemic operators for attitudes of agents, a crucial ingredient in understanding 

information update and knowledge change. 

Logics of belief change under hard and soft information have been developed 

in the same style, cf. van Benthem and Smets (2015), and other formal approaches, 

such as `AGM', occur in Chapter 5.2 of this Handbook. Learning fits well with 

belief revision: connections between dynamic logics of knowledge and belief with 

formal learning theory are found in Baltag et al. (2011). 
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Example: Belief change. In the above two-party dialogue, now assume that 

Agent 2 is not a fully reliable information source. Starting from the initial situation 

in which Agent 1 believes neither p nor ¬p, the answer of 2 to her question can 

trigger 1 to change her mind and possibly, to adopt a wrong belief. Yet how exactly 

she changes her mind depends on the trust that 1 has in 2 as an information source 

about p. If 2's answer ̀ `Yes'' is considered to be reliable but not infallible, the ̀ belief 

upgrade' that it triggers can be more radical, inducing a strong belief in p, or more 

conservative, inducing a weak belief in p.                              ┤  

Again, this process obeys logical laws. A formal language now has constructs 

[↑φ] for effects of conservative upgrades, and [⇑φ] for radical upgrades. This brings 

to light many principles of belief change. For instance, ¬K¬φ → [↑φ]Bφ says, for 

factual statements φ, that the agent comes to believe that φ is the case, unless she 

already knew before the announcement that φ was false. In logical studies of 

learning, one studies iterations of such upgrades and analyzes how well they 

perform as a learning method. 

The study of key features of rationality in this style continues. Further aspects 

of purposeful rational behavior brought into the scope of logic include the 
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management of current `issues' that guide inquiry for tasks at hand, cf. the 

inquisitive logics of Cardelli, Groenendijk and Roelofsen (2019). 

Next, moving from informational tasks to agents’ preferences and goals, which 

determine how they evaluate situations, Liu (2011) studies logics of preference 

change, which is connected to goal dynamics. Preference dynamics shows 

similarities with deontic logics describing what is obligatory and permitted for 

agents in environments where new commands change moral ordering of situations 

and actions, Yamada (2008). 

Finally, rational agents balance their information with preferences and goals. 

Logics combining all these features occur in influential frameworks for multi-agent 

systems such as BDI Rao and Georgeff (1991), inspired by Bratman (1987), 

describing how agency is driven by a balance of beliefs, desires, and intentions. But 

perhaps the most active research area where all these features of rational agents 

meet is in the logical study of strategic behavior and equilibria in games, cf. Chapter 

9.1 of this Handbook. 

Example: Reasoning about extensive games. Consider a finite game with two 

players A and E, and outcome-values written in the order (A-value, E-value): 
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Intuitively the outcome (99, 99) seems best for both players: but that is not what 

the standard game solution algorithm of Backward Induction yields. Looking from 

the bottom to the top, if E is to play she will choose left, and so, if A believes that 

E will make this choice, she herself will play left in the first round and end the game, 

with outcome (1, 0).                          ┤ 

Analyzing why this game might play out in this non-Pareto-optimal manner 

involves many notions, including players' actions, beliefs, preferences, and plans. 

All of these have been studied by logicians, in different settings or as separate topics. 

For precise definitions of equilibria in games, and a survey of logical game analysis, 

cf. van Benthem and Klein (2019). 

All dynamic logics mentioned here exemplify the earlier-mentioned tandem of 

algorithm and data in computation. The events that produce new information or 

new desires operate on well-chosen static models that support attitudes of 

knowledge, belief, preference, and the like. 
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Digression: non-classical logics. There are also approaches folding all of the 

above activities under varieties of inference, emphasizing departures from classical 

consequence to non-classical non-monotonic logics, Horty (2014), and resource-

conscious substructural logics, Restall (2000). For a comparison of the two 

methodologies, cf. van Benthem (2018b). 

Example: Non-monotonic reasoning. Consequence in classical logic is 

monotonic, new premises do not invalidate earlier conclusions: if Г ⊨ φ and Г ⊆ , 

then ⊨ φ. In contrast, default inferences are defeasible, cf. Chapter 5.2 of this 

Handbook. If I know that Tweety is a bird, I can conclude that Tweety can fly, yet 

with a further premise that Tweety is a penguin, it no longer follows that Tweety 

can fly.                  ┤ 

The field of non-monotonic logic studies properties of default reasoning. In 

contrast, dynamic logics of belief revision capture default phenomena on a classical 

base, locating the non-monotonicity in belief change rather than in changing the 

inference rules. I believed that Tweety can fly, after an event !Penguin(Tweety), I 

have lost that belief.  

Discussion. The logical study of ever more aspects of agency aims at a non-

purely behavioral view of rationality by identifying key internal features and 
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mechanisms. But combining logical and computational agendas does not make 

logical systems realistic software agents or human agents. Far more is needed for 

algorithms to work, and implementation requires further syntax. Recent studies 

mediate between semantic models and syntactic representations for computing 

agents, Halpern and Rego (2009), Lorini (2018). 

Also, the development of ever richer models raises questions. Where is the 

boundary of agency, as more and more topics are taken on board, and what is 

`rational' about the activities so described? Are we describing what agents do, or 

are these logical systems normative? A common view holds that logics of agency 

describe idealized laws that may or may not be followed by actual agents. This 

tension may be just what is needed. We cannot say, for instance, that belief revision 

leads to `correction’ of earlier beliefs unless we have a norm for what is correct in 

the given circumstances. These are big issues that we cannot settle here, but that 

permeate much of this Handbook. 

6. Rationality in interactive social settings 

The modern study of agency reflects the fact that distributed systems are the 

paradigm of computing today, not single machines. Likewise, multi-agent systems 

put interacting individual agents at center stage, and at a next level, view groups 
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themselves as actors, up to crowds or societies. This shifts the location of rationality 

from single agents to the quality of their interactions. And it broadens the focus 

from individual desires and actions to include emergent properties of the social 

system. 

The interactive perspective is not alien to logic. Ever since Antiquity, dialogue, 

argumentation and debate have been paradigmatic scenarios, and the rich interface 

of logic and games has been noted already, Hodges (2018), van Benthem (2014). 

A core topic in epistemic logic is the rational ability to reason about others, with 

iterated forms such as ``agent i knows that agent j knows that'', and analogues for 

belief and other attitudes, cf. Chapters 5.5., 5.6 and 5.8 in this Handbook. This 

recursion to higher levels is widespread: we can even be afraid of fear, of fear of 

fear, and so on. The extent to which human agents truly display these abilities is 

studied in cognitive psychology under the heading of Theory of Mind, Premack and 

Woodruff (1978), Isaac et al. (2014). Iterated knowledge is used in computer 

science in analyzing correctness and security of communication protocols, Fagin et 

al. (1995). 

But there is much more to social interaction than epistemic reflection. Strategic 

action involves dependencies of one agent's behavior on that of others, or better, 



22 

 

expectations about others, Aumann (1995). Here is a simple illustration, a 

computational task in an interactive setting. 

Example: Sabotage game. A Traveler in a graph moves along edges to reach 

some specified goal region. This graph reachability problem is solvable in Ptime. 

But now, there is a malevolent Demon who cancels an edge after each move 

Traveler makes. After that, Traveler goes along some still existing edge, and so on. 

                   ┤  

This `sabotage game' models search tasks under adverse circumstances, and 

other social informational scenarios. The solution complexity of the sabotage game 

jumps from Ptime to Pspace-complete. Logic helps determine who has a winning 

strategy in a given sabotage game by defining the basic challenge-response pattern, 

and it helps reason about general properties of such games. This is one case where 

logic meets `gamifications' of agency scenarios, and logics can even be used to 

devise concrete new practical games, becoming tools of design as much as of 

analysis, van Benthem (2014).  

With preference added, different notions of rationality have been investigated 

by logical means, such as those in game solution methods like Backward Induction, 

Iterated Removal of Strictly Dominated Strategies, see Chapters 9.1, 9.2 of this 
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Handbook, or Iterated Regret Minimization, Halpern and Pass (2009). The structure 

of strategies by themselves is studied extensively at the interface of game theory, 

logic, and computer science, Brandenburger (2014), van Benthem et al. (2015). 

Also, games influence computational logic, witness the `Boolean games' of 

Harrenstein et al. (2001), where players can manipulate truth values of propositions 

toward achieving their goals. 

7. High and low rationality 

At this point, a challenge arises to the preceding analyses of individual and social 

rationality. Classical game theory has agents that deliberate and design complex 

strategies, and rich epistemic and dynamic logics of agency reflect this. However, 

in evolutionary game theory, see Chapter 9.3 of this Handbook, poor agents do just 

as well, perhaps hard-wired biological types, Maynard Smith (1982). 

Example: Evolutionary games. In a `Hawk-Dove' game, two individuals 

compete for a resource and can adopt either a Hawk or a Dove strategy. Hawks 

fight aggressively against other Hawks, in order to obtain the resource, until injury 

occurs and one retreats, or just takes the resource from a Dove, while a Dove 

retreats when facing a Hawk, while two Doves share the resource.          ┤ 
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Game theory computes equilibria here, which are typically in mixed strategies. 

With repeated Hawk-Dove games, the appropriate notion is that of an 

`evolutionarily stable' strategy, and it can be shown that certain mixtures of Hawk-

Dove populations are stable, when the value of obtaining the resource is greater 

than the cost associated with possible injury in a fight. One can think of these mixed 

strategies as complex behavior for individual reasoning agents, but also as just 

percentages of a population consisting of two types of agents, each just doing what 

it does, perhaps for biological reasons. 

In the terminology of Skyrms (2010), the realm of complex reasoning players 

is that of `high rationality', the realm of hard-wired simple agents that of `low 

rationality'. Often the latter do as well as the former. For instance, a classical game-

theoretic analysis might say that through some sophisticated Kantian or Rawlsean 

argument involving thinking about others, we all arrive at the conclusion that we 

should live by the principles of morality, with the exception perhaps of a few free 

riders. By contrast, a game-theoretic evolutionary stability argument may tell us 

that in the long run, a population of simple law-abiders (the prey) and law-breakers 

(the predators), who both cannot help being what they are, is stable. No reasoning 

need be involved at all, the morality is emergent system behavior. This influx from 
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evolutionary game theory reinforces the message of distributed computing: a 

society of many simple agents can produce highly complex behavior. 

Here is one more scenario of emergent long-term complex behavior.  

Example: Limit behavior in social networks. The following network has an 

update rule that agents s (the nodes) adopt a belief p if p is held by all their neighbors 

(that is, all nodes with an arrow pointing to them from s). Applied iteratively, the 

following evolutions may occur with different initial situations. 

 

Case 1: Initial p = {1}. The second stage has p = ∅ (no one believes p), and this 

remains the outcome ever after. Case 2: Initial p = {2}. The next successive stages 

are {3}, {4}, {2}, and from this stage onward, the network activation states loop. 

Case 3: Initial p = {1, 2}. The next stage is {3}, and we get an oscillation as before 

in Case 2. Case 4: Initial p = {1, 2, 3}. We get {1, 3, 4}, {2, 4}, {2, 3}, {1, 3, 4}, 

and an oscillation starts here.                     ┤ 

Thus, network update dynamics can stabilize in a single state (Case 1), or 

oscillate in loops. Sometimes, successive models in a loop are isomorphic (Cases 2 

and 3), sometimes the loop runs through different non-isomorphic network 

configurations (Case 4). In infinite networks, an even further option is divergence 
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toward ever different configurations. In all these scenarios, no logic seems involved 

in belief formation, behavior arises from agent types (the update rule) and the global 

structure of the network. 

To put the challenge starkly, perhaps complex logic-based rationality is not 

necessary to understand the behavior of human and artificial agents? But things are 

more complicated. In daily life, we think carefully in the `high' style about certain 

issues, but given our limited resources, we just follow, `low'-style, our neighbors 

on perhaps the majority of issues. This mixture calls for explanation, and current 

investigations are charting its details. 

Combined high-low scenarios.  Liu et al. (2014) studies agents in social 

networks that follow their neighbors' preferences, beliefs or behavior via rules like 

following the majority, or some other threshold, reflecting different agent types. 

This diffusion process models spread of fashions and new ideas. But agents still 

have epistemic states and these can change dynamically as before, as described in 

an `epistemic friendship logic'. In this setting, amongst other things, a logical 

characterization can be given of conditions for stabilization of agent's beliefs: thus 

predicting long term system behavior. This framework combines ideas from 

sociology, Friedkin (1998), with epistemic logic, adding an essential element to the 
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earlier logical models of agency: the structure of the social network, see also 

Chapter 10.1 of this Handbook. For a congenial study in another logical framework, 

see Xue (2017).  

Other combined scenarios that have been studied include groups of 

individually rational agents who reason towards a common decision. Two things 

can happen. Individual agents can enhance each other's reasoning power and bring 

about a higher level of group rationality surpassing that of each individual agent. 

But groups may also get locked in irrational behavior. Whether the one will happen 

or the other is investigated in Baltag et al. (2018), in terms of differences in interests 

and abilities between agents. One striking conclusion is that irrational group 

behavior is often not caused by irrational behavior of individual agents, but by 

misalignments of their interests. 

Other social phenomena that have been studied by logical techniques are 

informational cascades, Bikhchandani et al. (1992), where a sequence of individual 

agents follows the decisions of their predecessors, while ignoring their own private 

evidence. Baltag et al. (2013) asks whether individual rational agents, who use all 

their higher-order reasoning power, can stop a cascade from happening. The answer 

is surprisingly `no', and this fact can be proved by logical techniques that track 
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information updates. However, the protocol matters, regulating the agents' 

strategies. When agents have total communication and sharing of evidence, 

cascades can be stopped.  

The preceding examples show how prima facie ideological differences between 

high and low rationality turn into a deeper study of how the two interface. This is 

logic at work at the ground level of agent activity. However, there is also a second, 

more methodological contact between the two sides. Logic can analyze the 

structure of the dynamical systems theory underlying most low-rationality 

approaches, and find patterns there, usually amounting to high-level qualitative 

descriptions of system behavior. Explorations in this direction include Kremer and 

Mints (2005), Klein and Rendsvig (2017). 

8. Machine learning and probability 

In addition to the preceding tensions, the contemporary world of computing and AI 

offers a new challenge to logic-based views of rationality.  

Machine learning. Machine learning, Kelleher (2015), works well on large data sets, 

outperforming symbolic approaches that tend to have problems of scalability. For 

instance, in supervised learning, a neural network is constructed consisting of nodes 

with adjustable thresholds and links between nodes of adjustable strengths. Each 
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setting for all of these produces an activity in the output layer given an input to the 

initial layer of the network. A cost function measures the distance of the current 

outputs to the desired ones on the training inputs. The network can then adjust its 

weights and thresholds in the direction of lowering the cost function by well-known 

techniques such as gradient descent, Russell and Norvig (1994). In the end, stable 

optima in network activation are reached that work very well in new cases outside 

of the training set, in many computational and cognitive tasks. These networks, 

related to spin glass models in physics, Nishimori (2001), use general statistical 

methods rather than specifically human agent features.  

Neural networks in machine learning do not have anything obvious 

corresponding to classical logical models. There is no language and no 

representation, and the dynamic operations of the network do not reflect logical 

operations in any obvious manner. Also, very different stable states of the network 

resulting from training sessions can perform the same tasks, and invariants are hard 

to detect. Thus, whereas low-rationality methods raised the question whether 

logical analysis was necessary, deep learning methods raise the question whether 

logical analysis is even possible. 
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It is far too early to adjudicate this debate. But here too, there are some 

promising developments toward cooperation rather than animosity. Integrating 

statistical inference in neural networks and learning with symbolic reasoning is an 

active area of research, Baggio et al. (2015), Leitgeb (2004), and Balkenius and 

Gärdenfors (2016). `Explainable AI' seeks humanly intelligible qualitative patterns 

behind machine learning systems, with topics such as causal reasoning, Pearl (2000) 

and Chapter 7.1 of this Handbook, Halpern (2016), van Rooij and Schulz (2019), 

conditional logics as a way of classifying types of machine learning, Ibeling and 

Icard (2018), and there is also a trend toward finding joint perspectives on learning 

in itself.  

But also, recall a distinction made at the start of this chapter. If logic is only 

seen as a direct model for activities of reasoning or information update, other 

frameworks look like competitors. To some, the only question under debate is then 

whether logic can enhance such frameworks in terms of representation or 

computation. But in the more foundational sense of logic as an analysis of the 

structure of theories of computation and agency, even machine learning works on 

spaces with logical structure that can be described in logical terms, Leitgeb (2017), 

and a meeting of the minds seems entirely feasible. 
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Probability. Continuing with methodological issues, here is one final contrast. 

A conspicuous feature of most studies of agency is the extensive use of probabilistic 

methods, a quantitative paradigm often seen as being at odds with qualitative 

logical analysis. Probability underlies many computational systems, it lies at the 

heart of game theory and dynamical systems theory, and in epistemology, 

probabilistic styles of analysis are at least as widespread as logic-based ones, see 

Chapters 4.1, 4.7 of this Handbook. 

The fruitful issue here is again one of combination. Qualitative and quantitative 

approaches naturally co-exist, and the issue is just how. For instance, epistemic and 

doxastic logics, static and dynamic, model uncertainty in terms of ranges of options, 

Adriaans and van Benthem (2008), whereas Bayesian epistemology uses updates 

of probability functions, Talbott (2016). The compatibility of the two perspectives 

shows in combined systems, Halpern (2005), that reason about both ontic and 

epistemic uncertainty, bringing together logic-based approaches with probabilistic 

conditioning. Other uses of probability concern action rather than information, 

witness the mixed strategies in game theory: for a logical perspective, see van 

Benthem and Klein (2019). But there are also quite different interfaces of logic and 

probability, for instance in the DOP architecture of Bonnema et al. (1999), Bod 



32 

 

(2008) which combines classical rule-based models of language and reasoning with 

probabilistic pattern recognition in a memory of earlier performance. Finally, the 

foundations of probability were still close to logic in the work of Boole and De 

Finetti, and various strands of research link the two realms in new ways. Harrison 

–Trainor et al. (2018) studies low-complexity qualitative reasoning systems that 

admit of introducing probability measures, while Leitgeb (2017) derives qualitative 

notions of belief from richer probabilistic models. 

There are many further philosophical and technical issues to be explored at this 

rich and growing set of interfaces that we cannot cover in this article: the reader is 

referred to Spohn (2012) and Chapter 5.3 of this Handbook. 

9. Conclusion 

This chapter has presented broad perspectives from logic and computation on 

rational agency. These ranged from high-level foundational insights into 

information and proof to specific studies of various abilities of information- and 

goal-driven agents. A rational agent, in this light, is a reasoner, information 

processor, concept crafter, and purpose seeker: fallible, but talented. Is it also a 

human cognitive agent? On connecting logic and computation to cognitive reality, 

we defer to Chapter 3.5 in this Handbook. 
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The main thrust of a logical approach as we see it is theoretical, but the deep 

entanglement of logic and computation over the last century has added practical 

dimensions. Rationality as studied here can be programmed and put into intelligent 

systems, even though the path to feasibility is not easy or trivial. It is this very 

distance that allows logical theories to also be normative, providing an essential 

tension between the real and the ideal in the study of rational behavior, which keeps 

sparking further investigation. 

We have not hidden the fact that the classical logico-computational paradigm 

faces challenges, coming from probability theory, dynamical systems, and machine 

learning. But we think this is all to the good, since these challenges suggest new 

interface topics of interest to all. 

Finally, it should be clear that we have not claimed that logic is the only game 

in town. Neither is computation. The approach surveyed in this chapter does not 

hold the unique key to understanding the rich phenomenon of rationality, but it does 

offer one valid and illuminating perspective. 
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